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Scattering from an AdS; bubble and an exact Ad3 space
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We investigate the close relationship between the potential and absorption cross section for test fields in an
anti—de Sitter (AdS) bubble(a five-dimensional black hol@nd an exact Adsspace. There are two solutions
in type-IIB string theory: an Adgbubble corresponds to the dilatonic solution, while an exact/siface is
the nondilatonic solution. In order to obtain the cross section for any Ad8ble, we introduce thfput-state
scattering picture with the Adsasymptotically flat space matching procedure. For an exact Ad&ce, one
considers théin}-state scattering picture with the Agt8.dS; matching. Here the non-normalizable modes are
crucially taken into account for the matching procedure. It turns out that the cross sections for the test fields in
an AdS; bubble take the same forms as those in an exactAg8ce. This suggests that in the dilute gas and
low-energy limits, theS matrix for an AdS bubble can be derived from an exact Adsace.

PACS numbgs): 04.70.Bw, 04.50t+h, 04.70.Dy

[. INTRODUCTION because there is no asymptotic state corresponding to particle
at infinity of AdS;. However, the authors if9] calculated

There has been great progress in string theory of théhe gray-body factor for a free scalar and the dilaton both in
D1-D5 brane system with momentum modes along the string/15x St x T4 (an AdS, bubble and AdS X S*x T# (an exact
direction (S). This gives us a five-dimensionéD) black  AdS; space within the type-IIB supergravity. Here in the
hole (Ms) with three charges @,,Qs5,Q,). The first exact AdS calculation we choose the non-normalizable
progress was achieved in the Bekenstein-Hawking entropynodes to obtain the gray-body factor. This corresponds to
[1]. Apart from the success of counting the microstates of ahe AdS$-AdS; matching procedure. This expression denotes
5D black hole through D-brane physics, dynamical considershorthand for a certain choice of boundary conditions where
ations become an important issi®-5]. This is so because non-normalizable modes inject flux into AglSt turns out
the semiclassical absorption cross sectigmray-body factor  that two results of a free scalar are exactly the same. And the
for a test field arises as a consequence of its potential barrigesults for the dilaton are the same up to a factor of 3. These
surrounding the horizon. That is, this is an effect of theshow a close relationship between two approaches. More re-
space-time curvature. More precisely, it is worth noting thatcently, vacuum correlators of the dual GFere expressed
a semiclassical absorption cross section can be derived froas truncatedn-point functions for the non-normalizable
a solution to the differential equation of a test fidlost modes in AdS. One can interpret this result as &matrix
often, V2¢=0) on the supergravity side. of an exact Ad$ space arising from a limit of scattering

The anti—de SittefAdS) conformal field theory(CFT) from an AdS bubble[8]. This supports that our calculation
correspondence states that string theory in the AdS space ligsed on the non-normalizable modes is correct.
dual to a conformal field theory defined on its remote bound- In this paper we will show that th& matrix of an Adg
ary of AdS spacd6]. The semiclassical limit of spacetime bubble can be derived partly from an exact Adpace. This
physics is related to the largédimit of the dual CFT. A5D is one of the current issues in the AdS-CFT correspondence.
black hole (M5Xx S'X T4 becomes Ad$x S*x T# near the For this purpose, we investigate the close relationship be-
horizon but with an asymptotically flat spat&FS) [7]. Re-  tween the potential and absorption cross section in an;AdS
cently, this has been called an Ad8ubble in AFS and bubble and an exact AdSpace. Comparing an Ag®ubble
corresponds to the dilatonic solutig]. In this case the with an exact Ad$ space leads to an assumption that the
matching procedure is crucial for obtaining an absorptionpotential of an exact AdSspace is the left-hand side of an
coefficient and here we need to match an Ad®bble to AdS; bubble. For this study, we introduce tfia} and{out}-
AFS. state pictures for an AdSubble. For the exact AdSstudy,

On the other hand, one obtains AGSS®xT* as the one needs théin}-state as well as non-normalizable modes.
other solution to the type-lIB string theory. This is an exactFurther, we introduce the test fields for scattering analysis.
AdS; space with asymptotic AdSand corresponds to the These are in an AdSbubble: a free scalarg) which, in the
nondilatonic solution9]. Further it includes the Banados- decoupling limit, relates to &1,1) operator© in the holo-
Teitelboim-ZanelliBTZ) black hole[10]. We point out that  graphically dual theory; two fixed scalars,{) to (2,2),
the near horizon limit of a 5D black hole yields the BTZ (3,1), and(1,3) operators; two intermediate scalarg, £) to
black hole, whereas this solution accomodates the BTZ1,2) and(2,1) operators. On the exact AdSide, the test
black-hole spacetime as a whole. fields are a free scalaif), the dilaton (), an intermediate

It was understood that the gray-body factor calculationscalar (7), and the tachyonT).
makes sense when one finds an asymptotically flat region as The organization of this work is as follows. Section Il is
in Sec. lI[6]. Hence, it may not be possible in an Adspace devoted to analyzing the scattering from an AdSubble
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within a 5D black hole. This corresponds to a conventional 1/ r, 1/ r,
scattering study. We study the scattering of the test fields in TL:E el L TR:E ﬁ) e “n. (7)
an exact Ad$ space in Sec. Ill. In this case we are careful s s

for _obtaining the ab_sorption coefficien_t because We cannofhig implies that the(left and right moving momentum
define the asymptotically flat space. Finally, we discuss oupgdes along the string direction are excited, while the exci-

results in Sec. IV. tations of D1-anti D1 and D5-anti D5 branes are suppressed.
The Hawking temperature is given by their harmonic aver-
Il. SCATTERING FROM AN AdS ; BUBBLE age
IN A 5D BLACK HOLE
Initially we introduce all perturbing modes in a 5D black- i = i + i (8)
Ty T Tgr

hole background. It is pointed out that $rwave calculation
the fixed scalars are physically propagating modes and other
fields belong to be redundant modég. Hence we choose A. Potential analysis

two fixed scalars ¢,\) and a free scalar#) as the relevant For a free scalaf = (r)e“tY,(6,,6,,65)], the linear-

modes. We begin with the 5D black hole with three charges; i ]
ized equatiorV“¢=0 in the background of Ed1) leads to

ds2p=—hf 222+ 1dr2+r2d03), (0 [23.1]

[(1+2)h
where [(hr3(9,)2+w2r6f——2—( ) }d):o. 9
2 2 2 2 r
I I's n o
f=fifofn=| 1+ 2 1+ r2 1+ r2/e h:( N r_2)' The sswave (=0) linearized equation for the fixed scalars
(2) takes the forni4,5]
Here the radii are related to the boost parametes$ é&nd s o o 8hr4r‘}l rg
the charges@;) as (hr2a,)+ w*r f_—(r2+r2)2 1+r_2 ¢.=0,

ro 13 o
r=rjsintfa;= \/ Q*+ 2 3 i=15n 3

where one gets for ¢, and\ for ¢_. Herer? =[r2+r2

Hence the D-brane black hole depends on the four paramj-Lrﬁi VPt rgra—rirs—rirg—rerpl/3. Considering N

eters €,fs,Mn,fo). The event horizorouter horizop is ~ =f ¥?N, for N=v,\,¢ and introducing a tortoise coordi-

clearly atr=r,. When all three charges are nonzero, thenater* = f(dr/h)=r+(ro/2)In[(r—ro)/(r+ro)| [2], then the

surfacer =0 becomes a smooth inner horizéBauchy hori- ~ equation takes the form

zon). When at least one of the charges is zero, the surface

r =0 becomes singular. The extremal case corresponds to the

limit of ry— 0 with the boost parameterg— * oo, keeping dr*2

the charges @;) fixed. We are interested in the limit of

[)o,rn<rl,trﬁ_, Wlhlc? is called tr:je dtilutte;] gas limit. :[I'hiShiS SO Here we taker;=rs=R andry=r, for simplicity. In the
ecause this limit corresponds to the near-outer horizon,, R Y —

Here we choos®,=r%,Qs=r2, andr,=rqsinha, with a dilute gas limit ®>1o),Vn(r) is given by

2N

+(w?=VyN=0. (12)

finite «,,. This corresponds to the near-extremal black hole [ 3 3r2 8R4
and its thermodynamic quantitiésnergy, entropy, Hawking Vy(r)= —w?(f—1)+h _2( 1 _20) +W},
temperaturgare given by 4 r re(re+Ro)
(12)
27 PP
Enext=7 ri+rs+ Erocosh 2y |, (4) B , 3 3r2 8R4
5 - _ _ ~ R R
V\(r)=—w*(f 1)+h_4r2 1+ +r2(3r2+R2)2 ,
4773r0 (13
Snext:Tt‘lr5c'05ha‘n ) 5
5 -
- ) 3 3r3) 1(1+2)
1 . A © V¢(r)=—w (f=1)+h p 1+r—2 + 2 ,
= —r4rscosha,, .
Thnet fo = ° " (14)
wherex? is the 5D gravitational constant. The above energyvhere
and entropy are those of a gas of massless 1D particles. In 5 5 P NP
this case the temperatures for left and right moving string fo1o ro+2R N (2rg+RI)R T5R 15
= 2 z T % -

modes are given by r r r
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We note thatVy depends on two parameters,(R) as 8R* 8 24 24R?

well as the energyd). As Eq.(11) stands, it is far from the r2(3r2+R%2 12 3rZ+R? (3rZ+R%)% (17)

Schralinger-type equation. The dependence is a matter of
peculiar interest to us compared with the Schwarzschil
black-hole potentials\(grw,Vz,V,) [12]. This makes the in-

terpretation oy, as a potential difficult. As is shown in Fig.
1, this arises becausé- 1) is very large, as large as ®.for

ro=0.01R=0.3 in the near horizon. In order f&fy to be a
potential, it is necessary to take the low-energy limiteof
—0. It is suitable to be 10°. And w?(f—1) is of the order
O(1) and thus it can be ignored in comparison to the remaHere ¢, denotes theswave (=0) free scalar andp, the

ing ones. Now we can define a potentM="Vy+w?(f free one \./vithI.=2. This is also observed from the graphs of
—1). Hence, in the low-energy limite{—0), Eq.(11) be-  Potential in Fig. 2 withr,=0.01R=0.3. Because the shape
comes similar to the Schainger-type equation. Further the Of their potentials takes nearly the same foriv, &V,
last terms in Eqs(12),(13) are important to compare each =V, >), these give us nearly the same reflection coefficient

dI'he last term of a free scalar in Ed.4) with | =2 keeps the
first terms in Eqs(16),(17) only. One finds immediately the
sequence

Vg, <VASV, <V, (18

other. After the partial fraction, these lead to R=|R|? and absorption oned=|A|?. For example, in the
. 5 low-energy limit of w—0, \,v,¢, take nearly the zero-
8R 8 8 8R (16) absorption cross section. Furthermore, all potentials go to

r2r2+R%2 12 12+ R? (r2+R?)?2’ zero, asr approaches infinity. This implies the existence of
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FIG. 2. Four potential graphs

vV, 0V, ,VA_,V'(,):Z) for an AdS; bubble in a 5D
black hole withry=0.01R=0.3.
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the asymptotic states outside an Adsibble. The size of an Niﬂw:Ai,\r}(w)e—iwr*, (22)

AdS; bubble is fromry=0.01 toR=0.3.

but near the horizon it has both outgoing:§ and incoming
B. Scattering from an AdS; bubble («) parts:

We are interested in the scattering of the test fields off in Cior* in Cor*
V(r*). It is well known that the scattering analysis is usu- NZ.=e +Ry(w)e' . (23
ally done by choosing a coordinate such-ag<r* <. |t
is always possible to visualize the black hole as presentingVe call this type of solutio{in}y and its vacuum state is
an effective potential barriefor well) to an incoming test defined asa;|0);,=0. The vacuum statef),, and |0);,
wave. One expects that some of the incident wave will bdorm two different bases of which any state can be expanded
irreversibly absorbed by the black hole, while the remainingn terms of the other. These are two different Fock space
fraction will be scattered back to the infinity. In this scatter- vacuum states anguty and{in}y are related to each other
ing we can calculate the reflection and transmisgarsorp- by the Bogoliubov transformation,
tion) coefficientd13]. As is shown in Fig. 3, we note that all
potential barriersVy(r*) take nearly the symmetric forms

— * * AT
aroundr* =0 when they are rewritten by a tortoise coordi- bi‘? (o3 = Bj53y), (24)
nate r* [14]. Also they are localized at*=0. Since
Vn(r*)—0 asr* — +«, one finds
o bi=> (aijajT_ﬂijaj)- (25
d“N.., o i
5 T@N.L.=0. (19
dr The computation of Hawking shows in a semiclassical ap-
proximation that the thermal radiation from the black hole
Asymptotically (*— ), the solution is given by with temperaturel, is given by[15]
N =gl + R (w)e 1. (20 o

‘ <Nw>:in<o|brbi|o>in:; |ﬂik|2:ﬁ—ew 1 (26
Considering the time part of' !, the first is an incoming
wave (—) and the last is an outgoing wave-(). Near the

NS ; : with an absorption cross sectionty=|AY12X 477/ w®
horizon it is purely incoming ) as P 5o= AV mw

=AY 7/ w®. Note that if of, is a constant{N,) is the
same as that of a blackbody. TypicallyE‘D is not constant
but varies. The deviations from the black-body spectrum

. . . have earned it the name *“gray-body factor.” Here we define
We call this type of solutio{out;y and the corresponding  the Smatrix from{in}y and{out as[14]
vacuum state is defined &g0),,=0.

In order to study the_ Hawking radia_tion, we introduc_e A% ) Ai’\r;(w)
another boundary condition. Asymptotically the wave is o)=| _ou n )
purely outgoing ), Ri(w) Ry(w)

NOU = AU ) eler™ (21)

(27)
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Here an incident wavee(*"") of unit amplitude fromr* =

+ o gives rise toAY () andRY (). On the other hand, an
incident wave (a*i‘*"*) of unit amplitude fromr*=—o
gives rise toAy(w) andRY(w). The relation between these
is given by

AN (0)=Al(0)=Ay(w), (28)
RiMw)  Ri(-w) RY(-w)  Ri(w)
AN(w) AN(_w) ' AN(_w) AN(w) '
(29)
Af(0)=Ay(—0), R¥™(0)=RY(-w),
Ri* (— w)=Ril(w). (30)

PHYSICAL REVIEW D 61 024031

d"=Az Q121 "2F(a,b,c;2), (36)
where
v=\(1+1)2— 0?(ri+ri+r)=I+1, (37)
_ Y gHivE “’
A= TNREINCE=T i
(39
1- ) ) 1)
b:T_I\/a—l C__E_I4’7TT )
(39
—1-2iJQ=1—i-— 40
c=1-2i{Q= _IZWTH' (40)

The above relations establish the symmetry and unitarity of

the S matrix in the AdS bubble scattering. Actuallpy(w)

The larger behavior g— 1) of ¢" can be obtained from the

can be calculated from the backscattering of an incidentZ—1—2) transformation rule for the hypergeometric func-

waveN off the potentialy(r*). It is not easy to find out the
absorption amplitudé\y directly in the complicated poten-
tials such as3/y(r*). In this case one uses the flixof the
incoming wave to obtain the absorption coefficient

(31

where F(—«) [F(«)] are the fluxes at the horizaimfin-

ity). In this way we can calculate the semiclassical abso

prtion cross section.

C. Exact analysis of near-horizon(AdS; bubble)

First let us consider a free scalar. Using h, the wave
equation(9) can be rewritten as

d?¢ d¢ Q E
Z(l—Z)W'F(l—Z)E'F —C+?+E ¢—O,
(32
where
orrefp\?2 w? (1 1)\2
C:( 2125n> :64472(T__T_) ' (33
Mo L R
O 11+2)  @P(ritretry)  1(1+2) a4
2 2 2 2
_ o To 2202 | [ @
Q_(47TTH) 1+r§+r§ +47%r 2T | = ity
(39

Here = means both the dilute gas limit{,r,<r,,rs) and
low-energy limit (w—0). Then one haswrg,wr,
<wrq,0rs<1.In order to compare E@32) with the hyper-

geometric equation, one has to transform it into the pole-free

equation. With an unknown constaft we find the ingoing
mode at the horizon

tions as
_AF(c)F(c—a—b)
“T(c—al(c—b) "

Al'(c)I'(a+b—c)
I'(a)I'(b)

n—f v—1

*(V+1).

(41)

For the fixed scalarsi(\), considering both Eqg16), (17)
and the near-horizon condition of=ry<r,,rs, one finds
that Eq.(10) leads to Eq(9) with | =2. Thus one can obtain
their near-horizon behaviors from,.

D. Asymptotic states

Let us first consider a free scalar. In the far region, we
introduce¢={b/r andu= wr and then Eq(9) leads to

d2<“z>+1d2¢>
duz udu

+ $=0. (42)

1 v
U2

The solution is given by the Bessel function whers not an
integer

J,(u) J_,(u)
f 14 14
= +
d'=a y TEEL (43
where «,B8 are unknown constants. From the large

u-behavior (—o~,wr>1), one finds the asymptotic states
d)f _ ie*iu
*— Vo ud2

and its incoming flux

{aei(v+ 1/2)7T/2+ ﬁe_i(_V+ 1/2)77/2} (44)

(49

2 ) :
f(oc): _ F|ael(v+1/2)77/2+ ﬁel(—v+1/2)77/2|2.

The smallu-behavior @r<1) of ¢ is

024031-5
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f—inter— —
¢ u

3 =
A3 T

u)" 1
“(E T(v+1)
(46)

On the other hand, the asymptotic behavior of theave
fixed scalars §. = ¢. /r) is governed by

d’¢. 1dé. ar
with v=1. Its solution is given by
J,(u J_,(u
d)fi: a+ fj )+,31 u( ) - (48)

Here a. , 8- are unknown constants.

E. AdS;-AFS matching procedure and absorption cross
section

PHYSICAL REVIEW D61 024031

3 ( r5)2I+2w2|+1

=+ R P
24 [I(+1)172
X[@?+ (27T )?2%]- - - [+ (27T )?I?]
X[w?+(27TR)%2%]- - [0’ + (27 TR)?I?]
ew/TH_l

X (ew/ZTL_ 1)(ew/2TL_ 1) . (53)

The matching procedure for the wave ¢. is nearly the
same as in a free scalgs]. It leads to

3,6,.6
6. TIIE

= 6art o(w?+167%T?)(w?+ 1672T3)

(on

eu)/TH_ 1

X (ew/ZTL_ 1)(ewl2TL_ 1) . (54)

In the limit of w<T_,Tg, Ty, the low-energy absorption
cross sections are calculated as

Here we use the matching procedure between ansAdS

bubble(near-horizon of a 5D black holend asymptotically

flat space to obtain an absorption coefficient. First consider

O'SSZ AP (59

the matching of a free scalar. Here the matching point resides

on 0<r*<ow in Fig. 3. In the intermediate zonau{1),
from Eqgs.(41) and (46) one finds

2'T'(v+DHI'(v)I'(c)uy ¥
I'(c—a)I'(c—b) ’

a:AuO

I'(—v+1)I'(—v)I(c)uf
2'T(a)l'(b)

B=Aug (49

Sinceuy= wr <1, one findsa> B. In this case we take an
incoming flux effectively. Furthermore, the incoming flux at Where we impose the relation=rs=R,ro=

the horizon is found as

F(0)=—8mr3\Q|A|2. (50)
The absportion coefficient is given by
F(0)
out__ —~
A o)~ 47u \/_ (51)

The absorption cross section takes the f¢frh,16]

4 AP wrg)?
oip=(1+1)2—zAG"= (I +1)2(T)

[I(+1)1]2
1+2 o ) +2 2
2 '4mT, F( 2 _|47TTR)
X (52
L w
F(l_'ZHH)

with the area of horizotd ;P= 271 1151 ,. We have, for even
I

0

3 AP 1o\ 4
‘5"5—16A Pwro)*=7 (wR) [TH(E) ] (56)

AP (ro\4
o gD:T(§> , (57)
AaD fo 4
o8p= 9T(§) , (58)
. Here we
find a sequence of the cross section
¢°> 05p=0gp= U?D (59

This originates from the potential sequence in Bd). It is
consistent with our naive expectation that the absorption
cross section increases, as the height of potential decreases.
Here we wish to point out the difference between a free
scalar and the fixed scalars. In the dilute gas linke{r )

and the low-energy limit —0), the s-wave cross section

for a free scalar c(r‘gg) goes to.A ;P [3], while the swave
cross sections for fixed scalars,{) including ¢, approach
zero[4]. Also this can be confirmed from Fig. 2.

ll. SCATTERING FROM AN EXACT AdS ; SPACE
IN AdS; (BTZ BLACK HOLE ) xS®xT*

A. Potential analysis

Here we consider the geometry of an exact Adpace
(AdS;x S*x T4 as the other solution to the type-1IB string
theory [9]. This corresponds to the nondilatonic solution.
This geometry can lead the Baos-Teitelboim-Zanelli

024031-6
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(BTZ) black hole space time as a whole by the periodic 1 1 o 1
identification. A ten-dimensional minimally coupled scalar 7 ﬁ(lii) =—_—. (65
isfi T T pP- Tur
satisfies L/R H
0,07 =0. (60) Its swave equation wittm=0 takes the form
¥ can be decomposed into 2.2, |1 2 w?
P f290+ ;5p(pf V[ 0p+ 57+ 52| ¥(p)=0.  (66)

V=g iotgmegiKix'y (g, 6,0 . 61 -
1(01.02,03)4(p) (61 Defining ¢(p) = %/ \p and then Eq(66) takes the form

Then Eq.(60) leads to 2 () o ul.
-, Tzt ge|¥=0, (67)

27 AN _

o
Varzd(p)+ =2 (p)=0 (62)
BTz R where the prime () denotes the differentiation with respect

. - _ to p. In order to obtain the Schdinger-type equation, we
with u=—I(1+2)—K-r5. Theu=—8(1=2) case contains introduce the tortoise coordinat& as[17]
both the dilaton ¢) and a free scalagf) with [=2. Theu

=—3(I=1) case corresponds to an intermediate scajgr ( , dp_ R? P—pP+ p—p_
and u=1 leads to tachyonT). Here the BTZ black-hole P = ] 2~ 3,2 _p2)[1’+|n pt+p_| PN p+p ||
AR ‘—p°
spacetime is given by10] 68)
J 2 We note thap , <p=o, while —o<p*=<0 for the outside
— _f24t24 2 _ -24.2 +=p ) p
dsgrz=— %t +p? de 2p2dt +17%dp™ (63 Korizon. On the other hand, in a 5D black hole one finds that

ro<r<ow is mapped into-c<r*<cw, Then Eq.(67) leads
with f2=p2/R?—M+3%/4p® =(p?—p2)(p?—p%)Ip°R?. 1O
The mass, angular momentum, angular velocity at the hori-

2
, and f hori dey -
zon, and area of horizon are dp*2+(“’2_vf‘)¢:0’ 69)
M=(p%+p°)IR%, J=2p,p_IR, QrFRv where the potential is given by
2 ()" u
ABTZ=2mp ., . (64) V.(p)=1? - 22 R’ (70)

Further, one finds the relation between the BTZ and a 50-q, potential graphs\(T,V'yjzo,Vn,VL,,zz) in an exact Ad$

black hole as background are shown in Fig. 4. The parameters are chosen
T2 s 5 5 asp,=0.01p_=0.001R=0.3. These are all monotonically
Ty “=(p5—p2)27Rp_=Ty, increasing functions witlp, in contrast toVy for an AdS
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bubble. This shows a peculiar property of AdSvhich in

PHYSICAL REVIEW D61 024031

coupled scalar 4= 3/4) [17]. For the tachyon 4=1), one

this spacetime the asymptotic states cannot be defined. Bbas (*,p*) and for an intermediate scalap ¢ —3), one
the tachyon potential\(y) is a monotonically decreasing finds (p*3,1/p*). Instead of the plane-wave form, here one
function. This field couples to the minimal weight primary finds the power-law behaviors op* [20]. The non-
operator with(1/2,1/2 [18]. Also this satisfies both the sta- normalizable modes are found to be*17 for the dilaton and
bility condition for the AdS space and the Dirichlet bound- 1/p* for an intermediate scalar, which diverge g% ap-
ary condition[19], which are clearly related to the shape of proaches the timelike boundary{—0). The positive pow-

its potential.

B. Asymptotically AdS; behavior and non-normalizable modes

In the near horizong—p, ,V,—0), Eq.(69) reduces to

which leads to the plane-wave solution

Yen=e " +R(w)el ",

Here the first term is an outgoing mode:{ and the second
is an incoming mode<«-). Now let us discuss the asymp-
totically AdS; behavior. Near the timelike boundarnyp (

—00,p*—0), one finds

d%y. [3
a2z |4

2
P~
El//xzo.

Here we introduce the relation betwegrand p*

0

% = mngo an(O')an, Y=tanh)\p*,
0'=:%, )\=€2—;(1—0'2), ap=1
+

If o2 is very small ancp* —0, one finds
S i

Py

Using Eqgs.(75), (73) leads to

d%y.. [3 P,
*2 Z THITR T
dp p
Its solution takes the form
- 1+2VI—u

Ye=p* 2
Finally, we have

1/100 + A=,
balp®) = o 2T,

R
(1—0?)=p.(1— o?)cothrp* :p—*.

(71)

(72

(73

(74

(79

(76)

(77

(78)

For thes-wave free scalarg=0), ., takes the form §*?,

cons} and for the dilaton field £=-8), one finds
(p** 1p*?). We find (p*32p*¥?) for a conformally

ers of p* all belong to be the normalizable modes, which
converge at spatial infinity. We note that the tachyon takes
only the normalizable mod¢49]. This can be easily conjec-
tured from its shape of potentigl;. Theswave free scalar
takes a constant behavior at infinity. This makes it difficult to
divide ¢, into ingoing and outgoing modes at spatial infinity
[21]. Actually, it is impossible to define an ingoing wave and
an outgoing wave at the spatial infinity of an exact AdS
space. Instead in the asymptotically Ad§pace it contains
the normalizable as well as the non-normalizable modes. The
latter will play an important role in calculation of the absorp-
tion coefficientA;.

C. Scattering from an exact AdS space

First we note thatp* covers only the left-hand side
(—=<p*=<0) of the whole space. In the case of where the
black-hole geometry is asymptotically flat as a 5D black
hole, the tortoise coordinaté goes from—o to «. Hence,
this is similar to the infinite string problem in which the
initial data propagates towards left and right indefinitely
[17]. The initial data no longer enjoys this privilege when the
background is asymptotically AdSecause the tortoise co-
ordinatep* goes from—< to 0 only. One may consider this
as the semi-infinite string problerfor a finite cavity with
reflecting walls in Ad§ space[22]). Then the Dirichlet or
Neumann boundary condition at spatial infinitg*(=0) is
required to formulate the problem appropriately. However,
we take a different point of view to attack an asymptotically
AdS; problem. This is based on the observation of the shape
of the potential and the global structure of an exact AdS
space[10]. We first construct the potentidl ,(p*) by re-
placingp in Eq. (70) with prJrCO'[h(erp*/RZL)L. The poten-
tials in Fig. 5 look like one half of the Adsbubble poten-
tials. Especially, we observe that the free-field potentials
VI‘;O(pl*:)o andv'jz(prz)zin Fig. 5 take nearly the same form
asinV, “(r*) gnd[y¢ (r*),V,(r*),V\(r*)] in the region
of —o<r*=<0 in Fig. 3. Furthermore, the Penrose diagram
of an exact Ad§(—»<p*=<0) is one half of the would-be
whole diagram in—oe<p* <« [10].

In this work we assume that the potential of an exact
AdS; space is the left-hand side of an AdBubble. The
important thing is to calculate the absorption cross section in
the background of an exact AgSpace. Considering the
{in},-state picture, it is not hard to calculate the absorption
coefficientA ;. Although the{out;,, state cannot be defined,
we can deriveA'l},1 from the backscattering of a test fieitl
off V,(p*). If we choose the boundary condition appropri-
ately, the potential of Fig. 5 is enough to calculate the ab-
sorption coefficient, regardless of the would-be right-hand
side (0sp*=<w«). In this backscattering process, the key
point is to use an appropriate matching procedure between a

024031-8
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near Ad$ and an asymptotic AdS We remind the reader This can be used to construct two-, three-, and four-point
that p* =0 is a timelike bounadry and thus information en- functions. Although one cannot define an ingoing flux at in-
ters or exits from it. This is an exact middle point if one finity of AdS;, one can calculate the total flux. The flux at
assumes a whole space ofo<p* <. Thus requiring the spatial infinity is given by

conventional boundary condition may lead to a wrong result -~

in deriving the absorption coefficient. Instead of the Dirichlet F(oo)=—2m\1-pla—ip| (81
condition of ¢|p*:0=0, one may use the non-normalizable
modes. The non-normalizable mode is a divergent quantity
p* =0 but its flux is finite atp* =0. Also it corresponds to
specifying another boundary condition at spatial infinity. On
the other hand, if one use the normalizable modes whic
satisfy the Dirichlet boundary condition, one may not suc-
ceed in obtaining the absorption coefficient in an exactAdS

e note here that for the tachyon wifh=1, F7(*)=0.
his is because the tachyon takes only the normalizable
modes which are to be zero at infinity. Thus we exclude it
II]rom our analysis.
In order to obtain the near-horizon behavior, we introduce
the new variablez=(p?—p2)/(p?>—p?) =(x>—x2)/(x?
—x2). Then Eq.(62) leads to

D. AdS;-AdS; matching procedure and absorption cross d2111 d
section z(l—z)—+(l—z)E+(

In order to calculate the semiclassical absorption cross dz*
section, we have to solve the exact differential equaté)
with an appropriate boundary condition. Since it is difficult \yhere
to solve Eq.(62) directly, one has to use the matching pro-
cedure between the near-horizgn<{p,) AdS; and the far- o—mQy\? p? [ 0—mQyup3/p? ’
region (p—) AdS;. Here the matching point resides on Al_(W) , B;= —
— < p* <0 in Fig. 5. H 4mTy

In the far region Ed62) becomes

Al ,LL/4
'z 1-z

- Bl) =0,
(82

s
(83
3 P In the case of thes-wave propagation wittm=0, the near-
ot =+ —=i.=0 (79 horizon AdS equation(82) leads exactly to the near-horizon
XX equation(32) of a 5D black hole. Explicitly, the relationship

with a dimensionless variabbe= p/R. One easily finds the between these is given by

far-region solution “
. A—Q, 7—E Bi~C. (84)
Yre(X) =[ax P By 1T (80)

) ~ ~ ] ) ) In this sense, Eq.32) is called an Ad$ bubble. The ingoing
with two unknown constanta, 3. The first term is a diver- \yave is given by the hypergeometric function
gent quantity ap=c but behaves well in the interior region.
This corresponds to the non-normalizable modes and is W(z)=Cyz VA (1-2) A 1=WF(a,b,c;2), (85
coupled to the boundary operatér at infinity. The second
one is the normalizable mode and propagates in the bulkwvhere

024031-9
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Vi—pu=I+1, (86)

1 V1 L w
_|\/—+| By=—5—i e (87

1- \/ I w
b= —I\/— \/—Z—E—IFETZ, (88)
c=1-2iJA;=1-i TBTZ (89)

Here = meansK?r2 5=0. The corresponding flux is

F(0)=—8m AL (X2 —x2)|Cy|? (90)

with x2 —x2 =(r,/R)?<1. The absorption coefficient will
be taken as

n FO) AJAOG—X2) |Cyf? @1
VR 1me [a-iBl

In order to obtaine and3, we use the matching procedure.
It is important to remember that the present spacetime is an

exact AdS. Thus we have to match the near-Ad8&ith the

asymptotic Adg to find an absorption coefficient. We know

the far-region behavior of Eq85). This can be found from
the z—1—z for the hypegeometric function

PHYSICAL REVIEW D61 024031

P t(X)=[C1E1 (X2 —x2 )LV I= w2y~ 1+T=x
+CEp(x2 —x2 ) A Immizy 1= T
(92)
where

_F(C)F(c—a—b) 3
TTe-alc b’ 2

I'(c)I'(—c+a+b)
I'(a)I'(b)

(93

Matching Eq.(80) with Eqg. (92) in the far-region x>1)
leads to

1+V1—pu

r 1-VI—pu r
~ 0 ~ 0
azclEl(E) . B= C1E2<E (94)
ConsideringR>r,, one findsa> B even for thel=0 case.

Hence, we can negleg® in favor of @. This amounts to
taking the flux of the non-normalizable modes. The key point
is an AdS-AdS; matching in this backscattering process.
Then the absorption coefficient is approximately given by

y ANAL(XE —Xx2)
v =

The absorption cross section for Ag8S® with m=0 leads
to

o 2(I=p-1) 1
) (95

R

|Eql

+2 o +2 2
~ —1 —1
A, AP (2| 2 anTE) 2 agTE o
TAdST T, T+ )| R © ) (96)
I l-i—=
27T

with ARP= ART*x 2R3,
In the low-energy limitw—0, it turns out that the 6D

IV. DISCUSSIONS

cross sections for an exact AdS theory take the same form as It seems that th&smatrix cannot be extracted from the

Egs.(55) and(57):

Yo _ 6D
ol 7
AGD rO
O'Ads des 372 (R) (99

This 6D result is derived from AdSX S®. In order for this to

anti—de Sitter space even in a li&2,23. This is based on
the fact that in an exact AdShe asymptotic states cannot be
defined, due to the timelike boundary and the periodicity of
geodesics. However, the authors[8] showed that the cor-
relation functions of the dual CKTto AdS; are considered
as the bulk S matrices. The vacuum correlators
(O(x1)O(X2) - - - O(Xn) )cr, Of the CFT, are expressed as

truncated n-point functions convolved against the non-
normalizable modes. These can be interpreted &raatrix

match with the cross section of a 5D black hOle it needs thr an exact Ad§ space ar|s|ng from a limit of Scatte”ng

introduce a compactified circlest) in Msx Stx T4, In this
case one findsi®’=47Px 2R with a radius ofS'(R). We
note that¢,, v(=®) and\ give us slightly different cross
sections in an Adgbubble, whereas these/{,®) do not
make any distinction in an exact AdS theory.

from an AdS bubble in asymptotically flat space.

In this work, we show that th8 matrix of an AdS bubble
can be derived from an exact Ag$ the dilute gas and
low-energy limits. We confirm this from the calculation of
the absorption cross section. This originates from the fact

024031-10
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that the near-horizon equations for an Ad#ibble(32) and
an exact Ad§ space, Eq(82) are the same form, but they
have different boundary conditions at infinity. In the AdS
bubble calculation, one uses the AdS&FS matching to ob-
tain the absorption coefficient 3. On the other hand, in the
exact AdS calculation we use both tH@n}-state picture and

PHYSICAL REVIEW D 61 024031

but for the dilaton,c=1/4 as in an Ad$ bubble. Conse-
quently, the two-point correlator provides us the gray-body
factor in the dilute gas and low energy limits. This quantity
takes exactly the same form in the CfFand AdS bubble
approaches. Further, in the exact Ad&pproach one finds
the same form of the gray-body factor. This means thaBthe

the non-normalizable mode to obtain the absorption coeffimatrix can be derived from an exact AgdSpace. It is obvi-

cientAil’;. This amounts to taking the Ad\dS; matching.

ous that the conformal limit of the gauge theory (GFT

The swave gray-body factor of a free scalar of an AdS corresponds with scattering from an exact AdPace. Fi-
bubble has exactly the same form as that of an exact;AdSnhally, we present here a scattering picture in an exact;AdS
space. For the dilaton we find the same form of cross sectioapace and compare it with the scattering of an Ad8bble

o=cAP(ro/R)* but with c=1/4 for an AdS bubble and
c=1/12 for an exact Adsspace.

Let us compare our results with the others. The general
formula for the gray-body factor is derived from the vacuum

two-point function(O(x)O(O))CFT2 of a boundary operator
O in the effective string24] and the boundary CKTap-

in AFS.
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