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Sphaleron transition rate in the presence of dynamical fermions
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We investigate the effect of dynamical fermions on the sphaleron transition rate at finite temperature for the
Abelian Higgs model in one spatial dimension. The fermion degrees of freedom are included through bosoniza-
tion. Using a numerical simulation, we find that massless fermions do not change the rate within the measure-
ment accuracy. Surprisingly, the exponential dependence of the sphaleron energy on the Yukawa coupling is
not borne out by the transition rate, which shows a very weak dependence on the fermion mass.

PACS numbgs): 11.30.Fs, 11.10.Wx, 11.15.Ha

[. INTRODUCTION There is by now an extensive body of work devoted to
numerical study of the sphaleron transition rate in the clas-
The (1+ 1)-dimensional Abelian Higgs model merits in- sical approximation. Over time, attention has shifted from
terest for the physical properties it shares with the elecone-dimensional modelf2,3,4,5,9 to realistic approxima-
troweak theory. In particular, it has topologically distinct fions of the electroweak theory in (31) dimensiong 10—
minima of the energy, corresponding to different winding 13]. Nevertheless, the one-dimensional models have not yet

numbers of the scalar field. Transitions between these statéXhausted their utility. In particular, they can be used to in-
are possible at zero temperature through quantum tunnelingeStigate the role of dynamical fermions, such as those
and at finite temperature also by thermal activation. WhaPresent in the standard model, in the real-time processes of
makes these transitions very interesting physically is thafhterest. While in (3-1) dimensions these degrees of free-
they are accompanied by an anomalous change in the feflom resist classical treatment, such treatment is possible in
mion number, if the model includes a chiral coupling of the ©"€-dimensional models upon bosonization. This approach
gauge field to fermions. In the electroweak theory, thesdVas first proposed by Roberd@5] who used it to study
transitions were, in all probability, responsible for the era-Stalic properties of sphalerons at a finite fermion density
sure of the primordial baryon asymmetry. Moreover, theyl16l- Here we apply this approach to study the real-time
may have led to electroweak baryogenesis. Processes gynamical evolution of the Abelian Higgs model coupled to
these type are called sphaleron transitions, owing their nammions. , , _
to sphalerons, the lowest-barrier configurations separating 1he effect of fermions on sphalerons has been investi-
energy minima. gated in a variety of ways. These include perturbation theory
Since processes violating fermion number involve fieldl20,23, valence approximatiofi22], and expansion in the
configurations, which are nonperturbatively far from thenumber of fermion familie$14]. These methods are used to
trivial vacuum, the problem requires a nonperturbative treatd€teérmine the sphalerdiree) energy rather than the sphale-
ment. A useful nonperturbative framework is provided by™n transition rate, a dynamical quantity whose determina-

Euclidean lattice field theory, wherever processes at zerBOn requires a real-time treatment at finite temperature. Re-

temperature or static thermal properties are concerned. HoweNtly Aarts and Smif23] used the expansion in the large

ever, the fermion-number violating processes in question od2umber of families for a numerical study of fermions in a
cur in real time and at a finite temperature, and thus are odtiassical Bose field background. The latter method is costly
of reach for Euclidean quantum theory. The problem simpli-nUmerically and has yet to yield a figure for the sphaleron
fies considerably only in the classical approximation. Real/at€: To the best of our knowledge, the current work is the
time thermal properties of the resulting classical field theory/irSt calculation of the sphaleron rate to date to account for
can be studied numerically after lattice discretization. It haglynamical fermions. _ _
been established recently that, under certain conditions, the 1he content of the paper is as follows. In Sec. Il we dis-
classical approximation is reliable for real-time correlationCUSS the bosonized form of the model and its vacuum struc-

functions in (1+1) dimensiong1]. There also is strong nu- ture. In S_ec. [l we determine Fhe variation of.the sphaleron
merical evidence that a finite continuum limit exists for the €N€rdy with the Yukawa coupling. Our numerical results for
sphaleron transition rate in the one-dimensional Abeliarfe SPhaleron transition rate are presented in Sec. IV. Section
Higgs model on a latticg2—5]. In this respect, the status of ¥ contains the discussion.

the classical approximation in (11) dimensions is mark- Il. THE MODEL

edly different from that in (3-1) dimensions, where the '

existence of a continuum limit for the classical sphaleron rate Our starting point is the Lagrangian density in two-
is far from obvioug 6—8]. dimensional space-time, which is
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— g 1 1 The vector current obviously obeys the anomaly Equation
L=yiyH(o,—iey A = 7 Fu,F*"+ 5(D,¢)(D ) (2.
Two comments are in order with regard to Ed). First

N s oo - note that, in order to satisfy periodic boundary conditions for
=2 Ul =V =y ([ b(gy+ dys) Eq. (4), the fieldo only needs to be periodic moduld 7.
Similarly to the winding number of the scalar field, the pe-
+¢* (ph— rysih)]), (1)  riodicity mismatch ofe, fdx dya/ A, changes by an inte-

ger under topologically nontrivial gauge transformations.
using the standard notation for the two-component spinoHowever, unlike the winding number ah, the periodicity
fermions ¢, the complex scalar fielgh, and the W1) gauge mismatch ofo cannot be changed dynamically because the
field A,. HereD,=4,—2ieA,, whereeis the gauge cou- equation of motion foro, which follows from Eq.(4), re-
pling. We assume that the fields satisfy periodic boundargpects whatever boundary conditions were imposeat -
conditions. The scalar self-coupling and the Yukawa coudially. Thus, imposing periodic boundary conditions @is a
pling arex andy, respectively. This model is to be regulated matter of gauge choice. We will assuraeio be periodic in
such that the gauged currepiyy5y is conserved while the SPace when we solve the model numerically.
vector current obeys the anomaly equation Secondly, note that we have included explicitly Planck’s
constant, obviating the fact that the bosonization essentially
o e links quantuntheories. In order to determine the loop expan-
dpy*yp=0,"=— EEWFW. (2 sion parameter for the model, we re-express the fle!ds in
units ofv. For convenience, we also express the coordinates

In its global form, the anomaly equation means that theIn units 1. We then obtain for the Lagrangian

variation of the baryon numbeB equals that of Chern- r o1 7 2 4
(ﬁMU—g VW_VZA’U’)

Simons numbeNcs: = _Z u
cs N 2 FF*"+(D,¢)
g(B—N 5)=i dx://Tlp+E dxA|=0. (3 w1 2 2 —2iNm2iho
dt ST dt ™ e X (D*¢) —Z(|d>| 1)+ e
Better suited for our purposes is the Bose-equivalent form of +p*e? vazlha), (6)
the Lagrangian:
, where D, =3, —2igA,, g=e/\x, and Y=Y/\V3. It is
1 eVh v 1 o now evident that the loop expansion parameter for the model
L= 5| Iwo— J Aul| ~ ZF,U-VF + E(D#‘f’)(D ¢) is /v2. This parameter must be small for the classical ap-

proximation to make sense. In the absence of fermiofig,

N s e T i ol T is an overall factor in front of the action in the path integral.
— 2 [T =V HY(pe T+ g* e (4) with fermions included/:/v? appears explicitly in the La-
grangian(6) in such a way that in the range of validity of the

This form is obtained by introducing a real scalar fietd classical approximation, the gauge coupling of ¢hield is

related to the fermion currents via We’?ﬁé temporal-gauge Hamiltonian density corresponding
B N3 e\/% to Eq.(6) is
l//’y’ul)[l: \/_; E,(LV( (91/0-_ WAV ' 1 g\/% 2
H==| E?+|P|2+ 12+ | dy0— —=A| +|Dy¢|?
: -S| o

ﬁ(&va— i%A (5)

¢7u75¢:\/_; \/; wl

+ Z(|¢|2_1)2+j}(¢e*2lv\s‘mo+ o* e2|v\e‘?/?f,a),

)

These formulas are slightly different from the standard bosonizawhereA is the spatial component of the gauge potential
tion formulas, which do not contain the vector potential in the ‘

. ; - “whereass, P, and Il are the canonical conjugate momenta of
bosonized expressions for the currents. The reason for this diffe

ence is that in our model the fermions couple to the gauge fielcriA' ¢, anda, respectively. In the following we solve numeri-
through the axial rather than the vector coupling. The Wilson IinecaIIy the equations of motion obtained irom this Hamil-

factor, which must be included in the gauge invariant regularizei}on;?n' It is eaS);hto lverlflyCEhat tf,le tlmtta €:V?|ut|0n described
expressions for the fermionic currents, is therefore different her y 7t preserves the local Lbauss: constraints
from the standard one. The Wilson line in the local limit does not

. : [#
reduce to one and is responsible for the appearance of the vector 9.E— M- 2ig(Pd—P* $*)=0 8
potential on the right-hand side of EG). =9 mv2 9(Pé ¢*)=0. ®
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While the Hamiltonian(7) is best suited for numerical wheren is the winding number of the field. We see that
description of real-time evolution, the static properties of theclose to the classical limit minima of the energy approxi-
model are made more transparent by eliminatingdhée-  mately correspond to integer values of the fermion number.
gree of freedom. To this end, we perform the gauge transforf p is constant, so is' =27n/L, whereas for the constant
mation o¢—0, A—A+v(Jm/Vhg)e' and a—a  magnitude of the scalar field one fingd=1+O((n/L)?).
+2v\/m/fo, wherea=arge$. We also solve the constraint Hence, the scalar self-coupling term in the potential ap-
(8) for II and obtain the following for the remaining degrees proaches its absolute minimum in the infinite-volume limit.

of freedom: We then obtain for the vacuum energy
Lo, o, Pa, ™ 2|, 12 &B)/IL=h 51 oB4 13
HZE E+PP+?+gTﬁ(E _nga) +§p(a’ ( ) = WF +m+ E . ( )
9°h 1 In the generaly#0 case,a’ is no longer constant for a
2 12 2 2 2 ’
—29A)7+ 2P + QWV?A + Z(p -1 minimal-energy winding solution. For simplicity let us con-
sider the limit of the gauge and Yukawa couplings being
+2Yp coq a), (9 small compared to the scalar self-couplipgi1, Y<1. Then

. ) p does not deviate significantly from 1. In the classical limit
whereP, andP,, are the radial and angular conjugate mo-7/,2<1 we again see that the baryon number is equal to the
mer_1ta of the s_calar field, respectively. Here and in _the fo'winding number ofa. Consequently, one expects that the
lowing, derivatives with respect toare denoted by primes. fermions will appear in the spectrum as the solitons of the
We see that the fermions induce a photon ngags/7v2. I field «. This is indeed the case. Using Edj1), we obtain the
the classical regimei/v2<1, this mass is small compared to static equation for to be
29, the photon mass induced by the Higgs mechanism. This
form of the Hamiltonian is also used in the following for
generating the canonical ensemble of initial configurations at a’'+2y
finite temperature.

It is important to understand how the fermions of thethjs s the sine-Gordon equation, which possesses soliton

original formulation appear in the bosonized version. Firstsojytions. The mass of the fermion is equal to the energy of
the baryon number in the=0 gauge is minus the Chern- the (one-winding solutior?

Simons number:

2

Ame 41
T

sina=0. (14

M=8\2)I(1+4mv?IHh). (15)

Bz—gédxA. (10 - . o .
T Similarly, there exist multisoliton solutions for amy For a

very large system sizke the n fermion state has the energy
Keeping this in mind, we can analyze the vacuum structurey M .
of the theory. In the fermionless Abelian Higgs model, there At larger ) the winding solutions corresponding to fer-
is an exact degeneracy of vacua labeled by the winding nummijon excitations look somewhat different. It is not energeti-
ber of the scalar field. In these vacua, related by topologically favorable to keep spatially constant. Instead, in the
cally nontrivial gauge transformations, the Chern-Simonsegion where the phase varies between-7 and m, the
number is equal to the winding number. This is not so in theradial field p is significantly smaller than its value in the
presence of fermions; the minima of the energy correspongacuum. This suppresses the contribution of the kinetic en-
to different values of an observable quantity, the fermionergy of thea field to the energy. At very larg®, when the
number. Hence, these minima are no longer related by fhass ofa is larger than the mass of this is obvious since
gauge transformation. Moreover, these states have differeftis the only way to keep down the energetic cost of the
energies. winding configuration.

To see how this comes about, consider the minimum of Having discussed the static properties of the model, we
the energy(9) for a macroscopically small winding number can now identify the relevant dimensional scales of the prob-
n<L, whereL is the spatial size of the system. Minimizing |em. This identification is important for the numerical study
the static part of Eq(9) with respect toA, we find presented in the following. Consider the relevant length

1 1 scales first. These are the fermi@oliton) size of the order
A= o9 Tr (hiamZpd) & (1)

2The mass of the fermion in the Lagrangian E4).is given by the
relation M;=#yv. This, however, does not contradict the
bosonized result of Eq15) since the relation between the Yukawa
couplingy in Eqg. (1) and the coupling’ in Eq. (4) is nonlinear. The
5 standard bosonization procedure lead¥'toy? (taking account of
_ the normal ordering of the exponential @f, which is indeed con-
: (1+ 4wv2pz) B, (12 sistent with Eq.(15).

In the cas€)=0 we take an ansatz of a constantJsing Eq.
(11), we determine that the constasmt=2wn/L minimizes
the static energy, and therefore we have the relation
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Ji1(87IV?) and the sphaleron size of order(the sphale- 0.99 ' ' ' .
ron configuration is discussed in some detail in the next sec-
tion). The system size should be far above, and the spatial .98 |
discretization(the lattice spacingfar below any of these e

scales. Next, the relevant time scales are the inverse frequen rd
ciesO(2g) %, O(1), andO(2Y Y2 for the gauge, radial 3 °% | T
scalar, and angular scalar modes, respectively. The time in-2
tegration step should be chosen well below any of these™ 0.6 | e

scales. Finally, consider the relevant energy scales. The P

sphaleron energy is of order 1. If we wish to be in the range 005 |

of validity of the sphaleron approximation, we must insist on RN e
the inverse temperatur>1. On the other hand, for the
classical approximation to make sense, the temperature mus  0.94
be well above the Higgs (O(#/v?)), the photon
(O(2#g/v?)), and thea meson(O(2#42)Iv?)) masses.

For light fermions, an additional condition relating the tem-  FIG. 1. The energy of the sphaleron configuration relative to the
perature and the system size follows from EkB). Knowing  vacuum energy. The plusses are the values obtained by the extrem-
that the fermion coupling to the gauge field is small in theization method. The solid curve denotes the least-squares fit to the
classical limiti/v?<1, we can compare this energy to the form a+ byVY+cY.

exact energy foB free massless fermioné,mB(B+1)/L,

whose relative deviation from E@13) is 1/B. The latter is  tions d,¢;= —d V. In the following, we use the same pro-
small if a typical value oB is large. At a finite temperature cedure, with) replaced by, to measure the integer part of
1/B this condition is achieved |f7ﬁﬁ/v2<|_ Chern-Simons number.

In this work we use, in view of these considerations, the \We used the method as described to determine the height
following choices for the various parameters: gauge couplingf the sphaleron barrier separating the minima with winding
g=1/2.5; Yukawa coupling & Y<0.080; the loop expan- numbers 0 and 1, relative to the absolute minimuri¥ oThe
sion parametefi/v2=0.05; and the inverse temperature 13results are displayed in Fig. 1.
<pB=<15. We performed simulations with the values af As is clear from the figure, the sphaleron energy is well
=0.25 anda=0.125 and found no measurable lattice spac-approximated by the relation
ing dependence of the transition rate. Similarly, we varied

the system length between 250 and 625, and observed no _
finite-size effects. EsprY)=Eo+bY+c), 17

0 0.002 0.004 0.006 0.008 0.01
Y

where a least-squares fit yieléls=0.942762-0.000015b
IIl. THE SPHALERON =0.11919 0.00056,c=3.744* 0.005. As expected;, co-

As we know, transitions can occur between the vacua Oi‘nc?des_with th_e sphaleron energy for massless_ fermions,
different winding number. Of interest for the rate of theseWNich. in turn, is equal to the sphaleron energy in the ab-

transitions is the energy of the sphaleron configuratibe sence of ferm_ions. . .
lowest energy barrier separating the vacua Figure 2 displays the values of the real and imaginary

For the massless fermion cas@’<0), Roberge has parts of the scalar fielu andv) for two configurations)’

shown that the sphaleron configuration is identical to the ong O @ndY=0.001. What is clearly visible is that fQy=0

in the no-fermion case if the fermion densityis macro- the field passes through zero and then winds slowly back,

scopically smal[16]. through the minimunmu?+v?=1, to the other side of the
For the massive cas+0 the sphaleron solution is not Mexican hat. E002=0.001, thg field passes with equal speed

known analytically. Instead, we determined the sphaleron erRVer the Mexican hat, but immediately bends toward the

ergy, applying the extremization methpti7—19. The idea  MiNIMum atu=—1,v=0. . .

is to look for static solutions of the classical equations of 1h€ dependence displayed in Ed.7) can be given a

motion (including sphaleron configuration®y minimizing qualitative explanation. The sphaleron energy measures the

the sum of the squares of the right-hand sides of the equéj_ifference between the energy of the sphaleron configuration
tions of motion for the fields to and the vacuum energy. The latter corresponds to the abso-

lute minimum of the potential which occurs, for small posi-
tive ), for a field value close te-v. For Y=0, the sphaleron

Vv \? configuration reduces to the fermionless case
y=3 (5) . (16 J
' d(x)=i tanh x/v2)exp(i mx/L). (18
The sum extends over all the degrees of freedgwhereV Corrections to the sphaleron energy at a fiditean be

is the potential part of{. The minimization is done using a estimated as follows. First, the phase factor exx/l) is
simple relaxation procedure, i.e., integrating relaxation equaaffected strongly for any finite value @f. This comes about
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1 T T T T T T T T T T T

4
Y=0 + _5,|,,_+wH-l+_|+
= o+ +. 3 - raw data — -
0.8 Y = 0.001 x ;##-F# ; ++ cooled data <
- ; + 2
R SAnN
0.8 * 0 A N n ﬁ
< X X X + v
04 x 1 %
X +
0.2 o
> 0
02 x5 7 1 ! I | L ) !
x 0 50 100 150 200 250 300 350 400
-0.4 %
X X X X + . . .
06 FIG. 3. A sample time history of the Chern-Simons number,
e i measured before and after cooling.
+
-0.8 S N ++ ) . ) ] )
T + requires modification in the presence of fermions. The rate
"‘I:H_hw-‘#_ . . . .
. can no longer be defined, as it was without fermions, as the
1 . . . .
12 - -08 -06 -04 02 0 0.2 diffusion constant per unit volume of Chern-Simons number.
u Indeed, the energy is no longer a periodic function of Chern-

Simons number, hence the average squared topological

charge can no longer grow linearly with time. We use an

alternative measurement method in which the transitions are
ounted directly in a real-time simulation. In order to easily

Identify sphaleron transitions, the field configuration is sub-

. njected to relaxatioricooling). A configuration can be thought

to represent thermal fluctuations in the vicinity of an energy

solution of Eq. (14), the size of this interval is minimum (a vacuum. The cooling eliminates thermal fluc
2\12 ; ; 24 : -
O(A/8m)V )", in the classical regime wher/v: <1. tuations. This is done by solving, for every field, the

Likewise, the corresponding correction to the sphaleron en- | ; .
ergy is of the same order ad; given by Eq.(15. As ) relaxation equation

grows and become®(#/8wv?), there occurs a crossover

from O(4)) to O()) behavior of the sphaleron energy cor- doi=—d D (19)
rection, given in this case by the spatial integral of the ad fin

Yukawa term in the sphaleron background.

FIG. 2. The real and imaginary parts of the scalar fieldndv)
in the sphaleron configuration, fg/=0 and for))=0.001.

because the scalar field must revert to its vacuum value in
finite interval, centered at=0 to avoid an extensivexL)

The algorithm is essentially the same as the one employed to
determine the sphaleron configurations, but we are now us-
ing the regular static potentidd instead of) given by Eq.

In the present work, we will be interested in temperatureg16). The resulting cooled configuration has an approxi-
that are large enough for quantum effects to be ignored, smately integer Chern-Simons number and transitions can be
that the dynamics are essentially described by classical fieldasily counted, as illustrated in Fig. 3.
theory. Moreover, we will restrict our attention in this work ~ We performed three series of simulations. In the first se-
to temperatures that are small relative to the sphaleron emies we measured the sphaleron transition rate in the Abelian
ergy, so that the transition rate is suppressed by the factddiggs model without the fermions, where the rate is already
e AEsoh Our choice of the gauge and Yukawa couplings,known from earlier work3,4]. The goal here was to com-
temperature, linear size, and discretization in space and timeare the rate obtained by counting transitions to the one
is discussed at the end of Sec. Il. found as the diffusion constant of Chern-Simons number.

We use a familiar technique to simulate sphaleron transiThe reliability of the former method depends on the fre-
tions [4]. Namely, we use a combination of Metropolis and quency of transitions. If the system size is too large or the
heat bath Monte-Carlo algorithms to draw initial conditionstemperature is too high, the counting method is not accurate
for real-time evolution from the canonical ensemble at tem-because individual transitions cannot be resolved. We veri-
perature 18, corresponding to the discretized version of Eq.fied that the agreement between the two methods was excel-
(9). Having generated an initial condition, we switch to thelent for all the combinations of sizes and temperatures re-
Hamiltonian (7), which is better suited for real-time evolu- ported here.
tion. In doing so, we initially se-=0, whereadl is deter- In the second series of measurements we determined the
mined by Gauss’ law. transition rate for masslesg/€0) fermions. Table | sum-

However, the procedure for measuring the sphaleron ratmarizes the temperature dependence of the rate without and

IV. THE SPHALERON TRANSITION RATE

025009-5



A. KOVNER, A. KRASNITZ, AND R. POTTING PHYSICAL REVIEW D61 025009

TABLE I. A comparative table of transition rate without fermi- 0.0001
ons and with fermions at zero Yukawa coupling.

B I' (no fermiong I' (y=0)
13 (16.2-0.9)x 105 (16.1+1)x 105 1x10°
14 (7.06:0.4)x10°° (6.68+0.34)x 10 °
15 (3.06:0.2)x10°° (3.05+0.21)x 1075 =
1x10°6
with massless fermions. As is clearly visible, there is no
measurable effect of the massless fermions on the rate withi
the error bars.
In our final series of simulations we investigated the tran- 1x1077 L . : ‘ ‘ : ‘ : :
sition rate in the presence of massive fermions. Specifically, 0 001 002 003 004 0.05 0.06 0.07 0.08
the sphaleron transition rate was measured using the cooliny Y

and/or counting method at fixed values @f namely for FIG. 5. The sphaleron transition rate as a function of Yukawa
=13, 14, and 15. We considered value)obetween 0 and  ¢oypling atg=14. The solid curve i®, , the right-hand side of Eq.
0.080. (20). The dashed curve R as given by Eq(21).
The results are plotted in Figs. 4, 5, and 6. As can be seen
from the figures, the transition rate, which is approximatelydegrees of freedom in sphaleron transitions. Let us then sum-
constant as a function qf for <0.02, drops off for)  marize the lessons learned.
>0.02, the rate af)=0.080 being a factor 24=13) to First of all, comparing the rate in the presence of massless
3 (B=15) smaller than a=0. A dropoff of the rate as a fermions to the rate without fermions, we see that within the
function of Y is exactly what we expect, as the sphaleronerror the essential effect of including the fermions is a factor
energy increases withl according to Eq(17). However, this  that is independent of the temperature for the range of tem-
rate dependence Qi is much weaker than predicted by the peratures considered (£23<16). In other words, the inclu-
sphaleron approximation, which would predict an exponension of fermions does not alter the functional dependence on
tial dropoff (solid ling). We discuss this result in more detail the temperature. Such behavior agrees very well with what
in the following section. one would expect in the sphaleron approximation for the
rate, which, in the absence of fermions, giyad]
V. DISCUSSION
E 716
We investigated the effect of dynamical fermions on the = KT2’3( iph) e Espn/T, (20
sphaleron transition rate, combining bosonization and the T
classical approximation. As discussed in Sec. Il, the resulting
theory retains important qualitative features expected fronwhere « is a numerical constant. In this formula the expo-
the presence of dynamical fermions. This theory is also innential is the Boltzmann factor of the sphaleron configura-
teresting in its own right, since it helps elucidate the role oftion. As we saw in Sec. Ill, massless fermions do not change
additional (other than the gauge field and the Higgs soalarthe sphaleron energy. The temperature dependence of the

0.001 ¢ : : : : : : : : 0.0001
0.0001 1x107°
~ ~
1x10°® 1x10
1x10-6 1 1 1 1 1 1 1 1 1 1X10-7| 1 1 1 1 1 1 1 1
0 001 002 003 004 005 006 007 0.08 001 002 003 004 005 006 0.07 0.08
Y Y

FIG. 4. The sphaleron transition rate as a function of Yukawa FIG. 6. The sphaleron transition rate as a function of Yukawa
coupling at3=13. The solid curve iR, the right-hand side of Eq. coupling at8=15. The solid curve i&,, the right-hand side of Eq.
(20). The dashed curve R as given by Eq(21). (20). The dashed curve R as given by Eq(21).
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the various types of transitions, which include creation as
well as annihilation of(antijfermions. To this effect, let us
consider the following simplified model. Our one-
dimensional system can be divided ingointervals of the
order of the soliton size. Each interval can be in any of three
states: empty, occupied by a solitéiermion), or occupied
by an antisolitor(but not both, each with energ;. Tran-
sitions can take place from the empty state to the soliton or
antisoliton state with probability per unit tinf®,, while the
reverse probability isRy by detailed balance equal to
R.eMt. Direct transitions between soliton and antisoliton
state are not possible. The total transition rate will be equal
to g times the(Boltzmannjaveraged transition rate per inter-
val. The latter vyields (R,+2R4e PM1)/(1+2e AMr)
=4R,/(1+2e #Mr) (the denominator comes from normal-
FIG. 7. Schematic representation of the effective potential as #zation). The total transition rate is simply times larger.
function of Chern-Simons number. One finds the following for the total rate:

sph [

Potential

-1 -0.5 0 0.5 1
Chern-Simons number

nonexponential prefactor results from the existence of zero
modes in the sphaleron background which are not present in R= 49 R 21)
the background of a vacuum configuration. Massless fermi- 1+2e AM¢ U
ons do give rise to new zero-modes, absent in the no-fermion
case. In our model, the new zero mode is ¢hemeson. How-
ever, this mode is not associated with the sphaleron only; it ) , , .
exists both in the sphaleron and the vacuum backgroundé'S. Mr is proportional to VY, we thus find a nontrivial
Hence it cannot change the temperature dependence of the’-dependent exponential correction. It is to be expected
prefactor. that a similar correctlon_l_s present in the formula for the
More interesting is the dependence of the rate on th&ffective sphaleron transition rate. _ _
Yukawa coupling. As one can see from Figs. 4, 5, and 6, the 1he rateR is plotted for comparison with our numerical
rate is approximately constant forQV<0.02, edging down df’:lta in Figs. 4—.6. It is obwoqs that fgr>0.0R is still in
We are not aware of, nor do we attempt here, a rigorouglsagreement with our numerical results. A somewhat_ better
determination of the transition rate in the sphaleron approxidgreement between the data aRdt small values ofy is
mation in the presence of dynamical fermions. However, in £OSSIb|y commdental, since the descrlpt!on in terms of local-
first attempt to understand its dependence on the Yukaw#&d nonoverlapping solitons only applies at lagesuch
coupling, one might expect that a reasonable first approximahat QXphB\/j’) is a small number. We conclude that the
tion to the rate would be one that is based on the rate formulB€ar independence of the transition rate)osannot be ex-
(20) for the fermionless case. The solid cun®,) in Figs. 4, plained away by_ the statlstlca_l distribution of fermions.
5, and 6 denotes the right-hand side of E2p), taking for Another possible explanation for the very weak depen-
Eqpn the I dependent value given by EL7). Thus it is dence of the rate ol is as follows. In the zero fermion mass

obvious that the predicted exponential decay as a function giase one degree of freedom, the phase of the scalar field, is a
Y is inconsistent with the numerical data. zero mode and we have a corresponding Goldstone boson.

While we will not resolve this discrepancy in the presentFor V>0, the degeneracy is broken and the Goldstone boson
work, we would like to point out two possible effects of the &cquires a mass. However, for very small valueg)pthe
fermions on the rate. symmetry remains approximate and all values of the phase

The first one is related to the fact that the presence ofingle remgin aImo;;t equally Occqpied. In particular, we can
fermions lifts the degeneracy of the vacuum as a function ofXPect a high fermion density. This means that the Gaussian
Chern-Simons number to the energy of the creasdifer- ~ approximation around the field minimung¢ —1) will not
mion, as is indicated schematically in Fig. 7. In the sphaleror?€ @ good one, and one has to apply an appropriate treatment
approximation the rate is controlled by the sphaleron energ?f f[he'Slne-Gordon model instead. We intend to address this
or, rather, the difference between the sphaleron energy arRPint in the future.
the vacuum energy. This would be applicable for the rate
from theNcs=0 to theNcg~ + 1 state. However, the corre-
sponding Boltzmann factor for the reverse transition is dif-
ferent(largen, due to the energy differendd; [cf.(15)], by
a factore®M:, The same conclusion is reached by applying A.K. and R.P. wish to acknowledge financial support
detailed balance at temperature from the Portuguese Fundacpara a Ciacia e a Tecnolo-

To compare the sphaleron approximation with the meagia, under Grant Nos. CERN/S/FAE/1177/97 and CERN/P/
sured rate, we should apply an appropriate averaging ove¥lS/1203/98.
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