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Stochastic dynamics of correlations in quantum field theory:
From the Schwinger-Dyson to Boltzmann-Langevin equation
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The aim of this paper is twofold: to probe the statistical mechanical properties of interacting quantum fields,
and to provide a field theoretical justification for a stochastic source term in the Boltzmann equation. We start
with the formulation of quantum field theory in terms of the set of Schwinger-Dyson equations for the
correlation functions, which we describe by a closed-time-path master (n5`PI) effective action. When the
hierarchy is simply truncated to a certain order, one obtains the usual closed system of correlation functions up
to that order, and from thenPI effective action, a set of time-reversal invariant equations of motion.~This is the
Dyson equation, the quantum field theoretical parallel of the collisionless Boltzmann equation.! But when the
effect of the higher order correlation functions is included through a causal factorization condition~such as the
molecular chaos assumption in Boltzmann’s theory! called slaving, the dynamics of the lower order correla-
tions shows dissipative features, as familiar in the usual~dissipative yet noiseless! Boltzmann equation, the
field-theoretical version of which being the dissipative Dyson equations. We show that a fluctuation-dissipation
relation should exist for such effectively open systems, and use this fact to show that a stochastic term, which
explicitly introduces quantum fluctuations in the lower order correlation functions, necessarily accompanies the
dissipative term. This leads to a stochastic Dyson equation, which is the quantum field theoretic parallel of the
classical Boltzmann-Langevin equation, encompassing both the dissipative and stochastic dynamics of corre-
lation functions.

PACS number~s!: 03.70.1k, 05.40.2a, 11.10.Wx
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I. INTRODUCTION

The main result of this paper is a derivation of the s
chastic Dyson equation in the form of the Boltzman
Langevin equation as the correct description of the kine
stochastic limit of quantum field theory. We begin with th
set of Schwinger-Dyson equations in pure quantum fi
theory in parallel to the Bogoliubov-Born-Green-Kirkwoo
Yvon ~BBGKY! hierarchy in kinetic theory, reexamin
briefly how dissipation appears in the Dyson equations si
lar to that of the Boltzmann equation in field theory, analy
the effect of higher order correlation functions and th
quantum fluctuations on the lower order ones, and by inv
ing a basic relation in stochastic processes, reason ou
necessity for a stochastic term in the dissipative Dyson eq
tion.

The significance of such an inquiry is twofold: to prob
the statistical mechanical properties of interacting quan
fields, and to provide a field theoretical justification for
stochastic source term in the Boltzmann equation, first
quantum kinetic theory and then for quantum field theo
The former, sometimes known as ‘‘correlation dynamic
@1,2# has been investigated mainly for classical or quant
mechanical, but not field-theoretical, systems~see, however,
@3,4#! and the latter primarily studied for a classical gas@5,6#.
Extending previous studies to quantum fields is essentia
the establishment of a quantum field theory of nonequi
rium processes. Previous work on this subject@7–14#
showed how the Boltzmann equation can be derived fr
0556-2821/99/61~2!/025012~22!/$15.00 61 0250
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first-principles in quantum field theory, and dealt with i
dissipative or response properties. In this paper we wan
focus on the fluctuation or noise aspects in the derivation
a stochastic Dyson or Langevin-Boltzmann equation fr
quantum field theory@15–17#.

The physical motivation for us to claim that the Bolt
mann equation needs a noise term stems from
fluctuation-dissipation theorem. This relation is usually u
derstood in the context of open systems where one defin
system of interest at the outset and denotes what it inter
with and whose details we do not particularly care as
environment, the coarse-graining of which leads to no
which generates dissipative dynamics in the open syst
This is captured in the stochastic equations such as
Langevin equation. In kinetic theory, the full BBGKY hier
archy gives complete information of the closed system~of
molecules, say!. It is upon~1! the ‘‘truncation’’ of the hier-
archy and ~2! the imposition of causal factorizatio
conditions—the combination of these two procedures we
‘‘slaving’’ ~the molecular chaos assumption being a famil
example!—that the equation for the low order correlatio
functions~such as the Boltzmann equation for the one p
ticle distribution function! acquires dissipative behavior. Th
key conceptual observation in this paper is that while the l
order correlation functions constitute the ‘‘system’’ of inte
est, which obeys dissipative dynamics, there is always
equivalent of an ‘‘environment’’ acting on the system fro
the slaved higher order correlation functions, their fluctu
tions being the source of noise in the kinetic equations. T
©1999 The American Physical Society12-1
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ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D 61 025012
combination of a truncated system~of low order correlation
functions! acted on by a slaved hierarchy~of higher order
correlation functions! is an example of what we call an ‘‘ef
fectively open system’’—the key process which render
closed system effectively open being in this case ‘‘slaving
~Note that truncation would only yield two disjoin
partitions—each one being a smaller closed system—of
original closed system, i.e., the complete hierarchy.! This
stochastic generalization of the Boltzmann equation gi
rise to a Boltzmann-Langevin equation and its field theo
ical parallel is the stochastic Dyson equation. Let us beg
brief exposition of these ideas and procedures with
fluctuation-dissipation relation.

A. Fluctuations and dissipation

It has long been known in statistical physics that the eq
librium state is far from being static, quite the opposite, it
the fluctuations around equilibrium which underlie and g
meaning to such phenomena as Brownian motion@18# and
transport processes, and determine the responses~such as
heat capacity and susceptibility function! of the system in
equilibrium. The condition that equilibrium constantly repr
duces itself in the course of all these activities means that
equilibrium state is closely related both to the structure of
fluctuations and to the dynamical processes by which e
librium sustains itself; these simple but deep relations
embodied in the so-called fluctuation-dissipation theore
If a fluctuating system is to persist in the neighborhood o
given equilibrium state, then the overall dissipative proces
in the system~due mainly to its interaction with the environ
ment! are determined. Vice versa, if the dissipative proces
are known, then we may describe the properties of equ
rium fluctuations without detailed knowledge of the system
microscopic structure. This is the aspect of the fluctuati
dissipation relations which guided Einstein in his pioneer
analysis of the corpuscular structure of matter@19#, Nyquist
in his stochastic theory of electric resistivity@20#, and Lan-
dau and Lifshitz to the theory of hydrodynamical fluctuatio
@21#.

These ideas apply to systems described by an infi
number of degrees of freedom as well as only a few mac
scopic variables, such as the long wavelength modes in
drodynamics or a single particle distribution function as
kinetic theory. In the latter case, the dynamics is descri
by a dissipative Boltzmann equation, which depicts un
general conditions the approach to equilibrium and, by vir
of the fluctuation-dissipation relation, one expects the e
tence of nontrivial fluctuations in equilibrium. The stochas
properties of the Boltzmann equation has been discusse
Zwanzig, Kac and Logan, and others@5,22#.

For field theory, in the kinetic theory regime, where the
is a clear separation of microscopic and macroscopic sc
the field may be described in terms of quasiparticles, wh
distribution function obeys a Boltzmann equation@10,3#.
Formally, the one particle distribution function is introduc
as a partial Fourier transform of a suitable Green function
the field. The same arguments which lead to a fluctua
Boltzmann equation in classical and quantum mechanics
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us to expect fluctuations in quantum kinetic field theory
well.

The end result of our investigation is a highly nonlinea
explicitly stochastic Dyson equation for the Green functio
By going to the kinetic theory limit, we derive a stochas
Boltzmann equation, and the resulting noise may be co
pared with that required by the fluctuation-dissipation re
tion. Here we see clearly the contrast between the predict
of field theory with and without statistical physics conside
ations.

Before we describe the technical procedures, we wish
point out that statistical connotations of fluctuations in qua
tum field theory is not an entirely foreign concept or co
struct.

B. Fluctuations in composite operators

There are a variety of problems in nonequilibrium fie
theory which are most naturally described in terms of
evolution of composite operators, the familiar lowest ord
ones being the particle number and the energy momen
densities and their fluctuations. The usual approach to th
problems assumes that these operators have small flu
tions around their expectation values, in which case they
be expressed in terms of the Green’s functions of the the
However, when fluctuations are large, typically when cor
lations among several particles are important, this appro
mation breaks down.

A familiar example is critical phenomena: by choosing
suitable order parameter to describe the different phases,
can obtain a wealth of information on the phase diagram o
system. But to study the dynamics of a phase transition,
pecially in the regime where fluctuations get large, the sin
order parameter must be replaced by a locally defined fi
obeying a stochastic equation of motion, for example, a tim
dependent Ginzburg-Landau equation with noise~which
though often put in by hand, should in theory be deriv
from fluctuation-dissipation considerations—if one can iden-
tify the closed system and show the origin of noise!. It is
important for our discussion to observe that by going, s
from the time-independent Landau-Ginzburg equation to
Langevin equation one has introduced a new field, since
solution to the latter can no longer be understood as
‘‘expectation value’’ of the order parameter, nor can it
identified as the actual field~which will usually be a
q-number!.

The same phenomenon occurs more generally in effec
field theories, where the light fields are randomized by
back reaction from the heavy fields@23#, and in semiclassica
theories, where the classical field~for example, the gravita-
tional field in the early Universe! is subject to random driv-
ing forces from activities in the quantum field, such as p
ticle creation@24#. The object of our present concerns is y
another example: in the stochastic Boltzmann equa
@5,22# the stochastic distribution function is neither the e
pected value of the number of particles in a given ph
space cell, nor the actual number~whose dynamics is given
by the full, not the truncated, hierarchy!.
2-2
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STOCHASTIC DYNAMICS OF CORRELATIONS IN . . . PHYSICAL REVIEW D61 025012
The influence of noise on the classical dynamics o
quantum system is discussed at length by Gell-Mann
Hartle @25#; the conversion of quantum fluctuations to cla
sical noise is discussed by a number of authors@26–30#. This
scheme was also used by us for the study of decoherenc
correlation histories and correlation noise in interacting fi
theories@31–33#.

C. Self-contained dynamics for the propagators

In terms of the technical procedures, our goal is to obt
a self-contained dynamics for the propagators. What
means is that the propagators or correlation functions sh
carry in them the effect of their interaction with the high
correlation functions as embodied in the BBGKY or Dyso
Schwinger hierarchy.@A similar consideration in purely field
theoretical rather than statistical mechanical terms is the
corporation of radiative corrections which manifest as lo
effects in perturbative renormalization theory. In a later s
tion we will make clear the relation between loop order a
correlation order in terms of then particle irreducible~PI!
effective action.# Since there isab initio an infinite tower of
higher order correlation functions which interact with t
propagators of a given order, it is hopeless to accomplish
goal, not unlike what Boltzmann confronted with the fu
molecular dynamics in terms of the distribution and corre
tion functions. The key step which makes this possible
slaving—the imposition of molecular chaos assumption
Boltzmann. The necessary consequence is the appearan
dissipative behavior in the dynamics of the correlation fu
tions, and, in view of the dissipation-fluctuation relation e
plained above, the necessary existence of noise as well.

To capture these new aspects of the problem, and foll
ing the precedents from Langevin and Boltzmann-Lange
equations, we shall seek a description of the field in term
a new object, namely, a stochastic correlation functionGab

whose fluctuations reproduce the quantum fluctuations in
binary products of field operatorsfafb, and whose noise
average gives the usual two point functionsGab5^fafb&
@we use closed-time-path~CTP! techniques and notation, de
scribed more fully in the Appendix@34# #.

It ought to be clear that, since the composite opera
fafb is a q-number, a substitute depiction in terms of
classical stochastic kernel cannot be complete. It is suita
for certain types of problems where the mean value beha
classically while quantum fluctuations can be mimiced
statistical distributions ~some examples are mentione
above!. While the advantage for such a description is e
dent, i.e., greater simplicity of thec-number formalism, its
justification ultimately rests on how much relevant quant
features it can retain.

Consider a theory of a scalar fieldfa ~we use a condense
notation where the index a denotes both a space-time p
and one or the other branch of the time path—see Append!.
The CTP action isS5S@f1#2S* @f2#. Introduce the gener
ating functional

Z@Kab#5eiW@Kab# 5E Dfaei $S1~1/2!Kabfafb%, ~1.1!
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then

Gab5^fafb&52
dW

dKab
U

K50

~1.2!

but also

d2W

dKabdKcd
U

K50

5
i

4
$^fafbfcfd&2^fafb&^fcfd&%.

~1.3!

This suggests viewing the stochastic kernelGab as a Gauss-
ian process defined~formally! by the relationships

^Gab&5^fafb&; ^GabGcd&5^fafbfcfd&. ~1.4!

Or else, calling

Gab5Gab1Dab, ~1.5!

^Dab&50, ^DabDcd&524i
d2W

dKabdKcd
U

K50

. ~1.6!

To turn the intuitive ansatz Eqs.~1.4! and ~1.6! into a
rigorous formalism we must deal with the obvious fact th
we are manipulating complex expressions; in particular, i
not clear theDs define a stochastic process at all. Howev
for our present purposes it will prove enough to deal with
propagators as if they were real quantities. The reason is
we are primarily concerned with the large occupation nu
bers or semiclassical limit, where the propagators do beco
real. We will see that this prescription will be sufficient
extract unambiguous results from the formal manipulatio
below.

Before getting involved in formal manipulations, notwith
standing, let us dwell on one qualitative aspect of the ans
above, namely, that the correlations may be described b
Gaussian kernel.

Our assumption of correlations as a Gaussian process
be compared with the usual modeling of the action of a la
system in equilibrium over some small system as Gaus
white noise. It would not be easy to find an environme
whose driving action were exactly white; indeed, if we b
lieve that no physical system can be excited to arbitra
large frequencies, we may say it is impossible to find such
environment. But in actual applications this approximation
well within the accuracy of the phenomenological mod
~such as the time-dependent Landau-Ginzburg equation
taining a white noise as stochastic source!, which have
proven to be quite widely useful.

In setting forth to construct the present theory we do ha
a concrete set of applications in mind, namely, those wh
the kinetic limit is relevant. The assumptions which en
into the construction of this theory should therefore be c
sistent with such limits. This means that we shall obta
from the short distance behavior of the correlations,
distribution functionF, and then we want to study the corre
lation between the value ofF in some region of space
with its value in some other region which is far awa
in terms of the correlation length of the field itself. I
2-3
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ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D 61 025012
other words, an expectation value such as^F(x)F(y)F(z)&,
where the separation betweenx, y andz is large with respect
to the Compton length of the field, and spacelike, may
written in terms of averages of quantities such
^f(x1)f(x2)f(y1)f(y2)f(z1)f(z2)&, where the points
xi(yi ,zi) stay close tox(y,z) and remain far away from the
other pairs.

It is a general consequence of the clustering propertie
correlations@4# that the irreducible part of this expectatio
value will be much weaker than its reducible parts. Retain
only the latter amounts to treatingF as a Gaussian variable
and then the ansatz Eq.~1.4! is optimal in that it guarantee
that the 2-point stochastic averages exactly match the co
sponding quantities as computed from quantum field the
These considerations give a physical basis for the Gaus
ansatz.

D. Stochastic Boltzmann equation

We can define the processDab also in terms of a stochas
tic equation of motion. Consider the Legendre transform
W, the so-called 2 particle irreducible~2PI! effective action
~EA!

G@Gab#5W@Kab* #2
1

2
Kab* Gab, Kab* 522

dG

dGab .

~1.7!

We have the identities

fG

dGab 50;
d2W

dKabdKcd
5

21

4 F d2G

dGabdGcdG21

~1.8!

the first of which is just the truncated Schwinger-Dys
equation for the propagators; we therefore propose the
lowing equations of motion forGab:

dG

dGab 5
21

2
kab , ~1.9!

wherekab is a stochastic nonlocal Gaussian source defi
by

^kab&50, ^kabkcd&54i F d2G

dGabdGcdG†

. ~1.10!

If we linearize Eq.~1.9! aroundG, then the correlation Eq
~1.10! for k implies Eq. ~1.6! for D. Consistent with our
recipe of handlingG as if it were real we should treatk also
as if it were a real source.

It is well known that the noiseless Eq.~1.9! can be used as
a basis for the derivation of transport equations in the n
equilibrium limit. Indeed, for alf4 type theory, the result-
ing equation is simply the Boltzmann equation for a dis
bution functionf defined from the Wigner transform ofGab

~details are given below!. We shall show in this paper tha
the full stochastic equation~1.9! leads, in the same limit, to a
Boltzmann-Langevin equation, thus providing the micr
scopic basis for this equation in a manifestly relativis
quantum field theory.
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Let us first examine some consequences of Eq.~1.10!. For
a free field theory, we can compute the 2PI EA explici
~derivation in Sec. V!

G@Gab#5
2 i

2
ln @DetG#2

1

2
cab~2h1m2!Gab~x,x!,

~1.11!

wherecab is the CTP metric tensor~see the Appendix!. We
immediately find

d2G

dGabdGcd 5
i

2
~G21!ac~G21!db . ~1.12!

Therefore

^DabDcd&5 i F d2G

dGabdGcdG21

5GacGdb1GdaGbc,

~1.13!

an eminently sensible result. Observe that the stocha
source does not vanish in this case, rather

^kabkcd&5Gac
21Gdb

211Gda
21Gbc

21. ~1.14!

However

~G21!ac;2 icac~2h1m2! ~1.15!

does vanish on mass-shell. Therefore, when we take the
netic theory limit, we shall find that for a free theory, the
are no on-shell fluctuations of the distribution function. F
an interacting theory this is no longer the case.

The physical reason for this different behavior is that t
evolution of the distribution function for an interactin
theory is dissipative, and therefore basic statistical mech
ics considerations call for the presence of fluctuations@35#.
Indeed it is this kind of consideration which led us to thin
about a Boltzmann-Langevin equation in the first place. T
is fine if one takes a statistical mechanical viewpoint, but o
is used to the idea that quantum field theories are unitary
complete with no information loss, so how could one s
dissipation or noise?

In field theory there is a particular derivation of the se
consistent dynamics for Green functions which resolves
puzzle, namely when the Dyson equations are derived fr
the variation of a nonlocal action functional, the two-partic
irreducible effective action~2PI-EA!. This was originally in-
troduced@36# as a convenient way to perform nonperturb
tive resummation of several Feynman graphs. When cas
the Schwinger-Keldysh ‘‘closed time path’’~CTP! formula-
tion @34#, it guarantees real and causal evolution equati
for the Green functions of the theory. It is conceptually cle
if one begins with a ‘‘master’’ effective action~MEA! @32#
where all Green functions of the theory appear as argume
and then systematically eliminate all higher-than-two po
functions to arrive at the 2PIEA.

As mentioned earlier, to us the correct approach is to v
the two point functions as an effectively open syste
@37,18,38#, separated from yet interacting with the hierarc
of higher correlation functions obeying the set of Schwing
2-4
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STOCHASTIC DYNAMICS OF CORRELATIONS IN . . . PHYSICAL REVIEW D61 025012
Dyson equations. The averaged effect of its interaction w
an environment of slaved higher irreducible correlatio
brings about dissipation and the attending fluctuations g
rise to the correlation noise@32#. This is the conceptual basi
of our program.

E. Organization of this paper

In this paper, we shall concentrate on the issue of w
kind of fluctuations may be convincingly derived from th
2PI-CTP-EA for Green functions, and how they compare
the fluctuation-dissipation noise in the kinetic theory lim
Given the complexity of the subject, we shall adopt a line
development which favors at least in the beginning ease
understanding over completeness. That is, instead of sta
from the master effective action ofn point functions and
work our way down in a systematic way, we shall begin w
the Boltzmann equation for one-particle distributions a
work our way up.

In the next section, we present briefly the fluctuatio
dissipation theorem in a nonrelativistic context, and use i
derive the fluctuating Boltzmann equation. The discuss
kept at the classical level, simply reviews well establish
results in the theory of the Boltzmann equation. Section
reviews the basic tenets of nonequilibrium quantum fi
theory as it concerns the dynamics of correlations, and
retrieval of the Boltzmann equation therefrom. We refra
from using functional methods, so as to keep the discus
as intuitive as possible.

Section IV discusses how the functional derivation of t
Schwinger-Dyson hierarchy suggests that these equa
ought to be enlarged to include stochastic terms. By go
through the kinetic limit we use these results to establis
comparison with the purely classical results of Sec. II.

Our investigation into the physical origin of noise an
dissipation in the dynamics of correlation functions sho
that in the final analysis this is an effective dynamics, o
tained from averaging out the higher correlations. This po
is made most explicit in the approach whereby the 2PI
for the correlations is obtained through truncation of t
master effective action, this being the formal function
whose variations generate the full Schwinger-Dyson hie
chy. In Sec. V, we briefly discuss the definition and constr
tion of the master effective action, the relationship of tru
cation to common approximation schemes, and pres
explicitly the calculation leading to the dynamics of the tw
point functions at three loops accuracy@32,10#.

In the last section we give a brief discussion of the me
ing of our results and possible implications on renormali
tion group theory.

II. STOCHASTIC BOLTZMANN EQUATION FROM FDT

As a primer, we wish to introduce the fluctuatio
dissipation theorem~FDT! or relation ~FDR! in a rudimen-
tary yet complete form, and use it to give a simple derivat
of the stochastic Boltzmann equation. In this way its physi
content can stand out clear before we get formal.

There are many different versions@39#: It could be taken
to mean the formulas relating dissipative coefficients to ti
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integrals of correlation functions~sometimes called the
Landau-Lifshitz FDT! or the relations between the suscep
bility and the space integral of the correlation function.
this paper, the fluctuation-dissipation theorem addresses
relation between the dissipative coefficients of the effectiv
open system and the autocorrelation of random forces ac
on the system, as illustrated below.

A. Fluctuation-dissipation theorem „FDT…

The simplest setting@40# for the FDT is a homogeneou
system described by variablesxi . The thermodynamics is
encoded in the form of the entropyS(xi). The thermody-
namic fluxes are the derivativesẋi , and the thermodynamic
forces are the components of the gradient of the entropy

Fi52
]S

]xi
. ~2.1!

The dynamics is given by

ẋi52g i j F j1 j i . ~2.2!

The first term describes the mean regression of the sys
towards a local entropy maximum,g i j being the dissipative
coefficient or function, and the second term describes
random microscopic fluctuations induced by its interact
with an environment. Near equilibrium, we also have t
phenomenological relations for linear response

Fi5ci j x
j , ~2.3!

whereci j is a nonsingular matrix.
In a classical theory, the equal time statistics of fluctu

tions is determined by Einstein’s law

^xi~ t !F j~ t !&5d j
i . ~2.4!

Take a derivative to find

05cjk$^~2g i l Fl1 j i !xk&1^xi~2gklFl1 j k!&%. ~2.5!

If the noise is Gaussian,

^xi~ t ! j k~ t !&5E dt8
dxi~ t !

d j l~ t8!
^ j l~ t8! j k~ t !&,

and white

^ j l~ t8! j k~ t !&5n lkd~ t82t !, ~2.6!

then

^xi~ t ! j k~ t !&5
1

2
n ik. ~2.7!

From Eqs.~2.5! and~2.4! we find the noise-noise autocorre
lation functionn ik is related to the symmetrized dissipativ
function g ik by

n ik5@g ik1gki#, ~2.8!
2-5
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ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D 61 025012
which is the FDT in a simple classical formulation.1

In the case of a one-dimensional system, the above a
ment can be simplified even further because there is only
variablex, andg, c, n are simply constants. In equilibrium
we havê x2&5c21. On the other hand, the late time solutio
of the equations of motion reads

x~ t !5E t

due2gc~ t2u! j ~u!,

which implies^x2&5n/2gc. Thusn52g, in agreement with
Eq. ~2.8!.

B. Boltzmann equation for a classical relativistic gas

We shall apply the theory above to a dilute gas of rela
istic classical particles@44#. The system is described by it
one particle distribution functionf (X,k), whereX is a posi-
tion variable, andk is a momentum variable. Momentum
assumed to lie on a mass shellk21M250 @we use the
Misner-Thorne-Wheeler~MTW! convention, with signature
2111 for the background metric@45## and have positive
energyk0.0. In other words, given a spatial elementdSm

5nmdS and a momentum space elementd4k, the number of
particles with momentumk lying within that phase spac
volume element is

dn524p f ~X,k!u~k0!d~k21M2!kmnmdS
d4k

~2p!4 .

~2.9!

The dynamics of the distribution function is given by th
Boltzmann equation, which we give in a notation adapted
our later needs, and for the time being without the soug
after stochastic terms

km
]

]Xm f ~k!5I col~X,k!, ~2.10!

I col5
l2

4
~2p!3E F)

i 51

3
d4pi

~2p!4 u~pi
0!d~pi

21M2!G
3@~2p!4d~p11p22p32k!#I , ~2.11!

I5$@11 f ~p3!#@11 f ~k!# f ~p1! f ~p2!

2@11 f ~p1!#@11 f ~p2!# f ~p3! f ~k!%. ~2.12!

The entropy flux is given by

1To be concrete, this is the FDT of the second kind in the cla
fication of Ref.@41#. The FDT of the first kind is further discusse
in Ref. @42#. Also observe that we are only concerned with sm
deviations from equilibrium; FDT’s valid arbitrarily far from equ
librium are discussed in Ref.@43#.
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Sm~X!54pE d4p

~2p!4 u~p0!d~p21M2!pm$@11 f ~p!#

3 ln@11 f ~p!#2 f ~p!ln f ~p!%, ~2.13!

while the entropy itselfS is ~minus! the integral of the flux
over a Cauchy surface. Now consider a small deviation fr
the equilibrium distribution

f 5 f eq1d f , ~2.14!

f eq5
1

ebp0
21

, ~2.15!

corresponding to the same particle and energy fluxes

E d4p

~2p!4 u~p0!d~p21M2!pmd f ~p!50, ~2.16!

E d4p

~2p!4 u~p0!d~p21M2!pmp0d f ~p!50. ~2.17!

Then the variation in entropy becomes

dS522pE d3XE d4p

~2p!4 u~p0!

3d~p21M2!p0
1

@11 f eq~p!# f eq~p!
~d f !2.

~2.18!

In the classical theory, the distribution function is conce
trated on the positive frequency mass shell. Therefore,
convenient to label momenta just by its spatial compone
pW , the temporal component being necessarilyvp

5AM21pW 2.0. In the same way, it is simplest to regard t
distribution function as a function of the three momentumpW
alone, according to the rule

f ~3!~X,pW !5 f @X,~vp ,pW !#, ~2.19!

wheref represents the distribution function as a function
four dimensional momentum space, andf (3) its restriction to
three dimensional mass shell. With this understood, we s
henceforth drop the superscript, using the same symbolf for
both functions, since only the distribution function on ma
shell enters into our discussion. The variation of the entro
now reads

dS52
1

2 E d3XE d3p

~2p!3

1

@11 f eq~p!# f eq~p!
~d f !2.

~2.20!

From Einstein’s formula, we conclude that, in equilibrium
the distribution function is subject to Gaussian fluctuatio
with equal time mean square value

^d f ~ t,XW ,pW !d f ~ t,YW ,qW !&5~2p!3d~XW 2YW !d~pW 2qW !

3@11 f eq~p!# f eq~p!. ~2.21!

i-
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STOCHASTIC DYNAMICS OF CORRELATIONS IN . . . PHYSICAL REVIEW D61 025012
One of the goals of this paper is to rederive this result
the kinetic theory limit of the general fluctuation formu
given for the propagators in the Introduction, Eq.~1.6!. For
the time being, we only observe that this fluctuation form
is quite independent of the processes which sustain equ
rium; in particular, it holds equally for a free and an inte
acting gas, since it contains no coupling constants.

In the interacting case, however, a stochastic sourc
necessary to sustain these fluctuations. Following the dis
sion of the FDR above, we compute these sources by wri
the dissipative part of the equations of motion in terms of
thermodynamic forces

F~X,pW !5
1

@11 f eq~p!# f eq~p!

d f ~X,pW !

~2p!3 . ~2.22!

To obtain an equation of motion forf (X,pW ) multiply both
sides of the Boltzmann equation, Eq.~2.10!, by u(k0)d(k2

1M2) and integrate overk0 to get

] f

]t
1

kW

vk
¹W f 5

1

vk
I col . ~2.23!

Upon variation we get

]~d f !

]t
1

kW

vk
¹W ~d f !5

1

vk
dI col . ~2.24!

When we write dI col in terms of the thermodynami
forces, we find local terms proportional toF(k) as well as
nonlocal terms whereF is evaluated elsewhere. We sha
keep only the former, as it is usually done in deriving t
‘‘collision time approximation’’ to the Boltzmann equatio
@46# ~also related to the Krook-Bhatnager-Gross kine
equation!; thus we write

dI col~k!;2vkn
2~X,kW !F~X,kW !, ~2.25!

where

n2~X,kW !5
l2

4vk
~2p!6E F)

i 51

3
d4pi

~2p!4 u~pi
0!d~pi

22M2!G
3@~2p!4d~p11p22p32k!#I 1 , ~2.26!

k05vk , and

I 15@11 f eq~p1!#@11 f eq~p2!# f eq~p3! f eq~k!.
~2.27!

Among other things, the linearized form of the Boltzma
equation provides a quick estimate of the relevant relaxa
time. Let us assume the high temperature limit, wheref
;T/M , and the integrals in Eq.~2.26! are restricted to the
rangep<M . Then simple dimensional analysis yields t
estimatet;M /l2T2 for the relaxation time appropriate t
long wavelength modes.
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C. Fluctuations in the Boltzmann equation

Observance of the FDT demands that a stochastic souj
be present in the Boltzmann equation, Eq.~2.10! @and its
linearized form, Eq. ~2.24!#, which should assume th
Langevin form:

] f

]t
1

kW

vk
¹W f 5

1

vk
I col1 j ~X,kW !. ~2.28!

Then

^ j ~X,pW ! j ~Y,qW !&52H 1

vp

]I col~X,pW !

dF~Y,qW !
1

1

vq

]I col~Y,qW !

dF~X,pW ! J .

~2.29!

From Eqs.~2.25!, ~2.26! and ~2.27! we find the noise
autocorrelation

^ j ~X,kW ! j ~Y,pW !&52d~4!~X2Y!d~kW2pW !n2~X,kW !,
~2.30!

wheren2 is given in Eq.~2.26!. Equation~2.30! and ~2.26!
are the solution to our problem, that is, they describe
fluctuations in the Boltzmann equation, required by cons
tency with the FDT. Observe that, unlike Eq.~2.21!, the
mean square value of the stochastic force vanishes for a
gas.

In this discussion, of course, we accepted the Boltzm
equation as given without tracing its origin. We now want
see how the noises in Eq.~2.30! originate from a deepe
level, that related to the higher correlation functions, wh
we call the correlation noises.

III. KINETIC FIELD THEORY, FROM DYSON
TO BOLTZMANN

Our goal in this section is to show how the Boltzma
equation arises as a description of the dynamics of quasi
ticles in the kinetic limit of field theory. To this end, we sha
adopt the view that the main element in the description o
nonequilibrium quantum field is its Green functions, who
dynamics is given by the Dyson equations. This conne
with the results of our earlier paper on dissipation in Bol
mann equations@10#. The task is to find the noise or fluctua
tion terms. The need to upgrade the Boltzmann equation
Langevin form will lead to a similar generalization of Dys
on’s equations, whose physical origin will be the subject
the remaining of the paper.

The discussion of propagators is simplest for a free fi
theory, and so, following our choice of physical clarity ov
formal rigor in the exposition, we shall first discuss noneq
librium free fields. The general case follows.

A. Free fields and propagators

Let us focus on the nonequilibrium dynamics of a re
scalar quantum~Heisenberg! field F(x), obeying the Klein-
Gordon equation

~h2m2!F~x!50 ~3.1!
2-7
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ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D 61 025012
and the canonical equal time commutation relations

@Ḟ~xW ,t !,F~yW ,t !#52 i\d~xW2yW ! ~3.2!

~from here on, we take\51).
We shall assume throughout that the expectation valu

the field vanishes. Thus the simplest nontrivial description
the dynamics will be in terms of the two-point or Gree
functions, namely the expectation values of various produ
of two field operators. Of particular relevance is the Jord
propagator

G~x,x8!5^@F~x!,F~x8!#&, ~3.3!

which for a free field is independent of the state of the fie
From the Jordan propagator we derive the causal prop
tors, advanced and retarded,

Gadv~x,x8!52 iG~x,x8!u~ t82t !,

Gret~x,x8!5 iG~x,x8!u~ t2t8!. ~3.4!

These propagators describe the evolution of small pertu
tions ~they are fundamental solutions to the Klein-Gord
equation! but contain no information about the state. For th
purpose we require other propagators, such as the pos
and negative frequency ones

G1~x,x8!5^F~x!F~x8!&, G2~x,x8!5^F~x8!F~x!&.
~3.5!

Observe thatG5G12G2 . The symmetric combination
gives the Hadamard propagator

G15G11G25^$F~x!,F~x8!%&. ~3.6!

Note that while the Jordan, advanced and retarded pro
gators emphasize the dynamics, and the negative, pos
frequency and Hadamard propagators emphasize the sta
cal aspects, two other propagators contain both kinds of
formation. They are the Feynman and Dyson propagator

GF~x,x8!5^T@F~x!F~x8!#&

5
1

2
@G1~x,x8!1G~x,x8!sgn~ t2t8!#, ~3.7!

GD~x,x8!5^T̃@F~x!F~x8!#&

5
1

2
@G1~x,x8!2G~x,x8!sgn~ t2t8!#, ~3.8!

whereT stands for time-ordered product

T@F~x!F~x8!#5F~x!F~x8!u~ t2t8!

1F~x8!F~x!u~ t82t ! ~3.9!

and T̃ for antitemporal ordering

T̃@F~x!F~x8!#5F~x8!F~x!u~ t2t8!

1F~x!F~x8!u~ t82t !. ~3.10!
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B. Equilibrium structure of propagators

In this subsection, we shall review several importa
properties of the equilibrium propagators which follow fro
the Kubo-Martin-Schwinger~KMS! condition @Eq. ~3.12!
below# @47#, and general invariance properties.

In equilibrium, all propagators must be time-translati
invariant, and may be Fourier transformed

G~x,x8!5E d4k

~2p!4 eik~x2x8!G~k!. ~3.11!

In particular, because the Jordan propagator is antisymm
ric, we must haveG(v,kW )52G(2v,kW ). Also, since
G(x,x8)5G(x8,x)* 52G(x,x8)* ,G(k)5G(k)* .

The positive and negative frequency propagators are
ther related by the KMS condition

G1@~ t,xW !,~ t8,xW8!#5G2@~ t1 ib,xW !,~ t8,xW8!#, ~3.12!

whereb is the inverse temperature. WithG12G25G, we
get

G1~k!5
G~k!

12e2bk0 5sgn~k0!Fu~k0!1
1

ebuk0u21
GG~k!,

~3.13!

G2~k!5
G~k!

ebk0
21

5sgn~k0!Fu~2k0!1
1

ebuk0u21
GG~k!.

~3.14!

Adding these two equations, we find

G1~k!52 sgn~k0!F1

2
1

1

ebuk0u21
GG~k!. ~3.15!

We may consider this formula as the quantum generaliza
of the FDT, as we shall see below. Let us stress that E
~3.12!–~3.15! hold for interacting as well as free fields.

Of course, sinceG is an odd homogeneous solutions
the Klein-Gordon equation we must have

G~k!5d~k21m2!sgn~k0!g~k!, ~3.16!

which leads to

Gret~x,x8!5E d4k

~2p!4

eik~x2x8!

2~k02 i e!21vk
2 Fg~vk ,kW !

2p
G
~3.17!

and to

GF~x,x8!5E d4k

~2p!4 eik~x2x8!

3F ~2 i !

2k021vk
22 i e

1
2pd~k022vk

2!

ebuk0u21
G

3Fg~vk ,kW !

2p
G , ~3.18!
2-8
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STOCHASTIC DYNAMICS OF CORRELATIONS IN . . . PHYSICAL REVIEW D61 025012
with similar formulas forGadv and GD , respectively. It is
remarkable that all propagators may be split into a vacu
and a thermal contribution, with the thermal part being
same for all propagators exceptG, Gret andGadv , where it
vanishes. Also, we have expressed all propagators in te
of g; in the language of the Lehmann decomposition, this
just the density of states@48#.

We shall finish this subsection by expanding our rem
on Eq.~3.15! being the fluctuation dissipation theorem@49#.
Suppose we try to explain the quantum and statistical fl
tuations of the field by adding an external source2 j (x) to
the right hand side of the Klein-Gordon equation~3.1!. The
resulting field would be

F~x!5E d4x8Gret~x,x8! j ~x8!.

If the process is stationary

^ j ~x! j ~x8!&5E d4k

~2p!4 eik~x2x8!n~k!, ~3.19!

we get

n~k!5
G1~k!

2uGret~k!u2
.

From Eqs.~3.15! and ~3.17!

n~k!5F11
2

ebuk0u21
G uIm Gret

21~k!u, ~3.20!

which is a generalized form of the FDT, including bo
quantum and thermal fluctuations.

So far, we have intentionally left everything expressed
terms of the density of statesg(k). For a free field, we can
compute this explicitly

g~k!52p, ~3.21!

with which we can fill in the remaining results.

C. Interacting fields and the Dyson equation

Let us now consider a weakly interacting field, obeyi
the Heisenberg equation

~h2m2!F~x!2
l

6
F3~x!50 ~3.22!

and the same equal time canonical commutation relatio
Eq. ~3.2!. As before, we shall assume that the expectat
value of the field vanishes identically, and seek to desc
the dynamics in terms of the propagators introduced ear

In the usual approach to field theory, where one focu
on computing theS-matrix elements, rather than the caus
evolution of fields, the leading role is played by the Feynm
propagator, which is directly related to theS matrix through
the Lehmann-Symanzik-Zimmermann~LSZ! reduction for-
mulas, and has a simple perturbative expansion@48,50,51#.
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We may obtain a dynamical equation for the Feynm
propagator by noting that, from Eq.~3.9!,

~2h1m2!T@F~x!F~x8!#5T@~2h1m2!F~x!F~x8!#

2 id~x2x8!.

Therefore

~2h1m2!GF~x,x8!52 id~x2x8!2
l

6
^T@F3~x!F~x8!#&

~3.23!

@cf. Eq. ~3.18!#. This is the Dyson equation for the propag
tor, relating the evolution of the Feynman propagator
higher order~in this case, four point! correlation functions.
As different from an IN-OUT matrix element of th
S-matrix, in this case we have an IN-IN expectation val
taken with respect to a nontrivial state defined at some in
time.

Equation~3.23! does not yet define a self-contained d
namics for the propagators. To achieve this goal, we m
further ‘‘slave’’ the higher correlation funtion
^T@F3(x)F(x8)#&, meaning that we must adopt som
scheme that will allow us to express this correlation as
functional of the propagators themselves. These sche
may be generally understood as imposing specific bound
conditions on the Schwinger-Dyson equations for the hig
correlations@10# which is similar to the role of the molecula
chaos assumption in Boltzmann’s theory. In our case,
shall substitutêT@F3(x)F(x8)#& by its perturbative expan
sion. Because of causality, the perturbative expansion of
self energy term cannot be expressed in terms of the IN
Feynman propagator alone. We should rather have

^T@F3~x!F~x8!#&;3GF~x,x!GF~x,x8!

2 ilE d4y$GF
3~x,y!GF~y,x8!

2G2
3 ~x,y!G1~y,x8!%

@since we use full propagators in the internal lines, tw
particle reducible~2PR! graphs must not be included#. Thus
to obtain a self-consistent dynamics, we must enlarge the
to include other propagators as well. Of course, we are
suming that the initial state is such that Wick’s theore
holds ~for example, that it is Gaussian!—this issue is dis-
cussed in detail in@10#. We are also leaving aside issues
renormalization@52#.

We overcome this difficulty by adopting as fundamen
object the closed-time-path ordered propagatorGP(xa,yb).
This object is equivalent to four ordinary propagators: if w
write GP(xa,yb)5Gab(x,y), then G11(x,y)5GF(x,y),
G12(x,y)5G2(x,y), G21(x,y)5G1(x,y) and G22(x,y)
5GD(x,y).

We can obtain closed dynamical equations for these f
propagators. Actually there is a slight redundancy, but t
set has the advantage of being very simple to handle~see
Chouet al. in @34# for details!. The equations read
2-9
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F2h1m21
l

2
GF~x,x!GGab~x,x8!2

il2

6
ccd

3E d4ySac~x,y!Gdb~y,x8!52 icabd~x2x8!,

~3.24!

Sac~x,y!5@Gac~x,y!#3. ~3.25!

The matrixc (c115c1151,c225c22521; all others zero!
keeps track of the sign inversions associated with the rev
temporal ordering of the second branch. This form of
Dyson equation is relevant to our discussion.

D. The kinetic theory limit

In equilibrium the propagators are time-translation inva
ant. Out of equilibrium this is no longer true. In the kinet
theory regime, however, the propagators depend mostly
the difference variableu5x2x8, with the corresponding
Fourier transform depending weakly on the center of m
variableX5(1/2)(x1x8). As such, the propagators take th
form

Gab~x,x8!5E d4k

~2p!4 eik~x2x8!Gab~X,k!. ~3.26!

The S kernel has a similar expression

Sab~x,x8!5E d4k

~2p!4 eik~x2x8!Sab~X,k!,

Sab~X,k!5E )
i 51

3 H d4pi

~2p!4 Gab~X,pi !J
3F ~2p!4dS ( pi2kD G . ~3.27!

The weak dependence onX allows for the approximations
~details in@10#!

Gab~x,x!5E d4k

~2p!4 Gab~x,k!;E d4k

~2p!4 Gab~X,k!,

E d4ySac~x,y!Gdb~y,x8!

;E d4k

~2p!4 eik~x2x8!Sac~X,k!Gdb~X,k!

and the equations of motion become

Fk22 ikm
]

]Xm2
1

4
hX1M2~X!GGab~X,k!

2
il2

6
ccdS

ac~X,k!Gdb~X,k!52 icab, ~3.28!
02501
se
e

-

n

s

M2~X!5m21
l

2 E d4k

~2p!4 Gab~X,k!. ~3.29!

Alternatively, we may think of the propagators as fun
tions of x8, leading to an equation of the form@cf. Eq.
~3.24!#

F2h81m21
l

2
GF~x8,x8!GGab~x,x8!

2
il2

6
ccdE d4yGac~x,y!Sdb~y,x8!52 icabd~x2x8!.

~3.30!

In the kinetic limit, this yields

Fk21 ikm
]

]Xm2
1

4
hX1M2~X!GGab~X,k!

2
il2

6
ccdG

ac~X,k!Sdb~X,k!52 icab. ~3.31!

Taking the average and the difference of Eqs.~3.28! and
~3.31! we get

Fk22
1

4
hX1M2~X!GGab~X,k!

2
il2

12
ccd$S

ac~X,k!Gdb~X,k!1Gac~X,k!Sdb~X,k!%

52 icab, ~3.32!

km
]

]Xm Gab~X,k!1
l2

12
ccd$S

ac~X,k!Gdb~X,k!

2Gac~X,k!Sdb~X,k!%50. ~3.33!

We recognize the first equation as a mass shell condition
the nonequilibrium propagator. The second equation is
kinetic equation proper, describing relaxation towards eq
librium.

To investigate further this equation, we observe that si
both terms are already of second order inl ~see@10#!, it is
enough to solve the mass shell condition to zeroth ord
That is, we assume that the renormalized massM2 is actually
position independent, and write

Gab~X,k!5G0
ab~M2,k!1Gstat

ab ~X,k!, ~3.34!

where theG0
ab(M2,k) are vacuum propagators for a fre

field with massM2, andGstat is the nonvacuum part

Gstat
ab ~X,k!52pd~k21M2! f ~X,k!, ~3.35!

which we assume is the same for all propagators involved
in the free field case.f (X,k) has the physical interpretatio
of a one particle distribution function for quasiparticles bu
out of the field excitations. Substituting Eqs.~3.34! and
~3.35! into ~3.33!, and assuming, for example, thatk0.0 ~f
2-10
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STOCHASTIC DYNAMICS OF CORRELATIONS IN . . . PHYSICAL REVIEW D61 025012
must be even ink, because of the symmetries of the prop
gators! immediately shows that the dynamics off is given by
the Boltzmann equations~2.10!, ~2.11! and ~2.12!.

We shall not discuss further the region of validity of th
hypothesis underlying the kinetic limit, except to obser
that this issue is far from trivial. On general grounds, o
expects that propagators will depend strongly on the dif
ence variable on scalestC;M 21. For smooth initial condi-
tions, the scale for dependence on the average variable i
by the relaxation timet;M /l2T2. A nontrivial kinetic limit
exists ift@tC . Already this simple estimate shows that o
would expect trouble in theories with strictly massless p
ticles, such as gauge or Goldstone bosons@12#. If particle
masses are not specially protected, then at large temper
the physical massM;AlT, andtC /t;l will in general be
suitably small.

E. Stochastic Dyson equations

Our derivation of kinetic theory from the perturbativ
Dyson equations leads to a dissipative equation similar to
~noiseless! Boltzmann equation. But we know that in add
tion to the usual collision integral an explicitly stochas
term ought to be in place. Our earlier considerations of
fluctuation-dissipation relations attest that this stocha
term has autocorrelation Eqs.~2.30! and ~2.26!. Since no
manipulation of the deterministic Dyson equations~from the
truncated Schwinger-Dyson set! will yield a stochastic term
like this, we posit that when quantum field theory is view
in the statistical mechanical context, they need be sup
mented with a noise term. Suppose we add a stochastic
ing term Fab to them~we shall justify this in the next sec
tion! as follows:

F2h1m21
l

2
GF~x,x!GGab~x,x8!

2
il2

6
ccdE d4ySac~x,y!Gdb~y,x8!

52 icabd~x2x8!2 iF ab~x,x8!,
~3.36!

F2h81m21
l

2
GF~x8,x8!GGab~x,x8!

2
il2

6
ccdE d4yGac~x,y!Sdb~y,x8!

52 icabd~x2x8!2 i F̃ ab~x,x8!. ~3.37!

In the kinetic limit, the random forces become

Fab~x,x8!5E d4k

~2p!4 eik~x2x8!Fab~X,k! ~3.38!

~and similarly forF̃). Leaving aside the random fluctuation
of the mass shell, we find the new kinetic equation
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]Xm Gab~X,k!1
l2

12
ccd$S

ac~X,k!Gdb~X,k!

2Gac~X,k!Sdb~X,k!%5Hab~X,k!, ~3.39!

where

Hab[
1

2
@F2F̃#ab~X,k!. ~3.40!

Our problem now is to justify changing the truncated Dys
equation to Eq.~3.36!, and to expound the physical meanin
of this new stochastic equation. To do this we need to
functional methods, to which we now turn.

IV. CORRELATION NOISE AND STOCHASTIC
BOLTZMANN EQUATION

Our goal in this section is to show how noise terms su
as those introduced above from phenomenological consi
ations may actually be systematically identified from an a
propriate effective action. In this section we shall limit ou
selves to finding a suitable recipe to identify the noise term
and to compare the results to the phenomenological dis
sion above. The physical foundations of the recipe shall
discussed in the following section.

A. Fluctuations in the propagators

We shall now adapt the foregoing discussion to the stu
of fluctuations in the dynamics of the two point function
~which arises from the truncated Schwinger-Dyson hier
chy!. The first step is to notice that their dynamics can
obtained from the variation of the 2PI action functional@we
derive this formula in Sec. V, Eq.~5.51!#

G@Gab#5
2 i

2
ln@DetG#2

1

2
cabE d4x~2h1m2!Gab~x,x!

2
l

8
cabcdE d4xGab~x,x!Gab~x,x!

1
il2

48
cabcdce f ghE d4xd4x8Gae~x,x8!

3Gb f~x,x8!Gcg~x,x8!Gdh~x,x8!. ~4.1!

The resulting equations of motion

2 i

2
Gab

212
1

2 Fcab~2h1m2!1
l

2
cabcdG

cd~x,x!Gd~x,x8!

1
il2

12
caccbd@Gcd~x,x8!#350 ~4.2!

are seen to be equivalent to the truncated Dyson equati
Eq. ~3.24!.

As we discussed in the Introduction, we shall incorpor
quantum fluctuations in the evolution of the Green functi
Gab by explicitly adding a stochastic source (21/2)kab to
the right hand side of Eq.~4.2!, and reinterpreting it as an
2-11
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equation for a stochastic correlation functionGab. Let us
write Gab5Gab1Dab, and expand the 2PI CTP EA to se
ond order @the first order term vanishes by virtue of E
~4.2!#,

dG5d2G, ~4.3!

d2G@Dab#5
i

4
Gab

21DbcGcd
21Dda

2
l

8
cabcdE d4xDab~x,x!Dab~x,x!

1
il2

8
cabcdce f ghE d4xd4x8Gac~x,x8!

3Gb f~x,x8!Dcg~x,x8!Ddh~x,x8!. ~4.4!

From now on, we shall assume that the background tad
vanishes, and identify the mass with its renormalized va
We now have, as discussed in the Introduction,

^DabDcd&5 i F d2G

dGabdGcdG21

. ~4.5!

To sustain these fluctuations, the noise autocorrelation m
be

^kabkcd&5~4i !F d2

dDabdDcd d2GU
D50

G†

.

That is

^kab~x,x8!kcd~y,y8!&5Nabcd~x,x8,y,y8!

1Nabcd
int ~x,x8,y,y8!,

Nabcd~x,x8,y,y8!5Gda
21~y8,x!Gbc

21~x8,y!

1Gac
21~x,y!Gdb

21~y8,x8!, ~4.6!

Nabcd
int ~x,x8,y,y8!5l2@GegGf h#~x,x8!cace fcbdgh

3d~x2y!d~x82y8!2 ilcabcd

3d~x2x8!d~y2y8!.

B. Free fields

Let us begin by asking whether for free fields the quant
fluctuations Eq.~4.5! go into anything like the classical resu
Eq. ~2.21! in the kinetic theory limit. There is no obviou
reason why it should be so, since the physical basis for ei
formula is at first sight totally different. As we saw in th
Introduction, Eq.~4.5! simply reproduces the full quantum
fluctuations, computed in terms of the propagators the
selves on the assumption that Wick theorem holds~which is
an assumption on the allowed initial states of the field,
@10#!
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^DabDcd&5 i F d2G

dGabdGcdG21

5GacGdb1GdaGbc,

~4.7!

while the classical autocorrelation Eq.~2.21! has been found
by applying Einstein’s formula to the phenomenological e
tropy Eq. ~2.13!. The only clear point of contact betwee
both approaches is that both assume Bose statistics.

Introducing the Wigner transform of the fluctuations

Dab~x,x8!5E d4k

~2p!4 eik~x2x8!Dab~X,k!, X5
1

2
~x1x8!,

~4.8!

we observe that in this case we are not entitled to assume
the dependence of the Wigner transform onX is weak. Equa-
tion ~4.8! has a formal inverse

Dab~X,k!5E dueikuDabS X1
u

2
,X2

u

2D , ~4.9!

and from Eq.~4.7! we get

^Dab~X,p!Dcd~Y,q!&5E dudvei ~pu1qv !K@X,Y,u,v#,

where

K@X,Y,u,v#5GacS X1
u

2
,Y1

v
2DGbdS X2

u

2
,Y2

v
2D

1GadS X1
u

2
,Y2

v
2DGbcS X2

u

2
,Y1

v
2D .

The propagators in the right hand side are equilibrium on
and so we can use the representation Eq.~3.11!

K@X,Y,u,v#

5E d4r

~2p!4

d4s

~2p!4 E dudvei ~pu1qv !K@X,Y,r ,s#,

K@X,Y,r ,s#

5eir @X2Y1~1/2!~u2v !#eis@X2Y2~1/2!~u2v !#Gac~r !Gbd~s!

1eir @X2Y1~1/2!~u1v !#eis@X2Y2~1/2!~u1v !#

3Gad~r !Gbc~s!.

Now integrate overu, v ands

^Dab~X,p!Dcd~Y,q!&516E d4rei2~r 1p!~X2Y!

3@d~p1q!Gac~r !Gbd~r 12p!

1d~p2q!Gad~r !Gbc~r 12p!#.

~4.10!

We have 16 different quantum autocorrelations to comp
against a single classical result, so we can only expect
2-12
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agreement in the large occupation number limit, where
propagators converge to the same expression. With this
viso in mind, we can choose any combination of indices
continue the calculation. The most straightforward choice~to
a certain extent suggested by the structure of the closed-t
path; see@31,32#! is a5b51, c5d52; we are thus seeking
the correlations among the fluctuations in the Feynman
Dyson propagators

^D11~X,p!D22~Y,q!&

516~2p!2@d~p1q!1d~p2q!#

3E d4rei2~r 1p!~X2Y!d@r 21M2#d@~r 12p!21M2#

3@u~2r 0!1 f eq~r !#@u~2r 022p0!1 f eq~r 12p!#.

The arguments of the delta functions can be simplified

^D11~X,p!D22~Y,q!&

54~2p!2@d~p1q!1d~p2q!#E d4rei2~r 1p!~X2Y!

3d@r 21M2#3d@rp1p2#@u~2r 0!1 f eq~r !#

3@u~2r 022p0!1 f eq~r 12p!#. ~4.11!

A difference from the classical case already stands
here: in the quantum case, a fluctuation in the numbe
particles with momentump correlates not only with itself,
but also with the corresponding fluctuation in the number
antiparticles with momentum2p. This is unavoidable, given
the symmetries of the propagators in this theory.

Let us stress that we are trying to push the quasipart
~kinetic! description of quantum field dynamics beyond t
calculation of mean values~of such quantities as particl
number or energy density!, to account for their fluctuations
The calculation of the fluctuations of the distribution fun
tion for on-shell particles gives a crucial consistency che
on such an attempt. Indeed, we know that each on-s
mode of the free field contributes an amount@cf. Eqs.~3.15!,
~3.16! and~3.21!# rk;vk(1/21 f eq) to the mean energy den
sity, where f eq is the equilibrium distribution function Eq
~2.15!. The fluctuations of this quantity at equilibrium will b
given by ^drk

2&5T2(]rk /]T);vk
2f eq(11 f eq). So, if these

fluctuations are still described by a distribution function co
sistent with ordinary statistical mechanics, then this distri
tion function must fluctuate like in Eq.~2.21!. ~This may in
the face of it be a rather bigif.!

For large M2, the condition thatp is nearly on-shell
means that the spatial components are much smaller tha
time component, and we may approximate

d@r 21M2#d@rp1p2#;d@p21M2#
1

up0u
d~r 01p0!,

thus obtaining
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^D11~X,p!D22~Y,q!&uon-shell

5
1

2vp
~2p!5@d~p1q!1d~p2q!# f eq~p!

3„11 f eq~p!…d@p21M2#d~XW 2YW !.

To finish the comparison, assume, e.g., thatp0>0, then

d~p2q!d@p21M2#5d~q02vq!d~qW 2pW !d@p21M2#

52vqu~q0!d~qW 2pW !d@p21M2#

3d@q21M2#. ~4.12!

This result suggests writing

D11~X,p!52pd f ~X,pW !d@p21M2#1off-shell terms.
~4.13!

Taking p0 andq0 to be positive, this yields

^d f ~ t,XW ,pW !d f ~ t,YW ,qW !&5~2p!3d~qW 2pW !d~XW 2YW ! f eq~p!

3„11 f eq~p!…, ~4.14!

which is identical to Eq.~2.21!. This is one of the most
important results of this paper, as it gives a whole new me
ing to the phenomenological entropy Eq.~2.13!

We have thus completed our proof, and obtained n
independent confirmation of the validity of our scheme
introducing stochastic kernels as a way to describe the qu
tum fluctuations in the dynamics of correlations.

C. Interacting fields and the Boltzmann-Langevin equation

The results of the previous section already imply that
full stochastic Dyson equation will go over to th
Boltzmann-Langevin equation in the kinetic limit. Indee
the structure of the fluctuations does not change drastic
when interactions are switch on, and since they become id
tical in the classical limit, the noise in the Dyson equati
necessary to sustain the fluctuations at the quantum l
must go over to the noise in the Boltzmann equation, wh
plays the same role in the classical theory. Nevertheless,
worth identifying exactly which part of the quantum sour
autocorrelation goes into the classical one in the corresp
dence limit.

Concretely, our aim is to begin with the stochastic~per-
turbative! Dyson equation

2 i

2
Gab

212
1

2 Fcab~2h1m2!1
l

2
cabcdG

cd~x,x!Gd~x,x8!

1
il2

12
caccbd@Gcd~x,x8!#35

21

2
kab , ~4.15!
2-13
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where the noise autocorrelation is given by Eq.~4.6!. We
then identify the forces appearing in Eqs.~3.36! and ~3.37!

Fab~x,x8!5 i E d4ycackcd~x,y!Gdb~y,x8!,

~4.16!

F̃ab~x,x8!5 i E d4yGac~x,y!kcd~y,x8!cdb.

In condensed notation,

Hab[
1

2
@F2F̃#ab5

i

2
$cackcdG

db2Gackcdc
db%,

~4.17!

whose Wigner transform plays the role of random force
the kinetic equation~3.39!. Restricting ourselves to on-she
fluctuations, we can compute the autocorrelation of this fo
and compare the result to the classical expectation
~2.30!.
ee

02501
e
q.

Let us observe from the outset that the classical re
involves the expressionn2 @Eq. ~2.26!#, which, throughl 1

@Eq. ~2.27!#, is related to the Fourier transform of the cube
a propagator. In Eq.~4.6!, the first termN contains the in-
verse propagators, which in turn is related to the cube
propagators through the Dyson equations~4.2!. The other
term Nint contains no such thing. Thus it is clear that o
only chance lies in the first term, the other one contribut
to sustaining the nonclassical correlations already presen
the free field case. Correspondingly, we shall ignoreNint in
what follows.

We thus approximate

^kabkcd&5Gda
21Gbc

211Gac
21Gdb

21, ~4.18!

leading to
^HabHcd&5
21

4
@caeGf b2Gaecf b#@ccgGhd2Gcgchd#@Ghe

21Gf g
211Geg

21Gh f
21#

5
1

4
@2caeGf b1Gaecf b#@de

dGf
21c1d f

dGe
21c2d f

cGe
21d2de

cGf
21d#

5
1

4
@GadG21bc1G21adGbc2GbdG21ac2G21bdGac12~caccbd2cadcbc!#.

For the same reasons as above, we shall disregard the propagator-independent terms.
Next, we write@recalling Eq.~3.25!#

Hab~x,x8!5E d4k

~2p!4 eik~x2x8!Hab~X,k!,

~4.19!

Hab~X,k!5E d4ue2 ikuHabS X1
u

2
,X2

u

2D
to get

^Hab~X,p!Hcd~Y,q!&5
1

4 E d4ud4ve2 i ~pu1qv !@J2K#, ~4.20!

where, using the translation invariance of the equilibrium propagators,

J5E d4r

~2p!4

d4s

~2p!4 expF ir S X2Y1
u1v

2 D GexpF isS X2Y2
u1v

2 D G3$Gad~r !G21bc~s!1G21ad~r !Gbc~s!%,

K5E d4r

~2p!4

d4s

~2p!4 expF ir S X2Y2
u2v

2 D GexpF isS X2Y1
u2v

2 D G3$Gbd~r !G21ac~s!1G21bd~r !Gac~s!%.
the
rict
Upon integration overu andv, theK term gives a contri-
bution proportional tod (4)(p1q). This is unrelated to the
noise autocorrelation, being only a cross correlation betw
 n

the positive and negative frequency components of
source, and we shall not analyze it further. We also rest
ourselves to the case wherea5b51, c5d52. Using the
2-14
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reflection symmetry of the equilibrium propagators, obta
ing the inverse propagators from Eq.~4.2! and retaining only
the dominant term in the correspondence limit, we find

^H11~X,p!H22~Y,q!&;
4l2

3
d~p2q!E d4s cos@2~s1p!

3~X2Y!#S12~s12p!G12~s!.

~4.21!

An analysis of this expression shows that in the high te
perature limit the correlation length is of orderM 21. This is
a microscopic scale, much smaller than the macroscale
relevance to the kinetic limit~if this limit exists!. Therefore
we are justified in writing

^H11~X,p!H22~Y,q!&;gd~X2Y!. ~4.22!

We computeg by simply integrating Eq.~4.21! over X

g5
l2

12
~2p!4S12~p!G21~p!d~p2q!. ~4.23!

From Eqs.~3.27! and ~2.26! we get

g5vp~2p!2d~p2q!d~p21M2!n2. ~4.24!

Assumingp0,q0>0, this is

g52vp
2~2p!2d~pW 2qW )d~q21M2!d~p21M2!n2.

~4.25!

So, writing

H~X,k!52pvkd~k21M2! j ~X,kW !1off-shell, ~4.26!

we get the final result

^ j ~X,pW ! j ~Y,qW !&52d~pW 2qW !d~X2Y!n2, ~4.27!

which agrees with the classical result, Eq.~2.30!.
We have shown that there is a piece of the full quant

noise which can be identified with the classical sourcej.
Clearly j does not account for the full quantum noise, t
difference being due among other things to the role of ne
tive frequency in the quantum theory.

Finally, we note that Abeet al. @15# have given a nonrel-
ativistic derivation of the Boltzmann-Langevin equatio
while ours is fully relativistic, being also immune to the re
ervations expressed by Greiner and Leupold@17#.

V. MASTER EFFECTIVE ACTION

So far in the paper we have referred several times to
possibility of conceiving the low order correlations of
quantum field as the field variables of an open quantum
tem, interacting with the environment provided by the high
correlations. The goal of this final section is to presen
formalism, the master effective action, built on this persp
tive. In particular, in this formalism the usual Dyson equ
tions are seen to emerge from the averaging over higher
02501
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relations. As a simple consequence and illustration,
derive Eq.~4.1!.

A. The low order effective actions

The simplest application of functional methods in qua
tum field theory concerns the dynamics of the expectat
value of the field@53#. The expectation value or mean fie
may be deduced from the generating functionalW@J#

exp$ iW@J#%5E DF expH iS@F#1 i E d4xJ~x!F~x!J ,

~5.1!

f~x!5
dW

dJ U
J50

. ~5.2!

We obtain the dynamics from the effective action, which
the Legendre transform ofW

G@f#5W@J#2E d4xJ~x!f~x!. ~5.3!

The physical equation of motion is

dG

df
50. ~5.4!

In a causal theory, we must adopt Schwinger’s CTP f
malism. The pointx may therefore lie on either branch of th
closed time path, or equivalently we may have two ba
ground fieldsfa(x)5f(xa). The classical action is define
as

S@Fa#5S@F1#2S@F2#* , ~5.5!

which automatically accounts for all sign reversals. We a
have two sources

E d4xJa~x!Fa~x!5E d4x@J1~x!F1~x!2J2~x!F2~x!#

and obtain two equations of motion

dG

dfa 50. ~5.6!

However, these equations always admit a solution wh
f15f25f is the physical mean field, and after this iden
fication, they become a real and causal equation of mo
for f.

The functional methods we have used so far to derive
dynamics of the mean field may be adapted to investig
more general operators. In order to find the equations
motion for two-point functions, for example, we add a no
local sourceKab(x,x8) @36,10#
2-15
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exp$ iW@Ja ,Kab#%5E DFa expi H S@Fa#1E d4xJaFa

1
1

2 E d4xd4x8KabF
aFbJ . ~5.7!

It follows that

dW

dKab~x,x8!
5

1

2
@fa~x!fb~x8!1Gab~x,x8!#.

Therefore the Legendre transform, the so-called 2PI effec
action,

G@fa,Gab#5W@Ja ,Kab#2E d4xJafa

2
1

2 E d4xd4x8Kab@fafb1Gab# ~5.8!

generates the equations of motion

dG

dfa 52Ja2Kabf
b;

dG

dGab 52
1

2
Kab . ~5.9!

The goal of this section is to show these two examples
just successive truncations of a single object, the maste
fective action.

B. Formal construction

In this section, we shall proceed with the formal constru
tion of the master effective action, a functional of the who
string of Green functions of a field theory whose variati
generates the Dyson-Schwinger hierarchy. Since we are
ing Schwinger-Keldish techniques, all fields are to be defin
on a closed time path. Also we adopt DeWitt’s condens
notation@54#.

We consider then a scalar field theory whose action

S@F#5
1

2
S2F21Sint@F# ~5.10!

decomposes into a free part and an interaction part

Sint@F#5 (
n53

`
1

n!
SnFn. ~5.11!

Here and after, we use the shorthand

KnFn[E ddx1 ...ddxnKna1...an~x1 ,...xn!

3Fa1
~x1!...Fan

~xn!, ~5.12!

where the kernelK is assumed to be totally symmetric.
Let us define also the ‘‘source action’’

J@F#5J1F1
1

2
J2F21Jint@F#, ~5.13!
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whereJint@F# contains the higher order sources

Jint@F#5 (
n53

`
1

n!
JnFn ~5.14!

and define the generating functional

Z@$Jn%#5eiW@$Jn%#5E DFeiSt@F,$Jn%#, ~5.15!

where

St@F,$Jn%#5J1F1
1

2
~S21J2!F21Sint@F#1Jint@F#.

~5.16!

We shall also call

Sint@F#1Jint@F#5SI . ~5.17!

As it is well known, the Taylor expansion ofZ with re-
spect toJ1 generates the expectation values of path-orde
products of fields

dnZ

dJ1a1~x1!...dJ1an~xn!
5^P$Fa1

~x1!...Fan
~xn!%&

[Fn
a1...an

~x1 ,...xn!, ~5.18!

while the Taylor expansion ofW generates the ‘‘connected’
Green functions~‘‘linked cluster theorem’’@4#!

dnW

dJ1a1~x1!...dJ1an~xn!
5^P$Fa1

~x1!...Fan
~xn!%&connected

[Cn
a1...an

~x1 ,...xn!. ~5.19!

Comparing these last two equations, we find the rule c
necting theF’s with the C’s. First, we must decompose th
ordered index set (i 1 ,...i n) @ i k5(xk ,ak)# into all possible
clustersPn . A cluster is a partition of (i 1 ,...i n) into NPn

ordered subsetsp5( j 1 ,...j r). Then

Fn
i 1 ...i n5(

Pn
)

p
Cr

j 1 ...j r. ~5.20!

Now from the obvious identity

dZ

dJni1 ...i n

[
1

n!

dnZ

dJi 1
...dJi n

~5.21!

we obtain the chain of equations

dW

dJni1 ...i n

[
1

n! (Pn
)

p
Cr

j 1 ...j r. ~5.22!

We can invert these equations to express the source
functionals of the connected Green functions, and define
master effective action~MEA! as the full Legendre transform
of the connected generating functional
2-16
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G`@$Cr%#5W@$Jn%#2(
n

1

n!
Jn(

Pn
)

p
Cr . ~5.23!

The physical case corresponds to the absence of exte
sources, whereby

dG`@$Cr%#

dCs
50. ~5.24!

This hierarchy of equations is equivalent to the Dyso
Schwinger series.

C. The background field method

The master effective action just introduced becomes m
manageable if one applies the background field met
~BFM! @53# approach. We first distinguish the mean field a
the two point functions

C1
i [f i , ~5.25!

C2
i j [Gi j , ~5.26!

We then perform the Legendre transform in two steps: fi
with respect tof and G only, and then with respect to th
rest of the Green functions. The first~partial! Legendre trans-
form yields

G`@f,G,$Cr%#[G2@f,G,$Jn%#2 (
n>3

1

n!
Jn(

Pn
)

p
Cr .

~5.27!

HereG2 is the two particle-irreducible~2PI! effective action
@36#

G2@f,G,$Jn%#5S@f#1
1

2
GjkS, jk2

i

2
ln Det G1Jint@f#

1
1

2
GjkJint, jk1W2 ~5.28!

and W2 is the sum of all 2PI vacuum bubbles of a theo
whose action is

S8@w#5
i

2
G21w21SQ@w#, ~5.29!

SQ@w#5SI@f1w#2SI@f#2SI@f# ,iw
i2

1

2
SI@F# ,i j w

iw j ,

~5.30!

where w is the fluctuation field aroundf, i.e., F5f1w.
DecomposingSQ into source-free and source-depende
parts, and Taylor expanding with respect tow, we may define
the background-field dependent coupling and sources w

sni1 ...i n
5 (

m>n

1

~m2n!!
Smi1 ...i nj n11 ...j m

f j n11...f j m,

~5.31!
02501
nal

-

re
d

t

t

re

xni1 ...i n
5 (

m>n

1

~m2n!!
Jmi1 ...i nj n11 ...j m

f j n11...f j m.

~5.32!

Now, from the properties of the Legendre transformation,
have, forn.2,

dW

dJn
U

J1 ,J2

[
dG`

dJn
U

f,G

. ~5.33!

Computing this second derivative explicitly, we conclu
that

dW

dJn
U

J1 ,J2

[
1

n!
fn1

1

2~n22!!
Gfn221 (

m53

n
dxm

dJn

dW2

dxm
.

~5.34!

Comparing this equation with

dW

dJni1 ...i n

[
1

n! (Pn
)

p
Cr

j 1 ...j r, ~5.35!

we obtain the identity

dW2

dxni1 ...i n

[
1

n! (Pn

*
)

p
Cr

j 1 ...j r, ~5.36!

where the asterisk above the sum means that clusters
taining one element subsets are deleted. This and

(
n>3

1

n!
Jn(

Pn
)

p
Cr5Jint@f#1

1

2
Gi j

dJint@f#

df idf j

1 (
n>3

1

n!
xn(

Pn

*
)

p
Cr ~5.37!

allow us to write

G`@f,G,$Cr%#[S@f#1S 1

2DGi j
dS@f#

df idf j2
i

2
ln Det G

1H W2@f,$xn%#2 (
n>3

1

n!
xn(

Pn

*
)

p
CrJ .

~5.38!

This entails an enormous simplification, since it impli
that to computeG` it is enough to considerW2 as a func-
tional of the xn , without ever having to decompose the
background dependent sources in terms of the original ex
nal sources.

D. Truncation and slaving: Loop expansion
and correlation order

After obtaining the formal expression forG` , and thereby
the formal hierarchy of Dyson-Schwinger equations,
should proceed with it much as with the BBGKY hierarch
in statistical mechanics@46#, namely, truncate it and clos
2-17



o

th
en
ic

s
d

r-
w
xp
ts

oo
n

io

an

nd

he

t
n
o
b

ni
e

t

ain
her

to

ex-
ints
nce

and
of

rs
of

la-

l-

at
ers-
y an

x-
iven
-

,
es
c-
are

nd
out
ics

he
,
at

the
f a

es
ely

n
ac-
o,

ust
nc-

ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D 61 025012
the lower-order equations by constraining the high order c
relation functions to be given~time-oriented! functionals of
the lower correlations. Truncation proceeds by discarding
higher correlation functions and replacing them by giv
functionals of the lower ones, which represent the dynam
in some approximate sense@2#. The system which results i
an open system and the dynamics becomes an effective
namics.

It follows from the above that truncations will be gene
ally related to approximation schemes. In field theory
have several such schemes available, such as the loop e
sion, largeN expansions, expansions in coupling constan
etc. For definiteness, we shall study the case of the l
expansion, although similar considerations will apply to a
of the other schemes.

Taking then the concrete example of the loop expans
we observe that the nonlocalx sources enter intoW2 in as
many nonlinear couplings of the fluctuation fieldw. Now,
W2 is given by a sum of connected vacuum bubbles, and
such graph satisfies the constraints

( nVn52i , ~5.39!

i 2( Vn5 l 21, ~5.40!

where i ,l ,Vn are the number of internal lines, loops, a
vertices withn lines, respectively. Therefore,

l 511(
n22

2
Vn ~5.41!

we conclude thatxn only enters the loop expansion ofW2 at
order n/2. At any given orderl, we are effectively setting
xn[0, n.2l . SinceW2 is a function of onlyx3 to x2l , it
follows that theCr ’s cannot be all independent. Indeed, t
equations relating sources to Green functions

dW2

dxni1 ...i n

[
1

n! (Pn

*
)

p
Cr

j 1 ...j r ~5.42!

have now turned, forn.2l , into the algebraic constraints

(
Pn

*
)

p
Cr

j 1 ...j r[0. ~5.43!

In other words, the constraints which make it possible
invert the transformation from sources to Green functio
allow us to write the higher Green functions in terms
lower ones. In this way, we see that the loop expansion is
itself a truncation in the sense above and hence any fi
loop or perturbation theory is intrinsically an effectiv
theory.

Actually, the number of independent Green functions a
given number of loops is even smaller than 2l . It follows
from the above thatW2 must be linear onxn for l 12<n
<2l . Therefore the corresponding derivatives ofW2 are
given functionals of thexm , m< l 11. Writing the lower
02501
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sources in terms of the lower order Green functions, ag
we find a set of constraints on the Green functions, rat
than new equations defining the relationship of sources
functions. These new constraints take the form

(
Pn

*
)

p
Cr

j 1 ...j r5 f n~G,C3 ,...Cl 11! ~5.44!

for l 12<n<2l . In other words, to a given orderl in the
loop expansion, onlyf, G and Cr , 3<r< l 11, enter into
G` as independent variables. Higher correlations are
pressed as functionals of these by virtue of the constra
implied by the loop expansion on the functional depende
of W2 on the sources.

However, these constraints are purely algebraic,
therefore do not define an arrow of time. The dynamics
this lower order functions is unitary. Irreversibility appea
only when one makes a time-oriented ansatz in the form
the higher correlations, such as the ‘‘weakening of corre
tions’’ principle invoked in the truncation of the BBGKY
hierarchy@2#. This is done by substituting some of the a
lowed correlation functions at a given number of loopsl, by
solutions of thel-loop equations of motion. Observe th
even if we use exact solutions, the end result is an irrev
ible theory, because the equations themselves are onl
approximation to the true Dyson-Schwinger hierarchy.

To summarize, the truncation of the MEA in a loop e
pansion scheme proceeds in two stages. First, for a g
accuracyl, an l-loop effective action is obtained which de
pends only on the lowestl 11 correlation functions, say
$f,G,C3 ,...Cl 11%. This truncated effective action generat
the l-loop equations of motion for these correlation fun
tions. In the second stage, these equations of motion
solved ~with causal boundary conditions! for some of the
correlation functions, say$Ck ,...Cl 11%, and the result is
substituted into thel loop effective action.~We say that
$Ck ,...Cl 11% have been slaved to$f,G,C3 ,...Ck21%.) The
resulting truncated effective action is generally complex a
the mean field equations of motion it generates will come
to be dissipative, which indicates that the effective dynam
is stochastic.

E. Example: The three-loop 2PI EA

We shall conclude this paper by explicitly computing t
2PI CTP EA for alf4 self-interacting scalar field theory
out of the corresponding MEA. We carry out our analysis
three loops order, this being the lowest order at which
dynamics of the correlations is nontrivial, in the absence o
symmetry breaking background field@10#.

To this accuracy, we have room for four nonlocal sourc
besides the mean field and the two point correlations, nam
x3 , x4 , x5 , andx6 . However, the last two enter linearly i
the generating functional. Thus the three-loop effective
tion only depends nontrivially on the mean field and the tw
three and four point correlations. By symmetry, there m
be a solution where the mean field and the three point fu
tion remain identically zero, which we shall assume.

Our first step is to compute Eq.~5.38!, which now reads
2-18
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G4@G,C4#[S 21

2 D ci j ~2h1M2!Gi j 2
i

2
ln Det G

1W2@f,$xn%#2
1

24
x4i jkl

3@C4
i jkl 1Gi j Gkl1GikGjl 1Gil Gjk#,

~5.45!

whereW2 denotes the sum of 2PI vacuum bubbles of a qu
tum field theory with quartic self interaction and a coupli
constantl2x4 @see Eqs.~5.28! and~5.30!# up to three loops

W25S 21

8 D ~l2x4! i jkl G
i j Gkl1S i

48D ~l2x4! i jkl

3~l2x4!pqrsG
ipGjqGkrGls. ~5.46!

Equation~5.36! yields

C4
i jkl 52 i ~l2x4!pqrsG

ipGjqGkrGls. ~5.47!

Inverting and substituting back in Eq.~5.45!, we obtain

G4@G,C4#[S 21

2 D ci j ~2h1M2!Gi j 2
i

2
ln Det G

2S 1

8Dl i jkl G
i j Gkl2S 1

24Dl i jkl C4
i jkl

1S i

48DC4
i jkl @Gip

21Gjq
21Gkr

21Gls
21#C4

pqrs .

~5.48!

This functional generates the self-consistent, time reve
invariant dynamics of the two and four particle Green fun
tions to three loop accuracy. To reduce it further to the
namics of the two point functions alone, we must slave
four point functions. Consider the three loops equation
motion for C4

@Gip
21Gjq

21Gkr
21Gls

21#C4
pqrs52 il i jkl . ~5.49!

Solving for this equation with causal boundary conditio
yields

G4
i jkl 52 ilpqrsG

ipGjqGkrGls ~5.50!

~in other words,x450) and substituting back in Eq.~5.48!
we obtain

G@G#[S 21

2 D ci j ~2h1M2!Gi j 2
i

2
ln Det G

2S 1

8Dl i jkl G
i j Gkl1S i

48Dl i jkl G
ipGjqGkrGlslpqrs ,

~5.51!
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which is seen to be equivalent to Eq.~4.1!. This effective
action leads to a dissipative and, as we have seen, also
chastic dynamics, which results from the slaving of the fo
point functions.

VI. DISCUSSIONS

In this paper we have introduced a new object, the s
chastic correlation functionG, whose expectation value re
produces the usual propagators~Green functions!, but whose
fluctuations are designed to account for the quantum fluc
tions in the binary product of~operator! fields. We have in-
troduced the dynamical equation forG which takes the form
of an explicitly stochastic Dyson equation, and showed t
in the kinetic limit, both the fluctuations inG become the
classical fluctuations in the one particle distribution functio
and the dynamic equation forG’s Wigner transform be-
comes the Boltzmann-Langevin equation. Each of these
sults has interest of its own.A priori, there is no simple
reason why the fluctuations derived from quantum fie
theory should have a physical meaning corresponding t
phenomenological entropy flux and Einstein’s relation.

The notion that Green functions~and indeed, higher cor
relations as well! may or even ought to be seen as possess
fluctuating characters~when placed in the larger context o
the whole hierarchy! with clearly discernable physical mean
ings is likely to have an impact on the way we perceive
statistical properties of field theory. For example, we a
used to fixing the ambiguities of renormalization theory
demanding certain Green functions to take on given val
under certain conditions~conditions which should resembl
the physical situation of interest as much as possible, as
cussed by O’Connor and Stephens@55#!. If the Green func-
tions themselves are to be regarded as fluctuating, then
same ought to hold for the renormalized coupling consta
defined from them, and for the renormalization group~RG!
equations describing their scale dependence.

While the application of renormalization group metho
to stochastic equations is presented in well-known mo
graphs@56#, our proposal here goes beyond these results i
least two ways. First, in our approach the noise is not pu
by hand or brought in from outside~e.g., the environment o
an open system!, as in the usual Langevin equation approa
but it follows from the~quantum! dynamics of the system
itself. Actually, the possibility of learning about the syste
from the noise properties~whether it is white or colored,
additive or multiplicative, etc.!—unraveling the noise, or
treating noise creatively—is a subtext in our program. S
ond, our result suggests that stochasticity may, or should,
only appear at the level of equations of motion, but also
level of the RG equations, as they describe the running
‘‘constants’’ which are themselves fluctuating.

Indeed, the possibility of a nondeterministic renormaliz
tion group flow is even clearer if we think of the RG a
encoding the process of eliminating irrelevant degrees
freedom from our description of a system@57#. These elimi-
nation processes lead as a rule to dissipation and noise
noise and dissipation in the influence action and the C
effective action are but a particular case. If the need for s
2-19
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ESTEBAN CALZETTA AND B. L. HU PHYSICAL REVIEW D 61 025012
an enlarged RG has not been felt so far, the groundbrea
work on the dynamical RG by Ma, Mazenko, Hohenbe
Halperin, and many significant others notwithstanding, it
probably due to the fact that the bulk of RG research
been focused on equilibrium, stationary properties rat
than far-from-equilibrium dynamics@58#. An attempt to con-
structing a RG theory for nonequilibrium processes fro
these considerations is currently under way@59#.
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APPENDIX: CLOSED TIME PATH CONVENTIONS

The closed time path~CTP! or Schwinger-Keldysh tech
nique @34# is a bookeeping device to generate diagramm
expansions for true expectation values~as opposed to IN-
OUT matrix elements! of certain quantum operators. Th
basic idea is that any expectation value of the form

^INuT̃@f~x1!...f~xn!#T@f~xn11!...fm#uIN&, ~A1!

where uIN& is a suitable initial quantum state,x1 to xm are
space time points,f is the field operator,T stands for time
-

s

l
,
.

02501
ng
,
s
s
r

-
t
y

g
d
s-
x-
er
i-

ic

ordering andT̃ for anti time ordering, may be thought of as
path ordered expectation value on a closed time path ran
from t52` to ` and back. These path ordered products
generated by path integrals of the form

E Df1Df2@f2~x1!...f2~xn!f1~xn11!...fm
1 #

3ei @S~f1!2S* ~f2!#, ~A2!

wheref1 is a field configuration in the forward leg of th
path, andf2 likewise on the return leg. These configuratio
match each other on a spacelike surface at the distant fu
The boundary conditions at the distant past depend on
initial state uIN&; for example, if this is a vacuum, then w
add a negative imaginary part to the mass. We shall
discuss these boundary conditions further, except to note
we assume the validity of Wick’s theorem~see@10#!.

In general we shall use a latin indexa,b,.... taking values
1 or 2 to denote the CTP branches. Where the space
position is not specified, it must be assumed that it has b
subsummed within the CTP upper index. Also we shall re
to the expressionS(fa)5S(f1)2S* (f2) as the CTP ac-
tion. We always use the Einstein sum convention, and if
explicit, integration over space time must be understood
well.

It is convenient to introduce a CTP metric tensorcab
5diag(1,21) to keep track of sign inversions. Thu
cabJ

afb5J1f12J2f2. In general, we write an expressio
like this asJafa, whereJa5cabJ

b; the indexa has been
lowered by means of the metric tensor. The opposite op
tion of raising an index is accomplished with the inver
metric tensorcab5(c21)ab5diag(1,21). ThusJa5cabJb .
p.
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