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Vacuum effects in an asymptotically uniformly accelerated frame with a constant magnetic field
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In the present article we solve the Dirac-Pauli and Klein-Gordon equations in an asymptotically uniformly
accelerated frame when a constant magnetic field is present. We compute, via the Bogoliubov coefficients, the
density of scalar and spin-1/2 particles ‘‘created.’’ We discuss the role played by the magnetic field and the
thermal character of the spectrum.

PACS number~s!: 03.70.1k, 98.80.Hw
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I. INTRODUCTION

The study of quantum effects in nonintertial frames
reference has been thoroughly discussed in the literature.
pioneering articles of Fulling and Unruh@1,2# showing the
nonequivalence of the quantization of scalar fields in Rind
and Minkowski coordinates and the thermal character of
radiation were the origin of a large body of articles devo
to analyze quantum measurement processes in uniformly
celerated frames and possible interpretations thereof.

The advantage of considering Rindler coordinates
many. They can be associated with a uniformly accelera
observer. They also possess a global timelike Killing vec
and the~massive and massless! Klein-Gordon as well as the
Dirac equations are separable in the Rindler coordinates~see
Fig. 1!. The Rindler coordinates can be extended to cover
whole space time and thermal effects can be related, via
equivalence principle, with the Hawking effect@3,4#.

The study of quantum effects in nonuniformly accelera
frames of reference presents, at first glance, different tec
cal problems. Among them we can mention that the sys
of coordinates associated with non-Rindler kinematics do
possess in general a timelike Killing vector, and therefor
standard interpretation of positive and negative freque
solutions is absent. The complete separation of variable
the Klein-Gordon and the Dirac equations is possible only
a restricted set of coordinates, and those coordinates al
ing separability sometimes present coordinate singularit
therefore the quantization scheme fails.

Among the nonstatic coordinate systems where the Kle
Gordon and Dirac equations separate we have@5,6#

t1x5
2

v
sinhv~T1X!, t2x5

21

v
e2v(T2X), y5y, z5z.

~1.1!
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The line element associated with the coordinate transfor
tion ~1.1! is

ds25~e22vT1e2vX!~dX22dT2!1dy21dz2. ~1.2!

The separability of he Klein-Gordon equation in Eq.~1.1!
has been discussed by Kalnins@5#, one the authors has ac
complished a complete separability of the Dirac@7# equation
in Eq. ~1.1!.

The kinematics associated with the coordinates~1.1! have
been exhaustively analyzed by Costa@6,8#. The proper time
alongX5X0 is

s5
1

v
e22vT1e2vX01

1

v
evX0sinh21ev(T1X0).

ConsideringT as the evolution parameter, we have that
observer co-moving to the system~1.1! has a four-velocity
given by

FIG. 1. The accelerated coordinates withv51. The solid lines
correspond to the spacelikeT5const Cauchy surfaces. The dash
lined correspond to the timelike curvesX5const.
©1999 The American Physical Society07-1
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V5
~coshv~X1T!1ev(X2T)/2,coshv~X1T!2ev(X2T)/2,0,0!

Ae22vT1e2vX
~1.3!
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and experiences an acceleration whose components are

at,x5
v sinhv~X1T!7v@ev(X2T)/2#

e22vT1e2vX

1
coshv~X1T!6@ev(X2T)/2#

~e22vT1e2vX!2
ve22vT,

ay50, az50. ~1.4!

From the absolute value of the acceleration, we readily
tain thata5uamamu1/2 takes the form

a5ve2vX~e22vT1e2vX!23/2. ~1.5!

From Eq.~1.5! we obtain that the accelerated frame becom
an ‘‘inertial’’ Milne system @9,10# as T→2`, and on the
other hand it evolves toward an uniformly accelerated fra
asT→1`.

Quantum effects in the noninertial frame~1.1! have been
discussed by Costa@6# and by Percoco and Villalba@11# for
Dirac particles. The nonexistence of a global timelike Killin
vector for the line element~1.2! precludes making a straigh
forward identification of the positive and negative frequen
solutions of the scalar and Dirac wave equations. In orde
circumvent this difficulty, we identify positive and negativ
frequency modes comparing the asymptotic solutions of
wave equations with those obtained for the relativis
Hamilton-Jacobi equation.

Recently, Bautista@12#, has discussed, in a Rindler acce
erated frame, vacuum effect associated with a spin-1/2
ticle with anomalous magnetic moment in a constant m
netic field directed along the acceleration. The author obta
a Planckian distribution of created particles that depends
the magnetic field via the nonminimal anomalous coupli
The author also discusses deviation of the energy den
from a thermal distribution due to the magnetic field. As
preliminary step towards a deeper understanding of quan
processes in noninertial frames of reference, in the pre
paper we analyze vacuum effects associated with scalar
spin-1/2 particles in the coordinates~1.1!, when a constan
magnetic field is also present.

The article is structured as follows. In Sec. II, we sol
the relativistic Hamilton-Jacobi equation with a consta
magnetic field in the accelerated frame~1.1!. In Sec. III, we
solve the Klein-Gordon equation and compute the rate
scalar particles created. In Sec. IV, we solve the Dirac eq
tion with anomalous magnetic moment and compute the d
sity of particles related by the magnetic field in the non
ertial frame~1.1!. Finally, we discuss the results obtained
this article in Sec. V.
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II. SOLUTION OF THE HAMILTON-JACOBI EQUATION

The relativistic Hamilton-Jacobi equation coupled to
electromagnetic field can be written as@6,13#

gab~]aS2eAa!~]bS2eAb!1m250, ~2.1!

where here and elsewhere we adopt the units wherec51,
and \51. The vector potential associated with a const

magnetic fieldBW 5Bxx̂ directed along the acceleration~1.4!
has the form

A5~0,0,Bxz,0!. ~2.2!

It is not difficult to verify that Eq.~2.2! satisfies the condi-
tions ¹mAm50 andFabFab52Bx

2 .
Substituting the line element~1.2! into Eq.~2.1! we obtain

1

e2vX1e22vT
@~]XS!22~]TS!2#1~v0z2]yS!21~]zS!2

1m250, ~2.3!

wherev05eBx . The solution of Eq.~2.3! has the form

S~X,y,z,T!52kyy6 i E Am22l21~ky1v0z!2dz

6E Ae22l2e2vXdX6E Ae21l2e22vTdT,

~2.4!

which in the asymptotic limit asX→` andT→2` reduces
to

S~X,y,z,T!52kyy6 i E Am22l21~ky1v0z!2dz

6 i
l

v
evX6

l

v
e2vT. ~2.5!

The wave functionu(X,y,z,T)5eiS gives the quasiclassica
asymptotes of the solutions of the Klein-Gordon and Dir
equations. In the remote past, asT→2`,u2`(X,y,z,T)
takes the form

u2`~X,y,z,T!5C~y,z!e2(l/v)evX
c7e6 i (l/v)e2vT

,
~2.6!

where in Eq.~2.6! the upper and lower signs correspon
respectively, to positive and negative frequency modes.

Analogously, we have that asX→` andT→` Eq. ~2.4!
reduces to
7-2
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S~X,y,z,T!52kyy6 i E Am22l21~ky1v0z!2dz

6 i
l

v
evX6eT ~2.7!

and, consequently,

u`~X,y,z,T!5C8~y,z!e2(l/v)evX
c78 e7 i eT, ~2.8!

where, in the present case, the upper sign correspond
positive frequency modes and the lower sign to nega
modes. The results~2.6! and ~2.8! give the quasiclassica
asymptotic behaviors of the relativistic wave equations in
accelerated coordinates~1.1!.

III. SOLUTION OF THE KLEIN-GORDON EQUATION

In this section we solve the Klein-Gordon equatio
coupled to a constant magnetic field, in the accelerated
ordinates with the line element given by Eq.~1.2!. The co-
variant generalization of the Klein-Gordon equation is@4,14#

gab~¹a2 ieAa!~¹b2 ieAb!F2m2F50, ~3.1!

where¹a5]a2Ga is the covariant derivative, andAa is the
vector potential given by Eq.~2.2!.

Substituting Eq.~1.2! into ~3.1! we readily obtain

F 1

e22vT1e2vX
~]T

22]X
2 !2~]y

21]z
2!1 i2eBxz]y

1e2Bx
2z22m2Gc50. ~3.2!

Since Eq.~3.2! commutes with the operator2 i ]y we can
look for a solution of the formc5f(X,z,T)eikyy which re-
duces Eq.~3.2! to

H 1

e22vT1e2vX
t~]T

22]X
2 !1~eBxz2ky!22]z

22m2J f50.

~3.3!

Equation ~3.3! can be separated in the formf(X,z,T)
5h(X,T) f (z). The resulting equations are

F 1

e22vT1e2vX
~]T

22]X
2 !1l2Gh50, ~3.4!

d2f

dz2
5@~v0z2ky!21~2m22l2!# f ~z!, ~3.5!

wherel is a separation constant. VariablesX andT can be
separated in Eq.~3.4! after making the substitutionh(X,T)
5 f X(X) f T(T). The resulting equations forX andT are

d2f X

dX2
52~2l2e2vX1e2! f X~X!, ~3.6!
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d2f T

dT2
52~1l2e22vT1e2! f T~T!, ~3.7!

wheree is a constant of separation. Equation~3.6! takes a
more familiar form in terms of Bessel functions@15,16# after
introducing the variableu5evX

u2
d2f X

du2
1u

d fX

du
1S e2

v2
2

l2

v2
u2D f u50, ~3.8!

whose solution are the modified Bessel functions@15# I in(z)
andKin(z)

f X~X!5AI6 inS l

v
evXD1BKinS l

v
evXD , ~3.9!

whereA,B are arbitrary constants andn5e/v. The solution
of Eq. ~3.7! can be obtained in the same manner. Introduc
the change of variablesv5e2vT in Eq. ~3.7! we get the
Bessel equation

v2
d2f T

dv2
1v

d fT

dv
1S e2

v2
1

l2

v2
v2D f v50, ~3.10!

whose solutions can be expressed in terms of the Ha
functions@15# Hn

(1)(z) andHn
(2)(z)

f T~T!5A8Hin
(1)S l

v
e2vTD1B8Hin

(2)S l

v
e2vTD , ~3.11!

whereA8 andB8 are arbitrary constants.
In order to solve Eq.~3.5!, we introduce the new variable

x5A2/v0(v0z1ky). Equation~3.5! takes the form

d2f

dx2
2Fx2

4
1aG f ~x!50, ~3.12!

wherea52(m21l2)/2v0. Equation~3.12! is the Parabolic
cylinder equation@15#. The solution of Eq.~3.5! regular at
x50 can be expressed in terms of the functionU(a,x) @15#

f ~x!5US a,A 2

v0
~v0z1ky! D . ~3.13!

Let us analyze the asymptotic behavior of the solutions
Eq. ~3.2!. As X→` andT→2` we obtain that

h2`~X,T!5KinS l

v
evXD FA2`Hin

(1)S l

v
e2vTD

1B2`Hin
(2)S l

v
e2vTD G

5e2(l/v)evX
@A2`8 ei (l/v)e2vT

1B2`8 e2 i (l/v)e2vT
#.

~3.14!

Comparing Eq.~3.14! with Eq. ~2.6! we identify the first
term on the right-hand side as a positive frequency mo
7-3
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VICTOR M. VILLALBA AND JUAN MATEU PHYSICAL REVIEW D 61 025007
and the second term as a negative frequency. On the o
hand whenX→` andT→` we obtain

h`~X,T!5KinS l

v
evXD FA`JinS l

v
e2vTD

1B`J2 inS l

v
e2vTD G

5e2(l/v)evX
@A8̀ ~e2vT! in1B8̀ ~e2vT!2 in#

5e2(l/v)evX
~A8̀ e2 i eT1B8̀ ei eT!. ~3.15!

Also, comparing Eq.~3.15! with Eq. ~2.8! we can identify
the first and second terms on the right-hand side in Eq.~3.15!
as positive and negative frequency modes, respectively.

Now, we are going to express an inertial positive fr
quency mode (T→2`)

h inertial~X,T!5C0KinS l

v
evXDHin

(1)S l

v
e2vTD ~3.16!

in terms of the accelerated modes in the asymptotic fu
(T→1`)

hacc~X,T!5C1KinS l

v
evXD JinS l

v
e2vTD , ~3.17!

whereC1 and C0 are normalization constants according

the standard inner product@3# ^h i ,h j&52 i *(h i]W sh j*

2h j]W sh i* )dSs for the Klein-Gordon equation. The relatio
between Hin

(1)(z) and Jin(z) permits one to expres
h inertial(X,T) in terms ofhacc(X,T) as follows:

h inertial~X,T!5
C0

C1
F epn

sinhpn
hacc~X,T!

2
1

sinhpn
hacc* ~X,T!G . ~3.18!

Since the inertial and accelerated modes are related via
Bogoliubov coefficients@3,4# a andb,

h i (inertial)5(
j

a i j h j (acc)1b i j h j (acc)* , ~3.19!

we have that Eq.~3.18! gives immediately the values ofa i j
andb i j :

a i j 5
C0

C1

epn

sinhpn
d i j 5ad i j ,

b i j 52
C0

C1

1

sinhpn
d i j 5bd i j . ~3.20!

Sinceuau22ubu251 and

UbU5e2pn ~3.21!

a
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the density of created particles@17# has the form

^0accuNu0acc&5ubu25
1

e2pn21
~3.22!

which can be identified as a Planck distribution with a te
perature

T05
v

2pKB
. ~3.23!

The temperature measured by the accelerated observe
be obtained using the relation@3,18#:

T5~g00!
21/2T0 ~3.24!

In the asymptotic limit as T→1` we have
lim

T→1`
(g00)

21/25e2vX and the temperatureT takes the

value

T5
ve2vX

2pKB
5

a1`

2pKB
. ~3.25!

Then we find that the temperature is proportional to
asymptotic value of the acceleration.

IV. SOLUTION OF THE DIRAC-PAULI EQUATION

In this section we solve the Dirac equation with anom
lous magnetic moment in the accelerated coordinates~1.1!
when a constant magnetic field is present. The covariant g
eralization of the Dirac-Pauli equation in curvilinear coord
nates is@12,14#

H ga~]a2Ga!1
m0

2
gagbFab1mJ C50, ~4.1!

where ga are the curvilinear Dirac matrices satisfying th
anticommutation relations$ga,gb%152gab,Ga are the
spinor connections, andFab is the electromagnetic tenso
The curvilinear ga matrices are related to the consta
Minkowski g̃ i matrices with$g̃ i ,g̃ j%152h i j via the tetrad
ha

i :

ga5hi
ag̃ i . ~4.2!

In order to write the curvilinear Dirac matrices in Eq.~4.1!
we have to choose a tetradha

i . Here we are going to work in
the diagonal tetrad gauge, whereha

i takes the form

ha
i5S 1

Ae22vT1e2vX
0 0 0

0
1

Ae22vT1e2vX
0 0

0 0 1 0

0 0 0 1

D .

~4.3!
7-4
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It is easy to verify thatgik5h j l hi
jh

k
l . In this tetrad gauge

the curvilinear Dirac matrices can be expressed in term
the constantg̃ i as

g05
g̃0

Ae22vT1e2vX
, g15

g̃1

Ae22vT1e2vX
,

g25g̃2, g35g̃3. ~4.4!

In the Diagonal tetrad gauge~4.3! the spinor connections
defined by the relation@19#:

Gm5
1

4
glaS ]hn

.i

]xm
h.i

a2Gnm
a D sln ~4.5!

with sln5 1
2 (glgn2gngl), take the form

G052
1

2
ve2vX~e22vT1e2vX!21ḡ1ḡ0,

G15
1

2
ve22vT~e22vT1e2vX!21ḡ1ḡ0, G250, G350.

~4.6!

Substituting Eqs.~4.6! , ~4.4!, and ~2.2! into Eq. ~4.1! we
obtain

ḡ1

Ae2vX1e22vT F ]C

]X
1

ve2vX

2~e2vX1e22vT!
CG

1ḡ2S ]C

]y
2 ieBxzC D1ḡ3

]C

]z
1

ḡ4

Ae2vX1e22vT

3F ]C

]T
2

ve22vT

2~e2vX1e22vT!
CG1mC1 im0Bxḡ

2ḡ3C

50. ~4.7!

Introducing the spinorF

C5
F

~e2vX1e22vT!1/4
, ~4.8!

we eliminate the contribution terms due to the spinor c
nections. The Dirac equation takes the form

ḡ1~]F/]X!1ḡ4~]F/]T!

Ae2vX1e22vT
1ḡ2S ]F

]y
2 ieBxzF D1ḡ3

]F

]z

1mF1 im0Bxḡ
2ḡ3F50. ~4.9!

In order to solve Eq.~4.9! we proceed to separate variabl
using the algebraic method of separation developed by
ishkin and Villalba@7,20–22# The idea behind the method
to reduce Eq.~4.9! to a sum of two commuting first orde
differential operators
02500
of

-

h-

@K̂1~T,X!1K̂2~y,z!#c50, @K̂1~T,X!,K̂2~y,z!#250,
~4.10!

where in the present casec5ḡ3ḡ2F and

K̂15
ḡ1ḡ2ḡ3]X1ḡ4ḡ2ḡ3]T

Ae2vX1e22vT
, K̂25ḡ3~]y2 ieBxz!2ḡ2]z

1ḡ2ḡ3m2 im0Bx . ~4.11!

Since K̂1 and K̂2 satisfy Eq.~4.10! they satisfy the eigen-
value equations

K1c52 ilc, K2c5 ilc. ~4.12!

Now, we proceed to solve equationK1c52 ilc:

~ ḡ1ḡ2ḡ3]X1ḡ4ḡ2ḡ3]T!c52 ilAe2vX1e22vTc.
~4.13!

Applying the transformationc5Sf defined by

S5eJ(X,T)e@ i ḡ1ḡ4Q~X,T!# ~4.14!

we reduce Eq.~4.13! to the form

~ ḡ1ḡ2ḡ3]X1ḡ4ḡ2ḡ3]T!f1ḡ1ḡ2ḡ3@]XJ~X,T!

1 i ]TQ~X,T!#f1ḡ4ḡ2g3@]TJ~X,T!1 i ]XQ~X,T!#f

52 ilAe2vX1e22vTe2i ḡ1ḡ4Q(X,T)f. ~4.15!

In order to separate variables in Eq.~4.15! we demand that
the terms inside the brackets vanish, i.e.,

]XJ~X,T!52 i ]TQ~X,T!, ]TJ~X,T!52 i ]XQ~X,T!.
~4.16!

The solution of Eq.~4.16! is

J~X,T!5
i

2
arctan~ev(X1T)!,

Q~X,T!5
1

2
arctan~e2v(X1T)! ~4.17!

which determines the spinor transformationS Eq. ~4.14!.
Equation~4.15! reduces to

~ ḡ1ḡ2ḡ3]X1ḡ4ḡ2ḡ3]T!f5 il~evX1 i ḡ1ḡ4e2vT!f.
~4.18!

Let L1 andL2 be the commuting operators

L15ḡ1ḡ2ḡ3]X2 ilevX, L25ḡ1ḡ2ḡ3]T1le2vT,

@L1 ,L2#50. ~4.19!

Equation~4.18! can be expressed in terms ofL1 and L2 as
follows:
7-5
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~L11L2ḡ1ḡ4!f50. ~4.20!

In order to solve Eq.~4.20! we introduce the auxiliary spino

f5~ ḡ1ḡ4L12L2!W, ~4.21!

Substituting Eq. ~4.21! into Eq. ~4.20! we have that
(L1ḡ1ḡ4L12L2ḡ1ḡ4L2)W50. This allows separation o
variables as follows:

~]X
22l2e2vX1 ilvevXḡ1ḡ2ḡ3!W52e2W, ~4.22!

~]T
21l2e22vT1lve2vTḡ1ḡ2ḡ3!W52e2W, ~4.23!

wheree is a constant of separation.
When we choose the following representation for t

Dirac matrices@23# g̃ i :

g̃15S 0 s1

s1 0 D g̃25S 0 s2

s2 0 D ,

g̃35S 1 0

0 21D g̃45S 0 is3

is3 0 D . ~4.24!

Then the spinorW has the structure

W5S a~X!A~T!

b~X!B~T!

g~X!C~T!

d~X!D~T!

D . ~4.25!

Substituting Eq.~4.25! into Eq. ~4.22! we obtain
02500
~dX
22l2e2vX2lvevX1e2!S a~X!

d~X!
D 50,

~4.26!

~dX
22l2e2vX1lvevX1e2!S b~X!

g~X!
D 50;

analogously, Eq.~4.23! reduces to

~]T
21l2e22vT1 ilve2vT1e2!S A~T!

D~T!
D 50,

~4.27!

~]T
21l2e22vT2 ilve2vT1e2!S B~T!

C~T!
D 50.

In order to solve the system of equations~4.26!, it suffices to
solve the second order equation

u2
d2f

du2
1u

d f

du
1S 2

l2

v2
u26

l

v
u1

e2

v2D f 50, ~4.28!

whereu5evX.
Analogously, we have that solving the system of equ

tions ~4.27! is equivalent to solving the Whittaker@15# dif-
ferential equation

v2
d2g

dv2
1v

dg

dv
1S l2

v2
v26

il

v
v1

e2

v2D g50, ~4.29!

where we have introduced the change of variablev5e2vT.
The solution of Eq.~4.28! can be expressed in terms of
combination of Whittaker functions

f ~u!5
C1

Au
M 61/2,mS 2l

v
uD1

C2

Au
W61/2,mS 2l

v
uD ,

~4.30!

where m5 i e/v and C1 and C2 are arbitrary constants
Analogously we have that the solution of Eq.~4.29! is

g~v !5
C3

Av
M 61/2,mS 2il

v
v D1

C4

Av
W61/2,mS 2il

v
v D

~4.31!

whereC3 andC4 are arbitrary constants.
The spinorf can be computed with the help of the in

verse transformation~4.21!:
f5~ ḡ1ḡ4L12L2!W5S 2 ia~X!~]T2 ile2vT!A~T!2B~T!~]X1levX!b~X!

ib~X!~]T1 ile2vT!B~T!2A~T!~]X2levX!a~X!

ig~X!~]T1 ile2vT!C~T!1D~T!~]X2levX!d~X!

2 id~X!~]T2 ile2vT!D~T!1C~T!~]X1levX!g~X!

D . ~4.32!
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The system of equations~4.26! can be written as a couple
system of ordinary differential equations

~]X2levX!a~X!5 i eb~X!, ~]X1levX!b~X!5 i ea~X!,

~]X1levX!g~X!5ed~X!, ~]X2levX!d~X!52eg~X!.
~4.33!

Analogously, we have that the Eq.~4.27! is equivalent to

~]T2 ile2vT!A~T!5 i eB~T!,

~]T1 ile2vT!B~T!5 i eA~T!,
~4.34!

~]T1 ile2vT!C~T!5eD~T!,

~]T2 ile2vT!D~T!52eC~T!.

Substituting Eqs.~4.33! and~4.34! into Eq. ~4.32! we arrive
at

f5eS ~2 i 11!a~X!B~T!

~2 i 21!b~X!A~T!

~ i 21!g~X!D~T!

~ i 11!d~X!C~T!

D , ~4.35!

where the solutions, convergent at large values ofX, are

a~u!5
c1

Au
W21/2,mS 2l

v
uD , b~u!5

ic1

Au

v

e
W1/2,mS 2l

v
uD ,

g~u!5
c3

Au
W1/2,mS 2l

v
uD , d~u!5

c3

Au

e

v
W21/2,mS 2l

v
uD ,

~4.36!

and

A~T!5
d1

Av
W21/2,mS 2il

v
v D1

d2

Av
M 21/2,mS 2il

v
v D ,

B~T!5
Id1e

Avv
W1/2,mS 2il

v
v D1

d2

Av
M1/2,mS 2il

v
v D ,

C~T!5
d3

Av
W1/2,mS 2il

v
v D1

d4

Av
M1/2,mS 2il

v
v D ,

D~T!5
d3e

Avv
W21/2,mS 2il

v
v D1

Id4

Av
M 21/2,mS 2il

v
v D .

~4.37!

Using the recurrence relations for the Whittaker functio
we find thatf has the form
02500
s

f5S a1~ i 21! f 1

2a1~ i 11! f 2

a2~ i 11! f 2

a2~ i 21! f 1

D , ~4.38!

where the regular solutionsf 1 and f 2 asT→2` are

f 15
1

Auv
W21/2,mS 2l

v
uDW1/2,mS 2il

v
v D ,

f 25
1

Aun
W1/2,mS 2l

v
uDW21/2,mS 2il

v
v D , ~4.39!

and the correspondingf 1 and f 2 regular asT→0 take the
form

f 15
1

Auv
W21/2,mS 2l

v
uD M1/2,mS 2il

v
v D ,

f 25
1

Aun
W1/2,mS 2l

v
uD M 21/2,mS 2il

v
v D . ~4.40!

Recalling thatc5Sf where S is given by Eq.~4.14! we
have thatc takes the form

c5S a1cosQ~ i 21! f 12a1sinQ~ i 11! f 2

2a1sinQ~ i 21! f 12a1cosQ~ i 11! f 2

a2cosQ~ i 11! f 21a2sinQ~ i 21! f 1

2a2sinQ~ i 11! f 21a2cosQ~ i 21! f 1

D eJ.

~4.41!

Now we proceed to solve the equations~4.12! governing the
dependence of the spinor solution of the Dirac equation
the coordinatesy andz

„ḡ3~]y2 ieBxz!2ḡ2]z1ḡ2ḡ3m2 im0Bx…c5 ilc.
~4.42!

Since@K̂2 ,2 i ]y#250, we have thatc can be written as

c5eikyyw~z!, ~4.43!

substituting Eq.~4.43! into Eq. ~4.42! we obtain

@2 i ḡ3~2ky1v0z!2ḡ2]z1ḡ2ḡ3m#w5 i ~l1m0Bx!w,
~4.44!

wherev05eBx . Introducing the spinorw5Su with

S5
12ḡ1ḡ3

A2
~4.45!

we find that Eq.~4.44! reduces to

@2 i ḡ1~2ky1v0z!2ḡ2]z1ḡ2ḡ1m#u5 i ~l1m0Bx#u;
~4.46!

substituting into Eq.~4.46! the Dirac matrices in the repre
sentation~4.24! and considering a spinor with the structur
7-7
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u5S u1

u2

u3

u4

D , ~4.47!

we reduce our problem to that of solving the following sy
tem of partial differential equations:

@]z2~2ky1v0z!#u45~m1l1m0!u1 ,

@]z1~2ky1v0z!#u15~m2l2m0Bx!u4 , ~4.48!

@]z2~2ky1v0z!#u25~m1l1m0!u3 ,

@]z1~2ky1v0z!#u35~m2l2m0Bx!u2 . ~4.49!

Looking at Eqs.~4.48! and ~4.49! we see thatu1;u3 and
u2;u4 and therefore it is only necessary solve one of
systems of coupled equations. Making the change of varia
x5A2/v0(v0z2ky) we have

d2

dx2
u12Fx2

4
1aGu150, ~4.50!

d2

dx2
u42Fx2

4
1~a11!Gu450, ~4.51!

where a5(m22l2)/2v02 1
2 . Equations~4.50! and ~4.51!

are Parabolic cylinder equations@15# and their solutions are

u15d1US a,A 2

v0
~v0z2ky! D ,

u35d3US a,A 2

v0
~v0z2ky! D ,

u45d4US a11,A 2

v0
~v0z2ky! D ,

u25d2US a11,A 2

v0
~v0z2ky! D ~4.52!

with the help of the recurrence relations for the parabo
cylinder equation and the equations~4.48!,~4.49! , we can
find the relation between the coefficientsdi :
02500
-

e
le

c

d1

d4
52

A2v0

m1l1m0Bx
~4.53!

and

d3

d2
52

A2v0

m1l1m0Bx
, ~4.54!

consequently,

u5S 2
A2v0

m1l1m0Bx
d4U~a,x!

d2U~a11,x!

2
A2v0

m1l1m0Bx
d2U~a,x!

d4U~a11,x!

D . ~4.55!

The spinorw is obtained using the matrix transformatio
S~4.45!:

w5Su5
1

A2 S u11u4

u21u3

2u21u3

2u11u4

D . ~4.56!

From Eqs.~4.45! and ~4.43! we obtain

c5
1

A2 1
d4S U~a11,x!2

A2v0

m1l1m0Bx
U~a,x! D

d2S U~a11,x!2
A2v0

m1l1m0Bx
U~a,x! D

2d2S U~a11,x!1
A2v0

m1l1m0Bx
U~a,x! D

d4S U~a11,x!1
A2v0

m1l1m0Bx
U~a,x! D 2 eikyy.

~4.57!

Combining Eq.~4.41! with Eq. ~4.57! we find that the
spinorc is
c5
1

A2 1
@cosQ~ i 21! f 12sinQ~ i 11! f 2# S U~a11,x!2

A2v0

m1l1m0Bx
U~a,x! D

@2sinQ~ i 21! f 12cosQ~ i 11! f 2# S U~a11,x!2
A2v0

m1l1m0Bx
U~a,x! D

@cosQ~ i 11! f 21sinQ~ i 21! f 1# S U~a11,x!1
A2v0

m1l1m0Bx
U~a,x! D

@2sinQ~ i 11! f 21cosQ~ i 21! f 1# S U~a11,x!1
A2v0

m1l1m0Bx
U~a,x! D 2 eikyyeJ. ~4.58!
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Now, we proceed to analyze the asymptotic limits asT
→2` and T→1`. We will confine our attention to the
solutions of the spinor~4.58!. In the asymptotes we obtain
time dependent term multiplied by a factor depending
space variables. Here, we proceed as we did in Sec. III
the scalar case.

The relation betweenWl,m(z) and Ml,m(z) @24# will be
helpful

Wl,m~z!5
G~22m!

G~1/22m2l!
Ml,m~z!

1
G~2m!

G~1/21m2l!
Ml,2m~z!. ~4.59!

Taking into account expression~4.59! we find that the solu-
tions of Eq.~4.34! are related as follows:

W¸,mS 2
2il

v
v D5

G~22m!

G~1/22m2¸!
M¸,mS 2

2il

v
v D

1
G~2m!

G~1/21m2¸!
eip(m21/2)

3M 2¸,2mS 2il

v
v D . ~4.60!

Looking at the quasiclassical behavior given by Eq.~2.8!,
recalling the behavior ofM¸,m(z) asz→0, and the relation
between Whittaker and Bessel functions, we identify
positive and negative accelerated modes as

c1
acc5N1M1/2,mS 2

2il

v
v D , c2

acc5N1M 21/2,2mS 2il

v
v D ,

~4.61!

where N1 is a normalization constant. Also an inertial (T
→2`) positive frequency modec1

ine is given by

c1
ine5N3W1/2,mS 2

2il

v
v D , ~4.62!

whereN3 is a normalization constant.
Looking at Eq.~4.60! and recalling that the inertial mode

can be expressed in terms of the accelerated positive
negative modes via the Bogoliubov coefficients

c1
ine5ac1

acc1bc2
acc, ~4.63!

we get that

UbaU5e2ep/v ~4.64!

and taking into account thatuau21ubu251, we find that the
density of particles created is@17#
02500
n
or

e

nd

^0accuNu0acc&5ubu25
1

11e2p(e/v)
, ~4.65!

a result that can be identified as a Fermi-Dirac distribution
particles associated with a temperature

T05
v

2pKB
~4.66!

and, consequently, the temperature detected in the acc
ated frame is@18#

T5~g00!
21/2T0 ~4.67!

that in the asymptotic limit asT→1` takes the form

T5
ve2vX

4pKB
,

showing that the temperature is proportional to t
asymptotic value of the acceleration.

V. DISCUSSION OF THE RESULTS

In the present paper we have separated variables
solved the Klein-Gordon and Dirac equations in the curvil
ear coordinates~1.1! when a constant magnetic field~2.2! is
present. The algebraic method of separation@7,20–22# has
been applied to reduce Dirac-Pauli equation to a system
coupled ordinary differential equations. Using the obtain
exact solutions we calculated the density of scalar and s
1/2 particles detected by an accelerated observer assoc
with system of coordinates~1.1! when a constant magneti
field in the direction of acceleration is present. The ident
cation of positive and negative frequency modes was car
out comparing the relativistic solutions with the quasiclas
cal Hamilton-Jacobi solutions~2.6! and ~2.8!. The results
obtained in Secs. III and IV indicate that the magnetic fie
does not modify the thermal character of spectrum. The te
perature associated with the thermal bath is not modified
B. This result has a classical counterpart: If a magnetic fi
B is collinear to the motion of a particle, then it does n
accelerate the particle and no radiation is caused by it.
presence of a nonminimal coupling in Eq.~4.1! does not
affect the density~4.65!. The proportionality between tem
perature and accelerations remains valid even if uniform
celerations are reached asymptotically. The role of
anomalous magnetic moment in the energy spectrum den
will be discussed in a forthcoming publication.
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