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Magnetic oscillations in dense cold quark matter with four-fermion interactions
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The phase structures of Nambu—Jona-Lasinio models with one or two flavors are investigated at nonzero
values ofu andH, whereH is an external magnetic field andis the chemical potential. In the phase portraits
of both models there arise infinitely many massless chirally symmetric phases, as well as massive ones with
spontaneously broken chiral invariance, reflecting the existence of infinitely many Landau levels. Phase tran-
sitions of first and second orders and a lot of tricritical points have been shown to exist in phase diagrams. In
the massless case, such a phase structure leads unavoidably to the standard van Alphen—-de Haas magnetic
oscillations of some thermodynamical quantities, including magnetization, pressure and particle density. In the
massive case we find an oscillating behavior not only for thermodynamical quantities, but also for a dynamical
quantity as the quark mass. In addition, in this case we have nonstandard, i.e., nonperiodic, magnetic oscilla-
tions, since the frequency of oscillations is ldrdependent quantity.

PACS numbgs): 11.30.Qc, 12.38.Mh, 21.65f, 71.27+a

[. INTRODUCTION fact that numerical lattice simulations at* 0 have not been
able to overcome problems associated with the complex part
The exploration of strongly interacting matter at high den-of the fermionic determinant. Moreover, the incorporation of
sity and in the presence of external electromagnetic fields i& magnetic field into lattice gauge calculations is not elabo-
of fundamental interest and has potential applications to th&ated sufficiently, either. For these reasons, when considering
quark-gluon plasma and heavy-ion collisions, to cosmologyuark matter aju,H#0, many authors prefer to deal with
and astrophysics of neutron stars. Recently, some aspects afequate modelg.g., with the MIT bag modé€|7]), rather
this problem were considered [ii], where it was pointed out than with QCD.
that in QCD at high density a new phase with color super- In the present paper we shall study the above problem in
conductivity might exist. The influence of external magneticthe framework of some specific QCD-like quark models.
fields on the QCD vacuum was, for examp|e, Studieﬁzih Namely, we shall investigate the influence of an external
Our goa| is to investigate the properties of the Strong|ymagnetic field and chemical potential on the vacuum struc-
interacting cold quark matter in the presence of both thdure of Nambu—Jona-LasinidNJL) models containing four-
external magnetic fielth and the nonzero chemical potential fermion interactions[8,9]. The simplest one, denoted as
w. The subject is closely related to magnetic oscillations ofnodel |, refers to the one-flavor case and is presented by the
different physical quantities. In this connection we shouldLagrangian
remember that the van Alphen—de Haas effestillations
of the magnetizationwas predicted for the first time by Lan- — G — 5, — )
dau and then experimentally observed in some nonrelativistic L1 =0kt 90+ 55~ [(Akdi) "+ (A vsa) ], @
systemgin metal$ more than 60 years ad8,4]. At present, ¢
a lot of the attention of researchers dealing with magnetic . .
oscillations is focused on relativistic condensed matter syswhere all quark fields belong to the funda_mental multiplet of
tems(mainly on QED atu,H# 0), since the results of these f[he colo_r SUNG) grpup(he_re the su.mmatlon over thg color
studies may be applied to cosmology, astrophysics, and hig jndex k=1, .. . N¢ is implied. Obviously, L.l IS Invariant
energy physic$s,6). undgr(globab SU(NC) and U(1), transformatlons as well as
It is well known that up to now the consideration of QCD continuous U(1), chiral transformations
at u,H#0 is a difficult problem. This is partly due to the

a—e'%q, (k=1,...N,). 2
*Email address: dietmar.ebert@cern.ch The second, more realistic case considered here and re-
"Email address: kklim@mx.ihep.su ferred to as model Il is a two-flavor NJL model whose La-
*Deceased. grangian has the form
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2G

. G _ . .
Lo=qidq+ 5-[(aa)*+(qiy*ra)?], &) Seff(al,2)=—J d*x —iIndet(ig—oy—iys0).
C

whereq is a flavor isodoublet and coldz-plet quark field ~Assuming that in this formular, , are independent of space-

andr are isospin Pauli matricgés Eq. (3) and below, flavor time points, we have by definition

and color indices of the quark fielgl are now suppress¢d

The LagrangianL, is invariant under (globa) U(2); Setf(012)= —Vo(o'lyz)f d*x,
X SU(N.) as well as under chiral U(2XU(2)g groups.

NJL models were proposed as a good laboratory for in- 52 4
vestigating the nonperturbative phenomenon of dynamical . p 2 o
chiral symmetry breakin@CSB), which occurs in the phys- VO(U“)_ZG 2 77)4”1(2 PI=Vo(2),
ics of strong interactions, as well as for describing the low-
energy sector of QClisee, e.g., papefd0-12 and refer-  \yheres = /o2 + o2. Next, by introducing in Eq(5) the Eu-

ences thereh_.] Since there are no closed physical systems injiqean metric bo—ip,) and cutting off the range of inte-
nature, the influence of different external factors on they,ation (?<A2), we obtain

DCSB mechanism is of great interest. In this relation, specia

attention has been paid to the analysis of the vacuum 52 32
structure of NJL-type models at nonzero temperature and Vo(B)=5z—7— A%In 1+_2)
chemical potential[13,14], in the presence of external 2G  16m A

(chromojmagnetic field$15-17, with allowance for curva-

ture and nontrivial space-time topolog$8,19. The com- FAZS2-34n

bined influence of external electromagnetic and gravitational

fields on the DCSB effect in four-fermion field theories was

investigated i 20,21. The stationarity equation for the effective potenti@l has
In the present paper the phase structures and related age form

cillating effects of the above-mentioned NJL models are con-

sidered atu,H#0 in the leading order of the large sv,(3) s

N¢-approximation. We will show that, here, the set of oscil—TIOZ—

A2
1+ ;) } (6)

2
lating physical parameters in NJL models is richer than in 4
QED atu,H#0. Besides, in the NJL models, in contrast to 472 A2 s
QED and similar to some condensed-matter materials, there X|——=A2+32|n| 1+ _2) = _ZF(E)_ (7)
exist nonperiodic magnetic oscillations. G 3 A

Now one can easily see that@ G.=4m2/A?, Eq.(7) has
no solutions apart front =0. Hence, in this case fermions

First of all let us prepare the basis for the investigations irdf€ massless, and chiral invariari@ is not broken.
the following sections and consider in detail the phase struc-
Ll'JreOof the model | at nonzero chemical potengia 0 and H 4

Recall some well-known vacuum properties of the theory @
(1) at ©=0. The introduction of an intermediate quark-
meson Lagrangian —~—

m1c(M)

II. NJL MODELS AT p#0 AND H=0

H3o(M)

E =_.A —al i —& 2 2 20(M)
1=Qidq—q(o+ioyys)q 26(01+Uz) (4) R

1 1

greatly facilitates the problem under consideratifdn. Eq. Mie Mae

(4) and other formulas below we have omitted the fermionic )

index k for simplicity.] Clearly, using the equations of mo- ~ FIG. 1. Phase portrait of the NJL model at nonzgrand for

tion for the bosonic fieldsr; ,, the theory in Eq.(4) is arbitrary values o_f thg fermlpn mabk Phas_eﬁ andC are massive

equivalent to that in Eq(d). i:rom Eq.(4) we obtain the and nonsymmetricA is a chirally symmetric phase. Hege,.(M)

one-loop expression for the effective action =M, u1(M)=V3M2In(1+A%M?), uz(M) is the solution of
the equationV/,(0)=V (M), My=A/(2.21...), My is the so-
lution of the equationu?.(M ;) =A?%/(4e). In phaseB the particle

exdiNSer(012)]= f DgDq exp{ [ f [ld“x) , density in the ground state is equal to zero, whereas in phétsis

nonzero. Solid and dashed lines represent critical curves of second-
and first-order phase transitions, respectivelyand 8 denote tric-

where ritical points.
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M, and A are connected by Ed7).] In this figure the solid
Zo(p) and dashed lines represent the critical curves of the second-
and first-order phase transitions, respectively. Furthermore,
there are two tricritical pointSa and 3, two massive phases
B andC with spontaneously broken chiral invariance as well
as the symmetric massless phasé the phase portrait of
M the NJL model I(detailed calculations of the vacuum struc-
ture of this NJL model can be found jd4]). In the present
model the dynamical quark maZg(w), given by the global
minimum of the potentiaV/,,(X) as a function ofx, behaves
as depicted in Fig. 2.
We should note that the phase transition fr8nto C is
P the quark-matter analogue of the so-called insulator-metal
| phase transition in condensed-matter physics. This is due to
M #ae(M) the fact that, in the vacuum of phaBe the particle density
(the analogue of conductivity electron density in condensed
FIG. 2. The behavior of the dynamical quark m&sgux) asa  material$ is zero, while in the vacuum of pha<e there
function of u for the caseM <M, andH =0 within the framework  arises a nonzero density of charged particles, so that it looks
of model . like a Fermi-liquid ground state of metals.
To investigate the vacuum properties of the two-flavor
If G>G., then Eq.(7) has one nontrivial solution, NJL model(model l)) it is again convenient to employ, in-
20(G,A)#0, such thaF (Z,)=0. In this cas& is a point  stead of the quark Lagrangiaf®), the equivalent quark-
of global minimum for the potentia¥o(X). This means that meson Lagrangian
spontaneous breaking of the symme({2y takes place, since
3. is proportional to the chiral symmetry breaking order o o . N, .
parametexqq), which at,# 0 is not equal to zero. More- Lo=qi Y“%q—Q(UJFWE’TW)q—%(UZJF 7?).  (9)
over, fermions acquire a masé=3,(G,A).
Let us now consider the case wheie>0 and the tem-

peratureT+#0. In this case, the effective potentidl, () Hr?én%gaelfcfggﬁnscig!gl;of ”‘E gaasr? dWIiIOmeoxderIels,soer(]jei:an
can be found if the measure of integration in Eg).is trans- P o= K P

formed in the standard way according to the ri2g] terms of meson fields, . These potentials have the form of
the potentialg6) and(8) for model I, respectively, with the
dpe <& . exception that the factor (&%) ! in Eqgs.(6) and(8) has to
f ﬁ—”T Zm Po—i7wT(2n+1)+ . be replaced by (8%) 1. Moreover? in the case under con-
"~ sideration3.?= ¢+ 72. It follows from this similarity that

Summing there oven and letting the temperature in the the phase structure and the phase portrait of model Il are

obtained expression tend to zero, we obtain qualitatively the same as those of modékée Fig. L
Note that our investigation here is based on “standard”

NJL models containing only color-singlet|q) interactions.

d3
VM(2)=V0(2)—2J p3 Their path-integral bosonization leads to a single order pa-
(2m) rameter given by the quark condensate. In the recent litera-
X 0 NZTT 2 (= 325 pP), ture, one has further considered QCD-motivated extended

NJL models as arising from the Fierz transformation of
current-current interactions mediated lyonperturbative
gluon exchange. Such enlarged NJL models, which include,
besides usualqq) interactions, additionaldq)-interaction
Ou—3) channels, contain then two order parameters: the usual quark

VM(E):Vo(E)—W{§M(M2—22)3/2

where 6(x) is the step function. Finally, by performing the
momentum integration, we find

—2u3pZ =32 34N (e + Vr?=32%)232]). 1A po?nt of the .pha.lse di.agram is ca[led a tricritical one if, in an
arbitrarily small vicinity of it, there are first- as well as second-order
®) phase transitions.

It follows from Eq. (8) that, in the cas& <G, and at arbi- 2Chiral symmetry of the tvgo-flavor NJL modéB) is realized in
trary values of the chemical potential, the chiral symmetrythe space of meson fields-() as the rotation grou@(4), which

(2) is not broken. However, & >G, the model has a rich leaves the “length” of the particle vectow() invariant. Hence,
phase structure, which is presented in Fig. 1 in termg of all effective potentials of this model depend on the single variable
andM. [At G>G, one can use the fermionic malskas an == \/¢?+ 72 In the following we chooser=0, assuming the ab-
independent parameter of the theory. The three quan@jes sence of a pion condensate.
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H2 (eH)? [=ds

condensate{qﬁ) and, in addition, the diquark condensate ox
2472 Jo S

(gqg) of quark Cooper pairgfor early work on extended
NJL-type of models including additionalq€)-interaction
channels see, e.g., R¢R3]]. For such models one has, in
particular, shown that at sufficiently large values of the
chemical potential there might arise a new phase of color
superconductivity signaled by a nonvanishing diquark con-
densate/qq). This fact was, e.g., established[i®4] for an
extended version of the one-flavor model | andi26] for an
extended model Il. Since in the present paper we are inter-
ested in the consideration of the chiral symmetry breakinghereby isolating the contributions of the matter, the field,
alone, we have restricted our study to the above form ofind the electromagnetic interaction energy densities explic-
standard NJL models, leaving aside the possibility of addiitly. The potentialVy(X) in Eq. (11) is up to an unimportant

Z(2)= 5 p—s3?),

~ 1 (=ds )
VH(E): ﬁfo geX[ﬁ(—SE )

9)?

(eH
3

X| (eHs)cotheHs) —1— (11

tional (qq) interactions and of Cooper pairing of quarks.

IIl. PHASE STRUCTURE OF MODEL |
AT u#0 AND H#0

(infinite) additive constant not depending &n equal to ex-
pression(5). Hence, the ultravioletUV) regularized expres-
sion for it looks like Eq.(6).

The integral of the functioZ(X) is also UV divergent, so

we need to regularize it. The simplest possibility is to cut it
In the present section we shall study vacuum magnetioff at the lower boundary, which yields

22
T

(eH)?
24772

H2

2(2)27— In

(12

2

H (eH)?

272

2

1 X
X[ (—1x)— E[xz—x]ln X+ —

7 (13

properties of NJL systems. For model | @&=0, this prob-
lem was considered ifil5,17]. It was shown in15] that at
G>G, the chiral symmetry is spontaneously broken for ar-
bitrary values of the external magnetic figt including the
=0. < . :

oo S Hasovs, i e bog he Elr consta, ey e st 1 n 64
magnetic field is switched on, then for @le (0.G,) there is contrlbutes to th_e renorma_llzatlon of the magnetic field and
a spontaneous breaking of the initial UgLsymmetry (2) electric Charg_e, in a way similar to what occurs in quantum
[17]. This is the so-called effect of dynamical chiral Symme_electrodynam!c§29]. i )
try breaking(DCSB) catalysis by an external magnetic field. ~ The potentiaMy (%) in Eq. (11) has no UV divergences,
[This effect was observed for the first time in the frameworkS0 it is easily calculated with the help of integral taklas].
of a (2+1)-dimensional Gross—Neveu model [i26] and The f!n_al expression foMy(X) in terms of renormalized
was then explained if27]. Now this effect is under intensive guantities is then given by
investigations since it has a wide range of possible applica-
tions in physics]

Let us recall some aspects of the problenuatO,H #0.
In order to find in this case the effective potentg|(X) of
the NJL model |, gauged by an external magnetic field ac-
cording tod,—D,=d,—ieA,, A,=4,,X;H, one can use
the well-known proper-time methofl29] or momentum
space calculation§30], which in the leading order of the where x=32/(2eH), {(v,x) is the generalized Riemann
1/N. expansion gives the following expression: zeta function and’ (— 1x)=dZ(v,x)/dv|,-_;. The global
minimum point of this function is the solution of the station-

H2 32 eH [=ds arity equation
VH(2)=—+—+—f —exp(—s3?) coth(eHs).
2 2G gg2Jog? 5 s
< Vh(Z)=—{F(2)-1(2)}=0, (14
In this formulae has a positive value. It is useful to rearrange g3 " 4772{ ’

this expression in the form
whereF (%) is given in(7), and

Vh(2)=Vo(3)+Z(2)+Vu(2), (10

[(2)=2eH{InT(x)—3 In(2m)+x—3(2x—1)Inx}
where ds
:j —exp—s3?)[eHscotheHs)—1]. (19
0s

Vo(2)= exp(—s3?),

32 1 (=ds
6 a2 f =
8m°Jo's One can easily see that there exists, for arbitrary fixed values
of H,G, only one nontrivial solution®,(H) of Eq. (14),
which is the global minimum point 0f;(X). There, 2 y(H)
3Some recent references on this subject are presen{@gjin is a monotonically increasing function éf, and atH— o
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eH /G where B=1/T, ay=2— ok, ex=22+p>+2eHk with
2o(H)=—\17 (16)  k=0,1,2... denoting Landau levels, and the function
Vy(2) is given in Eq.(13). If we let the temperature in Eq.
However, atH—0 (18) tend to zero, we obtain the effective potential of the NJL
model | atH,u#0:
eH 1 [(4x? 2l i eec
S2(H)~ = P T enl G ¢
M?2 if G>G,.

Vi (3 =vu(s)- f "

(17) Hu(2) = Vi( )_mk:o a| P(u—ew) O(pu—=ek),
So, atG< G, andH =0 the NJL vacuum is chirally sym- (19
metric, but an arbitrarily small value of the external magnetic
field H induces DCSB, and fermions acquire a nonzero mass . . ) . ) )
3 o(H) (the magnetic catalysis effect of DCSB which, by performing the integration, can easily be cast into

Now let us consider the more general case, wHeno  the form
and u#0. In one of our previous papef82] an effective
potential of a 3D Gross—Neveu model at nonzerqu, and .
T was obtained. Similarly, one can find the effective poten- B eH
tial in the NJL model | aH, T, +0: V(3 =Vi(E) — =5 2 ab(n—sd

2
N p? sy
Sk

TeH &
VHMT(E):VH(E)_ﬁIZO ay X , (20

upl—si—stin

xf dpin{[1+e At m[1+e Al m]L
o wheres,= 32+ 2eHk. Finally, let us present the stationar-
(18) ity equation for the potentigR0):

2
Mt N "= S
Sk

pX > -
VHM(E)E—2¢(2)=E F(z)—|(2)+2er§=‘,0 a0 —sIn ):o. (22)

Py 4

In order to get a phase portrait of the model under consideminimum, when f,H) lies under the curveu= u.(H),
ation we should find a one-to-one correspondence betweemhich is defined by the following equation:

points of the ,H) plane and the global minimum points of

the function(20), i.e., by solving Eq(21) we should find the Viu(0) =V, (Zo(H)). (23
global minimum X (u«,H) of the potential(20) and then

study its properties as a function gf (H). Evidently, the linew= u.(H) is the critical curve of first-

order phase transitions. In the, region Eq.(23) is easily

. . . ) solved as
A. The caseG<G.. Magnetic catalysis and chemical potential
In order to greatly simplify this problem, let us divide the 2

- : ) H)=—[Vn(0)—V4(Eo(H))]Y2 24
(u,H) plane into a set of regionsy: He(H) @[ H(0) = Vh(Zo(H))] (24)
(u,H)= U w, Using the asymptotic£l7) of the solution (H) at H—0,

k=0 we find the following behavior of..(H) atH—O0:

2
o ={(p,H):2eHk= u?<2eH(k+1)}. (22 o feH [ 1 [4="
reH)= Nz &P ~5ehl 5 A |-

In the wy region only the first term from the series in Egs.

(20) and(21) is nonvanishing. So, one can find that, for the Hence, we have shown thatat>- u.(H) (G<G,) there
points (u,H) € wy, which are above the line={(u,H):u exists a massless symmetric phase of the NJL mpuel
=3,(H)}, the global minimum is at the poi¥ =0. Just merical investigations of Eq$20) and (21) give us a zero
under the curvé the point =3 4(H) is a local minimum of  global minimum point for the potential}; (%) in other re-
the potential(20), whereasX =2,(H) becomes a global gions w;,w,, ... as well. The external magnetic field
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ceases to induce the DCSB at> u.(H) [or at sufficiently u

small values of the magnetic field<<H (), whereH ()

is the inverse function ofc,(H)]. However, under the criti-

cal curve(24) [or atH>H.(u)], owing to the presence of an A

external magnetic field, the chiral symmetry is spontaneously .

broken. Here the magnetic field induces a dynamical fermion BRI D)

mass(H), which has gu-independent value. A /
Lastly, we should also remark that in the NJL modbl Vs

the magnetic catalysis effect takes place only in the phase Ay

with zero particle density, i.e., at<<u.(H). If w>pu(H),

we have the symmetric phase with nonzero particle density, //

but here the magnetic field cannot induce DCSB. -

— VZeH

&

B. The caseG<G.. Infinite cascade of massless phases

In the previous subsection we have shown that the points
(m,H), lying above the critical curve = u.(H), correspond
to the chirally symmetric ground state of the NJL model.
Fermionic excitations of this vacuum have zero masses.
first sight, it might seem that the properties of this symmetric
vacuum are slightly varied, when parametgrsand H are

FIG. 3. Phase portrait of the gauged model IGat G, . Solid

lines I, are given byl,={(u«,H):x=+2eHk}. They are critical
curves of second-order phase transitions. The dashed line of first-
rder phase transitions is defined by E23).

changed. However, this is not the case, and in the region L _ e -0 (27)
>uc(H) we have infinitely many massless symmetric g | e Ip (uH) =1y '
phases of the theory corresponding to infinitely many Lan-
dau levels, as well as a variety of critical curves of second—as well as
order phase transitions. We will now prove this.
It is well known that the state of thermodynamic equilib- 5 )
rium (the ground stajeof an arbitrary quantum system is I 9 Dy
described by the thermodynamic potentiBDP) (), which is (dp)? (dp)?
just the value of the effective potential at its global minimum (. H)=ler (wH) =l
point. In the case under consideration, the TOPuw,H) at
n>pue(H) has the form ___ eHw — 28
¢ - 2772\/,(L2—EE T 28
Q(/JWH)EVH,U,(O) B e
eH & Equation (27) means that the first derivativeQ)/du is a
:VH(O)_F kZO ab(p— €) continuous function on all lines,. However, the second
N derivative 9°Q/(du)? has an infinite jump on each ling
A puu?—&— e In[(Vu2— e+ w)l e} [see(28)], so these lines are critical curves of second-order

phase transitiongSimilarly, we can prove the discontinuity
(25 of 3?Q/(aH)? and 92Q/dudH on all linesl,,.]

. o The results of the above investigations are presented in
where e,= y2eHk We shall use the following criterion of Eig 3 where the phase portrait of the NJL model IGat
phase transitions: if at least one fitsecond partial deriva- G _in the (u,H) plane is displayed.
tive of Q(u,H) is a discontinuous function at some point,
then this is a point of a firstsecond} order phase transition.

Using this criterion, let us show that boundaries w@f C. The caseG>G
regions (22), i.e., lines I ,={(u,H):u=+v2eHk (k Concerning supercritical values of the coupling constant,
=1,2,...), arecritical lines of second-order phase transi-we shall consider here only the cas&.<G
tions. In an arbitraryw, region the TDP(25) has the form:  <(1.2%...)G., where the phase portrait of model | is
qualitatively represented in Fig. 4. In this figure one can see
eH X infinite sets of symmetric massle#gg,A;, ... phases, as
Q(u,H)[ =Q=Vu(0)— — > aif(u—e) well as massive phas€,C;, ... with DCSB. In addition,
A4 =0 there is another massive phaBeDashed and solid lines in
Fig. 4 are critical curves of first- and second-order phase

/,,2 2
X| u Mz—ef—ef In M transitions, respectively. One can also see on this portrait
€ infinitely many tricritical pointg,,s, (k=0,1,2...). Fora
(26) fixed value ofk the pointt, lies inside, but the poirg, is on
the left boundary of the correspondiag, region(22). Each
From Eq.(26) one easily finds critical line I, coincides with a part of the, boundary. In
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u #(%)
14 l3 l2
L. A3 Ay L
A
Okt1 p
me(M)® ' P F ’;2 ! ’: by Ao ‘ e, H) L
1 S0
A _
--Ca/ C, /01 / /j(H)
/ -~ Co 7t
A ;
ypc =
e e B
VeH FIG. 5. Typical behavior of5(X) (21) for some points f&,H)

e Cy. Hereo,= \/,uz—ZeHn.

FIG. 4. Phase portrait of the gauged model | @t<G
<(1.25...)G.. HereM is the quark mass at=0H=0, and the  the fact thatQ) has nou dependence in the phase

quantity u,.(M) is presented in Fig. 1. The dashed lintouc(H) If w increases, the curve of Fig. 5 moves up and to the
is defined by Eq(23). In this case one has infinite sets of symmetric right-hand side of this figure. So, for some valuesuothe
massless phaség,A,, ... as well as massive phaseg,C, . .. function ¢(X) in Eq. (21) will have three zero¢see Fig. &:
with DCSB. In addition there exists another massive pliase the one on the left-hand side in this figudg, 4, is a local

minimum of the functiorvy, ,(X) , the one on the right-hand

Table I, we give the values of the external magnetic fieldside,>, (2,>2,.1), a global minimum of that function. If
corresponding to tricritical point, andsy. the chemical potential persists to grow, then at some critical

The presence of an infinite cascade of masstggshases value of u the global minimum jumps fronk(u,H) to
in the caseG>G, may be proved in a way similar to what 3., ,,(u«,H). At this moment we have a first-order phase
was done in the previous subsection. However, now an infitransition from the massive pha&y to the massiveC,. ;
nite set of massive chirally nonsymmetric phases is availablene. In Fig. 4 the point of this phase transition lies on the
thanks to the particular structure of the functi¢() in Eq.  curve
(21). A detailed numerical investigation of this function —_—~—
shows that, for some values of.(H) inside theC, region Migy1,
(see Fig. 4, #(X) as a function ofs, qualitatively behaves which is the boundary between regioBg andC, ., ;. Hence,
like the curve, drawn in Fig. 5. At these values qf,H) all lines
there is only one nontrivial solutioB(u,H) of the station- —~
arity Eq. (21), which is the global minimum point of the Mty
effective potential(20) and at the same time is the quark in Fig. 4 (k=0,1,2...) are first-order phase-transition
mass in the phas€, of the theory. Remark that in each curves. Here we should also remark that all points of the line
phaseC, the quark mass is a-dependent function. In con- ——
trast, in the phas®8, the global minimum point is equal to tO#c(H)
20(H) [see Eqgs(16) and (17)], which is au-independent in this figure are described by E@23). Since the phase
quantity. Hence, the particle density=—dQ/du in the  structure of model | is so complicated, the dynamical quark
ground state of phas® is identically equal to zero, whereas mass2 (u,H), which is given by the global minimum of the
in each phas&€, this quantity differs from zero. This con- potentialVy,,(X), also has a rather complicatgdH depen-
clusion follows from the definition of the thermodynamic dence. For illustration, in Fig. 7 the schematic behavior of
potential() given in the previous subsection, as well as from3, (u,H) versusu is presented at some fixed value of the

external magnetic fieldH.

TABLE I. Values of the external magnetic field corresponding  From standard textbooks on statistical phy<iese, e.g.,
to tricritical pointst, and sy (see Fig. 4 for different ratios of  [4]) we know that more than three curves of first-order phase
coupling constant&/G.. . transitions (10PT) should not intersect at one point of a
phase diagram; thus, not more than three phases are allowed

G/G, 1.01 11 1.15 1.2

thU/A2 0.01Dd... 0.081B... 0.107®... 0.129¢ ...
4Since for all points of regiom8 we haveu<3.,(H), it follows

eH, /A’ 0.0064... 0.056®... 0.0808... 0.103B... from Eq. (20) that @ =V, (So(H))=Vu(E(H)), i.e., Q has in-
deed nou dependence.
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45) ¥(u, H)

Zo(H)

2k+1(u,5/\ k41 =
\/Ek(uyﬂ) Ok

FIG. 6. For increasing, there arise three zeroes of the function  FIG. 7. Schematic representation of the dynamical quark mass
(%) (21) defining two local minima%, and X, 1(Zx1<Xy) of  3(u,H) as a function ofu for the fixed magnetic field qualitatively
the effective potential, respectively. The global minimum of reflecting the structure of the phase portrait in Fig. 4. Here the
Vi,(X) lies in one of them and passes by a jump from one localmagnetic field is fixed in the intervaHs ,H, ), wheres,,t, are

minimum to another one depending on the valueg of tricritical points (see Fig. 4 The Mk-ﬁc(H) (k=0,1,2) are the
values of the chemical potential at which the lide= const crosses

to coexist in nature. However, in Fig. 4 one can see that ag, Fig. 4 the critical curves 377,  andssts,

infinite number of curves of 10PT cross at the one pMnt

Indeed, this visible contradiction with the above-mentioned

statement is only fictitious, because at the pdinive have a  lations into two parts; the first one is called monotonic and

second-order phase transitiph4]. Hence,M does not be- does not contain any oscillations, whereas the second part,

respectively.

long to any of the critical curves of 10PT which is of particular interest here, contains all the oscilla-
’]\-/_;? tions. Following this rule, we can write down, say, the TDP
k

(25) of the NJL model | in the form
and is therefore not a point of phase coexistence.
Q(u,H)=Q o, H)+ Qo e, H). (29
IV. MAGNETIC OSCILLATIONS IN MODEL I o
) In order to present the oscillating pdd,s{«,H) as well as
Now we want to show that there arise, from the presencénhe monotonic one,,o 4,H) in an analytical form, we
of infinite sets of massles&, phases as well as of massive shall use the technique elaborated[&, where manifestly
Cy ones, magnetic oscillatiorithe so-called van Alphen—de analytical expressions for these quantities were found in the
Haas-type effegtof some physical parameters in model | case of a perfectly relativistic electron-positron gas. This

gauged by an external magnetic field. technique can be used without any difficulties in our case,
too. So, by applying the Poisson summation formudlain
A. The caseG<G, Eq. (25),
Let the chemical potential be fixed, i.eyg=const 0 0 o
> uc(H). Then on the planey,H) (see Fig. 3 we have a 2 anQD(n):ZE ay | D(x)cog27kx)dx, (30)
line that crosses critical linesly,l,, ... at points n=0 k=0 0

H{,H,, ... . The particle densityg and the magnetizatiom
of any thermodynamic system are defined by the TDP in thé@ne can get foi)yon(x,H) and Q,s(u,H) the following
following way: n=—0Q/du, m=—0Q/dH. At u = const  €Xpressions:
these quantities are continuous functions of the external
magnetic field only, i.e.n=n(H), m=m(H). We know ut (eH)? (v
that all the second derivatives 6%(u,H) are discontinuous Qmon=VH(0) — 102 a3 f
on every critical linel,,. The functionsn(H) and m(H), & &
being continuous in the intervadl € (0,), therefore have
first derivatives that are discontinuous on an infinite set of . a2
pointsH,, ... Hy, ... . Such a behavior manifests itself as M €
a phenomenon usually called oscillation. Qosczm k; (H) [Q(mkv)cog rky +r/d)

In condensed-matter physig3,4] it is a conventional rule
to separate the expression for a physical quantity with oscil- + P(wkv)coq mkv— m/4)], (32

1
dyY, T P(wky),
k=1 k
(3D

0
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where v=u?/(eH). [To find Egs.(31) and (32) it is suffi- wO(u—3(u,H)) * [eH\ 32
cient to let the electron mass pass to zero in fornjiB of Qo u,H)= 7 : _k)
[6].] FunctionsP(x) and Q(x) in Egs. (31) and (32 are Am k=1 \7
connected with Fresnel integra®x) and S(x) [33] X [Q(7kv)cog 2 ke + 7/4)

Clx)— 1 X 5 . +P(mkv)cog2mko— m/4)], (39
(x)—§+ VE[ (x)sinx+ Q(x)cosx] , ) o

wherev=pu“/(eH), o=[u —2(u,H)]/(2eH). From Eq.
(34) one can see that as a function of the variadéel ?,

1 /x . the TDP(33) oscillates with frequenclyu?—3.2(u,H)]/2 if
SO) =57\ gL POOcosx=Q(x)sinx]. this variable tends to infinity. Sinc@(u,H) is equal, up to
a sign, to the pressure in the ground state of the system, the
They have, ak— o, the following asymptotic$33]: pressure in the NJL model in the present case is also an

oscillating quantity. Moreover, taking into account the sta-

3 1 tionarity Eq.(21), one can easily derive manifest expressions

P(X):X_l—ZX_3+ ey Q)= _EX_2+§X_4+ R for oscillating parts of other thermodynamic quantities such
as particle densityn=—0Q/du and magnetizatiorm=

Formula(32) presents, in a manifestly analytical form, the —dQ/5H from Eqgs.(33) and(34),

oscillating part of the TDR25) for the NJL model atG [ u2—32(u,H)]3?

<G.. In the case under consideration, since the TDP is pro- Mosc= — IR

portional to the pressure of the system, one can conclude that 42 Hro

the pressure in the NJL model oscillates whén: 0, too. It w .

follows from Eq.(32) that the frequency of oscillations over x> sin2mko — m/4) (i)
the parametergH) ~* equalsu?/2. Then, starting from Eq. =1 K32 w2’

(32), one can easily find the corresponding expressions for

the oscillating parts oh(H) and m(H). These quantities [p2=32(u,H)132 & sin(2mko— 7/4)

oscillate atH—0 with the same frequency?/2 and have a Nosc= T 0

rather involved form, so we do not present them here. 4\2m rw k=1 k
Finally, we should note that the character of magnetic

oscillations in the NJL model &<G. resembles the mag-

(35

. ilati . | | q It is clear from Eq.(35) that particle density and magnetiza-
netic oscillations in massless quantum electrodynaiSif. 5, in the ground state of the NJL model oscillate with the
This circumstance is conditioned by the resemblance of thgame frequency a@

vacuum properties in the two models. Indeed, both in the Comparing magnetic oscillations in the NJL model | and

NJL mode_l a_nq in QED, for fixegk and varying valueg o, in QED, we see three main differences. Let us remark that in
there are |nf|n|tely many second-order phase transitieas QED the frequency of magnetic oscillatiofsver the vari-
the Appendix, where the vacuum structure of QEDuatl  op)0 eH) 1] is equal to w?—M?)/2, whereM is the elec-
#0 is considered tron mass[6]. In the NJL model, in contrast to QED, the
magnetic oscillation frequency is di-dependent quantity.
B. The caseG.<G<(1.25...)G, So, strictly speaking, in the NJL model magnetic oscillations
Here atu>u, (M) (see Fig. 4 the TDP of the NJL are not periodic ones. Similar peculiarities of magnetic oscil-

model as well as all thermodynamical parameters of the Syggtiong are observed in some ferromagnetic se_zmi.conductive
tem oscillate with the frequency?2/2. This can be shown in  Materials such as Hgg3e, [34], where nonperiodic mag-

a way similar to what was done in the previous section.  Netic oscillations over the variableetf) * were found to
However, atM < u< w,.(M), the character of magnetic exist for electric conductivityas well as magnetization. This
y c y

oscillations is changed. We will prove this next. First of all, IS the first distinction.

in this case we have another expression for the TDP of th A second difference is the character of the oscillations in
‘t9he two models: in QED, magnetic oscillations are accompa-

system, nied by second-order phase transitidsee the Appendix
Q(M,H)ZVHM(E(M,H)), (33 while in the NJL model they occur as a result of an infinite
cascade of first-order phase transitions.
whereVy, ,(2) is given in Eq.(20) andS (u,H) is the non- Third, we should remark that in the NJL model not only

trivial solution of the stationarity equatiof2l). In each of ~thermodynamic quantities oscillate, but some dynamical pa-
the massive phase§, the u- and H-dependent function rameters of the system do as well. This concerns, in particu-
> (u,H) coincides with the corresponding fermionic mass

2(u,H) (see Sec. Il ¢ By using the Poisson summation

formula (30) again in Eq.(20), one can easily select the S5Magnetic oscillations of the electric conductivity, which is pro-
oscillating part of the TDR33) in a manifestly analytical portional to the particle density, are known as the Shubnikov—de
form Haas effec{3].
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lar, oscillations of the dynamical quark mass. In fact, by At G.<G there is a finite vicinity ofG. in which the

applying the Poisson summation formy&0) in the station-  phase portrait of model Il in theu,H) plane is similar to the

arity Eq.(21) and searching for the solutict(u,H) of this  one in model I(see Fig. 4. So, in the case under consider-

equation in the forn® (u,H) =2 onT20sc, ONE can easily ation we have infinite sets of massless and massive phases as

find the following expressions fdi —0: well. The cascade of massive phases is the foundation for
nonperiodic magnetic oscillations. Indeed, from E8j) it

s (u2—M?)32 g sin(2wko — 7/4) 1 follows that the oscillating part of TDP has the form
osc rua¥?% (M) &1 K32 32|’ .
312
pO(p—3(p,H)) e H
_ _ Qo pH)="F T2 S S |
_ p(p—M2)3R u2— M2 1 A7 E=REE
Emon:MJ‘_ — = 1+ +0 5
12M“f" (M) w e 1) X[Q(wky;)cog 27kw; + 7/4)
36
39 + P(wkv;)cog 2mkw; — 7/4)], (39
wherew=(u2—M?)/2(eH), M=3(u) is the quark mass
atH=0, u+0 (see Fig. 2and wherev; = u?/(|e|H), o;j=[un’~322(u,H)]/(2|eH), and
3 (u,H) is the global minimum point of the effective poten-
w+JuZ—x2 tial (37). As in the previous model(u,H) in the present
f(x)=F(X) +2u\pu?—x*—2x? In——— case is arH-dependent function. This means that magnetic

oscillations in the NJL model Il are composed of two non-

- . : : iodic harmonics, because each of them has, as a function
[F(2) is defined in(7)]. Hence, in the framework of the NJL Perio . gy ' 2
model | the quark mass(u,H), as well as other dynamical sztge v|z_a|na;bl2e €H) ™", the H-dependent frequency] »
guantities composed from it, oscillate in the presence of an (r,H) 1/ (2lei]).
external magnetic field.

VI. SUMMARY AND CONCLUSIONS

V. MAGNETIC OSCILLATIONS IN MODEL Il In the present paper we have studied the magnetic prop-
Next, let us consider magnetic oscillations in the more€rties of a many-body system of cold and dense quark matter
realistic NJL model Il containing two kinds of quarksand wlth four-fermion interactions. In particular, we havg inves-
d quarks with electric charges, ande,, respectively. The tigated the groynd-state/acuun) structure of two S|mple
effective potentialy,, in the case under consideration is a NJL models with one or two quark flavors, respectively,
trivial generalization oV}, derived in the one-flavor case which are taken at nonzero chemical potentiabnd mag-

netic fieldH.
H2 2 2 As it turns out, in both types of models there exists a
Vi, (3)=— > " %6 +21 Venu(%), (370  phaseB (see Figs. 3 and)4n which the quark mass is equal
i<

to 24(H), i.e., it is a u-independent quantity. Since this
_ phase is achieved in the regipn< 3 y(H), the resulting par-

where3, =\ o+ 72, andVeiHM(E) is equal toVy (%) (20), ticle density is expected to be zero, which is supported by
with e replaced byle|. our calculation. Clearly, this is in agreement with the physi-

Qualitatively, the phase structure of the NJL model Il iscal interpretation of the chemical potential as the energy re-
the same as that of model I. So,Gitc G, we have an infinite  quired to create one particle in the system. Indeed, the energy
set of massless phasgsmilar to the phase portrait of model #, which in the phas@ is smaller than the quark mass, is not
| in Fig. 3) reflecting the infinite set of Landau levels that is sufficient to create a particle, so that in the ground state of
the basis for magnetic oscillations. Using the analyticalthis phase the particle density must vanish.
methods of Sec. IV, one can easily select in the present case Most interestingly, we have shown that in NJL models

the oscillating part of the thermodynamic potential: there exist an infinite set of massless chirally invariant
phaseqphasesAy,A;, ... in Figs. 3 and # which lead to
u 2 @ le)|H 32 periodic magnetic oscillations of some thermodynamic quan-
Qo= W 2 2 (—k tities of the systeniso-called van Alphen—de Haas effect
AmTfislk=1 | W In NJL models, this effect is observed at weak couplings
X[ Q(kv:)cos kv, + mld) (G<G,, whereG,=4?/A?) or at sufficiently high values
of the chemical potential and resembles magnetic oscillations
+ P(mkv;)coq wkv;— m/4)], (38) in massless QED.
Furthermore, for some finite interval of the coupling con-
where v;=u?/(|g;|H). Hence, in model Il, in contrast to stantG.<G<G,, where in the framework of model &,

model | and QED, we have a superposition of two oscillating=(1.2%5 . . . )G, the phase structure of NJL models | and Il
modes. At growing values of the parameteH) ~!, the fre-  contains an infinite set of massive chirally noninvariant
quency of oscillations in each of the modes is equal tgohaseqphasesC,,C;, ... in Fig. 4. This is the basis for
e’ (2]e)). nonperiodic magnetic oscillations of some thermodynamic
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parameters, since the dynamical quark mass in each of the

eH <
phase<, is now itself anH-dependent quantityNotice that Qoep(p,H)=— — 2 anf(u—€,)
analogous nonperiodic magnetic oscillations were recently 4m® n=0
found to exist in some condensed-matter matefi24$, too) 5 > 5
We should also remark that, @< G<G,, some dynamical XuVp'— e eIl (Vu'— e+ p)l €nl}.
parameters in NJL systems, such as quark masses, oscillate (A2)

over (eH) ! as well. This is an unknown fact in the standard

condensed-matter theory of the van Alphen—de Haas effeci. _ N~ e
Moreover, our numerical analysis shows that for values o nh(AZ) we hive |r|1troduced the not_agm’,\_—o M Bzeﬂg’

the coupling constanG e (G4,G,), where G,~40G., we W5ereM Is the electron mass d=0.=0, and ay=

have in both models a finite number of massive phages — “on:

(the number of massless phases is infinite as befdke Using the results and methods of Sec. Il B one can now

larger values of the coupling constant, i.e.Gt G,, there (iasny show that, on each line l”:{('“"__'):'f'“
exist no massive phases in the phase structure of NJL modefg VM +2€eHn; of the (u,H) plane, all second derivatives

at all, except the trivial phase. of Leff(M,H) (Al) are discontinuous. So, the lingés (n

It is further interesting to note that for fixed magnetic field =01, - - -) inFig. 8 are the curves of second-order phase
H the dynamical quark mas(,H) of NJL models discon- tranS|t.|ons. They divide theu(,H) plang into an infinite set
tinuously jumps as a function gf, at pointswg, 1, i, - - - qf regionsC, (n=0,1,.. ..)corres.,pondlng to dlffer(_ent mas-
(see Fig. J, thus reflecting the structure of the underlying Sive Phases of QElassociated with Landau levelsith the
phase portrait shown in Fig. 4. same electron madd. Neyertheless,_gach phaSg is char- _

In conclusion, we have shown that NJL modelsuaH acterized by such _phy_S|caI guantities as particle density
+0 exhibit an interesting phase structure and a set of oscil?(#,H) and magnetizatiom(x,H). On each phase bound-
lating quantities, which are richer than in the correspondindy !n these quantities are continuous functions. However,
QED case. Finally, it is worth mentioning that extended NJL _helr first denvaﬂyes .are_dlscontlnuoug functlc_)ns on each
models, which allow for the generation of a nonvanishinglin€ In, SO the derivative jump ofi or mis the signal of a
(qq)-condensate for larger values of the chemical potentialSécond-order phase transition.
present the exciting new possibility of a spontaneous break- AS in the previously considered catgee Sec. IllC and
ing of color SU3) and electromagnetic (@) symmetry with Fig. 4}) the .pom.tM in Fig. 8, where al! lined, intersect, is a
the arising Meissner effects and with the emergence of a negPecial point differing from other points of the lings. In-
modified unbroken (L) symmetry. Note that our approach deed, atH=0 we have{6]
can be employed for a combined study of quark and diquark
condensates of extended NJL models takenuat #0.

Work in this direction is under way. Qoen(p,00=— Q(M_ZM)fM xdx
6 M

W(M_X)Z(M‘FZX).
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APPENDIX: THE QED VACUUM STRUCTURE IN THE
PRESENCE OF p AND H.

In the framework of QED and in a one-loop approxima-
tion, the effective Lagrangian in the presence of an external
homogeneous magnetic field has the following fd&r6|:

e

Leff(MrH):Ll(H)_QQED(MvH): (A1)
Co

whereL 1(H) is the Lagrangian g=0,H#0. Since it does
not influence the phase structure of QED, we do not present I

its explicit form here, but refer t§5,6]. The second part of

Less(u,H) is exactly the thermodynamic potential of a per-  FIG. 8. Phase portrait of QED at,H#0. All the linesl,, are
fect electron-positron gas the curves of second-order phase transitions.
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&BQQED(M,O)/((M)?’ is a discontinuous function at the point one can easily show that the nonrelativistic electron gas at
w=M. At the same time, in other points of critical curves u,H#0 has an infinite cascade of massive phases, too. So,
l,,, already the second derivatiu@QQED(,u,H)/(a,u)2 is  at the basis of the van Alphen—de Haas and Shubnikov—de
discontinuous. Haas effects lies an infinite set of second-order phase transi-

Here we have considered only the relativistic case, butions.

[1] D. Bailin and A. Love, Phys. Refl07, 325(1984; R. Rapp, [14] A.S. Vshivtsev and K.G. Klimenko, Pis'ma zZh. Eksp. Teor.
T. Schafer, E.V. Shuryak, and M. Velkovsky, Phys. Rev. Lett. Fiz. 64, 344(1996 [JETP Lett.64, 338(1996]; A.S. Vshivt-
81, 53(1999; M. Alford, K. Rajagopal, and F. Wilczek, Phys. sev, V.Ch. Zhukovsky, and K.G. Klimenko, Zh. Eksp. Teor.
Lett. B 422, 247(1998. Fiz. 111, 1921 (1997 [JETP84, 1047(1997)].

[2] S. Schramm, B. Muller, and A.J. Schramm, Mod. Phys. Lett. A[15] S.P. Klevansky and R.H. Lemmer, Phys. Rev.3B, 3478
7,973(1992; I.A. Shushpanov and A.V. Smilga, Phys. Lett. B (1989.

402, 351 (1997; J. Rafelsky,Electromagnetic Fields in the [16] D. Ebert and M.K. Volkov, Phys. Lett. B72 86 (199); I.A.

QCD-Vacuumhep-ph/9806389.

[3] W.J. de Haas and P.M. van Alphen, Proc. Am. Acad. Arts Sci.
33, 1106(1936; D. ShoenbergMagnetic Oscillations in Met-
als (Cambridge University Press, Cambridge, England, 1984

Shovkovy and V.M. Turkowskijbid. 367, 213 (1995; D.
Ebert and V.Ch. Zhukovsky, Mod. Phys. Lett. 22, 2567
(1997; A.Yu. Babansky, E.V. Gorbar, and G.V. Shchepanyuk,
Phys. Lett. B419 272(1998.

I.M. Lifshitz, Selected Works. Electronic Theory of Metals, [17] V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Phys. Lett.

Physics of Polymers and Bipolymeidauka, Moscow, 1994

(in Russian.

[4] E.M. Lifshitz and L.P. PitaevskiStatistical PhysicqPerga-
mon, Oxford, 1980 Yu.B. Rumer and M.Sh. RyvkinTher-
modynamics, Statistical Physics and Kineti®éauka, Mos-

B 349, 477(1995.

[18] T. Inagaki, T. Muta, and S.D. Odintsov, Mod. Phys. Lett8A

2117 (1993; E. Elizalde, S. Leseduarte, and S.D. Odintsov,
Phys. Rev. D49, 5551(1994); H. Forkel, Phys. Lett. 280, 5
(1992; Nucl. Phys.A581, 557 (1995; D.K. Kim and I.G.

cow, 1977 (in Russian. Koh, Phys. Rev. b1, 4573(1995; E.J. Ferrer, V.P. Gusynin,
[5] P. Elmfors, D. Persson, and B.-S. Skagerstam, Phys. Rev. Lett. and V. de la Incera, Phys. Lett. 865 217(1999; E.V. Gor-

71, 480(1993; Astropart. Phys2, 299(1994); D. Persson and bar, hep-th/9904180.

V. Zeitlin, Phys. Rev. D51, 2026(1995; J.O. Andersen and [19] A.S. Vshivtsev, A.K. Klimenko, and K.G. Klimenko, Yad. Fiz.

T. Haugset,ibid. 51, 3073 (1995; V.Ch. Zhukovsky, T.L. 61, 543(1998 [Phys. At. Nucl.61, 479 (1998 ]; M.A. Vdov-

Shoniya, and P.A. Eminov, Zh. Eksp. Teor. FiZ07, 299 ichenko, A.S. Vshivtsev, and K.G. Klimenko, IFVE 97-59,

(1995 [JETP80, 158(1995]; V.Ch. Zhukovsky, A.S. Vshivt- Protvino, 1997[in Russiani; A.S. Vshivtsev, M.A. Vdov-

sev, and P.A. Eminov, Yad. Fi&8, 1274 (1995 [Phys. At. ichenko, and K.G. Klimenko, Zh. Eksp. Teor. Fi¥14, 418

Nucl. 58, 1195(1995]; V.R. Khalilov, ibid. 61, 1631 (1999 (1998 [JETP87, 229(1998].

[61, 1520(1998]. [20] T. Inagaki, T. Muta, and S.D. Odintsov, Prog. Theor. Phys.
[6] A.S. Vshivtsev and K.G. Klimenko, Zh. Eksp. Teor. Fi9, Suppl.127, 93 (1997.

517(1996 [JETP82, 514 (1996)]. [21] D.M. Gitman, S.D. Odintsov, and Yu.l. Shil'nov, Phys. Rev. D
[7] S. Chakrabarty, Phys. Rev. B4, 1306(1996. 54, 2968(1996; B. Geyer, L.N. Granda, and S.D. Odintsov,

[8] Y. Nambu and G. Jona-Lasinio, Phys. R&22, 345 (196J);
124, 246 (1961).

[9] V.G. Vaks and A.l. Larkin, Zh. Eksp. Teor. F#0, 282(1961)
[Sov. Phys. JETA3, 192 (1961)]; 40, 1392(1961) [13, 979

Mod. Phys. Lett. A1l 2053 (1996; E. Elizalde, Yu.l.
Shil’'nov, and V.V. Chitov, Class. Quantum Gra¥5, 735
(1998; E. Elizalde and Yu.l. Shi'nov, hep-th/9809203; T.
Inagaki, S.D. Odintsov, and Yu.l. Shil'nov, Int. J. Mod. Phys.

(1961]; B.A. Arbuzov, A.N. Tavkhelidze, and R.N. Faustov,
Dokl. Akad. Nauk. SSSR39, 345(1962 [Sov. Phys. Dokl6,
598 (1962].

[10] D. Ebert and M. K. Volkov, Yad. Fiz26, 1265(1982 [Sov. J.
Nucl. Phys.26, 668 (1982]; Z. Phys. C16, 205 (1983; D.
Ebert and H. Reinhardt, Nucl. PhyB271, 188(1986.

A 14, 481(1999.

[22] L. Dolan and R. Jackiw, Phys. Rev. @ 3320(1974).

[23] D. Ebert and V.N. Pervushin, Teor. Mat. FiZJSSR 36, 313
(1978; D. Ebert, L. Kaschluhn, and G. Kastelewicz, Phys.
Lett. B 264, 420(1991).

[24] M. Iwasaki and T. Iwado, Phys. Lett. 850 163 (1995.

[11] M.K. Volkov, Ann. Phys.(N.Y.) 157, 282(1984; D. Ebert, H.  [25] J. Berges and K. Rajagopal, Nucl. Ph§538 215 (1999;
Reinhardt, and M.K. Volkov, Prog. Part. Nucl. Phy&3, 1 T.M. Schwarz, S.P. Klevansky, and G. Papp, Phys. Re&0,C
(1994. 055205(1999.

[12] S.P. Klevansky, Rev. Mod. Phy64, 649 (1992. [26] K.G. Klimenko, Theor. Math. Phys89, 1161 (1992; K.G.

[13] S. Kawati and H. Miyata, Phys. Rev. BB, 3010(1981); J. Klimenko, Z. Phys. C54, 323 (1992; K.G. Klimenko, A.S.
Fuchs, Z. Phys. @2, 83(1984); V. Bernard, U.-G. Meissner, Vshivtsev, and B.V. Magnitsky, Nuovo Cimento 207, 439
and |. Zahed, Phys. Rev. B6, 819 (198%; Chr.V. Christov (1994.
and K. Goeke, Acta Phys. Pol. B2, 187 (1991); D. Ebert, [27] V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Phys. Rev.
Yu.L. Kalinovsky, L. Minchow, and M.K. Volkov, Int. J. Lett. 73, 3499(1994).

Mod. Phys. A8, 1295(1993. [28] K.G. Klimenko, IHEP 98-56, Protvino, 1998; hep-ph/9809218.

025005-12



MAGNETIC OSCILLATIONS IN DENSE COLD QUARK.. .. PHYSICAL REVIEW D61 025005

[29] J. Schwinger, Phys. Re®2, 664 (1951). Math. Phys.106, 319 (1996.

[30] M.R. Brown and M.J. Duff, Phys. Rev. D1, 2124(1975; W. [33] H. Bateman and A. ErdeyHligher Transcendental Functions
Dittrich, Fortschr. Phys26, 289 (1978. (McGraw Hill, New York, 1953.

[31] A.P. Prudnikov, Yu.A. Brychkov, and O.l. Marichetegrals [34] A.D. Balaevet al, Zh. Eksp. Teor. Fiz.113 1877 (1998
and SeriegGordon and Breach, New York, 1986 [JETP86, 1026(1998].

[32] A.S. Vshivtsev, K.G. Klimenko, and B.V. Magnitsky, Theor.

025005-13



