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Unconstrained SU„2… Yang-Mills quantum mechanics with the theta angle
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The unconstrained classical system equivalent to spatially homogeneous SU~2! Yang-Mills theory with the
theta angle is obtained and canonically quantized. The Schro¨dinger eigenvalue problem is solved approxi-
mately for the low lying states using variational calculation. The properties of the ground state are discussed,
in particular its electric and magnetic properties, and the value of the ‘‘gluon condensate’’ is calculated.
Furthermore it is shown that the energy spectrum of SU~2! Yang-Mills quantum mechanics is independent of
the theta angle. Explicit evaluation of the Witten formula for the topological susceptibility gives strong support
for the consistency of the variational results obtained.

PACS number~s!: 11.15.Tk, 02.20.Tw, 03.65.Ge, 11.10.Ef
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I. INTRODUCTION

One of the central problems in the investigation of no
Abelian gauge theories is a gauge invariant description of
vacuum and the low-lying excited states. In the standard
proach to the quantization of gauge theories the phys
states have to satisfy not only the Schro¨dinger equation but
additionally be annihilated by the Gauss law operator
implement gauge invariance at the quantum level@1#. How-
ever, it is well known that there exist states which satisfy
Gauss law but are not invariant under the so-called ho
topically nontrivial gauge transformations, leading to the a
pearance of the theta angle@2,3#. A well-elaborated semiclas
sical approach to the theta structure of the ground state
been given in the ‘‘instanton picture,’’ where the theta an
is interpreted@1# in analogy to the Bloch momentum in soli
state physics. The instantons, which are self-dual solution
the Euclidean classical equations of motion with finite a
tion, correspond to semiclassical quantum mechanical
neling paths in Minkowski space between the infinite
quence of degenerate zero-energy Yang-Mills vacua
different homotopy classes of the gauge potential. The se
classical instanton picture of the theta vacuum however i
course reliable only for weak coupling. For a complete
vestigation of the theta structure of the vacuum of Yan
Mills quantum theory a rigorous treatment at strong coupl
is necessary. The effect of the theta angle for arbitrary c
pling constant can be taken into account by adding
Pontryagin density to the Yang-Mills Lagrangian@1#. Al-
though the extra theta dependentCP-violating term is only a
total divergence and therefore has no meaning classicall
can have a physical meaning at the quantum level as is
under lively discussion@4–6#.

As a first step towards a full investigation of Yang-Mil
theory in the strong coupling limit the toy model of SU~2!
Yang-Mills mechanics of spatially homogeneous fields h
been considered on the classical@7–11# as well as on the
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quantum level@12–21#. In the present paper we will analyz
the model of SU~2! Yang-Mills mechanics of spatially ho
mogeneous fields for arbitrary theta angle. In order to obt
the equivalent unconstrained classical system in terms
gauge invariant variables only@22–35#, we apply the method
of Hamiltonian reduction~Ref. @35#, and references therein!
in the framework of the Dirac constraint formalism@36–38#.
As in our recent work@11# the elimination of the pure gaug
degrees of freedom is achieved by using the polar repre
tation for the gauge potential, which trivializes the Abelia
ization of the Gauss law constraints, and finally projecti
onto the constraint shell. The obtained unconstrained sys
then describes the dynamics of a symmetrical second r
tensor under spatial rotations. The main-axis transforma
of this symmetric tensor allows us to separate the gauge
variant variables into scalars under ordinary space rotat
and into ‘‘rotational’’ degrees of freedom. In this final form
the physical Hamiltonian and the topological operator can
quantized without operator ordering ambiguities. We stu
the residual symmetries of the resulting unconstrained qu
tum theory with arbitrary theta angle and reduce the eig
value problem of the Hamiltonian to the corresponding pro
lem with zero theta angle. The energy spectrum is found
be independent of the theta angle by construction of the
plicit transformation relating the Hamiltonians with differe
theta parameter. Using the variational approach we calcu
the low energy spectrum with rather high accuracy. In p
ticular we find the energy eigenvalue and the magnetic
electric properties of the ground state, as well as the co
sponding value of the ‘‘gluon condensate.’’ Explicit calcul
tion of the Witten formula for the topological susceptibilit
using our variational results for the ground state and the
lying excitations gives strong support for the consistency
our results.

Our paper is organized as follows. In Sec. II the Ham
tonian reduction of SU~2! Yang-Mills mechanics for arbi-
trary theta angle is carried out and the corresponding unc
strained system put into a form where the rotational and
scalar degrees of freedom are maximally separated. In
III the obtained unconstrained classical Hamiltonian is qu
tized, its residual symmetries, the necessary boundary co
,
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tions for the wave functions, and the relevance of the th
angle on the quantum level discussed. In Sec. IV the eig
value problem of the unconstrained Hamiltonian with va
ishing theta angle is solved approximately in the low ene
region using the variational approach. In Sec. V the Wit
formula for the topological susceptibility is evaluated usi
the obtained variational results. Section VI finally gives o
conclusions. Appendixes A–C state several results and a
tional discussions relevant to the main text.

II. UNCONSTRAINED CLASSICAL SU „2… YANG-MILLS
MECHANICS WITH THE THETA ANGLE

A. Hamiltonian formulation

It is well known @1# that the theta angle can be include
already at the level of the classical action

S@A#:52
1

4E d4xS Fmn
a Famn2

asu

2p
Fmn

a F̃amnD , ~2.1!

with the SU~2! Yang-Mills field strengthsFmn
a :5]mAn

a

2]nAm
a 1geabcAm

b An
c, (a51,2,3), the dual F̃a

mn

ª1/2emnsrFasr andas5g2/4p. For the special case of spa
tially homogeneous fields the Lagrangian in Eq.~2.1! re-
duces to1

L5
1

2
~Ȧai2geabcAb0Aci!

22
1

2
Bai

2

2
asu

2p
~Ȧai2geabcAb0Aci!Bai , ~2.2!

with the magnetic fieldBai5(1/2)geabce i jkAb jAck . After
the supposition of spatial homogeneity of the fields
SU~2! gauge invariance of the Yang-Mills action Eq.~2.1!
reduces to the symmetry under the SO~3! local transforma-
tions

Aa0~ t !→Aa0
v ~ t !5O@v~ t !#abAb0~ t !

2
1

2g
eabc$O@v~ t !#Ȯ@v~ t !#%bc ,

Aai~ t !→Aai
v ~ t !5O@v~ t !#abAbi~ t !, ~2.3!

and as a result the Lagrangian~2.2! is degenerate. From th
calculation of the canonical momenta

Paª]L/]~]0Aa0!50,

Paiª]L/]~]0Aai!5Ȧai2geabcAb0Aci2
asu

2p
Bai ,

~2.4!

1Everywhere in the paper we put the spatial volumeV51. As a
result the coupling constantg becomes dimensionful withg2/3 hav-
ing the dimension of energy. The volume dependence can be
stored in the final results by replacingg2 by g2/V.
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one finds that the phase space spanned by the varia
(Aa0 ,Pa) and (Aai ,Pai) is restricted by the primary con
straintsPa50. The evolution of the system is governed b
the total Hamiltonian@36# with three arbitrary functions
la(t)

HTª
1

2
Pai

2 1
1

2 F11S asu

2p D 2GBai
2 ~A!1uQ~P,A!

2gAa0eabcAbiPci1laPa, ~2.5!

where the topological charge has been introduced

Qª2
as

2p
PaiBai . ~2.6!

Apart from the primary constraintsPa50 the phase space i
restricted also by the non-Abelian Gauss law, the second
constraints

Fa :5geabcAciPbi50, $Fa ,Fb%5geabcFc , ~2.7!

which follow from the maintenance of the primary co
straints in time.

To overcome the problems of the existence of these c
straints and the nonunique character of the dynamics g
erned by the total Hamiltonian~2.5! we will follow the
method of Hamiltonian reduction to construct the unco
strained system with uniquely predictable dynamics. As
the recent paper@11# we shall use a special set of coordinat
which is very suitable for the implementation of Gauss la
constraints and the derivation of the physically releva
theory equivalent to the initial degenerate theory. This w
be the subject of the following subsection.

B. Canonical transformation to adapted coordinates and
projection to Gauss law constraint

The local symmetry transformation~2.3! of the gauge po-
tentialsAai prompts us with the set of coordinates in terms
which the separation of the gauge degrees of freedom occ
As in Ref. @11# we use the polar decomposition for arbitra
333 quadratic matrices@39#

Aai~x,S!5Oak~x!Ski , ~2.8!

with the orthogonal matrixO(x), parametrized by the thre
anglesx i and the positive definite 333 symmetric matrixS.
The representation~2.8! can be regarded as transformatio
from the gauge potentialsAai to the set of coordinatesx i and
Sik . The corresponding canonical conjugate mome
(px i

,Pik) can be obtained using the generating function

F~P;x,S!5(
a,i

3

PaiAai~x,S!5tr@PTO~x!S# ~2.9!

as

px j
5

]F

]x j
5 (

a,s,i

3

Pai

]Oas

]x j
Ssi5trFPT

]O

]x j
SG , ~2.10!re-
7-2



t

n
n

il-
ic

um

n

re-

r

pace

e

l
nical

UNCONSTRAINED SU~2! YANG-MILLS QUANTUM . . . PHYSICAL REVIEW D 61 025017
Pik5
]F

]Sik
5

1

2
~OPT1POT! ik . ~2.11!

A straightforward calculation@11# yields the following ex-
pressions for the field strengthsPai in terms of the new
canonical variables:

Pai5Oak~x!$Pki1ekli~s21! l j @„V
21~x!px…j

2em jn~PS!mn#%, ~2.12!

with

V i j ~x!:5
1

2
eminF]OT~x!

]x j
O~x!G

mn

, ~2.13!

and

sik :5Sik2d iktr S. ~2.14!

Using the representations~2.8! and ~2.12! one can easily
convince oneself that the variablesS andP make no contri-
bution to the Gauss law constraints~2.7!

Fa :5Oas~x!V s j
21~x!px j

50. ~2.15!

Hence, assuming the invertibility of the matrixV, the non-
Abelian Gauss law constraints are equivalent to the se
Abelian constraints

pxa
50. ~2.16!

After having rewritten the model in terms of adapted cano
cal pairs and after Abelianization of the Gauss law co
straints ~2.7! the construction of the unconstrained Ham
tonian system can be obtained as follows. The phys
unconstrained Hamiltonian, defined as

Hu~S,P!ªHTupxa
50 ,

takes the form

Hu5
1

2
tr~E 2!1

g2

4 S 11
as

2

4p2 u2D @ tr 2~S!22tr~S!4#

1uQ~S,P!, ~2.17!

where the ‘‘physical’’ electric field strengthsEai are

Paiupa505:Oak~q!Eki~S,P!, ~2.18!

and the topological charge

Q~S,P!52
as

2p
tr~PS!. ~2.19!

Using the representation~2.12! for the electric field one can
express theEai in terms of the physical variablesP andS

Eki~S,P!5Pik1
1

dets
~sMs! ik , ~2.20!
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whereM denotes the spin part of the angular moment
tensor of the initial gauge field

Mmnª~SP2PS!mn . ~2.21!

Using Eq.~2.20! the unconstrained Yang-Mills Hamiltonia
reads

Hu~S,P!5
1

2
tr~P!21

1

2 det2s
tr~sMs!21

g2

4 S 11
as

2

4p2 u2D
3@ tr2~S!22tr~S!4#1uQ~S,P!. ~2.22!

C. Unconstrained Hamiltonian in terms of rotational and
scalar degrees of freedom

In order to achieve a more transparent form for the
duced Yang-Mills system~2.22! it is convenient to decom-
pose the positive definite symmetric matrixS as

S5RT~a,b,g!D~x1 ,x2 ,x3!R~a,b,g!, ~2.23!

with the SO~3! matrix R parametrized by the three Eule
angles (a,b,g), and the diagonal matrix

D:5diag~x1 ,x2 ,x3!. ~2.24!

Using thexi and the Euler angles (a,b,g) and the corre-
sponding canonical momentapi and pa ,pb ,pg as the new
set of canonical variables on the unconstrained phase s
we get the following physical Hamiltonian:

Hu~xi ,pi ;j i !5
1

2 (
cyclic

3 F pi
21j i

2
xj

21xk
2

~xj
22xk

2!2

1g2S 11
as

2

4p2 u2D xj
2xk

2G1uQ~p,x!.

~2.25!

In Eq. ~2.25! all rotational variables are combined into th
quantitiesj i

j1 :5
sing

sinb
pa1cosgpb2sing cotbpg , ~2.26!

j2 :52
cosg

sinb
pa1singpb1cosg cotbpg ,

~2.27!

j3 :5pg , ~2.28!

representing the SO~3! invariant Killing vectors with the
Poisson brackets algebra

$j i ,j j%52e i jkjk . ~2.29!

The topological chargeQ is independent of the rotationa
degrees of freedom and depends on the diagonal cano
pairs in the particularly simple cyclic form
7-3
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Q52g
as

2p
~x1x2p31x2x3p11x3x1p2!. ~2.30!

This completes our reduction of the spatially homogene
constrained Yang-Mills system with theta angle to t
equivalent unconstrained system describing the dynamic
the physical degrees of freedom.

If we would restrict our consideration only to the classic
level, the above generalization to arbitrary theta angle wo
be unnecessary, because the theta dependence enters t
tial Lagrangian in the form of a total time derivative and th
the value of the theta angle has no influence on the clas
equations of motion. In the Hamiltonian formulation one c
easily verify that the theta dependence can be removed f
the HamiltonianHu by the canonical transformation to th
new variables

p̃iªpi2g
asu

2p
xjxk , i , j ,k cyclic,

x̃iªxi . ~2.31!

However, the transition to the quantum level requires a m
careful treatment of the problem. It is necessary to cla
whether the operator corresponding to Eq.~2.31! acting on
the quantum states is unitary. In subsequent sections we
consider the quantum treatment of the obtained classical
tem and shall discuss the theta dependence of the vacuu
this model.

III. QUANTIZATION, SYMMETRIES AND BOUNDARY
CONDITIONS

The Hamilton operator corresponding to Eq.~2.25! is ob-
tained in the Schro¨dinger configuration representation by th
conventional representation for the canonical momentapk
52 i ]/]xk

Huª
1

2 (
cyclic

3 F2
]2

]xi
2 1j i

2
xj

21xk
2

~xj
22xk

2!21g2S 11
as

2

4p2 u2D xj
2xk

2 G
1uQ, ~3.1!

with the topological charge operator

Q5 ig
as

2p (
cyclic

3

xixj

]

]xk
, ~3.2!

and the intrinsic angular momentaj obeying the commuta
tion relations

@j i ,j j #52 i e i jkjk . ~3.3!

The transition to the quantum system in this adapted bas
free from operator ordering ambiguities.

As already mentioned in the last section the param
theta is unphysical on the classical level, since it can
removed from HamiltonianHu by the canonical transforma
02501
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tion ~2.31!. One can easily convince oneself that the quant
HamiltoniansHu andHu 50 can be related to each other v
the transformation

Hu 5U~u!Hu 50U
21~u!, ~3.4!

with

U~u!5expF ig
as

2p
ux1x2x3G . ~3.5!

The question is whether this operator is unitary in the d
main of definition of the HamiltoniansHu andHu50, which
is determined by their respective symmetries and the bou
ary conditions to be imposed on the corresponding w
functions.

A. Boundary conditions

Due to the positivity of the coordinatesxi in the polar
decomposition~2.8! the configuration space isR3

1 after the
elimination of the pure gauge degrees of freedom. Thus
implementation of the canonical rules of quantization to
unconstrained classical system requires the specificatio
the boundary conditions both at positive infinity and on t
three boundary planesxi50, i 51,2,3. The requirement o
Hermiticity of the HamiltonianHu ~3.1! leads to the condi-
tion

S Cu* ]kFu2]kCu* Fu12ig
as

2p
uxixjCu* FuD U

xk50

50,

i , j ,k cyclic. ~3.6!

Using the relationCu5U(u)Cu50 with U(u) given in Eq.
~3.5!, this reduces to the corresponding requirement of H
miticity of Hu50

~Cu50* ]kFu502]kCu50* Fu50!uxk5050, i , j ,k cyclic.
~3.7!

It is satisfied for (k arbitraryc number!

~]kCu501kCu50!uxk5050, k51,2,3, ~3.8!

which includes the two limiting cases of vanishing wa
function (k→`) or vanishing derivative of the wave func
tion (k50) at the boundary. The requirement of the Herm
ticity of the momentum operators in the Schro¨dinger con-
figuration representationpiª2 i ]/]xi on R3

1 requires the
wave function to obey the boundary conditions

Cu50uxi5050, i 51,2,3, ~3.9!

Cu50uxi→`50, i 51,2,3. ~3.10!

In particular, they also imply the Hermiticity and the exi
tence of a real eigenspectrum of the topological charge
eratorQ. Its eigenstates, however, given explicitly in Appe
dix A, do not satisfy the boundary conditions~3.9! and
7-4
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~3.10!, similar to the eigenstates of the momentum opera
2 i ]/]xi . Furthermore, it is interesting to note that the ch
acteristics of theQ operator coincide with the Euclidean se
~anti!dual zero-energy solutions of the classical equations
motion. They are the analogues of the instanton solutio
but do not correspond to quantum tunneling between dif
ent vacua~see Appendix A!.

B. Symmetries of the HamiltoniansH u and H u50

As a relic of the rotational invariance of the initial gaug
field theory the Hamiltonian~3.1! possesses the symmetry

@Hu,Jk#50, ~3.11!

where Ji5Ri j j j are the spin part of the generators of t
angular momentum of Yang-Mills fields satisfying the so~3!
algebra

@Ji ,Jj #5 i e i jkJk , ~3.12!

and commuting with the intrinsic angular momenta,@Ji ,j j #
50. Hence the eigenstates can be classified according to
quantum numbersJ and M as the eigenvalues of the sp
JW25J1

21J2
21J3

2 and J3. The Hilbert spaces of states wit
different spinJ are each invariant subspaces under the ac
of all generatorsJi and can therefore be considered as se
rate eigenvalue problems.

Apart from this continuous rotational symmetry th
HamiltoniansHu and Hu50 possess the following discret
symmetries. BothHu50 andQ are invariant under arbitrary
permutations of any two of the variabless i j xi
5xjs i j , s i j pi5pjs i j

@Hu50 ,s i j #50, @Q,s i j #50. ~3.13!

However, under time reflectionsTxi5xiT, Tpi52piT, as
well as under parity reflectionsPxi52xiP, Ppi52piP,
Hu50 commutes withT andP,

@Hu50 ,T#50, @Hu50 ,P#50, ~3.14!

but Q anticommutes withT andP,

QT52TQ, QP52PQ. ~3.15!

Hence for theHu50 Schrödinger eigenvalue problem we ca
restrict to the Hilbert space of real and parity odd wave fu
tions which automatically satisfy the boundary conditio
~3.9!. Observe that the transformation~3.5! leads out of the
corresponding Hilbert space and is therefore not unitary.

C. Independence of the energy spectrum of the theta angle

Due to the relation~3.4! between the HamiltoniansHu ,
andHu50 and the corresponding compatibility of the boun
ary conditions discussed above the energy spectrum sh
be independent of the theta angle. In particular the topolo
cal susceptibility of the vacuum should vanish. Using t
Witten formula@40,41#, the topological susceptibility can b
represented as the sum of a propagator term involving
transition matrix elements of the topological operatorQ and
a contact term proportional to the vacuum expectation va
of the square of the magnetic field. Independence of
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ground state energy of the theta angle and hence vanis
topological susceptibility should therefore imply

d2E0~u!

du2 U
u50

522(
n

^0uQun&u2

En2E0

1^0uS as

2p D 2

B2u0&50, ~3.16!

whereun& are eigenstates of the HamiltonianHu50 with en-
ergy eigenvaluesEn . As we shall see below, our calculatio
of the low energy part of the spectrum ofHu50 using the
variational technique is in full accordance with Eq.~3.16!.

IV. SCHRÖDINGER EIGENVALUE PROBLEM
FOR VANISHING THETA

A. Low energy spin-0 spectrum from variational calculation

The Hilbert space of states with zero spinJW250 is an
invariant subspace under the action of all generatorsJi and
one can consider the eigenvalue problem separately f
states characterized by higher spin value. Thus in the se
of zero spinJW25jW250 the Schro¨dinger eigenvalue problem
~3.1! reduces to

H0CE[
1

2 (
cyclic

3 F2
]2

]xi
21g2xj

2xk
2GCE5ECE . ~4.1!

We shall use the boundary conditions~3.9! and ~3.10!. Al-
ready a long time ago it has been proven by Rellich@42# that
Hamiltonians of the type~4.1! have a discrete spectrum du
to quantum fluctuations, although the classical problem
lows for scattering trajectories~see discussion in Ref.@12#!.
Related and simplified versions of the eigenvalue probl
~4.1! have been studied extensively by many authors us
different methods@12–20#. In particular, in Refs.@14,15# the
eigenstates and eigenvalues have been found in the sem
sical approximation for the special two dimensional casex3
50.2

To obtain the approximate low energy spectrum of t
Hamiltonian in the spin-0 sector we will use the Rayleig
Ritz variational method@46# based on the minimization o
the energy functional

2It is interesting that for the three-dimensional case one can w
the potential term in Eq.~4.1! in the formV5( i 51

3 (] iW)2 with the
‘‘superpotential’’W(x1 ,x2 ,x3)5x1x2x3. Note that in the simplified
two-dimensional case there is no such superpotential. The t
dimensional superpotentialW(2)5xy corresponds to the two
dimensional harmonic oscillatorV(2)5x21y2. From the form of
the superpotential it follows that the wave functionC05exp
@2gW# solves the Schro¨dinger eigenvalue problem with energy e
genvalueE50. It is the unconstrained, strong coupling form of th
well-known exact but non-normalizable zero-energy solution@43#
of the Schro¨dinger equation of Yang-Mills field theory. Obviousl
it is also not satisfying the boundary conditions~3.9!, ~3.10! and has
to be disregarded as a false ground state.
7-5
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E@C#ª
^CuH0uC&

^CuC&
. ~4.2!

The key moment in all variational calculations is the cho
of the trial functions. Guided by the harmonic oscillator for
of the valleys of the potential in Eq.~4.1! close to the bottom
a simple first choice for a trial function compatible with th
boundary conditions~3.9! and~3.10! is to use@21# the lowest
state of three harmonic quantum oscillators on the posi
half line

C00058)
i 51

3 S v i

p D 1/4

Av ixie
2v i xi

2/2. ~4.3!

The stationarity conditions for the energy functional of th
state,

E@C000#5 (
cyclic

3 S 3

4
v i1

9

8
g2

1

v jvk
D ,

lead to the isotropic optimal choice

vªv15v25v3531/3g2/3. ~4.4!

As a first upper bound for the ground-state energy of
Hamiltonian we therefore find

E0<E@C000#5
27

8
31/3g2/354.8676g2/3. ~4.5!

The upper bound~4.5! is in agreement with the lower boun
of the energy functional for separable functions

E@Csep#>4.5962g2/3, ~4.6!

derived in Appendix B.
In order to improve the upper bound for the ground-st

energy of the HamiltonianH0 we extend the space of tria
functions~4.3! and consider the Fock space of the orthon
mal set of products

Cn1n2n3
ª)

i 51

3

Cni
~v,xi !, ~4.7!

of the odd eigenfunctions of the harmonic oscillator

Cn~v,x!ª
~v/p!1/4

A22n~2n11!!
e2vx2/2H2n11~Avx!,

with the frequency fixed by Eq.~4.4!.
Furthermore the variational procedure becomes m

more effective, if the space of trial functions is decompos
into the irreducible representations of the residual disc
symmetries of the Hamiltonian~4.1!. As has been discusse
in Sec. III B, it is invariant under arbitrary permutations
any two of the variabless i j xi5xjs i j , s i j pi5pjs i j and un-
der time reflectionsTxi5xiT, Tpi52piT,

@H0 ,s i j #50, @H0 ,T#50.
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We shall represent these by the permutation operators12,
the cyclic permutation operators123 and the time reflection
operatorT, whose action on the states is

s123C~x1 ,x2 ,x3!5C~x2 ,x3 ,x1!,

s12C~x1 ,x2 ,x3!5C~x2 ,x1 ,x3!,

TC~x1 ,x2 ,x3!5C* ~x1 ,x2 ,x3!,

and decompose the Fock space spanned by the func
~4.7! into the irreducible representations of the permutat
group and time reflectionT. For given (n1 ,n2 ,n3) we define

Cnnn
(0)1

ªCnnn , ~4.8!

if all three indices are equal~type I!, the three states (m5
21,0,1)

Cnns
(m)1

ª

1

A3
(
k50

2

e22kmp i /3~s123!
kCnns, ~4.9!

when two indices are equal~type II!, and the two sets of
three states (m521,0,1)

Cn1n2n3

(m)6
ª

1

A6
(
k50

2

e22kmp i /3~s123!
k~16s12!Cn1n2n3

,

~4.10!

if all ( n1 ,n2 ,n3) are different~type III!. In this new ortho-
normal set of irreducible basis statesCN

(m)a , the Fock repre-
sentation of the HamiltonianH0 reads

H05( uCM
(m)a&^CM

(m)auH0uCN
(m)a&^CN

(m)au.

The basis statesCN
(m)a are eigenfunctions ofs123 ands12T

s123CN
(m)65e2mp i /3CN

(m)6 ,

s12TCN
(m)656CN

(m)6 . ~4.11!

Under s12 and T separately, however, they transform in
each other

s12CN
(m)656CN

(2m)6 ,

TCN
(m)65CN

(2m)6 .

We therefore have the following irreducible representatio
The singlet statesC (0)1, the ‘‘axial’’ singlet statesC (0)2,
the doublets (C (11)1;C (21)1) and the ‘‘axial’’ doublets
(C (11)2;C (21)2). Since the partner states of the double
transform into each other under the symmetry operationss12
or T, the corresponding values of the energy functional
equal.

The energy matrix elements of the irreducible states
then be expressed in terms of the basic matrix element
given in Appendix C. Because of this decomposition of t
Fock space into the irreducible sectors, the variational
7-6
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proach allows us to give upper bounds for states in e
sector. The values of the energy functional for the state
each irreducible sector with the smallest number of kn
E@C000

(0)1#54.8676g2/3, E@C100
(61)1#57.1915g2/3, E@C012

(0)2#
513.8817g2/3, andE@C012

(61)2#515.6845g2/3 give first up-
per bounds for the lowest energy eigenvalues of the sing
the doublet, the axial singlet, and the axial doublet state

In order to improve the upper bounds for each irreduci
sector, we truncate the Fock space at a certain numbe
knots of the wave functions and search for the correspond
states in the truncated space with the lowest value of
energy functional. We achieve this by diagonalizing the c
responding truncated HamiltonianH trunk to find its eigenval-
ues and eigenstates. Due to the orthogonality of the trunc
space to the remaining part of Fock space the value of
energy functional~4.2! for the eigenvectors ofH trunk coin-
cides with theH trunk eigenvalues.

Including all states in the singlet sector with up to 5 kno
we find rapid convergence to the following energy expec
tion values for the three lowest statesS1 ,S2 ,S3:

E@S1#54.8067g2/3~4.8070g2/3!,

E@S2#58.2515g2/3~8.2639g2/3!,

E@S3#59.5735g2/3~9.6298g2/3!, ~4.12!

where the numbers in brackets show the corresponding re
when including only states up to 4 knots into the variatio
calculation. The lowest stateS1, given explicitly as

S150.9946C000
(0)110.0253C001

(0)120.0217C002
(0)1

20.0970C110
(0)120.0005C003

(0)120.0033C012
(0)1

20.0146C111
(0)120.0005C004

(0)110.0040C013
(0)1

20.0080C220
(0)120.0038C112

(0)110.0001C005
(0)1

20.0004C014
(0)110.0011C023

(0)120.0004C113
(0)1

10.0031C221
(0)1 , ~4.13!

nearly coincides with the stateC000
(0)1 , the contributions of

the other states are quite small. Similarly including all sta
in the doublet sector with up to 6~5! knots the following
energy expectation values for the three lowest sta
D1

(61) ,D2
(61) ,D3

(61)

E@D1
(61)#57.1682g2/3~7.1689g2/3!,

E@D2
(61)#59.6171g2/3~9.6394g2/3!,

E@D3
(61)#510.9903g2/3~10.9951g2/3!

~4.14!

have been obtained. Including all states in the axial sin
sector with up to 8~7! knots we find the following energy
expectation values for the three lowest statesA1 ,A2 ,A3

E@A1#513.2235g2/3~13.2275g2/3!,
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E@A2#516.6652g2/3~16.7333g2/3!,

E@A3#519.1470g2/3~19.3028g2/3!. ~4.15!

Finally taking into account all states in the axial doub
sector with up to 8~7! knots we find the following energy
expectation values for the three lowest sta
C1

(61) ,C2
(61) ,C3

(61)

E@C1
(61)#514.8768g2/3~14.8796g2/3!,

E@C2
(61)#517.6648g2/3~17.6839g2/3!,

E@C3
(61)#519.9019g2/3~19.9914g2/3!. ~4.16!

We therefore obtain rather good estimates for the energie
the lowest states in the spin-0 sector. Extending to higher
higher numbers of knots in each sector we should be abl
obtain the low energy spectrum in the spin-zero sector
arbitrarily high numerical accuracy.

In summary comparing our results for the first few sta
in all sectors, we find that the lowest state appears in
singlet sector with energy

E054.8067g2/3, ~4.17!

with expected accuracy up to three digits after the dot.
explicit form is given in Eq.~4.13! to the accuracy consid
ered. For comparison with other work we remark that due
our boundary condition~3.9! all our spin-0 states correspon
to the 02 sector in the work of Ref.@16# where a different
gauge invariant representation of Yang-Mills mechanics
been used. Their state of lowest energy in this secto
9.52g2/3. Furthermore in Ref.@20#, using an analogy of
SU(N) Yang-Mills quantum mechanics in the largeN limit
to membrane theory, obtain the energy values 6.4690g2/3

and 19.8253g2/3 for the ground state and the first excite
state.

The expectation values for the squares of the electric
the magnetic fields for the ground state~4.13! are found to be

^0uE2u0&56.4234g2/3, ^0uB2u0&53.1900g2/3,
~4.18!

and the value for the ‘‘gluon condensate’’ is therefore

^0uG2u0&ª2~^0uB2u0&2^0uE2u0&!526.4669g2/3.
~4.19!

These results are expected to be accurate up to three d
after the dot. Hence the variational calculation shows that
vacuum is not self-~anti!dual and that a nonperturbativ
‘‘gluon condensate’’ appears.

B. Higher spin states

For the discussion of the eigenstates of the Hamilton
Hu50 with arbitrary spin we write

Hu505H01Hspin ~4.20!
7-7
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with the spin-0 Hamiltonian~4.1! discussed in the last sub
section and the spin dependent part

Hspin5
1

2 (
i 51

3

j i
2Vi , Viª

xj
21xk

2

~xj
22xk

2!2 , i , j ,k cyclic.

~4.21!

Introducing the lowering and raising operatorsj6ªj16 i j2,
the spin dependent partHspin of the Hamiltonian~4.20! can
be written in the form

Hspin5
1

8
~j1

2 1j2
2 !~V12V2!1

1

8
~j1j21j2j1!~V11V2!

1
1

2
j3

2V3 . ~4.22!

Since the Hamiltonian~4.20! commutes withJW2 andJ3 , the
energy eigenfunctionsCJM can be characterized by the tw
quantum numbersJ andM. Furthermore we shall expand th
wave functionCJM in the basis of the well-knownD func-
tions @44#, which are the common eigenstates of the ope
tors JW25jW2, J3 , and j3 with the eigenvaluesJ, M , and k,
respectively,

CJM~x1 ,x2 ,x3 ;a,b,g!5 (
k52J

J

i JA2J11

8p2

3CJMk~x1 ,x2 ,x3!DkM
(J) ~a,b,g!,

~4.23!

where (a,b,g) are the Euler angles. We have the relatio

j3DkM
(J) 5kDkM

(J) , j6DkM
(J) 5A~J6k11!~J7k!Dk61 M

(J) .
~4.24!

The task to find the spectrum of the Hamiltonian~4.20! then
reduces to the following eigenvalue problem for the exp
sion coefficientsCJMk for fixed values ofJ andM

(
k52J

J F ~H02E!dk8,k1~21!J~2J11!

3E sinb da db dg

8p2 Dk8M
(J)* ~a,b,g!HspinDkM

(J) ~a,b,g!G
3CJMk50. ~4.25!

Since the spin partHspin of the Hamiltonian does not com
mute with j3, nondiagonal terms arise, coupling differe
values ofk. We shall in the following limit ourselves to th
case of spin-1. Using the linear combinations@45#

C1~x1 ,x2 ,x3!ª
1

A2
@CJ51,M ,k51~x1 ,x2 ,x3!

2CJ51,M ,k521~x1 ,x2 ,x3!#, ~4.26!
02501
-

-

C2~x1 ,x2 ,x3!ª
1

A2
@CJ51,M ,k51~x1 ,x2 ,x3!

1CJ51,M ,k521~x1 ,x2 ,x3!#, ~4.27!

C3~x1 ,x2 ,x3!ªCJ51,M ,k50~x1 ,x2 ,x3!,
~4.28!

the corresponding eigenvalue problem~4.25! for spin-1 de-
couples to the following three Schro¨dinger equations for the
wave functionsCa(x1 ,x2 ,x3):

F2
1

2 (
i 51

3
]2

]xi
21

g2

2 (
i , j

xi
2xk

21Va
eff~x1 ,x2 ,x3!GCa~x!

5ECa~x!, a51,2,3, ~4.29!

with the effective potential

Va
eff~x1 ,x2 ,x3!ª

1

2
~Vb1Vc!5

1

2S xa
21xc

2

~xa
22xc

2!2

1
xa

21xb
2

~xa
22xb

2!2D , a,b,c cyclic.

~4.30!

In the spin-1 sector we have therefore succeeded to red
the Schro¨dinger equation to three effective Schro¨dinger
equations for the scalar degrees of freedom with an a
tional effective potential induced by the rotational degrees
freedom. Since the effective potentialsVi

eff are related via
cyclic permutation

s123V1
eff5V2

effs123, s123V2
eff5V3

effs123,

s123V3
eff5V1

effs123, ~4.31!

all energy levels in the spin-1 sector are threefold degener
As in the spin-0 sector we may use the variational a

proach to obtain an upper bound for the lowest spin-1 st
The variational ansatz

Ca~x1 ,x2 ,x3!ª~xa
22xb

2!~xa
22xc

2!)
i 51

3

C0~v i
~a! ,xi !

~4.32!

satisfies both the boundary conditions~3.9! and ~3.10! and
vanishes at the singularities of the additional effective spi
potentialVeff . For the optimal values

v i
~a!51.1814g2/3, vb

~a!5vc
~a!52.34945g2/3,

~4.33!

we obtain the energy minimum

Espin2158.6044g2/3. ~4.34!

Analogous treatments of higher spin states can be carried
correspondingly. Using the linear combinations@45#
7-8
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CJuku
6 ~x1 ,x2 ,x3!ª

1

A2
@CJ,M ,k~x1 ,x2 ,x3!

6CJ,M ,2k~x1 ,x2 ,x3!#, kÞ0,

~4.35!

CJ0~x1 ,x2 ,x3!ªCJ,M ,k50~x1 ,x2 ,x3!, ~4.36!

and noting that there are no transitions between the st
CJuku

6 with even and oddk, and with 1 and 2 index, the
corresponding eigenvalue problem~4.25! for spin J de-
couples into four separate Schro¨dinger eigenvalue problems
For spin-2 one finds one cyclic triplet of degenerate eig
states and two singlets under cyclic permutation, for spi
two cyclic triplets each consisting of three degenerate st
and one singlet, and so on. The corresponding reduction
the classical level using the integrals of motion~3.11! has
been done in Ref.@11#.

We conclude this subsection by pointing out that o
variational result~4.34! shows that the higher spin states a
pear already at rather low energies and therefore have t
taken into account in calculations of the low energy spectr
of Yang-Mills theories.

V. CALCULATION OF THE TOPOLOGICAL
SUSCEPTIBILITY

The explicit evaluation of the Witten formula~3.16! for
the topological susceptibility allows us to check the cons
tency of the results for the low energy spectrum obtained
Sec. IV using the variational approach.

Using the ground stateS1 in Eq. ~4.13!, obtained from
minimization of the energy functional in the singlet sec
including irreducible states with up to 5 knots, and the e
pressions for the matrix elements ofB2 in the basis of irre-
ducible states given in Appendix C, we obtain

d2E0~u!

du2 U
u50

contact

51 K 0US as

2p D 2

B2U0L
510.0005117g14/3~10.0005119g14/3!

~5.1!

for the contact term in the Witten formula. The number
brackets gives the corresponding result for up to 4 knots

Since theQ operator is a spin-0 operator and symmet
under cyclic permutations, the propagator term involves o
the singlet states in the spin-0 sector. Using the formula
the matrix elements of the topological operatorQ stated in
Appendix C and including the lowest fifteen~ten! excitations
S2 , . . . ,S16 (S2 , . . . ,S11) obtained approximately in the
02501
es

-
3
es
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r
-
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-
n

r
-
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r

variational calculation as eigenvectors of the truncated F
space including irreducible singlet states up to 5 knots~4
knots!, we obtain3

d2E0~u!

du2 U
u50

prop

522(
n

^0uQun&u2

En2E0

520.0004819g14/3 ~20.0004622g14/3!.

~5.2!

We see that the sum of the contact contribution~5.1! and the
propagator contribution~5.2! seem to tend to zero when ex
tending the variational calculation to Fock states of high
and higher number of knots. For comparison we point
that using the irreducible singlet statesC000

(0)1 ,C001
(0)1 , . . . ,

up to 5 knots~4 knots! in Eqs.~4.8!–~4.10! directly, instead
of the eigenstatesS1 ,S2 , . . . ,S16 (S1 ,S2 , . . . ,S11), we get
20.0005205g14/3 for the contact contribution~5.1! and
20.0003808g14/3 (20.0003761g14/3) for the propagator
contribution~5.2!. We herewith find strong support that ou
variational results are in accordance with vanishing topolo
cal susceptibility~3.16!.

VI. CONCLUDING REMARKS

In this paper we have analyzed the quantum mechanic
spatially homogeneous gauge invariant SU~2! gluon fields
with theta angle. We have reduced the eigenvalue problem
the Hamiltonian of this toy model for arbitrary theta angle
the corresponding problem with zero theta angle. The ene
spectrum has been found to be independent of the theta a
by construction of the explicit transformation relating th
Hamiltonians with different theta parameter. The grou
state, its energy eigenvalue, its magnetic and electric pro
ties, as well as the corresponding value of the ‘‘gluon co
densate’’ and the lowest excitations have been obtained
high accuracy using the variational approach. Furthermor
has been shown that higher spin states become already
evant at rather low energy. Explicit calculation of the Witte
formula for the topological susceptibility using our vari
tional results for the ground state and the low lying exci
tions gives strong support for the consistency of our resu
We have found a continuous spectrum and the correspon
eigenstates of the topological operator in this approximat
and shown that its characteristics coincide with the Euc
ean self-~anti!dual zero-energy solutions of the classic
equations of motion. They are the analogues of the instan
solutions, but do not correspond to quantum tunneling

3Here the lowest six excitationsS2 , . . . ,S7 are found to give the
contributions2103.331026 g14/3 (2107.731026 g14/3), 2201.6
31026 g14/3 (2205.331026 g14/3), 2124.131026 g14/3 (2120.4
31026 g14/3), 28.831026 g14/3 (29.331026 g14/3), 227.3
31026 g14/3 (218.431026 g14/3), and 20.1631026 g14/3 (24.1
31026 g14/3), respectively. The contributions from the remainin
higher excitationsS8 , . . . ,S16 (S8 , . . . ,S11 for up to 4 knots! are
of the order of 531026 or less and form a series which is rapid
decreasing with the number of knots.
7-9
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tween different vacua. The generalization of these invest
tions to SU~2! field theory following Ref. @34# is under
present investigation.
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APPENDIX A: TOPOLOGICAL CHARGE OPERATOR,
ZERO-ENERGY SOLUTIONS OF THE CLASSICAL

EUCLIDEAN EQUATIONS OF MOTION AND TUNNELING
AMPLITUDES

In this appendix the solution of the eigenvalue proble
for the topological charge operator is described and the r
tion between its characteristics and the Euclidean zero
ergy trajectories of the unconstrained Hamiltonian~2.25! dis-
cussed. We shall also discuss the role of these Euclidean
energy solutions of the classical equations of motion to t
neling from one valley to another.

1. The eigenvalue problem for theQ operator

The eigenvalue problem for the topological charge ope
tor

QuC~ t !&l5luC~ t !&l ~A1!

in the Schro¨dinger representation reduces to the solution
the following linear partial differential equation:

x1x2

]

]x3
Cl~x1 ,x2 ,x3!1x2x3

]

]x1
Cl~x1 ,x2 ,x3!

1x3x1

]

]x2
Cl~x1 ,x2 ,x3!52 i

8p2

g3 lCl~x1 ,x2 ,x3!.

~A2!

The conventional method of characteristics relates this p
lem to the solution of the set of ordinary differential equ
tions

dx1

x2x3
5

dx2

x3x1
5

dx3

x2x1
. ~A3!

The integral curves corresponding to Eq.~A3! can be written
in the form

I 15x2
22x1

2 , I 25x3
22x1

2 . ~A4!
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These integral curves prompts us with the introduction of
new adapted coordinates (z,h,r)

zªx1 , hªx2
22x1

2 , rªx3
22x1

2 . ~A5!

Such functions can be used as suitable coordinates on
subset

0,x1,x2,x3,` ~A6!

of the whole configuration spaceR3
1 . The subset~A6! cor-

responds to the domain 0,z,Ah1z2,Ar1z2. Because of
the symmetry of theQ operator under arbitrary permutation
of the canonical pairsxi ,pi the results can be extended to th
whole R3

1 .
Writing the wave function in terms of new variables

Cl~x1 ,x2 ,x3!5:Wl~z,h,r! ~A7!

the partial differential equation~A2! reduces to the following
ordinary differential equation:

Az21hAz21r
]

]z
Wl~z,h,r!52 il

8p2

g3 Wl~z,h,r!.

~A8!

The general solution of this equation can be written in
form

Wl~z,h,r!5C0~h,r!

3expH il
8p2

g3Ar
FFarctanS z

Ah
D ,Ar2h

r G J
~A9!

with the arbitrary functionC0(h,r) and the Jacobi elliptic
integralsF(z,k) of the first kind@48#. In terms of the original
coordinates (x1 ,x2 ,x3) the eigenfunctions for the topologica
charge operator in the sectorx1,x2,x3 therefore have the
form

Cl~x1 ,x2 ,x3!5C0~x2
22x1

2 ,x3
22x1

2!

3expH il
8p2

g3Ax3
22x1

2

3FFarctanS x1

Ax2
22x1

2D ,Ax3
22x2

2

x3
22x1

2G J .

~A10!

In the other sectors the corresponding wave function is
tained from Eq.~A10! by cyclic permutation. Note that the
eigenfunctions~A10!, which constitute the most general s
lution of the eigenvalue problem~A1! for theQ operator, do
not satisfy the boundary conditions~3.9! and ~3.10! neces-
sary for the Hermiticity of theQ operator. In the next section
we will show that the characteristics of the topologic
7-10



-
ic

k

tio

de

l

e

r a

th
th
be
t

n

of

ua-

jec-
o

l-

r

nal

-

self-

UNCONSTRAINED SU~2! YANG-MILLS QUANTUM . . . PHYSICAL REVIEW D 61 025017
charge operator~A3! coincide with the equations which de
termine the zero-energy solutions of the Euclidean class
equations of motion.

2. Euclidean zero energy trajectories in Yang-Mills mechanics

The Euclidean action

SEucl5E dtF1

2 S dx

dt D 2

1V~x!G ~A11!

is obtained from the corresponding action in Minkows
space by inverting the potentialV(x)→2V(x). In the one
dimensional case the solutions of equation

dx

dt
56A2V~x!, ~A12!

corresponds to trajectories with zero Euclidean energy

EEucl5
1

2
ẋ22V~x! ~A13!

and the same time satisfies the classical Euclidean equa
of motion

d2x

dt2
5

dV

dx
. ~A14!

Such a type of trajectory plays an important role in the
scription of quantum mechanical tunneling phenomena@47#.
In the case that the potentialV(x) has at least two loca
minima, say atx52a andx51a, with V50, the Euclidean
zero energy trajectories starting at2a and ending ata cor-
respond to quantum tunneling into the classically forbidd
region. The Euclidean action for these classicalEEucl50 tra-
jectories

SEucluE505E dtS dx

dt D
2

5E
2a

a

dxA2V~x!, ~A15!

determine in the semiclassical limit the WKB amplitude fo
particle to tunnel fromx52a to x51a

uT~E50!u5expF2
1

\E2a

a

dxA2V~x!G @11O~\!#.

~A16!

The potential of the unconstrained system considered in
present article has three valleys. The question is whe
there exist the trajectories corresponding to tunneling
tween the valleys. To answer the question let us rescale
coordinatesxi→g21xi and write down the Euclidean actio
of the model in the form

SEucl5
1

2g2E dt(
cycl

~ ẋi
21xj

2xk
2!. ~A17!

The equations of motion then read
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ẍi5xi~xj
21xk

2!; i , j ,k cyclic. ~A18!

The class of trajectories with zero energy

EEucl5
1

2g2 (
cycl

~ ẋi
22xj

2xk
2!, ~A19!

can be chosen as the solutions of the following system
first order equations:

ẋ156x2x3 , ẋ256x3x1 , ẋ356x1x2 . ~A20!

If we fix one and the same sign on the RHS of Eqs.~A20!,
then they completely coincide with the characteristic eq
tions ~A3! of theQ operator. Furthermore from Eq.~A4! we
see that the zero energy Euclidean solutions admit no tra
tories from oneV50 minimum to another and they have n
relation to the quantum tunneling phenomena.

3. Q operator and self-dual states

The commutator of the HamiltonianH0 of Eq. ~4.1! in the
spin-0 sector and the topological chargeQ

@H0 ,Q#52 i
g3

4p2 @~p1p2x31p2p3x11p3p1x2!

2gx1x2x3~x1
21x2

21x3
2!# ~A21!

vanishes only in the subspace of statesuC& which satisfy the
Euclidean self-~anti!duality conditions

pi uC&56gxjxkuC&, i , j ,k cyclic, ~A22!

which are the quantum analogues of the EuclideanE50
constraints~A20! discussed before. Rewriting the Hami
tonianH0 in Eq. ~4.1! in the form

H05
1

2 (
i , j ,k cycl

~pi
21g2xj

2xk
2!5 (

i , j ,k cycl
~pi6gxjxk!

26
8p

g2 Q,

~A23!

we see that the HamiltonianH0 and the topological operato
Q coincide on the subspace of the Euclidean self-~anti!dual
states~A22!

H0uC&57
8p

g2 QuC&. ~A24!

Comparing this discussion with the corresponding origi
situationH5(1/2)(P i

a21Bi
a2) and Q52(aS /2p)P i

aBi
a in

terms of the constrained fieldsP i
a and Ai

a , where H05

7(8p/g2)Q only in the Euclidean self-~anti!dual caseP i
a

5Bi
a , we see that Eq.~A22! corresponds to the uncon

strained analogues of the self-~anti!dual configurations in Eu-
clidean space. The question arises whether there are any
~anti!dual states~A22! which are both eigenstates ofQ and
H. The solution

CSD
6
ªexp@7 igx1x2x3#, ~A25!
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of the self-~anti!duality conditions~A22! in Euclidean space
is neither eigenfunction ofH0 nor of Q

H0CSD
6 57

8p

g2 QCSD
6 562VCSD

6 . ~A26!

The well-known exact non-normalizable zero-energy so
tion of the spin-0 Schro¨dinger equation~4.1!

C0
65A exp@7gx1x2x3#, ~A27!

which differs from functionalCSD up to a factor ofi in the
exponent, actually satisfies the self-~anti!duality conditions
in Minkowski space

2 i
]

]xi
C0

656 igxjxkC0
6 ; i , j ,k cyclic ~A28!

~corresponding toP i
a56 iBi

a), but is not an eigenfunction o
the topological operatorQ

2
8p

g2 QC0
656 ig2~x1

2x2
21x2

2x3
21x3

2x1
2!C0

6

562iV~x1 ,x2 ,x3!C0
6 . ~A29!

Finally we point out that the~approximate! ground-state
wave function~4.13! obtained in the variational approach
not self-~anti!dual.

APPENDIX B: LOWER BOUND FOR THE SPIN-0
HAMILTONIAN H 0

In this appendix we would like to derive a lower boun
for the spin-0 HamiltonianH0 in Eq. ~4.1! along the line of
Ref. @12#. Using the boundary conditions~3.9! and ~3.10!
and based on the well-known operator inequality for osci
tor on positive half line

2
]2

]x2 1y2x2>3uyu,

it follows that

H0>
1

4
@2D13A2g~x11x21x3!#5:

1

2
H8. ~B1!

Since the HamiltonianH8 is known @12# to have a discrete
spectrum, this is true also forH0. An important open ques
tion is at which energy the ground state is. The knowledge
the ground-state energy ofH8 in inequality~B1! would pro-
vide a lower bound for the ground-state energy ofH0. Due to
the additive structure of the potential term inH8 one can
make a separable ansatz for the solution of the correspon
eigenvalue problem. The energy of the lowest such separ
H8 eigenstate satisfying the above boundary conditions~3.9!
and ~3.10! is

Esep8 56uj0u~3g/2!2/359.1924g2/3, ~B2!
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where j0522.3381 is the first zero of the Airy function
From the operator inequality~B1! and the lower bound~B2!
for separable solutions ofH8 we therefore obtain the lowe
bound of the energy functional for separable functions

E@Csep#>
1

2
Esep8 54.5962g2/3. ~B3!

Finally we remark, as has been pointed out already in R
@21#, that an analogous variational calculation forH8 shows
that also the ground-state energy of the HamiltonianH8 in
Eq. ~B1! is lower than the valueEsep8 of Eq. ~B2! for the
lowest separable solution.

APPENDIX C: MATRIX ELEMENTS

For the evaluation of the energy functional, the calcu
tion of the value of the ‘‘gluon condensate’’ of the groun
state, as well as the propagator term in the Witten form
we need the matrix elements ofE2, B2, andQ with respect to
the irreducible Fock space states~4.8!–~4.10! built from the
basic Fock space states~4.7!.

1. Basic matrix elements for Hamiltonian and topological
charge

The matrix elements ofE2 and B2 with respect to the
basic Fock space states~4.7! with (v15v25v3531/3 g2/3)
are given by

^Cm1 ;m2 ;m3
uE2uCn1 ;n2 ;n3

&531/3g2/3(
cyclic

Hmini

2 dmjnj
dmknk

~C1!

and

^Cm1 ;m2 ;m3
uB2uCn1 ;n2 ;n3

&531/3g2/3(
cyclic

1

3
dmini

Hmjnj

1 Hmknk

1 ,

~C2!

where

H mn
6
ªdmn~2n13/2!6dm(n11)An13/2An11

6d (m11)nAn11/2An. ~C3!

For the topological operatorQ we have

^Cm1 ;m2 ;m3
uQuCn1 ;n2 ;n3

&5
2ig8/3

p7/231/6 (
cyclic

Qmini

2 Qmjnj

1 Qmknk

1 ,

~C4!

where

Q mn
1
ª

1

124~m2n!2

~21!m1n~2m11!!! ~2n11!!!

A~2m11!! ~2n11!!
,

~C5!
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Q mn
2
ª

m2n

124~m2n!2

~21!m1n~2m11!!! ~2n11!!!

A~2m11!! ~2n11!!
.

~C6!

2. The irreducible matrix elements in terms of the basic ones

For any operatorO invariant under the permutationss i j ,
such asE2, B2, the HamiltonianH0 and the topological op-
eratorQ,

@O,s i j #50, ~C7!

the matrix elements of the irreducible stat
^CM

(k)6uOuCN
(k)6& of type I ~4.8!, type II ~4.9!, and type III

~4.10! can then be expressed in terms of the basic ma
elements

M n1n2n3

m1m2m3
ª^Cm1 ;m2 ;m3

uOuCn1 ;n2 ;n3
& ~C8!

as follows. For the type I, II, and III singlet states we hav

^Cmmm
(0)1 uOuCnnn

(0)1&5M nnn
mmm, ~C9!

^Cmmr
(0)1uOuCnns

(0)1&5M nns
mmr12M nsn

mmr , ~C10!

and

^Cm1m2m3

(0)1 uOuCn1n2n3

(0)1 &5M n1n2n3

m1m2m31M n3n1n2

m1m2m31M n2n3n1

m1m2m3

1M n2n1n3

m1m2m31M n3n2n1

m1m2m3

1M n1n3n2

m1m2m3, ~C11!

respectively. The transition elements between the type I
and III singlets are

^Cmmm
(0)1 uOuCnns

(0)1&5A3M nns
mmm, ~C12!

^Cmmm
(0)1 uOuCn1n2n3

(0)1 &5A6M n1n2n3

mmm , ~C13!

and
e

n-
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I,

^Cmmr
(0)1uOuCn1n2n3

(0)1 &5A2M n1n2n3

mmr 1A2M n3n1n2

mmr

1A2M n2n3n1

mmr . ~C14!

For the doublets, which exist only for type II and III state
we have

^Cmmr
(1,2)1uOuCnns

(1,2)1&5M nns
mmr2M nsn

mmr ~C15!

and

^Cm1m2m3

(1,2)1 uOuCn1n2n3

(1,2)1 &5M n1n2n3

m1m2m32~1/2!M n3n1n2

m1m2m3

2~1/2!M n2n3n1

m1m2m31M n2n1n3

m1m2m3

2~1/2!M n3n2n1

m1m2m32~1/2!M n1n3n2

m1m2m3

~C16!

for the type III doublets. Their transition elements are

^Cmmr
(1,2)1uOuCn1n2n3

(1,2)1 &

5A2M n1n2n3

mmr 2~M n3n1n2

mmr 1M n2n3n1

mmr !/A2.

~C17!

For the axial singlets we have

^Cm1m2m3

(0)2 uOuCn1n2n3

(0)2 &5M n1n2n3

m1m2m31M n3n1n2

m1m2m31M n2n3n1

m1m2m3

2M n2n1n3

m1m2m32M n3n2n1

m1m2m3

2M n1n3n2

m1m2m3. ~C18!

For the axial doublets we have

^Cm1m2m3

(1,2)2 uOuCn1n2n3

(1,2)2 &5M n1n2n3

m1m2m32~1/2!M n3n1n2

m1m2m3

2~1/2!M n2n3n1

m1m2m32M n2n1n3

m1m2m3

1~1/2!M n3n2n1

m1m2m31~1/2!M n1n3n2

m1m2m3.

~C19!
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