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Vacuum effects in an asymptotically uniformly accelerated frame with a constant magnetic field
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In the present article we solve the Dirac-Pauli and Klein-Gordon equations in an asymptotically uniformly
accelerated frame when a constant magnetic field is present. We compute, via the Bogoliubov coefficients, the
density of scalar and spin-1/2 particles “created.” We discuss the role played by the magnetic field and the
thermal character of the spectrum.

PACS numbd(s): 03.70+k, 98.80.Hw

[. INTRODUCTION The line element associated with the coordinate transforma-
tion (1.1 is

The study of quantum effects in nonintertial frames of
reference has been thoroughly discussed in the literature. The
pioneering articles of Fulling and Unryi,2] showing the
nonequivalence of the quantization of scalar fields in Rindler
and Minkowski coordinates and the thermal character of the The separability of he Klein-Gordon equation in E#.1)
radiation were the origin of a large body of articles devotedhas been discussed by Kalnifts, one the authors has ac-
to analyze quantum measurement processes in uniformly aé®mplished a complete separability of the Difd¢ equation

celerated frames and possible interpretations thereof. in Eq.(1.0). _ _ ,
The advantage of considering Rindler coordinates are |he kinematics associated with the coordindfes) have

many. They can be associated with a uniformly accelerate§€€n €xhaustively analyzed by Cop&8]. The proper time

observer. They also possess a global timelike Killing vectoralongx:x0 IS
and the(massive and masslgsslein-Gordon as well as the

Dirac equations are separable in the Rindler coordinses 1 1
Fig. 1). The Rindler coordinates can be extended to cover the s=—e 20T+e2%o4 Ze“’XOSinhf Lge(T+Xo),

whole space time and thermal effects can be related, via the

equivalence principle, with the Hawking effd&,4].

The study of quantum effects in nonuniformly acceleratedConsideringT as the evolution parameter, we have that an
frames of reference presents, at first glance, different technpbserver co-moving to the systefh.1) has a four-velocity
cal problems. Among them we can mention that the systergiven by
of coordinates associated with non-Rindler kinematics do not
possess in general a timelike Killing vector, and therefore a 20 >
standard interpretation of positive and negative frequency [ ] constent
solutions is absent. The complete separation of variables o
the Klein-Gordon and the Dirac equations is possible only in | o
a restricted set of coordinates, and those coordinates allow A
ing separability sometimes present coordinate singularities -
therefore the quantization scheme falils. /

Among the nonstatic coordinate systems where the Klein- ©
Gordon and Dirac equations separate we Hévé] - (

ds?=(e 2T+ e?*X)(dX?—dT?)+dy?*+dZ. (1.2

—10 -

2 -1
t+x=—sinho(T+X), t—x= Te“"(T‘X), y=y, z=2.

1.1 - w =
(1.9 20-20 -10 0 20

FIG. 1. The accelerated coordinates wiil=1. The solid lines
*Email address: villalba@ivic.ivic.ve correspond to the spacelile=const Cauchy surfaces. The dashed
"Email address: mateu@ciens.ula.ve lined correspond to the timelike curvs=const.
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v (coshw(X+T)+e*X~1/2 coshw(X+T)—e**~1/2,0,0)

/e72wT+ eZwX

1.3

and experiences an acceleration whose components are  Il. SOLUTION OF THE HAMILTON-JACOBI EQUATION

' .t The relativistic Hamilton-Jacobi equation coupled to an
_wsinho(X+T)F w[e** /2] electromagnetic field can be written g 13]

at.x e~ 20T 4 g20X
9°A(9,S—eA,)(9S—eAg) +m?=0, (2.2
cosho(X+T)*+[e**"Dj2] _

+ T 2ux2 we v, where here and elsewhere we adopt the units wheré,
(e +e™7) and 4=1. The vector potential associated with a constant

magnetic fieldB=B,x directed along the acceleratidh.4)

a,=0, a,=0. (1.4 has the form
From the absolute value of the acceleration, we readily ob- A=(0,0B,2,0). (2.2

tain thata=|a*a,,|'/? takes the form
It is not difficult to verify that Eq.(2.2) satisfies the condi-

a= weX(e 20T+ g20X) =312 (1.5 tions VﬂA"I_O andl_:“ﬁFaBZZBi. _ _
Substituting the line elemelit.2) into Eq.(2.1) we obtain

From Eqg.(1.5 we obtain that the accelerated frame becomes

an “inertial” Milne system[9,10] as T— —, and on the ;[(5 S)2—(91S)2]+ (woz— 3,9) %+ (9,S)?
other hand it evolves toward an uniformly accelerated frame e?*X+e~2¢T X T ° Y ‘
asT— +oo,

Quantum effects in the noninertial franik.1) have been +m?=0, 2.3

discussed by Cos{d] and by Percoco and Villalb 1] for .

Dirac particles. The nonexistence of a global timelike Killing Wherewo=eB,. The solution of Eq(2.3) has the form
vector for the line elemertiL.2) precludes making a straight-

forward identification of the positive and negative frequency oy f 72 2
solutions of the scalar and Dirac wave equations. In order toS(X,y,z,T) kyy =i Vme—A *(kyt wo2)7dz
circumvent this difficulty, we identify positive and negative

frequency modes comparing the asymptotic solutions of the if —\e wdeif [e2+ \2e 2°TdT,
wave equations with those obtained for the relativistic
Hamilton-Jacobi equation. (2.4

Recently, Bautist@12], has discussed, in a Rindler accel-
erated frame, vacuum effect associated with a spin-1/2 paxwhich in the asymptotic limit aX—c andT— —c reduces
ticle with anomalous magnetic moment in a constant magto
netic field directed along the acceleration. The author obtains
a Planckian distribution of created particles that depends on
the magnetic field via the nhonminimal anomalous coupling.
The author also discusses deviation of the energy density
from a thermal distribution due to the magnetic field. As a i NNt

C . fi—e?x—e @, (2.5

preliminary step towards a deeper understanding of quantum ® ®
processes in noninertial frames of reference, in the present _
paper we analyze vacuum effects associated with scalar arithe wave functioru(X,y,z,T) =e€'S gives the quasiclassical
spin-1/2 particles in the coordinaté$.1), when a constant asymptotes of the solutions of the Klein-Gordon and Dirac
magnetic field is also present. equations. In the remote past, as»—o,u_,(X,y,z,T)

The article is structured as follows. In Sec. Il, we solvetakes the form
the relativistic Hamilton-Jacobi equation with a constant
magnetic field in the accelerated frarfiel). In Sec. IIl, we ufx(X,y,z,T)=C(y,z)e—Ww)e‘”cheiiWw)e
solve the Klein-Gordon equation and compute the rate of (2.6
scalar particles created. In Sec. IV, we solve the Dirac equa-
tion with anomalous magnetic moment and compute the derwhere in Eq.(2.6) the upper and lower signs correspond,
sity of particles related by the magnetic field in the non in-respectively, to positive and negative frequency modes.
ertial frame(1.1). Finally, we discuss the results obtained in ~ Analogously, we have that & —«~ andT— Eq. (2.4
this article in Sec. V. reduces to

S(X,y,z,T)=—kyy=i f Jm? =N+ (ky+ wgz)?dz

—oT
7
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. d?f
S(X,y,z,T)=—kyyi|J VmZ=\2+ (ky+ wyz)*dz d_TZT:_(jL)\Ze*ZwTJr €2)f(T), (3.7
A
+i—e?X+eT (2.77  wheree is a constant of separation. Equatit6) takes a
w

more familiar form in terms of Bessel functiofis5,16| after

- . . _ (J)X
and, consequently, introducing the variablei=e¢

W tu——t | ———

du? du w’

— —(Mw)e®X ! aFieT dzfx dfx 62 )\2
u.(X,y,z,T)=C'(y,2)e cze™'s, (29 2 u?|f,=0, (3.9
where, in the present case, the upper sign corresponds to
positive frequency modes and the lower sign to negativavhose solution are the modified Bessel functiphs] |;,(z)
modes. The result§2.6) and (2.8) give the quasiclassical andK;,(z)
asymptotic behaviors of the relativistic wave equations in the

accelerated coordinatés.1).

A A
fX(X)=AI+iv($e‘”X +BKi,,(Ze‘”X), (3.9

I1l. SOLUTION OF THE KLEIN-GORDON EQUATION . .
whereA,B are arbitrary constants andg= e/ w. The solution
In this section we solve the Klein-Gordon equation, of Eq.(3.7) can be obtained in the same manner. Introducing
coupled to a constant magnetic field, in the accelerated cahe change of variables=e “T in Eq. (3.7 we get the
ordinates with the line element given by H4.2). The co- Bessel equation
variant generalization of the Klein-Gordon equatiop4sl4]

apB ) ) o 2d2fT dfT 62 )\2 2 _
g*P(V,—ieA,)(Vg—ieAy)d—m“®d=0, (3. % F+VW+ E+ ;v f,=0, (3.10
whereV ,=4d,—1I, is the covariant derivative, aril, is the . ]
vector potential given by Eq2.2). whose solutions can be expressed in terms of the Hankel
Substituting Eq(1.2) into (3.1) we readily obtain functions[15] HV(2) andH{?(z)
2_ 2\ 2 2 fr(T)=A"H N eot| s pru@| Lot (3.1)
m(ﬁT—&X)—(ﬂy‘Fﬁz)‘f’lzeBXZ&y T v\ o v o ' :
whereA’ andB’ are arbitrary constants.
+e2B272— m? ¥=0. (3.2 In order to solve Eq(3.5), we introduce the new variable
x x=2lwo(woz+k,). Equation(3.5) takes the form
Since Eq.(3.2 commutes with the operatorid, we can d2f 2
look for a solution of the formy= ¢(X,z,T)e'y which re- —— |z ta|f0=0, (3.12
duces Eq(3.2) to dx

wherea= — (m?+ \?)/2w,. Equation(3.12 is the Parabolic
t(32—92)+(eBz— ky)Z_ag_mZ $=0. cylinder equatior{15]. The solution of Eq(3.5 regular at

{e‘ 20T 4 g20X x=0 can be expressed in terms of the functid¢a,x) [15]

(3.3
[2
Equation (3.3) can be separated in the formd(X,z,T) f(x)=U| a, w—(cuoz+ Ky) |- (3.13
= (X, T)f(2). The resulting equations are 0
Let us analyze the asymptotic behavior of the solutions of
— x(&$_6§)+)\2 7=0, (3.4 Eqg. (3.2. As X—~ andT— —o we obtain that
e Y +e @

A N
m(x.T):Kiy(;ewx) AxHi‘i’(;e “T)

d?f
— =[(wez—ky)*+(—m*—\?)]f(2), (3.9
dz? N
+B_.H| —e™”
where\ is a separation constant. Variablsand T can be
separated in Eq3.4) after making the substitutio(X,T) =g Wwe” a7 giMo)e T gr o-itVe)e T
=f«(X)f+(T). The resulting equations fof and T are (3.14
2
d fxz_(_)\zezwarez)fX(x), (3.6) Comparing Eq.(3.14 with Eq. (2.6) we identify the first
dx? term on the right-hand side as a positive frequency mode,
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and the second term as a negative frequency. On the oth#ére density of created particl¢s7] has the form
hand whenX— andT—o we obtain

_|gl2=
ewX) A J (kewT) <OaC(JN|OaCC> |18| e2

A
—e” wT)
w

zef()\/w)ewX[Aofc(efwT)iv_i_ Bo/c(efwT)fiV]

3.2
! (322

A
7(XT)=Ki| =

which can be identified as a Planck distribution with a tem-

+B.J ., perature

T— w
0" 2mKg

(3.23

— o~ (Mw)e®X —ieT I aieT
e (Ace ' +B.ec). (319 The temperature measured by the accelerated observer can

Also, comparing Eq(3.15 with Eq. (2.8 we can identify be obtained using the relati8, 18]

the first and second terms on the right-hand side in(845 T=(doo) " Y215 (3.24)
as positive and negative frequency modes, respectively.
Now, we are going to express an inertial positive fre-In  the asymptotic limit as T—+% we have

quency mode T— —x) IimTﬁw(goo)*W:e*‘”X and the temperatur@ takes the
N N value
Dinertial X, T)=C KIV( wX)H(l)(w wT) (3.16 X
we Ao
T 2aKg  27Kg' (3.29

in terms of the accelerated modes in the asymptotic future

(T—+) Then we find that the temperature is proportional to the

asymptotic value of the acceleration.
J:

v

X, T)=CKy| S et |3, [ Leom 3.1
77acc(v) 1lvwe O)e ) (7)

IV. SOLUTION OF THE DIRAC-PAULI EQUATION
whereC, and C, are normalization constants according to |n this section we solve the Dirac equation with anoma-

the standard inner producf3] (7 ,7;)=—i/(7d *577]* lous magnetic moment in the accelerated coordinétel

—75,ds77 )dS® for the Klein-Gordon equation. The relation whe_n a constant mf.ig”e“C fi_eld Is present. Thg_covariant gen-
betv]veserlw HO(z) and J,,(z) permits one to express eralization of the Dirac-Pauli equation in curvilinear coordi-
v

tes ig12,1
Minertia X, T) in terms of n,.{ X, T) as follows: nates ig 4

em” v (d,—T )+ y yBFaB-f—m ¥ =0, 4.1

Dinertial X, T) = SII’]I’MTV Nacd X, T)

where y“ are the curvilinear Dirac matrices satisfying the

~Sinhmy Nacd X, T) |. (3.1  anticommutation relations{y“,yﬂ}+=29“'3,l“a are the
spinor connections, anﬂaﬁ is the electromagnetic tensor.
Since the inertial and accelerated modes are related via the e curwlmear y* matrices are related to the constant
Bogoliubov coefficient§3,4] « and 8, Minkowski ' matrices with{»',5/}, =24 via the tetrad
ha .
ﬂi(inertial):; aij j(aceyt Bij 7] (aco): (3.19 y*=h"y\. 4.2

we have that Eq(3.18 gives immediately the values of; In order to write the curvilinear Dirac matrices in Eg.1)
and B, : we have to choose a tetrad; . Here we are going to work in

the diagonal tetrad gauge, wherg& takes the form

o= Coe—mau_a,g 1
Y Cysinhmy ™ 1 e — 0 0 0
Ve 2eT 4 20X
C 1
Bi=— ———8&=B5;. (3.20 o_ 1
' Cysinhmy 0T hei= 0 Je 275 2% 00
e v +e®
Since|a|?—|B|?=1 and 0 0 1
0 0 0
gze—w (3.2 (4.3
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It is easy to verify thag'™® = 7''h';n¥.

the constanty' as

~0 ~1
0_ Y 1_ Y
Y _\/e—_mm’ _\/e——mm’

3_73

V=92 =5 (4.4

In the Diagonal tetrad gaug@h.3) the spinor connections,

defined by the relatiop19]:

1 hVI @ a Av
F,LL Zg)\a ﬁXMh.i_Fv,u S (45)
with sM”= 2 (y*y"— y”y"), take the form
1"0:_ 2wX(e—2wT+e2wX) 1')’ '}’ ,
1 20T 20T 20Xy —1_1
F1=§we (e +e ) ’y ’y , F2=0, F3=0
(4.6)
Substituting Egs(4.6) , (4.4), and (2.2) into Eq. (4.1) we
obtain
;1 g 02X
_— |+ —— V¥
\/W X 2(e2wX+e72wT)
_{aqV¥ >
20970 3, r
+y 3y ieB,zV¥ | +y 72 + CRer=r
AL W +mW¥ +i By’ Yy W
T 2(e29% 1 g 20T) MY T koBxy™y
=0. (4.7)
Introducing the spinof
)
(4.8

(eZa)X +e~ 2wT) 1/4°

we eliminate the contribution terms due to the spinor con-

nections. The Dirac equation takes the form

YHIDIIX) + YA (9DIIT) [ oD
— —ieBzd -
Je2 X g 2T ay az
+m® +i By y2P=0. (4.9

In this tetrad gauge,
the curvilinear Dirac matrices can be expressed in terms of

PHYSICAL REVIEW D61 025007

[K.(T.X),Ka(y,2)]_ =0,
(4.10

[K1(T.X)+Ky(y,2)]¢=0,

where in the present cage= y3y?® and

Kz Y2 yRax+ v VP yRor
1= \/m ’

+ 92y m—i oBy.

Ky=7%(9y—ieB,2)— ¥4,

(4.11

Since kl and Rz satisfy Eq.(4.10 they satisfy the eigen-
value equations

Kip=—iNgy,  Kogp=i\y.

Now, we proceed to solve equatidhy y= —i\:

PP it P =~ nE e Ty,
(4.13

(4.12

Applying the transformationy=S¢ defined by

S= eE(X T lir' 70X, 1]

(4.14
we reduce Eq(4.13 to the form
(Y2 VPox+ Y2y on o+ vy ¥y oxE(X.T)
+iar®(X,T)1p+ ¥ ¥y LorE (X, T) +idx®(X,T)]¢
= —iN P Xt e 2T O D g, (4.19

In order to separate variables in E4.15 we demand that
the terms inside the brackets vanish, i.e.,

IHWEX,T)=—i0:0(X,T), orEX,T)=—ix®(X,T).

(4.16
The solution of Eq(4.16 is
i
2(X,T)= Earctame‘”(x”)),
1 —o(X+T)
OX,T)= Earctar@e ) (4.1

which determines the spinor transformati@Eq. (4.14).
Equation(4.15 reduces to

2y30r) p=iN(e“X+iyly'e “T) .
(4.18

(7 3f9x+ 74

Let L, andL, be the commuting operators

L=y ox—ine,  Ly=y'y*y*or+re T,

In order to solve Eq(4.9) we proceed to separate variables
using the algebraic method of separation developed by Sh- [Ly,L,]=0. (4.19
ishkin and Villalba]7,20—27 The idea behind the method is

to reduce Eq(4.9 to a sum of two commuting first order Equation(4.18 can be expressed in terms bof andL, as
differential operators follows:
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(Li+Loy'yhe=0. (4.20 2y 220X x, o[ X
_ wX__ () + —
(dy—\“e \we €%) 5(X) 0,
, - : (4.26
In order to solve Eq(4.20 we introduce the auxiliary spinor 5 B(X)
(dz—\2€%%+ N we“ + €2) ) =0;
Y

Py analogously, Eq(4.23 reduces to
$=(y'y'Li—LW, (4.29) gously, Eq(4.23 redu

(Z+N%e 2°T+iNwe “T+€%)

A(T)
Substituting Eg. (4.21) into Eqg. (4.20 we have that D(T)): '

(Liy'y*L;—Loy*y*L,)W=0. This allows separation of (4.27)
variables as follows: B(T))

C(T)

(07-2|—+ Ne 29T \we “T+€?)

(95— N2 +iNwe Yty ) W= — €W, (4.22 , —
In order to solve the system of equatiqds26), it suffices to
solve the second order equation

(07+\%e 2T+ hwe “Tyly?y")W=— W, (4.23 d?f  df N2 €
- —=ulE—u+ —
w w2

(1)2

f=0, (4.28

wheree is a constant of separation. X
whereu=e“”.

When we choose the following representation for the Analogously, we have that solving the system of equa-
. . ~|- 1
Dirac matriced 23] " tions (4.27) is equivalent to solving the Whittak¢i5] dif-
ferential equation

-y [0 o1} _ [0 oz) d2g  dg [A% . i €
1_ 2_ 2 2 —
Y ( ) Y ( , \% dv2+VdV+ wzv in+w2 g=0, (4.29

where we have introduced the change of variabtee™ 7.
(1 0 ) — ( 0 i03> The solution of Eq.(4.28 can be expressed in terms of a
= V=

. (4.29 combination of Whittaker functions
0 -1 |0'3 0
fu) ClM (2)\ +C2W (2)\ )
UW=——7=Mzapu| ——U|T—=Waiqp,| —-UJ,
Then the spinolV has the structure Vu Ao Vu o
(4.30
where u=ie/w and C; and C, are arbitrary constants.
a(X)A(T) Analogously we have that the solution of H4.29 is
X)B(T
Y(X)C(T) g(v)= —=Muyp,| —V|+—=W.gp,|—V
W o ] v ®
o(X)D(T) (4.3
whereC5 andC, are arbitrary constants.
The spinor¢ can be computed with the help of the in-
Substituting Eq(4.25 into Eqg. (4.22 we obtain verse transformatiof.21):

—ia(X)(dr—ire  °TA(T)—B(T)(dx+re“X) B(X)
iB(X)(dr+ine” °TB(T)—A(T)(dx— re“®)a(X)
iy(X)(dr+ine “T)C(T)+D(T)(dx—Ae“X) 8(X)

—i8(X)(dr—ine”“T)D(T)+ C(T)(dx+re ) ¥(X)

o=y 'L1— L)W= (4.32

025007-6



VACUUM EFFECTS IN AN ASYMPTOTICALLY ... PHYSICAL REVIEW D61 025007

The system of equation@.26 can be written as a coupled a;(i—1)f;

system of ordinary differential equations —ay(i+1)f,

(x—NeM)a(X)=ieB(X), (dx+re® )B(X)=iea(X), ¢= a)(i+1)f, |’ (4.38
a(i—1)f;

(Ix+Ae“)y(X)=€ed(X), (Ix—Ae“)8(X)=—ey(X). _
(4.33  where the regular solutionfs andf, asT— —« are

Analogously, we have that the E(.27) is equivalent to (= 1 W 2\ 2iN
1_\/T_v —12u| T U Wipu|l —V /|,
(dr—ine “HA(T)=ieB(T),
1 2\ 2i\
(dr+ine “THB(T)=ieA(T), fzz\/ﬁWuzM U Wi V) (439
(4.39
(dr+ine “T)C(T)=eD(T), and the correspondin§, and f, regular asT—0 take the
form
i —oT — _
(dr—ine ©H)D(T) eC(T). 1 o 2ix
- . . fi1=——=W_1pp,| —U|Myp,| —V/,
Substituting Eqs(4.33 and(4.34) into Eq. (4.32 we arrive \/W w w
at
1 2\ 2iN
(—i+1)a(X)B(T) ffﬁwmﬂ UM, V). (440
(—i—1)BX)A(T) . - o
=e|l . , (4.3 Recalling thatyy=S¢ where S is given by Eq.(4.14 we
(i—=1)y(X)D(T) have thaty takes the form
(i+1)8(X)C(T) a,c0s0(i—1)f;—a;sin®(i+1)f,
where the solutions, convergent at large valueXcdre | —asin®(i—1)f;—acos0(i+1)f, | _
| a,cos@(i+1)f,+a,sin®(i—1)f;
Cl (2)\ ) |C1 w (2)\ _ . . s
all)= —W_ u —W —ul, a,sin®(i+1)f,+a,cosO(i—1)f,
( ) \/a 12, ,B( ) \/a 12, P (44])

Now we proceed to solve the equatiddsl? governing the

_C3 W 2\ s Cs 6 2\ dependence of the spinor solution of the Dirac equation on
y(u)= o vew - Y o= T_ ~12u| U the coordinatey andz
Cas0 (Y3~ i€B2)— Y, + ¥ ¥ m—i uoBUr=iN .
and (4.42
Since[K,,—idy] =0, we have thaty can be written as
AT dW 2i\ +d2M 2i\ ik.y 44
— < - =e"y .
(M= Nl —V o vzl v/, y=e"Ye(z), (4.43
substituting Eq(4.43 into Eq. (4.42 we obtain
Id,e 2iN d, (2”\ ) [_i_S(_k +o Z)—_Zﬁ ++23m =i(A+ B
B(T)= —— Wi, | v |+ —2M | 2], Y (—kyt woz) =y, + y"y'mle moBx) @,
( ) \/\7(0 121 ® \/V 12, (444)
wherewy=eB,. Introducing the spinop=23. 6§ with
ot ds s\ 2i\ N d4M 2i\ ——
(M= ~ 12ul =V W 124\ 77V | 2:1_77 (4.45
V2
dse 2i\ Id, 2iN we find that Eq.(4.44) reduces to
D(T)= \/wal/zM(—V)+WMl/2#(—V). . . o
(4.37) [—i 71( - ky+ woZ)— 72(92+ 7271m] O=1(N+ uoBy]0;
(4.46
Using the recurrence relations for the Whittaker functionssubstituting into Eq(4.46) the Dirac matrices in the repre-
we find that¢ has the form sentation(4.24) and considering a spinor with the structure
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01 dl . \/2(00 4 5
0> dy MM+ By (453
0= L (4.47)
3 and
04
d3 \/2&)0
we reduce our problem to that of solving the following sys- - mirtaBl (4.54
tem of partial differential equations: 2 HoBx
[0,—(—Ky+ ®2)]04=(M+ N+ o) 01, consequently,
[0+ (—Ky+t wg2)]01=(M—N—puoBy) 0y, (4.49 V2wq 4,U(ax)
[0, (—ky @62)10,= (M+ X+ p10) b3, MR 0B,
d,U(a+1x
[0+ (— Kyt 002)103= (M= A~ oBy) 5. (449 o= fz_( ) . @sB
w
Looking at Eqs.(4.48 and (4.49 we see thaty;~ 6; and md 2U(a,x)
0,~ 6, and therefore it is only necessary solve one of the
systems of coupled equations. Making the change of variable dsU(a+1x)
X=2lwy(wez—k,) we have
olo ) The spinorg¢ is obtained using the matrix transformation
d? x? 3.(4.45:
_01_ —+a 6120, (45@
dx? 4
01+ 0,
d? 2 s 1| 6,+63 56
—0,—|—+(a+1)|0,=0, 4.5 =30=— :
o2 a ( )[04 (4.5 ¢ J2| = 6,+ 65
- 61"’ 04

where a=(m?—\?)/2wy,— % . Equations(4.50 and (4.51)
are Parabolic cylinder equatioh%5] and their solutions are From Eqgs.(4.45 and (4.43 we obtain

2 \/
91:d1U(a: \/w_o(woz_ky))’ d4(U(a+1,X)—&U(a:X))

m+)\+,uon

_ N V2w,
ag—dgu(a, w—o(woz—ky)), d,l U(a+1x)— H\f U(a X) -
l//=— e'yy,
/2 \/
6,=d,U| a+1, \/ (woz k )) (4.52 ds| U(a+1x)+ +>\+ U(a X)

(4.57
with the help of the recurrence relations for the parabolic
cylinder equation and the equatiof%.48,(4.49 , we can Combining Eq.(4.41) with Eq. (4.57 we find that the
find the relation between the coefficients spinor ¢ is

V2w

m+A+

2w U(a X)

—sin®(i—1)f;—cosO®(i+1)f
[—sin®(i—1)f;—cosO(i+1)f,] |U(a+1x)— MT N+ 2B o
= e'kyye=, (4.58

2 . o V2
V2 [cosO(i+1)f,+sin@(i—1)f,] U(a+1,x)+ﬁU(ax)

o

M+ N+ oBy

o

[cos®(i—1)f;—sinO(i+1)f,] U(a+1x)— U(a X)

0

t

o

7;

o

O

[—sinO(i+1)f,+cos®(i—1)f;] |U(a+1x)+———=U(a,x)
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Now, we proceed to analyze the asymptotic limitsTas
— —o and T—+%. We will confine our attention to the <OachN|0acc>:|:8|2:ma
solutions of the spinof4.58. In the asymptotes we obtain a l+e

time dependent term multiplied by a factor depending on
space variables. Here, we proceed as we did in Sec. Il fo result that can be identified as a Fermi-Dirac distribution of

(4.65

the scalar case. particles associated with a temperature
The relation betweei, ,(z) andM, ,(z) [24] will be
helpful ®
To= 77Kq (4.66
I(=2u)
Wl D= rp— oy Mhu(@ -
( K“—N) and, consequently, the temperature detected in the acceler-
I'(2u) ated frame i§18]
+F(J./2+—M_)\)M)\’7’M(Z). (4.59 »
7=(goo) 7o (4.67)
Taking into account expressidd.59 we find that the solu-
tions of Eq.(4.34 are related as follows: that in the asymptotic limit a¥— + o takes the form
2i\ re-2 2i\ —w
Wz,u( T V= rl,(z_—M_) w( TV 7=2° i
o) ( L= %) ® 47Ky
I'(2p) im(pn—1/2) . . .
I‘(1/2+—,u—%)e showing that the temperature is proportional to the
asymptotic value of the acceleration.
2iA
xM,,M(—v . (4.60
' w V. DISCUSSION OF THE RESULTS

Looking at the quasiclassical behavior given by E2.8), In the present paper we have separated variables and

recalling the behavior oM, ,(z) asz—0, and the relation solved the Klein-Gordon and Dirac equations in the curvilin-
between Whittaker and Bessel functions, we identify theear coordinate$l.l) when a constant magnetic fie(@.2) is
positive and negative accelerated modes as present. The algebraic method of separafiej20-23 has
been applied to reduce Dirac-Pauli equation to a system of
2iN ace 2iN coupled ordinary differential equations. Using the obtained
o V) PT=NM_gpp PR exact solutions we calculated the density of scalar and spin-
(4.61) 1/2 particles detected by an accelerated observer associated
with system of coordinate€l.l) when a constant magnetic
where N; is a normalization constant. Also an inertidl ( field in the direction of acceleration is present. The identifi-
— —o0) positive frequency modé';® is given by cation of positive and negative frequency modes was carried
out comparing the relativistic solutions with the quasiclassi-
cal Hamilton-Jacobi solution§2.6) and (2.8). The results
: (4.62  obtained in Secs. Ill and IV indicate that the magnetic field
does not modify the thermal character of spectrum. The tem-
whereN; is a normalization constant. perature associated with the thermal bath is not modified by
Looking at Eq.(4.60 and recalling that the inertial modes B. This result has a classical counterpart: If a magnetic field
can be expressed in terms of the accelerated positive arflis collinear to the motion of a particle, then it does not

acc_
P =NiMyp,

) 2i\
Yhe= N3W1/2#< Y

negative modes via the Bogoliubov coefficients accelerate the particle and no radiation is caused by it. The
presence of a nonminimal coupling in E@L.1) does not
,/,ige:m/,icu By, (4.63 affect the density(4.65. The proportionality between tem-
perature and accelerations remains valid even if uniform ac-
we get that celerations are reached asymptotically. The role of the

anomalous magnetic moment in the energy spectrum density

B , will be discussed in a forthcoming publication.
—|=e (4.69
o
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