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Sphaleron transition rate in the presence of dynamical fermions
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We investigate the effect of dynamical fermions on the sphaleron transition rate at finite temperature for the
Abelian Higgs model in one spatial dimension. The fermion degrees of freedom are included through bosoniza-
tion. Using a numerical simulation, we find that massless fermions do not change the rate within the measure-
ment accuracy. Surprisingly, the exponential dependence of the sphaleron energy on the Yukawa coupling is
not borne out by the transition rate, which shows a very weak dependence on the fermion mass.

PACS number~s!: 11.30.Fs, 11.10.Wx, 11.15.Ha
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I. INTRODUCTION

The (111)-dimensional Abelian Higgs model merits in
terest for the physical properties it shares with the el
troweak theory. In particular, it has topologically distin
minima of the energy, corresponding to different windi
numbers of the scalar field. Transitions between these s
are possible at zero temperature through quantum tunne
and at finite temperature also by thermal activation. W
makes these transitions very interesting physically is t
they are accompanied by an anomalous change in the
mion number, if the model includes a chiral coupling of t
gauge field to fermions. In the electroweak theory, th
transitions were, in all probability, responsible for the e
sure of the primordial baryon asymmetry. Moreover, th
may have led to electroweak baryogenesis. Processe
these type are called sphaleron transitions, owing their n
to sphalerons, the lowest-barrier configurations separa
energy minima.

Since processes violating fermion number involve fie
configurations, which are nonperturbatively far from t
trivial vacuum, the problem requires a nonperturbative tre
ment. A useful nonperturbative framework is provided
Euclidean lattice field theory, wherever processes at z
temperature or static thermal properties are concerned. H
ever, the fermion-number violating processes in question
cur in real time and at a finite temperature, and thus are
of reach for Euclidean quantum theory. The problem sim
fies considerably only in the classical approximation. Re
time thermal properties of the resulting classical field the
can be studied numerically after lattice discretization. It h
been established recently that, under certain conditions,
classical approximation is reliable for real-time correlati
functions in (111) dimensions@1#. There also is strong nu
merical evidence that a finite continuum limit exists for t
sphaleron transition rate in the one-dimensional Abel
Higgs model on a lattice@2–5#. In this respect, the status o
the classical approximation in (111) dimensions is mark-
edly different from that in (311) dimensions, where the
existence of a continuum limit for the classical sphaleron r
is far from obvious@6–8#.
0556-2821/99/61~2!/025009~8!/$15.00 61 0250
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There is by now an extensive body of work devoted
numerical study of the sphaleron transition rate in the cl
sical approximation. Over time, attention has shifted fro
one-dimensional models@2,3,4,5,9# to realistic approxima-
tions of the electroweak theory in (311) dimensions@10–
13#. Nevertheless, the one-dimensional models have not
exhausted their utility. In particular, they can be used to
vestigate the role of dynamical fermions, such as th
present in the standard model, in the real-time processe
interest. While in (311) dimensions these degrees of fre
dom resist classical treatment, such treatment is possib
one-dimensional models upon bosonization. This appro
was first proposed by Roberge@15# who used it to study
static properties of sphalerons at a finite fermion dens
@16#. Here we apply this approach to study the real-tim
dynamical evolution of the Abelian Higgs model coupled
fermions.

The effect of fermions on sphalerons has been inve
gated in a variety of ways. These include perturbation the
@20,21#, valence approximation@22#, and expansion in the
number of fermion families@14#. These methods are used
determine the sphaleron~free! energy rather than the sphale
ron transition rate, a dynamical quantity whose determi
tion requires a real-time treatment at finite temperature.
cently Aarts and Smit@23# used the expansion in the larg
number of families for a numerical study of fermions in
classical Bose field background. The latter method is co
numerically and has yet to yield a figure for the sphaler
rate. To the best of our knowledge, the current work is
first calculation of the sphaleron rate to date to account
dynamical fermions.

The content of the paper is as follows. In Sec. II we d
cuss the bosonized form of the model and its vacuum st
ture. In Sec. III we determine the variation of the sphaler
energy with the Yukawa coupling. Our numerical results
the sphaleron transition rate are presented in Sec. IV. Sec
V contains the discussion.

II. THE MODEL

Our starting point is the Lagrangian density in tw
dimensional space-time, which is
©1999 The American Physical Society09-1
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L5c̄ igm~]m2 ieg5Am!c2
1

4
FmnFmn1

1

2
~Dmf!~Dmf!*

2
l

4
~ ufu22v2!22y~@f~c̄c1c̄g5c!

1f* ~ c̄c2c̄g5c!#!, ~1!

using the standard notation for the two-component spi
fermionsc, the complex scalar fieldf, and the U~1! gauge
field Am . HereDm5]m22ieAm , wheree is the gauge cou-
pling. We assume that the fields satisfy periodic bound
conditions. The scalar self-coupling and the Yukawa c
pling arel andy, respectively. This model is to be regulate
such that the gauged currentc̄gmg5c is conserved while the
vector current obeys the anomaly equation

]mc̄gmc[]mJm52
e

2p
emnFmn . ~2!

In its global form, the anomaly equation means that
variation of the baryon numberB equals that of Chern
Simons numberNCS:

d

dt
~B2NCS!5

d

dt S E dxc†c1
e

p E dx A1D50. ~3!

Better suited for our purposes is the Bose-equivalent form
the Lagrangian:

L5
1

2 S ]ms2
eA\

Ap
AmD 2

2
1

4
FmnFmn1

1

2
~Dmf!~Dmf!*

2
l

4
~ ufu22v2!21Y~fe22iAp/\s1f* e2iAp/\s!. ~4!

This form is obtained by introducing a real scalar fields
related to the fermion currents via1

c̄gmc5
A\

Ap
emnS ]ns2

eA\

Ap
AnD ,

c̄gmg5c5
A\

Ap
S ]ns2

eA\

Ap
AmD . ~5!

1These formulas are slightly different from the standard boson
tion formulas, which do not contain the vector potential in t
bosonized expressions for the currents. The reason for this di
ence is that in our model the fermions couple to the gauge fi
through the axial rather than the vector coupling. The Wilson l
factor, which must be included in the gauge invariant regulari
expressions for the fermionic currents, is therefore different h
from the standard one. The Wilson line in the local limit does n
reduce to one and is responsible for the appearance of the v
potential on the right-hand side of Eq.~5!.
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The vector current obviously obeys the anomaly Equat
~2!.

Two comments are in order with regard to Eq.~4!. First
note that, in order to satisfy periodic boundary conditions
Eq. ~4!, the fields only needs to be periodic moduloA\p.
Similarly to the winding number of the scalar field, the p
riodicity mismatch ofs, *dx ]xs/A\p, changes by an inte
ger under topologically nontrivial gauge transformation
However, unlike the winding number off, the periodicity
mismatch ofs cannot be changed dynamically because
equation of motion fors, which follows from Eq.~4!, re-
spects whatever boundary conditions were imposed ons ini-
tially. Thus, imposing periodic boundary conditions ons is a
matter of gauge choice. We will assumes to be periodic in
space when we solve the model numerically.

Secondly, note that we have included explicitly Planck
constant, obviating the fact that the bosonization essenti
links quantumtheories. In order to determine the loop expa
sion parameter for the model, we re-express the fields
units ofv. For convenience, we also express the coordina
in units 1/vAl. We then obtain for the Lagrangian

L
lv4 5

1

2 S ]ms2gA \

pv2 AmD 2

2
1

4
FmnFmn1~Dmf!

3~Dmf!* 2
1

4
~ ufu221!21Y~fe22iApv2/\s

1f* e2iApv2/\s!, ~6!

where Dm5]m22igAm , g5e/Al, and Y5Y/lv3. It is
now evident that the loop expansion parameter for the mo
is \/v2. This parameter must be small for the classical a
proximation to make sense. In the absence of fermions,v2/\
is an overall factor in front of the action in the path integr
With fermions included,\/v2 appears explicitly in the La-
grangian~6! in such a way that in the range of validity of th
classical approximation, the gauge coupling of thes field is
weak.

The temporal-gauge Hamiltonian density correspond
to Eq. ~6! is

H5
1

2 FE21uPu21P21S ]xs2
gA\

vAp
AD 2

1uDxfu2G
1

1

4
~ ufu221!21Y~fe22ivAp/\s1f* e2ivAp/\s!,

~7!

where A is the spatial component of the gauge potent
whereasE, P, and II are the canonical conjugate momenta
A, f, ands, respectively. In the following we solve numer
cally the equations of motion obtained from this Ham
tonian. It is easy to verify that the time evolution describ
by H preserves the local Gauss’ constraints

]xE2gA \

pv2 P22ig~Pf2P* f* !50. ~8!
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SPHALERON TRANSITION RATE IN THE PRESENCE . . . PHYSICAL REVIEW D 61 025009
While the Hamiltonian~7! is best suited for numerica
description of real-time evolution, the static properties of
model are made more transparent by eliminating thes de-
gree of freedom. To this end, we perform the gauge trans
mation s→0, A→A1v(Ap/A\g)s8 and a→a
12vAp/\s, wherea5argf. We also solve the constrain
~8! for P and obtain the following for the remaining degre
of freedom:

H5
1

2 S E21Pr
21

Pa
2

r2 1
pv2

g2\
~E822gPa!2D 1

1

2
r2~a8

22gA!21
1

2
r821

g2\

2pv2 A21
1

4
~r221!2

12Yr cos~a!, ~9!

wherePr and Pa are the radial and angular conjugate m
menta of the scalar field, respectively. Here and in the
lowing, derivatives with respect tox are denoted by primes
We see that the fermions induce a photon massgA\/pv2. In
the classical regime,\/v2!1, this mass is small compared
2g, the photon mass induced by the Higgs mechanism. T
form of the Hamiltonian is also used in the following fo
generating the canonical ensemble of initial configuration
finite temperature.

It is important to understand how the fermions of t
original formulation appear in the bosonized version. Fi
the baryon number in thes50 gauge is minus the Chern
Simons number:

B52
g

p R dx A. ~10!

Keeping this in mind, we can analyze the vacuum struct
of the theory. In the fermionless Abelian Higgs model, the
is an exact degeneracy of vacua labeled by the winding n
ber of the scalar field. In these vacua, related by topolo
cally nontrivial gauge transformations, the Chern-Simo
number is equal to the winding number. This is not so in
presence of fermions; the minima of the energy corresp
to different values of an observable quantity, the ferm
number. Hence, these minima are no longer related b
gauge transformation. Moreover, these states have diffe
energies.

To see how this comes about, consider the minimum
the energy~9! for a macroscopically small winding numbe
n!L, whereL is the spatial size of the system. Minimizin
the static part of Eq.~9! with respect toA, we find

A5
1

2g

1

11~\/4pv2r2!
a8. ~11!

In the caseY50 we take an ansatz of a constantr. Using Eq.
~11!, we determine that the constanta852pn/L minimizes
the static energy, and therefore we have the relation

n52S 11
\

4pv2r2DB, ~12!
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wheren is the winding number of the fielda. We see that
close to the classical limit minima of the energy appro
mately correspond to integer values of the fermion numb
If r is constant, so isa852pn/L, whereas for the constan
magnitude of the scalar field one findsr2511O„(n/L)2

….
Hence, the scalar self-coupling term in the potential a
proaches its absolute minimum in the infinite-volume lim
We then obtain for the vacuum energy

E~B!/L5\p
B2

L2 S 11
\

4pv2D1OS B

L D 4

. ~13!

In the generalYÞ0 case,a8 is no longer constant for a
minimal-energy winding solution. For simplicity let us con
sider the limit of the gauge and Yukawa couplings bei
small compared to the scalar self-couplingg!1, Y!1. Then
r does not deviate significantly from 1. In the classical lim
\/v2!1 we again see that the baryon number is equal to
winding number ofa. Consequently, one expects that t
fermions will appear in the spectrum as the solitons of
field a. This is indeed the case. Using Eq.~11!, we obtain the
static equation fora to be

a912YS 4p
v2

\
11D sina50. ~14!

This is the sine-Gordon equation, which possesses so
solutions. The mass of the fermion is equal to the energy
the ~one-winding! solution2

M f58A2Y/~114pv2/\!. ~15!

Similarly, there exist multisoliton solutions for anyn. For a
very large system sizeL the n fermion state has the energ
nMf .

At larger Y the winding solutions corresponding to fe
mion excitations look somewhat different. It is not energe
cally favorable to keepr spatially constant. Instead, in th
region where the phasea varies between2p and p, the
radial field r is significantly smaller than its value in th
vacuum. This suppresses the contribution of the kinetic
ergy of thea field to the energy. At very largeY, when the
mass ofa is larger than the mass ofr, this is obvious since
it is the only way to keep down the energetic cost of t
winding configuration.

Having discussed the static properties of the model,
can now identify the relevant dimensional scales of the pr
lem. This identification is important for the numerical stud
presented in the following. Consider the relevant leng
scales first. These are the fermion~soliton! size of the order

2The mass of the fermion in the Lagrangian Eq.~4! is given by the
relation M f5\yv. This, however, does not contradict th
bosonized result of Eq.~15! since the relation between the Yukaw
couplingy in Eq. ~1! and the couplingY in Eq. ~4! is nonlinear. The
standard bosonization procedure leads toY}y2 ~taking account of
the normal ordering of the exponential ofs!, which is indeed con-
sistent with Eq.~15!.
9-3
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A. KOVNER, A. KRASNITZ, AND R. POTTING PHYSICAL REVIEW D61 025009
A\/(8pYv2) and the sphaleron size of order 1~the sphale-
ron configuration is discussed in some detail in the next s
tion!. The system size should be far above, and the sp
discretization~the lattice spacing! far below any of these
scales. Next, the relevant time scales are the inverse freq
cies O(2g)21, O(1), andO(2Y21/2) for the gauge, radia
scalar, and angular scalar modes, respectively. The time
tegration step should be chosen well below any of th
scales. Finally, consider the relevant energy scales.
sphaleron energy is of order 1. If we wish to be in the ran
of validity of the sphaleron approximation, we must insist
the inverse temperatureb@1. On the other hand, for th
classical approximation to make sense, the temperature
be well above the Higgs „O(\/v2)…, the photon
„O(2\g/v2)…, and thea meson„O(2\A2Y/v2)… masses.
For light fermions, an additional condition relating the tem
perature and the system size follows from Eq.~13!. Knowing
that the fermion coupling to the gauge field is small in t
classical limit\/v2!1, we can compare this energy to th
exact energy forB free massless fermions,\pB(B11)/L,
whose relative deviation from Eq.~13! is 1/B. The latter is
small if a typical value ofB is large. At a finite temperature
1/b this condition is achieved ifp\b/v2!L.

In this work we use, in view of these considerations,
following choices for the various parameters: gauge coup
g5A2.5; Yukawa coupling 0<Y<0.080; the loop expan
sion parameter\/v250.05; and the inverse temperature
<b<15. We performed simulations with the values ofa
50.25 anda50.125 and found no measurable lattice sp
ing dependence of the transition rate. Similarly, we var
the system length between 250 and 625, and observe
finite-size effects.

III. THE SPHALERON

As we know, transitions can occur between the vacua
different winding number. Of interest for the rate of the
transitions is the energy of the sphaleron configuration~the
lowest energy barrier separating the vacua!.

For the massless fermion case (Y50), Roberge has
shown that the sphaleron configuration is identical to the
in the no-fermion case if the fermion densityn is macro-
scopically small@16#.

For the massive caseYÞ0 the sphaleron solution is no
known analytically. Instead, we determined the sphaleron
ergy, applying the extremization method@17–19#. The idea
is to look for static solutions of the classical equations
motion ~including sphaleron configurations! by minimizing
the sum of the squares of the right-hand sides of the eq
tions of motion for the fields to

V[( S ]V

]w i
D 2

. ~16!

The sum extends over all the degrees of freedomw i whereV
is the potential part ofH. The minimization is done using
simple relaxation procedure, i.e., integrating relaxation eq
02500
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tions ]tw i52]w i
V. In the following, we use the same pro

cedure, withV replaced byV, to measure the integer part o
Chern-Simons number.

We used the method as described to determine the he
of the sphaleron barrier separating the minima with wind
numbers 0 and 1, relative to the absolute minimum ofV. The
results are displayed in Fig. 1.

As is clear from the figure, the sphaleron energy is w
approximated by the relation

Esph~Y!5E01bAY1cY, ~17!

where a least-squares fit yieldsE050.94276260.000015,b
50.1191960.00056,c53.74460.005. As expected,E0 co-
incides with the sphaleron energy for massless fermio
which, in turn, is equal to the sphaleron energy in the
sence of fermions.

Figure 2 displays the values of the real and imagin
parts of the scalar field~u andv! for two configurations:Y
50 andY50.001. What is clearly visible is that forY50
the field passes through zero and then winds slowly ba
through the minimumu21v251, to the other side of the
Mexican hat. ForY50.001, the field passes with equal spe
over the Mexican hat, but immediately bends toward
minimum atu521, v50.

The dependence displayed in Eq.~17! can be given a
qualitative explanation. The sphaleron energy measures
difference between the energy of the sphaleron configura
and the vacuum energy. The latter corresponds to the a
lute minimum of the potential which occurs, for small pos
tive Y, for a field value close to2v. ForY50, the sphaleron
configuration reduces to the fermionless case

F~x!5 i tanh~x/& !exp~ ipx/L !. ~18!

Corrections to the sphaleron energy at a finiteY can be
estimated as follows. First, the phase factor exp(ipx/L) is
affected strongly for any finite value ofY. This comes about

FIG. 1. The energy of the sphaleron configuration relative to
vacuum energy. The plusses are the values obtained by the ex
ization method. The solid curve denotes the least-squares fit to
form a1bAY1cY.
9-4
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SPHALERON TRANSITION RATE IN THE PRESENCE . . . PHYSICAL REVIEW D 61 025009
because the scalar field must revert to its vacuum value
finite interval, centered atx50 to avoid an extensive (}L)
contribution to the sphaleron energy. Much like in the solit
solution of Eq. ~14!, the size of this interval is
O(\/8pYv2)1/2, in the classical regime where\/v2!1.
Likewise, the corresponding correction to the sphaleron
ergy is of the same order asM f given by Eq.~15!. As Y
grows and becomesO(\/8pv2), there occurs a crossove
from O(AY) to O(Y) behavior of the sphaleron energy co
rection, given in this case by the spatial integral of t
Yukawa term in the sphaleron background.

IV. THE SPHALERON TRANSITION RATE

In the present work, we will be interested in temperatu
that are large enough for quantum effects to be ignored
that the dynamics are essentially described by classical
theory. Moreover, we will restrict our attention in this wo
to temperatures that are small relative to the sphaleron
ergy, so that the transition rate is suppressed by the fa
e2bEsph. Our choice of the gauge and Yukawa coupling
temperature, linear size, and discretization in space and
is discussed at the end of Sec. II.

We use a familiar technique to simulate sphaleron tra
tions @4#. Namely, we use a combination of Metropolis a
heat bath Monte-Carlo algorithms to draw initial conditio
for real-time evolution from the canonical ensemble at te
perature 1/b, corresponding to the discretized version of E
~9!. Having generated an initial condition, we switch to t
Hamiltonian ~7!, which is better suited for real-time evolu
tion. In doing so, we initially sets50, whereasP is deter-
mined by Gauss’ law.

However, the procedure for measuring the sphaleron

FIG. 2. The real and imaginary parts of the scalar field~u andv!
in the sphaleron configuration, forY50 and forY50.001.
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requires modification in the presence of fermions. The r
can no longer be defined, as it was without fermions, as
diffusion constant per unit volume of Chern-Simons numb
Indeed, the energy is no longer a periodic function of Che
Simons number, hence the average squared topolog
charge can no longer grow linearly with time. We use
alternative measurement method in which the transitions
counted directly in a real-time simulation. In order to eas
identify sphaleron transitions, the field configuration is su
jected to relaxation~cooling!. A configuration can be though
to represent thermal fluctuations in the vicinity of an ener
minimum ~a vacuum!. The cooling eliminates thermal fluc
tuations. This is done by solving, for every fieldw i , the
relaxation equation

]tw i52]w i
V. ~19!

The algorithm is essentially the same as the one employe
determine the sphaleron configurations, but we are now
ing the regular static potentialV instead ofV given by Eq.
~16!. The resulting cooled configuration has an appro
mately integer Chern-Simons number and transitions can
easily counted, as illustrated in Fig. 3.

We performed three series of simulations. In the first
ries we measured the sphaleron transition rate in the Abe
Higgs model without the fermions, where the rate is alrea
known from earlier work@3,4#. The goal here was to com
pare the rate obtained by counting transitions to the
found as the diffusion constant of Chern-Simons numb
The reliability of the former method depends on the fr
quency of transitions. If the system size is too large or
temperature is too high, the counting method is not accu
because individual transitions cannot be resolved. We v
fied that the agreement between the two methods was ex
lent for all the combinations of sizes and temperatures
ported here.

In the second series of measurements we determined
transition rate for massless (Y50) fermions. Table I sum-
marizes the temperature dependence of the rate without

FIG. 3. A sample time history of the Chern-Simons numb
measured before and after cooling.
9-5
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A. KOVNER, A. KRASNITZ, AND R. POTTING PHYSICAL REVIEW D61 025009
with massless fermions. As is clearly visible, there is
measurable effect of the massless fermions on the rate w
the error bars.

In our final series of simulations we investigated the tra
sition rate in the presence of massive fermions. Specifica
the sphaleron transition rate was measured using the coo
and/or counting method at fixed values ofb, namely forb
513, 14, and 15. We considered values ofY between 0 and
0.080.

The results are plotted in Figs. 4, 5, and 6. As can be s
from the figures, the transition rate, which is approximat
constant as a function ofY for Y,0.02, drops off forY
.0.02, the rate atY50.080 being a factor 2 (b513) to
3 (b515) smaller than atY50. A dropoff of the rate as a
function of Y is exactly what we expect, as the sphaler
energy increases withY according to Eq.~17!. However, this
rate dependence onY is much weaker than predicted by th
sphaleron approximation, which would predict an expon
tial dropoff ~solid line!. We discuss this result in more deta
in the following section.

V. DISCUSSION

We investigated the effect of dynamical fermions on t
sphaleron transition rate, combining bosonization and
classical approximation. As discussed in Sec. II, the resul
theory retains important qualitative features expected fr
the presence of dynamical fermions. This theory is also
teresting in its own right, since it helps elucidate the role
additional~other than the gauge field and the Higgs sca!

FIG. 4. The sphaleron transition rate as a function of Yuka
coupling atb513. The solid curve isRu , the right-hand side of Eq
~20!. The dashed curve isR as given by Eq.~21!.

TABLE I. A comparative table of transition rate without ferm
ons and with fermions at zero Yukawa coupling.

b G ~no fermions! G (Y50)

13 (16.260.9)31025 (16.161)31025

14 (7.0660.4)31025 (6.6860.34)31025

15 (3.0660.2)31025 (3.0560.21)31025
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degrees of freedom in sphaleron transitions. Let us then s
marize the lessons learned.

First of all, comparing the rate in the presence of mass
fermions to the rate without fermions, we see that within t
error the essential effect of including the fermions is a fac
that is independent of the temperature for the range of t
peratures considered (12,b,16). In other words, the inclu-
sion of fermions does not alter the functional dependence
the temperature. Such behavior agrees very well with w
one would expect in the sphaleron approximation for
rate, which, in the absence of fermions, gives@24#

G5kT2/3S Esph

T D 7/6

e2Esph/T, ~20!

wherek is a numerical constant. In this formula the exp
nential is the Boltzmann factor of the sphaleron configu
tion. As we saw in Sec. III, massless fermions do not cha
the sphaleron energy. The temperature dependence o

a

FIG. 5. The sphaleron transition rate as a function of Yuka
coupling atb514. The solid curve isRu , the right-hand side of Eq
~20!. The dashed curve isR as given by Eq.~21!.

FIG. 6. The sphaleron transition rate as a function of Yuka
coupling atb515. The solid curve isRu , the right-hand side of Eq
~20!. The dashed curve isR as given by Eq.~21!.
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nonexponential prefactor results from the existence of z
modes in the sphaleron background which are not prese
the background of a vacuum configuration. Massless fer
ons do give rise to new zero-modes, absent in the no-ferm
case. In our model, the new zero mode is thea meson. How-
ever, this mode is not associated with the sphaleron onl
exists both in the sphaleron and the vacuum backgrou
Hence it cannot change the temperature dependence o
prefactor.

More interesting is the dependence of the rate on
Yukawa coupling. As one can see from Figs. 4, 5, and 6,
rate is approximately constant for 0,Y,0.02, edging down

We are not aware of, nor do we attempt here, a rigor
determination of the transition rate in the sphaleron appro
mation in the presence of dynamical fermions. However, i
first attempt to understand its dependence on the Yuk
coupling, one might expect that a reasonable first approxi
tion to the rate would be one that is based on the rate form
~20! for the fermionless case. The solid curve (Ru) in Figs. 4,
5, and 6 denotes the right-hand side of Eq.~20!, taking for
Esph the Y dependent value given by Eq.~17!. Thus it is
obvious that the predicted exponential decay as a functio
Y is inconsistent with the numerical data.

While we will not resolve this discrepancy in the prese
work, we would like to point out two possible effects of th
fermions on the rate.

The first one is related to the fact that the presence
fermions lifts the degeneracy of the vacuum as a function
Chern-Simons number to the energy of the created~anti!fer-
mion, as is indicated schematically in Fig. 7. In the sphale
approximation the rate is controlled by the sphaleron ene
or, rather, the difference between the sphaleron energy
the vacuum energy. This would be applicable for the r
from theNCS50 to theNCS'61 state. However, the corre
sponding Boltzmann factor for the reverse transition is d
ferent~larger!, due to the energy differenceM f @cf.~15!#, by
a factorebM f . The same conclusion is reached by applyi
detailed balance at temperatureT.

To compare the sphaleron approximation with the m
sured rate, we should apply an appropriate averaging o

FIG. 7. Schematic representation of the effective potential a
function of Chern-Simons number.
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the various types of transitions, which include creation
well as annihilation of~anti!fermions. To this effect, let us
consider the following simplified model. Our one
dimensional system can be divided intog intervals of the
order of the soliton size. Each interval can be in any of th
states: empty, occupied by a soliton~fermion!, or occupied
by an antisoliton~but not both!, each with energyM f . Tran-
sitions can take place from the empty state to the soliton
antisoliton state with probability per unit timeRu , while the
reverse probability isRd by detailed balance equal t
RuebM f . Direct transitions between soliton and antisolito
state are not possible. The total transition rate will be eq
to g times the~Boltzmann-!averaged transition rate per inte
val. The latter yields (2Ru12Rde2bM f)/(112e2bM f)
54Ru /(112e2bM f) ~the denominator comes from norma
ization!. The total transition rate is simplyg times larger.
One finds the following for the total rate:

R5
4g

112e2bM f
Ru . ~21!

As M f is proportional toAY, we thus find a nontrivial
AY-dependent exponential correction. It is to be expec
that a similar correction is present in the formula for t
effective sphaleron transition rate.

The rateR is plotted for comparison with our numerica
data in Figs. 4–6. It is obvious that forY.0.02R is still in
disagreement with our numerical results. A somewhat be
agreement between the data andR at small values ofY is
possibly coincidental, since the description in terms of loc
ized nonoverlapping solitons only applies at largeY, such
that exp(2bAY) is a small number. We conclude that th
near independence of the transition rate onY cannot be ex-
plained away by the statistical distribution of fermions.

Another possible explanation for the very weak depe
dence of the rate onY is as follows. In the zero fermion mas
case one degree of freedom, the phase of the scalar field
zero mode and we have a corresponding Goldstone bo
For Y.0, the degeneracy is broken and the Goldstone bo
acquires a mass. However, for very small values ofY, the
symmetry remains approximate and all values of the ph
angle remain almost equally occupied. In particular, we c
expect a high fermion density. This means that the Gaus
approximation around the field minimum (f'21) will not
be a good one, and one has to apply an appropriate treat
of the Sine-Gordon model instead. We intend to address
point in the future.

ACKNOWLEDGMENTS

A.K. and R.P. wish to acknowledge financial suppo
from the Portuguese Fundac¸ão para a Cieˆncia e a Tecnolo-
gia, under Grant Nos. CERN/S/FAE/1177/97 and CERN
FIS/1203/98.

a

9-7



v,

ov

K.

A. KOVNER, A. KRASNITZ, AND R. POTTING PHYSICAL REVIEW D61 025009
@1# G. Aarts and J. Smit, Nucl. Phys.B511, 451 ~1998!.
@2# D. Yu. Grigorev, V. A. Rubakov, and M. E. Shaposhniko

Phys. Lett. B216, 172 ~1989!.
@3# A. Krasnitz and R. Potting, Phys. Lett. B318, 492 ~1993!.
@4# P. de Forcrand, A. Krasnitz, and R. Potting, Phys. Rev. D50,

6054 ~1994!.
@5# W. H. Tang and J. Smit, Nucl. Phys.B540, 437 ~1999!.
@6# P. Arnold, D. Son, and L. Yaffe, Phys. Rev. D59, 105020

~1999!; 55, 6264~1997!.
@7# P. Arnold, Phys. Rev. D55, 7781~1997!.
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