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Parity conservation in supersymmetric vectorlike theories
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We give the reconfirmation that parity is conserved in vectorlike supersymmetric theories, such as super-
symmetric QCD with massive quarks with no cubic couplings among chiral multiplets, based on fermionic
path integrals, originally developed by Vafa and Witten. We also look into the effect of supersymmetric
breaking through gluino masses, and see that parity conservation is in tact also in this case. Our conclusion is
valid, when only bosonic parity-breaking observable terms are considered in path integrals such as the original
Vafa-Witten formulation.

PACS numbsefs): 11.15.Bt, 11.15.Tk, 11.30.Pb, 11.30.Rd

I. INTRODUCTION is to evaluate the explicit fermionic path integrals, originally
developed by Vafa and Wittepd], which can be applied
Nonperturbative chiral symmetry breakifg] is an im-  easily also to broken supersymmetric theories. We show that
portant aspect for phenomenological model building basetve can overcome the above-mentioned difficulty with the
on vectorlike theories, such as in composite particle modelgluino-quarks-squark mixing, by using two-component
[2,3]. It has been proven that parity symmetry is conservedpinor notation.
in nonsupersymmetric vectorlike QCD theories, and is not The model we deal with in this paper is a globally super-
broken spontaneously even nonperturbativpdy5]. This  symmetric vectorlike theory with massive chiral multiplets
proof [4] is based on the evaluation of fermionic path inte-coupled to a non-Abelian vector multiplet with no cubic cou-
grals, which always gives a non-negative vacuum energy afling among chiral multiplets. Our proof is based on three
ter adding parity-breaking terms. However, the question hagajor assumptions: the first one for the massiveness of all
risen whether the Vafa-Witten constrajdt5] for the nonsu-  the quark chiral multiplets, the second one about the absence
persymmetric case can be avoided in supersymmetric vectof the Yukawa-couplings among chiral multiplets, and the
like theories because of the new interactions among gluinathird one that we rely on the method|i#] for purely bosonic
quark-squark$6,7], and whether parity is broken like other parity-breaking observables. Therefore our method does not
global symmetries8]. These particular interaction terms cover the fermionic parity-breaking observables like Wilson
with scalar dependence seem to be the main obstruction fdermions[13] treated in lattice QCD.The massiveness of
the proof for the positive definiteness of the determinant irquarks are also important for nonperturbative conservation of
the fermionic path integrals—7]. supersymmetry, due to the well-defined nonzero Witten in-
On the other hand, gauge symmetry breaking is known télex Tr(—1)" in such caseb10]. This is because supersym-
occur for massless supersymmetric QCD, when the numbenetry is conserved, only if the vacuum energy is zero. There-
of flavor Ny is smaller than the number of colofd;<N [9].  fore the nonperturbative breaking of supersymmetry would
This seems to suggest the parity breaking in supersymmetrigause the shift of vacuum energy, causing the breaking of
vectorlike theories may well occur, depending on the num{parity symmetry{4,5]. Interestingly, we will find that parity
bersN; or N. However, at the same time, it contradicts theis conserved also for a vectorlike supersymmetric theory,
other universal wisdom about supersymmetry that supersymike nonsupersymmetric vectorlike theory. We also look into
metric vacuum is stable when the Witten index F()F  the effect of gluino masses, which will not disturb the main
[10] is nonzero, e.g., Te 1) =N for the gauge group body of the proof for the supersymmetric case, and therefore
SU(N), and therefore the vacuum energy most probabbparity_ is also conserved in broken supersymmetric vectorlike
stays zero with no parity breaking. It has been also recentljheories.
pointed out{11] that supersymmetric QCD has condensate-
free phase with no gluino condensate, based on the important
papers by Seiberd 2] clarifying the nonperturbative conser- |l REVIEW FOR NONSUPERSYMMETRIC VECTORLIKE
vation of parity. Considering all of these developments, it THEORY
seems worthwhile to look into this question of nonperturba-
tive parity conservation in vectorlike supersymmetric theo-

ries, from the viewpoint of the Vafa-Witten constrajdi, as our notation. Suppose the total Lagrangifth)=L£—\X

an independent and different formulation. ; : o -
; . . . with a parameter\ is a generalization of the parity-
Motivated by this observation, in our present paper, we P 9 panty

. o X ; conserving LagrangiarC, such as that of QCD, with a
reconfirm that parity is conserved nonperturbatively in ex- i h herE
actly supersymmetric vectorlike theories, as well as in broParity-non-conserving observabk such as the=F term,
ken supersymmetric cases with massive gluini. Our method/ith @ real constank. If parity is broken in the vacuum and

We start with reviewing the parity conservation in the
nonsupersymmetric ca$é,5]| first, in order also to elucidate

*Email address: nishino@nscpmail.physics.umd.edu For reviews for supersymmetric QCD on lattice, see, ¢1df].
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(X)# 0, then the theory can choose a vacuum state in which 0 —i

A(X)<O0 due to the signature ambiguity ¢X). Hence the gh=—da, (Cop)=(Cup)= i oo/

vacuum energ¥e(\) can be lower thaf(0) of the parity-

conserving vacuum energy:£(A #0)<E(0). Based on these, it is easy to confirm the reality of each term

However, an explicit evaluation of path integrals reveals;, oy Lagrangian.

that this would not happen; i.e., there is no such vacuum ag was shown by Vafa and Witten in a vectorlike theory
whose energy is lower than that of the parity-conserving oNes) the fermionic space for the path integfall) can be a

[4]. Consider the path integral in Euclidean space for thejirect sum of the positive and negative eigenstates of the
vacuum energy=(1): Dirac operator in a finite volum¥. Let i, andé&,;, cor-
. respond to such eigenstafds]:
e_VEW=J [dA [ dx][dxI[dE][dé] . _ -
DPx i =+ €%, DPég,=+uxi,”. (2.4

4 i . =

xexp{ _f d x(£+|)\X)}, (2.} we then easily see that the Set0f .)=Xa(:n)» Exi(n)
=—&,i(+ ) COrresponds to the eigenvalueu:

whereV is the Euclidean volume andl,' is the gluon field. . o .

The indicesl,J ... are for adjoint representations of the D'Ba)(ﬁuw): o T maﬁg'ﬁi(,m: — MXi(— )"

gauge groupG. For example forG=SU(N), we have

1,d,...=1,2,...N?=1. In order to clarify basic constitu- o _ _

ents of our system, we use 2_Component Spinors in this pa-[herefore the whole fermionic space Is not Only a direct sum

per. Since we are dealing with a vectorlike theory, our two-Of positive and negative eigenstates, but also they are always

component Weyl spinorg; and & with the flavor indices Paired up betweert x>0 and - <0. _

i,j,...=1,2,...N for quarks are in the conjugate repre- Or equivalently, in terms of a four-component Dirac

sentations to each other. The factoii @f the A X term is due  SPInor

to the usual Wick rotation. We specify the Lagrangian as i

X

X ai — i .
. )1 ’/f=(¢ )_(é;al)a (26)

&ai
with the four-component spinorial indices=(«a,a), B
=(B.,B),..., wehave

1 lﬁz(wgi)E(
=7 (Fa)?+ L,

Le=+i(0D ) +1(67D )+ m(VTE)

i B _ B
(€, 22 W:( ° b, )(lﬂ) @E( 0 Da)
. - _ D,2 0O )\é&s D.f 0
wherem=(m;') is anN XN Hermitian mass matrix: (2.7)
(mij)* :mji ) We can also introduce theNe<x 2N mass matrixh and the

_ . ) usual 4x4 ys matrix for the four-component notation by
which can be arranged to have only positive eigenvalues.
ml 0 52 0
y ’)/5E . (28)

Since we are dealing in this paper only with a vectorlike

theory, the quark fermiong; and &' are in the representa- . <
tions conjugate to each other, e y.andN* representations 0 my 0 -5,/
of SU(N), respectively. Accordingly, our covariant deriva- . N ) i
tive D, contains the minimal coupling of the gauge field to NOt€ also thafh is Hermitian:m'=m. The eigenstates in
these fermions. We are using the notations similar to that ifed. (2.6) are much more transparent now ras

[15], e.g., we use the Minkowskian four-dimensioridD)

vector indicesa,b, ...=0,1,2,3, with the signaturez(,,) Dy,=+pih,, D n=—nh—. 2.9
=diag(t,—,~, =), while @B, ... =12 and a,p, ... ___The eigenstateg,_ ,, correspond oy ,y= s, , because
=1,2 for the 2-component spinors. Other relevant relations e =

are such as vs satisfies{ y5,[0} =0, and therefore

Dop=(0%iDc. [0l (0%, 23 DYew=DUrsth)==ysDu=—prsthy =it

P =C%ys, Y,=4PCp,, Therefore the pairing between and — . eigenstates in Eq.
(2.6) is clear. Accordingly, the Lagrangiaf is simply

W=+ (W)T=—v., _
Le= (il +m) . (2.11)

ar, =P Pyt P B T . .
(¢ 'z XX =X Xll'z”jJ 1 Our path integral2.1) is now
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e—VE()\):f [dAaI]J [dlp][dme—fd“x(ﬁ,:-%—EBH)\X)
:f [dAa']f [dy][dy]eTdLarn0 exp{—f d*x (i +r”n)4,//}

. (212

:J [dA;]|Fexp{—f d*x(Lg+iAX)
Herel is the fermionic determinant from the fermionic path integral:
= [dw][dﬂexr{—f d*xai( i +f“n>¢}

= Det(id +m)

=I1 detipln+m)
"

= (detf)"Lo* "Ro

[T detiplon+my|| IT detiploy+m)
wu>0 ©n<0

= (detf)?"o HO det( —iul,+ M) (2.133
n=>

[T detipln+)
wu>0

= (detm)2 [ deti ul o+ M)del —iul oy + M)
u>0

= (detm)20 [ deti wl o+ M)de +iwl o+ M)t (2.139
wn>0

= (detm)®"o HO [deti wlon+ M) J[det +iul oy +mM)]*
m>

2
= (detm)2o| [ det(iul,n+m)| >0. (2.139
u>0

Herel,y is an 2N X 2N unit matrix, and in Eq(2.133, ng is the number ofu=0 modes, satisfying, o=ngg=ng. This is
because we have to consider only the instanton number zero backgnpgiahro=0 that is connected with the original
vacuum with energ¥(\=0) [17]. The previously-mentioned parings— — u are used also in E§2.133. The determinants
in Eq.(2.133 are taken for the B X 2N matrix for flavor indices, distinguished from the symbol “Det” for the fermionic path
integral. In Eq.(2.13h we have also used the Hermiticity @. Now the positive definiteness ot is clear from Egs.
(2.139—(2.139. For the case oN=1, Eq.(2.139 is in agreement with4].

Once the fermionic determinaf2.139—(2.139 is positive, we see that the path integ(all) is positive, except for the
phase factor exp{fd*xX), which does not lower the ground state energy. This is &) must have a minimum only at
A=0 [4].

Before ending this section, we give the following lemma which will be of importance in the next section. Note that the
Lagrangianlg is rewritten as

Le=2 £,= 2 [Him(X™ y€ain) 1 X i) F M 1Ea10) + M (E X 1,1 (2.14
Iz M
Accordingly, the path integral.139—(2.1309 is also equivalent to

IF=(1;[ f [dx#][dm[dgﬂ][da])ex{ f d“xg (€2, COP(M+i 121 0) X g+ Xau CEEMF i 1) Ep,}

2

= (detf)2"o >0. (2.19

I1 detiplon+i)
wn>0
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In other words| ¢ in Egs.(2.133—(2.139 can be computed As usual in path integral, we can redefine the fields in
in terms of 2-component spinors in E@.6). This relation-  such a way that the linear terms jnor ¢ disappear. In our
ship will be helpful when we consider complicated mixed case, this can be done by the field redefinitfons
Lagrangians between the gaugini and the quark or lepton o _ _ _

fields in the next section. £ =g o J(mtiply) ™Y,

%aip,EXai,u—i_(m_'—ilulN)ilijpaj1 (343
Ill. VECTORLIKE THEORY WITH SUPERSYMMETRY
. . £ =£. ; -1j—
We now generalize the above method to supersymmetric Eaip=Eaipt (MHinly) " aog,
theories with no Yukawa couplings among quarks. Suppose SO . '
- Ping —i ° iq_ PP Xa w=Xa ptpad(Mt+inly) ™, (3.4b
we have the massive quark fermiogs, x', &', & together # #

with the massless gluino Majorana fieldls', \,'. As be- to have
fore, the indiced,J,...=1,2,... g=dimG are for the ad- o _ o _
joint representations of the gauge gra@pAll the fermion- L, ,=— &, ,CP(M+iul )i % gj .= Xa' LCP(M+i l )y
dependent terms in our Lagrangian are - ) )

X Epiut 0, CPm+iuly) Hipg

Le=+i(X"DPx5) +i (69D, PE5) HTNDP NS + P ICHB(mt il N L@ (3.5
+m) (X€,) Since m is Hermitian only with positive eigenvaluesn
i T —— +iuly is also diagonalizable only with nonzero eigenvalues,
M (EXai) FIHT)PZ (N X)) —Zi(N XD ] and there is no problem for defining the inversm (

. _1 . .
—i(T')ii[ui()\“'gdj)—u}‘()\“'gai)]. (3.0) +iuly) ™ *. After this, Lg is now
The z and u' are the spin 0 fieldg¢squarks in the chiral Le Eﬂ: ﬁx'g"‘Jr%: Exzut Lyors 3.6
multiplets @ ,x;) and U',&') with i,j,...=1,2,...N, in the
representationsl andN*. The (T');] are Hermitian genera- Where L) . is the first line of Eq.(3.5 which coincides
tors of the gauge group. As in E(2.2), we can assume that with the nonsupersymmetric ca$2.7), £,p, is the gluino
m;! is Hermitian only with positive eigenvalues. The pres-kinetic term, whileL,2 , is the A2 and \? terms after the
ence of these mixing terms witfpseudgscalar dependence field redefinition(3.4). Let us collect all of thesk-dependent
have been considered to be the main obstruction for the paterms intoZ, :
ity conservation in supersymmetric theories in the past
[5-7], because they seem to prevent us from proving the
positive definiteness of the fermionic determinant. However,
we will see that this is not the obstruction. After the above
prescription, there is no fermion-dependent term in the su-
persymmetric Lagrangiad left over other thanCg: L= L¢
+ Lg with a purely bosonic Lagrangiafg . . _

We now consider the eigenstates fprand ¢ as in Eq. =—iN,' DA\ — N, CPMIN ]
(2.4), and rewrite all they and é-dependent terms g, as

L= _fb) Dﬁd)\ﬁl _ 2 A, CAM MIJ)\ﬁJ
"

Tl ~aBiy 1330
—2/} Ao C¥M I\

—Na CEEMIIN ), 3.7
ExézE Ex,f,uzz [_§aiﬂca'g(mij+iﬂ5ij)Xﬁju where the_matriceMME(M#'J), MME(MMIJ)’ M=(M")
K’ K andM=(M") are defined by
—Xa JCB(MI+i sV Eg, M, P=— (2 TUlf, ST,
~£,C =Xl ,C P~ £ O eyl
' aB,, i g : M,N==— (T, TVz),
_Xai,uc wB]! (32)

MP=> M, MP=X MY, f=Emtiuy.
where m M
(3.8

Pai=+I(TUM N, @,/ =+i(Z* TN,

. — o _ Note that Eq(3.4b) is not necessarily the Hermitian conjugate of

pa==—1(UT)'\;!, wu==—i(T'2\," Eq. (3.49. This is related to the Hermiticity only by the combina-
(3.3 tion of +x and —pu.
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Due to the antisymmetry o2*# andC®5, the matricesvl ,, _ — — Cf* O ;
M,, M andM are all symmetric il —J. Note also that =—(ATA)=(hg.hp) O (B =A'C
M, =M *=M_,, M'=M*=M, 3.9 o
the latter of which is confirmed by the former undgy,, C= il (3.100
which is symmetric betweer u« —u. The M is not nec- O ¢
essarily Hermitian, and it has both real and imaginary parts.
Now £, is rewritten as The original fermionic Lagrangian now 8:=%,L . ,
B s3m B 5 +L,, and the total path integral to be considered in the
PN %a"M™ 165D, (N Euclidian space is
= (NN PR Y viEE AP
—A(D+ M)A, @10 &= f [dA'[dZ][dZ* J[dul[du* ]I pe™ /(e 20,
. (3.11
O p-A M O
= Cely, M=1,8 — |, . _ _
D, g 27l o where the fermionic path integré} is from Egs.(3.5 and
(3.10b (3.10 with M replaced byM:
|
lp= f [dx][dﬂ[dg][da[dx][dﬂexp[— J d“x(E Ly eut L }
yn
- - ~ = byt —  _4b
=(H f[dxﬂ][dxu][dfu][dfu]e Id XEM,#)J' [dN][dNJe /9o
o
2
= (detm)2o ]'[0 de(m+iuly)| [DetiD+M)]¥2 (3.12
m=>
|
The first two factors are from thg dy][d{][ d€][dx] inte- D[Ts|v)]=-TsD|v)=(—v)[[s|v)]=Ts|v)=|—).
gral as in the nonsupersymmetric cg8el5 now with the (3.19

shifted Var'a_ble?(’)?’f'f’ and the remal'mng factor is from Therefore any eigenstate forv>0 is always paired up with
the [[d\][d\] integral. There is potential phase ambiguity 5, eigenstate- »<0. We now see that a conjugate stéie
[18,19 for taking the square root in the last factor in Eq. i related to|) as follows. Consider

(3.12. However, we will shortly show that there is no prob-

lem with this ambiguity in vectorlike theories. AT o _ [0 -~
Even though we cannot diagonaliZe and M simulta- AT=<I) :(_)\d1_)\a):()\1)\)( | o >=AT]-'
neously, we still can use the eigenstatefor the eigenvalue @ 9
ve R of the operatorD: —ACLE (3.163
. )\v )\v —JA O —
Dlvy=+v|v), ie., DA,=D X, =+v X, =vA,, F=1,8 ; Og), Fl-F
(3.13 9
where the subscript on A ,, etc. denotes the eigenvalue for [#.€1=0, [FM]=0. (3.16b
the four-component spinok, with the adjoint index ' omit- . . ) .
ted. As usual, we can define Here A is the usual Dirac conjugate df, and F is needed
for complex conjugation. Therefore
I o] _
e ) 314 =Gl IEL Gff=Rd). 34D
9

Accordingly, as in Eq(3.15 we can confirm that
satisfying{I's, P} =0, so that an eigenstate ») of P can be
constructed by (=v|=(¥|Ts. (3.18
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Other important relations needed are Del(m+/\/l)=(detM)T‘O(detl\W)T‘O
FMF t=M' cMc =M, [Ts,M]=0,
(3.19 < [1 exd (v[IN(iD+M)|)].
v#0
. (0 DF 3.2
FDF t=+D=| . ) 822
DS O
C@Cflz—@, p’f:—@, (3.20 As in the case of quarks, we consider only the instanton

number zero background, so that the number of left- and

as easily confirmed. Using these as well as(Bdl6), we get ~ ght-handed zero modes are the sami;,=Tre="o,
whose contributions in Eq(3.22 can be computed sepa-

Ts(iD+ M)T5= —iD+ M=+C *F {iD+ MNHFC rately, as
=CctF =i+ MhFC
—tCiFYiD+ M) TR (3.2 (detM)o(detM) o= (detM)7o(detM)* Po=|detM [T,

(3.23
The determinant in the square root in the last factor in Eq.
(3.12 can be reexpressed as the usual definition of the de-
terminant in terms of exponential, trace, and logarithmicAs for thev# 0 contributions, due to the pairing between the
functions: |v) and|—v), Eq. (3.22) is rewritten as

Det(i D+ M) = |detM|Zo Ho exd (v|In(iD+ M)|v)]

v

E[O exd (v|In(iD+ M)|v)]

= |detM |271013O exd (v|In(i D+ M)|v)]exd (— v|In(i D+ M)|— v)], (3.24)

where the exponent in the last factor is simplified by the aid of E§4.7 and(3.21) as
(= v|In(( D+ M)|=v)=(»|T5In(iD+ M)T'5|v)
=(v|C7rXF YIn(iD+ M)} FClvy=[(v]In(iD+ M)|v)]
=[{v|In(iD+ M)|v)]*. (3.25

Therefore Eq(3.24) is semipositive definite:
Det(i D+ M) =|detM|Z0 ] |exp(v|In(iD+M)|v)|?=0. (3.26
v>0
Combining this with Eq(3.12), we get the semipositive definiteness of the fermionic determinant:

2
| = |detm|2"o|detM || [T deim+iuly)| 1 |exp(v|In(iD+M)|v)|=0. (3.27
/_/,>0 v>0

Notice that the usual phase ambiguity when taking themic functions, which is to be the universal definition for a
square roof18,19 does not arise here, because of the semideterminant.
positive definite expression of E¢3.26), as contributions Note that Eq.(3.27) implies only non-negativity ofl
from |v) and |—v) always in pairs. The main ingredient in which can still be zero. This is because the matkik can
this proof is the usage of the eigenstatewith the proper- depend on the scalar coordina®s (z,z*,u,u*). However,
ties of I's and complex conjugations, which do not require we can further show that there exists a measurable sufort
the diagonalization ofM, or even its commutator witt. connected domain with nonzero measurethe Z space, on
The crucial procedure we have relied on is the expression afthich | (Z)>0 and nonzero. In fact, consider the particular
the determinant in terms of exponential, trace, and logarithpoint Zo=0 on which M=0 due to Eqs(3.8), (3.9), and
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(3.10. It follows that far as we understand, however, there has been no rigorous
proof of the validity of such a regularization to all orders.
| (0) = |detm|?"|detM |ﬁo Since this subtlety is outside of the scope of this paper, we

5 do not address ourselves to this issue here.

x| ] detm+iuly)| I1 |exp(v|InGiv)|v)|>0.
0 >0

u> IV. VECTORLIKE THEORY WITH BROKEN

(3.29 SUPERSYMMETRY

We mention the possibility of adding some gluino mass
Once we getl¢(0)>0, then relying on the smoothness of terms, which may be caused by some spontaneous, explicit,
I£(Z) as a function oz, we can conclude thdg(Z)>0 on  or nonperturbative breaking of supersymmetry. This is easily
a measurable support includirg,=0. The existence of a considered, by adding the gluino mass terms
measurable support fog>0 leads us to the positivity of the

path-integral measuré[dz][dz* J[du][du*]I->0, and we Lonz=m PN ) +m (L)), 4.0

conclude that parity is conserved in supersymmetric vector-

like theories. to our original Lagrangia(3.1). Herem’=(m’'") is real and
In the above analysis, we have performed the most usuglymmetric. Accordingly, Eq(3.103 is now

Wick rotation from the Minkowskian metrict,—,—,—) into

the Euclidian oné—,—,—,—) by replacing formally the co- ) — [12®(M+m") iD®ly Ag

ordinatex’—ix*. However, this may need more care, when Li=—(A%N9 DTl l,&(M+m') Nl

it comes to the complex conjugation of spinors. Motivated g 2 B(4_2)

by this, we have reconfirmed our result above by an alterna-

tive Wi_ck rot_ation into the 'm.etri¢+,+,+,+). Additi‘(‘)nally, _ This implies that the matri# is replaced byM +m’ andM
Ejhe_ spinors in these Euclldlan_spaces are only formally_ by M+m’. Under this shift, the relations such &'=M
efined, in such a way that their complex conjugation rule IS 1e in tact Eventually E¢(3.27 is now replaced by
essentially the parallel to the Minkowskian case, like the ' '
simple replacement’®—ix*, and this is the very reason why ~
the Feynman rules in the usual Euclidian path integral are | £=|detm|2"o|detM |
essentially the same as those in the Minkowskian. Rigor-
ously speaking, spinors in the Euclidian spaces can exist
only asUSp(2) spinors[20], and moreover the dotted and X
undotted spinors as eigenvectors of the matrix are no
longer related by complex conjugatiof0].> For this pre-
caution, we have also reformulated the Wick rotation, suc

that the dotted\ , and undottede spinors in the final Eu-
clidian space are not related to each other under complex M'=M+1,®
conjugation, as they should §&0]. Interestingly, we have

reached the same conclusion for the semipositive definite|;|ence the presence ofi’ does not affect the semipositive
ness of the determinaii8.27), even though the meaning of L L : !
the bra and cket vectors are slightly modified, and all thedeflnlteness of the fermionic determinant. Accordingly, we

; . ) can also show that->0 on a measurable support in tde
pseudoscalar Yukawa couplings withy acquire an extra L
factor of i like the AX term in Eq.(2.1). One additional space, and therefore we conclude that parity is conserved

o . . also in broken supersymmetric vectorlike theories with non-
feature in this case we seem to rely on is that the gluino zerg .
. ) zero gluino masses.
modes are unstable and disappear from the physical spec-
trum, based on the analysis in RE22]. Since the details of

this formulation are rather technical leading essentially to the V. CONCLUDING REMARKS

same conclusion, we skip them in this paper. _In this paper we have reconfirmed the conservation of
In this section, when dealing with the path integral in hayity in supersymmetric vectorlike theories. Even though
Euclidean space, we have “implicitly” assumed the exis-is result has been known for a long time now, we have
tence of a supersymmetric regularizatig#8], such as the reconfirmed the parity conservation, based on an indepen-
dimensional reduction scheme originally developed by Sieyent and different methodology. The methodology of our
gel[24]. In dealing with a supersymmetric regularization for proof is to perform fermionic path integrals, which were
nonperturbative computations such as path integrals, we M3Yiginally developed by Vafa and Wittdid]. We have con-

have to be careful about a possible anomaly for SUPersyMrmed that the determinant as the fermionic path intebgal
metry, and the validity of regularization to higher orders. As;g positive and nonzero on a measurable support under the

bosonic integral[dz][dZ* ][du][du* ]. We have also seen
that the quark-gluino-squark mixing terms in the supersym-
3This situation is similar to what is called Atiyah-Ward space-time metric theory pose no problem. The supersymmetric vector-
with the signaturé+,+,—,—) studied in[21]. like theory seems to avoid the problem with these mixing

2

IT detm+iuly)
©n>0

IT exp(y|In(iD+M")|v)

v>0

=0, 4.3

H/vhereM’ is a 49X 4g matrix similar to.M defined by

!

m
O

o)
o MT=M* (4.9
m
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terms thanks to pairings between the eigenstates of the Dirabe fact that the index is saturated by the breaking of the
operator, despite the complication caused by the mixing withntrinsic Zy symmetry acting on quarks. Additionally, our
gluini. Our result relies on the original method[ifll, namely  parity conservation is also consistent with the resulfidf|
we deal only with bosonic parity-breaking observables inabout the phase with unbroken discrete axial symmetry.
path integrals. Therefore our result does not cover the paritfome subtlety arises, when the masses of the quarks become
breakingvia fermionic observable$13] which do not ac- zero, because in such a case the Witten index T is no
quire the imaginary unit under the Wick rotation. longer well-defined 10,25, and therefore the vacuum loses

In our analysis of the fermionic path integral, we first its stability against chiral or parity breakings ag . From

integrated over the quark fields Y, & E, making the com-  this viewpoint, we see no contradiction of our result with
putation more organized, instead of integrating over theRefs.[9, 25|, in which the masses of quarks are zero from
gluino field first as in6]. By so doing, we have seen that the the outset.

final gluino path integral is less involved and more control- We have also seen that the supersymmetry breaking, if its
lable, in particular when we need to consider the Majoran®nly effect on fermions is the gluino masses, does not alter
gluino determinant which used to have subtlety withthe conservation of parity. Even though this statement seems
ys-pseudo-scalar couplings. The nice and simple feature gfontradictory with the previous paragraph, we understand
our result is that the fermionic path integral can be cast intdhat the breaking of supersymmetry lifts the vacuum energy
the form of Eq.(3.12, and that the phase ambiguity becomeshigher than the original supersymmetric and parity-
unimportant. In other words, the usual phase ambiguity irfonserving vacuum witt(0)=0. Actually, the viewpoint

the square root of the determinants for a 2-component spindhat parity operates on gluini rather trivially also supports the
[18,19 does not arise in a vectorlike theory, due to the pair-absence of phase transitions even for massive gluini.

ing between the integrals over dotted and undotted spinors, We can try to apply our method to other arbitrary global
combined with the pairing between the positive and negativ®r discrete symmetries, such as baryon number, in a super-
eigenstates of the Dirac operator, including the zero modessymmetric vectorlike theory, using the prescription using up-

We have also studied the effect of the gluino masses, asRer bounds for fermionic propagators in Rig6]. However,
result of either spontaneous, explicit, or nonperturbativdhere seems to be an obstruction caused by the zeroness of
breaking of supersymmetry, and reached the conclusion th&#ass eigenvalues, e.g., our matix in Eq. (3.10 hitting
parity is also conserved in these cases with broken supersyréeros, that upsets the upper bound for fermionic propagators,
metry. Due to the path-integral formulation we have adoptedndermining the foundation for the stability of fermion-
here, this analysis is easier than other methods in Re2s.  antifermions Greens functions against symmetry-breaking
11. In principle, we can generalize our result to the case wittparameterg5,26]. In other words, our method using the
the squark masses caused by the supersymmetry breakirggmipositive definite fermionic determinant is powerful only
but since these terms are purely bosonic affecting diy ~ for parity symmetry, or other symmetries based only on the
they are not expected to change our analysis or result in thigdcuum to vacuum amplitude.
paper.

At first glance, our result here seems to contradict with
Ref.[9], which shows that the vacuum structure is disturbed,
when there are more colors than flavokg:<N. However, We are grateful for J. C. Pati for bringing about the prob-
there is actually no conflict, because we interpret this as thkem with parity conservation in supersymmetric QCD, and
result of the masslessness of quarks treated in[Befln our  for other helpful discussions. We are also indebted to many
system, due to the massive quarks from the outset, the Witther colleagues: M. Luty, R. Mohapatra, Y. Shamir, W.
ten index Tr(1)F is well-defined and nonzerfil0], e.g.,  Siegel, and E. Witten for important suggestions and com-
Tr(—1)F=N for the SU(N) gauge group. Hence we expect ments. Additional acknowledgement is due to M. Cvétic
no breaking of supersymmetry even at the nonperturbative copy of Ref[6], and other important discussions. Special
level, which would have ruined the foundation of our proof. acknowledgements are for C. Vafa for pointing out mistakes
Since the topological stability due to the well-definedin an earlier version of the manuscript, and for N. Seiberg for
Tr(—1)F is reliable for massive quarks, it is quite natural informing us about his related papers on similar subjects.
that chiral symmetry or parity symmetry is also conserved.This work is supported in part by NSF Grant No. PHY-93-
To put it differently, the parity conservation is natural from 41926.
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