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The symplectic geometry of a broad class of generally covariant models is studied. The class is restricted so
that the gauge group of the models coincides with the Bergmann-Komar group and the analysis can focus on
the general covariance. A geometrical definition of gauge fixing at the constraint manifold is given; it is
equivalent to a definition of a backgroufspacetimgmanifold for each topological sector of a model. Every
gauge fixing defines a decomposition of the constraint manifold into the physical phase space and the space of
embeddings of the Cauchy manifold into the background manifidlechar decomposition Extensions of
every gauge fixing and the associated Kuatecomposition to a neighborhood of the constraint manifold are
shown to exist.

PACS numbd(s): 04.60.Ds, 04.20.Fy

[. INTRODUCTION tions). The choice of gauge plays, in such a way, a two-fold
role for generally covariant modelkt) it renders the dynam-
In 1971, Bergmann and Komgt ] wrote ics unique(as in any gauge field thegryand (2) it defines

“...in general relativity the identity of a world point is the background manifold points. It is also well known that
not preserved under the theory’s widest invariance groupthe gauge group of such models is much larger that just the
This assertion forms the basis for the conjecture that somdiffeomorphism group of one fixed manifo[d].
physical theory of the future may teach us how to dispense The definition of background manifolds by means of
with world points as the ultimate constituents of space-timeggauge choices does not violate the gauge invariance of the
altogether.” full theory, if one can show at the end that the measurable

We share this view and we are going to support it byresults are independent of the choice; this has indeed been
revealing some of the underlying mathematical structure. possible for many problems of classical physics. Another

The formulation of general relativity and, in fact, of any popular method of defining background manifolds is to ex-
generally covariant model, is based on the mathematicgdand a certain sector of a given model around a classical
theory of (pseudo Riemannian manifolds. There is, how- spacetimgsuch as, e.g., the Minkowski spacetimé spe-
ever, a catch: in the mathematics, even a naked manifold hasal role given to a fixed classical spacetime enables one to
well-defined, distinguishable points. In the physics, pointsuse this particular spacetime as a background, and to select
are defined and distinguishezhly by values of physical the diffeomorphism group of this spacetime as the remaining
fields or as positions of physical objects. Attempts to takegauge symmetry. This is a strong restriction of the original
naked points seriously lead to well-known paradoxes andgymmetry. The procedure might be justified, if e.g. some
problems. The first paradox of this kind was constructed bykind of WKB approximation is valid in the situation consid-
Einstein(the “hole” argument[2]); a more recent example ered and the corresponding metric is a part of a classical
is due to Fredenhagen and Haa). Any clean separation solution from which the iterative steps of the WKB method
between spacetime points on one hand and physical fields anart.
the other violates the diffeomorphism invariar(¢er an ex- In the present paper, we are going to study the symplectic
tended discussion of this point, see Stad#dland Isham geometry of quite a general class of diffeomorphically in-
[5]). From the mathematical point of view, the space that oneariant models. We shall concentrate on those properties that
works with is the space of geometries RigfiDiff M on a  are relevant to gauge fixing, gauge transformations, and
manifold M rather than the space of metric fields Ri&  physical degrees of freedom. The main ideas are covariant
on the manifoldM. In the space of geometries, points of the gauge fixing[7] and the Kuchadecompositiorf8]; we shall
manifold M are entangled with the metric fields and it is give a complete description of these ideas and their intercon-
impossible to reconstructlisentanglethem in any natural, nection. The plan of the paper is as follows.
unique, way. In Sec. Il, we analyze in some detail gauge choices using

Accordingly, Einstein dynamics is not a field dynamics onvery simple examples from general relativity. We try to
any manifold. This does not mean, however, that one cannateparate the two aspects of gauge fixing—the point definition
reduce it to such a field theory. For example, the dynamics iand the coordinate choice—to motivate our notion of cova-
reformulated as a system of partial differential equations foriant gauge fixing. We also briefly recapitulate KucHhtird
some fields on a fixed background manifold in the study ofway” [8].
the Cauchy problenisee, e.g., a recent reviel®8]). This In Sec. lll, we describe the properties of generally cova-
reduction is based on choices of gaugeordinate condi- riant models that are needed for subsequent constructions.
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We present a list of properties that can be considered as @ass of functions to which we restrict our search of solution

kind of definition of the generally covariant models. How- of field equations. Unfortunately, our results cannot help to

ever, rather than attempting to identify a minimal set of in-make this choice. Nevertheless, they are rigorous. What we

dependent properties, we just collect all assumptions thatrove is the following statement: whenever a generally co-

will be necessary for the proofs. For the sake of simplicityvariant field theory is equipped with eorrect functional

we also exclude all gauge fieldsuch as Yang-Mills fields ~analytic structure{“correct” means that(1) the space of

so that we can focus on the issue of general covariance. Non-constraint Cauchy data is a Banach manif¢R], the
Section IV contains the constructions that are necessargonstraint surface is its regular submanifold af@) the

for our definition of covariant gauge fixing on the constraintdauge orbits form a regular foliation of the laftehen this

manifold of the model. The fixing identifies spacetime pointsSPace is locally isomorphic to a Cartesian product of the

belonging to different spacetime solutions. In this way, aPhysical phase space and the cotangent bundle of embed-

unique background manifold results and everything is manidings of the Cauchy surface into the background manifold.

festly invariant with respect to coordinate transformations or-ach such local isomorphism is connected with a covariant

this manifold. The transformation between two covariant9@uge fixing.

gauge fixings can be described as a set of diffeomorphisms,

one for each solution; such a set of transformations is an ll. GAUGE IN GENERAL RELATIVITY

element of the Bergmann-Komar grodft]. A covariant

gauge fixing is thus defined in a geometrical, coordinate fre? In this section we analyze the gauge choice in general

and general manner. Still, it has a close relation to the usuaFIatiVity and review the original Kuchatecomposition.
9 ; i . o To discuss the gauge choice, we use a strongly simplified
way of choosing gauge: a “nice” coordinate condition leads

. X . model. This will motivate our subsequent definitions and
to a special case of such a covariant gauge fixing.

The local existence of covariant gauge fixings is e uiva_constructions.
gaug 9 q Consider the Schwarzschild solutions to the Einstein

Ignt to the following statement. For the sectors that are Spae'quations in the future of the influenéehite hole horizon.
tially compact, any open subset of the generic part of th

. . = : eI'hey form a one-dimensional family and the value of the
constraint surface on which the gauge fixing works is a suby . 7 .

) . . . . ; Schwarzschild mas#/ € (0,0) distinguishes different ele-
set of a fiber bundle: its basis manifold is the physical phas¢g

space, its typical fiber is the space of embeddings of th mer}tsrr%f the family from each other. The metric can be given
Cauchy surface into the background manifold, and its group et

is that of diffeomorphisms of the background. For the sectors

that are not spatially compact, this description is to be modi- ds’= —(
fied (see Sec. Y. Each gauge fixing is equivalent to a trivi-

alization of this bundle, i.e. to a decomposition of the con- . . .
straint surface into a Cartesian product of the base and thv(\e/heredi is the metric of a 2-sphere of radius & andR

typical fiber. Existence of such decompositions has been fir re th_e advanced Eddington-Finkelstein coordinates with the
observed by Kuchaf9]; we shall call themKuchar decom- ~ 90Mains

positions In this way, we establish a connection between Re (00), We (—o0,) 2
covariant gauge fixings and Kuchdecompositions. U U

The main result of this paper is described in Sec. V,Nothing seems to prevent us from considering Bg.as a
where we extend the Kuchalecomposition to a whole one-dimensionaset of metric fieldon a fixed background
neighborhood of the constraint surface. The construction ig,anifold M,;=R?x 2 in the coordinate chaitV, R, 9 and
based on the Darboux-Weinstein theorglf] and it shows ¢ [of course, at least two charts¥(e) and (3',¢') are

explicitly that there are many such extensions. As the CONpecessary to coved?]. The same metric can, however, also

struction is based on an existence theorem, it will not bgye given another form, if we pass to the Kruskal coordinates
practically viable in most cases of interest. However, Kuchag; v/ 9 and ®

decompositions have as yet been explicitly constructed only

for very few cases, cylindrical wavé8] and the Schwarzs- 16M?2
child family [11], and even the question of existence was not ds°= — mef"(fuv) dU dV+4M2k*(—UV) ds3,
clear. For most purposéss, e.g., for quantizationthe ex- &)
plicit form of the decomposition outside the constraint sur-

face is not needed. where x:(—12)—(0) is the well-known Kruskal func-

The mathematical language which is used in this papefion defined by its inverses~1(x) = (x—1)e* for xe (0%);
and which enables concise and effective formulations is thaghe coordinates) andV are restricted to the domains

of vector bundles and symplectic geometry of infinite dimen-

sional manifolds modeled on Banach spage=, e.g., Abra- Ue(—%,0), Ve(0»), (4)

ham, Marsden and Ratfd 2], Libermann and Marlg13] and

Lang [14]). Typically, all these manifolds are modeled on in order that the same parts of the spacetimes as given by Eq.
Sobolev spacesl® (see Marsdeii15]) but there is no uni- (2) are covered.

versal functional analytic framework for field theory: it  Let us look carefully at the transformation between the
seems that each particular theory needs its own choice of tHeddington-Finkelstein and Kruskal coordinates:

2M
1——

= )dW2+2dW dR+R?ds3, (1)

024037-2



COVARIANT GAUGE FIXING AND KUCHAR DECOMPOSITION PHYSICAL REVIEW D61 024037

R W W in some vicinity of (M,g) are described by small distur-
ex M ex , V=ex

T aM M bancesdég aroundg. Two kinds of gauge fixing is now pos-
sible: The first kind is just a choice of coordinatéson M;
with respect tox*, the metricg and the disturbancég have

(the transformation of the angular coordinates is trivial componentg,,(x) and 8g,,(x) and they transform as two
Equation(5) do not represent any coordinate transformationtensor fields with respect to changes of these coordinates. A
on Mg, because they are solution dependent: the right-hangdauge transformation of the second kind is a small diffeo-
sides are non-trivial functions &fl. They can only be inter- morphism ¢ on M. The background metric field changes
preted as coordinate transformations, if we view Bg.to-  then by a Lie derivative £;g; in coordinates,
gether with the manifoldM; as afamily of solutions g, (x)—g,,(X)+ 6¢,.,+ 6¢,.,, where the semicolon de-
{(My,9m)} rather that a family of metric fieldggy} on a  notes the covariant derivative defined by the megriSuch a
background manifold\1;. change is not considered as a change of a physical state, so

Equationd(1) and(2) express the Schwarzschild family in disturbances of the formg,,,= 6¢,.,+ 6¢,., for any small
two different gauges. We can see from the above that gector field 5¢ on M are considered as “pure gauges.” To
gauge transformation in general relativity iset of coordi-  fix a gauge of second kind, DeWitt requires@pplementary
nate transformationsone transformation for each solution condition that is covariant with respect to coordinate trans-
(cf. Bergmann and Komaf1]), rather than a coordinate formations onM (gauge of the first kind Thus, the back-
transformation on one manifold. ground field method becomes covariant; even the field equa-

The illusion of a background manifold only arises, if one tions after the gauge of the second kind has been fixed are
pastes together all solution manifolds in such a way thatovariant in his formalism.
points with the same value of coordinates representing some DeWitt's supplementary condition hinders gauge transfor-
gauge are considered to be identical. Thus, the backgroundlations of the second kind; these form a group, namely the
manifold M, results, if we identify all points that have the group DiffM of diffeomorphisms of the background mani-
same values of the Eddington-Finkelstein coordinsteend  fold M. On the other hand, the gauge transformations that
R, an analogous background manifold, for metrics(3) is  we are considering form the much larger Bergmann-Komar
constructed by identifying all points with the same values ofgroup [1]. Thus, there is an analogy, but not complete
Kruskal coordinates) andV. It should be clear that, in spite equivalence between the two ideas of gauge fixing.
of the fact that both manifolds are formally diffeomorphic to  Covariant gauge fixing is connectgd] to an idea due to
each other, they nevertheless represent two very differerkuchar[8]. Let us describe this briefly in the rest of this
localizations of geometrical properties of the Schwarzschildsection(for more details, see Kuchét7,18).
family. For example, the position of the event horizon on  The Hamiltonian formalism for general relativity has been
My, which is given by the equatioR=2M, is not well-  described in an elegant 3-covariant form by Arnowitt, Deser
defined(fuzzy): the horizon of each solution lies at different and Misnei{19]. The action depends on the Arnowitt-Deser-
points of M;. On the contrary, the position of the event Misner (ADM) variablesgy,(x) and 7¥'(x) as follows:
horizon on M5, which is given byU=0, is well-defined
(sharp, because it is solution independent. )

This all is well known and rather trivial. Still, the detailed S:f dtf A3 (7 (%) Gt (X) = MO H(X) = VKO Hi(X),
form of the above analysis simplifies the understanding of >
the following point. A choice of gauge in general relativity where3, is a three-dimensional manifol®{[gy,m ;x) and

mixes two different things(1) it defines how points of dif- ) . .
ferent solution manifolds are to be identified so that a back—Hk[gkl M ;X) are the constrainfgunctionals ofgy(x) and

ground manifold can be constructe@) it chooses definite 7(x) and fu_nc.t|ons ofx], and Mx) and A(x) are
coordinates on the background manifold. It is already the-agrange multiplier$ 19]. . :
first step alone that delivers what we require from a gauge Kucharobse_rved that one can sometimes make a canoni-
fixing: a uniquemetric field on a background manifold, say cal transformation,
M for any solution(determined by the value d¥l in our N
example. This metric field can be given in any coordinate 9%, 70> XE(X), P, (%),9%(X),Pa(X) (6)
system on the background manifold; that is, all coordinate ) _
transformations onM are allowed (these should be SO that the action acquires the form
M-independent for our exampleEverything can be made
manifestly covariant with respect to such transformations, in
spite of the clear fact that the gauge has been fixed.

We do not know if this observation has ever been put
forward in its full generality, but it surely has been done for = NE(X)H (X)),
the perturbative approach to general relativity by DeWitt
[16]. Let us explain DeWitt idea in more detail in order to where ,(x) are linear combinations of the original con-
prevent misunderstanding. DeWitt chooses a particular clastraints(x) and H,(x). The new constraints reat ,(x)
sical background spacetimgM,g) (his method has, in fact, =P ,(x)+H,[X,q,p;x), where H [X,q,p;x) are “true
been calledbackground field methgdAll other spacetimes Hamiltonians.”

U—R 1
=l 5~

_ 3 N \
S—f dtLd X(Po(X)q¥(X) + P ,(X) X#(X)
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The variablesX*(x) describe embeddings of the three-

dimensional Cauchy surfac® with coordinatesx* into a
four-dimensional background manifoltt with coordinates
X*, The functionfzd3xN“(x)HM(x)de generates an infini-
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and the spherically symmetric gravitating thin sHelB] can

be mentioned. In this section, we define the class by a list of
properties. For some of the models named above, not all of
these properties have been fully established yet.

tesimal canonical transformation in the phase space that de-

scribes the dynamical evolution from the slice defined by the
embeddingX#(x) to the slice defined by the embedding

A. The form of dynamical trajectories

A dynamical trajectory—or classical solution—of each

XK(x) + N*#(x)de. In this way, the dynamics is made com- gych model consists of two parts. The first part is a spacetime

pletely independent from any additional structure/ehsuch
as a particular foliation.

If a transformation(6) exists, one can go a step further

and pass to what Kucht 8] called the Heisenberg picture
(see also Kijowsk[20]). This is another canonical transfor-
mation,

XM(X)! P,U,(X)lqa(x)'pa(x)'_)XM(X)!H#(X)1qg(x)1p0a(x()7')

whereqg(x) andpp.(X) are values ofg“(x) andp,(x) at
some particular embedding(§(x). Clearly, gg(x) and
Po.(X) are constants of motion:

{a6(x). H.u(¥)}={Poa(X), H,(X)}=0,

so that the action becomes

S= f dt J2d3x(p00(x)qg(x)+H#(X)X”“(x)

— NE()H,,(X); ®

(M,qg), where M is a manifold of dimensio® andg is a
metric of (Lorentziar) signatureD —2. Each such spacetime
will be called asolution spacetimeSecond, any dynamical
trajectory may contain additional fields and bratggmani-
folds of M carrying other fields—they play the role of tra-
jectories of particles, strings, shells ¢ton M, which we
shall describe by the symbai; thus a dynamical trajectory
can be denoted byMt,g, ¢). Just for the sake of simplicity,
we assume that there are no gauge fields withjrbut this
restriction can be removed easily.

B. Diffeomorphism invariance

The dynamical equations of each such model are gener-
ally covariant{24,39,4Q with respect to all coordinate trans-
formations onM. This implies that any system and ¢ of
fields and branes satisfying the dynamical equations on a
manifold M can be pushed forward by any diffeomorphism
¢ e Diff M to a different setp, g and ¢, ¢ on M, which
also satisfies the dynamical equations. Indeeck &re any
coordinates onM, andg(X) and ¢(X) the components of
all fields and branes with respect Xg then¢, g and ¢, ¢

this is a special case of the form of the action after the firsthave exactly the same components with respect to the
transformation, but the true Hamiltonians are zero and the@ushed-forward coordinatesX’:=Xc@~1. They satisfy,

P’s are identical to the constraints now. It is the transforma-therefore, the dynamical equations of exactly the same form.
tions (6) and (7) and the corresponding variables that we Observe that even the spinor fields can be pushed forward in

shall callKuchar decomposition
It is clear that Kuchadecomposition must implicitly in-

this way, because the metric is, so the push-forward of any
D-frame that is orthonormal with respect to the metyiwill

clude a gauge fixing not only because it leads to a wellbe orthonormal with respect tp, g.

defined background manifold1, but also to a fixed coordi-
nate systenmX* on it. Indeed, Kuchadecomposition also
defines a particular set of metric fields drl by one of the

Hence, if (M,g,¢) is a dynamical trajectory, then
(M, e, 9,0, ¢) is also one for any e Diff M. This feature
is called diffeomorphism invarianceln general, the set

canonical transformation equations, namely that of the forn{¢, g,¢, ¢) of fields and branes oM is different from the

gkI(X) = g/.LV(q(X)1p(X)1X(X))X:‘f((X)X,VI(X)

for any embedding<*(x), whereg,,(q,p,X) is a metric
field for any value of the variables*(x) andp,(x) (see, e.g.
Kuchar, Romano and Varadarajgi21]). The KRV metric
9,,(d,p,X) is clearly an analog of the metrid) [or (3)]: q
andp play the role of the Schwarzschild mads andX that
of the Eddington-FinkelsteifKruskal) coordinates.

In the present paper, we shall describe Kuatierompo-
sition in geometrigthat is, coordinate-fregerms.

Ill. THE GENERALLY COVARIANT MODELS

set (@, #). However, we are going to treat them as physically
equivalent if onlye e Diff .M, where Diff, M is a subgroup

of Diff M composed of those diffeomorphisms that are
“trivial at infinity.” For example, if the solution spacetime is
asymptotically flat, the elements of DifM must move nei-
ther the points at the infinity nor the frames at these points.
For M spatially compact, there is no “infinity” and DiffM
simply coincides with the entire diffeomorphism group Diff
M. Thus, the physical state of the system under consider-
ation is always described by a whole class of equivalent tra-
jectoriesmodulothe action of the group DiffM. We denote
such a clas$(M,qg,®)}, where (M,qg, ¢) is a particular set

of fields and branes oM satisfying the dynamical equa-
tions.

We shall consider a class of constrained dynamical sys- Even if the whole group DifM (i.e., also those diffeo-
tems that are in certain respects similar to general relativitymorphisms which are non-trivial “at infinity) forms the
As examples, general relativity, possibly coupled to mattessymmetry group of the theory, the gauge group of the model

fields, 2+ 1 gravity[22], possibly with particle-like sources,

will be constructed only from the subgroup Dif#1. The
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reason for this decision is obvious if we think e.g. aboutmodels. According to a theorem of Gero[26], each glo-
special-relativistic mechanics of a free particle: consideringpally hyperbolic spacetime in general relativity can be com-
two motions as being physically equivalent if they only dif- pletely foliated by spacelike hypersurfaces, each of them be-
fer by the action of an element of a symmetry grdirpthat  ing diffeomorphic toX. This leads us to assume thatl
case it would be the Poincaggoup would be an abuse of =XXR. _ o _
the very notion of symmetry in physics. The physical phase The uniqueness implies the following property of the dy-
space resulting from such a construction would consist of @amical equations. Suppose thatl(g, ¢) is a maximal dy-
single equivalence class, composed of all possible physicalamical trajectory for the initial datum3(y,,y,4) [so
S|tuat|qns._ln such a zero-dimensional space no non—tnwa{E,Wp, y,) satisfies the constraints and the asymptotic
dynamics is possible. conditiond. Let 3’ be an arbitrary Cauchy surface i,
and the initial datumX’,y',¢',y', ') be induced by the
dynamical trajectory M,9,¢¢) on X’. Then

We assume further tha_t each model determine_s a qlass oty 0.y ¢') satisfies the constraints and the
(D ~1)-dimensional manifolds; each such manifdidis  asymptotic conditions, and any representative,’, ¢') of
calledinitial manifold. Further, it also determines a class of dthe unique maximal dynamica] trajectory Corresponding to
system of some fields and membranesy, y andé onX. (37 4/ 4/ y', ') is diffeomorphic to (M,g, ¢).
The object &,vy,¢,y,¢) built up from the elements of the
classes is then called anmitial datum of the model. For ex- E. The phase space
ample, in general relativity, any three-dimensional Riemann-
ian manifold can serve as an initial manifold; the fields a
Riemann metric on ity is a symmetric tensor field,; on >,

C. The initial data

Let us consider the sét; of all initial data, and the subset
I'; of those data that satisfy the constraifasd asymptotic
] 4 conditions. In the case of spatially compact sectors, we ex-
and there is nay and 4. o _clude all data fronT'} that lie inT'; and determine maximal
An important connection of initial data to the dynamlcal dynamical trajectories admitting any symmetoy any sym-
trajectories is the following. LetX1,9,¢) be a dynamical ey that is higher than the symmetry following from the
trajectory; then, P —1)-dimensional submanifolds oM gefinition of the model It seems that this deleting is not
satisfying certain requirements are calleduchy surface®  necessanf15] for sectors that are not spatially compact.
M. Each Cauchy surface is a possible initial manifold ffomThus, not only(globa) Killing vector fields in the solution
the_ class above. L&t be a Cau_chy surface for the dynamical spacetimes 41,g) are forbidden, but also any finitalis-
trajectory (M, g, ¢); then the fields and brangsand ¢ de-  cretg symmetry. Let us denote the resulting setsIyand
termine a unique initial datum(, y, 4, y,1). For exampley  T',. We assume that a subdet of I'j, has been organized in
and are the pull-backs of the fields to, and intersections ofsych a way thaF’ is a manifold modeled on a Banach space
the branes with, the surfade;, y and ¢ are some geometri- andI':=I''NT, is a closed submanifold df’. In general,
cal quantities or®, constructed from the fields and their first I'’ is an open submanifold of the phase space of the model.
derivatives ai,, and from projections int& of the normal-  In general relativity" was shown to be £€*-submanifold
ized D-velocities of the branes. Such an initial datum is (for reviews, see Fischer and Mardeét¥] and Marsdehl15])
called inducedon the Cauchy surfacE by the dynamical The condition of no symmetrgeven a discrete ondor the
trajectory (M,qg,¢). Then the dynamical equatiofand the  spatially compact sectors is necessary for the construction of
asymptotic conditions fog and ¢) of the model imply some the covariant gauge fixing in the next section to work.

asymptotic conditions foy, ¢, y and¢ and some relations ~ We assume that each model defines a symplectic fofm

between them of, that are callecconstraints onI'’ (this may be determined by the variational principle of
the model under study—for more discussion, see Kijowski

and Tulczyjew[28]). For example, in general relativity)’

_ _ =d0®’ and O'=[d*x 7 (X)dy(x), where =¥

- We assume further tha; the dynamical equations and aU:Det(ymn)l/z(yk'y” —ykiy”)Kij is a super-local functional

initial data ha_lvg the following property. For each initial da- ¢ yiq and Ky, . We assume further thdt is a coisotropic

tum (,v,4,v,¢) that satisfies the constraints there is a[13] submanifold ofl"" with respect taQ)’. That is the fol-

unique Diff...(X X R)-class {(%XR,g,¢)} of maximal dy- lowing property. LetpeI and letL,(I') be a subspace of

namical trajectories such that each elemélXR,g,®) of To(I'") defined by

the class contains a Cauchy surface on which the induced

datum is diffeomorphic toX,y,,v,¢). This implies that

the set of objects defining initial data must be complete in a

certain sense. One can write alternativelyl3] L ,(I') = orthy Tp(T'). I is
The uniqueness of the maximal dynamical trajectory iscoisotropic ifL,(I") CT,(I"). Hence, the pull-back) of ()’

understood in the sense of Choquet-Bruhat and Ge@2gh  to I is a presymplectic form oh. The space ,(I') is called

It has been shown for general relativity that the solutionthe characteristic spacef ().

spacetimes of maximal dynamical trajectories are globally The subbundle (T"):={(p,L,(T'))|pel'} of the tangent

hyperbolic; we will assume the same property for all ourbundle T(I') is an integrable subbundle, becau€e is

D. The existence and uniqueness of dynamical trajectories

Lp(D)={veT(I")]|Q’(v,u)=0 YueTy()}. (9)
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closed; it is called theharacteristic bundlef (). Let us call  reduction to the physical phase space and to find an explicit

the maximal integral manifolds df(I") c-orbits parametrization of it.
In the case of infinite-dimensional models, additional,
model-specific assumptioh$5,27] are needed for the proofs IV. COVARIANT GAUGE FIXINGS
thatT" is a submanifold and that c-orbits with suitable prop- ) ) ) )
erties exist. The general structure described in the previous section

enables us to work out a geometric definition of gauge fixing
based on the ideas of the previous pap@r This will con-
F. Relation between the c-orbits and the maximal dynamical cern only the diffeomorphism group—as explained, we as-
trajectories sume that there are no other gauge groups acting.

We assume that there is a relation between c-orbits and L€t 0 be an arbitrary c-orbit%, be the manifold structure

dynamical trajectories of the model as follows. lebe a gfﬁthe corrﬁspon(::ing C?;‘r?hy sur_faC(Iez 4W,’g'|¢t)}q thte .
c.orbit andpe o. Let p be the initial datum ¥, .4, . ) iffeomorphism class of the maximal dynamical trajectories

and let (M,g.¢) be a maximal development  of determined byo. Let us choose one fixed representative
Lo o S (My,90,¢0) from this class for eacto. Consider the set

(X,7,¢,y,4). Then the initial datum X'.y".¢".y".¢")  Emp(S,,M,) of all embeddings oF, in M, such that the

corresponding to any poirge o defines a unique Cauchy empedded submanifold is a Cauchy surface; we call such

surface>’ in M, by the condition that the dynamical trajec- embeddingsCauchy embeddingsf 3, is not compact, we

tory (M,g,¢) induces the initial datumX’,y’,¢',y",¢')  restrict the space Eng®,,M,) to a class of embeddings

onX’. Moreover,%' can be obtained frold by the action that satisfy the boundary conditions formulated in Sec. IIl F.

of some ¢ € Diff .M. In general, all Cauchy surfaces that We assume that Emi2,,M,) is an open subset of the

correspond to points in the c-orwtform an open subset of space Emk¥,,M,) of all (smooth embeddings o, in

M. M, (that also satisfy the boundary conditions in the non-
If the Cauchy surfaces are not compact, then they mustompact case Discussion of this point for the compact cases

satisfy certain boundary conditions. For example, in the cas® given in Isham and Kuch4B80]. Then it follows from the

of asymptotically flat solution spacetimes, the Cauchy surassumptions in Sec. Il F that there is an injection

faces must be asymptotically flat and edlincidewith each

other at infinity in order to define points of the same c-orbit Po.0—Emh.(Z,,M,;)

in T'. We can also say: lgt andqg be any two points from the

same c-orbiin. Let the corresponding initial data determine such that each poinp of o is mapped onto that Cauchy

dynamical trajectories X1,9,¢) and (M',g’,¢’). Then surfaceh(X,) in M,, he Emh(2,,M,), on which the ini-

these two dynamical trajectories are diffeomorphic to eachial datump is induced by M,,0,,¢,). Such a mag, is

other. In this way, any c-orbib determines a class of not unique. It depends on the chosen representative

Diff , M-equivalent maximal dynamical trajectories. (My,90,%,), but any two possible,’s differ by a diffeo-
Observe that a dynamical trajectoryM,g,¢) corre-  morphisme e Diff .M, p{=¢°p,.
sponding to the datum3(,y,,y,) containsexactly one We assume thal'’ and Emi(Z,,M,) has been given

surfaceS C M such that the datum induced &nhcoincides differentiable structure such that the maptogether with its
with (S,7,4,7,%). Indeed, two different Cauchy surfaces NVerse become differentiable. Thls implies the following
carrying initial data that are Diff\i-equivalent to each Properties. Leh:2,—\M, be a point of Emg(2,,M,) that
other would imply existence of a non-trivial symmetry of the /€S in the range op,. Then the elements of the tangent
dynamical trajectory 1,9, ), and such points have been SPACETREMR(Z,,Mo) to Emh(2,,M,) at h are vector
excluded fromr". fieldsV(x) alongh(Z,) in M, , wherexe h(Z,) (they may
have to satisfy some suitable smoothness and boundary con-
ditions [30]); all such vector fields form the tangent space
ThEmh(X,,M,). In particular, the following conditions are
The last important property we assume is that the set ofo be satisfied:
the c-orbits in the constraint surface forngaotient manifold (1) There is a smooth family of smooth curv€g(\) in

[14] I'/o with the natural projectionr:I'—1I'/0 being asub-  Af, such thatC,(0)=x and CL(0)=V(x) for each x
mersion[14]. Furthermore, there is a unique symplectic form < h(Z,).

G. The physical phase space

Q onT'/o such that) = 7*Q, wherer* is the pull-back of (2) There is ane>0 such thatC,(\) is well defined for
forms by 7. Our reduced symplectic spacg/p,Q}) is, in ~ eachxeh(Z,) and each\ such thaf)[<e. _
general, an open subset of tpplysical phase spacd=or (3) For any fixed\ such that|\|<e, the expression

example, in general relativity, some aspects of the physicdfx(\) defines a mapc, :x—>M, for all xeh(%,) by

phase space are discussed by Marddéi and Fischer and  C\(X) = Cx()); then we require that,°h:% ,— M, belongs

Moncrief [29]. to Emh(2,,M,) for all \, or c,(h(X,)) is a Cauchy sur-
We maintain that all information about physical proper-face in M, for all A e (- €,¢).

ties of the models is contained in the physical phase spaces. If there is such a family, then there are many.

One is, however, forced to use the extended strucfiirasd Consider the map, '(c\(h(Z,))):A—o0. It defines a

I'’, because it is often difficult in practice to perform the curve through the poirnbngl(h(zo)) in 0. The differen-
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tiability requirements op, mean that it is a smooth curve in 3 X R). o(0) is some open subset of EnbE XR) for
o with a well-defined tangential vectaratpe o; v is non-  eacho. These subsets can vary with varyiog I's/o. In-
zero if V(x) # 0, is tangential t@ and depends only on the deed, consider an embeddihgS+— (3 XR) and study its
vector fieldV(x), not on a particular family of curveS,(\). pull-back h’:3+— M, by ¢, defined byh’:= {,(;loh_ Such a

In the opposite direction, lgie 0 andv be a vector ap  pull-back need not exist, becausgis only injection so there
tangential too. Then there is a curv€(\) in o for |\|<e, may be points i, X R that do not lie in the range af, and
€>0, such thatC(0)=p and C'(0)=v and the mapp, N(X) can contain such points. Even if the pull-back exists, it

determines a family of Cauchy surfacgs,} in M, by 3,  need not define a spacelike surface iv({,g,), and even if
= po(C(\)(S,). In particular, any fixed poinke S, wil the surface is spacelike, it need not be a Cauchy surface. For
[0} o/ ’ [0}

be mapped by the Cauchy embeddingd (1)) to a point a different c-orbito’, o' # o0, the ¢o,-pull-back of the same

: ) embeddingh can have quite different properties as to its
that we denote byC,(\) in a neighborhood opy(p)(X). : : : :
These curves have tangent vectors for eaab\ =0 that we existence and as (o its being a Cauchy surfaceWty(,go)-

i Thus, the projection of the subsetrK o)(I'y) of Ky to
denote byv(x); hence EmbE,X X R) may be empty; on the other hand, its projec-
tion ontoI'y /0 coincides withl'y /0.

From our definitions and assumptions, it follows that the
map wX o:I's+>Ks is a differentiable injection with differ-
N entiable inverse. Indeed, it is an injection because all points
v#0 and independent of a particular cur@¢\) chosen in  that have the same projection by the submersioform a
o. For example, in general relativity, this differentiability has c-orbit o, 0 is mapped by the bijectiop, to Emi(2,,M,),

been shown by Moncrigf31]. o _ and this set by the injection,, induced by «, to
Consider the subm_anlfo_lﬂlgl contal.mng all points of o(0)CEmb(,S XR) (of course, is diffeomorphic to
that correspond to a fixed initial manifold. As a rule, dif- s,). Itis differentiable, because both mapsando, are. It

ferentI's’s are topologically separated ifi, and can be hag 4 differentiable inverse becaus@nd o are transversal.
called(topologica) sectorsof the model. Acovariant gauge Then there is a well-defined presymplectic fofdx on

fixingin I's is the set of map$.,} that satisfies two require- (mx0)(Ts), Qg:=(wX0),Q, the push-forward by the

ments: , _ _ map X o of the presymplectic fornf) onT's . It is easy to
(1) For each c-orbibeI's /0, 1o: Mg—=>2XRisawell-  geq what the structure 61, is: Its characteristic subspaces

defined differentiable injection with differentiable inverse. .o tangential to EmB(,3 X R) at any point ¢r(p),o(p))

~ Any such map induces a differentiable injection hareq is the c-orbit throughp, 0= ((p)). Its pull-

to:EMbE, Mo)—~EmbE 2 XR) with differentiable in- pacy o1 /0 coincides with the form} defined in Sec.

verse by i(h:i=it,och for any he Emb,M,). Define |G.

o:Ts— EmbE, 3 XR) by ol,:=teop, for all 0el's /0. We can go further and consider the spdte to be a
Then trivialization of a fiber bundleey with the base spacE/o,
(2) o is a differentiable map of s into Emb,,X X R). the typical fiber Emb{,%xR) and the group
Observe that the maps, are arbitrary and are not sup- Diff..(%XR). Eacho can be decomposed into a direct map
posed to have any relations for differasis so that the dy- «:I's—Ey, which is a differentiable injection with differen-
namical trajectories A1, ,9,,%,) and (M, ,go ,bo/) Need  tiable inverse, a trivialization: Es—Ky , and the projection
not converge to each other when’'—o. However, 7:Ky—EmbE,XXR),so thato=7nork. k isindependent
(Mg .90 ,bo) Will converge to some dynamical trajectory of covariant gauge fixings; each fixing, however, defines
that is Diff, M-equivalent to (\,,9,,¢,) aso’—o0 and and so a trivializatiornr of Ey .
we can include such diffeomorphisms inigs to makeo The covariant gauge fixing determines also a unigque set of
differentiable. fields and branes with a domain in the background manifold
The condition(1) and the discussion before it imply that = xR for any dynamical trajectory, that is for any c-orbit
al, is a differentiable injection with differentiable inverse eI'/o; let us denote this set byg(o),#(0)), where o
for anyo e I'/o0. The condition(2) implies then that the maps eI'/0. This can be seen as follows. For each owitwe
7 ando are transversal to each other. That is the followinghave a definite representative\,,9,,¢,); the spacetime
property. Letp be an arbitrary point of'. Then any vector manifold M, is mapped by the diffeomorphismy into the
veTy(I') that satisfies both equationdo(v)=0 and background manifold\; hence, we can define
d7r(v)=0 must be the zero vector.
We shall call the pair £,0) of maps a Kuchar 0(0):=14,00, P(0):=1oy by, (10
I'-decompositionrecall thats is the projection defined in
Sec. I G. Thus, for anypel's, 7(p) is a point in the where.,, is the push-forward defined by the map. g(o)
physical phase space of the model, ar{gh) is some embed- is the coordinate-free version of the Kuch&omano and
ding, o(p):2+—3 X R, giving the position of “the slice”> ~ Varadarajan metrif21] mentioned in Sec. IV.
in “the background manifold">, X R. Observe that the unique sei(Q), #(0)) is exactly what
The image ofl's undermX o is a subset X o)(I's) of  one expects a gauge fixing to deliver: a unique set of fields
the Cartesian product manifolKs:=(T's /0) X Emb(Z, and branes on the background manifalek R for each class

V(x)=(po(C(M)) (X)) =0

Again, V(x) must be fromTpO(p)Emb(E0 ,M,), non-zero if
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{(My,90,00)}- Infact, the setg(o), $(0)) represents what
can be called a locallgomplete solutiorio the dynamical
equations: each dynamical trajectory of an open set is ob-
tained by a suitable choice of This can be written a)’' = Q& Q,, where
In this section, we have deliberately left the magom-
pletely general. Of course, one can easily construct a énap
if one knows acompletecoordinate condition that works in a
neighborhood of avhole Cauchy surface and admits a suffi-
ciently large set of initial data on this surface to cover ais a symplectic form orl’/o with coordinatesp,(x) and

wholeopen sel in the physical phase space. A “complete” 9“(X); in the form

condition defines a unique coordinate system in certain do-

main in eafh maximal dynamical trajectory corresponding to Qz==df d3x H,(x)ANdXH(X) (12)
a point ofU. For example, the harmonic coordinate condi- =

tion is not complete in this sense. Some conditions work

even alobally. An example for aeneral relativity counled to V€ clearly recognize the canonical symplectic structure of
9 Y. P 9 y coup T*(Emb(,3 X R)), whereX*(x) is a point of the manifold

special kir_1d of continuous mattg32,33 has been given. qu IIEmb(E,EX R) and’M,,(x) is a cotangent vector a¢4(x).
pure gravity, suppose e.g. that all spatially compact maximal The set ¢rx o)(F)ﬂ is a submanifold oK, which is in
solutions of Einstein’s equations admit a unique and COMtirn a submanifold oK’ :=(I'/0) X T* (Emb(,3 X R)) that
plete foliation by surfaceX of constant mean external cur- s getermined by the equatior’d,(x)=0 in K’. Hence,
vaturek, K‘:qlekl (this is a form of the well-known CMC 7+ injectsT” symplectically intok . What we are looking
hypothesis Then one can stipulate that the surfaggsare  for is, therefore, a symplectic injectiap that maps a neigh-
mapped ontoX, K) in (2 XR) by eachw, and hope that the porhoodU’ of I' in I’ into K’ so thate|r= 7 X o.
map ¢, can be completed suitably inside of eath. Then We shall show the existence of such an extensiom
the corresponding covariant gauge fixing is also global. Irthree steps. The proof will be given in a form that is imme-
general, it seems plausible that any construction of a particudiately valid only for finite-dimensional manifolds. After
lar mapo can be based on a set of differentiable sections otach step, however, we shall discuss the points that do not
the submersionr onT". admit a straightforward generalization to infinite dimensional
The simplest construction of, however, would starts cases and show how the argument can be improved.
from a locally complete solution¥t,g(0),¢(0)), if such is
known. EachoeI'/o is determined by values of a suitable A. Extension of v x o to the tangent space ofl” in I'’
set of constants of motion and is trivial. For eacho and First, we extendrX o just “to the first order” atT", that
each Cauchy embed.dir‘rgE'—u\/t, one then calculates the s e construct a map,:T'(T)~T(K'), whereT'(T) is
initial datum C,v,#,y,¢) that the fields and braneag o) the vector bundle with the base spdtevhose fibers are the
and ¢(0) induce onh(2). This defines ¢,) *. We shall spacesT,(I'") tangent to™" at allpeI'; it is a subbundle of
use this construction in subsequent papers. T(I'") which could also be denoted l:'xy,(l“’)|r. The map
@1 must have the following propertiesi) ¢, is a vector
5 bundle morphism,(ii) ¢4|rry=d(7Xa), and (iii) ¢, is
V. EXTENSIONS OF KUCHAR DECOMPOSITIONS symplectic. Because @), ¢, can be decomposgd4] into a
FROMT TO I’ set of maps containing a base-space ngap:I"—K, and
A covariant gauge fixing described in the previous sectioglbg.;fmapiplglp T .(F)t.HT“’lb(p)(K .) forl_eachp_e b QD”;].IS
defines a division of variables into two groups: the set o Ierentiable injection a.mblfp IS a linéar Isomorphism
for eachpeI'. Because ofii), ¢;p,=7X o and

dynamical variables that determine points of the physica
phase spacé&’/o and the set of kinematical variables that
describe an embedding of the Cauchy surfadato a back-

ground manifold M; this division is done without use of g

Q/:Jgdsx(dm(x)/\dx#(x)+dpa(X)/\dqa(X))-

0,=d f2d3x P 00N (%)

<P1fp|Tp(r):d(7T>< U)|Tp(r)- (12

inally, because dfiii ), ¢1¢,, is @ symplectic isomorphism at
achpel.

The map ¢,z is, therefore, already determined on the
subspacd (I') of T,’)(F), and we have to specify it only on
a subspace, sayNy(I') of Ty(I') such that Ty(T)

coordinates in any of these manifolds. It is, however, not ye

a full Kuchardecomposition as outlined in Sec. II, because it

works only inside the constraint surfatewhereas the origi-

nal Kuchardecomposition holds in a neighborhood Idfin

the phase spacE’. In the present section, we shall extend

gauge fixings and Kuchatecompositions front' toI'". We ~ ~ Np(F)ean(F)._ , N

shall work with a fixedS -sector of the model, and we leave ~ 1he symplectic formsQ" and the pull-backei,Qk:

out the corresponding indeX everywhere. must, moreover, coincide o'h")(l") for all peI'; they do so
Let us first describe what exactly is the problem. Clearlyalready onT,(I"). This suggests an idea for the construction.

the components of the symplectic fof' on '’ with re- ~ The imageT, ,(K’) splits in a way adapted to the sym-

spect to Kuchacoordinates are plectic form Q. :
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T‘Plb(p)(K,):T@m(p)(K @Ta(p)(T*(p)(Emdﬁ EXR)))

where the space T, (T, (EmbE,2XR))) is
Q- -isotropic(i.e., restriction ofQ)y, to this space is a zero
form) and Q. -orthogonal toT (,)(I'/0). Hence, the pre-
imageNp(I") of this space,

SDl_f}aTa(p)(T;‘(p)(EmliE,E XR)))

must be isotropic inTg(F) with respect to Q' and
'-orthogonal to Q, (F) which is the pre-image of
7T(p)(l“/o) Qp(F) <pl_f 7,(p)(l“lo) However, I'/0CK,

SO <plfp onl'/ois (d(mX 0')) , and we have finally

Np(I):= 13

Qp(I):=(d(mX 0)) T 1()(T/0).

Q(I') must be a smooth vector bundle whose basis is th&rom the definition ofwq
constraint manifold; our construction starts from this bundlefor

The crucial observation now is that any subspbicél’)
of TF’,(F_) that satisfies(a) T,(I')=Np([)®&Ty(T), (t_))
No(I) is Q’-orthogonal to Q,(I') and (c) Ny(T') is
)’ -isotropic, defines a suitable symplectic mag, by the
requirement(13): as ¢4+, is linear, and because of the con-
dition (a), the knowledge ofpq;, on Tp(I') [which is well
known, see EQ.(12)] and on Ny(I') determines ¢y,
uniquely.

As is already suggested by the notatidi{I') is to be a
smooth vector bundle in order that; is a differentiable
map. A construction of an example of such N@I") would
show the existence ap;.

The vector bundI€(T") is a subbundle of (I") which, in
turn, is a subbundle of'(I'). AsIT" is a submanifold of"’,
there must be a vector bund(I") such that

T (I')=N{T)eT(), (149
whereN(I") is a(smooth vector bundle. IIN(I") is isotropic
and orthogonal taQ(T"), then it is the desired bundle. If
Np(T') is not orthogonal t&@Q ("), we can find a continuous
linear mapyq :N(I')—=>T,(I'") such thatiyo(Ny(I")) is or-
thogonal toQp(T") andTy(I'") = ¢ho(Ny(I')) & T(I') as fol-
lows.

Recall thatL (') is the characteristic subspace, K8),
and that

To(I)=Lp(I)®Qp(I')

for all peI', becauser and o are transversal to each other.
It follows that )" must be non-degenerate @(I'). In-
deed, if ve Q,(I') were ()'-orthogonal to all vectors of
Q,(I'), then it would also bé)'-orthogonal to all ofT,(I")
and so it would belong td ,(I'). Then, howevery=0 be-
cause of Eq(15).

If ' is non-degenerate d@,(I'), then there is a unique
vectorae Qy(I') for each linear functiony on Q,(I") such
thata(v)=Q'(a,v) for all ve Qy(I'). Letwe T[’)(F); then
Q'(w,-) is a linear function orQ(I") and it determines,
therefore, a unique elemenig(w) € Q,(I") such that

(19

Q'(w,v)=Q"(wo(w),v) (16)

PHYSICAL REVIEW D61 024037

forallve Qy(I'); the mapwq :T")(F)HQP(F) is linear. The
desired map)q is then defined by
o= idy o0~ wQ|N ) - (17)
Orthogonality can be shown as follows. Let Ny(I'),
and let us calculat€)’ (¢o(n),q) for any qe Qu(I'):

Q' (nN—wo(n),q)=Q'(n,q) = Q' (wg(n),q)=0

because of Eq16). Moreover, any Ti’](l“) can be written
asv=n+t, wherene N,(I') andte T,(I'); then we have
also

V=1g(n)+ (t+wg(n)). (18

, it follows that wg(n) € Qp(T')
all neNy(I'), so (t+wg(n)eTy(l') and
wQ(Np(F))ﬂTp(F) 0. Then the decompositioiil8) is
unigue and the property follows. Thus, we have proved Eq.
(14) with Np(F) being everywhere orthogonal Qp(F)

If Np(I') is orthogonal but not isotropic, we can improve
it further as follows. Consider the spaf}%(F) defined by
Q (I'):=orthg, Qp(I"). Here, we denote the space of all vec-
tors of Ty(I') that are Q'-orthogonal to Qu(I') by
orthy Qp (F) As Q'[q o) is not degenerate, we must have

To(I)=Qu(I)@®Qy(I). (19)

Indeed Q (I") can be constructed from any linear comple-
mentvp(F) of Qu(T') in T)(T') by Q (= de(Vp(F))
where /g is defined by Eq(17) and the proof is analogous
to that fOFl//Q(N ().
The spacesN,(I') and L,(I") are subspaces c@l(l“)
They are disjoint, N,(I')NL,(I")={0}, because
p(1“)ﬁTp(1“) {0} and L,(I")CTy(I'). Moreover, if v
eQ (I'), thenv=n+t, wherene N,(I') andte Ty(I") and
aIsot—x+q wherexe L,(I") and ge Qy(I') because of
Eqg. (15). Thus, we obtain thatv=n+x+q. Now, v
eQ (), neQ (F) and XEQ ('), hence alsoq
eQ ('), and asQ (INNQu(IN) = {O} we must haveq
=0, sov=n+x. We have thus shown that
Qp(I)=Np(T)@Ly(I). (20)
From the definition(9) of L,(I") it follows that each vector
of Q (I') that isQ)'-orthogonal to all ofL,(I') must lie in
p(F) For such a vector i€)’'- orthogonal to bothL (T")
andQp(T'), and so to all ofT,(I") because of Eq(15).
Now suppose that:N,(I")—R is any linear function on
Np(I'). We can extend such a function IDQJF;(F)HR by
requiring

al, r)=0. (21

As Q' is non-degenerate d@g(l“), there is a unique vector
beQ,(I') such thata(u)=Q'(b,u) for all ueQ,(T).
However, such a vectdr must then lie inL,(I") because of
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Eq. (21). Hence: for any linear functiorr onN,(I"), there is In the case that the spa@g(I") is an infinite-dimensional
I eL,(I") such thata(u)=Q'(l,u) for allue Qt(l‘). Banach space, two aspects of our construction become prob-
Letne Ny(T'); thenQ’(v,n) can be considered as a lin- lematical.

ear function orN(I") for anyv e Ty(I'). There is, therefore, (1) If a Banach spacB, is, as a linear space, a direct sum

a unique elemend, (v) of L,(T'") such that of two other linear(Banach spacesB,;=B,®B;, then the
corresponding map betweddy and B,XB; need not be a

Q' (v,n)=Q"(w (Vv),n). (22)  topologicalisomorphism. If it is, one says th&t, splits[14]

B,. Some splittings follow from the assumptions in Secs.

From its construction, it follows thab, :TF’J(F)l—>Lp(F) isa Il E and lll G. For example, Eq(14) follows fromI" being

linear map. a submanifold off"’, and Eq.(15) follows from = being a

Consider the linear mag :Ny(I')—T,(I") defined by submersiorf14]. We however also need Eq4.9) and (20).
(2) The norm definingT (I') can restrict the elements of
y(n):=n— (12w (n) T,(') so much that the space of all continuous linear func-
tionals on T (I")—the dual spaceT,*(I')—contains also
functionals that are not of the forifd’(u,-) for u eTF’)(F),
even ifQ)'(u,-) is a non-zero functional for all non-zetos.
Such a)’ is called aweakly non-degenerater weaksym-
plectic form [34]. If Q' is weak, the definition of the maps
0o andw given above does not work.
The way one can cope with these two problems depends
Q' (Y .(ny), ¥ (N))=0"(ny,ny) — (1/2)Q (w (N1),N5) on the topology ofT,(I'). This, however, must be judi-
ciously adapted to the nature of each particular model and
+(1/2)Q" (o (ny),n1) there does not seem to be any general method. Still, the
, following scheme has worked for all examples we have con-
LAY (@ (), @ (). sideredgas yet. First, one defines certainp dense subspaces,
Too(I') and Tg(T), of the Banach space$,(I') and

for all ne N, (T'). ¢ is an injection, because the equation
n=(1/2)w (n) can have only zero solutions. Indeed, the
left-hand side is an element bif,(I") and the right-hand side
is an element of ,(I'). Moreover, the imagej (Np(I')) is
isotropic; this can be seen as follows. Using the definition o
¢ we obtain

The last term is zero, becausg (n; ) € L,(I') and we fi-

nally have from Eq(22) T'3(T'); one can ta_ke, for example, the spaces of functions
all of whose derivatives are smooth and which have compact
Q' (PL(ny), . (N2))=0"(n1,np)—(1/2)Q'(nq,N5) support. One has to prove thaDp(F)ﬂTé,o(F) and

Lp(F)ﬁTg,O(F) are also dense iQ,(I') andL ,(I'), and that
all functionals fromT'5o(I") have the formQ'(u,-) where
UET")O(F). Then the construction seems to work for the

can be written as a sung' =z+y, whereze gL (No(T)) corresponding dense_ subspaces such Qg‘o(l“) or
andyeL,(I'). However, it holds thag' =n+x, wheren Npo(I')—the topology is nowhere needed. Second, one has
eNy(I') and xeLy(I'). Then q- = (n— (1/2)w(n))+ (x to show that the projectors onto the subspaces are continuous

- — ; : with respect to the topology. Then the Banach spaces are

;re(clérzn)s)géir:i)gns'oz— Y1(n) andy=x+w,(n) Is the desired easily shpown to split aﬁd eg\]/}érything works. P
The restriction ofpq¢, to Ny(I') is uniquely determined

by the condition thatp;p: To(I)—T, )(K') is symplec- B. The pull-back of Q. to I’
tic as follows. Letne Ny(T'), then there is a unique linear ~ The second step consists of two consecutive pull-backs
function Q" (n,-) onLy(T") defined byn. L,(I") is mapped that bring the form(}, toI'".
by qolfp|,_p(r)=da onto T,p(Emb,XXR)), so The restriction to the vector bundi(I") of the mape;
Q'(n,do~!) is a linear function on To(p)(EMbE, constructed in the previous subsection mayd’) to the
3 XR)). Every linear functiona on T, (EmbE,S XR)) yector bundle with the base spagg,I’CK, and with the
determines, in turn, a unique elementy of  fibersT ) (T5 ., (EMbE,2 XR))),

T (T* (EMbE, 3 XR)))= ¢1No(T) such thatQ’ (v,
o(P)\ o 1f —
')=pa. We must set o 11pNp(1) =T o) (T (EMB(X, X XRY))).

+(1/2)Q,(n2,n1)20.

The last property we need is that any veayore Qé(l“)

e1rp(N) =V, The cotangent spack; ,,(Emb(E,3 X R)) is a linear space,
so it can be identified with its tangent space at its zero vector.
or elseg;y, is not symplectic. Hence, the choice of the sub-Hence, with this identificatiortp1|N(r) can be considered as
spaceN,(I") determinesp;t, . a bundle morphism mapping(I") onto the bundle with the
The above construction dfl,(I") that satisfies the re- basise;,I'CK, and the fiberd; , (Emb(,2 X R)). How-
quirements(a), (b) and (c) is based on the smooth vector ever, this vector bundle is nothing but a subbundleKéf
bundlesQ(T") andL(I") and on the differentiable symplectic =(I'/0o)XT*(EmbE,X X R)). In this way, using the map
form Q'; the result is, therefore, a smooth vector bundlee,;, we have constructed a bundle morphism betwdéh)
N(T) . andK'.
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Let us denote this morphism hy; :N(T')—K’ and the it maps the neighborhood’ of I in I'" onto the neighbor-
pull-back of Qi by ¢; to N(T') by Q;, Qq:=¢;* Q.. Q;  hoodeU’ of K in K’. From the constructions above, it fol-
is a symplectic form on the manifold(T); that is,Q); is a  lows immediately thaip* Q. =€'. The mapse, and ¢3
bilinear form in the tangent spacg(N(I")) at each point are identities if restricted tb' and the restriction of; to I’
PeN(T'). LetP=peT, thenT,(N(T")) can be decomposed is 7Xo. Thus, ¢|r=7X o and the existence of the exten-

as follows: sion is shown.
The constructions of this subsection need considerable
To(N()=Ty(D)@Tp(N(I)). modification in the case of infinite dimensions. Indeed, the

Darboux-Weinstein theorem does not hold for general weak

Again, Tp(Np(F)) can be identified WitH\lp(F), so by Eq. symplectic forms[35]. Marsden has, ho_wever, proved _an
(14) Tp(N(F)):T,’)(F). From the construction of the map ana!qgous theore_rﬁis] for V\_/eak symplectic forms if certain
o}, it follows thatQ)’ coincides with(, at T/(T) for each addmongl conditions are imposed, and the .condmo.ns are
L r W n writ ! p chosen in such a way that most models met in practice sat-
pel,soweca € isfy them. Thus, the modification consists of a proof that the
particular model under study satisfies the assumptions of
Marsden theorem.
) ) ) The extension constructed in this section is not unique.
Observe thatl; is a kind of “constant” extension of)'[r  Already the ste(1) was not unique, because the subspace
to the whole bundIeN(T"). Np(I') is determined only up to a symmetric linear nfag]
The construction of our second pqll-back uses the theog, L,(I"). The tubular neighborhood of the sté&® is also
rem about the existence of tubular neighborhodds14. A quite’ arbitrary. Finally, the Darboux-Weinstein theorem

tubglar neighborhood ?s a generalization of the We”fk”OW”guarantees just the existenceqgf, but it says nothing about
notion of normal coordinate ball. In the case we consider, the uniqueness.

theorem states that there is a diffeomorphigmU;—U,,
whereU; is a neighborhood of the zero sectibnin N(I")
andU, a neighborhood of in I'’ such thatdg,|r= id.

Qqlr=0"|r. (23

VI. CONCLUSIONS

It follows that the pull-back),:= ¢, ** 1, is a symplectic We have defined a covariant gauge fixing as pointwise
form onU,. As de,|r is an identity, we have identification of different solution spacetimes with each other
so that a fixed background manifold has resulted and the

Qolr=Q4]r. (24 dynamics has been reduced to a field dynamics on it. The

fixing has first been defined on the constraint manifold of the

Most constructions of this subsection work for infinite system; there are very many ways to choose it at least lo-
dimensions, if we just replace the word “non-degenerate”cally; different gauge fixings are related by elements of the
by “weakly non-degenerate” everywhere—the difference ishuge Bergmann-Komar group.
not important here. All necessary splittings can easily be We have found a connection between covariant gauge fix-
shown. The construction of the tubular neighborhood isngs and Kuchad -decompositions of the constraint mani-
mostly straightforward, too. However, if a complicated setfold: for any fixing, there is exactly one decomposition. The
has been deleted frofi;, then one has to use a smooth decomposition itself amounts to a particular choicélotal)
partition of unity[14] and it need not be trivial to show its foliation of the constraint manifold that is transversal to the
existence. The proof will depend on the properties of thec-orbits. .
particular model. Finally, we have shown that any Kuch@d@composition of
the constraint surface can be extended to a whole neighbor-
hood of the constraint surface. This extension is not unique.
In this way, the full Kuchardecomposition is doubly non-

This step is an application of the Darboux-Weinsteinunique: there are as marly-decompositions as covariant
theorem[10,13. This is a generalization of the well-known gauge fixings, and each-decomposition has many exten-
Darboux theorem saying roughly that if two symplectic sions. However, the form of kinematic term of the Kuchar
forms 2, and {2, on a manifoldM coincide at a submani- action (8) is always the same, the only interesting and non-
fold NC M, then there is a diffeomorphisit M~ M that,  trivial part being the algebra of the observables, if we allow
together with its derivatived\, is trivial at A, and that for more general7] algebra than the Heisenberg algebra of
A*Q,=Q, in a neighborhood of\'in M. go andp,o in Eq. (8). The usefulness of the decomposition

Consider the two form§)’ and(}, in U,. Equations24)  is based on the enormous simplification it brings about in the
and (23) imply that Q'|=Q,|, so the conditions of the description of generally covariant systems.
Darboux-Weinstein theorem are satisfied. There is, therefore, We would like to make two additional remarks. First, the
a diffeomorphismp;:U’—U; of a neighborhood)’ of I in  structure of the weak symplectic manifoll (,(") is typical

C. Application of the Darboux-Weinstein theorem

I'" with UzCU, such thatp3 Q,=Q". for the so-calledalready parametrized theoriesuch as a
Let us finally define the map by parametrized scalar field in flat spacetiisee, e.g. Kuchar
N [36]). Our construction shows that the generally covariant
P=P1°¢P, °P3; models are, in generahot already parametrized theories for
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two quite different reasongl) We can prove that only al- rametrized model, which is anique Cartesian product.

ways a part of the symplectic manifold of the system has the Second, we observe that our construction is closely re-
structure K',€2"), namely just a sector corresponding to alated to the problem of the so-called abelianization of con-
fixed Cauchy surface. Moreover, we have to exclude pointstraints[38]. Indeed, the new constraints given by the theo-
in the constraint surface that correspond to dynamical trajeGem can be taken as componerts,(x) of the cotangent
tories admitting any symmetry. In fact, Tofi@7] has shown  vectors inT* (Emb(®,3 X R)) with respect to some coordi-
that general relativity cannot be considered as already paramgtes ons, and onM=3 XR. All these “functions” have
etrized theory the obstruction coming from points at the conyanishing Poisson brackets with each other. Of course, a
straint surfacd’ that represent Cauchy data for spacetimesomplete system of Abelian constraint functions still need
with Killing vectors; these points are also excised in ournet exist, because there need not be global coordinat®s on

paper.(2) For each subsystem thiatequivalent to an already and M, and the points with symmetries are also excluded.
parametrized system, such an equivalence is urotjue

There is one Kuchaf -decompositionr X o for each cova-
riant gauge fixing, and there are many different, gauge de-
pendent, background manifolds. This is in stark contrast to
the structure of an already parametrized system such as in Important discussions with “JirBicak, Arthur Fischer,
Kuchar[36], where there is a unique background manifold. Helmut Friedrich, Mark Gotay, Karel V. KuchaWVincent
The points of this manifold are defined by the fixed back-Moncrief and John T. Whelan are acknowledged. This work
ground metric—the Minkowski metric on it. The constraint was supported in part by the Swiss Nationalfonds, by the
manifold of a generally covariant model is just a bundle withTomalla Foundation, Zurich and by Polish research grant
many different trivializations, unlike that of an already pa- KBN Nr. 2 PO3A 047 15.
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