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Covariant gauge fixing and Kuchař decomposition
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The symplectic geometry of a broad class of generally covariant models is studied. The class is restricted so
that the gauge group of the models coincides with the Bergmann-Komar group and the analysis can focus on
the general covariance. A geometrical definition of gauge fixing at the constraint manifold is given; it is
equivalent to a definition of a background~spacetime! manifold for each topological sector of a model. Every
gauge fixing defines a decomposition of the constraint manifold into the physical phase space and the space of
embeddings of the Cauchy manifold into the background manifold~Kuchař decomposition!. Extensions of
every gauge fixing and the associated Kucharˇ decomposition to a neighborhood of the constraint manifold are
shown to exist.

PACS number~s!: 04.60.Ds, 04.20.Fy
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I. INTRODUCTION

In 1971, Bergmann and Komar@1# wrote
‘‘ . . . in general relativity the identity of a world point i

not preserved under the theory’s widest invariance gro
This assertion forms the basis for the conjecture that so
physical theory of the future may teach us how to dispe
with world points as the ultimate constituents of space-ti
altogether.’’

We share this view and we are going to support it
revealing some of the underlying mathematical structure

The formulation of general relativity and, in fact, of an
generally covariant model, is based on the mathemat
theory of ~pseudo! Riemannian manifolds. There is, how
ever, a catch: in the mathematics, even a naked manifold
well-defined, distinguishable points. In the physics, poi
are defined and distinguishedonly by values of physical
fields or as positions of physical objects. Attempts to ta
naked points seriously lead to well-known paradoxes
problems. The first paradox of this kind was constructed
Einstein~the ‘‘hole’’ argument@2#!; a more recent exampl
is due to Fredenhagen and Haag@3#. Any clean separation
between spacetime points on one hand and physical field
the other violates the diffeomorphism invariance~for an ex-
tended discussion of this point, see Stachel@4# and Isham
@5#!. From the mathematical point of view, the space that o
works with is the space of geometries RiemM/Diff M on a
manifold M rather than the space of metric fields RiemM
on the manifoldM. In the space of geometries, points of t
manifold M are entangled with the metric fields and it
impossible to reconstruct~disentangle! them in any natural,
unique, way.

Accordingly, Einstein dynamics is not a field dynamics
any manifold. This does not mean, however, that one can
reduce it to such a field theory. For example, the dynamic
reformulated as a system of partial differential equations
some fields on a fixed background manifold in the study
the Cauchy problem~see, e.g., a recent review@6#!. This
reduction is based on choices of gauge~coordinate condi-
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tions!. The choice of gauge plays, in such a way, a two-fo
role for generally covariant models:~1! it renders the dynam-
ics unique~as in any gauge field theory!, and ~2! it defines
the background manifold points. It is also well known th
the gauge group of such models is much larger that just
diffeomorphism group of one fixed manifold@1#.

The definition of background manifolds by means
gauge choices does not violate the gauge invariance of
full theory, if one can show at the end that the measura
results are independent of the choice; this has indeed b
possible for many problems of classical physics. Anoth
popular method of defining background manifolds is to e
pand a certain sector of a given model around a class
spacetime~such as, e.g., the Minkowski spacetime!. A spe-
cial role given to a fixed classical spacetime enables on
use this particular spacetime as a background, and to s
the diffeomorphism group of this spacetime as the remain
gauge symmetry. This is a strong restriction of the origin
symmetry. The procedure might be justified, if e.g. so
kind of WKB approximation is valid in the situation consid
ered and the corresponding metric is a part of a class
solution from which the iterative steps of the WKB metho
start.

In the present paper, we are going to study the symple
geometry of quite a general class of diffeomorphically
variant models. We shall concentrate on those properties
are relevant to gauge fixing, gauge transformations,
physical degrees of freedom. The main ideas are covar
gauge fixing@7# and the Kucharˇ decomposition@8#; we shall
give a complete description of these ideas and their interc
nection. The plan of the paper is as follows.

In Sec. II, we analyze in some detail gauge choices us
very simple examples from general relativity. We try
separate the two aspects of gauge fixing—the point defini
and the coordinate choice—to motivate our notion of co
riant gauge fixing. We also briefly recapitulate Kucharˇ ‘‘third
way’’ @8#.

In Sec. III, we describe the properties of generally cov
riant models that are needed for subsequent constructi
©1999 The American Physical Society37-1
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We present a list of properties that can be considered
kind of definition of the generally covariant models. How
ever, rather than attempting to identify a minimal set of
dependent properties, we just collect all assumptions
will be necessary for the proofs. For the sake of simplic
we also exclude all gauge fields~such as Yang-Mills fields!
so that we can focus on the issue of general covariance

Section IV contains the constructions that are neces
for our definition of covariant gauge fixing on the constra
manifold of the model. The fixing identifies spacetime poin
belonging to different spacetime solutions. In this way
unique background manifold results and everything is ma
festly invariant with respect to coordinate transformations
this manifold. The transformation between two covaria
gauge fixings can be described as a set of diffeomorphis
one for each solution; such a set of transformations is
element of the Bergmann-Komar group@1#. A covariant
gauge fixing is thus defined in a geometrical, coordinate f
and general manner. Still, it has a close relation to the u
way of choosing gauge: a ‘‘nice’’ coordinate condition lea
to a special case of such a covariant gauge fixing.

The local existence of covariant gauge fixings is equi
lent to the following statement. For the sectors that are s
tially compact, any open subset of the generic part of
constraint surface on which the gauge fixing works is a s
set of a fiber bundle: its basis manifold is the physical ph
space, its typical fiber is the space of embeddings of
Cauchy surface into the background manifold, and its gro
is that of diffeomorphisms of the background. For the sect
that are not spatially compact, this description is to be mo
fied ~see Sec. IV!. Each gauge fixing is equivalent to a triv
alization of this bundle, i.e. to a decomposition of the co
straint surface into a Cartesian product of the base and
typical fiber. Existence of such decompositions has been
observed by Kucharˇ @9#; we shall call themKuchař decom-
positions. In this way, we establish a connection betwe
covariant gauge fixings and Kucharˇ decompositions.

The main result of this paper is described in Sec.
where we extend the Kucharˇ decomposition to a whole
neighborhood of the constraint surface. The constructio
based on the Darboux-Weinstein theorem@10# and it shows
explicitly that there are many such extensions. As the c
struction is based on an existence theorem, it will not
practically viable in most cases of interest. However, Kucˇ
decompositions have as yet been explicitly constructed o
for very few cases, cylindrical waves@9# and the Schwarzs
child family @11#, and even the question of existence was
clear. For most purposes~as, e.g., for quantization!, the ex-
plicit form of the decomposition outside the constraint s
face is not needed.

The mathematical language which is used in this pa
and which enables concise and effective formulations is
of vector bundles and symplectic geometry of infinite dime
sional manifolds modeled on Banach spaces~see, e.g., Abra-
ham, Marsden and Ratiu@12#, Libermann and Marle@13# and
Lang @14#!. Typically, all these manifolds are modeled o
Sobolev spacesHs ~see Marsden@15#! but there is no uni-
versal functional analytic framework for field theory:
seems that each particular theory needs its own choice o
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class of functions to which we restrict our search of solut
of field equations. Unfortunately, our results cannot help
make this choice. Nevertheless, they are rigorous. What
prove is the following statement: whenever a generally
variant field theory is equipped with acorrect functional
analytic structure@‘‘correct’’ means that~1! the space of
non-constraint Cauchy data is a Banach manifold,~2! the
constraint surface is its regular submanifold and~3! the
gauge orbits form a regular foliation of the latter# then this
space is locally isomorphic to a Cartesian product of
physical phase space and the cotangent bundle of em
dings of the Cauchy surface into the background manifo
Each such local isomorphism is connected with a covar
gauge fixing.

II. GAUGE IN GENERAL RELATIVITY

In this section we analyze the gauge choice in gene
relativity and review the original Kucharˇ decomposition.

To discuss the gauge choice, we use a strongly simpli
model. This will motivate our subsequent definitions a
constructions.

Consider the Schwarzschild solutions to the Einst
equations in the future of the influence~white hole! horizon.
They form a one-dimensional family and the value of t
Schwarzschild massMP(0,̀ ) distinguishes different ele
ments of the family from each other. The metric can be giv
the form

ds252S 12
2M

R DdW212dW dR1R2 ds2
2 , ~1!

whereds2
2 is the metric of a 2-sphere of radius 1;W andR

are the advanced Eddington-Finkelstein coordinates with
domains

RP~0,̀ !, WP~2`,`!. ~2!

Nothing seems to prevent us from considering Eq.~1! as a
one-dimensionalset of metric fieldson a fixed background
manifold M15R23S2 in the coordinate chartW, R, q and
w @of course, at least two charts (q,w) and (q8,w8) are
necessary to coverS2]. The same metric can, however, als
be given another form, if we pass to the Kruskal coordina
U, V, q andw,

ds252
16M2

k~2UV!
e2k(2UV) dU dV14M2k2~2UV! ds2

2 ,

~3!

where k:(21,̀ )°(0,̀ ) is the well-known Kruskal func-
tion defined by its inverse,k21(x)5(x21)ex for xP(0,̀ );
the coordinatesU andV are restricted to the domains

UP~2`,`!, VP~0,̀ !, ~4!

in order that the same parts of the spacetimes as given by
~2! are covered.

Let us look carefully at the transformation between t
Eddington-Finkelstein and Kruskal coordinates:
7-2
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U5S R

2M
21DexpS R

2M DexpS 2
W

4M D , V5expS W

4M D
~5!

~the transformation of the angular coordinates is trivia!.
Equation~5! do not represent any coordinate transformat
on M1, because they are solution dependent: the right-h
sides are non-trivial functions ofM. They can only be inter-
preted as coordinate transformations, if we view Eq.~1! to-
gether with the manifoldM1 as a family of solutions
$(M1 ,gM)% rather that a family of metric fields$gM% on a
background manifoldM1.

Equations~1! and~2! express the Schwarzschild family i
two different gauges. We can see from the above tha
gauge transformation in general relativity is aset of coordi-
nate transformations, one transformation for each solutio
~cf. Bergmann and Komar@1#!, rather than a coordinat
transformation on one manifold.

The illusion of a background manifold only arises, if on
pastes together all solution manifolds in such a way t
points with the same value of coordinates representing s
gauge are considered to be identical. Thus, the backgro
manifold M1 results, if we identify all points that have th
same values of the Eddington-Finkelstein coordinatesW and
R; an analogous background manifoldM2 for metrics~3! is
constructed by identifying all points with the same values
Kruskal coordinatesU andV. It should be clear that, in spit
of the fact that both manifolds are formally diffeomorphic
each other, they nevertheless represent two very diffe
localizations of geometrical properties of the Schwarzsch
family. For example, the position of the event horizon
M1, which is given by the equationR52M , is not well-
defined~fuzzy!: the horizon of each solution lies at differe
points of M1. On the contrary, the position of the eve
horizon onM2, which is given byU50, is well-defined
~sharp!, because it is solution independent.

This all is well known and rather trivial. Still, the detaile
form of the above analysis simplifies the understanding
the following point. A choice of gauge in general relativi
mixes two different things:~1! it defines how points of dif-
ferent solution manifolds are to be identified so that a ba
ground manifold can be constructed;~2! it chooses definite
coordinates on the background manifold. It is already
first step alone that delivers what we require from a ga
fixing: a uniquemetric field on a background manifold, sa
M for any solution~determined by the value ofM in our
example!. This metric field can be given in any coordina
system on the background manifold; that is, all coordin
transformations onM are allowed ~these should be
M-independent for our example!. Everything can be made
manifestly covariant with respect to such transformations
spite of the clear fact that the gauge has been fixed.

We do not know if this observation has ever been
forward in its full generality, but it surely has been done f
the perturbative approach to general relativity by DeW
@16#. Let us explain DeWitt idea in more detail in order
prevent misunderstanding. DeWitt chooses a particular c
sicalbackground spacetime(M,g) ~his method has, in fact
been calledbackground field method!. All other spacetimes
02403
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in some vicinity of (M,g) are described by small distur
bancesdg aroundg. Two kinds of gauge fixing is now pos
sible: The first kind is just a choice of coordinatesxm on M;
with respect toxm, the metricg and the disturbancedg have
componentsgmn(x) anddgmn(x) and they transform as two
tensor fields with respect to changes of these coordinate
gauge transformation of the second kind is a small diffe
morphismdj on M. The background metric field change
then by a Lie derivative Ljg; in coordinates,
gmn(x)°gmn(x)1djm;n1djn;m , where the semicolon de
notes the covariant derivative defined by the metricg. Such a
change is not considered as a change of a physical stat
disturbances of the formdgmn5djm;n1djn;m for any small
vector fielddj on M are considered as ‘‘pure gauges.’’ T
fix a gauge of second kind, DeWitt requires asupplementary
condition that is covariant with respect to coordinate tran
formations onM ~gauge of the first kind!. Thus, the back-
ground field method becomes covariant; even the field eq
tions after the gauge of the second kind has been fixed
covariant in his formalism.

DeWitt’s supplementary condition hinders gauge transf
mations of the second kind; these form a group, namely
group DiffM of diffeomorphisms of the background man
fold M. On the other hand, the gauge transformations t
we are considering form the much larger Bergmann-Kom
group @1#. Thus, there is an analogy, but not comple
equivalence between the two ideas of gauge fixing.

Covariant gauge fixing is connected@7# to an idea due to
Kuchař @8#. Let us describe this briefly in the rest of th
section~for more details, see Kucharˇ @17,18#!.

The Hamiltonian formalism for general relativity has be
described in an elegant 3-covariant form by Arnowitt, Des
and Misner@19#. The action depends on the Arnowitt-Dese
Misner ~ADM ! variablesgkl(x) andpkl(x) as follows:

S5E dtE
S
d3x„pkl~x!ġkl~x!2N~x!H~x!2N k~x!Hk~x!…,

whereS is a three-dimensional manifold,H@gkl ,pkl ;x) and
Hk@gkl ,pkl ;x) are the constraints@functionals ofgkl(x) and
pkl(x) and functions of x#, and N(x) and N k(x) are
Lagrange multipliers@19#.

Kuchařobserved that one can sometimes make a can
cal transformation,

gkl~x!,pkl~x!°Xm~x!,Pm~x!,qa~x!,pa~x! ~6!

so that the action acquires the form

S5E dtE
S
d3x„pa~x!q̇a~x!1Pm~x!Ẋm~x!

2N m~x!Hm~x!…,

where Hm(x) are linear combinations of the original con
straintsH(x) and Hk(x). The new constraints readHm(x)
5Pm(x)1Hm@X,q,p;x), where Hm@X,q,p;x) are ‘‘true
Hamiltonians.’’
7-3
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The variablesXm(x) describe embeddings of the thre
dimensional Cauchy surfaceS with coordinatesxk into a
four-dimensional background manifoldM with coordinates
Xm. The function*Sd3xN m(x)Hm(x)de generates an infini-
tesimal canonical transformation in the phase space tha
scribes the dynamical evolution from the slice defined by
embeddingXm(x) to the slice defined by the embeddin
Xm(x)1N m(x)de. In this way, the dynamics is made com
pletely independent from any additional structure onM such
as a particular foliation.

If a transformation~6! exists, one can go a step furth
and pass to what Kucharˇ @18# called the Heisenberg pictur
~see also Kijowski@20#!. This is another canonical transfo
mation,

Xm~x!,Pm~x!,qa~x!,pa~x!°Xm~x!,Hm~x!,q0
a~x!,p0a~x!,

~7!

whereq0
a(x) and p0a(x) are values ofqa(x) and pa(x) at

some particular embeddingX0
m(x). Clearly, q0

a(x) and
p0a(x) are constants of motion:

$q0
a~x!,Hm~y!%5$p0a~x!,Hm~x!%50,

so that the action becomes

S5E dtE
S
d3x„p0a~x!q̇0

a~x!1Hm~x!Ẋm~x!

2N m~x!Hm~x!…; ~8!

this is a special case of the form of the action after the fi
transformation, but the true Hamiltonians are zero and
P’s are identical to the constraints now. It is the transform
tions ~6! and ~7! and the corresponding variables that w
shall callKuchař decomposition.

It is clear that Kucharˇ decomposition must implicitly in-
clude a gauge fixing not only because it leads to a w
defined background manifoldM, but also to a fixed coordi-
nate systemXm on it. Indeed, Kucharˇ decomposition also
defines a particular set of metric fields onM by one of the
canonical transformation equations, namely that of the fo

gkl~x!5gmn~q~x!,p~x!,X~x!!X,k
m ~x!X,l

n ~x!

for any embeddingXm(x), where gmn(q,p,X) is a metric
field for any value of the variablesqa(x) andpa(x) ~see, e.g.
Kuchař, Romano and Varadarajan@21#!. The KRV metric
gmn(q,p,X) is clearly an analog of the metric~1! @or ~3!#: q
andp play the role of the Schwarzschild massM, andX that
of the Eddington-Finkelstein~Kruskal! coordinates.

In the present paper, we shall describe Kucharˇ decompo-
sition in geometric~that is, coordinate-free! terms.

III. THE GENERALLY COVARIANT MODELS

We shall consider a class of constrained dynamical s
tems that are in certain respects similar to general relativ
As examples, general relativity, possibly coupled to ma
fields, 211 gravity @22#, possibly with particle-like sources
02403
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and the spherically symmetric gravitating thin shell@23# can
be mentioned. In this section, we define the class by a lis
properties. For some of the models named above, not a
these properties have been fully established yet.

A. The form of dynamical trajectories

A dynamical trajectory—or classical solution—of eac
such model consists of two parts. The first part is a spacet
(M,g), whereM is a manifold of dimensionD andg is a
metric of ~Lorentzian! signatureD22. Each such spacetim
will be called asolution spacetime. Second, any dynamica
trajectory may contain additional fields and branes~submani-
folds of M carrying other fields—they play the role of tra
jectories of particles, strings, shells etc.! on M, which we
shall describe by the symbolf; thus a dynamical trajectory
can be denoted by (M,g,f). Just for the sake of simplicity
we assume that there are no gauge fields withinf, but this
restriction can be removed easily.

B. Diffeomorphism invariance

The dynamical equations of each such model are ge
ally covariant@24,39,40# with respect to all coordinate trans
formations onM. This implies that any systemg andf of
fields and branes satisfying the dynamical equations o
manifoldM can be pushed forward by any diffeomorphis
wPDiff M to a different setw* g and w* f on M, which
also satisfies the dynamical equations. Indeed, ifX are any
coordinates onM, andg(X) and f(X) the components of
all fields and branes with respect toX, thenw* g and w* f
have exactly the same components with respect to
pushed-forward coordinatesX8ªX+w21. They satisfy,
therefore, the dynamical equations of exactly the same fo
Observe that even the spinor fields can be pushed forwar
this way, because the metric is, so the push-forward of
D-frame that is orthonormal with respect to the metricg will
be orthonormal with respect tow* g.

Hence, if (M,g,f) is a dynamical trajectory, then
(M,w* g,w* f) is also one for anywP Diff M. This feature
is called diffeomorphism invariance. In general, the se
(w* g,w* f) of fields and branes onM is different from the
set (g,f). However, we are going to treat them as physica
equivalent if onlywPDiff `M, where Diff̀ M is a subgroup
of Diff M composed of those diffeomorphisms that a
‘‘trivial at infinity.’’ For example, if the solution spacetime is
asymptotically flat, the elements of Diff`M must move nei-
ther the points at the infinity nor the frames at these poin
ForM spatially compact, there is no ‘‘infinity’’ and Diff̀M
simply coincides with the entire diffeomorphism group D
M. Thus, the physical state of the system under consid
ation is always described by a whole class of equivalent
jectoriesmodulothe action of the group Diff̀M. We denote
such a class$(M,g,f)%, where (M,g,f) is a particular set
of fields and branes onM satisfying the dynamical equa
tions.

Even if the whole group DiffM ~i.e., also those diffeo-
morphisms which are non-trivial ‘‘at infinity’’! forms the
symmetry group of the theory, the gauge group of the mo
will be constructed only from the subgroup Diff`M. The
7-4
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reason for this decision is obvious if we think e.g. abo
special-relativistic mechanics of a free particle: consider
two motions as being physically equivalent if they only d
fer by the action of an element of a symmetry group~in that
case it would be the Poincare´ group! would be an abuse o
the very notion of symmetry in physics. The physical pha
space resulting from such a construction would consist o
single equivalence class, composed of all possible phys
situations. In such a zero-dimensional space no non-tri
dynamics is possible.

C. The initial data

We assume further that each model determines a clas
(D21)-dimensional manifolds; each such manifoldS is
calledinitial manifold. Further, it also determines a class o
system of some fields and membranesg, c, ġ andḟ on S.
The object (S,g,c,ġ,ċ) built up from the elements of the
classes is then called aninitial datum of the model. For ex-
ample, in general relativity, any three-dimensional Riema
ian manifold can serve as an initial manifold; the fieldg is a
Riemann metric on it,ġ is a symmetric tensor fieldKkl on S

and there is noc and ċ.
An important connection of initial data to the dynamic

trajectories is the following. Let (M,g,f) be a dynamical
trajectory; then, (D21)-dimensional submanifolds ofM
satisfying certain requirements are calledCauchy surfacesin
M. Each Cauchy surface is a possible initial manifold fro
the class above. LetS be a Cauchy surface for the dynamic
trajectory (M,g,f); then the fields and branesg andf de-
termine a unique initial datum (S,g,c,ġ,ċ). For example,g
andc are the pull-backs of the fields to, and intersections
the branes with, the surfaceS; ġ andḟ are some geometri
cal quantities onS constructed from the fields and their fir
derivatives atS, and from projections intoS of the normal-
ized D-velocities of the branes. Such an initial datum
called inducedon the Cauchy surfaceS by the dynamical
trajectory (M,g,f). Then the dynamical equations~and the
asymptotic conditions forg andf) of the model imply some
asymptotic conditions forg, c, ġ andḟ and some relations
between them onS that are calledconstraints.

D. The existence and uniqueness of dynamical trajectories

We assume further that the dynamical equations and
initial data have the following property. For each initial d
tum (S,g,c,ġ,ċ) that satisfies the constraints there is
unique Diff `(S3R)-class $(S3R,g,f)% of maximal dy-
namical trajectories such that each element (S3R,g,f) of
the class contains a Cauchy surface on which the indu
datum is diffeomorphic to (S,g,c,ġ,ċ). This implies that
the set of objects defining initial data must be complete i
certain sense.

The uniqueness of the maximal dynamical trajectory
understood in the sense of Choquet-Bruhat and Geroch@25#.
It has been shown for general relativity that the solut
spacetimes of maximal dynamical trajectories are glob
hyperbolic; we will assume the same property for all o
02403
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models. According to a theorem of Geroch@26#, each glo-
bally hyperbolic spacetime in general relativity can be co
pletely foliated by spacelike hypersurfaces, each of them
ing diffeomorphic toS. This leads us to assume thatM
5S3R.

The uniqueness implies the following property of the d
namical equations. Suppose that (M,g,f) is a maximal dy-
namical trajectory for the initial datum (S,g,c,ġ,ċ) @so
(S,g,c,ġ,ċ) satisfies the constraints and the asympto
conditions#. Let S8 be an arbitrary Cauchy surface inM,
and the initial datum (S8,g8,c8,ġ8,ċ8) be induced by the
dynamical trajectory (M,g,f) on S8. Then
(S8,g8,c8,ġ8,ċ8) satisfies the constraints and th
asymptotic conditions, and any representative (M,g8,f8) of
the unique maximal dynamical trajectory corresponding
(S8,g8,c8,ġ8,ċ8) is diffeomorphic to (M,g,f).

E. The phase space

Let us consider the setG18 of all initial data, and the subse
G1 of those data that satisfy the constraints~and asymptotic
conditions!. In the case of spatially compact sectors, we e
clude all data fromG18 that lie in G1 and determine maxima
dynamical trajectories admitting any symmetry~or any sym-
metry that is higher than the symmetry following from th
definition of the model!. It seems that this deleting is no
necessary@15# for sectors that are not spatially compac
Thus, not only~global! Killing vector fields in the solution
spacetimes (M,g) are forbidden, but also any finite~dis-
crete! symmetry. Let us denote the resulting sets byG28 and
G2. We assume that a subsetG8 of G28 has been organized in
such a way thatG8 is a manifold modeled on a Banach spa
and GªG8ùG2 is a closed submanifold ofG8. In general,
G8 is an open submanifold of the phase space of the mo
In general relativity,G was shown to be aC`-submanifold
~for reviews, see Fischer and Marden@27# and Marsden@15#!
The condition of no symmetry~even a discrete one! for the
spatially compact sectors is necessary for the constructio
the covariant gauge fixing in the next section to work.

We assume that each model defines a symplectic formV8
on G8 ~this may be determined by the variational principle
the model under study—for more discussion, see Kijow
and Tulczyjew@28#!. For example, in general relativity,V8
5dQ8 and Q85*Sd3x pkl(x)dgkl(x), where pkl

ªDet(gmn)
1/2(gklg i j 2gkig l j )Ki j is a super-local functiona

of gkl and Kkl . We assume further thatG is a coisotropic
@13# submanifold ofG8 with respect toV8. That is the fol-
lowing property. LetpPG and letLp(G) be a subspace o
Tp(G8) defined by

Lp~G!ª$vPTp~G8!uV8~v,u!50 ;uPTp~G!%. ~9!

One can write alternatively@13# Lp(G)5 orthV8Tp(G). G is
coisotropic ifLp(G),Tp(G). Hence, the pull-backV of V8
to G is a presymplectic form onG. The spaceLp(G) is called
the characteristic spaceof V.

The subbundleL(G)ª$„p,Lp(G)…upPG% of the tangent
bundle T(G) is an integrable subbundle, becauseV is
7-5
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closed; it is called thecharacteristic bundleof V. Let us call
the maximal integral manifolds ofL(G) c-orbits.

In the case of infinite-dimensional models, addition
model-specific assumptions@15,27# are needed for the proof
that G is a submanifold and that c-orbits with suitable pro
erties exist.

F. Relation between the c-orbits and the maximal dynamical
trajectories

We assume that there is a relation between c-orbits
dynamical trajectories of the model as follows. Leto be a
c-orbit andpPo. Let p be the initial datum (S,g,c,ġ,ċ)
and let (M,g,f) be a maximal development o
(S,g,c,ġ,ċ). Then the initial datum (S8,g8,c8,ġ8,ċ8)
corresponding to any pointqPo defines a unique Cauch
surfaceS8 in M, by the condition that the dynamical traje
tory (M,g,f) induces the initial datum (S8,g8,c8,ġ8,ċ8)
on S8. Moreover,S8 can be obtained fromS by the action
of somewPDiff `M. In general, all Cauchy surfaces th
correspond to points in the c-orbito form an open subset o
M.

If the Cauchy surfaces are not compact, then they m
satisfy certain boundary conditions. For example, in the c
of asymptotically flat solution spacetimes, the Cauchy s
faces must be asymptotically flat and allcoincidewith each
other at infinity in order to define points of the same c-or
in G. We can also say: letp andq be any two points from the
same c-orbito. Let the corresponding initial data determin
dynamical trajectories (M,g,f) and (M8,g8,f8). Then
these two dynamical trajectories are diffeomorphic to e
other. In this way, any c-orbito determines a class o
Diff `M-equivalent maximal dynamical trajectories.

Observe that a dynamical trajectory (M,g,f) corre-
sponding to the datum (S,g,c,ġ,ċ) containsexactly one
surfaceS,M such that the datum induced onS coincides
with (S,g,c,ġ,ċ). Indeed, two different Cauchy surface
carrying initial data that are Diff̀M-equivalent to each
other would imply existence of a non-trivial symmetry of th
dynamical trajectory (M,g,f), and such points have bee
excluded fromG.

G. The physical phase space

The last important property we assume is that the se
the c-orbits in the constraint surface form aquotient manifold
@14# G/o with the natural projectionp:G°G/o being asub-
mersion@14#. Furthermore, there is a unique symplectic fo
Ṽ on G/o such thatV5p* Ṽ, wherep* is the pull-back of
forms by p. Our reduced symplectic space (G/o,Ṽ) is, in
general, an open subset of thephysical phase space. For
example, in general relativity, some aspects of the phys
phase space are discussed by Marsden@15# and Fischer and
Moncrief @29#.

We maintain that all information about physical prope
ties of the models is contained in the physical phase spa
One is, however, forced to use the extended structuresG and
G8, because it is often difficult in practice to perform th
02403
,

-

d

st
e

r-

t

h

of

al

es.

reduction to the physical phase space and to find an exp
parametrization of it.

IV. COVARIANT GAUGE FIXINGS

The general structure described in the previous sec
enables us to work out a geometric definition of gauge fix
based on the ideas of the previous paper@7#. This will con-
cern only the diffeomorphism group—as explained, we
sume that there are no other gauge groups acting.

Let o be an arbitrary c-orbit,So be the manifold structure
of the corresponding Cauchy surfaces and$(M,g,f)%o the
diffeomorphism class of the maximal dynamical trajector
determined byo. Let us choose one fixed representati
(Mo ,go ,fo) from this class for eacho. Consider the set
Embc(So ,Mo) of all embeddings ofSo in Mo such that the
embedded submanifold is a Cauchy surface; we call s
embeddingsCauchy embeddings. If So is not compact, we
restrict the space Embc(So ,Mo) to a class of embedding
that satisfy the boundary conditions formulated in Sec. III
We assume that Embc(So ,Mo) is an open subset of th
space Emb(So ,Mo) of all ~smooth! embeddings ofSo in
Mo ~that also satisfy the boundary conditions in the no
compact case!. Discussion of this point for the compact cas
is given in Isham and Kucharˇ @30#. Then it follows from the
assumptions in Sec. III F that there is an injection

ro :o°Embc~So ,Mo!

such that each pointp of o is mapped onto that Cauch
surfaceh(So) in Mo , hPEmbc(So ,Mo), on which the ini-
tial datump is induced by (Mo ,go ,fo). Such a mapro is
not unique. It depends on the chosen representa
(Mo ,go ,fo), but any two possiblero’s differ by a diffeo-
morphismwPDiff `Mo , ro85w+ro .

We assume thatG8 and Embc(So ,Mo) has been given
differentiable structure such that the mapro together with its
inverse become differentiable. This implies the followin
properties. Leth:So°Mo be a point of Embc(So ,Mo) that
lies in the range ofro . Then the elements of the tange
spaceThEmbc(So ,Mo) to Embc(So ,Mo) at h are vector
fieldsV(x) alongh(So) in Mo , wherexPh(So) ~they may
have to satisfy some suitable smoothness and boundary
ditions @30#!; all such vector fields form the tangent spa
ThEmbc(So ,Mo). In particular, the following conditions are
to be satisfied:

~1! There is a smooth family of smooth curvesCx(l) in
Mo such that Cx(0)5x and Cx8(0)5V(x) for each x
Ph(So).

~2! There is ane.0 such thatCx(l) is well defined for
eachxPh(So) and eachl such thatulu,e.

~3! For any fixed l such that ulu,e, the expression
Cx(l) defines a mapcl :x°Mo for all xPh(So) by
cl(x)5Cx(l); then we require thatcl+h:So°Mo belongs
to Embc(So ,Mo) for all l, or cl(h(So)) is a Cauchy sur-
face inMo for all lP(2e,e).

If there is such a family, then there are many.
Consider the mapro

21(cl(h(So))):l°o. It defines a
curve through the pointp5ro

21(h(So)) in o. The differen-
7-6
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tiability requirements onro mean that it is a smooth curve i
o with a well-defined tangential vectorv at pPo; v is non-
zero if V(x)Þ0, is tangential too and depends only on th
vector fieldV(x), not on a particular family of curvesCx(l).

In the opposite direction, letpPo andv be a vector atp
tangential too. Then there is a curveC̃(l) in o for ulu,e,
e.0, such thatC̃(0)5p and C̃8(0)5v and the mapro
determines a family of Cauchy surfaces$Sl% in Mo by Sl

5ro(C̃(l))(So). In particular, any fixed pointxPSo will
be mapped by the Cauchy embeddingro(C̃(l)) to a point
that we denote byCx(l) in a neighborhood ofro(p)(x).
These curves have tangent vectors for eachx at l50 that we
denote byV(x); hence

V~x!5„ro(C~l!)~x!…8ul50 .

Again, V(x) must be fromTro(p)Emb(So ,Mo), non-zero if

vÞ0 and independent of a particular curveC̃(l) chosen in
o. For example, in general relativity, this differentiability ha
been shown by Moncrief@31#.

Consider the submanifoldGS containing all points ofG
that correspond to a fixed initial manifoldS. As a rule, dif-
ferent GS’s are topologically separated inG, and can be
called~topological! sectorsof the model. Acovariant gauge
fixing in GS is the set of maps$io% that satisfies two require
ments:

~1! For each c-orbitoPGS /o, io :Mo°S3R is a well-
defined differentiable injection with differentiable inverse.

Any such map induces a differentiable injectio
ĩo :Emb(S,Mo)°Emb(S,S3R) with differentiable in-
verse by ĩohªio+h for any hPEmb(S,Mo). Define
s:GS° Emb(S,S3R) by suoª ĩo+ro for all oPGS /o.
Then

~2! s is a differentiable map ofGS into Emb(S,S3R).
Observe that the mapsro are arbitrary and are not sup

posed to have any relations for differento’s so that the dy-
namical trajectories (Mo ,go ,fo) and (Mo8 ,go8 ,fo8) need
not converge to each other wheno8→o. However,
(Mo8 ,go8 ,fo8) will converge to some dynamical trajector
that is Diff̀ Mo-equivalent to (Mo ,go ,fo) as o8→o and
we can include such diffeomorphisms intoio’s to makes
differentiable.

The condition~1! and the discussion before it imply tha
suo is a differentiable injection with differentiable invers
for anyoPG/o. The condition~2! implies then that the map
p ands are transversal to each other. That is the followi
property. Letp be an arbitrary point ofG. Then any vector
vPTp(G) that satisfies both equationsds(v)50 and
dp(v)50 must be the zero vector.

We shall call the pair (p,s) of maps a Kuchař
G-decomposition~recall thatp is the projection defined in
Sec. III G!. Thus, for anypPGS , p(p) is a point in the
physical phase space of the model, ands(p) is some embed-
ding, s(p):S°S3R, giving the position of ‘‘the slice’’S
in ‘‘the background manifold’’S3R.

The image ofGS underp3s is a subset (p3s)(GS) of
the Cartesian product manifoldKSª(GS /o)3Emb(S,
02403
S3R). s(o) is some open subset of Emb(S,S3R) for
eacho. These subsets can vary with varyingoPGS /o. In-
deed, consider an embeddingh:S°(S3R) and study its
pull-back h8:S°Mo by io defined byh8ªio

21+h. Such a
pull-back need not exist, becauseio is only injection so there
may be points inS3R that do not lie in the range ofio and
h(S) can contain such points. Even if the pull-back exists
need not define a spacelike surface in (Mo ,go), and even if
the surface is spacelike, it need not be a Cauchy surface
a different c-orbito8, o8Þo, the io8-pull-back of the same
embeddingh can have quite different properties as to
existence and as to its being a Cauchy surface in (Mo8 ,go8).
Thus, the projection of the subset (p3s)(GS) of KS to
Emb(S,S3R) may be empty; on the other hand, its proje
tion ontoGS /o coincides withGS /o.

From our definitions and assumptions, it follows that t
mapp3s:GS°KS is a differentiable injection with differ-
entiable inverse. Indeed, it is an injection because all po
that have the same projection by the submersionp form a
c-orbit o, o is mapped by the bijectionro to Embc(So ,Mo),
and this set by the injectionĩo induced by io to
s(o),Emb(S,S3R) ~of course, S is diffeomorphic to
So). It is differentiable, because both maps,p ands, are. It
has a differentiable inverse becausep ands are transversal.

Then there is a well-defined presymplectic formVK on
(p3s)(GS), VKª(p3s)* V, the push-forward by the
mapp3s of the presymplectic formV on GS . It is easy to
see what the structure ofVK is: Its characteristic subspace
are tangential to Emb(S,S3R) at any point (p(p),s(p)),
where o is the c-orbit throughp, o5p21(p(p)). Its pull-
back to GS /o coincides with the formṼ defined in Sec.
III G.

We can go further and consider the spaceKS to be a
trivialization of a fiber bundleES with the base spaceG/o,
the typical fiber Emb(S,S3R) and the group
Diff `(S3R). Eachs can be decomposed into a direct m
k:GS°ES , which is a differentiable injection with differen
tiable inverse, a trivializationt:ES°KS , and the projection
h:KS°Emb(S,S3R), so thats5h+t+k. k is independent
of covariant gauge fixings; each fixing, however, definess,
and so a trivializationt of ES .

The covariant gauge fixing determines also a unique se
fields and branes with a domain in the background manif
S3R for any dynamical trajectory, that is for any c-orbito
PG/o; let us denote this set by (g(o),f(o)), where o
PG/o. This can be seen as follows. For each orbito, we
have a definite representative (Mo ,go ,fo); the spacetime
manifold Mo is mapped by the diffeomorphismio into the
background manifoldM; hence, we can define

g~o!ªio* go , f~o!ªio* fo , ~10!

whereio* is the push-forward defined by the mapio . g(o)
is the coordinate-free version of the Kucharˇ, Romano and
Varadarajan metric@21# mentioned in Sec. IV.

Observe that the unique set (g(o),f(o)) is exactly what
one expects a gauge fixing to deliver: a unique set of fie
and branes on the background manifoldS3R for each class
7-7
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$(Mo ,go ,fo)%. In fact, the set (g(o),f(o)) represents wha
can be called a locallycomplete solutionto the dynamical
equations: each dynamical trajectory of an open set is
tained by a suitable choice ofo.

In this section, we have deliberately left the maps com-
pletely general. Of course, one can easily construct a mas
if one knows acompletecoordinate condition that works in
neighborhood of awholeCauchy surface and admits a suf
ciently large set of initial data on this surface to cover

wholeopen setŨ in the physical phase space. A ‘‘complete
condition defines a unique coordinate system in certain
main in each maximal dynamical trajectory corresponding

a point of Ũ. For example, the harmonic coordinate con
tion is not complete in this sense. Some conditions w
even globally. An example for general relativity coupled
special kind of continuous matter@32,33# has been given. Fo
pure gravity, suppose e.g. that all spatially compact maxi
solutions of Einstein’s equations admit a unique and co
plete foliation by surfacesSK of constant mean external cu
vatureK, KªqklKkl ~this is a form of the well-known CMC
hypothesis!. Then one can stipulate that the surfacesSK are
mapped onto (S,K) in (S3R) by eachio and hope that the
map io can be completed suitably inside of eachSK . Then
the corresponding covariant gauge fixing is also global.
general, it seems plausible that any construction of a part
lar maps can be based on a set of differentiable sections
the submersionp on G.

The simplest construction ofs, however, would starts
from a locally complete solution (M,g(o),f(o)), if such is
known. EachoPG/o is determined by values of a suitab
set of constants of motion andp is trivial. For eacho and
each Cauchy embeddingh:S°M, one then calculates th

initial datum (S,g,c,ġ,ċ) that the fields and branesg(o)
and f(o) induce onh(S). This defines (so)21. We shall
use this construction in subsequent papers.

V. EXTENSIONS OF KUCHAŘ DECOMPOSITIONS
FROM G TO G8

A covariant gauge fixing described in the previous sect
defines a division of variables into two groups: the set
dynamical variables that determine points of the phys
phase spaceG/o and the set of kinematical variables th
describe an embedding of the Cauchy surfaceS into a back-
ground manifoldM; this division is done without use o
coordinates in any of these manifolds. It is, however, not
a full Kuchařdecomposition as outlined in Sec. II, because
works only inside the constraint surfaceG, whereas the origi-
nal Kucharˇ decomposition holds in a neighborhood ofG in
the phase spaceG8. In the present section, we shall exte
gauge fixings and Kucharˇ decompositions fromG to G8. We
shall work with a fixedS-sector of the model, and we leav
out the corresponding indexS everywhere.

Let us first describe what exactly is the problem. Clea
the components of the symplectic formV8 on G8 with re-
spect to Kucharˇ coordinates are
02403
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S
d3x„dHm~x!`dXm~x!1dpa~x!`dqa~x!….

This can be written asV85V1%'V2, where

V1ªdE
S
d3x pa~x!`dqa~x!

is a symplectic form onG/o with coordinatespa(x) and
qa(x); in the form

V2ªdE
S
d3x Hm~x!`dXm~x! ~11!

we clearly recognize the canonical symplectic structure
T* (Emb(S,S3R)), whereXm(x) is a point of the manifold
Emb(S,S3R) andHm(x) is a cotangent vector atXm(x).

The set (p3s)(G) is a submanifold ofK, which is in
turn a submanifold ofK8ª(G/o)3T* (Emb(S,S3R)) that
is determined by the equationsHm(x)50 in K8. Hence,
p3s injectsG symplectically intoK8. What we are looking
for is, therefore, a symplectic injectionw that maps a neigh-
borhoodU8 of G in G8 into K8 so thatwuG5p3s.

We shall show the existence of such an extensionw in
three steps. The proof will be given in a form that is imm
diately valid only for finite-dimensional manifolds. Afte
each step, however, we shall discuss the points that do
admit a straightforward generalization to infinite dimension
cases and show how the argument can be improved.

A. Extension of p3s to the tangent space ofG in G8

First, we extendp3s just ‘‘to the first order’’ atG, that
is, we construct a mapw1 :T8(G)°T(K8), whereT8(G) is
the vector bundle with the base spaceG whose fibers are the
spacesTp(G8) tangent toG8 at all pPG; it is a subbundle of
T(G8) which could also be denoted byTp(G8)uG . The map
w1 must have the following properties:~i! w1 is a vector
bundle morphism,~ii ! w1uT(G)5d(p3s), and ~iii ! w1 is
symplectic. Because of~i!, w1 can be decomposed@14# into a
set of maps containing a base-space mapw1b :G°K, and
fiber mapsw1 f p :T8(G)°Tw1b(p)(K8) for eachpPG; w1b is

a differentiable injection andw1 f p is a linear isomorphism
for eachpPG. Because of~ii !, w1b5p3s and

w1 f puTp(G)5d~p3s!uTp(G) . ~12!

Finally, because of~iii !, w1 f p is a symplectic isomorphism a
eachpPG.

The mapw1 f p is, therefore, already determined on th
subspaceTp(G) of Tp8(G), and we have to specify it only on
a subspace, say,Np(G) of Tp8(G) such that Tp8(G)
5Np(G) % Tp(G).

The symplectic formsV8 and the pull-backw1 f p* VK8
must, moreover, coincide onTp8(G) for all pPG; they do so
already onTp(G). This suggests an idea for the constructio
The imageTw1b(p)(K8) splits in a way adapted to the sym

plectic formVK8 :
7-8
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Tw1b(p)~K8!5Tw1b(p)~K ! % Ts(p)„Ts~p!
* ~Emb~S,S3R!!…,

where the space Ts(p)„Ts(p)* (Emb(S,S3R))… is
VK8-isotropic ~i.e., restriction ofVK8 to this space is a zero
form! and VK8-orthogonal toTp(p)(G/o). Hence, the pre-
imageNp(G) of this space,

Np~G!ªw1 f p
21 Ts(p)„Ts~p!

* ~Emb~S,S3R!!… ~13!

must be isotropic inTp8(G) with respect to V8 and
V8-orthogonal to Qp(G), which is the pre-image o
Tp(p)(G/o), Qp(G)ªw1 f p

21 Tp(p)(G/o). However, G/o,K,
so w1 f p

21 on G/o is (d(p3s))21, and we have finally

Qp~G!ª~d~p3s!!21Tp(p)~G/o!.

Q(G) must be a smooth vector bundle whose basis is
constraint manifold; our construction starts from this bund

The crucial observation now is that any subspaceNp(G)
of Tp8(G) that satisfies ~a! Tp8(G)5Np(G) % Tp(G), ~b!
Np(G) is V8-orthogonal to Qp(G) and ~c! Np(G) is
V8-isotropic, defines a suitable symplectic mapw1 f p by the
requirement~13!: asw1 f p is linear, and because of the co
dition ~a!, the knowledge ofw1 f p on Tp(G) @which is well
known, see Eq.~12!# and on Np(G) determines w1 f p
uniquely.

As is already suggested by the notation,N(G) is to be a
smooth vector bundle in order thatw1 is a differentiable
map. A construction of an example of such anN(G) would
show the existence ofw1.

The vector bundleQ(G) is a subbundle ofT(G) which, in
turn, is a subbundle ofT8(G). As G is a submanifold ofG8,
there must be a vector bundleN(G) such that

T8~G!5N~G! % T~G!, ~14!

whereN(G) is a~smooth! vector bundle. IfN(G) is isotropic
and orthogonal toQ(G), then it is the desired bundle. I
Np(G) is not orthogonal toQp(G), we can find a continuous
linear mapcQ :Np(G)°Tp(G8) such thatcQ(Np(G)) is or-
thogonal toQp(G) andTp(G8)5cQ(Np(G)) % Tp(G) as fol-
lows.

Recall thatLp(G) is the characteristic subspace, Eq.~9!,
and that

Tp~G!5Lp~G! % Qp~G! ~15!

for all pPG, becausep ands are transversal to each othe
It follows that V8 must be non-degenerate onQp(G). In-
deed, if vPQp(G) were V8-orthogonal to all vectors o
Qp(G), then it would also beV8-orthogonal to all ofTp(G)
and so it would belong toLp(G). Then, however,v50 be-
cause of Eq.~15!.

If V8 is non-degenerate onQp(G), then there is a unique
vectoraPQp(G) for each linear functiona on Qp(G) such
that a(v)5V8(a,v) for all vPQp(G). Let wPTp8(G); then
V8(w,•) is a linear function onQp(G) and it determines,
therefore, a unique elementvQ(w)PQp(G) such that

V8~w,v !5V8~vQ~w!,v ! ~16!
02403
e
.

for all vPQp(G); the mapvQ :Tp8(G)°Qp(G) is linear. The
desired mapcQ is then defined by

cQª idNp(G)2vQuNp(G) . ~17!

Orthogonality can be shown as follows. LetnPNp(G),
and let us calculateV8„cQ(n),q… for any qPQp(G):

V8~n2vQ~n!,q!5V8~n,q!2V8~vQ~n!,q!50

because of Eq.~16!. Moreover, anyvPTp8(G) can be written
as v5n1t, wherenPNp(G) and tPTp(G); then we have
also

v5cQ~n!1„t1vQ~n!…. ~18!

From the definition ofvQ , it follows that vQ(n)PQp(G)
for all nPNp(G), so „t1vQ(n)…PTp(G) and
cQ(Np(G))ùTp(G)50. Then the decomposition~18! is
unique and the property follows. Thus, we have proved
~14! with Np(G) being everywhere orthogonal toQp(G).

If Np(G) is orthogonal but not isotropic, we can improv
it further as follows. Consider the spaceQp

'(G) defined by
Qp

'(G)ªorthV8Qp(G). Here, we denote the space of all ve
tors of Tp8(G) that are V8-orthogonal to Qp(G) by
orthV8Qp(G). As V8uQp(G) is not degenerate, we must hav

Tp8~G!5Qp~G! % Qp
'~G!. ~19!

Indeed,Qp
'(G) can be constructed from any linear compl

ment Vp(G) of Qp(G) in Tp8(G) by Qp
'(G)5cQ(Vp(G)),

wherecQ is defined by Eq.~17! and the proof is analogou
to that forcQ(Np(G)).

The spacesNp(G) and Lp(G) are subspaces ofQp
'(G).

They are disjoint, Np(G)ùLp(G)5$0%, because
Np(G)ùTp(G)5$0% and Lp(G),Tp(G). Moreover, if v
PQp

'(G), thenv5n1t, wherenPNp(G) andtPTp(G) and
also t5x1q, where xPLp(G) and qPQp(G) because of
Eq. ~15!. Thus, we obtain thatv5n1x1q. Now, v
PQp

'(G), nPQp
'(G), and xPQp

'(G), hence also q
PQp

'(G), and asQp
'(G)ùQp(G)5$0%, we must haveq

50, sov5n1x. We have thus shown that

Qp
'~G!5Np~G! % Lp~G!. ~20!

From the definition~9! of Lp(G) it follows that each vector
of Qp

'(G) that isV8-orthogonal to all ofLp(G) must lie in
Lp(G). For such a vector isV8-orthogonal to bothLp(G)
andQp(G), and so to all ofTp(G) because of Eq.~15!.

Now suppose thata:Np(G)°R is any linear function on
Np(G). We can extend such a function toā:Qp

'(G)°R by
requiring

āuLp(G)50. ~21!

As V8 is non-degenerate onQp
'(G), there is a unique vecto

bPQp
'(G) such that ā(u)5V8(b,u) for all uPQp

'(G).
However, such a vectorb must then lie inLp(G) because of
7-9
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PETR HÁJÍČEK AND JERZY KIJOWSKI PHYSICAL REVIEW D61 024037
Eq. ~21!. Hence: for any linear functiona on Np(G), there is
l PLp(G) such thata(u)5V8( l ,u) for all uPQp

'(G).
Let nPNp(G); thenV8(v,n) can be considered as a lin

ear function onNp(G) for anyvPTp8(G). There is, therefore
a unique elementvL(v) of Lp(G) such that

V8~v,n!5V8„vL~v !,n…. ~22!

From its construction, it follows thatvL :Tp8(G)°Lp(G) is a
linear map.

Consider the linear mapcL :Np(G)°Tp8(G) defined by

cL~n!ªn2~1/2!vL~n!

for all nPNp(G). cL is an injection, because the equatio
n5(1/2)vL(n) can have only zero solutions. Indeed, t
left-hand side is an element ofNp(G) and the right-hand side
is an element ofLp(G). Moreover, the image,cL(Np(G)) is
isotropic; this can be seen as follows. Using the definition
cL we obtain

V8„cL~n1!,cL~n2!…5V8~n1 ,n2!2~1/2!V8~vL~n1!,n2!

1~1/2!V8~vL~n2!,n1!

1~1/4!V8~vL~n1!,vL~n2!!.

The last term is zero, becausevL(n1,2)PLp(G) and we fi-
nally have from Eq.~22!

V8~cL~n1!,cL~n2!!5V8~n1 ,n2!2~1/2!V8~n1 ,n2!

1~1/2!V8~n2 ,n1!50.

The last property we need is that any vectorq'PQp
'(G)

can be written as a sum,q'5z1y, wherezPcL(Np(G))
and yPLp(G). However, it holds thatq'5n1x, wheren
PNp(G) and xPLp(G). Then q'5„n2(1/2)vL(n)…1„x
1(1/2)vL(n)… soz5cL(n) andy5x1vL(n) is the desired
decomposition.

The restriction ofw1 f p to Np(G) is uniquely determined
by the condition thatw1 f p :Tp8(G)°Tw1b(p)(K8) is symplec-

tic as follows. LetnPNp(G), then there is a unique linea
function V8(n,•) on Lp(G) defined byn. Lp(G) is mapped
by w1 f puLp(G)5ds onto Ts(p)(Emb(S,S3R)), so

V8(n,ds21
•) is a linear function on Ts(p)(Emb(S,

S3R)). Every linear functiona on Ts(p)(Emb(S,S3R))
determines, in turn, a unique elementv of
Ts(p)„Ts(p)* (Emb(S,S3R))…5w1 f pNp(G) such thatV8(v,
•)5a. We must set

w1 f p~n!ªv,

or elsew1 f p is not symplectic. Hence, the choice of the su
spaceNp(G) determinesw1 f p .

The above construction ofNp(G) that satisfies the re
quirements~a!, ~b! and ~c! is based on the smooth vecto
bundlesQ(G) andL(G) and on the differentiable symplecti
form V8; the result is, therefore, a smooth vector bun
N(G) .
02403
f

-

In the case that the spaceTp8(G) is an infinite-dimensional
Banach space, two aspects of our construction become p
lematical.

~1! If a Banach spaceB1 is, as a linear space, a direct su
of two other linear~Banach! spaces,B15B2% B3, then the
corresponding map betweenB1 and B23B3 need not be a
topologicalisomorphism. If it is, one says thatB2 splits @14#
B1. Some splittings follow from the assumptions in Se
III E and III G. For example, Eq.~14! follows from G being
a submanifold ofG8, and Eq.~15! follows from p being a
submersion@14#. We however also need Eqs.~19! and ~20!.

~2! The norm definingTp8(G) can restrict the elements o
Tp8(G) so much that the space of all continuous linear fun
tionals on Tp8(G)—the dual spaceTp8* (G)—contains also
functionals that are not of the formV8(u,•) for uPTp8(G),
even ifV8(u,•) is a non-zero functional for all non-zerou’s.
Such aV8 is called aweakly non-degenerateor weaksym-
plectic form @34#. If V8 is weak, the definition of the map
vQ andvL given above does not work.

The way one can cope with these two problems depe
on the topology ofTp8(G). This, however, must be judi
ciously adapted to the nature of each particular model
there does not seem to be any general method. Still,
following scheme has worked for all examples we have c
sidered as yet. First, one defines certain dense subsp
Tp08 (G) and Tp08* (G), of the Banach spacesTp8(G) and
T8p* (G); one can take, for example, the spaces of functio
all of whose derivatives are smooth and which have comp
support. One has to prove thatQp(G)ùTp08 (G) and
Lp(G)ùTp08 (G) are also dense inQp(G) andLp(G), and that
all functionals fromT8p0* (G) have the formV8(u,•) where
uPTp08 (G). Then the construction seems to work for th
corresponding dense subspaces such asQp0

' (G) or
Np0(G)—the topology is nowhere needed. Second, one
to show that the projectors onto the subspaces are contin
with respect to the topology. Then the Banach spaces
easily shown to split and everything works.

B. The pull-back of VK8 to G8

The second step consists of two consecutive pull-ba
that bring the formVK8 to G8.

The restriction to the vector bundleN(G) of the mapw1
constructed in the previous subsection mapsN(G) to the
vector bundle with the base spacew1bG,K, and with the
fibersTs(p)„Ts(p)* (Emb(S,S3R))…,

w1 f pNp~G!5Ts(p)„Ts~p!
* ~Emb~S,S3R!!….

The cotangent spaceTs(p)* (Emb(S,S3R)) is a linear space,
so it can be identified with its tangent space at its zero vec
Hence, with this identification,w1uN(G) can be considered a
a bundle morphism mappingN(G) onto the bundle with the
basisw1bG,K, and the fibersTs(p)* (Emb(S,S3R)). How-
ever, this vector bundle is nothing but a subbundle ofK8
5(G/o)3T* (Emb(S,S3R)). In this way, using the map
w1, we have constructed a bundle morphism betweenN(G)
andK8.
7-10
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Let us denote this morphism byw18 :N(G)°K8 and the
pull-back ofVK8 by w18 to N(G) by V1 , V1ªw18* VK8 . V1

is a symplectic form on the manifoldN(G); that is,V1 is a
bilinear form in the tangent spaceTP(N(G)) at each point
PPN(G). Let P5pPG, thenTp(N(G)) can be decompose
as follows:

Tp~N~G!!5Tp~G! % Tp~Np~G!!.

Again, Tp(Np(G)) can be identified withNp(G), so by Eq.
~14! Tp(N(G))5Tp8(G). From the construction of the ma
w18 , it follows thatV8 coincides withV1 at Tp8(G) for each
pPG, so we can write

V1uG5V8uG . ~23!

Observe thatV1 is a kind of ‘‘constant’’ extension ofV8uG
to the whole bundleN(G).

The construction of our second pull-back uses the th
rem about the existence of tubular neighborhoods@13,14#. A
tubular neighborhood is a generalization of the well-kno
notion of normal coordinate ball. In the case we consider,
theorem states that there is a diffeomorphismw2 :U1°U2,
whereU1 is a neighborhood of the zero sectionG in N(G)
andU2 a neighborhood ofG in G8 such thatdw2uG5 id.

It follows that the pull-backV2ªw2
21* V1 is a symplectic

form on U2. As dw2uG is an identity, we have

V2uG5V1uG . ~24!

Most constructions of this subsection work for infini
dimensions, if we just replace the word ‘‘non-degenerat
by ‘‘weakly non-degenerate’’ everywhere—the difference
not important here. All necessary splittings can easily
shown. The construction of the tubular neighborhood
mostly straightforward, too. However, if a complicated s
has been deleted fromG18 , then one has to use a smoo
partition of unity @14# and it need not be trivial to show it
existence. The proof will depend on the properties of
particular model.

C. Application of the Darboux-Weinstein theorem

This step is an application of the Darboux-Weinste
theorem@10,13#. This is a generalization of the well-know
Darboux theorem saying roughly that if two symplec
forms Va andVb on a manifoldM coincide at a submani
fold N,M, then there is a diffeomorphisml:M°M that,
together with its derivativedl, is trivial at N, and that
l* V25V1 in a neighborhood ofN in M.

Consider the two formsV8 andV2 in U2. Equations~24!
and ~23! imply that V8uG5V2uG , so the conditions of the
Darboux-Weinstein theorem are satisfied. There is, theref
a diffeomorphismw3 :U8°U3 of a neighborhoodU8 of G in
G8 with U3,U2 such thatw3* V25V8.

Let us finally define the mapw by

wªw18+w2
21+w3 ;
02403
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it maps the neighborhoodU8 of G in G8 onto the neighbor-
hoodwU8 of K in K8. From the constructions above, it fo
lows immediately thatw* VK85V8. The mapsw2 and w3

are identities if restricted toG and the restriction ofw18 to G
is p3s. Thus,wuG5p3s and the existence of the exten
sion is shown.

The constructions of this subsection need considera
modification in the case of infinite dimensions. Indeed,
Darboux-Weinstein theorem does not hold for general w
symplectic forms@35#. Marsden has, however, proved a
analogous theorem@15# for weak symplectic forms if certain
additional conditions are imposed, and the conditions
chosen in such a way that most models met in practice
isfy them. Thus, the modification consists of a proof that
particular model under study satisfies the assumptions
Marsden theorem.

The extension constructed in this section is not uniq
Already the step~1! was not unique, because the subspa
Np(G) is determined only up to a symmetric linear map@13#
on Lp(G). The tubular neighborhood of the step~2! is also
quite arbitrary. Finally, the Darboux-Weinstein theore
guarantees just the existence ofw3, but it says nothing abou
its uniqueness.

VI. CONCLUSIONS

We have defined a covariant gauge fixing as pointw
identification of different solution spacetimes with each oth
so that a fixed background manifold has resulted and
dynamics has been reduced to a field dynamics on it.
fixing has first been defined on the constraint manifold of
system; there are very many ways to choose it at least
cally; different gauge fixings are related by elements of
huge Bergmann-Komar group.

We have found a connection between covariant gauge
ings and Kucharˇ G-decompositions of the constraint man
fold: for any fixing, there is exactly one decomposition. T
decomposition itself amounts to a particular choice of~local!
foliation of the constraint manifold that is transversal to t
c-orbits.

Finally, we have shown that any Kucharˇ decomposition of
the constraint surface can be extended to a whole neigh
hood of the constraint surface. This extension is not uniq
In this way, the full Kucharˇ decomposition is doubly non
unique: there are as manyG-decompositions as covarian
gauge fixings, and eachG-decomposition has many exten
sions. However, the form of kinematic term of the Kuchˇ
action ~8! is always the same, the only interesting and no
trivial part being the algebra of the observables, if we allo
for more general@7# algebra than the Heisenberg algebra
q0

a andpa0 in Eq. ~8!. The usefulness of the decompositio
is based on the enormous simplification it brings about in
description of generally covariant systems.

We would like to make two additional remarks. First, th
structure of the weak symplectic manifold (K8,V8) is typical
for the so-calledalready parametrized theoriessuch as a
parametrized scalar field in flat spacetime~see, e.g. Kucharˇ
@36#!. Our construction shows that the generally covaria
models are, in general,not already parametrized theories fo
7-11
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two quite different reasons.~1! We can prove that only al
ways a part of the symplectic manifold of the system has
structure (K8,V8), namely just a sector corresponding to
fixed Cauchy surface. Moreover, we have to exclude po
in the constraint surface that correspond to dynamical tra
tories admitting any symmetry. In fact, Torre@37# has shown
that general relativity cannot be considered as already pa
etrized theory the obstruction coming from points at the c
straint surfaceG that represent Cauchy data for spacetim
with Killing vectors; these points are also excised in o
paper.~2! For each subsystem thatis equivalent to an already
parametrized system, such an equivalence is notunique.
There is one Kucharˇ G-decompositionp3s for each cova-
riant gauge fixing, and there are many different, gauge
pendent, background manifolds. This is in stark contras
the structure of an already parametrized system such a
Kuchař @36#, where there is a unique background manifo
The points of this manifold are defined by the fixed bac
ground metric—the Minkowski metric on it. The constrai
manifold of a generally covariant model is just a bundle w
manydifferent trivializations, unlike that of an already pa
an
,

n,
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tic

d
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,
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rametrized model, which is auniqueCartesian product.
Second, we observe that our construction is closely

lated to the problem of the so-called abelianization of co
straints@38#. Indeed, the new constraints given by the the
rem can be taken as componentsHm(x) of the cotangent
vectors inT* (Emb(S,S3R)) with respect to some coordi
nates onS and onM5S3R. All these ‘‘functions’’ have
vanishing Poisson brackets with each other. Of course
complete system of Abelian constraint functions still ne
not exist, because there need not be global coordinates oS
andM, and the points with symmetries are also exclude
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