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The aim of this paper is twofold: to probe the statistical mechanical properties of interacting quantum fields,
and to provide a field theoretical justification for a stochastic source term in the Boltzmann equation. We start
with the formulation of quantum field theory in terms of the set of Schwinger-Dyson equations for the
correlation functions, which we describe by a closed-time-path masterPl) effective action. When the
hierarchy is simply truncated to a certain order, one obtains the usual closed system of correlation functions up
to that order, and from theP| effective action, a set of time-reversal invariant equations of maotidnis is the
Dyson equation, the quantum field theoretical parallel of the collisionless Boltzmann equBtiomhen the
effect of the higher order correlation functions is included through a causal factorization coffslitoatnas the
molecular chaos assumption in Boltzmann'’s theaailed slaving, the dynamics of the lower order correla-
tions shows dissipative features, as familiar in the ugdaisipative yet noiseles8oltzmann equation, the
field-theoretical version of which being the dissipative Dyson equations. We show that a fluctuation-dissipation
relation should exist for such effectively open systems, and use this fact to show that a stochastic term, which
explicitly introduces quantum fluctuations in the lower order correlation functions, necessarily accompanies the
dissipative term. This leads to a stochastic Dyson equation, which is the quantum field theoretic parallel of the
classical Boltzmann-Langevin equation, encompassing both the dissipative and stochastic dynamics of corre-
lation functions.

PACS numbd(s): 03.70+k, 05.40—a, 11.10.Wx

[. INTRODUCTION first-principles in quantum field theory, and dealt with its
dissipative or response properties. In this paper we want to
The main result of this paper is a derivation of the sto-focus on the fluctuation or noise aspects in the derivation of
chastic Dyson equation in the form of the Boltzmann-a stochastic Dyson or Langevin-Boltzmann equation from
Langevin equation as the correct description of the kinetiqquantum field theory15-17.
stochastic limit of quantum field theory. We begin with the  The physical motivation for us to claim that the Boltz-
set of Schwinger-Dyson equations in pure quantum fieldnann equation needs a noise term stems from the
theory in parallel to the Bogoliubov-Born-Green-Kirkwood- fluctuation-dissipation theorem. This relation is usually un-
Yvon (BBGKY) hierarchy in kinetic theory, reexamine derstood in the context of open systems where one defines a
briefly how dissipation appears in the Dyson equations simisystem of interest at the outset and denotes what it interacts
lar to that of the Boltzmann equation in field theory, analyzewith and whose details we do not particularly care as the
the effect of higher order correlation functions and theirenvironment, the coarse-graining of which leads to noise,
guantum fluctuations on the lower order ones, and by invokwhich generates dissipative dynamics in the open system.
ing a basic relation in stochastic processes, reason out thehis is captured in the stochastic equations such as the
necessity for a stochastic term in the dissipative Dyson equd-angevin equation. In kinetic theory, the full BBGKY hier-
tion. archy gives complete information of the closed systin
The significance of such an inquiry is twofold: to probe molecules, say It is upon(1) the “truncation” of the hier-
the statistical mechanical properties of interacting quantunarchy and (2) the imposition of causal factorization
fields, and to provide a field theoretical justification for a conditions—the combination of these two procedures we call
stochastic source term in the Boltzmann equation, first fot‘slaving” (the molecular chaos assumption being a familiar
quantum kinetic theory and then for quantum field theory.example—that the equation for the low order correlation
The former, sometimes known as ‘“correlation dynamics” functions(such as the Boltzmann equation for the one par-
[1,2] has been investigated mainly for classical or quantunticle distribution function acquires dissipative behavior. The
mechanical, but not field-theoretical, systetese, however, key conceptual observation in this paper is that while the low
[3,4]) and the latter primarily studied for a classical §a®$]. order correlation functions constitute the “system” of inter-
Extending previous studies to quantum fields is essential iest, which obeys dissipative dynamics, there is always the
the establishment of a quantum field theory of nonequilib-equivalent of an “environment” acting on the system from
rium processes. Previous work on this subj¢zt14] the slaved higher order correlation functions, their fluctua-
showed how the Boltzmann equation can be derived frontions being the source of noise in the kinetic equations. The
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combination of a truncated systeof low order correlation us to expect fluctuations in quantum kinetic field theory as
functiong acted on by a slaved hierarchigf higher order  well.

correlation functiongis an example of what we call an “ef-  The end result of our investigation is a highly nonlinear,
fectively open system”—the key process which renders axplicitly stochastic Dyson equation for the Green functions.
closed system effectively open being in this case “slaving.” By going to the kinetic theory limit, we derive a stochastic
(Note that truncation would only yield two disjoint Boltzmann equation, and the resulting noise may be com-
partitions—each one being a smaller closed system—of thgared with that required by the fluctuation-dissipation rela-
original closed system, i.e., the complete hierarchBhis o, Here we see clearly the contrast between the predictions

stochastic generalization of the Boltzmann equation giveg fie|q theory with and without statistical physics consider-
rise to a Boltzmann-Langevin equation and its field theoret'ations

'C"?" parallel s the stochastu_: Dyson equation. Let us k_Jegln a Before we describe the technical procedures, we wish to
brief exposition of these ideas and procedures with the

: S . point out that statistical connotations of fluctuations in quan-
fluctuation-dissipation relation. ) . ! .
tum field theory is not an entirely foreign concept or con-
struct.

A. Fluctuations and dissipation

. o . . B. Fluctuations in composite operators
It has long been known in statistical physics that the equi- P P

librium state is far from being static, quite the opposite, itis There are a variety of problems in nonequilibrium field
the fluctuations around equilibrium which underlie and givetheory which are most naturally described in terms of the
meaning to such phenomena as Brownian mofib8l and  evolution of composite operators, the familiar lowest order
transport processes, and determine the respofssesh as ones being the particle number and the energy momentum
heat capacity and susceptibility functjoof the system in densities and their fluctuations. The usual approach to these
equilibrium. The condition that equilibrium constantly repro- problems assumes that these operators have small fluctua-
duces itself in the course of all these activities means that thgons around their expectation values, in which case they can
equilibrium state is closely related both to the structure of theye expressed in terms of the Green’s functions of the theory.
fluctuations and to the dynamical processes by which equirowever, when fluctuations are large, typically when corre-
librium sustains itself, these simple but deep relations argations among several particles are important, this approxi-
embodied in the so-called fluctuation-dissipation theoremsy,ation breaks down.

If a fluctuating system is to persist in the neighborhood of a A tamiliar example is critical phenomena: by choosing a

given equilibrium state, then the overall dissipative processeg,iiapie order parameter to describe the different phases, one

in the systen(due mainly to its interaction with the environ- can obtain a wealth of information on the phase diagram of a

men) are determined. Vice Versa, if the d|SS|pa§|ve proces_s.,egystem' But to study the dynamics of a phase transition, es-
are known, then we may describe the properties of equilib:

rium fluctuations without detailed knowledge of the system’specially in the regime where fluctuations get large, the single

microscopic structure. This is the aspect of the quctuation-order parameter must be replaced by a locally defined field

dissipation relations which guided Einstein in his pioneering?P€Ying @ stochastic equation of motion, for example, a time-
analysis of the corpuscular structure of mafted], Nyquist ~dependent Ginzburg-Landau equation with noisehich
in his stochastic theory of electric resistiviig0], and Lan-  though often put in by hand, should in theory be derived
dau and Lifshitz to the theory of hydrodynamical fluctuationsfrom fluctuation-dissipation considerations—ene can iden-
[21]. tify the closed system and show the origin of noisié is
These ideas apply to systems described by an infiniténportant for our discussion to observe that by going, say,
number of degrees of freedom as well as only a few macrofrom the time-independent Landau-Ginzburg equation to the
scopic variables, such as the long wavelength modes in hy-angevin equation one has introduced a new field, since the
drodynamics or a single particle distribution function as insolution to the latter can no longer be understood as the
kinetic theory. In the latter case, the dynamics is describedexpectation value” of the order parameter, nor can it be
by a dissipative Boltzmann equation, which depicts undeidentified as the actual fieldwhich will usually be a
general conditions the approach to equilibrium and, by virtueg-numbey.
of the fluctuation-dissipation relation, one expects the exis- The same phenomenon occurs more generally in effective
tence of nontrivial fluctuations in equilibrium. The stochasticfield theories, where the light fields are randomized by the
properties of the Boltzmann equation has been discussed lhack reaction from the heavy fiel{23], and in semiclassical
Zwanzig, Kac and Logan, and othd22]. theories, where the classical figlthr example, the gravita-
For field theory, in the kinetic theory regime, where theretional field in the early Univergds subject to random driv-
is a clear separation of microscopic and macroscopic scalésg forces from activities in the quantum field, such as par-
the field may be described in terms of quasiparticles, whosécle creation[24]. The object of our present concerns is yet
distribution function obeys a Boltzmann equatiph0,3].  another example: in the stochastic Boltzmann equation
Formally, the one particle distribution function is introduced[5,22] the stochastic distribution function is neither the ex-
as a partial Fourier transform of a suitable Green function opected value of the number of particles in a given phase
the field. The same arguments which lead to a fluctuatingpace cell, nor the actual numhkigrhose dynamics is given
Boltzmann equation in classical and quantum mechanics leday the full, not the truncated, hierarchy
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The influence of noise on the classical dynamics of ahen
guantum system is discussed at length by Gell-Mann and

Hartle [25]; the conversion of quantum fluctuations to clas- Gab:<¢a¢b>:2 1.2
sical noise is discussed by a number of auti@6s-30. This OKabl g '
scheme was also used by us for the study of decoherence of
correlation histories and correlation noise in interacting fieldout also
theories[31-33. 2 .
W : a b gc4d a b c 4d
Kok~ aU# 7 ) — (") 6}
C. Self-contained dynamics for the propagators ab®edik =g 13

In terms of the technical procedures, our goal is to obtain
a self-contained dynamics for the propagators. What thidhis suggests viewing the stochastic ker6éP as a Gauss-
means is that the propagators or correlation functions shoul@n process definedormally) by the relationships
carry in them the effect of their interaction with the higher

correlation functions as embodied in the BBGKY or Dyson- (G)=(4¢"); (GG =(g¢p°¢p°¢%). (1.4
Schwinger hierarchyA similar consideration in purely field oy gse, calling

theoretical rather than statistical mechanical terms is the in-

corporation of radiative corrections which manifest as loop GaP= G+ A?P, (1.9
effects in perturbative renormalization theory. In a later sec- 2w

tion we will make clear the relation between loop order and (Aab>:0, <AabA°d>= T . 18

correlation order in terms of the particle irreducible(Pl)
effective action] Since there isb initio an infinite tower of
higher order correlation functions which interact with the To turn the intuitive ansatz Eq$1.4) and (1.6) into a
propagators of a given order, it is hopeless to accomplish thiggorous formalism we must deal with the obvious fact that
goal, not unlike what Boltzmann confronted with the full we are manipulating complex expressions; in particular, it is
molecular dynamics in terms of the distribution and correla-not clear theAs define a stochastic process at all. However,
tion functions. The key step which makes this possible idor our present purposes it will prove enough to deal with the
slaving—the imposition of molecular chaos assumption forpropagators as if they were real quantities. The reason is that
Boltzmann. The necessary consequence is the appearancews# are primarily concerned with the large occupation num-
dissipative behavior in the dynamics of the correlation func-bers or semiclassical limit, where the propagators do become
tions, and, in view of the dissipation-fluctuation relation ex-real. We will see that this prescription will be sufficient to
plained above, the necessary existence of noise as well. extract unambiguous results from the formal manipulations
To capture these new aspects of the problem, and followbelow.
ing the precedents from Langevin and Boltzmann-Langevin Before getting involved in formal manipulations, notwith-
equations, we shall seek a description of the field in terms o$tanding, let us dwell on one qualitative aspect of the ansatz
a new object, namely, a stochastic correlation func®i  above, namely, that the correlations may be described by a
whose fluctuations reproduce the quantum fluctuations in th&aussian kernel.
binary products of field operatoré®¢®, and whose noise Our assumption of correlations as a Gaussian process may
average gives the usual two point functioB8®=(¢$34P)  be compared with the usual modeling of the action of a large
[we use closed-time-pallt TP) techniques and notation, de- system in equilibrium over some small system as Gaussian
scribed more fully in the Appendij34] ]. white noise. It would not be easy to find an environment
It ought to be clear that, since the composite operatowhose driving action were exactly white; indeed, if we be-
$2¢P is a g-number, a substitute depiction in terms of alieve that no physical system can be excited to arbitrarily
classical stochastic kernel cannot be complete. It is suitablrge frequencies, we may say it is impossible to find such an
for certain types of problems where the mean value behavegvironment. But in actual applications this approximation is
classically while quantum fluctuations can be mimiced bywell within the accuracy of the phenomenological models
statistical distributions (some examples are mentioned (such as the time-dependent Landau-Ginzburg equation con-
above. While the advantage for such a description is evi-taining a white noise as stochastic soyrcehich have
dent, i.e., greater simplicity of the-number formalism, its proven to be quite widely useful.
justification ultimately rests on how much relevant quantum In setting forth to construct the present theory we do have
features it can retain. a concrete set of applications in mind, namely, those where
Consider a theory of a scalar fiefsf (we use a condensed the kinetic limit is relevant. The assumptions which enter
notation where the index a denotes both a space-time poirinto the construction of this theory should therefore be con-
and one or the other branch of the time path—see Appéndixsistent with such limits. This means that we shall obtain,
The CTP action iS= S ¢']— S*[ ¢?]. Introduce the gener- from the short distance behavior of the correlations, a
ating functional distribution functionF, and then we want to study the corre-
lation between the value of in some region of space
with its value in some other region which is far away
in terms of the correlation length of the field itself. In

SKabOKcdl o

Z[Kab] — eiW[Kab] — j D¢aei{3+(l/2)Kab¢a¢b}, (11)
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other words, an expectation value such/Bé$x)F(y)F(z)), Let us first examine some consequences of(E4.0. For
where the separation betwerny andzis large with respect a free field theory, we can compute the 2Pl EA explicitly
to the Compton length of the field, and spacelike, may bedderivation in Sec. ¥
written in terms of averages of quantities such as ) 1
d(X1) d(X2) p(Y1) p(Y2) p(z1) #(22)), where the points abp_ ! e (— 2yab

f(i(yi ,Z;) stay close to(y,z) and rer>nain far away from the FeTl= 2 In[DetC] 2 Cap(~ L+ MIHGT0x,x),
other pairs. (1.1

It is a general consequence of the clustering properties of . .
correlations[4] that the irreducible part of this expectation WNereCa is the CTP metric tensdsee the Appendix We
value will be much weaker than its reducible parts. Retaining™mediately find

only the latter amounts to treatirfgas a Gaussian variable, 8T i
and then the ansatz E(L.4) is optimal in that it guarantees SGa5GE E(G—l)ac(G‘l)db_ (1.12

that the 2-point stochastic averages exactly match the corre-
sponding quantities as computed from quantum field theoryrherefore
These considerations give a physical basis for the Gaussian

ansatz. 2

sr ]t
abp cdy _; — acrdb darbc
- . <A A > | [W} G2*G""+ GG ¢,
D. Stochastic Boltzmann equation (1.13
We can define the proced$® also in terms of a stochas-

tic equation of motion. Consider the Legendre transform o
W, the so-called 2 particle irreducibl@P]) effective action

fan eminently sensible result. Observe that the stochastic
source does not vanish in this case, rather

(BA) (Kabkod) = Gad Gait + GalGpe. (1.14
1 or
F[Gab]zw[Kiacb]_ EK;bGab’ K;b: -2 G- However
(1.7) (G_l)acN_iCac(_D+m2) (1.19
We have the identities does vanish on mass-shell. Therefore, when we take the ki-

netic theory limit, we shall find that for a free theory, there
8T -t are no on-shell fluctuations of the distribution function. For
5GaPsGed (1.8 an interacting theory this is no longer the case.
The physical reason for this different behavior is that the
the first of which is just the truncated Schwinger-Dysonevolution of the distribution function for an interacting
equation for the propagators; we therefore propose the fokheory is dissipative, and therefore basic statistical mechan-

¢r .. SwWo -1
5GP T SKapoKeg 4

lowing equations of motion foG2: ics considerations call for the presence of fluctuati(85.
Indeed it is this kind of consideration which led us to think
or -1 about a Boltzmann-Langevin equation in the first place. This
5Gab — o Kab» (1.9 is fine if one takes a statistical mechanical viewpoint, but one

is used to the idea that quantum field theories are unitary and
where k,, is a stochastic nonlocal Gaussian source definedomplete with no information loss, so how could one see
by dissipation or noise?
In field theory there is a particular derivation of the self
consistent dynamics for Green functions which resolves this
(1.10 puzzle, namely when the Dyson equations are derived from
the variation of a nonlocal action functional, the two-particle
If we linearize Eq.(1.9) aroundG, then the correlation Eq. irreducible effective actioi2PI-EA). This was originally in-
(1.10 for « implies Eq.(1.6) for A. Consistent with our troduced[36] as a convenient way to perform nonperturba-
recipe of handlings as if it were real we should treatalso  tive resummation of several Feynman graphs. When cast in
as if it were a real source. the Schwinger-Keldysh “closed time patH’'CTP) formula-
It is well known that the noiseless E(..9) can be used as tion [34], it guarantees real and causal evolution equations
a basis for the derivation of transport equations in the neafor the Green functions of the theory. It is conceptually clear
equilibrium limit. Indeed, for a\ ¢* type theory, the result- if one begins with a “master” effective actiotMEA) [32]
ing equation is simply the Boltzmann equation for a distri-where all Green functions of the theory appear as arguments,
bution functionf defined from the Wigner transform &2°  and then systematically eliminate all higher-than-two point
(details are given below We shall show in this paper that functions to arrive at the 2PIEA.
the full stochastic equatiofi.9) leads, in the same limit, to a As mentioned earlier, to us the correct approach is to view
Boltzmann-Langevin equation, thus providing the micro-the two point functions as an effectively open system
scopic basis for this equation in a manifestly relativistic[37,18,38, separated from yet interacting with the hierarchy
guantum field theory. of higher correlation functions obeying the set of Schwinger-

2

:
(Kap) =0, (KapKcg)=4i [W
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Dyson equations. The averaged effect of its interaction withintegrals of correlation functiongsometimes called the
an environment of slaved higher irreducible correlationsLandau-Lifshitz FD7 or the relations between the suscepti-
brings about dissipation and the attending fluctuations givility and the space integral of the correlation function. In
rise to the correlation noig®2]. This is the conceptual basis this paper, the fluctuation-dissipation theorem addresses the
of our program. relation between the dissipative coefficients of the effectively
open system and the autocorrelation of random forces acting
E. Organization of this paper on the SyStem, as illustrated below.

In this paper, we shall concentrate on the issue of what
kind of fluctuations may be convincingly derived from the
2PI-CTP-EA for Green functions, and how they compare to The simplest setting40] for the FDT is a homogeneous
the fluctuation-dissipation noise in the kinetic theory limit. system described by variables. The thermodynamics is
Given the complexity of the subject, we shall adopt a line ofencoded in the form of the entrof§(x'). The thermody-
development which favors at least in the beginning ease ofiamic fluxes are the derivatives, and the thermodynamic
understanding over completeness. That is, instead of startirfgrces are the components of the gradient of the entropy
from the master effective action of point functions and
work our way down in a systematic way, we shall begin with aS
the Boltzmann equation for one-particle distributions and Fi:_g' 2.7
work our way up.

In the next section, we present briefly the fluctuation-The gynamics is given by
dissipation theorem in a nonrelativistic context, and use it to
derive the fluctuating Boltzmann equation. The discussion, Xi=— 7,ij|:].+ji. (2.2
kept at the classical level, simply reviews well established
results in the theory of the Boltzmann equation. Section IlIThe first term describes the mean regression of the system
reviews the basic tenets of nonequilibrium quantum fieldtowards a local entropy maximuny)) being the dissipative
theory as it concerns the dynamics of correlations, and theoefficient or function, and the second term describes the
retrieval of the Boltzmann equation therefrom. We refrainrandom microscopic fluctuations induced by its interaction
from using functional methods, so as to keep the discussiowith an environment. Near equilibrium, we also have the

A. Fluctuation-dissipation theorem (FDT)

as intuitive as possible. phenomenological relations for linear response
Section IV discusses how the functional derivation of the _
Schwinger-Dyson hierarchy suggests that these equations Fi=cijx, 2.9

ought to be enlarged to include stochastic terms. By going ) ) )

through the kinetic limit we use these results to establish §'herec;; is a nonsingular matrix. o

comparison with the purely classical results of Sec. II. ~ In a classical theory, the equal time statistics of fluctua-
Our investigation into the physical origin of noise and tions is determined by Einstein’s law

dissipation in the dynamics of correlation functions shows - i

that in the final analysis this is an effective dynamics, ob- <X|(t)FJ(t)>:5li' 2.4

tained from averaging out the higher correlations. This pOimTake a derivative to find

is made most explicit in the approach whereby the 2Pl EA

for the correlations is obtained through truncation of the — _ Al Fiy ok ikl ik

master effective action, this being the formal functional 0=Cid((=Y P+ DA+ (=Y IR+ (29

whose variations generate the full Schwinger-Dyson hierarif the noise is Gaussian,

chy. In Sec. V, we briefly discuss the definition and construc-

tion of the master effective action, the relationship of trun- ok , SXI(t) ok
cation to common approximation schemes, and present (X(V)] (t)>=f dt Gt (J1Hj),
explicitly the calculation leading to the dynamics of the two
point functions at three loops accurd@2,10. and white

In the last section we give a brief discussion of the mean-
ing of our results and possible implications on renormaliza- G'anjk))y=v*s(t’ —1), (2.6)
tion group theory.

then
II. STOCHASTIC BOLTZMANN EQUATION FROM FDT 1
As a primer, we wish to introduce the fluctuation- (K0 )= 5V “. 2.7

dissipation theorentFDT) or relation(FDR) in a rudimen-
tary yet complgte form, and use it to give a.simple. derivat.ionFrom Egs.(2.5 and(2.4) we find the noise-noise autocorre-
of the stochastic Boltzmann equation. In this way its physicalation function »'¥ is related to the symmetrized dissipative

content can stand out clear before we get formal. function y'¥ by
There are many different versiofid9]: It could be taken _ _ _
to mean the formulas relating dissipative coefficients to time VK= K4 K17 (2.9
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which is the FDT in a simple classical formulation. d*p

In the case of a one-dimensional system, the above argu- S"‘(X)=47Tf 2 6(p°%) 8(p*+M?)pH{[1+f(p)]
ment can be simplified even further because there is only one
variablex, and y, c, v are simply constants. In equilibrium, XIn[1+f(p)]—f(p)Inf(p)}, (2.13
we have(x?)=c 1. On the other hand, the late time solution
of the equations of motion reads while the entropy itselSis (minug the integral of the flux

over a Cauchy surface. Now consider a small deviation from
the equilibrium distribution

X(t) = f due Vi),

f="feqt of, (2.14
which implies(x?)= v/2yc. Thusv= 21y, in agreement with feq= % ’ (2.19
Eq. (2.8. efr’_1

B. Boltzmann equation for a classical relativistic gas corresponding to the same particle and energy fluxes
We shall apply the theory above to a dilute gas of relativ- d*p 0 2 2 _

istic classical particle§44]. The system is described by its f (2m)* 0(p7)o(p~+M%p”af(p)=0, (216

one particle distribution functioh(X,k), whereX is a posi-

tion variable, anck is a momentum variable. Momentum is d*p 0 ) ) 0

assumed to lie on a mass sh&fl+ M?=0 [we use the J Wﬁ(p )8(p*+M*)p#p~sf(p)=0. (2.17)

Misner-Thorne-Wheele(MTW) convention, with signature

—+++ for the background metrif45]] and have positive Then the variation in entropy becomes

energyk®>0. In other words, given a spatial elemet¥

=n*d3 and a momentum space elemefik, the number of _ 3 d*p 0

particles with momentunk lying within that phase space 58__27Tf d Xf (2m)* (p)

volume element is

4 X 8(p?+M?)p°
dn=—4mf(X,k) 6(K®) 3(K2+ M2) ke, dS —(3 k)4. [+ TeqPfeq(P)
" (29 218

In the classical theory, the distribution function is concen-

The dynamics of the distribution function is given by the trated on the positive frequency mass shell. Therefore, it is

Boltzmann equation, which we give in a notation adapted taconvenient to label momenta just by its spatial components
our later needs, and for the time being without the soughtg, the temporal component being necessarily,

(8)2.

after stochastic terms =/M?+p%>0. In the same way, it is simplest to regard the
distribution function as a function of the three momentgm
9 alone, according to the rule
ki F(K) =1 col(X,K), (2.10
Xt - f3(X, )= f[X,(w0p,P)], (2.19

\2 3 4ip wheref represents the distribution function as a function on
|C0|:_(27T)3J {H _p,4 0(p°) 8(p>+M?2) four dimensional momentum space, aid its restriction to

4 i=1 (2m) ' ' three dimensional mass shell. With this understood, we shall
henceforth drop the superscript, using the same syinfuol

4

XL(2m)78(pytpz=ps= k]I, (21D ot functions, since only the distribution function on mass

shell enters into our discussion. The variation of the entropy

I={[1+f(pa)I[1+f(k)If(p1)f(p2) now reads
—[1+f 1+f f(pa)f(k)}. (2.1 1 d3
[1+f(pDI[1+ (P 1T (pe)f()}. (212 58:__“34 3 5
2 (27) [1+feq(p)]feq(p)
The entropy flux is given by (2.20

From Einstein’s formula, we conclude that, in equilibrium,
the distribution function is subject to Gaussian fluctuations,
To be concrete, this is the FDT of the second kind in the classiwith equal time mean square value
fication of Ref.[41]. The FDT of the first kind is further discussed

in Ref. [42]. Also observe that we are only concerned with small (8t(t,X,p)5F(1,Y,d))=(2m)38(X—Y) 8(p—q)
deviations from equilibrium; FDT’s valid arbitrarily far from equi-
librium are discussed in Reff43). X[1+feq(p)]feq(p). (2.20)
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One of the goals of this paper is to rederive this result as C. Fluctuations in the Boltzmann equation

the kinetic theory limit of the general fluctuation formula  §pservance of the EDT demands that a stochastic spurce
given for the propagators in the Introduction, E#.6). For o present in the Boltzmann equation, E8.10 [and its

the time being, we only observe that this fluctuation formula;aarized form Eq.(2.24], which should assume the
is quite independent of the processes which sustain eq“”ittangevin form: ’ ’

rium; in particular, it holds equally for a free and an inter-

acting gas, since it contains no coupling constants. of K 1 _
In the interacting case, however, a stochastic source is E+—Vf=—lco|+j(x,k). (2.28
necessary to sustain these fluctuations. Following the discus- @k @k
sion of the FDR above, we compute these sources by writin hen
the dissipative part of the equations of motion in terms of the
thermodynamic forces BIY.D) 1 9l go(X,P) N 1 dlgo(Y,G)
J P)) )= = N = .
) 1 SH(X,P) wp, SF(Y,4)  wq SF(X,p)
F(X,p) (2.22 (2.29

T [ TedPIfedp) 2m7
From Egs.(2.25, (2.26 and (2.27) we find the noise

To obtain an equation of motion fdi(X,p) multiply both  autocorrelation

sides of the Boltzmann equation, E@.10, by 6(k°) 6(k?

+M?2) and integrate ovek® to get (XK (Y, )y =28 (X—=Y)8(k—p) v2(X,K),
(2.30
a_f L U f — i|c0|_ (2.23 where»? is given in Eq.(2.26). Equation(2.30 and (2.26)
gt wy wy are the solution to our problem, that is, they describe the
fluctuations in the Boltzmann equation, required by consis-
Upon variation we get tency with the FDT. Observe that, unlike E.21), the
mean square value of the stochastic force vanishes for a free
asf) k. 1 gas.
T w—kV(5f )= w—k5| col - (2.29 In this discussion, of course, we accepted the Boltzmann

equation as given without tracing its origin. We now want to
see how the noises in E§2.30 originate from a deeper
level, that related to the higher correlation functions, which
we call the correlation noises.

When we write 8l in terms of the thermodynamic
forces, we find local terms proportional E(k) as well as
nonlocal terms wheré- is evaluated elsewhere. We shall
keep only the former, as it is usually done in deriving the

“collision time approximation” to the Boltzmann equation IIl. KINETIC FIELD THEORY, FROM DYSON
[46] (also related to the Krook-Bhatnager-Gross kinetic TO BOLTZMANN
equation; thus we write Our goal in this section is to show how the Boltzmann
. . equation arises as a description of the dynamics of quasipar-
8l coi(K) ~ — 0 (X, K)F(X,K), (2.25 ticles in the kinetic limit of field theory. To this end, we shall
adopt the view that the main element in the description of a
where nonequilibrium quantum field is its Green functions, whose
dynamics is given by the Dyson equations. This connects
X 8 d*p; with the results of our earlier paper on dissipation in Boltz-
v?(X,k)= —(Zw)GJ [H > 2 0(p2) 8(pZ—M?) mann equationgl0]. The task is to find the noise or fluctua-
4oy =1 (2m) tion terms. The need to upgrade the Boltzmann equation to a
X[(2m)48(p1+ pa—pa—K) 1+, (2.26 Langevin form will lead to a similar generalization of Dys-

on’s equations, whose physical origin will be the subject of
the remaining of the paper.
The discussion of propagators is simplest for a free field
_ theory, and so, following our choice of physical clarity over
I =[1+feq(P1)][1+ feq(P2)Ifeq(P3) feq(k)- (2.27)  formal rigor in the exposition, we shall first discuss nonequi-
' librium free fields. The general case follows.

k°=w,, and

Among other things, the linearized form of the Boltzmann
equation provides a quick estimate of the relevant relaxation A. Free fields and propagators

time. Let us assume the high temperature limit, whére Let us focus on the nonequilibrium dynamics of a real

~TI/M, and the integrals in E¢2.26 are restricted to the gcajar quantuniHeisenbergfield ®(x), obeying the Klein-
rangep<M. Then simple dimensional analysis yields the gordon equation

estimater~M/\2T? for the relaxation time appropriate to
long wavelength modes. (O-m?)P(x)=0 (3.1

025012-7



ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D61 025012

and the canonical equal time commutation relations B. Equilibrium structure of propagators

In this subsection, we shall review several important
properties of the equilibrium propagators which follow from
(from here on, we také=1). the Kubo-Martin-SchwingerKMS) condition [Eq. (3.12

We shall assume throughout that the expectation value dielowl [47], and general invariance properties. ,
the field vanishes. Thus the simplest nontrivial description of !N €quilibrium, all propagators must be time-translation
the dynamics will be in terms of the two-point or Green Invariant, and may be Fourier transformed

[D(X,1),D(Y,1)]=—i%S(X—Y) (3.2

functions, namely the expectation values of various products d*k
of two field operators. Of particular relevance is the Jordan G(x,x'):f 4eik(X*X’)G(k)_ (3.11
propagator (2m)

G, X" )=([P(x),D(x")]), (3.3 In particular, because the Jordan propagator is antisymmet-

ric, we must haveG(w,IZ)= —G(—w,IZ). Also, since
which for a free field is independent of the state of the field.G(x,x') =G(x’,x)* = — G(x,x')*,G(k) = G(k)*.

From the Jordan propagator we derive the causal propaga- The positive and negative frequency propagators are fur-

tors, advanced and retarded, ther related by the KMS condition
Gaa(XX) = ZIGOOX) BT 1), G [(t,%),(t",X)]=G_[(t+i8,%),(t",X)], (312
GreX,X")=iG(x,x") O(t—t"). (3.4  wherep is the inverse temperature. With, —G_=G, we
et
These propagators describe the evolution of small perturbag-
tions (they are fundamental solutions to the Klein-Gordon G(k)
equation but contain no information about the state. For that = G- (k) = ——5 =sgr(k®)| 6(k°) + 1| Gk,
purpose we require other propagators, such as the positive 1-e e”m -1 31
and negative frequency ones (3.13
G, (X X)=(DP(X)D(x)), G_(x,x")=(D(x")D(x)). _ G ol o
B . _— (3.19
Observe thatG=G,—G_. The symmetric combination
gives the Hadamard propagator Adding these two equations, we find
G1=G+G_=({P(x),2(x")}). (3.6) 1
G, (k)=2 sgrk® 5+ |Gk, (319
Note that while the Jordan, advanced and retarded propa- 2 efKl—1

gators emphasize the dynamics, and the negative, positive ) ) o
frequency and Hadamard propagators emphasize the statisfilé may consider this formula as the quantum generalization
cal aspects, two other propagators contain both kinds of in@f the FDT, as we shall see below. Let us stress that Egs.

formation. They are the Feynman and Dyson propagators (3-12—(3.19 hold for interacting as well as free fields.
Of course, sincés is an odd homogeneous solutions to

Ge(xX, X" ) =(T[P(x)P(x")]) the Klein-Gordon equation we must have

— 2 2 0
= L Gaxx) + GO sart—t)], (37) Gl)=a(k+ m)sgr(k g k), (310

2 which leads to
Gp(x,x" ) =(T[P(x)D(x")]) . , _f d*k glkx=x") 9(wk,K)
1 , , , X | T (i Wl 2m
—E[Gl(x,x )—G(x,x")sgn(t—t")], (3.9 3.17)
whereT stands for time-ordered product and to
! _ ’ _ 4! 4k . ’
T[P(X)D(X")]=P(X)D(X")O(t—1") GF(XaXI):f (277)4e|k(x—x)
+O(X")D(x)O(t" —1) (3.9
N (—i) 27 8(k%?— w?)
andT for antitemporal ordering K021 wﬁ—ie A1
TP (x)]=D(X )P (x) Ot —t") 9w K)
At x ; (3.18
+O(x)P(x")o(t"'—t). (3.10 27
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with similar formulas forG,4, and Gp, respectively. It is
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We may obtain a dynamical equation for the Feynman

remarkable that all propagators may be split into a vacuunpropagator by noting that, from E¢3.9),
and a thermal contribution, with the thermal part being the

same for all propagators exceBt G,e; andG,q, , Where it
vanishes. Also, we have expressed all propagators in terms
of g; in the language of the Lehmann decomposition, this is

just the density of statdl8].

We shall finish this subsection by expanding our remar

on Eq.(3.15 being the fluctuation dissipation theor¢#].

(—O+mA)T[R )P (X )]=T[(-O+m*)(x)D(x")]
—id(x—x").

kTherefore

Suppose we try to explain the quantum and statistical ﬂUC'(—D+m2)GF(x X')=—id(x—x")— £<T[¢3(x)<1>(x’)]>
' 6

tuations of the field by adding an external soureg(x) to
the right hand side of the Klein-Gordon equati@l). The
resulting field would be

B(x)= f 4%’ Grod(x,X')] (X').

If the process is stationary

d*k . ,
<i(X)j(X')>=J (277)4e'k<x’x’v(k), (3.19
we get
Ga(k)
0= 3G oW
From Egs.(3.195 and(3.17)
v(k)= 1+m [Im G .H(k)], (3.20

(3.23

[cf. Eq.(3.18]. This is the Dyson equation for the propaga-
tor, relating the evolution of the Feynman propagator to
higher order(in this case, four pointcorrelation functions.
As different from an IN-OUT matrix element of the
Smatrix, in this case we have an IN-IN expectation value
taken with respect to a nontrivial state defined at some initial
time.

Equation(3.23 does not yet define a self-contained dy-
namics for the propagators. To achieve this goal, we must
further  “slave” the higher correlation funtion
(T[®3(x)D(x")]), meaning that we must adopt some
scheme that will allow us to express this correlation as a
functional of the propagators themselves. These schemes
may be generally understood as imposing specific boundary
conditions on the Schwinger-Dyson equations for the higher
correlationd 10] which is similar to the role of the molecular
chaos assumption in Boltzmann’s theory. In our case, we
shall substituté T[®3(x)P(x")]) by its perturbative expan-
sion. Because of causality, the perturbative expansion of the

which is a generalized form of the FDT, including both Self energy term cannot be expressed in terms of the IN-IN

guantum and thermal fluctuations.

So far, we have intentionally left everything expressed in
terms of the density of stategk). For a free field, we can

compute this explicitly

g(k)=2m, (3.22)

with which we can fill in the remaining results.

C. Interacting fields and the Dyson equation

Feynman propagator alone. We should rather have
(TIP3 P (X))~ 3Gr(X,X)Ge(x,X")
—in [ a2y Gety x)
—G2(xY)G (y.X')}

[since we use full propagators in the internal lines, two-
particle reduciblg2PR graphs must not be includgdrhus

Let us now consider a weakly interacting field, obeyingto obtain a self-consistent dynamics, we must enlarge the set

the Heisenberg equation

(D—mZ)CID(x)—%CI)?’(x):O (3.22

to include other propagators as well. Of course, we are as-
suming that the initial state is such that Wick’s theorem
holds (for example, that it is Gaussigr-this issue is dis-
cussed in detail if10]. We are also leaving aside issues of
renormalizatior{52].

and the same equal time canonical commutation relations, We overcome this difficulty by adopting as fundamental
Eq. (3.2). As before, we shall assume that the expectatiorobject the closed-time-path ordered propaga@e(x?,y®).
value of the field vanishes identically, and seek to describ&his object is equivalent to four ordinary propagators: if we

the dynamics in terms of the propagators introduced earliemvrite  Gp(x?,y®)=G"(x,y),

then GY(x,y)=Gg(x,y),

In the usual approach to field theory, where one focuse§'(x,y)=G_(x,y), G?(x,y)=G.(x,y) and G?4(x,y)
on computing theS-matrix elements, rather than the causal=Gp(x,y).
evolution of fields, the leading role is played by the Feynman We can obtain closed dynamical equations for these four

propagator, which is directly related to tBematrix through
the Lehmann-Symanzik-ZimmermarthSZ) reduction for-

mulas, and has a simple perturbative expan$#8)50,51.

propagators. Actually there is a slight redundancy, but this
set has the advantage of being very simple to halske
Chouet al. in [34] for detailg. The equations read
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SN2 4
G(x x’)—ic |\/|2(X):m2+E 'k G(X,k) (3.29
’ 6 cd 2) (27)* e :

A
{—D +m?+ 5 Gr(x,%)

Alternatively, we may think of the propagators as func-

4 ac db " — _i~ab !
Xf dyZ*(x,y) Gy x") = —icT(x—x"), tions of x’, leading to an equation of the forifef. Eq.

(3.24 (3.29]
3 ’ 2 A 1oyl ab ’
22(x,y) =[G (x,y)I". (3.29 —07+m 5 Ge(XX') |G(x,x')

The matrixc (¢,;=c''=1,c,,=c??>=—1; all others zerp in2 e W b ,
keeps track of the sign inversions associated with the reverse ~ — Fccdf dyG*(x,y)Z(y,x") = —ic®o(x—x").
temporal ordering of the second branch. This form of the
Dyson equation is relevant to our discussion. (3.30

In the kinetic limit, this yields
D. The kinetic theory limit

In equilibrium the propagators are time-translation invari- K24 ikﬂiﬂ— EDXJF M2(X) | G22(X,k)
ant. Out of equilibrium this is no longer true. In the kinetic 2
theory regime, however, the propagators depend mostly on i\2
the difference variablai=x—x’, with the corresponding — ——CegGX,k)Z (X k)= —ic?P. (3.3))
Fourier transform depending weakly on the center of mass 6
variableX=(1/2)(x+x"). As such, the propagators take the Taking the average and the difference of E(@28 and
form
(3.3D) we get
Gab(X X’): d4k eik(X—X')Gab(X k) (3 26) 1
’ (2m)* - ' k?— Z70x+ M2(X) |G2(X,k)
The X kernel has a similar expression in2
, - Eccd{za%x,k)csdb(x,k)+GaC(x,k)zdb(x,k)}
d'k ,
Eab X,X’ :J’ elk(xfx )Eab X,k ,
*XD= | 23 (XK — _jcab, (3.32
3 4 2
ab dPi b ki GABXK) + o . S 25X, K) GP(X K)
3 (X,k): I];];l (277)46 (lel) IXH ( ) ) 12CCd{ ( ’ ( ’
—G3(X,k)2 (X, k)}=0. (3.33

X

(27)45(2 pi—k (3.27)

We recognize the first equation as a mass shell condition on
the nonequilibrium propagator. The second equation is the

The weak dependence ofiallows for the approximations  jnetic equation proper, describing relaxation towards equi-

(detalls |n[10]) librium.
4 4 To investigate further this equation, we observe that since
Gab(x X):J d’k Gab(x k)wf d’k Gab(X, k) both terms are already of second ordenirisee[10]), it is
' (2m)* ’ (2m)* o enough to solve the mass shell condition to zeroth order.

That is, we assume that the renormalized nM$ss actually
position independent, and write
f d*yS29(x,y) Gy, x")
GP(X,k)=G2P(M? k) + G2 (X,k), (3.34

d*k ,
~ (277)46"((’(7’( I33%(X,k)GP(X,k) where theG3°(M? k) are vacuum propagators for a free
field with massM?, andG,y, is the nonvacuum part
and the equations of motion become Gatb (X, K) =2 8(K2+M2)f (X, k) (3.39
Sta 1 1] ) .

which we assume is the same for all propagators involved, as
in the free field casef(X,k) has the physical interpretation

of a one particle distribution function for quasiparticles built
out of the field excitations. Substituting Eq€3.34 and
(3.35 into (3.33, and assuming, for example, thdt>0 (f

=ik w20 [Gax k)
gXH 47X '

in? .
- ?ccha‘:(X,k)Gdb(X,k) =—ic?, (3.29
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must be even ik, because of the symmetries of the propa- 9 A2
gator$ immediately shows that the dynamicsfaé given by K G2(X,k) + Tchd{Eac(X,k)Gdb(X,k)
the Boltzmann equation®.10), (2.11) and(2.12.
We shall not discuss further the region of validity of the —G¥(X,k) 29X, k)  =Ha3P(X,k), (3.39

hypothesis underlying the kinetic limit, except to observe

that this issue is far from trivial. On general grounds, onewhere

expects that propagators will depend strongly on the differ-

ence variable on scaleg.~M ~1. For smooth initial condi- Hab=
tions, the scale for dependence on the average variable is set

by the relaxation time—~ M/\2T2. A nontrivial kinetic limit S _
exists if 7> ¢ . Already this simple estimate shows that one OUr problem now is to justify changing the truncated Dyson
would expect trouble in theories with strictly massless par-eguation to Eq(3.36, and to expound the physical meaning
ticles, such as gauge or Goldstone bosftd. If particle of th|_s new stochastic equation. To do this we need to use
masses are not specially protected, then at large temperatdtctional methods, to which we now turn.

the physical masM ~ AT, andzc/7~X\ will in general be
suitably small. IV. CORRELATION NOISE AND STOCHASTIC

BOLTZMANN EQUATION

[F—F12(X,k). (3.40

N| =

E. Stochastic Dyson equations Our goal in this section is to show how noise terms such
Our derivation of kinetic theory from the perturbative @s those introduced above from phenomenological consider-

Dyson equations leads to a dissipative equation similar to thations may actually be systematically identified from an ap-
(noiseless Boltzmann equation. But we know that in addi- Propriate effe_c'uve acltlon. In thls sec.tlon we shall I!mlt our-
tion to the usual collision integral an explicitly stochastic Selves to finding a suitable recipe to identify the noise terms,
term ought to be in place. Our earlier considerations of théind to compare the results to the phenomenological discus-
fluctuation-dissipation relations attest that this stochasti§ion above. The physical foundations of the recipe shall be
term has autocorrelation Eq&2.30 and (2.26. Since no discussed in the following section.

manipulation of the deterministic Dyson equatigfrem the

truncated Schwinger-Dyson $etill yield a stochastic term A. Fluctuations in the propagators

!ike this, we posit that Wh_en quantum field theory is viewed \y/e shall now adapt the foregoing discussion to the study
in the statistical mechanical context, they need be suppless flyctuations in the dynamics of the two point functions
mented W'”g a noise term. Suppose we add a stochastic driyghich arises from the truncated Schwinger-Dyson hierar-
ing term F=° to them (we shall justify this in the next sec- ¢ny) The first step is to notice that their dynamics can be
tion) as follows: obtained from the variation of the 2Pl action functiopak

N derive this formula in Sec. V, Eq5.51)]

—O+m?+
sz

Gr(x,X)|G3P(x,x")

ab:_i _1 4y 2\ ~ab
IrGe] 2In[DetG] 5 Cab d*x(— 0O+ m)G2°(x,x)
_EC d4 S ac Gdb ’

g Ced | dYZT(XY)G(y.x")

A
- gCabch d*xG2°(x,x) G**(x,x)

=—ic®s(x—x")—iFa(x,x"),

in?
(3.39 + 4—8cabcocefghf d*xd*x’ G?%(x,x")
A / / /
[—D'+m2+§GF(x',x') G20(x,x") X GPT(x,x")G%9(x,x")GM(x,x"). (4.1)
The resulting equations of motion
i)\z fd4 GaC( )Edb( /) : 1 A
— —Ceq | d¥YG(x,y Y, X -
6 5 Gan 5| Can(— T+ M)+ 5 CapedS(X,X) [ 8(x,X")
=—ic?s(x—x")—iFa(x,x"). (3.37) in2
+ Ecaccbd[GCd(XaX,)]gzo (4-2)

In the kinetic limit, the random forces become
4 are seen to be equivalent to the truncated Dyson equations,
d*k . , 2
Fab(X,X')Zf 4elk(X*X )Fab(x,k) (3.39 Eq. (3.249). . . . .
(2m) As we discussed in the Introduction, we shall incorporate

5 quantum fluctuations in the evolution of the Green function
(and similarly forF). Leaving aside the random fluctuations G° by explicitly adding a stochastic source- {/2)k,;, to
of the mass shell, we find the new kinetic equation the right hand side of Eq4.2), and reinterpreting it as an
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equation for a stochastic correlation functi@®®. Let us abacdh - 52 -1 acdb dambe
write G3°=G?3"+ AP, and expand the 2Pl CTP EA to sec- (APAS) =i ~=apsgea| =G*GT+GTG™,

ond order[the first order term vanishes by virtue of Eq. 4.7
(4.2],

while the classical autocorrelation E@.21) has been found

oI'=6,I", 4.3 by applying Einstein’s formula to the phenomenological en-
tropy Eg. (2.13. The only clear point of contact between
both approaches is that both assume Bose statistics.

52F[Aab]= JHAPCG_fada Introducing the Wigner transform of the fluctuations
d*k . 1
A b Yy — k(x—x") A ab i ’
_ gcabcdf d4XAab(X,X)Aab(X,X) A®(x,x )_f (277_)46I TXIAB(X k), X= 2(X-i—X ),
4.9
in? o .
+ = cabmcefghf d*xd*x’ G?%(x,x") we observe that in this case we are not entitled to assume that
8 the dependence of the Wigner transformois weak. Equa-
X GPf(x,x"YACI(x,x" ) AIN(x,x"). (4.4) tion (4.8) has a formal inverse
From now on, we shall assume that the background tadpole Aab(X,k)=f dudkuaabl x + E,x_ E), 4.9
vanishes, and identify the mass with its renormalized value. 2 2

We now have, as discussed in the Introduction, and from Eq.(4.7) we get

2 -1

(ARPA) =i < —ap = (4.5 (A%(X,p)A(Y,q))= J dudve P VKLX,Y,u,v],
To sustain these fluctuations, the noise autocorrelation musthere
be
%
2 + K[X,Y,u,v]=Ga° X+ o > Y+5 de<x—E Y-3
(KabKca) = (41) SAabgpca 2 A=J y
+G3| X+ 2,Y— )GbC(X—E,YJr 5
That is
) , ) ) The propagators in the right hand side are equilibrium ones,
(Kap(X,X") ked(Y,Y')) =Naped X,X",Y,y") and so we can use the representation BdL1)
Nabed XX .Y.y'), K[X,Y,u,v]
Naped XX Y,y ) =Gy X)Gl(x',y) d*r
abed X XYY da (Y7, X)Bpc X0, Y 2m? 2m)? f dudve'(PUravIKIX,Y,r,s],
+G;c1(xay)Gabl(y,=X,)1 (46)
K[X,Y,r,s]

cd(x x' Y, y Z[Gengh](X X )Cacefcbdgh
X 8(x—y) (X" —y") —ikCapcd
X 8(x=x")o(y—y").

— i [X= Y+ (U2 (u-v)]gis[X- Y= (12 (u-v)]Gac ) Gbd(s)

+ @ [X=Y+(12)(u+v)]gis[X— Y= (1/2)(u+v)]
X G*(r)G %(s).

B. Free fields Now integrate oven, v ands

Let us begin by asking whether for free fields the quantum _
fluctuations Eq(4.5) go into anything like the classical result ~ (A2°(X,p)A°Y(Y,q))= 16f dérel2rtPXx=Y)
Eqg. (2.21) in the kinetic theory limit. There is no obvious

reason why it should be so, since the physical basis for either X[ 8(p+q)G2(r)GPY(r +2p)
formula is at first sight totally different. As we saw in the

Introduction, Eq.(4.5) simply reproduces the full quantum +8(p—q)GU(r)GP%(r +2p)].
fluctuations, computed in terms of the propagators them- (4.10

selves on the assumption that Wick theorem hé¥dsich is
an assumption on the allowed initial states of the field, se&Ve have 16 different quantum autocorrelations to compare
[10)) against a single classical result, so we can only expect real
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agreement in the large occupation number limit, where all (AY(X,p)A%AY,0))|on-shell
propagators converge to the same expression. With this pro-
viso in mind, we can choose any combination of indices to
continue the calculation. The most straightforward chdioe

a certain extent suggested by the structure of the closed-time- o
path; se¢31,37) isa=b=1, c=d=2; we are thus seeking X (1+fog( ) p?+M2]S(X-Y).
the correlations among the fluctuations in the Feynman and

Dyson propagators

1
=2—%(2w)5[5(p+q)+5(p—q)]feq(p)

To finish the comparison, assume, e.g., &0, then
(AM(X,p)AFAY,q))

, 8(p—q) [ p?+M?]=8(q"— wq) 8(G—P) 8 p?+M?]
=16(2m)[o(p+q)+6(p—a)]

=2wq0(q°) (4~ p) 3 p*+ M?]
xf dre!2 P s 24 M2] 8] (1 +2p) 2+ M2] X 5[q?+M?2]. (4.12

XLO(= %)+ Teg(T)IO(— 2= 2p°) + fog(r +2p)]. This result suggests writing

The arguments of the delta functions can be simplified
AY(X,p) =278 (X,p) [ p>+ M?]+ off-shell terms.

(AM(X,p)AZAY,q)) .13
=4(27T)2[5(p+q)+5(p—q)]f d4rei2+P(X=Y)  Taking p® andq® to be positive, this yields

X S[r2+M2]X 8[rp+p2][ 6(—r°) +feq(r)]
X[O(—r°=2p°%) +foq(r+2p)]. (4.12)

(SF(t,X,P)8F(1,Y,G)) = (2m)38(G— ) (X— Y) feq(p)
X (1+foq(P)), (4.14

A difference from the classical case already stands out
here: in the quantum case, a fluctuation in the number oWhich is identical to Eq.(2.21). This is one of the most
particles with momentunp correlates not only with itself, important results of this paper, as it gives a whole new mean-
but also with the corresponding fluctuation in the number ofing to the phenomenological entropy EG.13
antiparticles with momenturs-p. This is unavoidable, given We have thus completed our proof, and obtained new
the symmetries of the propagators in this theory. independent confirmation of the validity of our scheme for

Let us stress that we are trying to push the quasiparticlétroducing stochastic kernels as a way to describe the quan-
(kinetic) description of quantum field dynamics beyond thetum fluctuations in the dynamics of correlations.
calculation of mean value®f such quantities as particle
number or energy densjtyto account for their fluctuations.
The calculation of the fluctuations of the distribution func-
tion for on-shell particles gives a crucial consistency check The results of the previous section already imply that the
on such an attempt. Indeed, we know that each on-shefull stochastic Dyson equation will go over to the
mode of the free field contributes an amo{xft Eqgs.(3.15, Boltzmann-Langevin equation in the kinetic limit. Indeed,
(3.16 and(3.21)] px~ wy(1/2+f,) to the mean energy den- the structure of the fluctuations does not change drastically
sity, wheref,, is the equilibrium distribution function Eq. when interactions are switch on, and since they become iden-
(2.15. The fluctuations of this quantity at equilibrium will be tical in the classical limit, the noise in the Dyson equation
given by(épﬁ)sz(o?pk/aT)~w§feq(1+feq). So, if these necessary to sustain the fluctuations at the quantum level
fluctuations are still described by a distribution function con-must go over to the noise in the Boltzmann equation, which
sistent with ordinary statistical mechanics, then this distribuplays the same role in the classical theory. Nevertheless, it is
tion function must fluctuate like in Ed2.21). (This may in ~ worth identifying exactly which part of the quantum source
the face of it be a rather bii.) autocorrelation goes into the classical one in the correspon-

For large M2, the condition thatp is nearly on-shell ~dence limit.
means that the spatial components are much smaller than the Concretely, our aim is to begin with the stochagfer-

C. Interacting fields and the Boltzmann-Langevin equation

time component, and we may approximate turbative Dyson equation
1 _—iG’l—l c (—D+m2)+£c £, x) [8(x,x")
5[I’2+M2]5[rp+p2]~5[p2+|\/|2]W5(ro+po), 2 ab 2 ab 2 abc ) )
+ I)\Z GCd 13— 1 4.1
thus Obtaining Ecaccbd[ (X,X )] _TKabi ( . 3
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where the noise autocorrelation is given by KE4.6). We Let us observe from the outset that the classical result
then identify the forces appearing in E¢8.36) and(3.37) involves the expression? [Eq. (2.26)], which, throughl .
[Eq.(2.27)], is related to the Fourier transform of the cube of
Fab(x,x’)=if d4y @k 4(X,¥)GP(y,x"), a propagator. In Eq4.6), the first termN contains the in-
verse propagators, which in turn is related to the cube of
(4.16 propagators through the Dyson equatidds?). The other
T:ab(x,x’)=if d*y G2%(X,y) keq(y, X )P, term N contains no such thing. Thus it is clear that our
only chance lies in the first term, the other one contributing
to sustaining the nonclassical correlations already present in
the free field case. Correspondingly, we shall ignef# in
ab 1 = ab | ac db  ~ac db what follows.
H®= S [F = F]P=5{c*kcdG™~ G Keac ™} We thus approximate

(4.17)

whose Wigner transform plays the role of random force in (Kabked)=GCaiGpd+ G lG,L, (4.19
the kinetic equatior{3.39. Restricting ourselves to on-shell amhe mae

fluctuations, we can compute the autocorrelation of this force

and compare the result to the classical expectation quading to

(2.30.

In condensed notation,

-1

(HaPHCd) = e [c2°G™— G2%c™][c*9G" I~ G UG Gry + G Gir' ]
1

= Z[ 9GP+ G eI 5G M+ 51, - 671G, 11— 9G]

— E[Gadeflbc_i_ GfladGbc_ deeflac_ GflbdGac_i_ Z(Caccbd_ CadCbC)]
2 .

For the same reasons as above, we shall disregard the propagator-independent terms.
Next, we write[recalling Eq.(3.29]

4
Hab(X X,):f dk eik(xfx’)Hab(X k)
1 (277)4 ) i

(4.19
’ u u
Hab(X,k)zf d*uekuHaP x+—,x——)
2" 2
to get
1 .
(Hab(X,p)HCd(Y,q))=Zf dtudive i(PUTaI[J— K], (4.20

where, using the translation invariance of the equilibrium propagators,

d4r d’ _ . utv
JZJWWGX ir exgis|{ X=Y— ——

2
dr d% F{ ( u—v) F{
K= | ——F —=—expir| X—=Y———| |exgis

(2m)* (2m)* 2
Upon integration oveu andv, theK term gives a contri- the positive and negative frequency components of the
bution proportional tos)(p+q). This is unrelated to the source, and we shall not analyze it further. We also restrict
noise autocorrelation, being only a cross correlation betweeaurselves to the case whese=b=1, c=d=2. Using the

ut+v
X—Y+ ——

5 X{G*(r)G () + G~ HYr)GPYs)},

u—v
X—Y+ ——

5| | X{G (NG 1%s)+ G~ G*(s)}.
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reflection symmetry of the equilibrium propagators, obtain-relations. As a simple consequence and illustration, we
ing the inverse propagators from Eg.2) and retaining only  derive Eq.(4.1).
the dominant term in the correspondence limit, we find

A2 A. The low order effective actions
<H11(Xyp)H22(Y,Q)>~T5(P—Q)f d*sco§2(s+p) The simplest application of functional methods in quan-
tum field theory concerns the dynamics of the expectation
X (X=Y)]2(s+2p)G¥s). value of the field53]. The expectation value or mean field

(4.21) may be deduced from the generating functiongll |

An analysis of this expression shows that in the high tem- exp{iW[J]}zf D® exp{iS[(I)]Jrif d4xJ(x)<I>(x)],
perature limit the correlation length is of order 1. This is

a microscopic scale, much smaller than the macroscales of (5.1)
relevance to the kinetic limitif this limit exists). Therefore
we are justified in writing oW
P =753 (5.2
(HHOXp)HZA(Y,q)) ~ y8(X=Y), (4.22 =0
We computey by simply integrating Eq(4.21) over X We obtain the dynamics from the effective action, which is
, the Legendre transform &/
A
y=132mM 2 p)GH(p)dp-q). (423
F[¢]=W[J]—j d*xJ(x) (). (5.3
From Egs.(3.27) and(2.26 we get
y=wp(277)25(p—q)5(p2+ M2) 2. (4.24) The physical equation of motion is
Assumingp®,q°=0, this is or
94 5—¢:0. (5.9

y=20w5(2m)28(p—G) 8(g°+M?) 8(p?+M?) 2.

(4.29 In a causal theory, we must adopt Schwinger's CTP for-
So, writing malism. The poink may therefore lie on either branch of the
closed time path, or equivalently we may have two back-
H(X,k)zzﬂ-wké‘(kz-FMz)j(x,lz)+0ff_she||, (4.26) ground fields¢?(x) = ¢(x?). The classical action is defined
as
we get the final result

(I(X,P)i(Y,d))=28(p—0G)8(X-Y)r?,  (4.27)

which agrees with the classical result, £g8.30).

We have shown that there is a piece of the full quantu
noise which can be identified with the classical source
Clearly j does not account for the full quantum noise, the 4 Ao 4or 11 1 2 >
difference being due among other things to the role of nega- f d™XJ 0P (X)_f AXITCO P00 = I ) PHX)]
tive frequency in the quantum theory.

Finally, we note that Abet al.[15] have given a nonrel- and obtain two equations of motion
ativistic derivation of the Boltzmann-Langevin equation,
while ours is fully relativistic, being also immune to the res- ST
ervations expressed by Greiner and Leuddd]. ——=0. (5.6

S %] = P - FO?]*, (5.9

which automatically accounts for all sign reversals. We also
niave two sources

V. MASTER EFFECTIVE ACTION . . .
However, these equations always admit a solution where

So far in the paper we have referred several times to thed'= ¢?= ¢ is the physical mean field, and after this identi-
possibility of conceiving the low order correlations of a fication, they become a real and causal equation of motion
quantum field as the field variables of an open quantum syder ¢.
tem, interacting with the environment provided by the higher The functional methods we have used so far to derive the
correlations. The goal of this final section is to present adynamics of the mean field may be adapted to investigate
formalism, the master effective action, built on this perspecimore general operators. In order to find the equations of
tive. In particular, in this formalism the usual Dyson equa-motion for two-point functions, for example, we add a non-
tions are seen to emerge from the averaging over higher cotecal sourceK ,,(x,x") [36,10
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whereJ;,;[ @] contains the higher order sources
exp{iW[Ja,Kab]}zf anaexpi[S[q>a]+f d*xJ, 2
o1
1 I 1= 2 5 3,®" (5.19
+§f d4xd4x’Kab(I)a<Db]. (5.7) n=s
and define the generating functional
It follows that

Z[{Jn}]:eiw[{‘]n}]zf Dde' S 1n] (5.15

W 1[cl)é‘(X) $°(x') +G¥(x,x")]
SKap(X,xX") 2 ' '
where
Therefore the Legendre transform, the so-called 2PI effective 1
action, SLP (I 1= 01+ 5(So+ o) PP+ S D]+ I D).
A
F[(z)avGab]:W[JayKab]_f d4XJa¢a (510
We shall also call
1
-5 f d'xd'x'Kap[ 476"+ G™] (5.9 S @]+ Jin P]=S;. (5.19

As it is well known, the Taylor expansion & with re-
spect toJ, generates the expectation values of path-ordered
ST ST 1 products of fields

Y —Ja—Kapd® SGm= 5K (5.9

generates the equations of motion

4
5J1a1(X1) re 5\] 1an(Xn

o T = (PO (x0).. &% (xy)})
The goal of this section is to show these two examples as
just successive truncations of a single object, the master ef-

_ral.a"
fective action. =F) % (X1,..Xn), (5.18

_ while the Taylor expansion AV generates the “connected”
B. Formal construction Green functiong*linked cluster theorem’[4])

In this section, we shall proceed with the formal construc- W
tion of the master effective action, a functional of the whole
string of Green functions of a field theory whose variation 9J1a1(X1)...6J1an(X,
generates the Dyson-Schwinger hierarchy. Since we are us-

) = (P{D?(xy)...D" (Xp) ) connected

1 n
ing Schwinger-Keldish techniques, all fields are to be defined =CT % (Xq,...Xp). (5.19
on a closed time path. Also we adopt Dewitt's CondensedComparing these last two equations, we find the rule con-

notation[54].

We consider then a scalar field theory whose action necting theF’s with the C's. First, we must decompose the

ordered index seti(,...i,) [ix=(xc,a")] into all possible

1 ) clustersP,. A cluster is a partition of i;,...i;) into Np_
S®]= 552(1) +Sin[ P] (510 ordered subsets=(j;,...j;). Then
decomposes into a free part and an interaction part Finl...inzz H Cil...jr. (5.20
Phn o p
o0 1 )
Snt[q)]:nzg 7 S (5.1)  Now from the obvious identity

6z 1 8"z

Here and after, we use the shorthand = (5.21)
5‘]ni1...in n! 5Jil'”5‘]in
Kn‘DnEJ d%q ... Kpat_an(Xq,.. Xp) we obtain the chain of equations
1 n
XD (xg)... D (Xy), (5.12 W _L1s g (5.22
L .

_ , Odniy.i, NEFD T
where the kerneK is assumed to be totally symmetric.
Let us define also the “source action” We can invert these equations to express the sources as
1 functionals of the connected Green functions, and define the
_ il 24 3. . master effective actlo(MEA) as the_ full Legendre transform
IPI= 1@+ 5 Jo®%H Jin P, 13 Gt the connected generating functional
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1 . .
(m—n)! iy i gy @ LI,

(5.32
The physical case corresponds to the absence of external ] .
sources, whereby Now, from the properties of the Legendre transformation, we

have, forn>2,

1
PHCH=WLIH -2 7302 fp[ Cr. (523 Xniy..i, = 2

m=n

STL{CH_

5.2 oW 12
6Cq (529 —_— = ) (5.33
8Jn 310, 8Jn 4.6
This hierarchy of equations is equivalent to the Dyson-
Schwinger series. Computing this second derivative explicitly, we conclude

that
C. The background field method

_ o SW 1 1 L Oxm OW,
The master effective action just introduced becomes more R =—¢"+ ﬁ&b” 2+ > 5. Sv_

manageable if one applies the background field method ““nlJ, .9, n: (n=2)! m=3 OJn OXm

(BFM) [53] approach. We first distinguish the mean field and (5.39

the two point functions

Comparing this equation with

SW 1 _—
o —_ = clrdr) 5.3
cli=al, (5.26 0Jni, i Nl ;n l—p[ ' (539

=, (5.25

We then perform the Legendre transform in two steps: firstve obtain the identity
with respect tog and G only, and then with respect to the

rest of the Green functions. The fikgtartia) Legendre trans- W, 1S f1od
form yields m=m;n l_p[ clir (5.36
I.[¢.G{CH=T¢,G.{I.}]- > iJ STl c where the asterisk above the sum means that clusters con-
e AT e g A T taining one element subsets are deleted. This and
(5.27 L L s3]
i int
Herel, is the two particle-irreduciblé2P]) effective action nés m‘]n;n 1;[ Cr=Jinl #]+ EG”W

[36]

. 1<
[ 6.6 {IH= S 8]+ 5 GS 5 In Det G+ 3 4] & o Il e 63

1 allow us to write

+ =GR W 5.2
2 int,jk 2 ( 8) ’ 5S[¢] i

! —In Det G

G SHSp 2

1
Fm[¢,G,{Cr}]ES[¢]+(§
and W, is the sum of all 2Pl vacuum bubbles of a theory
whose action is
+

1 *
. Wal e {xnl]= 2 frxn 11 G
| n= ! N
S'[¢]l=5G ¢*+Sglel, (5.29 (5.38

1 o This entails an enormous simplification, since it implies
Solel=Sl[¢+el-Sl[o]-Sl[o]ie' — §S|[CD]’ij(p'(p], that to computd’.. it is enough to consideW, as a func-
(5.30 tional of the y,,, without ever having to decompose these
' background dependent sources in terms of the original exter-

where ¢ is the fluctuation field around, i.e., = ¢+ . nal sources.

DecomposingS, into source-free and source-dependent

parts, and Taylor expanding with respecttave may define D. Truncation and slaving: Loop expansion
the background-field dependent coupling and sources where and correlation order
After obtaining the formal expression fbr, , and thereby
1 ' j the formal hierarchy of Dyson-Schwinger equations, we
Tniy i, = 20 =7 Smiy i g @I, o Y : ger equatons,
1in @=h (m—n)! THdndneadm should proceed with it much as with the BBGKY hierarchy

(5.32 in statistical mechanicp46], namely, truncate it and close
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the lower-order equations by constraining the high order corsources in terms of the lower order Green functions, again
relation functions to be givettime-oriented functionals of  we find a set of constraints on the Green functions, rather
the lower correlations. Truncation proceeds by discarding théhan new equations defining the relationship of sources to
higher correlation functions and replacing them by givenfunctions. These new constraints take the form

functionals of the lower ones, which represent the dynamics

in some approximate seng2|. The system which results is * -
an open system and the dynamics becomes an effective dy- ; l_p[ ClH 7 =1,(G,Cs,...Ci11) (5.44
namics. n

It follows from the above that truncations will be gener- for I+2=n=2l. In other words, to a given orddrin the

ally related to approximation schemes. In field theory we op expansion, onlys, G andC,, 3<r=I+1, enter into

have several such schemes available, such as the loop exp ' : . .
» as independent variables. Higher correlations are ex-

sion, largeN expansions, expansions in coupling constants : ; .
9 b P piing fressed as functionals of these by virtue of the constraints

etc. For definiteness, we shall study the case of the loo  lied by the 10ob expansion on the functional deoendence
expansion, although similar considerations will apply to an P y P €Xp P
of W, on the sources.

of the other schemes.

Taking then the concrete example of the loop expansionfheT;c\greevzr(’) ;Z?Sdeef'(r:](;n:tr:a;rrli a:; t.l?]:gel%l_hgl%ezr:‘rﬁbsags
we observe that the nonlocglsources enter intdV, in as : W IMe. Y !

many nonlinear couplings of the fluctuation fied Now, this lower order functions is unitary. Irreversibility appears

W, is given by a sum of connected vacuum bubbles, and an&n;yh\:vmeer: ggfrerlr:tlilf)?]ss astl'gf _;)s”?rr:(tae‘c‘jwae?gﬁi:\n tg?ggrrrr;:.f
such graph satisfies the constraints 9 ’ 9

tions” principle invoked in the truncation of the BBGKY
hierarchy[2]. This is done by substituting some of the al-
> nV,=2i, (5.39  lowed correlation functions at a given number of lobpby
solutions of thel-loop equations of motion. Observe that
even if we use exact solutions, the end result is an irrevers-
i—z V,=1-1, (5.40 ible theory, because the equations themselves are only an

approximation to the true Dyson-Schwinger hierarchy.

wherei,l,V, are the number of internal lines, loops, and 10 Summarize, the truncation of the MEA in a loop ex-

vertices withn lines, respectively. Therefore, pansion scheme proceeds in two stages. First, for a given
accuracyl, anl-loop effective action is obtained which de-

n—2 pends only on the lowedt+1 correlation functions, say,
=1+, — Va (5.4)  {4,G,Cs,...Ci14}. This truncated effective action generates
the I-loop equations of motion for these correlation func-
we conclude thay, only enters the loop expansiondf, at  tions. In the second stage, these equations of motion are
ordern/2. At any given ordell, we are effectively setting Solved (with causal boundary conditionsor some of the
xn=0, n>2l. SinceW, is a function of onlyyz to x5, it correlation functions, sayCy,...C;.1}, and the result is
follows that theC,’s cannot be all independent. Indeed, the Substituted into the loop effective action.(We say that

equations relating sources to Green functions {Ck....Ci+1} have been slaved t$,G,Cj3,...C¢_4}.) The
resulting truncated effective action is generally complex and

W, 12 i the mean field equations of motion it generates will come out
S n_'; II ¢ (542 to be dissipative, which indicates that the effective dynamics
Ma-dp 7 P P is stochastic.

have now turned, fon>2l, into the algebraic constraints
E. Example: The three-loop 2Pl EA

*
E H cliir—q. (5.43 We shall conclude this paper by_explicitly cqmputing the
Pn b 2P CTP EA for ax ¢* self-interacting scalar field theory,
out of the corresponding MEA. We carry out our analysis at
In other words, the constraints which make it possible tothree loops order, this being the lowest order at which the
invert the transformation from sources to Green functionsiynamics of the correlations is nontrivial, in the absence of a
allow us to write the higher Green functions in terms of symmetry breaking background figldQ].
lower ones. In this way, we see that the loop expansion is by To this accuracy, we have room for four nonlocal sources
itself a truncation in the sense above and hence any finitbesides the mean field and the two point correlations, namely
loop or perturbation theory is intrinsically an effective y,, x4, x5, andygs. However, the last two enter linearly in
theory. the generating functional. Thus the three-loop effective ac-
Actually, the number of independent Green functions at aion only depends nontrivially on the mean field and the two,
given number of loops is even smaller thah 2t follows  three and four point correlations. By symmetry, there must
from the above tha¥W, must be linear ony, for |+2<n be a solution where the mean field and the three point func-
=<2I. Therefore the corresponding derivatives W, are tion remain identically zero, which we shall assume.
given functionals of they,,, m=<I+1. Writing the lower Our first step is to compute E¢6.38, which now reads
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-1
I',G,C4l= ( )c”( D+M2)G”——In Det G

1
+Wol & {xnt] = 57 Xaijia
X[Ci‘{'kl+GiijI+Giijl+Gi|Gik],

(5.45

PHYSICAL REVIEW [B1 025012

which is seen to be equivalent to E@.1). This effective
action leads to a dissipative and, as we have seen, also sto-
chastic dynamics, which results from the slaving of the four
point functions.

VI. DISCUSSIONS

In this paper we have introduced a new object, the sto-
chastic correlation functio®, whose expectation value re-

whereW, denotes the sum of 2P vacuum bubbles of a quanProduces the usual propagaté@reen functions but whose
tum field theory with quartic self interaction and a coupling fluctuations are designed to account for the quantum fluctua-

constanf — y, [see Egs(5.28 and(5.30] up to three loops

__1 L.
W,= ?)()‘_){4%]“6”@“"’ 28 (M= Xxa)ijki

X (N = X4)pqrGPGIIGH G (5.46)
Equation(5.36) yields
CY = —1(N = X4) pqrsGPGIIGHG'S. (5.47)

Inverting and substituting back in E¢.45, we obtain

-1
I'G,C4]= ( )c,J( D+M2)G”——In Det G

1 ij ~kl 1 ijkl
~\g Nij GG = >4 Nij C4

i
+(48) |]kI[G lGIZrlelgl]ngrS'

(5.48

tions in the binary product ofoperatoy fields. We have in-
troduced the dynamical equation fGrwhich takes the form

of an explicitly stochastic Dyson equation, and showed that
in the kinetic limit, both the fluctuations i@ become the
classical fluctuations in the one particle distribution function,
and the dynamic equation fd&'s Wigner transform be-
comes the Boltzmann-Langevin equation. Each of these re-
sults has interest of its owrA priori, there is no simple
reason why the fluctuations derived from quantum field
theory should have a physical meaning corresponding to a
phenomenological entropy flux and Einstein’s relation.

The notion that Green functioriand indeed, higher cor-
relations as wellmay or even ought to be seen as possessing
fluctuating characteréwhen placed in the larger context of
the whole hierarchywith clearly discernable physical mean-
ings is likely to have an impact on the way we perceive the
statistical properties of field theory. For example, we are
used to fixing the ambiguities of renormalization theory by
demanding certain Green functions to take on given values
under certain condition&conditions which should resemble
the physical situation of interest as much as possible, as dis-
cussed by O’Connor and Stephda§]). If the Green func-
tions themselves are to be regarded as fluctuating, then the
same ought to hold for the renormalized coupling constants

This functional generates the self-consistent, time reversalefined from them, and for the renormalization grd®®)
invariant dynamics of the two and four particle Green funC-equationS describing their scale dependence.

tions to three loop accuracy. To reduce it further to the dy-

While the application of renormalization group methods

namics of the two point functions alone, we must slave theo stochastic equations is presented in well-known mono-
four point functions. Consider the three loops equation ofyraphg56], our proposal here goes beyond these results in at

motion for C,

[Gip'Gjq Gr Gis 1CE"*= —ikj - (5.49

least two ways. First, in our approach the noise is not put in
by hand or brought in from outside.g., the environment of
an open systejnas in the usual Langevin equation approach,
but it follows from the(quantum dynamics of the system

Solving for this equation with causal boundary conditionsitself. Actually, the possibility of learning about the system

yields

G = —iN 1 GPGIIGKG!S (5.50

pqrs

(in other words,y,=
we obtain

0) and substituting back in E@5.48

I[G]= (_1)%( D+M2)G”—§In DetG

L)\ GlIGH T
B § ijkl 4_8

Niji G'PGIIGK G\ ygs,

(5.5))

from the noise propertieswhether it is white or colored,
additive or multiplicative, et¢—unraveling the noise, or
treating noise creatively—is a subtext in our program. Sec-
ond, our result suggests that stochasticity may, or should, not
only appear at the level of equations of motion, but also the
level of the RG equations, as they describe the running of
“constants” which are themselves fluctuating.

Indeed, the possibility of a nondeterministic renormaliza-
tion group flow is even clearer if we think of the RG as
encoding the process of eliminating irrelevant degrees of
freedom from our description of a systdsi7]. These elimi-
nation processes lead as a rule to dissipation and noise, the
noise and dissipation in the influence action and the CTP-
effective action are but a particular case. If the need for such
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an enlarged RG has not been felt so far, the groundbreakingrdering andr for anti time ordering, may be thought of as a
work on the dynamical RG by Ma, Mazenko, Hohenberg,path ordered expectation value on a closed time path ranging

Halperin, and many significant others notwithstanding, it iSfrom t= —c to « and back. These path ordered products are
probably due to the fact that the bulk of RG research hagenerated by path integrals of the form

been focused on equilibrium, stationary properties rather
than far-from-equilibrium dynamid$8]. An attempt to con-

structing a RG theory for nonequilibrium processes from i o , . )
these considerations is currently under Wag]. J D¢ DT (X1)...(Xn) P (Xn11). - ]
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pressed by David Huse and exchanges with Michael Fisher |, general we shall use a latin indexb,.... taking values
and Jean Zinn-Justin during the meeting on noise in nonequir o 5 t denote the CTP branches. Where the space time
librium renormalization group theory. position is not specified, it must be assumed that it has been
subsummed within the CTP upper index. Also we shall refer
APPENDIX: CLOSED TIME PATH CONVENTIONS to the expressiors(¢?)=S(¢1)—S*(¢?) as the CTP ac-

The closed time pathiCTP) or Schwinger-Keldysh tech- tion._V_Ve_always_ use the Einstein_ sum convention, and if not
nique[34] is a bookeeping device to generate diagrammati(,eXp“C't’ integration over space time must be understood as
expansions for true expectation valu@s opposed to IN- weII.. ) ) )

OUT matrix elementsof certain quantum operators. The I iS convenient to introduce a CTP metric tensny,
basic idea is that any expectation value of the form =diag(1-1) to keep track of sign inversions. Thus
Capd?pP=31p1—J?¢2. In general, we write an expression
(N[FL(X0) . b ITL S Xz 1)- - bim][IN), (A1) like this asJa¢?, whereJ,=c,,J% the indexa has been
lowered by means of the metric tensor. The opposite opera-
where |IN) is a suitable initial quantum statg; to x,, are  tion of raising an index is accomplished with the inverse
space time points¢ is the field operatorT stands for time  metric tensorc®= (¢~ !)2P=diag(1-1). ThusJ®=c3%J,.
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