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The search for the gravitational energy-momentum tensor is often qualified as an attempt at looking for “the
right answer to the wrong question.” This position does not seem convincing to us. We think that we have
found the right answer to the properly formulated question. We have further developed the field-theoretical
formulation of the general relativity which treats gravity as a nonlinear tensor field in flat space-time. The
Minkowski metric is a reflection of experimental facts, not a possible choice of the artificial “prior geometry.”

In this approach, we have arrived at the gravitational energy-momentum tensor wtfitkiésivable from the
Lagrangian in a regular prescribed w4g) a tensor under arbitrary coordinate transformati¢8ssymmetric

in its components(4) conserved due to the equations of motion derived from the same Lagra(®ifnee of

the secondhighesj derivatives of the field variables, arif) is unique up to trivial modifications not con-
taining the field variables. There is nothing else, in addition to these six conditions, that one could demand
from an energy-momentum object, acceptable both on physical and mathematical grounds. The derived gravi-
tational energy-momentum tensor should be useful in practical applications.

PACS numbsefs): 04.20.Fy, 11.10.Ef, 98.80.Hw

[. INTRODUCTION served energy-momentum object is closely related to the
variational procedure by which the equations of motion are
The notions of energy and momentum play an importanbeing derivedsee, for examplg,2]). At the beginning it is
role in physicq1,2]. These quantities are useful because theybetter to speak about an energy-momentum object, rather
are conserved. The conservation laws follow from the equathan a tensor, because at the first steps of derivation the
tions of motion, but we can gain important information abouttransformation properties are either not being discussed or
the system even without explicitly solving its equations ofnot obvious. In fact, there are two routes of derivation. One
motion. produces a ‘“canonical” object, and another produces a
For a distributed systerfor a field the densities of en- “metrical” object. The first route takes its origin from Euler
ergy, momentum, and flux of momentum are functions ofand Lagrange. This route does not care about the transforma-
points labeled by some coordinates These functions com-  tion properties of the field variables and the Lagrangian it-
bine in the energy-momentum tensbt”(x®), that is, the self, and whether the Lagrangian includes any metric tensor.
components off#* transform according to the tensor rule But what is important is whether the Lagrangian contains
under arbitrary transformations of the coordinatés(inde-  explicitly (in a manner other than through the field variaples
pendently of whether the space of poirtSis endowed with  the independent variablggoordinates x*. If such depen-
one or another metric tengoidt would be embarrassing to dence orx® is present, one should not expect first integrals
use an energy-momentum object which did not transform asf the equations of motion and conserved quantities. If there
a tensor under, say, a transition from rectangular to sphericaé no such a dependence, some sort of conservation laws is
coordinates. Usually, th&*” is a symmetric tensorJ#”  guaranteed as a consequence of the equations of motion.
=T"*, The symmetry off*"” is required for a proper formu- The second route is associated with the Noether identities.
lation of the angular momentum conservation. The local disHere one exploits from the very beginning the transforma-
tributions of T#”(x*) are important not only because they tion properties of fields and Lagrangians. One requires the
prescribe some numerical values to the energetic charactediction to be a quantity independent of any coordinate trans-
istics of the field, but also because they can be viewed aformations and, hence, one requires the Lagrangian to be a
responsible for the local state of motion of particles and bodscalar density, that is, a scalar function times the square root
ies interacting with the field. In field theories governed byof the metric determinant. This route produces a “metrical”
second-order differential equations, one expects the energgbject, which is essentially the variational derivative of the
momentum tensor to depend on squares of first-order derivd-agrangian with respect to the metric tensor. This object is
tives of the field variables, but not on second derivatives. automatically a symmetric tensor, and it is conserved if the
For Lagrangian-based theories, the derivation of the conequations of motion are satisfied. The conserved tensors are
usually understood in the sense that they obey differential
conservation equations, but one can also derive from them
*Email address: babak@astro.cf.ac.uk the integral conserved quantities if, as is always required, the
"Email address: grishchuk@astro.cf.ac.uk system is isolated. For radiating systems, the fluxes of energy
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and momentum patrticipate in the balance equations. mate and restricted sense. And, in general, the averaging
Both objects, canonical and metrical, are defined up taver several wavelengths means that the numerical result
certain additive terms which do not violate equations of mo-will depend on whether we have averaged over, say, 3 or 30
tion. These terms are a generalization of the additive conwavelengths.
stant which arises even in a simplest one-dimensional me- This shaky situation can be tolerated as long as we are
chanical problem, when the Lagrangian does not depend anterested only in solving the Einstein equations. But this
time explicitly. It is known that the first integral of the equa- situation becomes risky when we need to know something
tion of motion, which we interpret as energy, can be shiftedmore. It appears that the problem of a rigorously defined
by a constant. In field theories, the additive terms can b&nergy-momentum tensor may have more than a purely aca-
used to our advantage. For instance, the canonical object calemic interest. We have in mind a specific question which
be made symmetric, if it was not such originally, and thewas actually one of motivation for our renewed interest to
metrical object can be made free of second derivatives, if ithis problem.
contained them originally. Despite the different routes of It is likely that the observed3] large-angular-scale
derivation, the canonical and metrical objects are deeply reanisotropies in the microwave background radiation are
lated. If they are derived from the same Lagrangian, expliccaused by cosmological perturbations of quantum-
itly containing metric tensor in addition to field variables, mechanical origin. Cosmological perturbations can be either
they are equal to each other, up to a certain well-defineghurely gravitational fields, as in the case of gravitational
expression calculable from the Lagrangian. waves, or should necessarily involve gravitational compo-
In traditional field theories, one arrives, after some work,nent, as in the case of density perturbations. To make reliable
at the energy-momentum object which(l9 derivable from  theoretical predictions one needs to normalize the initial
the Lagrangian in a regular prescribed wég), a tensor un-  quantum fluctuations. In words, this means to assign energy
der arbitrary coordinate transformatioit3) symmetric inits  of a half of the quantum to each mode. In practice, this
components(4) conserved due to the equations of motionimplies the availability of a rigorously defined energy-
obtained from the same Lagrangigh) free of the second momentum tensor for the field in question, which allows to
(highes} derivatives of the field variables, ari6)) is unique  enforce the energy# w, and not, says% w or 30k w, for the
up to trivial modifications not containing the field variables. initial quantum state. A change in the numerical coefficient
There is nothing else, in addition to these six conditions, thatvould lead to the corresponding change in the final results.
we could demand from an acceptable energy-momentum obFhe preliminary calculations show that the contributions of
ject, both on physical and mathematical grounds. the quantum mechanically produced gravitational waves and
When it comes to the gravitational field, as described bydensity perturbations should be approximately equal, with
the geometrical formulation of the general relativity, thingssome preference to gravitational wayés A detailed analy-
become more complicated. It is often argued that the equivasis of the available observational d4fd seems to favor the
lence principle forbids a gravitational energy-momentumgravitational wave contribution twice as large as that of den-
tensor. What is meant in practice is that the all first derivasity perturbations. Remarkably, the factor of 2 may turn out
tives of any metric tensog,,,(x“) can be made, by an ap- to be important when comparing the theoretical predictions
propriate choice of coordinates’, equal to zero along the with observations. This is why, in our opinion, we cannot
world line of a freely falling observefalong a timelike geo- afford even a numerical coefficient ambiguity in such funda-
desic ling. But the first derivatives of ,,(x*) can be elimi- mental constructions as gravitational energy-momentum ten-
nated along any world line, not necessarily of a freely fallingsor.
observer. And this is true independently of the presence and We believe that the difficulty in deriving a proper gravi-
form of coupling ofg,,(x*) to other fields, and indepen- tational energy-momentum tensor lies in the way we treat
dently of whether the,,,(x*) obeys any equations. Since all gravity, not in the nature of gravity as such. In the geometri-
components of a tensor cannot be eliminated by a coordinaieal formulation of the general relativity, the components
transformation, this reference to a physical principle is reg,,(x®) play a dual role. From one side they are components
garded to be an argument against a gravitational energyf the metric tensor, from the other side they are considered
momentum tensor, but the argument sounds more like a fagravitational field variables. If one insists on the proposition
from the differential geometry. Despite this argument, onethat “gravity is geometry” and “geometry is gravity,” then,
usually notices that it is desirable, nevertheless, to construghdeed, it is impossible to derive from the Hilbert-Einstein
at least an “effective” gravitational energy-momentum ten- Lagrangian something reasonable, satisfying the six condi-
sor. In practice, this means that we combine some terms dfons listed above. But the geometrical approach to the gen-
the Einstein equations, in one or another manner, into aeral relativity is not the only one available. It is here where it
object which does not behave as a tensor even under a trais- necessary to look at the general relativity from the field-
sition from rectangular to spherical coordinates, but whichtheoretical positions. The general relativity can be perfectly
possesses some desirable properties of the energwell formulated as a strict nonlinear field theory in flat
momentum tensor, and this is why it is an “effective” ten- space-time. This is a different formulation of the theory, not
sor. And, finally, one usually argues that the “effective” a different theory. The importance of looking at theories
tensor becomes the “well-defined” tensor after averagingfrom different viewpoints was well emphasized by Feynman
over several wavelengths. Obviously, this transmutation of §6]: “if the peculiar viewpoint taken is truly experimentally
pseudotensor into a tensor can be done only in an approxequivalent to the usual in the realm of the known there is
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always a range of applications and problems in this realm fotions which do not involve the field variables. We call this
which the special viewpoint gives one a special power andabject the true energy-momentum tensor. In Sec. V we ana-
clarity of thought, which is valuable in itself.” lyze the way in which the true energy-momentum tensor
The field-theoretical formulation of the general relativity participates in the nonlinear gravitational field equations.
treats gravity as a nonlinear tensor fiehd”(x*) in the  The gravitational energy-momentum tensor is not, and
Minkowski space-time. In arbitrary curvilinear coordinates, Should not be, a source in the "right-hand side of Einstein's
the metric tensor of the flat space-timeyis, (x). If neces- eguatlons. But it is a source for the generalizednlineay
sary, one is free to use the Lorentzian coordinates and tgAlémbert operator. It is shown that a geometrical object
transformy,,(x%) into the usual constant matris,,, . The most closely relateq to the derived energy-momentum tensor
Minkowski ‘metric is not an artificially imposed “prior ge- 1S the Landau-Lifshitz pseudotensor. Their numerical values

ometry,” but a reflection of experimental facts. We know (but not the transformation propertjesre equal at least un-

that far away from gravitating bodies, and whenever theder some conditions. In Sec. VI we include matter fields in

gravitational field can be neglected, the space and time inteRU" consideration and define the energy-momentum tensor

vals satisfy the requirements of the Minkowski space-time/0r the matter fields. The gravitational energy-momentum

In the presence of the gravitational field, all kinds of “rods” tensor is now modified because of the presence of the matter

and “clocks” will exhibit violations of the Minkowski rela- ~Lagrangian. However, both, gravitational and matter energy-
tionships. This is a result of the universality of the gravita-mome”tum tensors participate in the gravitational field equa-

tional interaction(as we understand it todayOne is free to  1ONS at the equal footing. Their sum is the total energy-
interpret the results of the measurement as a manifestation gromentum tensor which is now the source for the previously

the curvature of the space-time, rather than the action of thB1€ntioned generalizeghonlineay d’Alembert operator. The
universal gravitational field. In this sense, the Minkowski conservation laws for the total energy-momentum tensor are

space-time becomes “unobservable.” But this does no@uaranteed by general theoret$ec. I) and are manifestly
mean that the Minkowski metric is illegitimate or useless, satisfied as a differential consequence of the field equations.
On the contrary, it is being routinely used in relativistic as- '€ derived equations, plus their appropriate interpretation,

trometry and relativistic celestial mechanics. People are weff'€ fully equivalent to the Einstein’s geometrical equations
aware of the general relativity and curved space-time. But i¥Vith matter. The final Sec. VIl contains conclusions. Some
turns out to be more convenient and informative to store andfchnical details are relegated to Appendixes A and B.
analyze the data in terms of the “unobservable” flat space-
time quantities(after subtraction of the theoretically calcu- Il. DEFINITIONS OF THE ENERGY-MOMENTUM
lated general-relativistic correctionsather than in terms of TENSOR
directly measured “observable” quantities. If this is possible ) ) o ) )
and useful in the regime of weak gravitational fields, it can SOme of the material of this section is known in the lit-
be useful for any fields. In fact, for the problem of the gravi- €rature but we present it in a systematic way and in a form
tational energy-momentum tensor, the use of the Minkowskﬁpprop“ate for our further treat_ment of the general relativity
metric allows one to put everything in full order. The dem-as @ field theory in flat space-time.
onstration of this fact is the main purpose of the paper.
The structure of the paper is as follows. In Sec. Il we A. The canonical energy-momentum tensor

e b e e mot g LEL s 5t recll o the oon of enery arises in e

I~ . . L s Simplest case of a one-dimensional mechanical system with
ambiguities, and their relationship with the equations of mo- i : :
tion, is a considerable technical complication on its own N Lagrangian.=L(g,q,t) and the action
However, we show in detail how the canonical and metrical 6 _
tensors are related. The main conclusion is that, whatever the S= f L(qg,q,t)dt.
starting point, the allowed adjustments lead eventually to one ty
and the same object satisfying the imposed requirements. We
use this general analysis in Sec. IV in course of derivation offhe equation of motiorithe Euler-Lagrange equatipiol-
the gravitational energy-momentum tensor. Section Il is delows from the requirement that the action is stationai$,
voted to the field-theoretical formulation of the general rela-=0, under arbitrary variations @f(t) vanishing at the limits
tivity. We start from the case of pure gravity, without matter of integration(what we will always assume
sources. The gravitational Lagrangian and field equations are
given ex_plicitly. It i_s sh_own that the derived field equations, oL d ((ﬂ_)
plus their appropriate interpretation, are fully equivalent to ———
the Einstein equations in the geometrical formulation. In Sec. dgq dt
IV, being armed with the gravitational Lagrangian and field
equations, we apply the general definitions of Sec. Il forThe symbol of the total derivativé/dt emphasizes the need
derivation of the gravitational energy-momentum tensor. Byto include the partial derivative kyif the functionL depends
different routes we arrive at the energy-momentum tensoon time explicitly. If the Lagrangian does not depend on time
satisfying all six demands listed in the Abstract of this papert explicitly, Eq. (1) admits the first integral. In this case one
It is shown that this tensor is unique up to trivial modifica- has

aq
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dL  dL. aL. d /L glal). oo\ tial, but the positions of the first indexa] and the second
T a—q+—.q and a(—) :(9_(_) q+—.(—.) g. index (8) are distinguishable. In general, the objétt? is
9" Jq aq) 24\ aq dq\ dq not symmetric ine and .
2 With the same success we could write for the canonical
object

By multiplying Eq.(1) with q and rearranging the terms with
the help of Eq(2), one transforms Eql) to

°t,P=0p o A
d(.aL s
—| g——L|=0.
dt “oq if the function ¥ # satisfies
This equation has the form of a conservation law, and the «yaﬁﬁzo (5)

quantityE=q(JL/dq) —L, called energy, is a constant. With

the same success we could call energy the quartity identically or due to the equations of moti@8). In order to

—[q(dL/ag)—L]+C, whereC is a constant. The equation Satisfy Eq.(5) identically, it is sufficient to have¥ ”

of motion (1) is still satisfied. =4,"" . where " is antisymmetric ing and 7: ¢, "=
These considerations apply to any field theory described- #,”?, so thaty,,”” . ;=0. The functiony,”" is usually

by the Lagrangiah. =L (g ;0a . ;X*) Whereqa(x®) is a set called a superpotential. By an appropriate choic&@gf one

of variables, and® is a set of coordinates. The variational can make the objectt,” symmetric in its components. The

principle produces the field equations transformation properties d,# under coordinate transfor-
mations are not defined until the transformation properties of
aL aL the field variables ant are defined.
@_ 90a a) =0, ) We now move to cpvar_iant relativi_stic theories. One nor-
e mally considers physical fields of various tensor rafdca-

where the last differentiation with respecti6 includes the lar, vector, tensor, e_t):.m_ a spa_ce-tlme with some metr_|c
tensor. The Lagrangiah is required to be a scalar density

: T o :
_par_tlal d_erlvatlve byx®, and the summation over repeated with respect to arbitrary coordinate transformations, thdt is,
indices is(alway9 assumed. The field equations are conve-.

. ) = . ) is a scalar function times the square root of thmenus met-
niently written aséL/8q,=0, where the variational deriva- . )

. ric determinant. For a better contact with our further study,
tive 8/ 6 denotegsee, for exampld,7])

we consider a symmetric tensor fiddd”(x*) placed in a flat
SL(QaiGa 4 XY aL ( oL ) space-time with the metric tensar,,(x“) written in arbi-

(4)  trary curvilinear coordinatex®. The general form for the

ey da  \90p Lagrangian density is
If Lagrangian depends on second derivatives, the right-hand L=L(y*",h#" h#". p), (6)

side of Eq.(4) acquires an extra term, see Appendix B.

If the functionL does not depend or® explicitly, one  \here ; denotes a covariant derivative defined,hy, and

expects that the field equations can be transformed into thg e associated connectidBhristoffel symbols C* The

. . . Y%
cons(;e_rvatlona elquart]t_lons, equal IE number to the number O{/,uv andC*,, are functions ok® but they are not dynamical
coordinate”. In this case, one has variables, and hence they make thelependent orx® ex-

sl oL plicity. On the general grounds, one does not expect the
- 4 Euler-Lagrange equations to reduce to any conservation

qA,o qA,T,U" . . . . . .

N J0a, - equations in the usual sense, i.e., in terms of vanishing par-
o . ) . tial derivatives. However, since*”.,=0, one can derive a
By multiplying Eq.(3) with g, ,, taking summation oveh,  covariant generalization of the conservation laws, i.e., in
and making rearrangements similar to the ones describe@rms of vanishing covariant derivatives. This is, of course,
above, one obtains, as a consequence of the field equationgnsistent with our ability to choose coordinatésin such a

way thaty*” will become a constant matrix ar@”,, will

JL ~ 5L =0 all vanish, thus removing the explicit dependencelL.obn
8 ' coordinates. Moreover, as we will show below, the vanishing
covariant divergence will apply to the canonical energy-

, O

The expression momentum tensor, which is now a manifestly tensorial quan-
tity.
o aL s Let us first give a covariant generalisation to the equations
t,"=0daq — 0L of motion. The action for the Lagrangidf) is
d0a g
is the canonicallabel c) conserved energy-momentum ob- 1 4
: » S=—[ Ld%, @)
ject. The upper or lower positions af and 8 are not essen-
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where the integral is taken over some four-volumeCon-  is the canonical energy-momentum tensor. We could also
sidering sh#” and sh*”., as independent variations we can define ‘t*# as
write

CtaB: ,yarh,uv_ ,
sh#v... ) V= gh#r

where W “# is a function such tha¥ “#.;,=0, identically or
It is easy to check that the operations of variation and covadue to the field equations. The conserved canonical energy-
riant differentiation commute. Using this property in E§)  momentum object13) does not contain second-order deriva-
we have tives and is manifestly a tensorial quantity, but, in general,
the canonical energy-momentum tensor is not symmetric in

— Y BL | + Wb,

oL
SL= hev+
Jh# ohwr.

JL N o o its components. However, it can be made symmetric by an
SL= Sh#v+ sh#v | — Sh#v, i i B
P aher o) appropriate choice of a nonsymmettie*” .
© B. The metrical energy-momentum tensor
Since the quantity dL/oh*".))6h*" is a vector density of From the general Lagrangid6) one can also derive the
weight 1(i.e., a vector quantity times— v), we have metrical energy-momentum tensor. Its derivation relies on
the transformation properties of all the participating quanti-
JL , aL , ties with respect to coordinate transformations.
" oh* = » oh* (10 An infinitesimal coordinate transformation
dh#”., R L .

- : o X¥=x%— £%(xP 14
Substituting Eq(9) into Eq. (7) and taking into account the 505 (14
equality above one obtains generates the Lie transformations along the vector #éld

which can be presented as corresponding variations of the
S5 1| dL v aL shiv field variables, of the metric tensor, and of the Lagrangian:
¢l | ghmv oher. | sh*”, sy*¥, and éL, respectively. Since the Lagrangié)

is a scalar density, its variation is a total derivative

}d“x:o. (11 OL=(LE&") - (15

The change in the metric tensor is

oL
+ She
ohw.

i i Y —
At the boundary of integration we havéh“"=0, so the Syv= — ghiv_ grin (16)
integral of the last term in Eq.1l) is zero. The variations

oh"" are arbitrary, and we arrive at the field equations in amnq there is also a corresponding change in the field vari-
explicitly covariant form: ables

T

JL JaL ShaB=gohaB, _QaogB _ pBoga 1

_ o 12 T | (17

oh#v  \ oh*”. | . . . .
T but we will not need to know its concrete form for this deri-

. . . vation.

Certainly, one could have obtained the same result in a more Taking into account Eq(15) and assuming that the vector

fa_m_lllarhvl\L/?y, s(,]'ltarr:mg f(;pm the hagrz;nglan n t_hetfjorr_n N~ fielg &% vanishes at the boundary of integration, we conclude

t_ammg and the or |.nary(rat er than covariapteriva- that the variation of the action must be equal to zero:

tivesh*” _ (see Appendix A
One can now derive the canonical energy-momentum ob- 1

ject in exactly the same way as was described before. 0S= c f sL d*x=0. (18)

Namely, one multiplies the field equatio(i2) by h#”. , and

rearranges the terms to arrive at the covariant conservatioy, the other hand, we know that an arbitrary variation. of

law: not necessarily caused by Ed4), has the general form
oL oL sL
(hﬂ ;Q’ahl-"v _55L) =0. oL= V5hMV+—V5'y#V+AaYa, (19)
> y sh# SyH
The expression where
1 JL aL
S P= x| y*ThH., —y*AL (13 A= oh#¥+ oYH”.
— Toher ah# IV,
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In writing this formula we took into account the fact that the of a flat space-time, that is, to have the curvature tensor
first derivatives ofy*” participate, through the Christoffel constructed fromy*” equal to zero. One can still formally
symbols, in the covariant derivatives of the field variables. arrive at the equation, similar in structure to HE&5), in

At this point we require that the field equations are satis-arbitrary curved “background” space-time, where the cova-

fied

oL
=0
sh#”

(20

so the first term in Eq(19) is zero. In the second term of Eq.

(19) we use the specific variatiofi6). Then, Eq.(18) ac-
quires the form

2J<5L) §d4+J 25L§+A d*x=0
— X @ X=0,
57{)0’ o P 57:1,8 k L
(21)
where we have also used the following equality:
aL aL
(22)

o'?’)/aﬁ == ‘yMa’YVBm .

riant derivatives are now being taken with respect to the
curved metric. This is an element of a field theory in the
“background” space-time, which is useful in some applica-
tions(see, for exampld8,9]). As soon as the field equations
are satisfied, the corresponding covariant “conservation
laws” must be valid. However, in this case, there is not and
there should not be, in general, any conservation laws in the
usual sense. First, one normally encounters severe integrabil-
ity conditions for the field equations. The number of inde-
pendent solutions, in the sense of the Cauchy problem, can
be diminished, or the solutions may not exist at all. Second,
the vanishing covariant divergence cannot be converted into
the vanishing ordinary divergence. This is a well-known for-
mal obstacle, but it has deep and clear physical reasons: the
“background” space-time is by itself a gravitational field
which interacts with a system and can exchange energy with
the system. For instance, even in the simplest Friedman-
Robertson-Walker space-times, gravitational waves can be

The second integral in Eq21) transforms into a surface amplified and gravitons can be creafad].
integral and vanishes under appropriate boundary conditions Returning to the strictly defined energy-momentum ten-

for £%. Since the functiong,(x“) are arbitrary, we finally

obtain

( oL B
—2 Mv) ~0. (23)

The metrical(symbolm) energy-momentum tensdit*”
is defined as
2 6L

NTY 67;/,1/,

mt,lLV: _

(29

so that Eq(23) takes the form of the covariant conservation

law [valid only on solutions to the equations of moti20) |:

mpur. =0, (25)

sors, we will now show that the canonical ten§b8) and the
metrical tensoK24) are closely related.

C. Connection between metrical and canonical tensors

The metrical tensof24) and the canonical tens¢t3) are
derived from the same Lagrangi#®), so one expects them
to be related. To find the link betweeft** and °t*” we
return to the derivation of"t*” based on the infinitesimal
transformation(14).

It is convenient to write the variatio(15) in the form

SL=(L&Y).,. (27)

The replacement of the ordinary divergence by the covariant
one is allowed, because the differentiated quantitg*) is a
vector density. We can also write the general variatit®)

in the form

As before, one can also write for the metrical energy-

momentum tensor

2 oL

mt,uv: —

NTY 67;},1/

+PHY, (26)

where the functiorb#” satisfiesb#”.,=0 identically or due

to the field equations. The derived conserved obhjadj is

oL
oL= SheP+

= SyH+ Shes
sheh sy (ahaﬁ )

T T

aL
Iy .

+

5w> . (28)

T

automatically symmetric and a tensor, but, as a rule, it conln writing this expression we took into account Eg0) and
tains second-order derivatives of the field variables, even ithe fact that
the Lagrangian does not contain them. They are generated by

one extra differentiation in the definition of the variational
derivative[see the second term in E@l)]. However, by an
appropriate use o#” and the field equations, all second

oL
oheP. . gheb

derivatives can be removed, as we will discuss in detail late¥We will now show that the differentiated quantity in the last

on.

term of Eq.(28) is also a vector density, so that the ordinary

It is important to note that nothing in the derivation of divergence can be replaced by the covariant one. Indeed,

Egs.(24),(25) actually required the*” to be a metric tensor

from the structure of Eq6) it follows that
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oL oL ohF, oL L 9CY,

gy’ GheE.gyrr o ToheB T gyrr

Since

aC"y,

1
)

=Y Ypa YN~ Y YppYar)s (29

it is now clear that the quantity(L/dy*” ;) dy*” is a vector
density. Thus, we can rewrite E®8) as

sL oL aL IC%,
o=—0 5h“5+—W57’”+ " ho? oy
sh Sy oh“”. ay*” ,
+ shef (30
dh“f. )

VT

The expressiort30) is valid for arbitrary variations, and
hence it is valid for specific variationd 6),(17) caused by

Eq. (14). Therefore, the difference between E@87) and
(30) must be equal to zero. Substituting E@7) and (16)

into this difference, and combining in separate groups the
terms which contairt?, 7., and £°...,, one obtains the
equality which should be true for arbitrary vector field

£7(x“):
oL
P+ he.,— 7L T+ -2 T
ShaB ' (ﬁhaﬁ;r ' g )‘T ¢ 5,},;707
oL
+ hD‘B-U—ﬁ;L -2 h7
ﬁhaﬂ;q. ' oh*?
oL Cc“ oL
+| — 7 h‘ﬁﬁa o_fp,yvr_z — hra) ]gU;T
&h p Y WA &h Y A
JL JC“« JL
+| -4 b —_22 72 hre|go,
e oy, Pgpae M|
=0. (31

The coefficient in front of” is identically zero, because
all the terms cancel out. To check this one has to recall the

definition of the variational derivative

sL oL ( oL
shef gh*f | ohk |

to use Eqs(A4) and(A3) for gL/gh“F and @L/dh*F ) .,
and to take into account

aL

@B+
dhap "

, 0

haB;T;O': L;o-

ohk.
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The last term in Eq(31), which containsé”.,.,, is also
identically zero. This is true because tf®, ., is symmetric

in the indices\, 7 whereas the coefficient is antisymmetric in
these indices. To show this in detail, we denote this coeffi-
cient V= y¢,™ and rewrite it using formul&29):

/_,ylllUTA:_4 L h¢B(9Ca¢p vT__ L Ta
(9haﬁ;p (?')’UV,)\ ahaa;)\
VI S
ohe. ohk., dh*f.,

X (h)\ﬂ,yar_ hTB,ya)\) 7(]50'

JL JL
B ar_ a\
+ 7400 (ahaﬁmy ahaﬁ;Ty ) (32

It is now clear thaty,™=—,". So, we are left only with
the term which containg”.,. Since the vector field” is
arbitrary, this gives us the equation

oL JL oL
—2- = i heB, — 7L | —2—pm
577 7 oheP shao
+V= ’ylpaﬂ\;)\zo'

Using in the first two terms the definitions 8t** and °t*”
and formula(22), we arrive at the universal relationship

et 2= _o,

_mpv+cuv+ VT =
AR sheB

2
Y (33
NTY
Assuming that the field equations are satisfied last term
vanisheg we can finally conclude that

mt,u,V: Ct,uv+ w,,uVT;T.

Thus, the metrical and canonical tensors are related by a
superpotential whose explicit form is given by E@®@2).
(This derivation is similar to the one given [i1].) Obvi-
ously, the conservation laws are satisfied becai$¥. .,
=0.

lll. FIELD-THEORETICAL FORMULATION
OF THE GENERAL RELATIVITY

The field-theoretical approach to the general relativity
treats gravity as a symmetric tensor figltf” in Minkowski
space-time. This approach has a long and fruitful history. In
fact, in the early days of special relativity, Poincare and Ein-
stein himself started from an attempt to give a relativistic
generalization of the Newton law. Even after the acceptance
of the geometrical viewpoint, various aspects of this ap-
proach have been worked out in numerous publicatié@s-
18,8,19, to name only a few(One may also find references
[20] useful) We will follow a specific scheme developed in
[8] and[19], as a continuation of the line of R€fL8].

The gravitational fieldh#”(x*), as well as all matter
fields, are defined in the Minkowski space-time with the

024038-7
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metric tensory,,,(X%): do?= YurdX*dx”. The matrixy*" is
the inverse matrix toy,,,,, that is,y“ﬁyﬁf 6, , andy is the
determinant of the matriy,,,. The raising and lowering of
indices are being performe@nless something different is
explicitly stated with the help of the metric tensay,,, . The
Christoffel symbols associated witly,, are denoted by
CTuvs
identically zero:R,,,,,(¥*?)=0.

In terms of classical mechanics, the field varialhiés are
the generalized coordinates. Their derivatits. . (a third-

rank tensor are the generalized velocities. It is also conve-

nient (even if not necessaryo use the generalized momenta

P¢,, canonically conjugated to the generalized coordinates

h#”. The objectP“,, is a third-rank tensor, symmetric in its
last indices. We will also need a contracted objét
=P7,,=8,P*,,.

The use ofh#” andP",, as independent variables is an
element of the Hamiltonian formalism, which is also known
as the first-order variational formalism. We will start from
this presentation, and then will consider the presentation i

and the covariant derivatives are denoted by a semi-
colon ;. The curvature tensor of the Minkowski space-time is

PHYSICAL REVIEW D61 024038

J=

2k

Lg:—

1
hpa;apapo__ EngaﬁwTPTpopwa[j} (35)

where

on’aﬁ 50'55_

w-T

wT

+(,yaa+ h(TD()

67688

W/ =

[wwhpa)(

N -

-

—5°8°

o SB__
oo 397%

W~ T

X

+ (ypﬁq_ hpﬁ’)

=

808%— = 6876%

W T 3 T W

X

+(y"P+h7P)

I

andQrreB  =QqrraB —Quvbe =B
The gravitational field equations are derived by applying

=

x| 8,673 029, (36)

ﬁhe variational principle to Eq34) and considering the vari-

terms ofh#” and h#”. .. It will be shown that the derived a}blesh‘“’ ?”d P®,, as independent. In this framework, the
field equations are fully equivalent to the Einstein equationgIeId equations are

in the geometrical formulation of the general relativity.

A. Gravitational field equations in terms of generalized
coordinates and momenta

The total actionS of the theory consists of the gravita-
tional partS? and the matter pa®™ S=3S%+S™. We will
include the matter part in our consideration later (&®c.
VI). The action for the gravitational field is

1
Sg=—f L9d*x,
c

where the Lagrangian densiky? is

\/—_y

2K

Lo 7. P, = (Y774 o)

X (34

a B 1
P, zP ca”3 P,P,

andk=8wG/c*. It is now clear that the quantitigd”,, are
indeed the generalized momenta because

oy

2K

JLe JLe
pr = :
7] ) L] L

T

The tensorP,,, is related with the tensoK”,, originally
used in[8] by

T 1 T 1 T
P = Eéﬂ anKM

nv

==K, + > 8K+

To make the part of.9, which is quadratic in the mo-
mentaP’ , more compact, we will also write the Lagrangian

pv?
in the equivalent form:

gL

oLY )
IPyin)

P

3%

JL
e

gL
ah#v

| |

Obviously, the termyL%/gP“ ., in Eq. (37) is zero for the
Lagrangian(34). Calculating the derivatives directly from
Eqg. (34) and introducing the short-hand notations for the
corresponding expressions, one obtains

) =0 and

, T T

(37

2k SLY N 2 pp 1
T = P PPt 3PUPL0,
(39
2K OL% _f s (et ey
- - == Y ar
V—1vy 6P v
1 vV
(P hPE S S PP,
1
TSy TP,
=0. (39

Using the Q) matrix introduced above we can rewrite Eq.
(39) in the compact form:

h#?. = Q”V“Bw,P“’aB . (40
Equationsr ,,=0 andf #"=0 form a complete set of equa-

tions in the framework of the first-order variational formal-
ism.
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B. Field equations in terms of generalized coordinates and
velocities

PHYSICAL REVIEW B1 024038

The second term requires us to recall the rules of the cova-
riant differentiation applied to th@ ~* tensor which, in turn,

We will need the field equations in terms of the gravita-IS @ function ofh*” and y*":

tional field variablesh#” and their derivatives. We will de-

rive the equations from the Lagrangi@B5) written in the

form containing the generalized coordinates and velocities.

-1 o7
-1 wr :aﬂ/.waﬁ hPo
pvaf T ohro T

This is an element of the Lagrangian formalism, known also
as the second-order variational formalism. To implement thiscombining all together, one arrives at the field equations

program one has to considef,, as known functions ofi*”
andh#? ., and to use them |n the Lagrangi&3b).

The I|nk betweerh#” andP7,, is provided by Eq(40).
To solve equation$40) with respect toP7,, we introduce
the matnprolM”” which is the inverse matrlx Py,
and satisfies the equation

quaﬁ Q 1 7 _%5%

a@ of3 @ of8
o (825B+525P). (41)

The explicit form of theQ !

will only use the symmetry properties of tlﬁe;,}pl,“" which
are the same as the symmetry properties of @henatrix:

Q0,7 0=0, 0, =0, =01 “. By multiplying
both S|des of Eq(40) Wlth QMMT‘/’ one obtains
1 70 a'
"= QTN (42)

Now we substitute Eq42) into Eq.(35). The Lagrangian
takes the elegant form

Lo=— 2T 1 wrher peb,

i Yoas 43)

which is manifestly quadratic in the generalized velocities

h#”._. The dependence on the generalized coordlnht‘és
(as WeII as on the metric tensgy,,) is contained in thé) ™

tensor.
Lagrangiang6) studied in Sec. Il.

The field equations in the framework of the second-order

variational formalism are
aL9
 gher

In more detail, we have

SL9
oh#”

aL9
=0
&h'uV?T T

ETON 1 wr
—a”r‘]’:f hee he® ,—2(QL ;°heh. ). =0.

The first term can be calculated by differentiating E4fl)
with respect toh#” and taking into account Eq36). This
gives

M=—(5i5f—

b Qi rmr)—1 we
oh*v e )[Quww Qwaﬁ

3 [

1
0,0,

vipo

matrix is not needed for the
time being, but it will be given below where required. We

The LagrangianL? belongs to the class of

which are manifestly the second-order differential equations
in terms ofh#”:

pvapB

-1 wrha _ b s & S Tr() "1 we
Q h 'B;w:T (57755 35657T)[ZQPI/IMV me’aﬁ

1 7o 1 we o a _
= Qe Qe 1N N A ,=0. (44
Certainly, one arrives at exactly the same equations by sub-
stituting P7,,, found from Eq.(40) [see EQq.(42)] directly

into Eq. (38).

C. Equivalence of the field-theoretical and geometrical
formulations of the general relativity

We will now show that the entire mathematical content of
the general relativityfwithout matter sources, so fas cov-
ered by Lagrangiaf34), or by its equivalent fornt43). We
will demonstrate the equivalence directly at the level of the
field equations, rather than at the level of the Lagran¢@d
and its Hilbert-Einstein counterpart. The derived field equa-
tions (38),(39) can be rearranged by identical transforma-
tions into the usual Einstein equations.

First, we introduce a new tensor fiegt”(x) according
to the rule

V=g = V= y(y*'+h#Y),

whereg=de{g,,| and the tensog,,, is the inverse matrix to
the g#” matrix:

(45

9,0 =0 . (46)
Let us emphasize again that the tenggr, is the inverse
matrix to g*”, and not the tensagy*” with the lowered indi-
ces,g,,7* ywyvﬁgaﬁ. For the time being, we do not assign
any physical interpretation to the tensor figlg,, we only
say that the functiong””(x“) andg,,(x“) are calculable
from the functionsh#”(x*) and y*”(x*) according to the
given rules(45),(46).

The introduced quantities allow us to write tkle matrix
as

e, =2 [gpa(aﬁaﬂ —5‘:55,)
2\—vy 3
1
+g7¢ 55,55—55%;53 +grh| 875%— 35:53)
1
+g7h| & 5%~ 35gég)
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We can also give the explicit form for th@ ™. By  Finally, taking into account {—gg"?).,=\— yh*’., and

nvpo

multiplying both sides of Eq41) with recalling Eq.(42), we arrive at

TN yIN=0)[282(5585+ 8765 0.p
—0%(290098. ~ Japds) ],

one obtains the explicit form of th@ ~L-matrix: Now we want to use Eq51) and calculate the quantity
R, defined by the expression
1V—vy

=__[(575ﬂ+576ﬁ)(5w5)\+5«)5)\)977)\ 1 1
uvpo L1090y 0,0,){0p 05T 050, @ @ @ «
4 -9 RMV:F uv,a EF na, v EF VO(,,LL+F ;LVFEaﬁ

- gTw(gungU+ gvpg;ur_ g;,LVgpo')] .

1 1
r7,,=C7,,—P7,,+ =8P, +=05P (51)

y3% y3% 3% v 3%

-1 710

—T, 65, (52)

We now want to calculate the quantity’,, defined by ) )
the expression The C7,, part of I'",, produces a series of terms which
combine in the Ricci tensd?ew of the flat space-time. The
o1 ordinary derivative of the tenscﬂfw plus all the terms con-
I w359 (Onpn Onw™ Guw)- (47) taining the product oP, ; with C#,, combine in the cova-
riant derivative ofP;V. All other terms produce quadratic
By replacing the partial derivatives with the covariant onescombinations ofPy, ;. In the result, we arrive at
we get
. 1
R.=Ru=| P uiat P PP 0

§PMP,, . (53

1
FTMV:CT,LLV+§gT}\(g)\p.;V+g)\l/;p._glu.]/;)\)' (48)

SinceIEQM,,EO we conclude that the field equatio(88) are

—aat?). i
Now we want to tradg,,,. . for (v —gg*")., in order to have fully equivalent to the equations

quantities easily expressible in terms ¢f, and he?. By
differentiating Eq.(46) one obtains
R,,=0. (54)
g,uv;T: - g,u,pgwrgp(r;'r . (49) o . . .
The remaining step is the matter of interpretation. We can
Using the formula for the differentiation of determinants, wenow interpret the quantitieg, s as the metric tensor of the
can write curved space-time:

1

gPU'_T:_
V=g

1 ds?>=g,,dx*dx". (55)
[(v—gg”");f—Egaﬁg‘”’w—gg“ﬁ);T- g
(50) Then, the quantitie¢47) are the Christoffel symbols associ-
ated with this metric, and the quantiti€s2) are the Ricci

Substituting Eqs(49) and (50) in Eq. (48) we obtain tensor of the curved space-time. Finally, equatit® are
the Einstein equation@vithout matter sources

1
7, =Cl+ 2\/_—| ~059,p(N—99%);, IV. THE GRAVITATIONAL ENERGY-MOMENTUM
9 TENSOR
=6809,,(N=99°7).,+9™9,,9,,(V—99) ., Being armed with the definitions of the energy-
1 momentum tensofSec. l), as well as with the gravitational
+§9aﬁ[ 87 /_ggaﬁ);y_|_ 57 /_ggaB)JM Lagrangian and field equatioiiSec. IIl), we are now in the

position to derive the gravitational energy-momentum tensor.
We will derive both tensors, metrical and canonical, and fol-
—g“g,w(*/—gg“ﬁ);x] Iowing the general theory_ of the_ir connection, we will fin_d
explicitly the superpotential which relates them. We will
show that the requirement that the metrical tensor does not

1 Q-1 A 1 r-1 A7 contain second derivatives, and the requirement that the ca-
=—| - +3 o,

\/_—7 uvpo Tvpo nonical tensor is symmetric, produce one and the same ob-
ject which we call the true energy-momentum tensor. This
object satisfies all six demands listed in the Abstract of the

+ %5;97;/”“) (N=9g")x- paper.
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A. The metrical tensor

The metrical energy-momentum tensor defined by eq.

(24) and derived from the Lagrangian densi4) has the
following form:

1 1
K mt,um:E ,yp,vhpa;apapo__l_ ,}/Mp,yva'_E ,y;LV( ,ypo'+ hpo‘)

X +Q*Y, (56)

a B 1
P sP’ 0= 3 PoPy

where

1
Q=5 (880 + 8,8 — v hP7P7

p“o

+ (7" hE = y PR P ],

Expression(56) was obtained by direct calculation of the
variational derivativgor alternatively, see Appendix)B

sL aL
Yuv Vv

aL )
R

T

(57)

and no further rearrangements have been done. Obviousl
tensor(56) is symmetric in its components, but it contains

second-order derivatives ¢f*” which enter the expression

through theQ*” term. We want to single out the second

derivatives ofh#” explicitly.

By making identical transformations of tlig*" term one
can show that th&@*" contains a term proportional tg,,
and terms proportional tb,#” and its derivatives. All these
terms are equal to zero according to the field equat{88s

and(39). After removing these terms, the remaining expres

sion for Q*" is as follows:

1
q“ﬁP“( P7nP =3 PuPy

1
QU =5 (S4oh+5,0%) 3

1
- anpU:TPTaB_ Z(hpa:ahaﬁ;b’_ hpa;ﬂhgﬁ;a)

1 TRhOA TARWPOT
+ 5 (M7 —hee) (58)

where

qaﬁp(rE %[hca,ypﬁ+ hpa,ya'B+ hvﬁ,ypa+ hpﬁ,yoa+ h(rahpﬁ

+hPehoB— heo( 4B+ hab)], (59)

The remaining expressioib8), together with other terms in
Eq. (56), reduce the« Mt*” to

PHYSICAL REVIEW B1 024038

KM = [(v% he) (44 ho%)

1
=~ SN ()| P

VT

| (Y4 ) (P4 hB8)

1
= S (N (4 pm)

X

1
Pgﬁpppw—gpapﬁ)

1
_E(hm;ahﬂﬁ;ﬁ_ h”“;lgh”ﬁ;a)

1
+ 5 (= 2hrheb g e By hrahsd)
(60)

where the subscrigt indicates that the energy-momentum
tensor was reduced on the equations of motion.

The last group of terms in E@60) still contains second-
order derivatives oh*”, but they all can be removed by a
special choice of superpotential. Indeed, the symmetric func-
tion &~ participating in Eq.(26) and satisfyingd*”. ,=0
can be written as

DRI (I §) ®D

where

¢/waB: _ d)av,uﬁz _ ¢/LB11V: ¢V,u,3a‘ (62

To remove all the second-order derivatives, we require

1
7 (—2hhef iy hrehed) | o

(PPt GHP), =0, (63)

The unique solution to this equatignp to trivial additive
terms which can possibly contaipt*” but not the field vari-
ablesh*?”) is

1
grreP=7 (Pher —hevhfe), (64)

With the help of the superpotentigd4), we can now can-
cel out the termg (— 2h#*h*A+ h#eh*A+h**h#F). . 5. The
remaining part of Eq(60) does not contain any second-order
derivatives at all. To write the remaining part in a more
compact form, we replace the generalized momenta by the
generalized velocities with the help of E@2), and use the
shorter expressiong,; and g*? according to their defini-
tions (45 and (46). As a result, the metrical energy-
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momentum tensdi56), transformed with the help of the field 1
equations and an allowed superpotential, takes the foIIowingKmt”v|c=§?’”vhp";apaw+

7"’)7“’—% Y (¥ +hP9)
explicit form:

X

1
Pe sPP . —=P Pg) +QH
KtMV:% Zh””;PhP”;U—Zh““;ahVﬁ;B+ ZgP”gthVﬁ;UhW;p o 37 ©
—(ARBLNPRE) (69)
+gluygapha,8;(rhpo;ﬁ_ZgﬂagﬁphV'B;rrhpa;a
1 where the subscrigt indicates that the Lagrangid66) has
_opnva UB NPT T (DNMON VO _ V@ been used. The entire modification amounts to the last two
2079, "Nt 7 (207707 07'0") terms (with double derivativesin Eq. (68), which immedi-
ately suggests its connection to modifications at the expense
X(20pa905— 9apdpe)N?. sh%.,, (65)  Oof superpotential$61),(62). (For a detailed derivation of the
’ ' last two terms, see Appendix BAs before, the tensor

op ) ~ k™t*"|, contains second derivatives bf” in the Q" term.
whereg,z andg“” are short-hand notations for the quanti- gyt the originally undetermined multipliets“#*” will now

ties (45),(46). This object is a tensor with respect to arbitrary pe determined. They can be chosen in such a way that the
coordinate transformations, symmetric in its componentsyemaining second derivatives & (which could not be
conserved due to the field equations, free of second derivasycluded at the field equationsan now be removed. The

tives of h#”, and unique up to additive terms not containing equations to be solved are similar to E§3). Their unique
h#”. This derivation required the use of an allowed superpoxg|ution is

tential. The last step is to show that the energy-momentum
tensor(65) can also be derived according to the original defi- 1
nition (24), without resorting to the use of a superpotential. Arreb=— Z(haﬂh“”—h”hﬂ“)-
The tensor(65) will be derived from a modified Lagrangian,
which produces exactly the same field equations as@85. Thus, the energy-momentum teng6b) satisfies the last re-
and(39). This is what we will do now. maining demand: it can be derived in a regular prescribed
way Eq.(24) from the Lagrangiari66).
B. The constrained variational principle

Let us write the modified Lagrangian in the form C. The canonical tensor
The gravitational energy-momentum teng6b) satisfy-
g _ Y Ylo pa _(poy oo ing all the necessary demands has been derived along the
L9= h 'aP o (7’ +h ) m : ” H H
2k e metrical route.” We will now show that the symmetriza-

tion procedure of the canonical tensor leads to the same ob-
(66) ject (65).
The canonical energy-momentum tengbB) directly cal-
culated from the Lagrangian densi#3) has the form

X

PapBPB(ru_ apBo|»

1 .
3PPy | +APR

where Ifiapﬁa is the curvature tensor constructed from, .
Obviously, we have added zero to the original Lagrangian,
but this is a typical way of incorporating a constra(imt our
case,lu?apﬁ(,:O) by means of the undetermined Lagrange . i :
multipliers. The infinitesimal variatiofl6) of the metric ten- |t IS convenient to use hf:lre i?dagelc_)w the quarfity, as a
sor y,, (and even its exponentiated finite versiaio not ~ Short-hand “Otatlol?vf(ﬂwaﬁ h®”,, in agreement with Eq.
change the conditiolgkap,ga:O. The multipliersA *A77 form (42). Then, thex"t*" takes the compact form

a tensor which depends oit*” andh*” and satisfy

Cuv 1 vo)y—1 ur wv()y—1 on\ppo hwaB
Kt :_2(27 Qpa’aﬁ -7 Qpa’aﬁ )h ;Th o

1 1
KOAY=— 2 yhTPY B, ymrpT oheB  (69)
Aaﬁp(rz _Apﬁ’mr: _Aaa'pBZABa(rp. (67) 2 ’ 4 ’
As expected, the canonical tens@r” is not symmetric. It

. . . . aB {r“ . i g
The yarlatlonal dgnvauve oA “PPIR 5, With respectto the  .on be made symmetrisee Sec. Il A by an appropriate
metric tensory,,, is not zero, and, therefore, the added termgpgice of ¥~ We will do this on the basis of the universal

will affect the metrical energy-momentum tensor. However'relationship(BS) between the(symmetria ™t“” and the
the added term does not change the field equations, since tl&‘?onsymmetriﬁ: Cuv,

variational derivative of this term with respect to the field

variablesh*” will be multiplied by theﬁapﬁa and hence will

vanish due to the constraint. — kM KO kgt A yRhPr =0, (70)
The metrical energy-momentum tens@4) directly de-

rived from Eg.(66) is now modified as compared with Eq. wherey*”” is calculated from the Lagrangi&43) according

(56): to Eq.(32):

The relationship in question is
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1
KlpMV’T:E[ p;B( ,yMahV,B_ ,yavh,uﬁ) + P’;LB( ,yarhvﬁ_ ,yavhrﬁ)

+ Py TP — i h)], (71
As any superpotential does, the tengd’” satisfies the re-
quirementy*"". .,=0. One can easily check the validity of
Eq. (70) if one combines Eqs(56),(69),(71),(38), and uses
the following identities:

1 I
PoPs|=50"7P 0,

(7aﬁ+ haﬁ)( Ppa(rpgﬁ’p_ §

1
P.Ps

(VVB+ hVB)( PanP(T,Bp_ 3

1
=" PP = 5N PY

We now assume that the field equations are satisfied. T

last term in Eq.(70) drops out. The metrical tensdft*”
reduced at the equations of motion is given by &f). We
need also to reduce the third term in E¢Q) at the equations
of motion. First, we differentiate the expressiénl) and
make identical transformations to rearrange ghe".

1
T = B ) =Sy ) |

1
7 (=20 he By bt B b, g, (72)
where

X/-LV: —

1
h#ﬂwwh”“)—zhwwmh“’?)} Pup

a7

+

1
h,u,B( ,yva_|_ hva) _Ehﬂv( ,yaﬁ+ haﬁ)}

, T

X

1
Ppa(rpg-ﬁp_ § Papﬁ’>

1

(hm:ahﬂﬁ;ﬁ_ hﬂa:fo’hy'g;a)'

N
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this cancellation, what is left on the left-hand side of Etf)
is the metrical tensor*” described by formul&65). On the
right-hand side of Eq(74) we will get a symmetrizedsub-
script |s) canonical tensok °t**| = k °t*”+ x**. Note, that
sincey*’". ., =0, it follows from Eq.(72) that y*”.,=0 on
the field equations,,;=0. Thus, we arrive at the equality

thy=CtrY| .
Since the metrical tensdb5) satisfies all the six demands
listed above, and since it can also be obtained as a result of
symmetrization of the canonical tensor, we call it the true
energy-momentum tens@and write it without any labels or
subscripts

V. GRAVITATIONAL FIELD EQUATIONS
WITH GRAVITATIONAL ENERGY-MOMENTUM
TENSOR

We have derived the gravitationaltrue) energy-
hr%omentum tenso(65) from the gravitational Lagrangialn®
according to the general definitidi24). We know that the
conservation lawg*”.,=0 are guaranteed on solutions to
the field equations. The nonlinear nature of the gravitational
field h#” makes the field a source for itself. The question
arises as for how thet*” participates in the field equations.
To answer this question one needs to rearrange the field
equations and single out the&*” explicitly. One can proceed
either from Eqs(38) or (44). A simpler way is to take the
following linear combination of the field equatio38):

1
(727 D) (P RB) = 2 (524 hB) (4 ) |1

0 (75)

and to use the linK42) in order to excludeP”,,. After
putting all the terms in a necessary order, the field equations
(75) take the following form:

1
SLO ) (y P heB) = (et h) (v P 0] 4

1 KV RPOo pa np po VB RHa
:Z 2h ;ph o~ 2h*% h ;,3+29 gth N P

+ gp.vgaphaﬁ;(rhpcr;ﬂ_ Zgﬂagﬁph]jﬂ;(rhpo;a

Now we drop the term proportional to the field equations.

The remaining part ofy*”".  is

1
KPP = X (= 20T e B )
(73

On the field equations, the original relationskifD) re-
duces to
mt/”|r: ‘thr+ dfﬂw'r|r .

(74

The last term in expressiq@3) for **”. |, cancels out with
exactly the same term in expressi@0) for ™*”|, . After

1
—297"gg P, 0?7+ 7 (29797~ g*"g"")

X(ngagoﬁ_gaﬁgp(r)hpo;ﬁhaﬁ;w . (76)

On the right-hand side df76) we have exactly the energy-
momentum tensof65), so the field equations can be written

1
SLOH ) (Y P heB) = (et h) (y" P 0] 4

= kth?,

(77
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The left-hand side of this equation is the generalized differ- A. Gravitational field equations and the energy-momentum
ential wave (d’Alember operator. So, the gravitational tensor for the matter fields
energy-momentum tensat”” is not, and should not be, a
source term in the ‘“right-hand side of the Einstein equa-
tions,” but it is a source term for the generalized wave op- 1
erator. S= Ej (L94LM)d*x, (79
Replacing the sumy*”+h*") by the shorter expression
g”” according to the definitiort45), we can also write the whereLY is the gravitational Lagrangia84) andL™ is the
gravitational field equation§/7) in the form matter Lagrangian which includes the interaction of the mat-
ter fields with the gravitational field. We assume the univer-
1 sal coupling of the gravitational field to all other physical
E[(—g)(g”ygaﬁ—g”agyﬂ)];a;ﬁz KtHY, (78)  fields, that is, we assume that th& depends on the gravi-
tational field variable$*” in a specific manner:

The total action in the presence of the matter sources is

We know t.hat the f_ield equatiorigd) are fully equiva}lent to LM=L" = y(y*"+h#"); [ = y(y**
the Einstein equationgsee Sec. ). In the geometrical ap- )
proach to the general relativity one interprets the quantities +hE)] o bai daal- (80)

d.» as the metric tensor of a curved space-ti(B®). It is

interesting to ask if there exists an object in the geometric L P
approach, which would be somehow related to the energy@n!y through the combinatiog — y(y*”+h*"), if one wants

momentum tensor“” derived here[The description of en- e malter energy-momentum tensét’ to participate in the
ergy in the general relativity is, of course, a matter of agrav!tat!onal field equations at the equal foqtmg with the
long-time effort by many people who used different ap_gravnauonal energy-momentum tensor, that is, through the
proaches. We note that Ref€1—33, are some of the works total energy-momentum tensor, which is the sum of the two.
which influenced our understanding of the problgRor this | € matter energy-momentum tensef” is defined by the
purpose we use for the first time the available coordinatreviously discussesee Sec. )luniversal formula

freedom and introduce the Lorentzian coordinates. This

ot was shown[8] that theL™ must depend oh*” and y*”

means that the metric tensor, ,(x*) is being transformed V= _ (81)

by a coordinate transformation to the usual constant matrix V=7 Yuv

7, In other words, one makegyo=1, y11= Y20= Y33=

—1, the rest of components zeros, and the determimgant Let us now turn to the derivation of the field equations.

—1. Then, all the covariant derivatives can be replaced byrhe gravitational equations are derived by applying the
the ordinary ones, and all the derivatives of the metric tensovariational principle to the gravitational variables in the total
¥,.» Vanish. Writing the expressiai65) for t** in Lorentzian ~ Lagrangian. The previously derived equatio@$) remain

coordinategsubscript; ) and using quantitieg”” instead of ~ unchanged since we assuffier simplicity) that theL™ does
h“#? one finds that not containP®,, . However, equation&38) are changed and
take now the form

L =(=gitfy, 2k LT
- - - - uv /—_‘y 5h#V: (82)
wheret{"’ is the Landau-Lifshitz pseudotend@]. The field
equations(78) written in Lorentzian coordinates take the ag for the matter field equations, they are derived by apply-
form ing the variational principle to the matter variables in the

total Lagrangian, which meaniL™/ §¢,=0. The concrete
1 form of the matter field equations will not be needed.
Sl(= 9)(9*' 9P~ g"*g"P)] 4 5= k(=Y. We know(Sec. V A that equation$82) without the term

caused by ™ are equivalent to equatiorg7), wherext*” is

given by formula(65). We want to show that the source term

So, the object most closely related to the derived energy, the right-hand side of the gravitational equations becomes
momentum tensot”” is the Landau-Lifshitz pseudotensor o in the presence df™, the total energy-momentum ten-

t{"’ times (—g). Their numerical valuegbut not the trans- gqy.
formation properties, unless for linear coordinate transforma- | et us start from the contribution provided hy. Since

tions) are the same at least under some conditions. the procedure of the reduction af™*” to the final form
xt*” Eq. (65) involved the use of the equations of motion
VI. GRAVITATIONAL EIELD WITH MATTER SOURCES (38), which are now modified to Eq82), the gravitational

part of the total energy-momentum tensor will also be modi-
We will now include in our consideration matter fields fied, as compared with Ed65). Using Eq.(82) instead of
interacting with the gravitational field. One or several matterEq. (38), and getting rid of the second derivativeshsf” in
fields are denoted by, , whereA is some general index.  the same way as before, one obtains
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« SLM ing with the gravitational field and which are being used in a
KA = KAV + qePry , gedanken experimentWe mention the gauge freedom only
\/—_7 shep in order to stress that all the objects and equations have been
derived in an arbitrary gauge, without imposing any gauge

where the subscrigt, indicates that the derivation has been
done in presence of the matter fields. Ta” is given of
course by the same formul®#5), and quantities)®#*” are
given by formula(59). Let us now turn tor*”. The universal
coupling in the Lagrangia(B80), that is, the fact that*” and In the geometrical approach to the general relativity one
/y/“/ enter theLm 0n|y in the combination/— »y( fy/“’_|_ hl“’), interpretS the quantiti@l_“}, introduced by Eqi45),(46), as
allows us to relate’L™ &y, with 5L™ sh*”. After neces- the metric tensor of a curved space-tif®®). The universal
sary transformations, one obtains coupling of gravity with matter translates into

1 &L LM=L"[NV=9g"";(N—099"") a: P Paal- (89
TR =[29yHP T — yEY(yP7+hPT) ] —

N One can think of this dependence as a manifestation of the
. . _ . Einstein’s equivalence principle.
Thus, after using the field equations and removing second The matter energy-momentum tendy, is now defined

conditions.

B. Equivalence with the geometrical Einstein equations

derivatives ofh*”, the total energy-momentum as the variational derivative df™ with respect to what is

. now the metric tensoft ,,= (2/\—g)(6L™/ 6g*"). The spe-

Uy = — 2 S(L%+L™ cific form of theL™ allows us to write
V=Y 57#1}
2 LM sL™ 1
= =T »— 59 VgaBTaﬂ'
reduces to \/_—y sher & \/__ggplr) wr o 3Iu
(85)

nv MV — )% B Bv av av
(U]t 77) = 7| (Y4 P (77 h ) TensorT#” certainly differs from the tensor*” defined in

the field-theoretical approach, but they are related:

1( 4 ) (5B 4 B 2k LM
—5(y Y E 1
2 =y ohe? Tuv™ 5 VurY P Tag
Finally, we can write the gravitational field equations in a 1 1
form similar to Eqs(77). We take the same linear combina- = ( 5“5'B+—'y“”haﬁ)(TaB— ~0ap9"T o |-
tion of equations(82) as was previously done in E¢75). 2 2 ’

Putting all the terms in the necessary order, we arrive at the

equations equivalent to E¢g2): We are now in a position to prove that the field equations

(83) are fully equivalent to the Einstein’s geometrical equa-
1 tions. We know{see Eqs(53)] that
Sl h#) (y*P+hP) = (y*+he) (y"P+h"P)] . 5

row=Ru—Ru., (86)

= k(" + 7). (83 .
whereR,,,=0. Combining Egs(82) and (85) we arrive at

Thus, in the gravitational field equations, the total energy-Einstein’s geometrical equations
momentum tensor is the source for the generalized
d’Alembert operator. Obviously, the conservation laws
(t*"|,+ ™").,=0 are satisfied as a consequence of the field
equationg83).

As a final remark, we should mention that the field-
theoretical formulation of the general relativity allows also
gauge transformations in addition to the arbitrary coordinate We have shown that the field-theoretical formulation of
transformations. Under gauge transformations, solutions tthe general relativity allows us to derive the fully satisfactory
the field equations transform into new solutions of the sam@ravitational energy-momentum tengd” satisfying all six
equations. In what sense and under which conditions thdemands listed in the Abstract of the paper. Both routes,
gauge-related solutions are physically equivalent, is a deefmetrical” and “canonical,” lead to one and the same
and nontrivial issue. This question was partially analyzed irunique expressiof65). When the gravitational field is con-
Ref. [19] but it is outside of the scope of this paper. The sidered together with its matter sources, the same strict rules
theory is fully consistent in its mathematical structure andproduce the matter energy-momentum tensttf and the
physical interpretation, if the gauge transformations are apmodified gravitational energy-momentum tensor. Both ten-
plied to the gravitational field and matter variables togethesors participate on equal footing in the nonlinear gravita-
(even if we deal only with a couple of test particles interact-tional field equation83) which are fully equivalent to Ein-

1
R,uV:K T,LLV_ Eg,u,vga'BTaﬁ . (87)

VII. CONCLUSIONS
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stein’s geometrical equation@7). These strictly defined [Z A @BPoR -1 . .
energy-momentum tensors should be useful in practical ap- 7 apr = Vo Vw2 Viaw7.0)
plications. Taking into account this dependence, we can write for the
variation of the functiorll
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APPENDIX A: COVARIANT GENERALIZATION
OF THE EULER-LAGRANGE EQUATIONS oIl oIl oIl
) . ) ) ) B7= OVt 1) - 1) .
The covariant field equation€l2) can be derived in a Y v, r Yur Y v, 0 Vv (M,mm i

,®

more traditional fashion, when one considers the field vari-

ablesh*” and their ordinarynot covariant derivativesh#” . The coefficient in front of6y,, defines the variational de-
as functions subject to variation. To emphasize this fact weivative:

rewrite the Lagrangiaf6) in the form

SIL - oIl ( ol +( all )
= my Ca mY v = — ,
L=L(y*",C My,h h ,a)- (A1) 53,[“) Y Y s . Yuvro e
Starting from the Lagrangian in this form, one derives the,
- : so that
usual field equations
L L oIl ol 8v,,+B
d d = 9%Yuv T,T'
- =0. (A2) Vur ' *
oh#r \ gh*” |

In order to find the required variational derivative, we can

Since the functior in Egs.(6) and(Al) is one and the same simply calculate the variation ofj— yA“BP‘TIV? and
function, but written in terms of different arguments, one canpresent it in the form
relate its derivatives. The second term in E&R) transforms

as follows: S(N—=yAPPIR,, 5,) =\ — yA# Sy, + (= ¥CT) ..

JL L oh*?., aL JL The quantityy/— yA*” is what we need.
- - - It is convenient to work With\/—yA“B/"’ymﬁTpﬁg in-

apBo

oner |\ ahee. aher |\ gher | gk \
7 7 7 "7 stead ofy— yA*P*°R,, 5, . The variation can be written as
L L . §
+ ahov_TCGMT+ O"hO'p,_TCUVT' (A3) 5( VT »),A&’EPU',),QT Tpﬂo-) = 5( N YAQBPUYaT) RTpﬁo’
+ 5( VRrpﬁo-) N ’yAa'BPU’VaT .

The first term in Eq(A2) transforms as
(B1)
po
L = oL + oL o, The first term on the right-hand side of E@®1) vanishes
dh#v gh#?  ghP.  gh#? due to the constraint, so we need to focus attention on the
second term. The variation of the Riemann tensor is

L dL oL
= Co .t C’.  (A4)
gh#r ghev. gher.

8(R7,4s)=(8C7,0) . 5= (8CT1p) - (B2)

Using Eqgs.(A3) and (A4) in Eq. (A2) one obtains the re- The variation of the Christoffel symbols is
quired result(12). Obviously, field equation$A2) use the

o . : 1
Lagrangian in the form{Al), whereas field equationd?2) SCT =N Sve .+ Sve o — Sy
use the Lagrangian in the forte). pr =2 V" (Wit Oy ™ o)
. _1 5)\601 ,8'r+ 5)\50' BT_ 5,3561 [N S
APPENDIX B: PROOF OF EQ. (68) —5( Y Y D8aY™) Y agn -
We need to show in detail that the variational derivative B3)

of the added term in Lagrangidf6), calculated at the con-

straintﬁapﬁgzo, result in the last two terms in E¢68). Let  One needs to combine Eq®3),(B2) and take into account
us introduce a shorter notation for the added term stressingroperties of the symmetry of “#*” [see(67)]. After rear-
its dependence o, and derivatives: ranging the participating terms, one gets
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S(N=yA“BPIR . ) Using expression(B3) and rearranging the participating
apbo terms we arrive at

= —[V= YA P AVEE) 616y,

+[ N 7(Aa¢p07a7_ Aa¢p07a7) 5C7p0 N—Y 1
SL9=— ——=i=y*he P
+4/— 7(AM”¢5+AVM¢3);B57#V];¢_ (B4) 2k |2
The s_econd '_[erm on the right-hand si_de of EB4) is a + ,y,up,yvo'_l,y,uV( Y97+ hPo)
covariant derivative of the vector density, so the covariant 2

derivative can be replaced by ordinary derivative, and this

term has the form of (—C”) .. Thus, we conclude that X papﬁpﬁtm_l P,P,|+Q“" 8y,
the sought after variational derivative, calculated at the con- 3
straint, is 1
o __[,/_,y( Pﬂ(rhpf,yvrr_’_ Prahp,u,ywr
5( A ’yAa'Bpo—Rapﬁo) . 2K ’ P

— = y(A#veBL AvRaBy
8 V= Viais —PL ey ) 5y, . (B6)
Its contribution to thex™t*"|; is — (A#**F+ A #P). . 5 is
what we needed to prove.

The calculation of Eq(56) can be done in exactly the
same way. Namely, taking the variation of the Lagrangian
density(34) with respect toy,,,, one obtains

Thus, as it is stated in the tefd6), the variational derivative

J= 1 2k 6L N S
oL8= - ZKY( PR NEE Y = KT =2 YR
) Y
1 1
+ 7"%“’—57’”(7”%”)} + 7"”7“’—57’“(3/”"+h"")}
1 1
X Papﬁpﬂm—gpppo) 8V, 2P, nPESCY g1 X| PPl ra=3 PPy |+ QM.
(B5) (B7)
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