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Static gravitational global monopoles
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~Received 4 June 1999; published 27 December 1999!

Static solutions in spherical symmetry are found for gravitating global monopoles. Regular solutions lacking
a horizon are found forh,1/A8p, whereh is the scale of symmetry breaking. Apparently regular solutions
with a horizon are found for 1/A8p<h&A3/8p. Though they have a horizon, they are not Schwarzschild-like.
The solution forh51/A8p is argued to have a horizon at infinity. The failure to find static solutions forh
.A3/8p'0.3455 is consistent with findings that topological inflation begins ath'0.33.

PACS number~s!: 04.25.Dm, 04.40.2b, 04.70.Bw
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Topological defects have attracted quite a bit of attent
because of their relevance to a number of different ar
ranging from condensed matter to structure formation. St
ies of global monopoles in particular have served as a fo
dation on which knowledge of other defects has been b
Previous work details static gravitating global monopole
lutions @1,2#, while further studies consider the gauged ca
@3–5#. Understanding of the static solutions is also relev
to the study of topological inflation@6,7#.

Here I return to the global monopole case and cons
the possibility that static global monopoles have a horiz
~the ‘‘rather curious’’ monopoles mentioned in@2#!. I repro-
duce the solutions of@1# for h,1/A8p, and find other solu-
tions for 1/A8p<h&A3/8p which, though they contain a
horizon, appear regular. I also comment on the possib
that the failure to find static solutions forh.A3/8p is in-
dicative of the onset of topological inflation which has be
reported forh*0.33 @8–10#.

Letting Fa represent a triplet scalar field and includin
the usual symmetry breaking potential with scale of symm
try breakingh, the Lagrangian is

L52
1

2
Fa ;mFa

;m2
1

4
l@~Fa!22h2#2, ~1!

wherel is a coupling constant which sets the scale. Hen
forth, I choosel50.1 without loss of generality.

The spherically symmetric metric

ds252A2m dt21
1

m
dr21r 2 dV2 ~2!

is adopted in terms of the metric componentsA(r ) andm(r )
~the same as in@3# modulo the sign convention!. By associa-
tion with the Schwarzschild metric, a mass aspect funct
m(r ) is defined

m~r ![
r

2
~12m!. ~3!

The usual hedgehog ansatz for the triplet field,Fa

5 f (r ) r̂ , is chosen in terms of the monopole profilef (r ).
Casting the equations in first-order form, an auxiliary va
able C(r )[ f 8 is introduced~a prime denotesd/dr). The
equations for static solutions then become
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f 85C ~4!

C85
f

r 2m
@21lr 2~ f 22h2!#2CS 2

r
14prC21

m8

m D
~5!

m85
12m

r
24prC2m28pF f 2

r
1

lr

4
~ f 22h2!2G ~6!

A854prAC2. ~7!

Imposing regularity asr→`, these equations show thatm8
→0 andm→128ph2. Confirmation that the numerical so
lutions obey this behavior is shown in Fig. 4. Thus, the sp
has a deficit solid angleD54p(8ph2) @8#.

These equations have singularities atr 50 and wherem
50. To integrate outward fromr 50, regularity is assumed
and by Taylor expanding aboutr 50, the solutions can be
integrated from close to the origin. Specifically, the con
tions

m~0!51, m8~0!50 ~8!

f ~0!50, C8~0!50 ~9!

apply, andC(0) is a free parameter which is adjusted via
standard shooting method until the correct asymptotic beh
ior for f (r ) is observed, specificallyf (r→`)5h.

Solutions wherem(r ) vanishes can be handled in a sim
lar fashion. Definingr h to be the radius of the horizon suc
thatm(r h)[0, appropriate boundary conditions atr 5r h can
be found by enforcing regularity there. Then by Taylor e
panding aboutr h , the solutions can be integrated either ou
ward or inward from near the horizon. The valuef (r h) is
then a free parameter which is adjusted via a shoo
method so that, if integrating outward, the solution satisfi
f (r→`)5h, or, if inward, satisfiesf (r→0)50. A standard
ODE integrator has been used.

The solutions found are summarized in a schematic of
solution space in Fig. 1. Regular solutions lacking a horiz
are found ash is increased to a critical value,h* [1/A8p
'0.1995. Forh>h* , static solutions with an apparentl
regular horizon are found up toh'0.3455. Empirically it
appears that this upper limit forh occurs atA3/8p, although
©1999 The American Physical Society30-1
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unlike the case ofh* no theoretical justification for this limit
is found. Above this second critical valueh†[A3/8p, no
static solutions are found. In addition to the regular sta
solutions, singular solutions are also found as discussed
low.

For h,1/A8p, horizonless static solutions exist as d
scribed in@1#. A typical example of such a solution is show
in Fig. 2. Other solutions are also shown which are singu
at r 50 and correspond to black holes containing a monop
charge. These singular solutions are obtained by enfor
the existence of a horizon at a particular radius and dema
ing that f (r→`)5h. For a given value ofh, a family of
static solutions exists, only one member of which is regu

Figure 2 shows that asymptotically the solutions appro
one another independent of the existence of the black h
Such a convergence of the singular solutions to the reg
solution forr h→0 is also observed for the gauged monop
in @3#. Furthermore, in contrast to the solution for a gaug
monopole, the metric componentm does not asymptote to
unity as it would in an asymptotically flat spacetime. Inste
that it asymptotes to a non-unit value indicates the lin

FIG. 1. Schematic diagram of the solution space of static s
tions. Regular solutions are represented by the two disjoint b
curves. The radius of any horizonr h is plotted versush. The re-
gions denote the types of singular solutions:~I! black hole solu-
tions; ~II ! a single horizon;~III ! two horizons;~IV ! no static solu-
tions found. The family of solutions denoted by solid triangles
shown in Fig. 2. The family denoted by solid circles is shown
Fig. 3.

FIG. 2. Family of static solutions forh50.15. One solution
~solid! is found to be regular and static, while the other solutio
contain a horizon atr h50.5,1,2,4,8,16 and are singular at the o
gin. Wherem(r ) vanishes denotes a horizon.
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divergence of the mass of an isolated global monopole.
Solutions similar to those shown in Fig. 2 are found forh

increasing until h'0.20'h* . As h is increased, the
asymptotic value ofm decreases toward zero. Forh*0.20,
no solutions withoutm vanishing are found. This resu
agrees with the argument presented in@8# that when h
.1/A8p no static~horizonless! solutions exist.

For the critical case in whichh5h* , the solution hasm
vanishing atr 5`. This solution then represents a sta
spacetime with a horizon at infinity. It is not clear if there a
any cosmological implications to the existence of such a
lution.

For h.h* , static solutions can be found, albeit with
horizon. One such example is displayed in Fig. 3. Shoot
from the origin, the radius at whichm vanishes,r h , can be
determined. Then, by Taylor expanding aboutr h , the solu-
tion can be extended to larger. The solution is thus regula
both at r 50 and atr 5r h . Once again, irregular solution
can be constructed by enforcing the vanishing ofm at some
other radius. Solutions with horizons smaller than that of
regular solution have two horizons as shown in the figu
while those with horizon greater than that of the regular
lution have only one.

I note that none of these solutions represents a black
as m is negative for larger and positive for smallr, the
opposite of Schwarzschild metric. As is evident from t
metric~2!, the roles oft andr switch outside the vanishing o
m. Hence, the exterior is no longer static~instead being like
de Sitter! though the solution remains independent oft.
However, within the horizon these solutions remain static

As h is increased, another transition is evident nearh
'0.28. This transition occurs at a new critical value ofh,
namelyh\[A2/8p, and is observed by examining the siz
of the monopole. Defining the core radius byf (r c)[h/2, I
show r c versush in Fig. 4. For h,h\, the core radius
decreases with increasingh, while for h.h\ the radius de-
creases. Oscillations in the solution also become evident
h.h\ as shown in Fig. 6.

-
ld

s

FIG. 3. Family of static solutions forh50.25. One solution
~solid! is found to be regular and has a horizon atr h550.78. Three
solutions singular at the origin are shown containing two horizo
the first occurring atr h55,10,15. Three other singular solution
having only one horizon are shown withr h555,60,65. Compare to
the sub-critical case shown in Fig. 2.
0-2
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These oscillatory solutions bear a striking resemblanc
the reported stable solutions found for the dynamical evo
tions of gauged monopoles with largeh in @9#. The oscilla-
tions become more pronounced ash approachesh†, and is
accompanied by a dramatic decrease in the minimum
which m reaches. Forh.h†'0.3455 no static solutions ar
found.

Interestingly for super-critical solutions, the horizonr h of
the regular solutions obeys a scaling law inh. In particular,
the horizon radius is found to obey

r h}
1

h2h*
~10!

as demonstrated in Fig. 5.
A summary of the solutions regular at the origin a

shown in Fig. 6. Ash is increased, the asymptotic value ofm
is seen to decrease below zero indicating the presence
horizon. Ash is increased further, the value ofm continues
to decrease untilh5h†'0.3455 above which no static so
lutions are found.

The three critical values ofh all correspond to intege
multiples of a deficit solid angle of 4p. The deficit solid
angle D* occurring for h5h* is known to be precisely
D* [4p. This critical value denotes the transition to sta
solutions with horizons. The next transition occurs when
monopole core radius changes from decreasing to increa
with h, namely D\[2D* . Finally, the transition above
which no static solutions are found occurs atD†[3D* .
These latter two transitions are found only empirically, ca
ing for a geometric explanation.

Having the static solutions in hand, the next question
consider is whether they are stable. In particular, a relev
question is whether the sub-critical static solutions are

FIG. 4. The top frame shows the asymptotic behavior ofm(r ).
The points represent the asymptotic value ofm computed via the
slope of a least-squares fit torm versusr for eachh. The solid line
shows the least-squares fit to the points, while the dashed line~in-
distinguishable from the fit! shows the expected relationshipm(r
→`)5128ph2. The vertical dotted lines denoteh* andh\. The
bottom frame shows the core radius~open pentagons! which
reaches a minimum at (h\)2'0.08. For comparison, the core ra
dius for flat-space monopoles~cross hatches! is also shown.
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stable to collapse to a black hole. Ortiz asks this question
the gauged monopoles, and answers it by considering
mass of the various solutions@4#. Where the monopole ha
greater mass than a black hole with the same topolog
charge, the solution would be expected to be unstable.

However, the mass of the global monopole is diverge
and so it is not clear if such an argument can be made h
The quantity 2m/r , equal to 12m, does asymptote to a fi
nite value. Perhaps comparing the mass within a partic
radius would be sufficient to answer the question. Figur
shows, for the sub-critical case, the behavior ofm for both
the regular solution and various black hole solutions. T
black hole solutions do have more mass~smallerm) than the
regular solution for finite radius~i.e. ‘‘locally’’ !, however

FIG. 5. Behavior of the horizon radiusr h of the static super-
critical solutions versush. The solid line indicates a least-squar
fit of 1/r h5Ah1B whereA50.3690 andB520.0723. The upper
inset shows the same data wherer h}1/(h2C) whereC52B/A
50.1959. It is expected that this value ofC would be h*
'0.1995. The lower inset displays the deviation from the fit.

FIG. 6. Set of static, regular solutions forhP@0.20,0.34#. The
top frame shows the rescaled hedgehog profile. The middle fr
shows the metric componentm with horizons indicated bym50
~the dotted line!. The bottom frame shows the mass aspect funct
with horizons indicated bym5r /2 ~the dotted line!. Note that the
core radius decreases and then increases ash increases, the transi
tion occurring forh'0.28.
0-3
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STEVEN L. LIEBLING PHYSICAL REVIEW D 61 024030
they asymptote to the same value at infinity. Independen
whether one looks at the local or asymptotic value of 2m/r ,
the regular solutions do not have greater mass than the b
hole, and this fact might be some indication that the soluti
are indeed stable. Evolutions conducted in@11# also indicate
that the solutions are stable.

Considering now the super-critical case, are these s
solutions unstable to some other solution? From Fig. 3,
could consider the stability of the regular solution to t
irregular ones having either one or two horizons. Howev
the physical significance of those horizons is not clear.

Instead, it is more interesting to examine these result
the context of topological inflation@6–10#. As reported in
@8,10#, when h*0.33 the region inside a global monopo
necessarily undergoes inflation. The square of this value
ys
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roughly in the middle of the two transitions (h\)2 and
(h†)2, and thus it appears that topological inflation does
begin at either of the transitions.

Instead, a change in stability appears likely nearh
'0.33. A linear perturbation analysis should be able to c
firm both the change in stability and the critical value ofh
for which topological inflation begins.

Note added.After this paper was submitted, I becam
aware of previous work which found similar growth in th
monopole core radius as well as oscillatory behavior in
monopole profile@12#.
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