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Energy-momentum tensor for the gravitational field
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The search for the gravitational energy-momentum tensor is often qualified as an attempt at looking for ‘‘the
right answer to the wrong question.’’ This position does not seem convincing to us. We think that we have
found the right answer to the properly formulated question. We have further developed the field-theoretical
formulation of the general relativity which treats gravity as a nonlinear tensor field in flat space-time. The
Minkowski metric is a reflection of experimental facts, not a possible choice of the artificial ‘‘prior geometry.’’
In this approach, we have arrived at the gravitational energy-momentum tensor which is~1! derivable from the
Lagrangian in a regular prescribed way,~2! a tensor under arbitrary coordinate transformations,~3! symmetric
in its components,~4! conserved due to the equations of motion derived from the same Lagrangian,~5! free of
the second~highest! derivatives of the field variables, and~6! is unique up to trivial modifications not con-
taining the field variables. There is nothing else, in addition to these six conditions, that one could demand
from an energy-momentum object, acceptable both on physical and mathematical grounds. The derived gravi-
tational energy-momentum tensor should be useful in practical applications.

PACS number~s!: 04.20.Fy, 11.10.Ef, 98.80.Hw
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I. INTRODUCTION

The notions of energy and momentum play an import
role in physics@1,2#. These quantities are useful because th
are conserved. The conservation laws follow from the eq
tions of motion, but we can gain important information abo
the system even without explicitly solving its equations
motion.

For a distributed system~or a field! the densities of en-
ergy, momentum, and flux of momentum are functions
points labeled by some coordinatesxa. These functions com
bine in the energy-momentum tensorTmn(xa), that is, the
components ofTmn transform according to the tensor ru
under arbitrary transformations of the coordinatesxa ~inde-
pendently of whether the space of pointsxa is endowed with
one or another metric tensor!. It would be embarrassing to
use an energy-momentum object which did not transform
a tensor under, say, a transition from rectangular to sphe
coordinates. Usually, theTmn is a symmetric tensor,Tmn

5Tnm. The symmetry ofTmn is required for a proper formu
lation of the angular momentum conservation. The local d
tributions of Tmn(xa) are important not only because the
prescribe some numerical values to the energetic chara
istics of the field, but also because they can be viewed
responsible for the local state of motion of particles and b
ies interacting with the field. In field theories governed
second-order differential equations, one expects the ene
momentum tensor to depend on squares of first-order de
tives of the field variables, but not on second derivatives

For Lagrangian-based theories, the derivation of the c
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served energy-momentum object is closely related to
variational procedure by which the equations of motion
being derived~see, for example,@2#!. At the beginning it is
better to speak about an energy-momentum object, ra
than a tensor, because at the first steps of derivation
transformation properties are either not being discussed
not obvious. In fact, there are two routes of derivation. O
produces a ‘‘canonical’’ object, and another produces
‘‘metrical’’ object. The first route takes its origin from Eule
and Lagrange. This route does not care about the transfo
tion properties of the field variables and the Lagrangian
self, and whether the Lagrangian includes any metric ten
But what is important is whether the Lagrangian conta
explicitly ~in a manner other than through the field variable!
the independent variables~coordinates! xa. If such depen-
dence onxa is present, one should not expect first integr
of the equations of motion and conserved quantities. If th
is no such a dependence, some sort of conservation law
guaranteed as a consequence of the equations of motion

The second route is associated with the Noether identit
Here one exploits from the very beginning the transform
tion properties of fields and Lagrangians. One requires
action to be a quantity independent of any coordinate tra
formations and, hence, one requires the Lagrangian to b
scalar density, that is, a scalar function times the square
of the metric determinant. This route produces a ‘‘metrica
object, which is essentially the variational derivative of t
Lagrangian with respect to the metric tensor. This objec
automatically a symmetric tensor, and it is conserved if
equations of motion are satisfied. The conserved tensors
usually understood in the sense that they obey differen
conservation equations, but one can also derive from th
the integral conserved quantities if, as is always required,
system is isolated. For radiating systems, the fluxes of ene
©1999 The American Physical Society38-1



t
o
o
m

a-
te
b

t c
he
if
o
r

lic
s,
ne

rk

on

s
ha
o

b
gs
iv
m

va
-

ng
a
-
ll

na
re
rg
fa
n
ru
n-
s
a

tra
ic
rg
-
’’

in
f
o

ging
sult

r 30

are
his
ing
ed

aca-
ich
to

are
m-
her
al
o-

able
tial
rgy

his
y-
to

nt
lts.
of
and
ith

en-
ut
ns
ot
a-

ten-

i-
eat
tri-
ts
nts
red
on
,
in
ndi-
en-
it

ld-
tly

at
ot
es
an
y

is

S. V. BABAK AND L. P. GRISHCHUK PHYSICAL REVIEW D61 024038
and momentum participate in the balance equations.
Both objects, canonical and metrical, are defined up

certain additive terms which do not violate equations of m
tion. These terms are a generalization of the additive c
stant which arises even in a simplest one-dimensional
chanical problem, when the Lagrangian does not depend
time explicitly. It is known that the first integral of the equ
tion of motion, which we interpret as energy, can be shif
by a constant. In field theories, the additive terms can
used to our advantage. For instance, the canonical objec
be made symmetric, if it was not such originally, and t
metrical object can be made free of second derivatives,
contained them originally. Despite the different routes
derivation, the canonical and metrical objects are deeply
lated. If they are derived from the same Lagrangian, exp
itly containing metric tensor in addition to field variable
they are equal to each other, up to a certain well-defi
expression calculable from the Lagrangian.

In traditional field theories, one arrives, after some wo
at the energy-momentum object which is~1! derivable from
the Lagrangian in a regular prescribed way,~2! a tensor un-
der arbitrary coordinate transformations,~3! symmetric in its
components,~4! conserved due to the equations of moti
obtained from the same Lagrangian,~5! free of the second
~highest! derivatives of the field variables, and~6! is unique
up to trivial modifications not containing the field variable
There is nothing else, in addition to these six conditions, t
we could demand from an acceptable energy-momentum
ject, both on physical and mathematical grounds.

When it comes to the gravitational field, as described
the geometrical formulation of the general relativity, thin
become more complicated. It is often argued that the equ
lence principle forbids a gravitational energy-momentu
tensor. What is meant in practice is that the all first deri
tives of any metric tensorgmn(xa) can be made, by an ap
propriate choice of coordinatesxa, equal to zero along the
world line of a freely falling observer~along a timelike geo-
desic line!. But the first derivatives ofgmn(xa) can be elimi-
nated along any world line, not necessarily of a freely falli
observer. And this is true independently of the presence
form of coupling of gmn(xa) to other fields, and indepen
dently of whether thegmn(xa) obeys any equations. Since a
components of a tensor cannot be eliminated by a coordi
transformation, this reference to a physical principle is
garded to be an argument against a gravitational ene
momentum tensor, but the argument sounds more like a
from the differential geometry. Despite this argument, o
usually notices that it is desirable, nevertheless, to const
at least an ‘‘effective’’ gravitational energy-momentum te
sor. In practice, this means that we combine some term
the Einstein equations, in one or another manner, into
object which does not behave as a tensor even under a
sition from rectangular to spherical coordinates, but wh
possesses some desirable properties of the ene
momentum tensor, and this is why it is an ‘‘effective’’ ten
sor. And, finally, one usually argues that the ‘‘effective
tensor becomes the ‘‘well-defined’’ tensor after averag
over several wavelengths. Obviously, this transmutation o
pseudotensor into a tensor can be done only in an appr
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mate and restricted sense. And, in general, the avera
over several wavelengths means that the numerical re
will depend on whether we have averaged over, say, 3 o
wavelengths.

This shaky situation can be tolerated as long as we
interested only in solving the Einstein equations. But t
situation becomes risky when we need to know someth
more. It appears that the problem of a rigorously defin
energy-momentum tensor may have more than a purely
demic interest. We have in mind a specific question wh
was actually one of motivation for our renewed interest
this problem.

It is likely that the observed@3# large-angular-scale
anisotropies in the microwave background radiation
caused by cosmological perturbations of quantu
mechanical origin. Cosmological perturbations can be eit
purely gravitational fields, as in the case of gravitation
waves, or should necessarily involve gravitational comp
nent, as in the case of density perturbations. To make reli
theoretical predictions one needs to normalize the ini
quantum fluctuations. In words, this means to assign ene
of a half of the quantum to each mode. In practice, t
implies the availability of a rigorously defined energ
momentum tensor for the field in question, which allows
enforce the energy12 \v, and not, say,13 \v or 30\v, for the
initial quantum state. A change in the numerical coefficie
would lead to the corresponding change in the final resu
The preliminary calculations show that the contributions
the quantum mechanically produced gravitational waves
density perturbations should be approximately equal, w
some preference to gravitational waves@4#. A detailed analy-
sis of the available observational data@5# seems to favor the
gravitational wave contribution twice as large as that of d
sity perturbations. Remarkably, the factor of 2 may turn o
to be important when comparing the theoretical predictio
with observations. This is why, in our opinion, we cann
afford even a numerical coefficient ambiguity in such fund
mental constructions as gravitational energy-momentum
sor.

We believe that the difficulty in deriving a proper grav
tational energy-momentum tensor lies in the way we tr
gravity, not in the nature of gravity as such. In the geome
cal formulation of the general relativity, the componen
gmn(xa) play a dual role. From one side they are compone
of the metric tensor, from the other side they are conside
gravitational field variables. If one insists on the propositi
that ‘‘gravity is geometry’’ and ‘‘geometry is gravity,’’ then
indeed, it is impossible to derive from the Hilbert-Einste
Lagrangian something reasonable, satisfying the six co
tions listed above. But the geometrical approach to the g
eral relativity is not the only one available. It is here where
is necessary to look at the general relativity from the fie
theoretical positions. The general relativity can be perfec
well formulated as a strict nonlinear field theory in fl
space-time. This is a different formulation of the theory, n
a different theory. The importance of looking at theori
from different viewpoints was well emphasized by Feynm
@6#: ‘‘if the peculiar viewpoint taken is truly experimentall
equivalent to the usual in the realm of the known there
8-2
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ENERGY-MOMENTUM TENSOR FOR THE . . . PHYSICAL REVIEW D61 024038
always a range of applications and problems in this realm
which the special viewpoint gives one a special power a
clarity of thought, which is valuable in itself.’’

The field-theoretical formulation of the general relativi
treats gravity as a nonlinear tensor fieldhmn(xa) in the
Minkowski space-time. In arbitrary curvilinear coordinate
the metric tensor of the flat space-time isgmn(xa). If neces-
sary, one is free to use the Lorentzian coordinates an
transformgmn(xa) into the usual constant matrixhmn . The
Minkowski metric is not an artificially imposed ‘‘prior ge
ometry,’’ but a reflection of experimental facts. We kno
that far away from gravitating bodies, and whenever
gravitational field can be neglected, the space and time in
vals satisfy the requirements of the Minkowski space-tim
In the presence of the gravitational field, all kinds of ‘‘rods
and ‘‘clocks’’ will exhibit violations of the Minkowski rela-
tionships. This is a result of the universality of the gravi
tional interaction~as we understand it today!. One is free to
interpret the results of the measurement as a manifestatio
the curvature of the space-time, rather than the action of
universal gravitational field. In this sense, the Minkows
space-time becomes ‘‘unobservable.’’ But this does
mean that the Minkowski metric is illegitimate or useles
On the contrary, it is being routinely used in relativistic a
trometry and relativistic celestial mechanics. People are w
aware of the general relativity and curved space-time. Bu
turns out to be more convenient and informative to store
analyze the data in terms of the ‘‘unobservable’’ flat spa
time quantities~after subtraction of the theoretically calcu
lated general-relativistic corrections!, rather than in terms o
directly measured ‘‘observable’’ quantities. If this is possib
and useful in the regime of weak gravitational fields, it c
be useful for any fields. In fact, for the problem of the gra
tational energy-momentum tensor, the use of the Minkow
metric allows one to put everything in full order. The dem
onstration of this fact is the main purpose of the paper.

The structure of the paper is as follows. In Sec. II w
review definitions of the canonical and metrical energ
momentum tensors for general field theories. The associ
ambiguities, and their relationship with the equations of m
tion, is a considerable technical complication on its ow
However, we show in detail how the canonical and metri
tensors are related. The main conclusion is that, whateve
starting point, the allowed adjustments lead eventually to
and the same object satisfying the imposed requirements
use this general analysis in Sec. IV in course of derivation
the gravitational energy-momentum tensor. Section III is
voted to the field-theoretical formulation of the general re
tivity. We start from the case of pure gravity, without matt
sources. The gravitational Lagrangian and field equations
given explicitly. It is shown that the derived field equation
plus their appropriate interpretation, are fully equivalent
the Einstein equations in the geometrical formulation. In S
IV, being armed with the gravitational Lagrangian and fie
equations, we apply the general definitions of Sec. II
derivation of the gravitational energy-momentum tensor.
different routes we arrive at the energy-momentum ten
satisfying all six demands listed in the Abstract of this pap
It is shown that this tensor is unique up to trivial modific
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tions which do not involve the field variables. We call th
object the true energy-momentum tensor. In Sec. V we a
lyze the way in which the true energy-momentum ten
participates in the nonlinear gravitational field equatio
The gravitational energy-momentum tensor is not, a
should not be, a source in the ‘‘right-hand side of Einstei
equations.’’ But it is a source for the generalized~nonlinear!
d’Alembert operator. It is shown that a geometrical obje
most closely related to the derived energy-momentum ten
is the Landau-Lifshitz pseudotensor. Their numerical valu
~but not the transformation properties! are equal at least un
der some conditions. In Sec. VI we include matter fields
our consideration and define the energy-momentum ten
for the matter fields. The gravitational energy-momentu
tensor is now modified because of the presence of the m
Lagrangian. However, both, gravitational and matter ener
momentum tensors participate in the gravitational field eq
tions at the equal footing. Their sum is the total energ
momentum tensor which is now the source for the previou
mentioned generalized~nonlinear! d’Alembert operator. The
conservation laws for the total energy-momentum tensor
guaranteed by general theorems~Sec. II! and are manifestly
satisfied as a differential consequence of the field equati
The derived equations, plus their appropriate interpretat
are fully equivalent to the Einstein’s geometrical equatio
with matter. The final Sec. VII contains conclusions. Som
technical details are relegated to Appendixes A and B.

II. DEFINITIONS OF THE ENERGY-MOMENTUM
TENSOR

Some of the material of this section is known in the l
erature but we present it in a systematic way and in a fo
appropriate for our further treatment of the general relativ
as a field theory in flat space-time.

A. The canonical energy-momentum tensor

Let us first recall how the notion of energy arises in t
simplest case of a one-dimensional mechanical system
the LagrangianL5L(q,q̇,t) and the action

S5E
t1

t2
L~q,q̇,t !dt.

The equation of motion~the Euler-Lagrange equation! fol-
lows from the requirement that the action is stationary,dS
50, under arbitrary variations ofq(t) vanishing at the limits
of integration~what we will always assume!:

]L

]q
2

d

dt S ]L

]q̇
D 50. ~1!

The symbol of the total derivatived/dt emphasizes the nee
to include the partial derivative byt if the functionL depends
on time explicitly. If the Lagrangian does not depend on tim
t explicitly, Eq. ~1! admits the first integral. In this case on
has
8-3
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dL

dt
5

]L

]q
q̇1

]L

]q̇
q̈ and

d

dt S ]L

]q̇
D 5

]

]q S ]L

]q̇
D q̇1

]

]q̇
S ]L

]q̇
D q̈.

~2!

By multiplying Eq.~1! with q̇ and rearranging the terms wit
the help of Eq.~2!, one transforms Eq.~1! to

d

dt S q̇
]L

]q̇
2L D 50.

This equation has the form of a conservation law, and
quantityE5q̇(]L/]q̇)2L, called energy, is a constant. Wit
the same success we could call energy the quantityE

5@ q̇(]L/]q̇)2L#1C, whereC is a constant. The equatio
of motion ~1! is still satisfied.

These considerations apply to any field theory descri
by the LagrangianL5L(qA ;qA,a ;xa) whereqA(xa) is a set
of variables, andxa is a set of coordinates. The variation
principle produces the field equations

]L

]qA
2S ]L

]qA,a
D

,a

50, ~3!

where the last differentiation with respect toxa includes the
partial derivative byxa, and the summation over repeate
indices is~always! assumed. The field equations are conv
niently written asdL/dqA50, where the variational deriva
tive d/d denotes~see, for example,@7#!

dL~qA ;qA,a ;xa!

dqA
[

]L

]qA
2S ]L

]qA,a
D

,a

. ~4!

If Lagrangian depends on second derivatives, the right-h
side of Eq.~4! acquires an extra term, see Appendix B.

If the function L does not depend onxa explicitly, one
expects that the field equations can be transformed into
conservation equations, equal in number to the numbe
coordinatesxa. In this case, one has

L ,s5
]L

]qA
qA,s1

]L

]qA,t
qA,t,s .

By multiplying Eq.~3! with qA,s , taking summation overA,
and making rearrangements similar to the ones descr
above, one obtains, as a consequence of the field equat

S qA,a

]L

]qA,b
2da

bL D
,b

50.

The expression

cta
b5qA,a

]L

]qA,b
2da

bL

is the canonical~label c) conserved energy-momentum o
ject. The upper or lower positions ofa andb are not essen
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tial, but the positions of the first index (a) and the second
index (b) are distinguishable. In general, the objectcta

b is
not symmetric ina andb.

With the same success we could write for the canon
object

cta
b5qA,a

]L

]qA,b
2da

bL1Ca
b,

if the functionCa
b satisfies

Ca
b

,b50 ~5!

identically or due to the equations of motion~3!. In order to
satisfy Eq. ~5! identically, it is sufficient to haveCa

b

5ca
bt

,t whereca
bt is antisymmetric inb and t: ca

bt5
2ca

tb, so thatca
bt

,t,b[0. The functionca
bt is usually

called a superpotential. By an appropriate choice ofCa
b one

can make the objectcta
b symmetric in its components. Th

transformation properties ofcta
b under coordinate transfor

mations are not defined until the transformation properties
the field variables andL are defined.

We now move to covariant relativistic theories. One no
mally considers physical fields of various tensor ranks~sca-
lar, vector, tensor, etc.! in a space-time with some metri
tensor. The LagrangianL is required to be a scalar densi
with respect to arbitrary coordinate transformations, that isL
is a scalar function times the square root of the~minus! met-
ric determinant. For a better contact with our further stu
we consider a symmetric tensor fieldhmn(xa) placed in a flat
space-time with the metric tensorgmn(xa) written in arbi-
trary curvilinear coordinatesxa. The general form for the
Lagrangian density is

L5L~gmn,hmn,hmn
;b!, ~6!

where ; denotes a covariant derivative defined bygmn and
the associated connection~Christoffel symbols! Ca

mn . The
gmn andCa

mn are functions ofxa but they are not dynamica
variables, and hence they make theL dependent onxa ex-
plicitly. On the general grounds, one does not expect
Euler-Lagrange equations to reduce to any conserva
equations in the usual sense, i.e., in terms of vanishing
tial derivatives. However, sincegmn

;a[0, one can derive a
covariant generalization of the conservation laws, i.e.,
terms of vanishing covariant derivatives. This is, of cour
consistent with our ability to choose coordinatesxa in such a
way thatgmn will become a constant matrix andCa

mn will
all vanish, thus removing the explicit dependence ofL on
coordinates. Moreover, as we will show below, the vanish
covariant divergence will apply to the canonical energ
momentum tensor, which is now a manifestly tensorial qu
tity.

Let us first give a covariant generalisation to the equati
of motion. The action for the Lagrangian~6! is

S5
1

cE L d4x, ~7!
8-4
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where the integral is taken over some four-volumeV. Con-
sideringdhmn anddhmn

;a as independent variations we ca
write

dL5
]L

]hmn
dhmn1

]L

]hmn
;t

dhmn
;t. ~8!

It is easy to check that the operations of variation and co
riant differentiation commute. Using this property in Eq.~8!
we have

dL5
]L

]hmn
dhmn1S ]L

]hmn
;t

dhmnD
;t

2S ]L

]hmn
;t
D

;t

dhmn.

~9!

Since the quantity (]L/]hmn
;t)dhmn is a vector density of

weight 1 ~i.e., a vector quantity timesA2g), we have

S ]L

]hmn
;t

dhmnD
;t

5S ]L

]hmn
;t

dhmnD
,t

. ~10!

Substituting Eq.~9! into Eq. ~7! and taking into account the
equality above one obtains

dS5
1

cE F ]L

]hmn
dhmn2S ]L

]hmn
;t
D

;t

dhmn

1S ]L

]hmn
;t

dhmnD
,t
Gd4x50. ~11!

At the boundary of integration we havedhmn50, so the
integral of the last term in Eq.~11! is zero. The variations
dhmn are arbitrary, and we arrive at the field equations in
explicitly covariant form:

]L

]hmn
2S ]L

]hmn
;t
D

;t

50. ~12!

Certainly, one could have obtained the same result in a m
familiar way, starting from the Lagrangian in the form co
taining hmn and the ordinary~rather than covariant! deriva-
tives hmn

,t ~see Appendix A!.
One can now derive the canonical energy-momentum

ject in exactly the same way as was described bef
Namely, one multiplies the field equations~12! by hmn

;s and
rearranges the terms to arrive at the covariant conserva
law:

S hmn
;a

]L

]hmn
;b

2da
bL D

;b

50.

The expression

ctab5
1

A2g
S gathmn

;t

]L

]hmn
;b

2gabL D ~13!
02403
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is the canonical energy-momentum tensor. We could a
define ctab as

ctab5
1

A2g
S gathmn

;t

]L

]hmn
;b

2gabL D 1Cab,

whereCab is a function such thatCab
;b50, identically or

due to the field equations. The conserved canonical ene
momentum object~13! does not contain second-order deriv
tives and is manifestly a tensorial quantity, but, in gene
the canonical energy-momentum tensor is not symmetric
its components. However, it can be made symmetric by
appropriate choice of a nonsymmetricCab .

B. The metrical energy-momentum tensor

From the general Lagrangian~6! one can also derive the
metrical energy-momentum tensor. Its derivation relies
the transformation properties of all the participating quan
ties with respect to coordinate transformations.

An infinitesimal coordinate transformation

x̃a5xa2ja~xb! ~14!

generates the Lie transformations along the vector fieldja,
which can be presented as corresponding variations of
field variables, of the metric tensor, and of the Lagrangi
dhmn, dgmn, anddL, respectively. Since the Lagrangian~6!
is a scalar density, its variation is a total derivative

dL5~Lja! ,a . ~15!

The change in the metric tensor is

dgmn52jm;n2jn;m. ~16!

And there is also a corresponding change in the field v
ables

dhab5jshab
;s2hasjb

;s2hbsja
;s ~17!

but we will not need to know its concrete form for this de
vation.

Taking into account Eq.~15! and assuming that the vecto
field ja vanishes at the boundary of integration, we conclu
that the variation of the action must be equal to zero:

dS5
1

cE dL d4x50. ~18!

On the other hand, we know that an arbitrary variation ofL,
not necessarily caused by Eq.~14!, has the general form

dL5
dL

dhmn
dhmn1

dL

dgmn
dgmn1Aa

,a , ~19!

where

Aa5
]L

]hmn
,a

dhmn1
]L

]gmn
,a

dgmn.
8-5
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In writing this formula we took into account the fact that th
first derivatives ofgmn participate, through the Christoffe
symbols, in the covariant derivatives of the field variable

At this point we require that the field equations are sa
fied

dL

dhmn
50 ~20!

so the first term in Eq.~19! is zero. In the second term of Eq
~19! we use the specific variation~16!. Then, Eq.~18! ac-
quires the form

22E S dL

dgrs
D

;s

jrd4x1E S 2
dL

dgab
jb1AaD

,a

d4x50,

~21!

where we have also used the following equality:

]L

]gab
52gmagnb

]L

]gmn
. ~22!

The second integral in Eq.~21! transforms into a surface
integral and vanishes under appropriate boundary condit
for ja. Since the functionsjr(xa) are arbitrary, we finally
obtain

22S dL

dgrs
D

;s

50. ~23!

The metrical~symbolm) energy-momentum tensormtmn

is defined as

mtmn52
2

A2g

dL

dgmn
, ~24!

so that Eq.~23! takes the form of the covariant conservati
law @valid only on solutions to the equations of motion~20!#:

mtmn
;n50. ~25!

As before, one can also write for the metrical energ
momentum tensor

mtmn52
2

A2g

dL

dgmn
1Fmn, ~26!

where the functionFmn satisfiesFmn
;n50 identically or due

to the field equations. The derived conserved object~24! is
automatically symmetric and a tensor, but, as a rule, it c
tains second-order derivatives of the field variables, eve
the Lagrangian does not contain them. They are generate
one extra differentiation in the definition of the variation
derivative@see the second term in Eq.~4!#. However, by an
appropriate use ofFmn and the field equations, all secon
derivatives can be removed, as we will discuss in detail la
on.

It is important to note that nothing in the derivation
Eqs.~24!,~25! actually required thegmn to be a metric tenso
02403
-
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of a flat space-time, that is, to have the curvature ten
constructed fromgmn equal to zero. One can still formally
arrive at the equation, similar in structure to Eq.~25!, in
arbitrary curved ‘‘background’’ space-time, where the cov
riant derivatives are now being taken with respect to
curved metric. This is an element of a field theory in t
‘‘background’’ space-time, which is useful in some applic
tions ~see, for example,@8,9#!. As soon as the field equation
are satisfied, the corresponding covariant ‘‘conservat
laws’’ must be valid. However, in this case, there is not a
there should not be, in general, any conservation laws in
usual sense. First, one normally encounters severe integr
ity conditions for the field equations. The number of ind
pendent solutions, in the sense of the Cauchy problem,
be diminished, or the solutions may not exist at all. Seco
the vanishing covariant divergence cannot be converted
the vanishing ordinary divergence. This is a well-known fo
mal obstacle, but it has deep and clear physical reasons
‘‘background’’ space-time is by itself a gravitational fiel
which interacts with a system and can exchange energy
the system. For instance, even in the simplest Friedm
Robertson-Walker space-times, gravitational waves can
amplified and gravitons can be created@10#.

Returning to the strictly defined energy-momentum te
sors, we will now show that the canonical tensor~13! and the
metrical tensor~24! are closely related.

C. Connection between metrical and canonical tensors

The metrical tensor~24! and the canonical tensor~13! are
derived from the same Lagrangian~6!, so one expects them
to be related. To find the link betweenmtmn and ctmn we
return to the derivation ofmtmn based on the infinitesima
transformation~14!.

It is convenient to write the variation~15! in the form

dL5~Lja! ;a . ~27!

The replacement of the ordinary divergence by the covar
one is allowed, because the differentiated quantity (Lja) is a
vector density. We can also write the general variation~19!
in the form

dL5
dL

dhab
dhab1

dL

dgmn
dgmn1S ]L

]hab
;t

dhabD
;t

1S ]L

]gmn
,t

dgmnD
,t

. ~28!

In writing this expression we took into account Eq.~10! and
the fact that

]L

]hab
;t

5
]L

]hab
,t

.

We will now show that the differentiated quantity in the la
term of Eq.~28! is also a vector density, so that the ordina
divergence can be replaced by the covariant one. Ind
from the structure of Eq.~6! it follows that
8-6
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]L

]gmn
,t

5
]L

]hab
;r

]hab
;r

]gmn
,t

52
]L

]hab
;r

hsb
]Ca

sr

]gmn
,t

.

Since

]Ct
lr

]gab
,v

52
1

4
~dr

vda
t gbl1dr

vdb
t gal1dl

vda
t gbr1dl

vdb
t gar

2gtvgragbl2gtvgrbgal!, ~29!

it is now clear that the quantity (]L/]gmn
,t)dgmn is a vector

density. Thus, we can rewrite Eq.~28! as

dL5
dL

dhab
dhab1

dL

dgmn
dgmn1S 2

]L

]hab
;r

hsb
]Ca

sr

]gmn
,t

dgmn

1
]L

]hab
;t

dhabD
;t

. ~30!

The expression~30! is valid for arbitrary variations, and
hence it is valid for specific variations~16!,~17! caused by
Eq. ~14!. Therefore, the difference between Eqs.~27! and
~30! must be equal to zero. Substituting Eqs.~17! and ~16!
into this difference, and combining in separate groups
terms which containjs, js

;t , and js
;t;l , one obtains the

equality which should be true for arbitrary vector fie
js(xa):

F dL

dhab
hab

;s1S ]L

]hab
;t

hab
;s2ds

t L D
;t
Gjs1F22

dL

dgrs
grt

1S ]L

]hab
;t

hab
;s2ds

t L D 22
dL

dhas
hta

1S 24
]L

]hab
;r

hfb
]Ca

fr

]gsn
,l

gnt22
]L

]has
;l

htaD
;l
Gjs

;t

1F24
]L

]hab
;r

hfb
]Ca

fr

]gsn
,l

gnt22
]L

]has
;l

htaGjs
;l;t

50. ~31!

The coefficient in front ofjs is identically zero, becaus
all the terms cancel out. To check this one has to recall
definition of the variational derivative

dL

dhab
5

]L

]hab
2S ]L

]hab
,t
D

,t

,

to use Eqs.~A4! and ~A3! for ]L/]hab and (]L/]hab
,t) ,t ,

and to take into account

]L

]hab
hab

;s1
]L

]hab
;t

hab
;t;s5L ;s .
02403
e

e

The last term in Eq.~31!, which containsjs
;l;t , is also

identically zero. This is true because thejs
;l;t is symmetric

in the indicesl,t whereas the coefficient is antisymmetric
these indices. To show this in detail, we denote this coe
cient A2gcs

tl and rewrite it using formula~29!:

A2gcs
tl524

]L

]hab
;r

hfb
]Ca

fr

]gsn
,l

gnt22
]L

]has
;l

hta

5S ]L

]hsb
;t

hlb2
]L

]hsb
;l

htbD 1
]L

]hab
;f

3~hlbgat2htbgal!gfs

1gfshfbS ]L

]hab
;l

gat2
]L

]hab
;t

galD . ~32!

It is now clear thatcs
tl52cs

lt. So, we are left only with
the term which containsjs

;t. Since the vector fieldjs is
arbitrary, this gives us the equation

22
dL

dgrs
grt1S hab

;s

]L

]hab
;t

2ds
t L D 22

dL

dhas
hta

1A2gcs
tl

;l50.

Using in the first two terms the definitions ofmtmn and ctmn

and formula~22!, we arrive at the universal relationship

2mtmn1ctmn1cmnt
;t2

2

A2g
gmahnb

dL

dhab
50. ~33!

Assuming that the field equations are satisfied~the last term
vanishes! we can finally conclude that

mtmn5 ctmn1cmnt
;t .

Thus, the metrical and canonical tensors are related b
superpotential whose explicit form is given by Eq.~32!.
~This derivation is similar to the one given in@11#.! Obvi-
ously, the conservation laws are satisfied becausecmnt

;t;n
[0.

III. FIELD-THEORETICAL FORMULATION
OF THE GENERAL RELATIVITY

The field-theoretical approach to the general relativ
treats gravity as a symmetric tensor fieldhmn in Minkowski
space-time. This approach has a long and fruitful history
fact, in the early days of special relativity, Poincare and E
stein himself started from an attempt to give a relativis
generalization of the Newton law. Even after the accepta
of the geometrical viewpoint, various aspects of this a
proach have been worked out in numerous publications@12–
18,8,19#, to name only a few.~One may also find reference
@20# useful.! We will follow a specific scheme developed i
@8# and @19#, as a continuation of the line of Ref.@18#.

The gravitational fieldhmn(xa), as well as all matter
fields, are defined in the Minkowski space-time with t
8-7
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metric tensorgmn(xa): ds25gmndxmdxn. The matrixgmn is
the inverse matrix togmn , that is,gabgbn5dn

a , andg is the
determinant of the matrixgmn . The raising and lowering o
indices are being performed~unless something different i
explicitly stated! with the help of the metric tensorgmn . The
Christoffel symbols associated withgmn are denoted by
Ct

mn , and the covariant derivatives are denoted by a se
colon ;. The curvature tensor of the Minkowski space-time
identically zero:R̆abmn(grs)[0.

In terms of classical mechanics, the field variableshmn are
the generalized coordinates. Their derivativeshmn

;t ~a third-
rank tensor! are the generalized velocities. It is also conv
nient ~even if not necessary! to use the generalized momen
Pa

mn canonically conjugated to the generalized coordina
hmn. The objectPa

mn is a third-rank tensor, symmetric in it
last indices. We will also need a contracted objectPa

5Pt
at5dm

n Pm
an .

The use ofhmn and Pt
mn as independent variables is a

element of the Hamiltonian formalism, which is also know
as the first-order variational formalism. We will start fro
this presentation, and then will consider the presentatio
terms ofhmn and hmn

;t . It will be shown that the derived
field equations are fully equivalent to the Einstein equatio
in the geometrical formulation of the general relativity.

A. Gravitational field equations in terms of generalized
coordinates and momenta

The total actionS of the theory consists of the gravita
tional partSg and the matter partSm: S5Sg1Sm. We will
include the matter part in our consideration later on~Sec.
VI !. The action for the gravitational field is

Sg5
1

cE Lgd4x,

where the Lagrangian densityLg is

Lg52
A2g

2k Fhrs
;aPa

rs2~grs1hrs!

3S Pa
rbPb

sa2
1

3
PrPsD G ~34!

andk58pG/c4. It is now clear that the quantitiesPt
mn are

indeed the generalized momenta because

2
A2g

2k
Pt

mn5
]Lg

]hmn
;t

5
]Lg

]hmn
,t

.

The tensorPmn
t is related with the tensorKt

mn originally
used in@8# by

Pt
mn52Kt

mn1
1

2
dm

t Kn1
1

2
dn

tKm .

To make the part ofLg, which is quadratic in the mo
mentaPmn

t , more compact, we will also write the Lagrangia
in the equivalent form:
02403
i-
s

-

s

in

s

Lg52
A2g

2k Fhrs
;aPa

rs2
1

2
Vrsab

vtP
t
rsPv

abG ~35!

where

Vrsab
vt[

1

2 F ~gra1hra!S dv
sdt

b2
1

3
dt

sdv
b D1~gsa1hsa!

3S dv
r dt

b2
1

3
dt

rdv
b D1~grb1hrb!

3S dv
sdt

a2
1

3
dt

sdv
a D1~gsb1hsb!

3S dv
r dt

a2
1

3
dt

rdv
a D G , ~36!

andVmnab
vt5Vnmab

vt5Vmnba
vt5Vabmn

tv .
The gravitational field equations are derived by applyi

the variational principle to Eq.~34! and considering the vari
ableshmn and Pa

mn as independent. In this framework, th
field equations are

]Lg

]hmn
2S ]Lg

]hmn
;t
D

;t

50 and
]Lg

]Pa
mn

2S ]Lg

]Pa
mn ;t

D
;t

50.

~37!

Obviously, the term]Lg/]Pa
mn;t in Eq. ~37! is zero for the

Lagrangian~34!. Calculating the derivatives directly from
Eq. ~34! and introducing the short-hand notations for t
corresponding expressions, one obtains

2
2k

A2g

dLg

dhmn
[r mn[2Pa

mn;a2Pa
mbPb

na1
1

3
PmPn50,

~38!

2
2k

A2g

dLg

dPt
mn

[ f t
mn[hmn

;t2~gma1hma!Pn
at

2~gna1hna!Pm
at1

1

3
dt

n~gma1hma!Pa

1
1

3
dt

m~gna1hna!Pa

50. ~39!

Using theV matrix introduced above we can rewrite E
~39! in the compact form:

hmn
;t5Vmnab

vtP
v

ab . ~40!

Equationsr mn50 and f t
mn50 form a complete set of equa

tions in the framework of the first-order variational forma
ism.
8-8
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B. Field equations in terms of generalized coordinates and
velocities

We will need the field equations in terms of the gravi
tional field variableshmn and their derivatives. We will de
rive the equations from the Lagrangian~35! written in the
form containing the generalized coordinates and velocit
This is an element of the Lagrangian formalism, known a
as the second-order variational formalism. To implement
program one has to considerPa

mn as known functions ofhmn

andhmn
;a and to use them in the Lagrangian~35!.

The link betweenhmn and Pt
mn is provided by Eq.~40!.

To solve equations~40! with respect toPt
mn we introduce

the matrixVrsmn
21 tc , which is the inverse matrix toVabmn

tv

and satisfies the equation

Vmnab
vtVrsmn

21 tc5
1

2
dv

c~dr
ads

b1ds
adr

b!. ~41!

The explicit form of theV21 matrix is not needed for the
time being, but it will be given below where required. W
will only use the symmetry properties of theVmnrs

21 tv which
are the same as the symmetry properties of theV-matrix:
Vmnrs

21 tv5Vnmrs
21 tv5Vmnsr

21 tv5Vrsmn
21 vt. By multiplying

both sides of Eq.~40! with Vrsmn
21 tc one obtains

Pt
mn5Vrsmn

21 tvhrs
;v . ~42!

Now we substitute Eq.~42! into Eq.~35!. The Lagrangian
takes the elegant form

Lg52
A2g

4k
Vrsab

21 vthrs
;th

ab
;v , ~43!

which is manifestly quadratic in the generalized velocit
hmn

;t . The dependence on the generalized coordinateshmn

~as well as on the metric tensorgmn) is contained in theV21

tensor. The LagrangianLg belongs to the class o
Lagrangians~6! studied in Sec. II.

The field equations in the framework of the second-or
variational formalism are

dLg

dhmn
5

]Lg

]hmn
2S ]Lg

]hmn
;t
D

;t

50.

In more detail, we have

]Vrsab
21 vt

]hmn
hrs

;th
ab

;v22~Vmnab
-1 vthab

;v! ;t50.

The first term can be calculated by differentiating Eq.~41!
with respect tohmn and taking into account Eq.~36!. This
gives

]Vrsab
21 vt

]hmn
52S dp

fde
c2

1

3
de

fdp
c D @Vmcrs

21 tpVnfab
21 ve

1Vncrs
21 tpVmfab

21 ve#.
02403
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The second term requires us to recall the rules of the co
riant differentiation applied to theV21 tensor which, in turn,
is a function ofhmn andgmn:

Vmnab
21 vt

;t5
]Vmnab

21 vt

]hrs
hrs

;t .

Combining all together, one arrives at the field equatio
which are manifestly the second-order differential equatio
in terms ofhmn:

Vmnab
21 vthab

;v;t2S dp
fde

c2
1

3
de

fdp
c D @2Vrcmn

21 tpVsfab
21 ve

2Vmcrs
21 tpVnfab

21 ve#hrs
;th

ab
;v50. ~44!

Certainly, one arrives at exactly the same equations by s
stituting Pt

mn found from Eq.~40! @see Eq.~42!# directly
into Eq. ~38!.

C. Equivalence of the field-theoretical and geometrical
formulations of the general relativity

We will now show that the entire mathematical content
the general relativity~without matter sources, so far! is cov-
ered by Lagrangian~34!, or by its equivalent form~43!. We
will demonstrate the equivalence directly at the level of t
field equations, rather than at the level of the Lagrangian~34!
and its Hilbert-Einstein counterpart. The derived field equ
tions ~38!,~39! can be rearranged by identical transform
tions into the usual Einstein equations.

First, we introduce a new tensor fieldgmn(xa) according
to the rule

A2ggmn5A2g~gmn1hmn!, ~45!

whereg5detugmnu and the tensorgmn is the inverse matrix to
the gmn matrix:

gmagna5dn
m . ~46!

Let us emphasize again that the tensorgmn is the inverse
matrix to gmn, and not the tensorgmn with the lowered indi-
ces,gmnÞgmagnbgab. For the time being, we do not assig
any physical interpretation to the tensor fieldgmn , we only
say that the functionsgmn(xa) and gmn(xa) are calculable
from the functionshmn(xa) and gmn(xa) according to the
given rules~45!,~46!.

The introduced quantities allow us to write theV matrix
as

Vrsab
vt5

A2g

2A2g
FgraS dv

sdt
b2

1

3
dt

sdv
b D

1gsaS dv
r dt

b2
1

3
dt

rdv
b D1grbS dv

sdt
a2

1

3
dt

sdv
a D

1gsbS dv
r dt

a2
1

3
dt

rdv
a D G .
8-9
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We can also give the explicit form for theVmnrs
21 tv. By

multiplying both sides of Eq.~41! with

1
4 ~A2g/A2g!@2da

d ~df
vdl

e 1dl
vdf

e !geb

2gdv~2gafgbl2gabgfl!#,

one obtains the explicit form of theV21-matrix:

Vmnrs
21 tv5

1

4

A2g

A2g
@~dm

t dn
p1dn

tdm
p!~dr

vds
l1ds

vdr
l!gpl

2gtv~gmrgns1gnrgms2gmngrs!#.

We now want to calculate the quantityGt
mn defined by

the expression

Gt
mn5

1

2
gtl~glm,n1gln,m2gmn,l!. ~47!

By replacing the partial derivatives with the covariant on
we get

Gt
mn5Ct

mn1
1

2
gtl~glm;n1gln;m2gmn;l!. ~48!

Now we want to tradegmn;t for (A2ggmn) ;t in order to have
quantities easily expressible in terms ofgmn and hab. By
differentiating Eq.~46! one obtains

gmn;t52gmrgnsgrs
;t . ~49!

Using the formula for the differentiation of determinants, w
can write

grs
;t5

1

A2g
F ~A2ggrs! ;t2

1

2
gabgrs~A2ggab! ;tG .

~50!

Substituting Eqs.~49! and ~50! in Eq. ~48! we obtain

Gt
mn5Ct

mn1
1

2A2g H 2ds
t gmr~A2ggrs! ;n

2ds
t gnr~A2ggrs! ;m1gtlgmrgns~A2ggrs! ;l

1
1

2
gab@dm

t ~A2ggab! ;n1dn
t~A2ggab! ;m

2gtlgmn~A2ggab! ;l#J
5

1

A2g S 2Vmnrs
21 lt1

1

3
dm

t Vtnrs
21 lt

1 1
3 dn

tVtmrs
21 ltD ~A2ggrs! ;l .
02403
s

Finally, taking into account (A2ggrs) ;a5A2ghrs
;a and

recalling Eq.~42!, we arrive at

Gt
mn5Ct

mn2Pt
mn1

1

3
dm

t Pn1
1

3
dn

t Pm . ~51!

Now we want to use Eq.~51! and calculate the quantity
Rmn defined by the expression

Rmn5Ga
mn,a2

1

2
Ga

ma,n2
1

2
Ga

na,m1Ga
mnGb

ab

2Ga
mbGb

na . ~52!

The Ct
mn part of Gt

mn produces a series of terms whic
combine in the Ricci tensorR̆mn of the flat space-time. The
ordinary derivative of the tensorPmn

t plus all the terms con-
taining the product ofPmb

a with Cb
an combine in the cova-

riant derivative ofPmn
t . All other terms produce quadrati

combinations ofPmb
a . In the result, we arrive at

Rmn5R̆mn2S Pa
mn;a1Pa

mbPb
na2

1

3
PmPnD . ~53!

SinceR̆mn[0 we conclude that the field equations~38! are
fully equivalent to the equations

Rmn50. ~54!

The remaining step is the matter of interpretation. We c
now interpret the quantitiesgab as the metric tensor of the
curved space-time:

ds25gmndxmdxn. ~55!

Then, the quantities~47! are the Christoffel symbols assoc
ated with this metric, and the quantities~52! are the Ricci
tensor of the curved space-time. Finally, equations~54! are
the Einstein equations~without matter sources!.

IV. THE GRAVITATIONAL ENERGY-MOMENTUM
TENSOR

Being armed with the definitions of the energ
momentum tensor~Sec. II!, as well as with the gravitationa
Lagrangian and field equations~Sec. III!, we are now in the
position to derive the gravitational energy-momentum tens
We will derive both tensors, metrical and canonical, and f
lowing the general theory of their connection, we will fin
explicitly the superpotential which relates them. We w
show that the requirement that the metrical tensor does
contain second derivatives, and the requirement that the
nonical tensor is symmetric, produce one and the same
ject which we call the true energy-momentum tensor. T
object satisfies all six demands listed in the Abstract of
paper.
8-10
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A. The metrical tensor

The metrical energy-momentum tensor defined by
~24! and derived from the Lagrangian density~34! has the
following form:

k mtmn5
1

2
gmnhrs

;aPa
rs1Fgmrgns2

1

2
gmn~grs1hrs!G

3S Pa
rbPb

sa2
1

3
PrPsD1Qmn, ~56!

where

Qmn5
1

2
~dr

mds
n 1dr

nds
m!@2grahbsPt

ab

1~gathbr2garhbt!Ps
ab# ;t .

Expression~56! was obtained by direct calculation of th
variational derivative~or alternatively, see Appendix B!

dL

dgmn
5

]L

]gmn
2S ]L

]gmn,t
D

,t

, ~57!

and no further rearrangements have been done. Obvio
tensor~56! is symmetric in its components, but it contain
second-order derivatives ofhmn which enter the expressio
through theQmn term. We want to single out the secon
derivatives ofhmn explicitly.

By making identical transformations of theQmn term one
can show that theQmn contains a term proportional tor mn

and terms proportional tof t
mn and its derivatives. All these

terms are equal to zero according to the field equations~38!
and~39!. After removing these terms, the remaining expr
sion for Qmn is as follows:

Qmn5
1

2
~dr

mds
n 1dr

nds
m!FqabrsS Pp

alPl
bp2

1

3
PaPbD

2qabrs
;tP

t
ab2

1

4
~hra

;ahsb
;b2hra

;bhsb
;a!

1
1

2
~hrthsl2htlhrs! ;l;tG , ~58!

where

qabrs[
1

2
@hsagrb1hragsb1hsbgra1hrbgsa1hsahrb

1hrahsb2hrs~gab1hab!#. ~59!

The remaining expression~58!, together with other terms in
Eq. ~56!, reduce thek mtmn to
02403
.
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k mtmnur52F ~gan1han!~gbm1hbm!

2
1

2
~gab1hab!~gmn1hmn!G

;t

Pt
ab

1F ~gan1han!~gbm1hbm!

2
1

2
~gab1hab!~gmn1hmn!G

3S Ps
brPr

as2
1

3
PaPbD

2
1

2
~hna

;ahmb
;b2hma

;bhnb
;a!

1
1

4
~22hmnhab1hmahnb1hnahmb! ;a;b ,

~60!

where the subscriptur indicates that the energy-momentu
tensor was reduced on the equations of motion.

The last group of terms in Eq.~60! still contains second-
order derivatives ofhmn, but they all can be removed by
special choice of superpotential. Indeed, the symmetric fu
tion Fmn participating in Eq.~26! and satisfyingFmn

;n[0
can be written as

Fmn5~fmnab1fnmab! ;a;b , ~61!

where

fmnab52fanmb52fmban5fnmba. ~62!

To remove all the second-order derivatives, we require

1

4
~22hmnhab1hmahnb1hnahmb! ;a;b

1~fmnab1fnmab! ;a;b50. ~63!

The unique solution to this equation~up to trivial additive
terms which can possibly containgmn but not the field vari-
ableshmn) is

fmnab5
1

4
~habhmn2hanhbm!. ~64!

With the help of the superpotential~64!, we can now can-
cel out the terms14 (22hmnhab1hmahnb1hnahmb) ;a;b . The
remaining part of Eq.~60! does not contain any second-ord
derivatives at all. To write the remaining part in a mo
compact form, we replace the generalized momenta by
generalized velocities with the help of Eq.~42!, and use the
shorter expressionsgab and gab according to their defini-
tions ~45! and ~46!. As a result, the metrical energy
8-11
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momentum tensor~56!, transformed with the help of the fiel
equations and an allowed superpotential, takes the follow
explicit form:

ktmn5
1

4 F2hmn
;rhrs

;s22hma
;ahnb

;b12grsgabhnb
;shma

;r

1gmngarhab
;shrs

;b22gmagbrhnb
;shrs

;a

22gnagbrhmb
;shrs

;a1
1

4
~2gmdgnv2gmngvd!

3~2gragsb2gabgrs!hrs
;dhab

;vG ~65!

wheregab andgab are short-hand notations for the quan
ties ~45!,~46!. This object is a tensor with respect to arbitra
coordinate transformations, symmetric in its compone
conserved due to the field equations, free of second der
tives of hmn, and unique up to additive terms not containi
hmn. This derivation required the use of an allowed super
tential. The last step is to show that the energy-momen
tensor~65! can also be derived according to the original de
nition ~24!, without resorting to the use of a superpotenti
The tensor~65! will be derived from a modified Lagrangian
which produces exactly the same field equations as Eqs.~38!
and ~39!. This is what we will do now.

B. The constrained variational principle

Let us write the modified Lagrangian in the form

Lg52
A2g

2k Fhrs
;aPa

rs2~grs1hrs!

3S Pa
rbPb

sa2
1

3
PrPsD1LabrsR̆arbsG , ~66!

whereR̆arbs is the curvature tensor constructed fromgmn .
Obviously, we have added zero to the original Lagrangi
but this is a typical way of incorporating a constraint~in our
case,R̆arbs50) by means of the undetermined Lagran
multipliers. The infinitesimal variation~16! of the metric ten-
sor gmn ~and even its exponentiated finite version! do not
change the conditionR̆arbs50. The multipliersLabrs form
a tensor which depends ongmn andhmn and satisfy

Labrs52Lrbas52Lasrb5Lbasr. ~67!

The variational derivative ofLabrsR̆arbs with respect to the
metric tensorgmn is not zero, and, therefore, the added te
will affect the metrical energy-momentum tensor. Howev
the added term does not change the field equations, sinc
variational derivative of this term with respect to the fie
variableshmn will be multiplied by theR̆arbs and hence will
vanish due to the constraint.

The metrical energy-momentum tensor~24! directly de-
rived from Eq.~66! is now modified as compared with Eq
~56!:
02403
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k mtmnuc5
1

2
gmnhrs

;aPa
rs1Fgmrgns2

1

2
gmn~grs1hrs!G

3S Pa
rbPb

sa2
1

3
PrPsD1Qmn

2~Lmnab1Lnmab! ;a;b , ~68!

where the subscriptuc indicates that the Lagrangian~66! has
been used. The entire modification amounts to the last
terms~with double derivatives! in Eq. ~68!, which immedi-
ately suggests its connection to modifications at the expe
of superpotentials~61!,~62!. ~For a detailed derivation of the
last two terms, see Appendix B.! As before, the tensor
kmtmnuc contains second derivatives ofhmn in the Qmn term.
But the originally undetermined multipliersLabrs will now
be determined. They can be chosen in such a way that
remaining second derivatives ofhmn ~which could not be
excluded at the field equations! can now be removed. The
equations to be solved are similar to Eq.~63!. Their unique
solution is

Lmnab52
1

4
~habhmn2hanhbm!.

Thus, the energy-momentum tensor~65! satisfies the last re
maining demand: it can be derived in a regular prescrib
way Eq.~24! from the Lagrangian~66!.

C. The canonical tensor

The gravitational energy-momentum tensor~65! satisfy-
ing all the necessary demands has been derived along
‘‘metrical route.’’ We will now show that the symmetriza
tion procedure of the canonical tensor leads to the same
ject ~65!.

The canonical energy-momentum tensor~13! directly cal-
culated from the Lagrangian density~43! has the form

k ctmn52
1

4
~2gnvVrsab

21 mt2gmnVrsab
21 vt!hrs

;th
ab

;v .

It is convenient to use here and below the quantityPt
mn as a

short-hand notation forVmnab
21 vthab

;v in agreement with Eq.
~42!. Then, thek ctmn takes the compact form

k ctmn52
1

2
gmtPn

abhab
;t1

1

4
gmnPt

abhab
;t . ~69!

As expected, the canonical tensorctmn is not symmetric. It
can be made symmetric~see Sec. II A! by an appropriate
choice ofCmn. We will do this on the basis of the universa
relationship ~33! between the~symmetric! mtmn and the
~nonsymmetric! ctmn.

The relationship in question is

2k mtmn1k ctmn1 kcmnt
;t1gmahnbr ab50, ~70!

wherecmnt is calculated from the Lagrangian~43! according
to Eq. ~32!:
8-12
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kcmnt5
1

2
@Pab

t ~gmahnb2ganhmb!1Pab
m ~gathnb2ganhtb!

1Pab
n ~gathmb2gamhtb!#. ~71!

As any superpotential does, the tensorcmnt satisfies the re-
quirementcmnt

;t;n[0. One can easily check the validity o
Eq. ~70! if one combines Eqs.~56!,~69!,~71!,~38!, and uses
the following identities:

~gab1hab!S Pr
asPs

br2
1

3
PaPbD[

1

2
hrs

;aPa
rs ,

~gnb1hnb!S Pr
asPs

br2
1

3
PaPbD

[hns
;rPr

as2
1

2
hrs

;aPn
rs .

We now assume that the field equations are satisfied.
last term in Eq.~70! drops out. The metrical tensormtmn

reduced at the equations of motion is given by Eq.~60!. We
need also to reduce the third term in Eq.~70! at the equations
of motion. First, we differentiate the expression~71! and
make identical transformations to rearrange thecmnt

;t :

kcmnt
;t5Fhmb~gna1hna!2

1

2
hmn~gab1hab!G r ab1xmn

1
1

4
~22hmnhab1hmahnb1hnahmb! ;a;b , ~72!

where

xmn52Fhmb~gna1hna!2
1

2
hmn~gab1hab!G

;t

Pt
ab

1Fhmb~gna1hna!2
1

2
hmn~gab1hab!G

;t

3S Pr
asPs

br2
1

3
PaPbD

2
1

2
~hna

;ahmb
;b2hma

;bhnb
;a!.

Now we drop the term proportional to the field equation
The remaining part ofcmnt

;t is

kcmnt
;tur5xmn1

1

4
~22hmnhab1hmahnb1hnahmb! ;a;b .

~73!

On the field equations, the original relationship~70! re-
duces to

mtmnur5 ctmn1cmnt
;tur . ~74!

The last term in expression~73! for cmnt
;tur cancels out with

exactly the same term in expression~60! for mtmnur . After
02403
he

.

this cancellation, what is left on the left-hand side of Eq.~74!
is the metrical tensortmn described by formula~65!. On the
right-hand side of Eq.~74! we will get a symmetrized~sub-
script us) canonical tensork ctmnus5k ctmn1xmn. Note, that
sincecmnt

;t;n[0, it follows from Eq.~72! that xmn
;n50 on

the field equationsr ab50. Thus, we arrive at the equality

tmn5 ctmnus .

Since the metrical tensor~65! satisfies all the six demand
listed above, and since it can also be obtained as a resu
symmetrization of the canonical tensor, we call it the tr
energy-momentum tensor~and write it without any labels or
subscripts!.

V. GRAVITATIONAL FIELD EQUATIONS
WITH GRAVITATIONAL ENERGY-MOMENTUM

TENSOR

We have derived the gravitational~true! energy-
momentum tensor~65! from the gravitational LagrangianLg

according to the general definition~24!. We know that the
conservation lawstmn

;v50 are guaranteed on solutions
the field equations. The nonlinear nature of the gravitatio
field hmn makes the field a source for itself. The questi
arises as for how thektmn participates in the field equations
To answer this question one needs to rearrange the
equations and single out thektmn explicitly. One can proceed
either from Eqs.~38! or ~44!. A simpler way is to take the
following linear combination of the field equations~38!:

F ~gan1han!~gbm1hbm!2
1

2
~gab1hab!~gmn1hmn!G r ab

50 ~75!

and to use the link~42! in order to excludePa
mn . After

putting all the terms in a necessary order, the field equati
~75! take the following form:

1

2
@~gmn1hmn!~gab1hab!2~gma1hma!~gnb1hnb!# ;a;b

5
1

4 F2hmn
;rhrs

;s22hma
;ahnb

;b12grsgabhnb
;shma

;r

1gmngarhab
;shrs

;b22gmagbrhnb
;shrs

;a

22gnagbrhmb
;shrs

;a1
1

4
~2gmdgnv2gmngvd!

3~2gragsb2gabgrs!hrs
;dhab

;vG . ~76!

On the right-hand side of~76! we have exactly the energy
momentum tensor~65!, so the field equations can be writte

1

2
@~gmn1hmn!~gab1hab!2~gma1hma!~gnb1hnb!# ;a;b

5ktmn. ~77!
8-13
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The left-hand side of this equation is the generalized diff
ential wave ~d’Alembert! operator. So, the gravitationa
energy-momentum tensorktmn is not, and should not be,
source term in the ‘‘right-hand side of the Einstein equ
tions,’’ but it is a source term for the generalized wave o
erator.

Replacing the sum (gmn1hmn) by the shorter expressio
gmn according to the definition~45!, we can also write the
gravitational field equations~77! in the form

1

2
@~2g!~gmngab2gmagnb!# ;a;b5ktmn. ~78!

We know that the field equations~78! are fully equivalent to
the Einstein equations~see Sec. III!. In the geometrical ap-
proach to the general relativity one interprets the quanti
gmn as the metric tensor of a curved space-time~55!. It is
interesting to ask if there exists an object in the geometr
approach, which would be somehow related to the ene
momentum tensortmn derived here.@The description of en-
ergy in the general relativity is, of course, a matter of
long-time effort by many people who used different a
proaches. We note that Refs.@21–33#, are some of the works
which influenced our understanding of the problem.# For this
purpose we use for the first time the available coordin
freedom and introduce the Lorentzian coordinates. T
means that the metric tensorgmn(xa) is being transformed
by a coordinate transformation to the usual constant ma
hmn . In other words, one makesg0051, g115g225g335
21, the rest of components zeros, and the determinantg5
21. Then, all the covariant derivatives can be replaced
the ordinary ones, and all the derivatives of the metric ten
gmn vanish. Writing the expression~65! for tmn in Lorentzian
coordinates~subscriptuL) and using quantitiesgmn instead of
hmn one finds that

tmnuL5~2g!tLL
mn ,

wheretLL
mn is the Landau-Lifshitz pseudotensor@2#. The field

equations~78! written in Lorentzian coordinates take th
form

1

2
@~2g!~gmngab2gmagnb!# ,a,b5k~2g!tLL

mn .

So, the object most closely related to the derived ener
momentum tensortmn is the Landau-Lifshitz pseudotenso
tLL
mn times (2g). Their numerical values~but not the trans-

formation properties, unless for linear coordinate transform
tions! are the same at least under some conditions.

VI. GRAVITATIONAL FIELD WITH MATTER SOURCES

We will now include in our consideration matter field
interacting with the gravitational field. One or several mat
fields are denoted byfA , whereA is some general index.
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A. Gravitational field equations and the energy-momentum
tensor for the matter fields

The total action in the presence of the matter sources

S5
1

cE ~Lg1Lm!d4x, ~79!

whereLg is the gravitational Lagrangian~34! andLm is the
matter Lagrangian which includes the interaction of the m
ter fields with the gravitational field. We assume the univ
sal coupling of the gravitational field to all other physic
fields, that is, we assume that theLm depends on the gravi
tational field variableshmn in a specific manner:

Lm5Lm$A2g~gmn1hmn!;@A2g~gmn

1hmn!# ,a ;fA ;fA,a%. ~80!

It was shown@8# that theLm must depend onhmn and gmn

only through the combinationA2g(gmn1hmn), if one wants
the matter energy-momentum tensortmn to participate in the
gravitational field equations at the equal footing with t
gravitational energy-momentum tensor, that is, through
total energy-momentum tensor, which is the sum of the tw
The matter energy-momentum tensortmn is defined by the
previously discussed~see Sec. II! universal formula

tmn52
2

A2g

dLm

dgmn
. ~81!

Let us now turn to the derivation of the field equation
The gravitational equations are derived by applying
variational principle to the gravitational variables in the to
Lagrangian. The previously derived equations~39! remain
unchanged since we assume~for simplicity! that theLm does
not containPa

mn . However, equations~38! are changed and
take now the form

r mn2
2k

A2g

dLm

dhmn
50. ~82!

As for the matter field equations, they are derived by app
ing the variational principle to the matter variables in t
total Lagrangian, which mean:dLm/dfA50. The concrete
form of the matter field equations will not be needed.

We know~Sec. V A! that equations~82! without the term
caused byLm are equivalent to equations~77!, wherektmn is
given by formula~65!. We want to show that the source ter
in the right-hand side of the gravitational equations becom
now, in the presence ofLm, the total energy-momentum ten
sor.

Let us start from the contribution provided byLg. Since
the procedure of the reduction ofkmtmn to the final form
ktmn Eq. ~65! involved the use of the equations of motio
~38!, which are now modified to Eq.~82!, the gravitational
part of the total energy-momentum tensor will also be mo
fied, as compared with Eq.~65!. Using Eq.~82! instead of
Eq. ~38!, and getting rid of the second derivatives ofhmn in
the same way as before, one obtains
8-14
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ktmnum5ktmn1qabmn
2k

A2g

dLm

dhab
,

where the subscriptum indicates that the derivation has be
done in presence of the matter fields. Thektmn is given of
course by the same formula~65!, and quantitiesqabmn are
given by formula~59!. Let us now turn totmn. The universal
coupling in the Lagrangian~80!, that is, the fact thathmn and
gmn enter theLm only in the combinationA2g(gmn1hmn),
allows us to relatedLm/dgmn with dLm/dhmn. After neces-
sary transformations, one obtains

tmn5@2gmrgns2gmn~grs1hrs!#
1

A2g

dLm

dhrs
.

Thus, after using the field equations and removing sec
derivatives ofhmn, the total energy-momentum

umn52
2

A2g

d~Lg1Lm!

dgmn

reduces to

k~ tmnum1tmn!5ktmn1F ~gbm1hbn!~gan1han!

2
1

2
~gmn1hmn!~gab1hab!G 2k

A2g

dLm

dhab
.

Finally, we can write the gravitational field equations in
form similar to Eqs.~77!. We take the same linear combin
tion of equations~82! as was previously done in Eq.~75!.
Putting all the terms in the necessary order, we arrive at
equations equivalent to Eq.~82!:

1

2
@~gmn1hmn!~gab1hab!2~gma1hma!~gnb1hnb!# ;a;b

5k~ tmnum1tmn!. ~83!

Thus, in the gravitational field equations, the total ener
momentum tensor is the source for the generali
d’Alembert operator. Obviously, the conservation la
(tmnum1tmn) ;n50 are satisfied as a consequence of the fi
equations~83!.

As a final remark, we should mention that the fiel
theoretical formulation of the general relativity allows al
gauge transformations in addition to the arbitrary coordin
transformations. Under gauge transformations, solution
the field equations transform into new solutions of the sa
equations. In what sense and under which conditions
gauge-related solutions are physically equivalent, is a d
and nontrivial issue. This question was partially analyzed
Ref. @19# but it is outside of the scope of this paper. T
theory is fully consistent in its mathematical structure a
physical interpretation, if the gauge transformations are
plied to the gravitational field and matter variables toget
~even if we deal only with a couple of test particles intera
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ing with the gravitational field and which are being used in
gedanken experiment!. We mention the gauge freedom on
in order to stress that all the objects and equations have b
derived in an arbitrary gauge, without imposing any gau
conditions.

B. Equivalence with the geometrical Einstein equations

In the geometrical approach to the general relativity o
interprets the quantitiesgmn , introduced by Eqs.~45!,~46!, as
the metric tensor of a curved space-time~55!. The universal
coupling of gravity with matter translates into

Lm5Lm@A2ggmn;~A2ggmn! ,a ;fA ;fA,a#. ~84!

One can think of this dependence as a manifestation of
Einstein’s equivalence principle.

The matter energy-momentum tensorTmn is now defined
as the variational derivative ofLm with respect to what is
now the metric tensor:Tmn5(2/A2g)(dLm/dgmn). The spe-
cific form of theLm allows us to write

2

A2g

dLm

dhmn
5

dLm

d~A2ggrs!
5Tmn2

1

2
gmngabTab .

~85!

TensorTmn certainly differs from the tensortmn defined in
the field-theoretical approach, but they are related:

tmn2
1

2
gmngabtab

5S dm
adn

b1
1

2
gmnhabD S Tab2

1

2
gabgrsTrsD .

We are now in a position to prove that the field equatio
~83! are fully equivalent to the Einstein’s geometrical equ
tions. We know@see Eqs.~53!# that

r mn5Rmn2R̆mn , ~86!

where R̆mn[0. Combining Eqs.~82! and ~85! we arrive at
Einstein’s geometrical equations

Rmn5kS Tmn2
1

2
gmngabTabD . ~87!

VII. CONCLUSIONS

We have shown that the field-theoretical formulation
the general relativity allows us to derive the fully satisfacto
gravitational energy-momentum tensortmn satisfying all six
demands listed in the Abstract of the paper. Both rou
‘‘metrical’’ and ‘‘canonical,’’ lead to one and the sam
unique expression~65!. When the gravitational field is con
sidered together with its matter sources, the same strict r
produce the matter energy-momentum tensortmn and the
modified gravitational energy-momentum tensor. Both te
sors participate on equal footing in the nonlinear gravi
tional field equations~83! which are fully equivalent to Ein-
8-15
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stein’s geometrical equations~87!. These strictly defined
energy-momentum tensors should be useful in practical
plications.
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APPENDIX A: COVARIANT GENERALIZATION
OF THE EULER-LAGRANGE EQUATIONS

The covariant field equations~12! can be derived in a
more traditional fashion, when one considers the field v
ableshmn and their ordinary~not covariant! derivativeshmn

,t
as functions subject to variation. To emphasize this fact
rewrite the Lagrangian~6! in the form

L5L~gmn,Ca
mn ,hmn,hmn

,a!. ~A1!

Starting from the Lagrangian in this form, one derives t
usual field equations

]L

]hmn
2S ]L

]hmn
,t
D

,t

50. ~A2!

Since the functionL in Eqs.~6! and~A1! is one and the sam
function, but written in terms of different arguments, one c
relate its derivatives. The second term in Eq.~A2! transforms
as follows:

S ]L

]hmn
,t
D

,t

5S ]L

]hrs
;v

]hrs
;v

]hmn
,t
D

,t

5S ]L

]hmn
;t
D

,t

5S ]L

]hmn
;t
D

;t

1
]L

]hsn
;t

Cs
mt1

]L

]hsm
;t

Cs
nt . ~A3!

The first term in Eq.~A2! transforms as

]L

]hmn
5

]L

]hmn
1

]L

]hrs
;t

]hrs
;t

]hmn

5
]L

]hmn
1

]L

]hsn
;t

Cs
mt1

]L

]hsm
;t

Cs
nt . ~A4!

Using Eqs.~A3! and ~A4! in Eq. ~A2! one obtains the re
quired result~12!. Obviously, field equations~A2! use the
Lagrangian in the form~A1!, whereas field equations~12!
use the Lagrangian in the form~6!.

APPENDIX B: PROOF OF EQ. „68…

We need to show in detail that the variational derivat
of the added term in Lagrangian~66!, calculated at the con
straintR̆arbs50, result in the last two terms in Eq.~68!. Let
us introduce a shorter notation for the added term stres
its dependence ongmn and derivatives:
02403
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A2gLabrsR̆arbs5P~gmn ;gmn,t ;gmn,t,v!.

Taking into account this dependence, we can write for
variation of the functionP

dP[F ]P

]gmn
2S ]P

]gmn,t
D

,t

1S ]P

]gmn,t,v
D

,t,v
Gdgmn1Bt

,t ,

where

Bt5
]P

]gmn,t
dgmn1

]P

]gmn,t,v
dgmn,v2S ]P

]gmn,t,v
D

,v

dgmn .

The coefficient in front ofdgmn defines the variational de
rivative:

dP

dgmn
5

]P

]gmn
2S ]P

]gmn,t
D

,t

1S ]P

]gmn,t,v
D

,t,v

,

so that

dP5
dP

dgmn
dgmn1Bt

,t .

In order to find the required variational derivative, we c
simply calculate the variation ofA2gLabrsR̆arbs and
present it in the form

d~A2gLabrsR̆arbs!5A2gAmndgmn1~A2gCt! ,t .

The quantityA2gAmn is what we need.
It is convenient to work withA2gLabrsgatR̆

t
rbs in-

stead ofA2gLabrsR̆arbs . The variation can be written a

d~A2gLabrsgatR̆
t
rbs!5d~A2gLabrsgat!R̆

t
rbs

1d~R̆t
rbs!A2gLabrsgat .

~B1!

The first term on the right-hand side of Eq.~B1! vanishes
due to the constraint, so we need to focus attention on
second term. The variation of the Riemann tensor is

d~R̆t
rbs!5~dCt

rs! ;b2~dCt
rb! ;s . ~B2!

The variation of the Christoffel symbols is

dCt
rs5

1

2
gtl~dglr;s1dgls;r2dgrs;l!

5
1

2
~ds

ldr
agbt1dr

lds
agbt2dr

bds
agtl!dgab ;l .

~B3!

One needs to combine Eqs.~B3!,~B2! and take into accoun
properties of the symmetry ofLabrs @see~67!#. After rear-
ranging the participating terms, one gets
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d~A2gLabrsR̆arbs!

52@A2g~Lmnab1Lnmab!a;b#dgmn

1@A2g~Lafrsgat2Lafrsgat!dCt
rs

1A2g~Lmnfb1Lnmfb! ;bdgmn# ;f . ~B4!

The second term on the right-hand side of Eq.~B4! is a
covariant derivative of the vector density, so the covari
derivative can be replaced by ordinary derivative, and t
term has the form of (A2gCt) ,t . Thus, we conclude tha
the sought after variational derivative, calculated at the c
straint, is

d~A2gLabrsR̆arbs!

dgmn
52A2g~Lmnab1Lnmab! ;a;b .

Its contribution to thekmtmnuc is 2(Lmnab1Lnmab) ;a;b is
what we needed to prove.

The calculation of Eq.~56! can be done in exactly th
same way. Namely, taking the variation of the Lagrang
density~34! with respect togmn , one obtains

dLg52
A2g

2k H F1

2
gmnhrs

;aPa
rs

1Fgmrgns2
1

2
gmn~grs1hrs!G

3S Pa
rbPb

sa2
1

3
PrPsD Gdgmn22Pa

rshrbdCs
abJ .

~B5!
f

,

5

s

n

ys

02403
t
is

-

n

Using expression~B3! and rearranging the participatin
terms we arrive at

dLg52
A2g

2k H 1

2
gmnhrs

;aPa
rs

1Fgmrgns2
1

2
gmn~grs1hrs!G

3S Pa
rbPb

sa2
1

3
PrPsD1QmnJ dgmn

2
1

2k
@A2g~Prs

m hrtgns1Prs
t hrmgns

2Prs
n hrmgts!dgmn# ,t . ~B6!

Thus, as it is stated in the text~56!, the variational derivative
is

2
2k

A2g

dLg

dgmn
5kmtmn5

1

2
gmnhrs

;aPa
rs

1Fgmrgns2
1

2
gmn~grs1hrs!G

3S Pa
rbPb

sa2
1

3
PrPsD1Qmn.

~B7!
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