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The unconstrained classical system equivalent to spatially homogened2s&ng-Mills theory with the
theta angle is obtained and canonically quantized. The "Sifger eigenvalue problem is solved approxi-
mately for the low lying states using variational calculation. The properties of the ground state are discussed,
in particular its electric and magnetic properties, and the value of the “gluon condensate” is calculated.
Furthermore it is shown that the energy spectrum ofZWang-Mills quantum mechanics is independent of
the theta angle. Explicit evaluation of the Witten formula for the topological susceptibility gives strong support
for the consistency of the variational results obtained.

PACS numbdps): 11.15.Tk, 02.20.Tw, 03.65.Ge, 11.10.Ef

I. INTRODUCTION guantum leve[12-21]. In the present paper we will analyze
the model of SW2) Yang-Mills mechanics of spatially ho-
One of the central problems in the investigation of non-mogeneous fields for arbitrary theta angle. In order to obtain
Abelian gauge theories is a gauge invariant description of théhe equivalent unconstrained classical system in terms of
vacuum and the low-lying excited states. In the standard apgauge invariant variables on[22—-35, we apply the method
proach to the quantization of gauge theories the physicabf Hamiltonian reductior{Ref. [35], and references thergin
states have to satisfy not only the Safirger equation but in the framework of the Dirac constraint formaligi®6—39.
additionally be annihilated by the Gauss law operator toAs in our recent wor11] the elimination of the pure gauge
implement gauge invariance at the quantum I¢t¢l How-  degrees of freedom is achieved by using the polar represen-
ever, it is well known that there exist states which satisfy thetation for the gauge potential, which trivializes the Abelian-
Gauss law but are not invariant under the so-called homoization of the Gauss law constraints, and finally projecting
topically nontrivial gauge transformations, leading to the ap-onto the constraint shell. The obtained unconstrained system
pearance of the theta ang®3]. A well-elaborated semiclas- then describes the dynamics of a symmetrical second rank
sical approach to the theta structure of the ground state hasnsor under spatial rotations. The main-axis transformation
been given in the “instanton picture,” where the theta angleof this symmetric tensor allows us to separate the gauge in-
is interpreted 1] in analogy to the Bloch momentum in solid variant variables into scalars under ordinary space rotations
state physics. The instantons, which are self-dual solutions aind into “rotational” degrees of freedom. In this final form
the Euclidean classical equations of motion with finite ac-the physical Hamiltonian and the topological operator can be
tion, correspond to semiclassical quantum mechanical turquantized without operator ordering ambiguities. We study
neling paths in Minkowski space between the infinite se-the residual symmetries of the resulting unconstrained quan-
quence of degenerate zero-energy Yang-Mills vacua ofum theory with arbitrary theta angle and reduce the eigen-
different homotopy classes of the gauge potential. The semivalue problem of the Hamiltonian to the corresponding prob-
classical instanton picture of the theta vacuum however is olem with zero theta angle. The energy spectrum is found to
course reliable only for weak coupling. For a complete in-be independent of the theta angle by construction of the ex-
vestigation of the theta structure of the vacuum of Yang-licit transformation relating the Hamiltonians with different
Mills quantum theory a rigorous treatment at strong couplingheta parameter. Using the variational approach we calculate
is necessary. The effect of the theta angle for arbitrary couthe low energy spectrum with rather high accuracy. In par-
pling constant can be taken into account by adding theicular we find the energy eigenvalue and the magnetic and
Pontryagin density to the Yang-Mills Lagrangiah]. Al-  electric properties of the ground state, as well as the corre-
though the extra theta dependé€®-violating term is only a  sponding value of the “gluon condensate.” Explicit calcula-
total divergence and therefore has no meaning classically, tton of the Witten formula for the topological susceptibility
can have a physical meaning at the quantum level as is stilising our variational results for the ground state and the low

under lively discussiofi4—6]. lying excitations gives strong support for the consistency of
As a first step towards a full investigation of Yang-Mills our results.
theory in the strong coupling limit the toy model of &) Our paper is organized as follows. In Sec. Il the Hamil-

Yang-Mills mechanics of spatially homogeneous fields hagonian reduction of S(2) Yang-Mills mechanics for arbi-
been considered on the classi¢@l-11] as well as on the trary theta angle is carried out and the corresponding uncon-
strained system put into a form where the rotational and the
scalar degrees of freedom are maximally separated. In Sec.
*Permanent address: Thilisi Mathematical Institute, 380093]ll the obtained unconstrained classical Hamiltonian is quan-
Thilisi, Georgia. tized, its residual symmetries, the necessary boundary condi-
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tions for the wave functions, and the relevance of the thetane finds that the phase space spanned by the variables
angle on the quantum level discussed. In Sec. IV the eigen-A,o,P,) and (A, ,I1,;) is restricted by the primary con-
value problem of the unconstrained Hamiltonian with van-straintsP,=0. The evolution of the system is governed by
ishing theta angle is solved approximately in the low energythe total Hamiltonian[36] with three arbitrary functions
region using the variational approach. In Sec. V the Witteri 4(t)

formula for the topological susceptibility is evaluated using

. L . . . 2
the obtained variational results. Section VI finally gives our ) 1 ast 2
conclusions. Appendixes A—C state several results and addi- HT"§Hai+ 2 1+ T Bai(A)+0Q(ILA)
tional discussions relevant to the main text.
—9Ax0€anAbillciTAaPy, (2.9

[I. UNCONSTRAINED CLASSICAL SU (2) YANG-MILLS

where the topological charge has been introduced
MECHANICS WITH THE THETA ANGLE

A. Hamiltonian formulation Qi=— Za_sHaiBai _ (2.6

It is well known[1] that the theta angle can be included

already at the level of the classical action Apart from the primary constrainB?=0 the phase space is

restricted also by the non-Abelian Gauss law, the secondary
1 agh

JAL:=— Zf d“x( Fa Fanr— ZiFfwifaW , (2.)  constraints

o

D, :=gepAlly =0, {®,,Ppl=gepP., (2.7
with the SU2) Yang-Mills field strengthsF%, :=d,A7 2~ 9€aneillo (P2 Po} =Geancbe

—&VAfLJrgeabcAzAi, (a=1,2,3), the dual T:aw which follow from the maintenance of the primary con-
=1/2€,,,,F"" andas=g? 4. For the special case of spa- Straints in time. _

tially homogeneous fields the Lagrangian in Eg.1) re- To overcome the problems of the existence of these con-
duces td straints and the nonunique character of the dynamics gov-

erned by the total Hamiltoniari2.5) we will follow the
. 5 ) method of Hamiltonian reduction to construct the uncon-
(Aai —9€apAnoAci) — EBai strained system with uniquely predictable dynamics. As in
the recent papdi 1] we shall use a special set of coordinates
agh . which is very suitable for the implementation of Gauss law
_ﬁ(Aai_geabcAbOAci)Bai’ (2.2 constraints and the derivation of the physically relevant
theory equivalent to the initial degenerate theory. This will
with the magnetic fieldB,;=(1/2)geapceijkPArjAck- After  be the subject of the following subsection.
the supposition of spatial homogeneity of the fields the

L:

N| -

SU(2) gauge invariance of the Yang-Mills action E@.1) B. Canonical transformation to adapted coordinates and
reduces to the symmetry under the (80local transforma- projection to Gauss law constraint
tions

The local symmetry transformatid@.3) of the gauge po-
An(t)— A (1) = Ol et t tentialsA,; prompts us with the set of coordinates in terms of
20() = Ago() = OLo (1) JapAvo(t) which the separation of the gauge degrees of freedom occurs.

1 . As in Ref.[11] we use the polar decomposition for arbitrary
- Efabc{o[w(t)]o[w(t)]}bcv 3x 3 quadratic matricef39]
© ALi(x,S)=0 i 2.8
Aai(t)—AZ(D) = O[ () TapAn(1), 23 ai(X:3)=0adX)Sa 9

with the orthogonal matrixO(x), parametrized by the three
anglesy; and the positive definite 83 symmetric matridXS
The representatio2.8) can be regarded as transformation
P, =L/ 3(9gAs0) =0, from the gauge potentiaksai to the set of coo_rdinate;si and

Sk- The corresponding canonical conjugate momenta
(pXi,Pik) can be obtained using the generating function

and as a result the Lagrangiéh?) is degenerate. From the
calculation of the canonical momenta

agl
_Bai 1
21 3

(2.4 F(Ix,9) =2, MyAu(x,S=t[I1T0(x)S] (2.9

Hai ==(9L/¢9(l90Aai) = Aai - gEabCAbOACi -

'Everywhere in the paper we put the spatial voluvhe 1. As a

result the coupling constagtbecomes dimensionful witg?® hav- 3

. . . JF 90,5 d0

ing the dimension of energy. The volume dependence can be re- S .. —2s. =t [ITT—S (2.10
. . . 2 pX' ] ; ai . i . ' .

stored in the final results by replacing by g%/V. I dxj asi IX; IX;
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JE 1 . . where M denotes the spin part of the angular momentum
Pik=of,—sik:§(01_[ +IIO ). (2.1)  tensor of the initial gauge field
A straightforward calculationf11] yields the following ex- Mnni=(SP=PS)mn. (2.21)

pressions for the field strengti$,; in terms of the new

canonical variables: Using Eq.(2.20 the unconstrained Yang-Mills Hamiltonian

reads
IT4i= Oak (X {Pwi+ ei(s™ D[ Q7 Hx)Py; 1 1 . o2
— 2 2 S p2
— €min(PS)mnl}, (2.12 HH(S,P)—Etr(P) +2 det2str(sMs) +Z 1+ 47720 )
with X[tr2(S)2—tr(S)*]+ 6Q(S,P). (2.22
1 [a07(x)
Qii(x):= 2 €min x; —O0() | , (213 C. Unconstrained Hamiltonian in terms of rotational and
! mn scalar degrees of freedom
and In order to achieve a more transparent form for the re-
_ duced Yang-Mills systen(2.22 it is convenient to decom-
Sik = Sk~ Gilr S. (2149 pose the positive definite symmetric matBxas
Using the representation®.8) and (2.12 one can easily S=R"(a,B,7)D(X;,%2,X3)R(, 3,7), (2.23
convince oneself that the variabl8sand P make no contri-
bution to the Gauss law constrain7) with the S@3) matrix R parametrized by the three Euler
4 angles @, ,7y), and the diagonal matrix
Pa:=0a(X)Q 57 (X)Py, =0 (2.15
D:=diagx1,X5,X3). (2.249

Hence, assuming the invertibility of the matiiX, the non-
Abelian Gauss law constraints are equivalent to the set dfl/sing thex; and the Euler anglesa(3,y) and the corre-

Abelian constraints sponding canonical momentg and p,,pg,p, as the new
set of canonical variables on the unconstrained phase space
Py, =0. (2.16  we get the following physical Hamiltonian:
After having rewritten the model in terms of adapted canoni- 13 xj2+xﬁ

cal pairs and after Abelianization of the Gauss law con-  Hg(Xi,pii&) =7 > {pinr 5?2—22
straints (2.7) the construction of the unconstrained Hamil- cyelic (X =)
tonian system can be obtained as follows. The physical

unconstrained Hamiltonian, defined as +g?

H0(SvP)’=HT|pxa:O!

+60Q(p,X).

2
aS
1+ —> 62| x?x2

47 ) 7k

(2.29
takes the form In Eq. (2.25 all rotational variables are combined into the
g2 2 quantitiesé;
2y, 2 S 52 2/Q\2_ 4
Hy= 2tr(£ )+ 47T20 )[tr (S)°—tr(S)"] . siny y 026
:=——>p,+CoSyps—sinycotBp,, :
+6Q(S,P), (2.17 tosing & !
where the “physical” electric field strengths,; are CoSsy
i &yi=— Sng ——— Pt Ssinypg+cosycotBp,,
ail 7, 0= Oar( M Ei(S, P), (2.18 (2.27
and the topological charge &:=p,, (2.28
Q(Slp):_ﬁtr(ps)_ (2.19  representing the S@) invariant Killing vectors with the
27 Poisson brackets algebra

Using the representatiai2.12 for the electric field one can {& &)= —€ijcén. (2.29
express the&,; in terms of the physical variabld? and S
1 The topological charg®) is independent of the rotational
. degrees of freedom and depends on the diagonal canonical
Ea(SP)=Pixt i dets (SMS)ik. 2.29 pairs in the particularly simple cyclic form
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a tion (2.31). One can easily convince oneself that the quantum
Q=—05_(X1XaPs+XoXsP1 +X3X1Pz).  (2.30  HamiltoniansH, andH,_, can be related to each other via
the transformation

This completes our reduction of the spatially homogeneous
constrained Yang-Mills system with theta angle to the
equivalent unconstrained system describing the dynamics Qf;ip,
the physical degrees of freedom.

If we would restrict our consideration only to the classical _ag
level, the above generalization to arbitrary theta angle would u(e)= GXF{ 19 o 0X1X2X3
be unnecessary, because the theta dependence enters the ini-
tial Lagrangian in the form of a total time derivative and thusThe question is whether this operator is unitary in the do-
the value of the theta angle has no influence on the classicghain of definition of the Hamiltoniankl , andH ,_,, which
equations of motion. In the Hamiltonian formulation one canjs determined by their respective symmetries and the bound-

easily verify that the theta dependence can be removed fromry conditions to be imposed on the corresponding wave
the HamiltonianH , by the canonical transformation to the fynctions.

new variables

Hy=U(8)H,_oU (0), (3.9

. (3.5

A. Boundary conditions

- agf . . o . .

Pis=Pi— 95 XXk, i,j,k cyclic, Due to the positivity of the coordinateg in the polar
decomposition2.8) the configuration space R, after the

~ elimination of the pure gauge degrees of freedom. Thus the

Xj=Xj. (23])

implementation of the canonical rules of quantization to the

unconstrained classical system requires the specification of

However, the transition to the quantum level requirés a morg,, 1), nqary conditions both at positive infinity and on the
careful treatment of the problem. It is necessary to cIarn‘ythree boundary planes =0,i=1,2,3. The requirement of

whether the operatqr correspondmg to £2.31) aqtmg on rmiticity of the HamiltoniarH , (3.1) leads to the condi-
the quantum states is unitary. In subsequent sections we sh

consider the quantum treatment of the obtained classical sys-
tem and shall discuss the theta dependence of the vacuum in a
this model. W5 0D g— Wy Pyt 2ig§0xix1\lf§<b9)

%,=0

Ill. QUANTIZATION, SYMMETRIES AND BOUNDARY
CONDITIONS

The Hamilton operator corresponding to ER.25 is ob- ~ Using the relation¥ ;= U ()W ,_o with U(6) given in Eq.
tained in the Schidinger configuration representation by the (3.5), this reduces to the corresponding requirement of Her-
conventional representation for the canonical momemta Miticity of H,_o

i,j,k cyclic. (3.6)

= 1o (V=00 P s=0= W G- 0P s=0)x, =0=0, i,j,k CyC“?- )
13 92 X2+ x2 a? 3.
H9:=§ c%ic ; (9_xi2+ §i2(><jzj——x§k)2+ g°| 1+ 4_7:2 62) XjZXE It is satisfied for  arbitraryc numbej
+6Q, 3.9 (0¥ g0t k¥ y—o)l —0=0, k=1,23, (3.9
with the topological charge operator which includes the two limiting cases of vanishing wave

function (k—) or vanishing derivative of the wave func-

> tion («=0) at the boundary. The requirement of the Hermi-

Q=ig7 c%ic XX o (32 ticity of the momentum operators in the Sétiinger con-
figuration representatiop;:=—id/dx; on Ry requires the
and the intrinsic angular momengaobeying the commuta- Wave function to obey the boundary conditions
tion relations )
Vp_olx=0=0, i=1,2,3, (3.9
[&i,&]= —T€ijéc- (3.3 .
Vp_olx—==0, iI=1,2,3. (3.10

The transition to the quantum system in this adapted basis is

free from operator ordering ambiguities. In particular, they also imply the Hermiticity and the exis-
As already mentioned in the last section the parametetence of a real eigenspectrum of the topological charge op-

theta is unphysical on the classical level, since it can beratorQ. Its eigenstates, however, given explicitly in Appen-

removed from Hamiltoniatd , by the canonical transforma- dix A, do not satisfy the boundary conditior(8.9) and
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(3.10, similar to the eigenstates of the momentum operatoground state energy of the theta angle and hence vanishing
—ialdx; . Furthermore, it is interesting to note that the char-topological susceptibility should therefore imply
acteristics of th& operator coincide with the Euclidean self-

(antidual zero-energy solutions of the classical equations of d’Eq(6) _ oy WRImE (0[Q[n)|?
motion. They are the analogues of the instanton solutions, de? 9—0 n E —Ey
but do not correspond to quantum tunneling between differ- )
i o
ent vacuasee Appendix A +(O|<2—S B20)=0, (316

B. Symmetries of the HamiltoniansH , and H 4_¢

where|n) are eigenstates of the Hamiltoniéh,_o with en-
ergy eigenvalueg,. As we shall see below, our calculation
of the low energy part of the spectrum Bff,_y using the
[H,J]=0, (3.11) Vvariational technique is in full accordance with E§.16).

As a relic of the rotational invariance of the initial gauge
field theory the Hamiltoniai3.1) possesses the symmetry

where J;=R;;¢; are the spin part of the generators of the
angular momentum of Yang-Mills fields satisfying th€3o
algebra

IV. SCHRODINGER EIGENVALUE PROBLEM
FOR VANISHING THETA

[3;,3.]=i €k (3.12 A. Low energy spin-0 spectrum from variational calculation
1 1) ’ .

The Hilbert space of states with zero spiﬁ 0 is an
hnvarlant subspace under the action of all generalpmsnd
onhe can consider the eigenvalue problem separately from
states characterized by higher spin value. Thus in the sector

of zero spinJ?=£2=0 the Schidinger eigenvalue problem
?3 1) reduces to

and commuting with the intrinsic angular momerita,, ; |
=0. Hence the eigenstates can be classified according to t
guantum numberd and M as the eigenvalues of the spin
J?=032+35+J32 and J;. The Hilbert spaces of states with
different spinJ are each invariant subspaces under the actio
of all generators); and can therefore be considered as sepa

rate eigenvalue problems. 1 3 2
Apart from this continuous rotational symmetry the HoPe=5 > | - —2+0%XE|Pe=E¥e. (4.1
HamiltoniansH, and H,_, possess the following discrete 2 cyclic ‘9X

symmetries. BottH ,_, and Q are invariant under arbitrary N
permutations of any two of the variablesr;x, ~ We shall use the boundary conditio(®&9) and (3.10. Al-

=X,0i; , 0;Pi=P; 0| ready a long time ago it has been proven by Rell¢#] that
B _ Hamiltonians of the typé4.1) have a discrete spectrum due
[H=0,0i;]=0, [Q,0y;]=0. 313 o quantum fluctuations, although the classical problem al-

lows for scattering trajectoriesee discussion in Ref12)).
Related and simplified versions of the eigenvalue problem
(4.1) have been studied extensively by many authors using
different method$12—-20. In particular, in Refs[14,15 the

However, under time reflectionsx;=x;T, Tp;=—p;T, as
well as under parity reflection®x;=—x;P, Pp;j=—p;P,
Hy—o commutes withT and P,

[Ho=0,T]=0, [Hy=0,P1=0, (3.14 eigenstates and eigenvalues have been found in the semiclas-
but Q anticommutes with and P, i%al2 approximation for the special two dimensional cese
QT=-TQ, QP=-PQ. (3.1 To obtain the approximate low energy spectrum of the

Hamiltonian in the spin-0 sector we will use the Rayleigh-
Ritz variational method46] based on the minimization of
the energy functional

Hence for theH ,_, Schralinger eigenvalue problem we can
restrict to the Hilbert space of real and parity odd wave func-
tions which automatically satisfy the boundary conditions
(3.9). Observe that the transformatid®.5) leads out of the

corresponding Hilbert space and is therefore not unitary.
P g P y 21t is interesting that for the three-dimensional case one can write

the potential term in Eq4.1) in the formV= E (W) ? with the
“superpotential” W(Xx4,X5,X3) = X1X,X3. Note that in the simplified

Due to the relation(3.4) between the Hamiltoniand ,, two-dimensional case there is no such superpotential. The two-
andH ,_, and the corresponding compatibility of the bound- dimensional superpotentia/(?’=xy corresponds to the two-
ary conditions discussed above the energy spectrum shouttimensional harmonic oscillatov(?=x?+y?. From the form of
be independent of the theta angle. In particular the topologithe superpotential it follows that the wave functioh,=exp
cal susceptibility of the vacuum should vanish. Using the[—gW] solves the Schidinger eigenvalue problem with energy ei-
Witten formula[40,41], the topological susceptibility can be genvalueE=0. It is the unconstrained, strong coupling form of the
represented as the sum of a propagator term involving theell-known exact but non-normalizable zero-energy solufié8]
transition matrix elements of the topological operafpband  of the Schrdinger equation of Yang-Mills field theory. Obviously
a contact term proportional to the vacuum expectation valué is also not satisfying the boundary conditiai3s9), (3.10 and has
of the square of the magnetic field. Independence of theo be disregarded as a false ground state.

C. Independence of the energy spectrum of the theta angle
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(W|Ho| W) We shall represent these by the permutation operaigr
5[‘1’]==W- (42 the cyclic permutation operatar;,; and the time reflection
operatorT, whose action on the states is
The key moment in all variational calculations is the choice
of the trial functions. Guided by the harmonic oscillator form
of the valleys of the potential in E@4.1) close to the bottom
a simple first choice for a trial function compatible with the
boundary condition§3.9) and(3.10) is to us€ 21] the lowest
state of three harmonic quantum oscillators on the positive

0123V (X1,X2,X3) =W (X2,X3,X1),
0'12\1’()(1 1X2 !X3) :q,(xz 1X1 !X3)|

TW(X1,X2,X3) =W (Xq1,Xz,X3),

half line and decompose the Fock space spanned by the functions
3 14 (4.7) into the irreducible representations of the permutation
W o= 8H (%) \/Jixie‘“'ixiz/z. (4.3 group and time reflectiom. For given fi,,n,,n3) we define
i=1
\Pg%)r:r =Whnn, (4.9
The stationarity conditions for the energy functional of this
state, if all three indices are equdtype ), the three statesn{=
, -1,0,1)
3 9 1
AV ood= > _wi+_92‘_>: 14
delie |4 87 wje ViR = &, & T 01 Vs, (49
lead to the isotropic optimal choice
when two indices are equdtype Il), and the two sets of
wi=w;= w,= wy=3"g?°, (4.4  three statesmi=—1,0,1)
As a first upper bound for the ground-state energy of the . 1 2 i .
Hamiltonian we therefore find ‘I’mz—ns::% go e HMB( g, 1+ 1) W s

(4.10

if all (nq,n,,n3) are different(type Ill). In this new ortho-
normal set of irreducible basis stat#§”*, the Fock repre-
sentation of the Hamiltoniahl, reads

27
Eo<&Wooo =g 3"%97°=4.867697°. (4.9

The upper bound4.5) is in agreement with the lower bound
of the energy functional for separable functions

g[‘lfsep-l>4.596292/3, (46) H0:2 |“I,§/|m)a><\ljg/|m)a|Ho|qf§\|m)a><\lf§\lm)a|.

derived in Appendix B.

In order to improve the upper bound for the ground-stat
energy of the Hamiltoniatd, we extend the space of trial
functions(4.3) and consider the Fock space of the orthonor-
mal set of products

eThe basis state?f\,m)" are eigenfunctions of1,3 and o,T

O-lzgqu\lm)t :emeiISq,F\Im)i ,

o TW W= = (M= (4.1
3
. Under o, and T separately, however, they transform into
v =[] ¥, (0,x), 4. 12 ) )
nynang 1_11 ni(w 1) 4.7 each other
of the odd eigenfunctions of the harmonic oscillator oV (V= p( M=
(w/ﬂ')lm 2 TP M= p(-m=
Vo (0,X) = X PH,_ . (JuX), N
" L2 (2n+1)! 2t

We therefore have the following irreducible representations.
with the frequency fixed by Eq4.4). The singlet state® (9 the “axial” singlet states¥(©)~,
Furthermore the variational procedure becomes muckhe doublets ¥(*V*;w(=U*) and the “axial” doublets
more effective, if the space of trial functions is decomposed ¥ ~;%("1)7). Since the partner states of the doublets
into the irreducible representations of the residual discret&ansform into each other under the symmetry operations
symmetries of the Hamiltoniaf#.1). As has been discussed Or T, the corresponding values of the energy functional are
in Sec. B, it is invariant under arbitrary permutations of equal.

any two of the variables;;x;=X;a; , o;p;=p;o;; and un- The energy matrix elements of the irreducible states can

der time reflectiong x,=x,T, Tpj=—p;T, then be expressed in terms of the basic matrix elements as
given in Appendix C. Because of this decomposition of the

[Ho,0ij]=0, [Ho,T]=0. Fock space into the irreducible sectors, the variational ap-
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proach allows us to give upper bounds for states in each 8[A2]=16.665292’3(16.733392’3),
sector. The values of the energy functional for the states in
each irreducible sector with the smallest number of knots & A3]=19.14709%%(19.3028g%3). (4.15

ELW fob 1=4.867607°, £ W{5)"1=7.1915¢7°, W) ]

=13.8817¢%° and ¥ ;) 1=15.6845g%" give first up-  Finally taking into account all states in the axial doublet

per bounds for the lowest energy eigenvalues of the singlegector with up to &) knots we find the following energy

the doublet, the axial singlet, and the axial doublet states. expectation values for the three lowest states
In order to improve the upper bounds for each irreducibleC{*%,c{*, ¢

sector, we truncate the Fock space at a certain number of

knots of the wave functions and search for the corresponding g c{M]=14.87689%%(14.87969%°),

states in the truncated space with the lowest value of the

energy functional. We achieve this by diagonalizing the cor- g5 Y1=17.66489%%(17.6839g%°),
responding truncated Hamiltonia,,. to find its eigenval-

ues and eigenstates. Due to the orthogonality of the truncated 5[C(3i M= 19.90199%%(19.9914g%3). (4.16)

space to the remaining part of Fock space the value of the

energy functional4.2) for the eigenvectors of,n COIN-  We therefore obtain rather good estimates for the energies of

cides with theHy,, eigenvalues. the lowest states in the spin-0 sector. Extending to higher and
Including all states in the singlet sector with up to 5 knotshigher numbers of knots in each sector we should be able to

we find rapid convergence to the following energy expectaobtain the low energy spectrum in the spin-zero sector to

tion values for the three lowest stat8g,S,, Ss: arbitrarily high numerical accuracy.
o3 o3 In summary comparing our results for the first few states
&S1]1=4.80679%(4.8070g9), in all sectors, we find that the lowest state appears in the

singlet sector with energy
&S,]=8.2515¢9%%(8.2639¢%3),

Eo,=4.8067g%"°, (4.17
&S;]1=9.57359%%(9.6298g%°), (4.12
with expected accuracy up to three digits after the dot. Its
where the numbers in brackets show the corresponding reswplicit form is given in Eq.(4.13 to the accuracy consid-
when including only states up to 4 knots into the variationalered. For comparison with other work we remark that due to

calculation. The lowest sta®,, given explicitly as our boundary conditioii3.9) all our spin-0 states correspond
©)+ (0)+ o)+ to the 0 sector in the work of Refl16] where a different
$1=0.9946V 5 +0.0253F o5y —0.0217 ¢ gauge invariant representation of Yang-Mills mechanics has

been used. Their state of lowest energy in this sector is

_ (0)+ _ 0)+ _ (0)+
0.0970V135" ~0.0003F g3 —0.0033V oz 9.52g%°. Furthermore in Ref[20], using an analogy of

—0.0146¥ (9" —0.0008¥ ()" +0.0040F (7 SU(N) Yang-Mills quantum mechanics in the largelimit
ot ot ot to membrane theory, obtain the energy values 6.45%0
—0.0080F 2% —0.0038V{3%" +0.0002W 3% and 19.8253)% for the ground state and the first excited
_ (0)+ ©)+ _ (0)+ state.
0.0004¥ 013" +0.0012W g53" —0.0004¢ 115 The expectation values for the squares of the electric and
+O.0031If(2%)1+ , (4.13 the magnetic fields for the ground stétel3 are found to be

2 — 2/3 2 — 2/3
nearly coincides with the stat# (%", the contributions of (0]E?|0)=6.4234g", (0[B*|0)=3.1900g"",

the other states are quite small. Similarly including all states (4.18

in the doublet sector with up to(® knots the following and the value for the “gluon condensate” is therefore
energy expectation values for the three lowest states

+1 +1 +1
DY, D5, DY (0/G2|0):=2((0|B2|0)— (0|E?|0)) = — 6.4669g%>

gD M1=7.16829%%7.1689g%), 4.19
These results are expected to be accurate up to three digits
gD5 M1=9.61719g7%(9.63949%3), after the dot. Hence the variational calculation shows that the
vacuum is not selfantjdual and that a nonperturbative
gD Y]=10.9903g%%(10.9951g%%) “gluon condensate” appears.
(4.14

have been obtained. Including all states in the axial singlet B. Higher spin states

sector with up to 8) knots we find the following energy For the discussion of the eigenstates of the Hamiltonian
expectation values for the three lowest stahgsA,,A; H ,—o with arbitrary spin we write

& A;]1=13.22359%3%(13.2275g%7), Hy—0=Ho+ Hspin (4.20
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with the spin-0 Hamiltoniari4.1) discussed in the last sub-
section and the spin dependent part

X
2
J

12+Xﬁ i,j,k cyclic
Xk)21 1J1 y .
(4.21
Introducing the lowering and raising operat@rs:=&, =i é&,,

the spin dependent pait,, of the Hamiltonian(4.20 can
be written in the form

3
E 2 £V, V=
sp|n 2~ i i (X

1
(§++§ )(Vi—Vy)+ §(§+§—+§—§+)(V1+V2)

spln

1
- §§§V3. (4.22

Since the Hamiltoniart4.20 commutes with]? andJs, the
energy eigenfunction¥ j,, can be characterized by the two
guantum numberd andM. Furthermore we shall expand the
wave functionV ), in the basis of the well-knowd func-

tions[44], which are the common eigenstates of the opera-

tors J2=£2, J;, and &; with the eigenvalues, M, andk,
respectively,

2J+1

E

X ‘PJMk(Xl X2 1X3)D

Wim(X1, X2, X350, 8,7) =

W B,y),
(4.23

where (@,B,7) are the Euler angles. We have the relations

(4 24

The task to find the spectrum of the Hamiltoni@n20 then

£D (=KD,

reduces to the following eigenvalue problem for the expan-

sion coefficientsV ;. for fixed values ofJ andM

J
> | (Ho=E)d i+ (—1)°(23+1)
sinBdadgd
XJ%D(J)*(Q B,y)H spinD(thal(arﬂﬂ'Y)
X W ym=0. (4.25

Since the spin part, of the Hamiltonian does not com-

mute with &3, nondiagonal terms arise, coupling different

values ofk. We shall in the following limit ourselves to the
case of spin-1. Using the linear combinatid4§]

1
W (X1,X2,X3) ’:E[WJ=1,M,k=l(X1 1X2,X3)

(4.2

—Wio1mk=—1(X1,X2,X3) ],

PHYSICAL REVIEW D61 025017

1
W5(Xq,X2,X3) ’:E[qj.hl,M,k:l(xl 1X2,X3)

TV 1 mk=-1(X1,X2,X3)], (4.27)
W3(Xq,%2,X3) =W 321 M k=0(X1,X2,X3),

(4.28

the corresponding eigenvalue problém?25 for spin-1 de-
couples to the following three Schiimger equations for the
wave functionsW ,(Xq,X»,X3):

3

ff
E 2+ 5 Z X Xk+Vg (X11X21X3)
= i<j

1
z \Pa(x)

v.(x), a=1,2,3, (4.29

with the effective potential
1) x3+x2

1
E(Vb"'vc): 5

VET(X, X0, Xa) 1= —
a( 1142 3) 2 (Xg_xg)Z

X2+ x2
+(—2—2—2

, a,b,c cyclic.
Xa_Xb)

(4.30

In the spin-1 sector we have therefore succeeded to reduce
the Schrdinger equation to three effective Sctiager
equations for the scalar degrees of freedom with an addi-
tional effective potential induced by the rotational degrees of
freedom. Since the effective potential§" are related via
cyclic permutation

eff _\ seff eff _\ seff
T12V] =V5 0103, 0123V5 =V3 0123,

(4.31

all energy levels in the spin-1 sector are threefold degenerate.
As in the spin-0 sector we may use the variational ap-
proach to obtain an upper bound for the lowest spin-1 state.
The variational ansatz

eff _\ seff
0123V3 =V71 0123,

3
Wa(X1,%2, %) =G = x0) G —xD) [T Wo(wf® x)
i=1
(4.32

satisfies both the boundary conditio(&9 and(3.10 and
vanishes at the singularities of the additional effective spin-1
potentialVo;. For the optimal values

0\¥=1.18149%° o{¥'=0®'=2.3494597",

(4.33
we obtain the energy minimum
=8.60449%". (4.34

Analogous treatments of higher spin states can be carried out
correspondingly. Using the linear combinatidd$]

Espin—l
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1 variational calculation as eigenvectors of the truncated Fock
\Ifjk\(xlrxbxe,)‘=E[“PJ,M,k(X1:X21X3) ipac; inclu%ingﬁirreducible singlet states up to 5 kndts
not9, we obtai

i\PJ,M,fk(X11X21X3)]1 k#O, don(a) prop <0|Q|n>|2
O I O
= —0.00048199*3 (—0.0004622943).
W 30(X1,X2,X3) =W 3 m k=0(X1,X2,X3), (4.39 (5.2)

. . We see that the sum of the contact contribut{drl) and the
and noting that there are no transitions between the Stat?ﬁopagator contributiok.2) seem to tend to zero when ex-
W) with even and oddk, and with + and — index, the  {enging the variational calculation to Fock states of higher

corresponding eigenvalue proble®.25 for spin J de-  gng higher number of knots. For comparison we point out
couples into four separate Schioger eigenvalue problems. - using the irreducible singlet statdé,oH P (0)+

For spin-2 one finds one cyclic triplet of degenerate eigeny'+1's knots(4 knot9 in Eqs.(4.8)—(4.10)08iréct(l)§,1 instead
states and two singlets under cyclic permutation, for spin-%f the eigenstateS,,S,, . . . Sy (S1,Sy, . . . ,Sy1), We get

two cyclic triplets each consisting of three degenerate states 0.0005205¢'#3 for the contact con,tribution(s 1) and
and one singlet, and so on. The corresponding reduction on 0.0003808g14’3 (—0.0003761g*3) for the prépagator

the classical level using the integrals of moti@11]) has contribution(5.2). We herewith find strong support that our

be?/\r; done Iln (I;e(#};]. bsection b ini ¢ that variational results are in accordance with vanishing topologi-
e conclude this subsection by pointing out that our,, susceptibility(3.16).

variational resul{4.34) shows that the higher spin states ap-
pear already at rather low energies and therefore have to be
taken into account in calculations of the low energy spectrum

of Yang-Mills theories. In this paper we have analyzed the quantum mechanics of
spatially homogeneous gauge invariant(3Ugluon fields
with theta angle. We have reduced the eigenvalue problem of
V. CALCULATION OF THE TOPOLOGICAL the Hamiltonian of this toy model for arbitrary theta angle to
SUSCEPTIBILITY the corresponding problem with zero theta angle. The energy
spectrum has been found to be independent of the theta angle

the topological susceptibility allows us to check the consisPY construction of the explicit transformation relating the

tency of the results for the low energy spectrum obtained ir{-|am|lt'on|ans W'th. different .theta para}meter. The. ground
Sec. IV using the variational approach. state, its energy eigenvalue, its magnetic and electric proper-

Using the ground stat8&; in Eq. (4.13, obtained from ges, a;s Xvelldafhthle corrtespo_?dtl_ng vslue %f the gtlu_ondcor?t-h
minimization of the energy functional in the singlet sector ensate”and the lowest excitations have been obtained wi

including irreducible states with up to 5 knots, and the ex-h'gh accuracy using the variational approach. Furthermore it

pressions for the matrix elements Bf in the basis of irre- has been shown that higher sp?n. states b‘?come alrea_dy rel-
ducible states given in Appendix C, we obtain evant at rather low energy. Explicit calculation of the Witten

formula for the topological susceptibility using our varia-
tional results for the ground state and the low lying excita-
tions gives strong support for the consistency of our results.

VI. CONCLUDING REMARKS

The explicit evaluation of the Witten formule.16) for

d2E,o( ) | contact o\ 2 We have found a continuous spectrum and the corresponding
—02 =+ < 0 (_5> B2 o> eigenstates of the topological operator in this approximation
do 6=0 2w and shown that its characteristics coincide with the Euclid-

B 14/ 14/ ean selfantjdual zero-energy solutions of the classical
= +0.00051179"*+0.0005119y™"") equations of motion. They are the analogues of the instanton
(5.2 solutions, but do not correspond to quantum tunneling be-

. . . Here the lowest six excitatiorts,, . . . ,S; are found to give the
for the contact term in the Witten formula. The number iN contributions — 103.3% 10~ g3 (—107.7x 107 g*3), —201.6

brac_kets gives the corre;pondi_ng result for up to 4 knots.. X106 g143 (—205.3¢< 1076 g143), —124.1x 106 g3 (— 120.4
Since theQ operator is a spin-0 operator anq SYmmetricy 19-6 g149)  _ggx107¢ g3 (—9.3x 1076 g3, —27.3

under cyclic permutations, the propagator term involves onlyy 1076 ¢14/3 (— 18.4x 1076 g3, and —0.16x10 ° g43 (- 4.1

the singlet states in the spin-0 sector. Using the formula fosc 1076 g3, respectively. The contributions from the remaining

the mat_rix eleme_nts of the topologica_ll operat@rst_ate_d iN higher excitationsS, . .. ,Si6 (Ss, - . . ;511 for up to 4 knots are
Appendix C and including the lowest fifte¢ten) excitations  of the order of 5107 or less and form a series which is rapidly
S, .. ..56(S,, ... ,S11) oObtained approximately in the decreasing with the number of knots.
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tween different vacua. The generalization of these investigaFhese integral curves prompts us with the introduction of the
tions to SU2) field theory following Ref.[34] is under new adapted coordinateg,,p)
present investigation.
=Xy, m=X5—X5, p=X3—X3. (A5)
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\P)\(X11X21X3)::W}\(§1771p) (A7)
APPENDIX A: TOPOLOGICAL CHARGE OPERATOR,
ZERO-ENERGY SOLUTIONS OF THE CLASSICAL the partial differential equatiofA2) reduces to the following
EUCLIDEAN EQUATIONS OF MOTION AND TUNNELING ordinary differential equation:

AMPLITUDES
] 812
In this appendix the solution of the eigenvalue problem 72+ 5\2+p —W, (£, 7,p) = —i)\—T;Wx(g,n,p).
for the topological charge operator is described and the rela- 9 9 (A8)

tion between its characteristics and the Euclidean zero en-
ergy trajectories of the qnconstramed Ham|ltor‘ﬂar25).d|s- The general solution of this equation can be written in the
cussed. We shall also discuss the role of these Euclidean zefo

energy solutions of the classical equations of motion to tun-

neling from one valley to another.
¢ y W,(£,7.0)=To(7.p)

1. The eigenvalue problem for theQ operator ) 2
xXexp 1IN

t{ i), [
N P

(A9)

8
3

a*Vp

=

The eigenvalue problem for the topological charge opera-
tor

QW (1)), =N|W (1) (A1)
| W=M 2 with the arbitrary function¥o(7,p) and the Jacobi elliptic

in the Schidinger representation reduces to the solution forintegralsF(z,k) of the first kind[48]. In terms of the original
the following linear partial differential equation: coordinatesX; ,X,,x3) the eigenfunctions for the topological
charge operator in the sectoy<x,<Xx; therefore have the
9 J form
X1X2(3,7\P)\(X11X2’X3)+X2X3&7\P>\(X11X2!X3)
3 1 2 2,2 2
W (X1, X2,X3) = Wo(X5—X],X3—X7)

J 87?
+X3X1W‘1’>\(X1,X2:X3): —i—3 AW (X1,X2,X3). _ 8?2
2 g xXexp in N
(A2) g VX3 X3
- - - X X2 — X2
The conventional method of characteristics relates this prob- % F| arcta ! >—21t.
lem to the solution of the set of ordinary differential equa- VXG—x3 X3—Xq

tions (A10)

dx % _ dx3. (A3)  In the other sectors the corresponding wave function is ob-
XoX3  X3gX1  XaXg tained from Eq.(A10) by cyclic permutation. Note that the
] ) ] eigenfunctiongA10), which constitute the most general so-
The integral curves corresponding to E43) can be written | tion of the eigenvalue probleriAl) for the Q operator, do
in the form not satisfy the boundary conditior{8.9) and (3.10 neces-
5 s 5 sary for the Hermiticity of theQ operator. In the next section
l1=X3—X1, l2=X3—X]. (A4)  we will show that the characteristics of the topological
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charge operatofA3) coincide vyith the equatior)s which de_- ;(i:Xi(ij"'XE); ijk cyclic. (A18)
termine the zero-energy solutions of the Euclidean classical
equations of motion. The class of trajectories with zero energy
2. Euclidean zero energy trajectories in Yang-Mills mechanics 1 .
_ _ ERC=— > (x?—xxD), (A19)
The Euclidean action 292 tyel
1(dx)|? can be chosen as the solutions of the following system of
Eucl_ I ’ |
S _J dr 2<dr +V(x) (A1) first order equations:

is obtained from the corresponding action in Minkowski X1= T XoX3, Xo=TX3X;, X3=EXX. (A20)
space by inverting the potentig(x)— —V(x). In the one . .
dimensional case the solutions of equation If we fix one and the same sign on the RHS of Es20),

then they completely coincide with the characteristic equa-
dx tions (A3) of the Q operator. Furthermore from E¢A4) we
a7 V2V, (A1l2)  see that the zero energy Euclidean solutions admit no trajec-
tories from oneV =0 minimum to another and they have no

corresponds to trajectories with zero Euclidean energy ~ relation to the quantum tunneling phenomena.

1. 3. Q operator and self-dual states
EFuel= 32— V(x) (A13) Q0P
2 The commutator of the Hamiltoniat, of Eq. (4.1) in the

. - . . ._spin-0 sector and the topological chai@e
and the same time satisfies the classical Euclidean equatlong polog 9

of motion g
[Ho,Ql= —i 75 [(P1P2Xs+ P2P3X1+ P3PaX2)
d’> dVv

— gXXoXa( X+ X5+ X3) ] (A21)
Such a type of trajectory plays an important role in the deYanishes only in the subspace of stdtés which satisfy the
scription of quantum mechanical tunneling phenomgid. ~ Euclidean seltantiduality conditions

In the case that the potenti®(x) has at least two local . — Ay - ;

minima, say ak= —a andx= +a, with V=0, the Euclidean PilYy==gxx{ W), 1.,k cyclic, (A22)
zero energy trajectories starting at and ending a cor-  which are the quantum analogues of the Euclid&n0

respond to quantum tunneling into the classically forbiddensonstraints(A20) discussed before. Rewriting the Hamil-
region. The Euclidean action for these classE&'=0 tra-  {gnian H, in Eqg. (4.1 in the form

jectories

1 8m
2 Ho=—= 24 g2x2) = XX )2E a0,
SEuf - f " 3_? _ J T, iy 5 2, PIFOPD= 3 (PEexx0*= 7 Q
- (A23)

determine in the semiclassical limit the WKB amplitude for awe see that the Hamiltoniad, and the topological operator
particle to tunnel fronkx=—a to x=+a Q coincide on the subspace of the Euclidean &atit)dual

L states(A22)
|T(E=O)|=ex;{—gJ' dxy2V(x) |[1+O(%)].

(Al6)

8
H0|W)=I?Q|\If). (A24)

The potential of the unconstrained system considered in th€omparing this discussion with the corresponding original

present article has three valleys. The question is whethesituationH = (1/2) (IT13?+ B??) and Q= — (as/27)[1?B? in

there exist the trajectories corresponding to tunneling beterms of the constrained fieldd? and A?, where Ho=

tween the valleys. To answer the question let us rescale the (87/g?)Q only in the Euclidean selfantjdual casell?

coordinates;—g~ 'x; and write down the Euclidean action =B?, we see that Eq(A22) corresponds to the uncon-

of the model in the form strained analogues of the sé#nt)dual configurations in Eu-
clidean space. The question arises whether there are any self-

Eucl_ _— 22,2 (antjdual stategA22) which are both eigenstates §f and
S 2ng dT% (X4 60)- (A7) 4. The solution
The equations of motion then read W spr=ex FigxgXaXa], (A25)
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of the self{antiduality conditions(A22) in Euclidean space where ¢&,=—2.3381 is the first zero of the Airy function.
is neither eigenfunction dfl; nor of Q From the operator inequalityB1) and the lower boundB2)
for separable solutions di’ we therefore obtain the lower

_8w bound of the energy functional for separable functions
HoWsp=+ oz Q¥ gp=*2V¥gp. (A26) 9y P

The well-known exact non-normalizable zero-energy solu- A V¥sed=5 2 Ecep=4- 596297°. (B3)
tion of the spin-0 Schdinger equatior(4.1)

Finally we remark, as has been pointed out already in Ref.
[21], that an analogous variational calculation fbf shows
that also the ground-state energy of the Hamiltortinin

Eqg. (B1) is lower than the vaIuEsep of Eq. (B2) for the
lowest separable solution.

Vo =Aexd FgxiXoXs], (A27)

which differs from functionalV g up to a factor ofi in the
exponent, actually satisfies the s@dft)duality conditions
in Minkowski space

i g‘l’o 4 ingxk\Ifg . i,k cyclic (A28) APPENDIX C: MATRIX ELEMENTS

' For the evaluation of the energy functional, the calcula-
tion of the value of the “gluon condensate” of the ground
state, as well as the propagator term in the Witten formula
we need the matrix elementsBf, B2, andQ with respect to

the irreducible Fock space stat@s8)—(4.10 built from the

(corresponding tdI?= =iB?), but is not an eigenfunction of
the topological operato®

8 . . .
- ?Q\Ifa = +ig2(XEx5+ X33+ x5x2) W o basic Fock space staté4.7).
== 2iV(x1,x2,x3)\If§ . (A29) 1. Basic matrix elements for Hamiltonian and topological
charge

Finally we point out that the(approximat¢ ground-state
wave function(4.13 obtained in the variational approach is
not self{antdual.

The matrix elements oE? and B? with respect to the
basic Fock space staté$.7) with (w;=w,= wy=32 g%

are given by
APPENDIX B: LOWER BOUND FOR THE SPIN-0 2 113423
HAMILTONIAN H, (W, imyimg ES W inying) =3 c%c Homyr, O, O,
In this appendix we would like to derive a lower bound (CY)
for the spin-0 HamiltoniaH, in Eq. (4.1 along the line of d
Ref. [12]. Using the boundary condition@.9) and (3.10 an
and based on the well-known operator inequality for oscilla-
tor on positive half line 2 V323 +
p <1Pml m, m3|B |‘;|;'nl;n2;n3 =3 c%m ]Hmknky
P (C2
— W + y2X223|y| ,
where
it follows that
H ini=Omn( 2N+ 3/2) = Sy 1y Vn+3/2Yn+ 1
1 1
HOZZ[_A+3\/EQ(X1+X2+X3)]:3EH’- (B1) *+ 8(mr 1ynyN+ 1/24/n. (C3

Since the Hamiltoniatd’ is known[12] to have a discrete For the topological operatd® we have

spectrum, this is true also fdt#,. An important open ques-

tion is at which energy the ground state is. The knowledge of 2ig®s o
the ground-state energy &f in inequality (1) would pro-  (¥mg:m,:m,|QIWn, in,in) = JRTT El myn, Cmin, Cmyn,
vide a lower bound for the ground-state energygf Due to et

the additive structure of the potential term Y one can (€4
make a separable ansatz for the solution of the correspondin h
. ere
eigenvalue problem. The energy of the lowest such separable
H'’ eigenstate satisfying the above boundary conditi@r®
and(??.lO) is e ’ 0t et (=DH™2m+ Dl (2n+ 1
mMT1-4(m-n)®  J2m+1)l(2n+1)!
sep 6|§O|(3g/2)2/3 9. 192492/3 (B2 (CH
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___ m-n 2(—1>m+“<2m+1>!!<2n+1)u (WO =2 + V2 M
mnT1—4(m—n 1 I '
( ) Jem+1)l(2n+1)! - +zmpn (C14)

For the doublets, which exist only for type Il and Il states,
2. The irreducible matrix elements in terms of the basic ones we have

For an2y ogeratoo inv_ariar_u under the permutati_ormsj , (WO LAy = pgmmr_ g mmr (C15
such asE“, B4, the HamiltonianH, and the topological op-
eratorQ, and
(0,010, €1 (VR OIVET) = MO~ (12 MTEs
the matrix elements of the irreducible states — (1129 M nmlr:“im3+ M nmlr:“f]m?:
(TO=10|w ) of type | (4.8), type Il (4.9), and type III Zs 2
(4.10 can then be expressed in terms of the basic matrix — (12 M nmlr:"ﬁmt( 1/2) Mnmlr:"ﬁ%
elements ¥t e
(C19
Mnlnzns <\I"“l'”‘2’ms|O|\P”1’”2’“3> (€8 for the type Ill doublets. Their transition elements are
as follows. For the type |, Il, and Il singlet states we have (PG 1Ot )
(0)+ 0)+y\ mmm
<\Pmmnlo|q’nnn > Mian (C9 Z\/EM nmlrr?zrng—(/\/l nm3rr?1rn2+Mnm2T£nl)/\/§-
(Tl OIW Xy =M+ 2 M0, (C10 (C17)
and For the axial singlets we have
(0)— (0)— y_— MiMoMg | g 0 MiMoMg m;mpmg
<\P§1?1)r:1—2m3| ON’EE)n:nS) =M nmllr:Eir:s-l- M nm;:;ﬁr;?’-l- M nmzlr?;iTs <\Pm1m2m3| O|\Pnln2n3> M NyNpN3 M N3niny Nynzny
4 A MMM g g MiM2ms - nmer ﬁms_ nmlr:n %mg,
nynyng Nanony 213 3721
mqm>m
mymymg (C11) -M n11n3$123' (C18
ningny ’

) N For the axial doublets we have
respectively. The transition elements between the type I, Il,

and IIl singlets are (WQA L OIW D =M nmllr?;ﬁr:a_ (112 M nm3lr?I$1r;3
(PO ) = BMm ™, (C12 — (L2 M= M
(Tl O T )= VM Tt Mgy * (C13 +(1/2)M 2‘31:;31’:% (1129 M :‘11,3,;“3.
and (C19
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