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Parity conservation in supersymmetric vectorlike theories

Hitoshi Nishino*
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 6 August 1998; published 20 December 1999!

We give the reconfirmation that parity is conserved in vectorlike supersymmetric theories, such as super-
symmetric QCD with massive quarks with no cubic couplings among chiral multiplets, based on fermionic
path integrals, originally developed by Vafa and Witten. We also look into the effect of supersymmetric
breaking through gluino masses, and see that parity conservation is in tact also in this case. Our conclusion is
valid, when only bosonic parity-breaking observable terms are considered in path integrals such as the original
Vafa-Witten formulation.

PACS number~s!: 11.15.Bt, 11.15.Tk, 11.30.Pb, 11.30.Rd
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I. INTRODUCTION

Nonperturbative chiral symmetry breaking@1# is an im-
portant aspect for phenomenological model building ba
on vectorlike theories, such as in composite particle mod
@2,3#. It has been proven that parity symmetry is conserv
in nonsupersymmetric vectorlike QCD theories, and is
broken spontaneously even nonperturbatively@4,5#. This
proof @4# is based on the evaluation of fermionic path in
grals, which always gives a non-negative vacuum energy
ter adding parity-breaking terms. However, the question
risen whether the Vafa-Witten constraint@4,5# for the nonsu-
persymmetric case can be avoided in supersymmetric ve
like theories because of the new interactions among glu
quark-squarks@6,7#, and whether parity is broken like othe
global symmetries@8#. These particular interaction term
with scalar dependence seem to be the main obstruction
the proof for the positive definiteness of the determinan
the fermionic path integrals@5–7#.

On the other hand, gauge symmetry breaking is known
occur for massless supersymmetric QCD, when the num
of flavor Nf is smaller than the number of colors:Nf,N @9#.
This seems to suggest the parity breaking in supersymm
vectorlike theories may well occur, depending on the nu
bersNf or N. However, at the same time, it contradicts t
other universal wisdom about supersymmetry that supers
metric vacuum is stable when the Witten index Tr(21)F

@10# is nonzero, e.g., Tr(21)F5N for the gauge group
SU(N), and therefore the vacuum energy most proba
stays zero with no parity breaking. It has been also rece
pointed out@11# that supersymmetric QCD has condensa
free phase with no gluino condensate, based on the impo
papers by Seiberg@12# clarifying the nonperturbative conse
vation of parity. Considering all of these developments
seems worthwhile to look into this question of nonperturb
tive parity conservation in vectorlike supersymmetric the
ries, from the viewpoint of the Vafa-Witten constraint@4#, as
an independent and different formulation.

Motivated by this observation, in our present paper,
reconfirm that parity is conserved nonperturbatively in e
actly supersymmetric vectorlike theories, as well as in b
ken supersymmetric cases with massive gluini. Our met
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is to evaluate the explicit fermionic path integrals, origina
developed by Vafa and Witten@4#, which can be applied
easily also to broken supersymmetric theories. We show
we can overcome the above-mentioned difficulty with t
gluino-quarks-squark mixing, by using two-compone
spinor notation.

The model we deal with in this paper is a globally sup
symmetric vectorlike theory with massive chiral multiple
coupled to a non-Abelian vector multiplet with no cubic co
pling among chiral multiplets. Our proof is based on thr
major assumptions: the first one for the massiveness o
the quark chiral multiplets, the second one about the abse
of the Yukawa-couplings among chiral multiplets, and t
third one that we rely on the method in@4# for purely bosonic
parity-breaking observables. Therefore our method does
cover the fermionic parity-breaking observables like Wils
fermions @13# treated in lattice QCD.1 The massiveness o
quarks are also important for nonperturbative conservatio
supersymmetry, due to the well-defined nonzero Witten
dex Tr(21)F in such cases@10#. This is because supersym
metry is conserved, only if the vacuum energy is zero. The
fore the nonperturbative breaking of supersymmetry wo
cause the shift of vacuum energy, causing the breaking
parity symmetry@4,5#. Interestingly, we will find that parity
is conserved also for a vectorlike supersymmetric theo
like nonsupersymmetric vectorlike theory. We also look in
the effect of gluino masses, which will not disturb the ma
body of the proof for the supersymmetric case, and there
parity is also conserved in broken supersymmetric vector
theories.

II. REVIEW FOR NONSUPERSYMMETRIC VECTORLIKE
THEORY

We start with reviewing the parity conservation in th
nonsupersymmetric case@4,5# first, in order also to elucidate
our notation. Suppose the total LagrangianL(l)[L2lX
with a parameterl is a generalization of the parity
conserving LagrangianL, such as that of QCD, with a
parity-non-conserving observableX, such as theFF̃ term,
with a real constantl. If parity is broken in the vacuum and

1For reviews for supersymmetric QCD on lattice, see, e.g.,@14#.
©1999 The American Physical Society08-1
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HITOSHI NISHINO PHYSICAL REVIEW D 61 025008
^X&Þ0, then the theory can choose a vacuum state in wh
l^X&,0 due to the signature ambiguity of^X&. Hence the
vacuum energyE(l) can be lower thanE(0) of the parity-
conserving vacuum energy:E(lÞ0),E(0).

However, an explicit evaluation of path integrals reve
that this would not happen; i.e., there is no such vacu
whose energy is lower than that of the parity-conserving
@4#. Consider the path integral in Euclidean space for
vacuum energyE(l):

e2VE~l!5E @dAa
I #@dx#@dx̄ #@dj#@dj̄ #

3expF2E d4x~L1 ilX!G , ~2.1!

whereV is the Euclidean volume andAa
I is the gluon field.

The indicesI ,J . . . are for adjoint representations of th
gauge groupG. For example forG5SU(N), we have
I ,J, . . . 51,2, . . . ,N221. In order to clarify basic constitu
ents of our system, we use 2-component spinors in this
per. Since we are dealing with a vectorlike theory, our tw
component Weyl spinorsx i and j i with the flavor indices
i , j , . . . 51,2, . . . ,N for quarks are in the conjugate repr
sentations to each other. The factor ofi in thelX term is due
to the usual Wick rotation. We specify the Lagrangian as

L52
1

4
~Fab

I !21LF ,

LF51 i ~ x̄ ȧ iD” b
ȧxb i !1 i ~ja iD” a

ḃj̄ ḃ i !1mi
j~ x̄ ȧ i j̄ ȧ j !

1mj
i~ja jxa i !, ~2.2!

wherem[(mi
j ) is anN3N Hermitian mass matrix:

~mi
j !* 5mj

i ,

which can be arranged to have only positive eigenvalu
Since we are dealing in this paper only with a vectorli
theory, the quark fermionsx i and j i are in the representa
tions conjugate to each other, e.g.,N andN* representations
of SU(N), respectively. Accordingly, our covariant deriva
tive Da contains the minimal coupling of the gauge field
these fermions. We are using the notations similar to tha
@15#, e.g., we use the Minkowskian four-dimensional~4D!
vector indicesa,b, . . . 50,1,2,3, with the signature (hab)
5diag(1,2,2,2), while a,b, . . . 51,2 and ȧ,ḃ, . . .
51̇,2̇ for the 2-component spinors. Other relevant relatio
are such as

D” aḃ[~sc!aḃDc , @~sc!aḃ#* 5~sc!bȧ , ~2.3!

ca5Cabcb , c̄ ȧ5c̄ ḃCḃȧ ,

~ca!†51c̄ ȧ, ~ca!†52c̄ ȧ ,

~c1
a1
¯c j

a j x̄1
ḃ1
¯x̄k

ḃk!†5xk
bk
¯x1

b1c̄ j
ȧ j
¯c̄1

ȧ1,
02500
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†52]a , ~Cab!5~Cȧḃ!5S 0 2 i

1 i 0 D .

Based on these, it is easy to confirm the reality of each te
in our Lagrangian.

As was shown by Vafa and Witten in a vectorlike theo
@5#, the fermionic space for the path integral~2.1! can be a
direct sum of the positive and negative eigenstates of
Dirac operator in a finite volumeV. Let xa im and j̄ ȧ im cor-
respond to such eigenstates@16#:

D” bȧxb im51mj̄ȧ
im , D” aḃj̄ ḃ im51mx im

a . ~2.4!

We then easily see that the set ofxa(2m)[xa(1m) , j̄ ȧ i (2m)

[2 j̄ ȧ i (1m) corresponds to the eigenvalue2m:

D” bȧxb i ~2m!52mj̄ȧ
i ~2m! , D” aḃj̄ ḃ i ~2m!52mx i ~2m!

a .
~2.5!

Therefore the whole fermionic space is not only a direct s
of positive and negative eigenstates, but also they are alw
paired up between1m.0 and2m,0.

Or equivalently, in terms of a four-component Dira
spinor

c[~caI i ![S xa i

j̄ ȧ i
D , c̄[~c̄aI i ![S x̄ ȧ i

ja i D , ~2.6!

with the four-component spinorial indicesa[(a,ȧ), b

[(b,ḃ),..., wehave

D”̃ c5S O D” a
ḃ

D” ȧ
b O

D S xb i

j̄ ḃ i
D , D”̃ [S 0 D” a

ḃ

D” ȧ
b 0

D .

~2.7!

We can also introduce the 2N32N mass matrixm̃ and the
usual 434 g5 matrix for the four-component notation by

m̃[S mi
j 0

0 mi
j D , g5[S da

b 0

0 2dȧ
ḃD . ~2.8!

Note also thatm̃ is Hermitian: m̃†5m̃. The eigenstates in
Eq. ~2.6! are much more transparent now forD”̃ as

D”̃ cm51mcm , D”̃ c~2m!52mc~2m! , ~2.9!

The eigenstatesc (2m) correspond toc (2m)[g5cm , because
g5 satisfies$g5 ,D”̃ %50, and therefore

D”̃ c~2m!5D”̃ ~g5cm!52g5D”̃ cm52mg5cm5~2m!c~2m! .
~2.10!

Therefore the pairing betweenm and2m eigenstates in Eq
~2.6! is clear. Accordingly, the LagrangianLF is simply

LF5c̄~ iD”̃ 1m̃!c. ~2.11!

Our path integral~2.1! is now
8-2
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e2VE~l!5E @dAa
I #E @dc#@dc̄#e2*d4x~LF1LB1 ilX!

5E @dAa
I #E @dc#@dc̄#e2*d4x~LB1 ilX! expF2E d4xc̄~ iD”̃ 1m̃!c G

5E @dAa
I #I F expF2E d4x~LB1 ilX!G . ~2.12!

Here I F is the fermionic determinant from the fermionic path integral:

I F[E @dc#@dc̄#expF2E d4xc̄~ iD”̃ 1m̃!c G
5Det~ iD”̃ 1m̃!

5)
m

det~ imI 2N1m̃!

5~detm̃!nL01nR0F )
m.0

det~ imI 2N1m̃!GF )
m,0

det~ imI 2N1m̃!G
5~detm̃!2n0F )

m.0
det~ imI 2N1m̃!GF )

m.0
det~2 imI 2N1m̃!G ~2.13a!

5~detm̃!2n0 )
m.0

det~ imI 2N1m̃!det~2 imI 2N1m̃!

5~detm̃!2n0 )
m.0

det~ imI 2N1m̃!det~1 imI 2N1m̃!† ~2.13b!

5~detm̃!2n0 )
m.0

@det~ imI 2N1m̃!#@det~1 imI 2N1m̃!#*

5~detm̃!2n0U )
m.0

det~ imI 2N1m̃!U2

.0. ~2.13c!

Here I 2N is an 2N32N unit matrix, and in Eq.~2.13a!, n0 is the number ofm50 modes, satisfyingnL05nR0[n0 . This is
because we have to consider only the instanton number zero backgroundnL02nR050 that is connected with the origina
vacuum with energyE(l50) @17#. The previously-mentioned paringsm↔2m are used also in Eq.~2.13a!. The determinants
in Eq. ~2.13a! are taken for the 2N32N matrix for flavor indices, distinguished from the symbol ‘‘Det’’ for the fermionic pa
integral. In Eq.~2.13b! we have also used the Hermiticity ofm̃. Now the positive definiteness ofI F is clear from Eqs.
~2.13a!–~2.13c!. For the case ofN51, Eq. ~2.13c! is in agreement with@4#.

Once the fermionic determinant~2.13a!–~2.13c! is positive, we see that the path integral~2.1! is positive, except for the
phase factor exp(il*d4xX), which does not lower the ground state energy. This is whyE(l) must have a minimum only a
l50 @4#.

Before ending this section, we give the following lemma which will be of importance in the next section. Note th
LagrangianLF is rewritten as

LF5(
m

Lm[(
m

@1 im~x̄ȧ i
mj̄ȧ im!1 im~ja i

mxa im!1mi
j~ x̄ ȧ i

mj̄ȧ j m!1mi
j~ja i

mxa j m!#. ~2.14!

Accordingly, the path integral~2.13a!–~2.13c! is also equivalent to

I F5S)
m

E @dxm#@dx̄m#@djm#@dj̄m# DexpF E d4x(
m

$jamCab~m1 imI N!xbm1x̄ ȧmCȧḃ~m1 imI N!j̄ ḃm%G
5~detm̃!2n0U ) det~ imI 2N1m̃!U2

.0. ~2.15!

m.0

025008-3
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HITOSHI NISHINO PHYSICAL REVIEW D 61 025008
In other words,I F in Eqs.~2.13a!–~2.13c! can be computed
in terms of 2-component spinors in Eq.~2.6!. This relation-
ship will be helpful when we consider complicated mix
Lagrangians between the gaugini and the quark or lep
fields in the next section.

III. VECTORLIKE THEORY WITH SUPERSYMMETRY

We now generalize the above method to supersymme
theories with no Yukawa couplings among quarks. Supp
we have the massive quark fermionsx i , x̄ i , j i , j̄ i together
with the massless gluino Majorana fieldsla

I , l̄ ȧ
I . As be-

fore, the indicesI ,J,...51,2, . . . ,g5dimG are for the ad-
joint representations of the gauge groupG. All the fermion-
dependent terms in our Lagrangian are

LF51 i ~ x̄ ȧ iD” b
ȧxb i !1 i ~ja iD” a

ḃj̄ ḃ i !1 i ~ l̄ ȧID” b
ȧlb

I !

1mi
j~ x̄ ȧ i j̄ ȧ j !

1mj
i~jaxa i !1 i ~TI ! i

j@z* i~laIxa j !2zj~ l̄ ȧI x̄ ȧ
j !#

2 i ~TI ! i
j@ui~ l̄ ȧI j̄ ȧ j !2uj* ~laIja

i !#. ~3.1!

The zi and ui are the spin 0 fields~squarks! in the chiral
multiplets (zi ,x i) and (ui ,j i) with i , j ,...51,2,...,N, in the
representationsN andN* . The (TI) i

j are Hermitian genera
tors of the gauge group. As in Eq.~2.2!, we can assume tha
mi

j is Hermitian only with positive eigenvalues. The pre
ence of these mixing terms with~pseudo!scalar dependenc
have been considered to be the main obstruction for the
ity conservation in supersymmetric theories in the p
@5–7#, because they seem to prevent us from proving
positive definiteness of the fermionic determinant. Howev
we will see that this is not the obstruction. After the abo
prescription, there is no fermion-dependent term in the
persymmetric LagrangianL left over other thanLF :L5LF
1LB with a purely bosonic LagrangianLB .

We now consider the eigenstates forx and j as in Eq.
~2.4!, and rewrite all thex andj-dependent terms inLF , as

Lx,j5(
m

Lx,j,m[(
m

@2ja
i
mCab~mi

j1 imd i
j !xb j m

2x̄ ȧ
i
mCȧḃ~mi

j1 imd i
j !j̄ ḃ j m

2ja
i
mCabrb i2x̄ ȧ

i
mCȧḃv̄ ḃ i2 j̄ ȧ imCȧḃr̄ ḃ

i

2xa imCabvb
i #, ~3.2!

where

ra i[1 i ~TIu* ! ila
I , va

i[1 i ~z* TI ! ila
I ,

r̄ ȧ
i[52 i ~uTI ! i l̄ ȧ

I , v̄ȧ i[52 i ~TIz! i l̄ ȧ
I .

~3.3!
02500
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As usual in path integral, we can redefine the fields
such a way that the linear terms inx or j disappear. In our
case, this can be done by the field redefinitions2

j̃a
i
m[ja

i
m1va

j~m1 imI N!21
j
i ,

x̃a im[xa im1~m1 imI N!21
i
jra j , ~3.4a!

j! ȧ im[j̄ȧ im1~m1 imI N!21
i
j v̄ȧ j ,

x! ȧ
i
m[x̄ȧ

i
m1 r̄ ȧ

j~m1 imI N!21
j
i , ~3.4b!

to have

Lj,x,m52 j̃a
i
mCab~m1 imI N! i

j x̃b j m2x! ȧ
i
mCȧḃ~m1 imI N! i

j

3j! ḃ j m1va
iCab~m1 imI N!21

i
jrb j

1 r̄ ȧ
iCȧḃ~m1 imI N!21

i
j v̄ḃ j . ~3.5!

Since m is Hermitian only with positive eigenvalues,m
1 imI N is also diagonalizable only with nonzero eigenvalu
and there is no problem for defining the inverse (m
1 imI N)21. After this, LF is now

LF5(
m

Lx,j,m8 1(
m

Ll2,m1LlD” l , ~3.6!

where Lx,j,m8 is the first line of Eq.~3.5! which coincides
with the nonsupersymmetric case~2.7!, LlD” l is the gluino
kinetic term, whileLl2,m is the l2 and l̄2 terms after the
field redefinition~3.4!. Let us collect all of thesel-dependent
terms intoLl :

Ll[2l̄ ȧ
ID” bȧlb

I2(
m

la
ICabMm

IJlb
J

2(
m

l̄ȧ
ICȧḃM̄m

IJl̄ ḃ
J

[2 i l̄ ȧ
ID” bȧlb

I2la
ICabMIJlb

J

2l̄ ȧ
ICȧḃM̄ IJl̄ ḃ

J, ~3.7!

where the matricesMm[(Mm
IJ), M̄m[(Mm

IJ), M[(MIJ)
andM̄[(M̄ IJ) are defined by

Mm
IJ[2~z* T(I um̃m

21TuJ)u* !,

M̄m
IJ[52~uT(I um̃m

21TuJ)z!,

MIJ[(
m

Mm
IJ, M̄ IJ[(

m
M̄m

IJ, m̃m[m1 imI N .

~3.8!

2Note that Eq.~3.4b! is not necessarily the Hermitian conjugate
Eq. ~3.4a!. This is related to the Hermiticity only by the combina
tion of 1m and2m.
8-4
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Due to the antisymmetry ofCab andCȧḃ, the matricesMm ,
M̄m , M andM̄ are all symmetric inI↔J. Note also that

Mm
†5Mm* 5M̄ 2m , M†5M* 5M̄ , ~3.9!

the latter of which is confirmed by the former under(m ,
which is symmetric between1m↔2m. The M is not nec-
essarily Hermitian, and it has both real and imaginary pa
Now Ll is rewritten as

Ll52~laI ,l̄ ȧI !S da
bMIJ id IJD” a

ḃ

id IJD” b
ȧ dȧ

ḃM̄ IJ D S lb
J

l̄ ḃ
JD

5L̄~ iD” 1M!L, ~3.10a!

D” [S O D” a
ḃ

D” b
ȧ O

D ^ I g , M[I 2^ S M O

O M̄
D ,

~3.10b!
ity
q.
b-

or

02500
s.

L̄[2~la,l̄ ȧ!5~lb ,l̄ ḃ!S Cba O

O CḃȧD 5LTC,

C[S Cab O

O CȧḃD . ~3.10c!

The original fermionic Lagrangian now isLF5(mLx,j,m8
1Ll , and the total path integral to be considered in t
Euclidian space is

e2VE~l!5E @dAa
I #@dz#@dz* #@du#@du* #I Fe2*d4x~LB1 ilX!,

~3.11!

where the fermionic path integralI F is from Eqs.~3.5! and
~3.10! with M replaced byM:
I F5E @dx#@dx̄ #@dj#@dj̄ #@dl#@dl̄ #expF2E d4xS (
m

Lx,j,m8 1LlD G
5S)

m
E @dx̃m#@dx! m#@dj̃m#@dj! m#e2*d4xLx,j,m8 D E @dl#@dl̄ #e2*d4xLl

5~detm!2n0U )
m.0

det~m1 imI N!U2

@Det~ iD” 1M!#1/2. ~3.12!
The first two factors are from the*@dx̃ #@dx! #@dj̃ #@dx! # inte-
gral as in the nonsupersymmetric case~2.15! now with the
shifted variablesx̃,x! ,j̃,j! , and the remaining factor is from
the *@dl#@dl̄ # integral. There is potential phase ambigu
@18,19# for taking the square root in the last factor in E
~3.12!. However, we will shortly show that there is no pro
lem with this ambiguity in vectorlike theories.

Even though we cannot diagonalizeD” and M simulta-
neously, we still can use the eigenstateun& for the eigenvalue
nPR of the operatorD” :

D” un&51nun&, i.e., D” Ln5D” S ln

l̄n
D 51nS ln

l̄n
D[nLn ,

~3.13!

where the subscriptn on Ln , etc. denotes the eigenvalue f
the four-component spinorL, with the adjoint index I omit-
ted. As usual, we can define

G5[I 2^ S I g O

O 2I g
D , ~3.14!

satisfying$G5 ,D” %50, so that an eigenstateu2n& of D” can be
constructed by
D” @G5un&] 52G5D” un&5~2n!@G5un&]⇒G5un&5u2n&.
~3.15!

Therefore any eigenstate for;n.0 is always paired up with
an eigenstate2n,0. We now see that a conjugate state^nu
is related toun& as follows. Consider

L†5S la

l̄ȧ
D †

5~2l̄ ȧ ,2la!5~l,l̄ !S O 2I g

2I g O D 5LTF

5L̄C21F, ~3.16a!

F[I 2^ S O 2I g

2I g O D , F215F,

@F,C#50, @F,M#50. ~3.16b!

Here L̄ is the usual Dirac conjugate ofL, andF is needed
for complex conjugation. Therefore

un&†5^nuC21F21, ^nu†5FCun&. ~3.17!

Accordingly, as in Eq.~3.15! we can confirm that

^2nu5^nuG5 . ~3.18!
8-5
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Other important relations needed are

FMF215M†, CMC215M, @G5 ,M#50,
~3.19!

FD”F2151D”̂ [S 0 D” b
ȧ

D” a
ḃ 0 D ,

CD” C2152D”̂ , D” †52D”̂ , ~3.20!

as easily confirmed. Using these as well as Eq.~3.16!, we get

G5~ iD” 1M!G552 iD” 1M51C21F21~ iD”̂ 1M†!FC
5C21F21~2 iD” †1M†!FC
51C21F21~ iD” 1M!†FC. ~3.21!

The determinant in the square root in the last factor in
~3.12! can be reexpressed as the usual definition of the
terminant in terms of exponential, trace, and logarithm
functions:
th
m

n

ire

n
ith

02500
.
e-
c

Det~ iD” 1M!5~detM ! ñ0~detM̄ ! ñ0

3 )
nÞ0

exp@^nu ln~ iD” 1M!un&#.

~3.22!

As in the case of quarks, we consider only the instan
number zero background, so that the number of left- a
right-handed zero modes are the same:ñL05ñR0[ñ0 ,
whose contributions in Eq.~3.22! can be computed sepa
rately, as

~detM ! ñ0~detM̄ ! ñ05~detM ! ñ0~detM !* ñ05udetM u2ñ0.
~3.23!

As for thenÞ0 contributions, due to the pairing between t
un& and u2n&, Eq. ~3.22! is rewritten as
Det~ iD” 1M!5udetM u2ñ0F )
n.0

exp@^nu ln~ iD” 1M!un&#GF )
n,0

exp@^nu ln~ iD” 1M!un&#G
5udetM u2ñ0)

n.0
exp@^nu ln~ iD” 1M!un&#exp@^2nu ln~ iD” 1M!u2n&#, ~3.24!

where the exponent in the last factor is simplified by the aid of Eqs.~3.17! and ~3.21! as

^2nu ln~ iD” 1M!u2n&5^nuG5 ln~ iD” 1M!G5un&

5^nuC21F21$ ln~ iD” 1M!%†FCun&5@^nu ln~ iD” 1M!un&#†

5@^nu ln~ iD” 1M!un&#* . ~3.25!

Therefore Eq.~3.24! is semipositive definite:

Det~ iD” 1M!5udetM u2ñ0)
n.0

uexp~nu ln~ iD” 1M!un!u2>0. ~3.26!

Combining this with Eq.~3.12!, we get the semipositive definiteness of the fermionic determinant:

I F5udetmu2n0udetM u ñ0U )
m.0

det~m1 imI N!U2

)
n.0

uexp̂ nu ln~ iD” 1M!un&u>0. ~3.27!
a

rt

lar
Notice that the usual phase ambiguity when taking
square root@18,19# does not arise here, because of the se
positive definite expression of Eq.~3.26!, as contributions
from un& and u2n& always in pairs. The main ingredient i
this proof is the usage of the eigenstateun& with the proper-
ties of G5 and complex conjugations, which do not requ
the diagonalization ofM, or even its commutator withD” .
The crucial procedure we have relied on is the expressio
the determinant in terms of exponential, trace, and logar
e
i-

of
-

mic functions, which is to be the universal definition for
determinant.

Note that Eq.~3.27! implies only non-negativity ofI F

which can still be zero. This is because the matrixM can
depend on the scalar coordinatesZ[(z,z* ,u,u* ). However,
we can further show that there exists a measurable suppo~a
connected domain with nonzero measure! in the Z space, on
which I F(Z).0 and nonzero. In fact, consider the particu
point Z050 on whichM5O due to Eqs.~3.8!, ~3.9!, and
8-6
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~3.10!. It follows that

I F~0!5udetmu2n0udetM u ñ0

3U )
m.0

det~m1 imI N!U2

)
n.0

uexp̂ nu ln~ in!un&u.0.

~3.28!

Once we getI F(0).0, then relying on the smoothness
I F(Z) as a function ofZ, we can conclude thatI F(Z).0 on
a measurable support includingZ050. The existence of a
measurable support forI F.0 leads us to the positivity of the
path-integral measure*@dz#@dz* #@du#@du* #I F.0, and we
conclude that parity is conserved in supersymmetric vec
like theories.

In the above analysis, we have performed the most u
Wick rotation from the Minkowskian metric~1,2,2,2! into
the Euclidian one~2,2,2,2! by replacing formally the co-
ordinatex0→ ix4. However, this may need more care, wh
it comes to the complex conjugation of spinors. Motivat
by this, we have reconfirmed our result above by an alter
tive Wick rotation into the metric~1,1,1,1!. Additionally,
the spinors in these Euclidian spaces are only ‘‘formall
defined, in such a way that their complex conjugation rule
essentially the parallel to the Minkowskian case, like t
simple replacementx0→ ix4, and this is the very reason wh
the Feynman rules in the usual Euclidian path integral
essentially the same as those in the Minkowskian. Rig
ously speaking, spinors in the Euclidian spaces can e
only asUSp(2) spinors@20#, and moreover the dotted an
undotted spinors as eigenvectors of theg5 matrix are no
longer related by complex conjugations@20#.3 For this pre-
caution, we have also reformulated the Wick rotation, su
that the dottedla and undottedl̄ ȧ spinors in the final Eu-
clidian space are not related to each other under com
conjugation, as they should be@20#. Interestingly, we have
reached the same conclusion for the semipositive defin
ness of the determinant~3.27!, even though the meaning o
the bra and cket vectors are slightly modified, and all
pseudoscalar Yukawa couplings withg5 acquire an extra
factor of i like the lX term in Eq. ~2.1!. One additional
feature in this case we seem to rely on is that the gluino z
modes are unstable and disappear from the physical s
trum, based on the analysis in Ref.@22#. Since the details of
this formulation are rather technical leading essentially to
same conclusion, we skip them in this paper.

In this section, when dealing with the path integral
Euclidean space, we have ‘‘implicitly’’ assumed the ex
tence of a supersymmetric regularization@23#, such as the
dimensional reduction scheme originally developed by S
gel @24#. In dealing with a supersymmetric regularization f
nonperturbative computations such as path integrals, we
have to be careful about a possible anomaly for supers
metry, and the validity of regularization to higher orders.

3This situation is similar to what is called Atiyah-Ward space-tim
with the signature~1,1,2,2! studied in@21#.
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far as we understand, however, there has been no rigo
proof of the validity of such a regularization to all order
Since this subtlety is outside of the scope of this paper,
do not address ourselves to this issue here.

IV. VECTORLIKE THEORY WITH BROKEN
SUPERSYMMETRY

We mention the possibility of adding some gluino ma
terms, which may be caused by some spontaneous, exp
or nonperturbative breaking of supersymmetry. This is ea
considered, by adding the gluino mass terms

Lm8l2[m8IJ~laIla
J!1m8IJ~ l̄ ȧI l̄ ȧ

J!, ~4.1!

to our original Lagrangian~3.1!. Herem8[(m8IJ) is real and
symmetric. Accordingly, Eq.~3.10a! is now

Ll8[2~la,l̄ ȧ!S I 2^ ~M1m8! iD” ^ I g

iD” T
^ I g I 2^ ~M̄1m8!

D S lb

l̄ḃ
D .

~4.2!

This implies that the matrixM is replaced byM1m8 andM̄

by M̄1m8. Under this shift, the relations such asM†5M̄
are in tact. Eventually Eq.~3.27! is now replaced by

I F85udetmu2n0udetM u ñ0U )
m.0

det~m1 imI N!U2

3U)
n.0

exp̂ nu ln~ iD” 1M8!un&U>0, ~4.3!

whereM8 is a 4g34g matrix similar toM defined by

M8[M1I 2^ S m8 O

O m8
D , M8†5M8* . ~4.4!

Hence the presence ofm8 does not affect the semipositiv
definiteness of the fermionic determinant. Accordingly, w
can also show thatI F8.0 on a measurable support in theZ
space, and therefore we conclude that parity is conser
also in broken supersymmetric vectorlike theories with no
zero gluino masses.

V. CONCLUDING REMARKS

In this paper we have reconfirmed the conservation
parity in supersymmetric vectorlike theories. Even thou
this result has been known for a long time now, we ha
reconfirmed the parity conservation, based on an indep
dent and different methodology. The methodology of o
proof is to perform fermionic path integrals, which we
originally developed by Vafa and Witten@4#. We have con-
firmed that the determinant as the fermionic path integraI F
is positive and nonzero on a measurable support under
bosonic integral*@dz#@dz* #@du#@du* #. We have also seen
that the quark-gluino-squark mixing terms in the supersy
metric theory pose no problem. The supersymmetric vec
like theory seems to avoid the problem with these mixi
8-7
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terms thanks to pairings between the eigenstates of the D
operator, despite the complication caused by the mixing w
gluini. Our result relies on the original method in@4#, namely
we deal only with bosonic parity-breaking observables
path integrals. Therefore our result does not cover the pa
breakingvia fermionic observables@13# which do not ac-
quire the imaginary uniti under the Wick rotation.

In our analysis of the fermionic path integral, we fir
integrated over the quark fieldsx, x̄, j, j̄, making the com-
putation more organized, instead of integrating over
gluino field first as in@6#. By so doing, we have seen that th
final gluino path integral is less involved and more contr
lable, in particular when we need to consider the Majora
gluino determinant which used to have subtlety w
g5-pseudo-scalar couplings. The nice and simple featur
our result is that the fermionic path integral can be cast i
the form of Eq.~3.12!, and that the phase ambiguity becom
unimportant. In other words, the usual phase ambiguity
the square root of the determinants for a 2-component sp
@18,19# does not arise in a vectorlike theory, due to the pa
ing between the integrals over dotted and undotted spin
combined with the pairing between the positive and nega
eigenstates of the Dirac operator, including the zero mod

We have also studied the effect of the gluino masses,
result of either spontaneous, explicit, or nonperturbat
breaking of supersymmetry, and reached the conclusion
parity is also conserved in these cases with broken supers
metry. Due to the path-integral formulation we have adop
here, this analysis is easier than other methods in Refs.@12,
11. In principle, we can generalize our result to the case w
the squark masses caused by the supersymmetry brea
but since these terms are purely bosonic affecting onlyLB ,
they are not expected to change our analysis or result in
paper.

At first glance, our result here seems to contradict w
Ref. @9#, which shows that the vacuum structure is disturb
when there are more colors than flavors:Nf,N. However,
there is actually no conflict, because we interpret this as
result of the masslessness of quarks treated in Ref.@9#. In our
system, due to the massive quarks from the outset, the
ten index Tr(21)F is well-defined and nonzero@10#, e.g.,
Tr(21)F5N for the SU(N) gauge group. Hence we expe
no breaking of supersymmetry even at the nonperturba
level, which would have ruined the foundation of our pro
Since the topological stability due to the well-defin
Tr(21)F is reliable for massive quarks, it is quite natur
that chiral symmetry or parity symmetry is also conserv
To put it differently, the parity conservation is natural fro
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the fact that the index is saturated by the breaking of
intrinsic ZN symmetry acting on quarks. Additionally, ou
parity conservation is also consistent with the result of@11#
about the phase with unbroken discrete axial symme
Some subtlety arises, when the masses of the quarks bec
zero, because in such a case the Witten index Tr(21)F is no
longer well-defined@10,25#, and therefore the vacuum lose
its stability against chiral or parity breakings as in@9#. From
this viewpoint, we see no contradiction of our result wi
Refs. @9, 25#, in which the masses of quarks are zero fro
the outset.

We have also seen that the supersymmetry breaking, i
only effect on fermions is the gluino masses, does not a
the conservation of parity. Even though this statement se
contradictory with the previous paragraph, we understa
that the breaking of supersymmetry lifts the vacuum ene
higher than the original supersymmetric and pari
conserving vacuum withE(0)50. Actually, the viewpoint
that parity operates on gluini rather trivially also supports
absence of phase transitions even for massive gluini.

We can try to apply our method to other arbitrary glob
or discrete symmetries, such as baryon number, in a su
symmetric vectorlike theory, using the prescription using u
per bounds for fermionic propagators in Ref.@26#. However,
there seems to be an obstruction caused by the zerone
mass eigenvalues, e.g., our matrixM in Eq. ~3.10! hitting
zeros, that upsets the upper bound for fermionic propaga
undermining the foundation for the stability of fermion
antifermions Greens functions against symmetry-break
parameters@5,26#. In other words, our method using th
semipositive definite fermionic determinant is powerful on
for parity symmetry, or other symmetries based only on
vacuum to vacuum amplitude.
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