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Static gravitational global monopoles
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Static solutions in spherical symmetry are found for gravitating global monopoles. Regular solutions lacking
a horizon are found for< 1/\/87, where is the scale of symmetry breaking. Apparently regular solutions
with a horizon are found for 3/87= = \/3/87. Though they have a horizon, they are not Schwarzschild-like.
The solution fory=1/y/8 is argued to have a horizon at infinity. The failure to find static solutions;for
> /3/87~0.3455 is consistent with findings that topological inflation beging-=a0.33.

PACS numbds): 04.25.Dm, 04.40-b, 04.70.Bw

Topological defects have attracted quite a bit of attention /=y (4)
because of their relevance to a number of different areas
ranging from condensed matter to structure formation. Stud-
ies of global monopoles in particular have served as a foun- W’ =——[2+\r?(f?— *)]- ¥
dation on which knowledge of other defects has been built. ru
Previous work details static gravitating global monopole so- 6)
lutions[1,2], while further studies consider the gauged case
[3-5]. Understanding of the static solutions is also relevant , _
to the study of topological inflatiof6,7]. K=
Here | return to the global monopole case and consider
the possibility that static global monopoles have a horizon A’'=47rAWv?2, (7)
(the “rather curious” monopoles mentioned [i]). | repro-
duce the solutions dfL] for < 1/,/87, and find other solu- Imposing regularity as e, these equations show that
tions for 1A87< 77<,/3/ which, though they contain a —0 andu—1— 8 5. Confirmation that the numerical so-
horizon, appear regular. | also comment on the possibilitjutions obey this behavior is shown in Fig. 4. Thus, the space
that the failure to find static solutions foy>\/3/8x is in-  has a deficit solid angla =47 (877 [8].
dicative of the onset of topological inflation which has been These equations have singularitiesrat0 and whereu
reported fory=0.33[8-10. =0. To integrate outward from=0, regularity is assumed,
Letting ®2 represent a triplet scalar field and including and by Taylor expanding about=0, the solutions can be
the usual symmetry breaking potential with scale of symmeintegrated from close to the origin. Specifically, the condi-

2 r
+47Tr‘1’2+ M—)
7

f2 \r
i Z(fz— 772)2} (6)

—#—477r‘lf2,u—877

try breakingn, the Lagrangian is tions
1 1 u(0)=1, u'(0)=0 ®
L:—ECDa'“@a;M—ZA[(@a)Z— 7?1?, (1)
f(0)=0, ¥'(0)=0 9
where\ is a coupling constant which sets the scale. Hence-
forth, | choosex = 0.1 without loss of generality. apply, and¥(0) is a free parameter which is adjusted via a
The spherically symmetric metric standard shooting method until the correct asymptotic behav-

ior for f(r) is observed, specificallf(r —o) =7
) ) 5 o s Solutions whereuw(r) vanishes can be handled in a simi-
ds’=—A?u dt?+ m dro+r=dQ (2) Jar fashion. Defining, to be the radius of the horizon such
thatu(r,,)=0, appropriate boundary conditionsratr,, can
is adopted in terms of the metric componeA(s) and . (r) be found by enforcing regularity there. Then by Taylor ex-
(the same as if8] modulo the sign conventionBy associa- panding abouty,, the solutions can be integrated either out-
tion with the Schwarzschild metric, a mass aspect functiorward or inward from near the horizon. The valig,) is
m(r) is defined then a free parameter which is adjusted via a shooting
method so that, if integrating outward, the solution satisfies
. f(r—o)= 7, or, if inward, satisfies(r—0)=0. A standard
m(r=z1=p). @ opE integrator has been used.
The solutions found are summarized in a schematic of the
The usual hedgehog ansatz for the triplet field®  solution space in Fig. 1. Regular solutions lacking a horizon
=f(r) r, is chosen in terms of the monopole proffle). are found asy is increased to a critical valug;* =1/\/8
Casting the equations in first-order form, an auxiliary vari-~0.1995. Forn=»*, static solutions with an apparently
able ¥(r)=f’ is introduced(a prime denotesl/dr). The regular horizon are found up tg~0.3455. Empirically it
equations for static solutions then become appears that this upper limit foy occurs aty3/8, although
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FIG. 1. Schematic diagram of the solution space of static solu- 0 ]
tions. Regular solutions are represented by the two disjoint bold e
curves. The radius of any horizaon, is plotted versusy. The re- -0.5 o 50 100‘ 150
gions denote the types of singular solutiofly: black hole solu- r

tions; (1) a single horizon{lll) two horizons;(IV) no static solu- ) ) ) )

tions found. The family of solutions denoted by solid triangles is ~ FIG. 3. Family of static solutions foy=0.25. One solution
shown in Fig. 2. The family denoted by solid circles is shown in (S0lid) is found to be regular and has a horizorr g 50.78. Three
Fig. 3. solutions singular at the origin are shown containing two horizons,

the first occurring atr,=5,10,15. Three other singular solutions
having only one horizon are shown with=55,60,65. Compare to

unlike the case of* no theoretical justification for this limit Y =nY
the sub-critical case shown in Fig. 2.

is found. Above this second critical valug'=/3/8x, no
static solutions are found. In addition to the regular staticdivergence of the mass of an isolated global monopole.
solutions, singular solutions are also found as discussed be- Solutions similar to those shown in Fig. 2 are found for
low. increasing until »~0.20~7*. As % is increased, the
For 7<1/\/8m, horizonless static solutions exist as de- asymptotic value ofx decreases toward zero. Fge=0.20,
scribed in[1]. A typical example of such a solution is shown no solutions withoutu vanishing are found. This result
in Fig. 2. Other solutions are also shown which are singulaggrees with the argument presented[8] that when 7
atr =0 and correspond to black holes containing a monopole- 1/,/g7 no static(horizonless solutions exist.
charge. These singular solutions are obtained by enforcing For the critical case in whichy= 7*, the solution has
the existence of a horizon at a particular radius and demandanishing atr=«. This solution then represents a static
ing that f(r—o)=7. For a given value ofp, a family of  gpacetime with a horizon at infinity. It is not clear if there are

static solutions exists, only one member of which is regularany cosmological implications to the existence of such a so-
Figure 2 shows that asymptotically the solutions approachytion.

Such a convergence of the singular solutions to the regulaiorizon. One such example is displayed in Fig. 3. Shooting

solution forr,— 0 is also observed for the gauged monopolefom the origin, the radius at which vanishesy,,, can be

in [3]. Furthermore, _in contrast to the solution for a gaugedjetermined. Then, by Taylor expanding aboyt the solu-

monopole, the metric componept does not asymptote 10 tjon can be extended to large The solution is thus regular

unity as it would in an asymptotically flat spacetime. Insteadyoth atr=0 and atr=r,,. Once again, irregular solutions

that it asymptotes to a non-unit value indicates the lineagan pe constructed by enforcing the vanishinguoéit some
other radius. Solutions with horizons smaller than that of the

0.15 | regular solution have two horizons as shown in the figure,
- while those with horizon greater than that of the regular so-
o 01p lution have only one.
= 005 B I note that none of these solutions represents a black hole

FIG. 2. Family of static solutions for=0.15. One solution
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as u is negative for larger and positive for smalk, the
opposite of Schwarzschild metric. As is evident from the
metric (2), the roles ot andr switch outside the vanishing of
m. Hence, the exterior is no longer statinstead being like
de Sittej though the solution remains independent tof
However, within the horizon these solutions remain static.
As 7 is increased, another transition is evident near
~0.28. This transition occurs at a new critical valuepf
namely "= \2/87, and is observed by examining the size
of the monopole. Defining the core radius br.)=7/2, |
show r, versus# in Fig. 4. For <7", the core radius

(solid) is found to be regular and static, while the other solutionsdecreases with increasing while for > " the radius de-
contain a horizon at,=0.5,1,2,4,8,16 and are singular at the ori- creases. Oscillations in the solution also become evident for
gin. Whereu(r) vanishes denotes a horizon.

»>n" as shown in Fig. 6.
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FIG. 4. The top frame shows the asymptotic behaviop.6f). FIG. 5. Behavior of the horizon radius, of the static super-

The points represent the asymptotic valueuotomputed via the  critical solutions versus;. The solid line indicates a least-squares
slope of a least-squares fittg versusr for eachy. The solid line  fit of 1/r,= A7+ B whereA=0.3690 andB= —0.0723. The upper
shows the least-squares fit to the points, while the dashedifine jnset shows the same data whefec1/(7—C) whereC=—B/A
distinguishable from the fitshows the expected relationshigr =0.1959. It is expected that this value & would be #*
—®)=1-8mn% The vertical dotted lines denotg® and»'. The  ~0.1995. The lower inset displays the deviation from the fit.
bottom frame shows the core radiyspen pentagonswhich

reaches a minimum aty(*)?>~0.08. For comparison, the core ra-

dius for flat-space monopoldsross hatchesis also shown. stable to collapse to a black hole. Ortiz asks this question of

the gauged monopoles, and answers it by considering the

These oscillatory solutions bear a striking resemblance t§'asS Of the various solutiorjg]. Where the monopole has
the reported stable solutions found for the dynamical evoludT€atér mass than a black hole with the same topological

tions of gauged monopoles with larggin [9]. The oscilla- charge, the solution would be expected to be unsta}ble.
tions become more pronounced asapproaches;!, and is However, the mass of the global monopole is divergent,

accompanied by a dramatic decrease in the minimum t@nd SO itis not clear if such an argument can be made here.

which w reaches. For> 7'~0.3455 no static solutions are | Ne quantity 2n/r, equal to -4, does asymptote to a fi-

found. nite value. Perhaps comparing the mass within a particular
Interestingly for super-critical solutions, the horiznof radius would be sufficient to answer the question. Figure 2

the regular solutions obeys a scaling lawzinIn particular, shows, for the sqb-crltlcal case, the behawormfor_ both
the horizon radius is found to obey the regular solution and various black hole solutions. The

black hole solutions do have more massallerw) than the

1 regular solution for finite radiugi.e. “locally” ), however
Mhoe " (10
n—n E L
1 & i e amteseoue =
as demonstrated in Fig. 5. So8E E
A summary of the solutions regular at the origin are Zo04F =
shown in Fig. 6. Asy is increased, the asymptotic valuewf 7 e T R T
is seen to decrease below zero indicating the presence of a ) L =
horizon. Asy is increased further, the value pf continues T 0F 3
to decrease untiy= 5'~0.3455 above which no static so- I-1F
lutions are found. -2 F
The three critical values of; all correspond to integer F
multiples of a deficit solid angle of . The deficit solid = 100 3
angle A* occurring for = #5* is known to be precisely € 50F
A*=44. This critical value denotes the transition to static 0 F
solutions with horizons. The next transition occurs when the 0
monopole core radius changes from decreasing to increasing r
W'th 7, name_IyA”E_ZA*. Finally, the transition above FIG. 6. Set of static, regular solutions fgre [0.20,0.34. The
which no static solutions are found occurs &{=3A*. o5 frame shows the rescaled hedgehog profile. The middle frame
These latter two transitions are found only empirically, call-shows the metric componept with horizons indicated by.=0
ing for a geometric explanation. (the dotted ling The bottom frame shows the mass aspect function

Having the static solutions in hand, the next question tawith horizons indicated byn=r/2 (the dotted ling Note that the
consider is whether they are stable. In particular, a relevandore radius decreases and then increases iasreases, the transi-
guestion is whether the sub-critical static solutions are untion occurring fory~0.28.
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they asymptote to the same value at infinity. Independent afoughly in the middle of the two transitionsp{)? and

whether one looks at the local or asymptotic value of/ 2, ("2, and thus it appears that topological inflation does not

the regular solutions do not have greater mass than the bladlegin at either of the transitions.

hole, and this fact might be some indication that the solutions Instead, a change in stability appears likely near

are indeed stable. Evolutions conductedid] also indicate ~0.33. A linear perturbation analysis should be able to con-

that the solutions are stable. firm both the change in stability and the critical value »pf
Considering now the super-critical case, are these stati®r which topological inflation begins. .

solutions unstable to some other solution? From Fig. 3, one Note addedAfter this paper was submitted, | became

could consider the stability of the regular solution to the@Wware of previous work which found similar growth in the

irregular ones having either one or two horizons. HoweverMonopole core radius as well as oscillatory behavior in the

the physical significance of those horizons is not clear.  monopole profilg12].

Instead, it is more interesting to examine these results in | am grateful for helpful discussions with Arvind Borde,
the context of topological inflatiofi6—10]. As reported in  Inyong Cho, Eric Hirschmann, Nobuyuki Sakai, and Alex-
[8,10], when =0.33 the region inside a global monopole ander Vilenkin. | am also thankful for the support of the
necessarily undergoes inflation. The square of this value fallSouthampton College Research & Awards Committee.
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