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Late time decay of scalar, electromagnetic, and gravitational perturbations
outside rotating black holes

Leor Barack
Department of Physics, Technion–Israel Institute of Technology, Haifa, 32000, Israel

~Received 26 July 1999; published 27 December 1999!

We study analytically, via the Newman-Penrose formalism, the late time decay of scalar, electromagnetic,
and gravitational perturbations outside a realistic rotating~Kerr! black hole. We find a power-law decay at
timelike infinity, as well as at null infinity and along the event horizon~EH!. For generic initial data we derive
the power-law indices for all radiating modes of the various fields. We also give an exact analytic expression
~accurate to leading order in 1/t) for the r dependence of the late time tail at anyr. Some of our main
conclusions are the following.~i! For generic initial data, the late time behavior of the fields is dominated by
the model 5usu ~with s being the spin parameter!, which dies off at fixedr ast22usu23 — as in the Schwarzs-
child background.~ii ! However, other modes admit decay rates slower than in the Schwarzschild case.~iii ! For
s.0 fields, non-axially symmetric modes dominate the late time behavior along the EH. These modes oscillate
along the null generators of the EH.

PACS number~s!: 04.70.Bw, 04.25.Nx
le
r-
b
o

d
g

e
s
o
le

ff

ti-

er
n
e

fe

ce
t

ri-

e

aw
u

th

of
m
va-
cy-

rm
ug-

e,
f an

the

ed
ase
e a
re
ion

H
ym-
si-
-
rr
’’

a
-
ems
ion
rical
nd

-

as
I. INTRODUCTION

Small perturbations of the Schwarzschild black ho
~SBH! geometry die off at late time with an inverse powe
law tail. This well-known phenomenon was discovered
Price early in the 1970s. Price explored the dynamics
linear scalar and metric perturbations@1# ~and that of all
integer-spin fields in the Newman-Penrose formalism@2#!
propagating on the SBH background. His analysis provide
detailed description of the relaxation mechanism throu
which the black hole~BH! exterior settles down at late tim
into its stationary ‘‘no hair’’ state. In particular, Price wa
able to characterize the actual form of the late time falloff
the perturbations: He found that any radiative multipo
model ,m of an initially compact linear perturbation dies o
at late time ast22l 23 ~where t is the Schwarzschild time
coordinate!. In the case there exists an initially static mul
pole model ,m it will decay as t22l 22. These power-law
decay tails were found to be the same for all kinds of p
turbations, whether scalar, electromagnetic or gravitatio
~and in this respect, the scalar field model proved to b
useful toy model for more realistic fields!.

Price’s results were later reproduced using several dif
ent approaches, both analytical and numerical@3–8#, and
were generalized to other spherically symmetric BH spa
times@4,9–14#. ~A brief review of the works on this subjec
can be found in the Introduction of Ref.@7#.! The validity of
the perturbative~linear! approach was supported by nume
cal analyses of the fully nonlinear dynamics@15,11#, indicat-
ing virtually the same power-law indices for the late tim
decay.

For a scalar field on the background of a SBH, power-l
decay tails were found to be exhibited also at future n
infinity @3,4,8# and along the future event horizon@4,8#. It
was shown that at null infinity the scalar field dies off wi
respect to retarded timeu as u2 l 22 ~for a compact initial
mode! or asu2 l 21 ~for a static initial mode!. The decay of
the scalar perturbation along the event horizon~EH! was
0556-2821/99/61~2!/024026~27!/$15.00 61 0240
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found to bev22l 23 or v22l 22 ~for a compact or a static
initial mode, respectively!, where v is the ~Eddington-
Finkelstein! advanced-time coordinate.

As was already explained by Price, the late time tails
decay outside spherically symmetric BHs originate fro
backscattering of the outgoing radiation off spacetime cur
ture at very large distances. In the framework of a frequen
domain perturbation analysis@3,6,10#, these tails are ex-
plained in terms of a branch cut in the~frequency domain!
Green’s function, which is, again, associated with the fo
of the curvature-induced potential at large distance. This s
gests that the form of the decay at late time reflects~and is
affected by! merely the large distance structure of spacetim
and may be independent of the existence or absence o
event horizon. This assertion found further support in
analysis by Gundlachet al. @15#, who studied the purely
spherical collapse of a self-gravitating minimally coupl
scalar field. It was demonstrated numerically that in this c
late time tails form even when the collapse fails to creat
black hole. ~On the other hand, quasi-normal ringing a
found to dominate the early stage of the waves’ evolut
only if a BH forms.!

Until quite recently, the issue of the late time decay of B
perturbations has been considered only in spherically s
metric models of BHs. It is known, however, that astrophy
cally realistic BHs are spinning@16#, and thus are not spheri
cally symmetric but are rather of the axially symmetric Ke
type. Moreover, it is suggested, in virtue of the ‘‘no hair
principle @17#, that the Kerr black hole~KBH! might be the
only realistic BH ~realistic BHs are not expected to carry
significant amount of net electric charge!. Hence, generaliza
tion of the above-mentioned analyses to the KBH case se
to be of an obvious importance. Still, such a generalizat
has awaited almost three decades, as the lack of sphe
symmetry in the Kerr background makes both analytical a
numerical exploration significantly more complicated.

The ‘‘no hair’’ principle for BHs implies that perturba
tions of the KBH must ‘‘radiate away’’ at late time. No
further information is available from this general principle
©1999 The American Physical Society26-1
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LEOR BARACK PHYSICAL REVIEW D 61 024026
to the actual details of this decay process. A question ar
as to what effect rotation has on the form of the late ti
tails. More basically, does the decay of the perturbing fie
still obey a power law? If so, are the power indices the sa
as in the SBH case?

Such questions were addressed only recently, by sev
authors. First, Krivanet al. carried out a numerical simula
tion of the evolution of linear scalar@18# and gravitational
@19# waves on the background of a Kerr black hole. The fi
analytic treatment of this problem, for a scalar field, was la
presented by Barack and Ori@20,21# ~following a prelimi-
nary analysis by Ori@22#!. Most recently, Hod used a differ
ent approach to study the late time decay of both a sc
field @23# and nonzero-spin Newman-Penrose fields@24,25#
on the Kerr background.~Hod’s analysis, which follows
some preliminary considerations by Andersson@6#, is carried
out in the frequency domain, whereas Barack and Ori us
time domain analysis.! Finally, the analytic progress has mo
tivated a further numerical study by Krivan@26,27#.

The above analyses all indicate that power-law tails
decay are exhibited in the Kerr background as well. In
Kerr case, however, the lack of spherical symmetrycouples
between various multipole modes, which results in
power-law indices of specific modes being found to be d
ferent, in general, from the ones obtained in spherically sy
metric BHs. Another interesting phenomenon caused by
tation ~first observed in@22#! is the oscillatory nature of the
late time tails along the null generators of the EH of the K
BH for nonaxially symmetric perturbation modes.

The purpose of the present paper is to extend the ana
described in Ref.@21# to electromagnetic and gravitation
perturbations of the Kerr background, and supply the
technical details of our approach.~In Ref. @21# we merely
outlined the application of our technical scheme to a sc
field, and gave a brief description of the results in this ca!
The analysis to be described in this paper provides a m
complete and accurate picture of the late time decay
physical fields, than already available. Among the res
which appear here for the first time:

~i! We derive the form of the late time tail for all radiativ
modesanywhereoutside the KBH~i.e. at all distances!. We
also give an exact analytic expression for the radial dep
dence of this tail. ~In @23–25# Hod only analyzes the
asymptotic behavior at very large distance, and along
EH.!

~ii ! A careful analysis of the decay along the EH reve
an interesting phenomenon: Fors.0 fields, it is the oscilla-
tory nonaxially symmetric (m.0) modes which dominate
the late time behavior there. This result has important im
cations to the structure of the singularity at the inner horiz
of the KBH @29#. In a different paper@28# Barack and Ori
further explore and explain this phenomenon, and discuss
reason for the incorrect prediction made in Ref.@24# for the
decay rate along the EH in thes.0 case.~Recently@25#,
following the appearance of Ref.@28#, Hod has corrected his
result.!

For simplicity, we shall refer in this paper only to th
~most realistic! situation in which the initial perturbation ha
a rather generic angular distribution, such that it is compo
02402
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of all multipole modes and, in particular, the lowest radi
able one. It will be explained why an initial setup in whic
the lowest modes are missing is more complicated to exp
using our approach. Hod’s analysis@23–25# provides predic-
tions for this case as well; however, these are not in ag
ment with recent numerical results by Krivan@26#. It thus
seems that further analytic work is needed~using either
Hod’s method or ours! to clarify this point.

The arrangement of this paper is as follows. In Sec. II
briefly review the subject of perturbations of the Kerr geo
etry via the Newman-Penrose formalism. We then reduce
master perturbation equation in the time domain to obtai
coupled set of time-radial equations for the various mod
The evolution problem for each of the modes is mathem
cally formulated as a characteristic initial value problem.
Sec. III we analyze the late time behavior of the vario
modes at null infinity. To that end we apply theiterative
scheme, which is, basically, an extension of a technique p
viously tested for a scalar field in the SBH background@7,8#.
In Sec. IV we introduce thelate time expansion~LTE!
scheme, which allows a global treatment of the decay at
time. The late time behavior of fields at a fixed distan
outside the EH is dominated by the leading term of the l
time expansion, for which we derive an analytic express
in Sec. V. In Sec. VI we then carefully explore the behav
along the EH itself. Finally, in Sec. VII, we use the LT
scheme combined with the results at null infinity, in order
derive the late time decay rates for all modes of the fields
any fixed distance. We conclude~in Sec. VIII! by summariz-
ing our results and discussing their relation to other work

II. MODE-COUPLED FIELD EQUATION

A. Perturbations of the Kerr geometry via the Newman-
Penrose formalism„definitions and a brief review…

The line element in Kerr spacetime reads, in Boy
Lindquist ~BL! coordinatest,r ,u,w,

ds252~122Mr /S!dt21~S/D!dr21Sdu2

1~r 21a212a2Mr sin2u/S!sin2udw2

2~4aMr sin2u/S!dwdt, ~1!

where M and a are, correspondingly, the BH’s mass an
specific angular momentum,S[r 21a2cos2u, and

D[r 222Mr 1a2. ~2!

~Throughout this paper we use relativistic units, withc5G
51.! We shall consider in this paper only a BH solutio
with uau,M : the extremal case,uau5M , requires a separat
treatment, as we later briefly explain. The event and in
horizons of the ~non-extremal! KBH are the two null
3-surfacesr 5r 1 and r 5r 2 , respectively, where

r 65M6AM22a2 ~3!

are the two roots of the ‘‘horizons function’’D(r ) defined in
Eq. ~2!.
6-2
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LATE TIME DECAY OF SCALAR, ELECTROMAGNETIC, . . . PHYSICAL REVIEW D 61 024026
To discuss perturbations of the Kerr spacetime via
Newman-Penrose~NP! formalism @30#, introduce Kinners-
ley’s null tetrad basis@31# @ l m,nm,mm,m* m# ~where an aster-
isk denotes complex conjugation!. In BL coordinates, the
‘‘legs’’ of this tetrad are given by

l m5D21@r 21a2,D,0,a#

nm5~2S!21@r 21a2,2D,0,a#

mm5~21/2r̄ !21@ ia sinu,0,1,i /sinu#
~4!

~with the fourth tetrad vector obtained frommm by complex
conjugation!, wherer̄[r 1 iacosu. In the framework of the
NP formalism, the gravitational field in vacuum is com
pletely described by five complex scalarsC0 , . . . ,C4, con-
structed from the Weyl tensorCabgd by projecting it on the
above tetrad basis. Likewise, the electromagnetic field
completely characterized by the three complex sca
w0 ,w1 ,w2, constructed by similarly projecting the Maxwe
tensorFmn . In particular,

C052Cabgdl ambl gmd and

C452Cabgdnam* bngm* d ~5!

represent, respectively, the ingoing and outgoing radia
parts of the Weyl tensor, and

w05Fmnl mmn and w25Fmnm* mnn ~6!

represent the ingoing and outgoing radiative parts of
electromagnetic field.

In the~unperturbed! Kerr background all Weyl scalars bu
C2 vanish~as directly implied by the Goldberg-Sachs the
rem in view of Kerr spacetime being of Petrov type D; s
Secs. 9b, 9c in@32#!. In the framework of a linear perturba
tion analysis, the symbolsC0 ,C1 ,dC2 ,C3 ,C4 and
w0 ,dw1 ,w2 are thus used to represent first-order pertur
tions of the corresponding fields~with dC2[C2

2C2
background, etc.!. One can show~see Sec. 29b in@32#! that

C0 andC4, and alsow0 andw2, are invariant under gauge
transformations~namely, under infinitesimal rotations of th
null basis and infinitesimal coordinate transformations!. The
scalarsC1 andC3 are not gauge invariant, and may be nu
lified by a suitable rotation of the null frame. The entiti
dC2 and dw1 represent perturbations of the ‘‘Coulomb
like,’’ non-radiative, part of the fields~in fact, one can also
nullify dC2 by a suitable infinitesimal coordinate transfo
mation!. It is therefore only the scalars defined in Eqs.~5!
and ~6! which carry significant information about the radi
tive part of the fields.~Note, however, that gauge invarianc
of the radiative fields is guaranteed only within the fram
work of linear perturbation theory.!

Teukolsky@33# first obtained a single master perturbati
equation governing linear perturbations of scalar, elec
magnetic, and gravitational fields. In vacuum, this mas
perturbation equation reads
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F ~r 21a2!2

D
2a2sin2uGC ,tt

s 2D2s~Ds11C ,r
s ! ,r1

4Mar

D
C ,tw

s

1S a2

D
2

1

sin2u
D C ,ww

s 2
1

sinu
~C ,u

s sinu! ,u

22sFa~r 2M !

D
1

i cosu

sin2u
GC ,w

s 22sFM ~r 22a2!

D
2r

2 ia cosuGC ,t
s 1~s2cot2u2s!Cs50. ~7!

Here,Cs(t,r ,u,w) represents the various radiative fields a
cording to the following list:

F5Cs50 ~scalar field!,

w05Cs511,

w25~ r̄* !22Cs521,

C05Cs512,

C45~ r̄* !24Cs522. ~8!

The master equation~7! is fully separable only in the fre-
quency domain, by means of thespin-weighted spheroida
harmonicfunctionsSslm(2a2v2,cosu) @33#, wherev is the
temporal frequency~the separated equations are referred
as ‘‘Teukolsky’s equation’’!. Because the functionsSslm(u)
arev dependent, separation of theu dependence is not pos
sible in the time domain~namely, without first decomposing
the field into its Fourier components!.

B. Reduction of the master field equation in the time domain

The target of the present work is to explore the behav
of the fieldsCs at late time. In principle, the analysis can b
carried out in the frequency domain, as in Refs.@23–25#. In
this technique, the requested temporal behavior is finally
be extracted by an inverse Fourier transform. Our analys
based on a different approach, motivated by the follow
argument: In the late time, stationary, limit (t→`), one ex-
pects the very low frequency (v→0) Fourier modes to
dominate the behavior. For such waves, the functio
eimwSslm(u) reduce to thespin-weighted spherical harmoni
functionsYslm(u,w) @34#. This may motivate one to try and
extract the angular dependence of the fieldsCs by using the
functionsYlms. As a result of the lack of spherical symmetr
the resulting~time-domain! field equations will possess cou
pling between the various multipole modesl; however, one
should expect this coupling to be ‘‘small,’’ in a sense, at la
time. In the sequel we show how this coupling can be trea
in an iterative manner, in both the frameworks of theitera-
tive expansion~Sec. III! and thelate time expansion~Sec.
IV !.

Led by the above argument, we expand the fieldsCs as
6-3
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LEOR BARACK PHYSICAL REVIEW D 61 024026
Cs~ t,r ,u,w!5~r 21a2!21/2D2s/2

3 (
l 5usu

`

(
m52 l

l

Yslm~u,w!cslm~ t,r !, ~9!

where the radial factor in front of the summation symbols
introduced for convenience@as it eliminates the term}c ,r

*
from Eq.~23! below#. Note that the summation over modesl
excludes thel ,usu modes, which are nonradiative~for a dis-
cussion regarding the nonradiatable modes, see Sec. II
in Ref. @2#!.

Inserting the expansion~9! into the master field equatio
~7!, we obtain

(
lm

Yslm~u,w!@D̃~ t,r !cslm2a2sin2u~cslm! ,tt

12ias cosu~cslm! ,t#50, ~10!

whereD̃(t,r ) is a certain differential operator independent
u,w. Note in Eq.~10! how the two last terms in the square
brackets~proportional toa) avoid a full separation of vari-
ables.

Now, the product cosu•Yslm can be re-expanded in term
of the functionsYslm ~which form a complete set of function
on the unit 2-sphere for eachs). The ‘‘matrix elements’’ of
the function cosu with respect to theYslm basis are given by
@35#

^sl8mucosuuslm&[ R dV~Yslm!* cosu~Yslm!

5S 2l 11

2l 811
D 1/2

^ l1m0u l 8m&

3^ l12s0u l 82s&, ~11!

where^ j 1 j 2m1m2u jm& are the standard Clebsch-Gordan c
efficients@36#. We find that

cosu•Yl5c2
l 11Yl 111c0

l Yl1c1
l 21Yl 21, ~12!

where

c2
l 5F ~ l 22s2!~ l 22m2!

l 2~2l 21!~2l 11!
G 1/2

,

c0
l 52

ms

l ~ l 11!
, ~13!

c1
l 5c2

l 11 .

~Here, as we shall often do below, we omit the indicess,m
for the sake of brevity.! This also easily leads to

2sin2u•Yl5C22
l 12Yl 121C2

l 11Yl 111C0
l Yl1C1

l 21Yl 21

1C11
l 22Yl 22, ~14!

where
02402
s
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C11
l 5c1

l 11c1
l ,

C1
l 5c1

l ~c0
l 111c0

l !,

C0
l 5~c2

l !21~c1
l !21~c0

l !221,

C2
l 5c2

l ~c0
l 1c0

l 21!,

C22
l 5c2

l 21c2
l . ~15!

All constant coefficientscl and Cl are nonvanishing, with
only the following exceptions:

~i! C2
l andc2

l vanish forl 5umu or l 5usu.
~ii ! C22

l vanishes forumu< l<umu11 or usu< l<usu11.
~iii ! c0

l , C1
l , andC2

l vanish form50 or s50.
~It can be verified thatC0

l is always negative definite.!
Substituting Eqs.~12! and ~14! in Eq. ~10! we obtain, by

the orthogonality of the functionsYslm,

D̄~ t,r !c l1I~c l 61,c l 62!50 ~16!

for eachl ,m,s satisfying l>umu and l>usu, whereD̄ is yet
another differential operator, andI is a functional describing
couplingbetween thel mode and thel 61 andl 62 modes:

I~c l 61,c l 62!5a2~C11
l c l 121C1

l c l 111C2
l c l 21

1C22
l c l 22! ,tt12ias~c1

l c l 111c2
l c l 21! ,t .

~17!

Note that, obviously, modes of differentm do not interact
with each other, as the Kerr geometry is axially symmet
We also point out that the scalar field case is special, in
for this case thel mode does not interact with thel 61
modes, but only with thel 62 modes~recall that the interac-
tion coefficientsC6

l vanish fors50).
To write Eq. ~16! explicitly in a convenient form, we

introduce the advanced and retarded time coordinates,
fined, respectively, by

v[t1r * and u[t2r * ~18!

~which are nonethelessnot null coordinates in Kerr space
time!. Here, the ‘‘tortoise’’ radial coordinater * is defined by

r * 5r 2r 11~2k1!21ln z12~2k2!21ln z2 , ~19!

with k6 being the horizons’ ‘‘surface gravity’’ parameters

k65
r 12r 2

4Mr 6
, ~20!

and where the dimensionless radial variablesz6 are given by

z6[
r 2r 6

r 12r 2
. ~21!

@Note the relationD5z1z2(r 12r 2)2. Also, recall that we
are dealing in this paper only with non-extremal black hol
for which r 1.r 2 and, consequently,z6 are well defined.#
6-4
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The coordinater * , satisfying dr* /dr5(a21r 2)/D, in-
creases monotonically withr from 2` ~at the EH! to 1`
~at spacelike infinity!. Later we shall find useful the
asymptotic relations

e2k1r
* .

D

~r 12r 2!2
.z1 ~ for r * !2M ,r→r 1!,

r * .r ~ for r * @M ,r→`!. ~22!

The explicit form of the mode-coupled field equation~16!
is now1

c ,uv
l 1Vl~r !c l1Rl~r !c ,t

l 1K~r !@a2C0
l c ,tt

l 1I~c l 61,c l 62!#

50, ~23!

whereVl(r ), Rl(r ), andK(r ) are radial functions given by

4Vl~r !5~r 21a2!22@~ l 2s!~ l 1s11!D2m2a2

22isma~r 2M !#2~r 21a2!23/2

3D2s/211
d

dr H Ds11
d

dr
@~r 21a2!21/2D2s/2#J ,

~24a!

2Rl~r !5~r 21a2!22@2imMar2sM~r 22a2!

1sD~r 1 iac0
l !#, ~24b!

4K~r !5~r 21a2!22D. ~24c!

Of importance will be the large-r asymptotic forms of
these functions, which in terms of the 1/r * expansion reads

Vl~r !5
l ~ l 11!

4r
*
2

1

M2 imsa1 l ~ l 11!M F2 lnS r *
r 12r 2

D21G
2r

*
3

1OF ~ ln r * !2

r
*
4 G , ~25a!

Rl~r !5
s

2r *
1

sF iac0
l 23M12M lnS r *

r 12r 2
D G

2r
*
2

1OF ~ ln r * !2

r
*
3 G , ~25b!

1In Eq. ~23!, the derivative]u is taken with fixedv, ]v is taken
with fixed u, and] t with fixed r.
02402
K~r !5
1

4r
*
2

2

M F112 lnS r *
r 12r 2

D G
2r

*
3

1OF ~ ln r * !2

r
*
4 G .

~25c!

Equation~23! already provides a qualitative picture of on
aspect of the fields’ evolution: Unlike in spherically symme
ric spacetimes, multipole modes of differentl interact with
each other while propagating on the Kerr background.2 For
example, if a physical (sÞ0) perturbation is initially com-
posed of a purel ,m mode, then, in general, we may expe
all possible modesl 8,m—namely, all modes with l 8
>max(umu,usu)—to be generated while the perturbatio
evolves in time.@The unrealistic case of a scalar field (s
50) is special, as for this field only those of the abo
modes with evenl 2 l 8 are expected to be excited.# Note that
all interaction terms in Eq.~23! involve derivatives of the
field with respect tot. It is this feature which, by means o
the LTE scheme, allows one to effectively decouple Eq.~23!,
as we show in Sec. IV.

C. Initial setup

We shall consider an initial perturbation in the form of
compact outgoing pulse of radiation, which is relative
short, yet arbitrarily shaped. We take this pulse to be emi
at u5u0 , v5v0, and without limiting the generality we
take, for simplicity,v050. We further assume that the initia
pulse has a rather generic angular shape, so that it is c
posed of all multipole modesl ,m @and in particular, for each
m it contains the lowest possible mode,l 5max(umu,usu)#. For-
mulated mathematically, this initial setup takes the form3

c lm5H G lm~u! at v50,

0 at u5u0 ,
~26!

where, for eachl andm, G lm(u) is an arbitrary~but nonva-
nishing! function with a compact support betweenu5u0 and
~say! u5u1.u0, with u12u0!uu0u. This type of initial data
corresponds to the physical scenario in which no ingo
radiation is coming from past null infinity.

It will be assumed in the following that the initial pulse
emitted far away from the BH; namely, we take2u0@M .
This assumption greatly simplifies our analysis~as we ex-
plain in Sec. III; cf.@7,8#!; yet, it seems reasonable to expe
the late time behavior in this case to remain characteristic
the general situation.

2See, however, our remark in the concluding section, with reg
to the definition of ‘‘multipole moments’’ in the Kerr geometr
being somewhat ambiguous.

3It should be noted that, strictly speaking, these initial d
@supplemented to the coupled field equation~23!# do not form a
well posed characteristic initial-value problem, asu5const andv
5const arenot characteristic hypersurfaces of the Kerr geome
~these hypersurfaces are timelike rather than null!. We further com-
ment on this issue below.
6-5
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III. LATE TIME BEHAVIOR AT NULL INFINITY:
THE ITERATIVE SCHEME

In this section we derive the form of the late time decay
future null infinity, that is forv→` at finiteu@M . This has
two main motivations: First, the results at null infinity wi
appear to serve in the framework of the late time expans
scheme as necessary ‘‘boundary conditions’’ for the glo
late time evolution problem~as we discuss in Sec. IV!. The
results at null infinity also have their own physical signi
cance, for the following reason: Consider a static~fixed-r )
observer located at very large distance. LetDu andDt rep-
resent, respectively, the retarded and the static observ
time elapsed since this observer gets the first signal from
perturbing field. With respect to this observer, the relev
information about the decay at finiteDu5Dt is the one cal-
culated at the null infinity domain~which we may call, in
this context, the ‘‘astrophysical zone’’ of the waves!. Only
when the time lapse becomes infinitely large~while r re-
mains finite! does this observer enters the ‘‘future timelik
infinity’’ zone, t@r ~the late time behavior in this domai
will be discussed in Sec. VII!.

For this part of the analysis~namely, for the derivation of
the late time tails at null infinity! we apply theiterative
scheme, first developed and tested for scalar waves on
Schwarzschild background in Refs.@7,8#. Since the technica
details of the calculations involved are often very similar
those in the above references, we mainly describe here
new results~for spin-s fields in Kerr!, and direct the reader to
Refs.@7,8# for further details.

A. Formulation of the iterative scheme

We define

V0
l ~r ![

l ~ l 11!

4r
*
2

,

R0~r ![
s

2r *
~27!

and

dVl~r ![Vl~r !2V0
l ~r !,

dRl~r ![Rl~r !2R0~r !. ~28!

The functionsV0
l (r ) and R0(r ) extract at larger the ~flat

space! asymptotic behavior of the functionsVl(r ) andRl(r )
appearing in Eq.~23!. The ‘‘curvature induced’’ residual par
of these functions is represented bydVl(r ) anddRl(r ).

We now decompose each of the functionscslm ~for each
l ,m) as

c l5c0
l 1c1

l 1c2
l 1•••, ~29!

such that each of the functionscn
l satisfies the field equatio

cn,uv
l 1V0

l ~r !cn
l 1R0~r !cn,t

l 5Sn
l , ~30!
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with Sn50
l [0 and with

Sn.0
l [2dVlcn21

l 2dRl~cn21
l ! ,t2K~r !@a2C0

l ~cn21
l ! ,tt

1I~cn21
l 61 ,cn21

l 62 !#. ~31!

We take the initial conditions for the various functionscn
l to

be cn50
l 5c l andcn.0

l 50 on the initial surfacesu5u0 and
v50.

Equation ~30!, supplemented by the above initial dat
constitutes a hierarchy of characteristic initial data proble
for the various functionscn

l . Formal summation overn re-
covers the original evolution problem forc l . For eachn
.0 ~and for all l ), the functioncn

l admits an inhomoge-
neous field equation, with a source term depending only
the functionscn8,n preceding it in the hierarchy, and wit
the functioncn50

l satisfying a closed homogeneous equatio
This structure allows one, in principle, to solve for all fun
tionscn

l in an iterative manner: first for all modesl of cn50
l ,

which then serve as sources tocn51
l , etc. In general, each

function cn
l shall have sources coming from the modesl, l

61, andl 62 of cn21.
Of course, the effectiveness of the proposed iterat

scheme crucially depends on its convergence properties
that respect, the scheme as formulated above may seem
lematic, because, while the ‘‘zeroth order’’ (n50) field
equation well approximates the actual field equation~23! at
large distance, it fails to do so at the highly curved smar
region ~actually, the functionsV0 andR0, as defined above
diverge atr * 50).

It is possible~by redefiningV0 and R0 at small r ) to
construct a more sophisticated iteration scheme that wo
account for the small-r region of spacetime as well — as wa
done in Ref.@8# for the case of a scalar field in the Schwarz
child spacetime. In that case, it was demonstrated@8# that the
small-r details of the background geometry have merely
negligible effect on the late time behavior at null infinity. I
the Schwarzschild case, we were able to greatly simplify
analysis by considering a toy model of a thin spherica
symmetric shell of matter having a flat interior. In th
model, the late time behavior of the scalar field at null infi
ity turned out to well approximate the actual behavior in
‘‘complete’’ Schwarzschild model~see@7,8# for details!.

The above results all indicate that the late time decay
the scalar field is predominantly governed by the largr
structure of the Schwarzschild spacetime.~This conclusion
stemmed already from several previous works, as we m
tioned in the Introduction.! We shall assume in this pape
that the same is also valid for all fieldsCs propagating on
the Kerr background. To be concrete, we will consider in t
section, only for the sake of the calculation at null infinity,
model in which the Kerr interior geometry is replaced by
flat ~Minkowski! manifold. There is no way of smoothly at
taching a flat interior to a Kerr exterior through a thin sphe
cally symmetric material shell~as was done in@7# in the
Schwarzschild case!; alternatively, we take this attachmen
to be made through a material layer of a finite width. T
external ‘‘radius’’ of this layer should be of order of a fe
M. Based on our experience with the Schwarzschild case
6-6
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expect the details of our model at small distances~and, in
particular, the internal structure of the material layer! to
merely have a negligible affect on the behavior of the wa
at null infinity, atu@M .

We emphasize that the above simplified model is adop
only for the analysis at null infinity, where it greatly reduc
the amount of technical details one should deal with. For
global analysis carried out in the rest of this paper,
‘‘complete’’ KBH geometry shall be considered.

B. Zeroth order iteration term

By definition, the functioncn50
l obeys~for all l ) the ho-

mogeneous equation

c0,uv
l 1V0

l ~r !c0
l 1R0~r !c0,t

l 50, ~32!

with the initial conditionscn50
l (v50)5G l(u) and cn50

l (u
5u0)50. Equation~32! simply describes the free propag
tion of the fieldcn50

sl in Minkowski spacetime, provided tha
r * is replaced with the radial Minkowski coordinater.

The general solution to this equation reads4

cn50
general5(

j 50

l 2s

Aj
sl

g0
( j )~u!

~v2u! l 2 j
1(

j 50

l 1s

Aj
2sl

h0
( j )~v !

~u2v ! l 2 j
, ~33!

in which g0(u) andh0(v) are arbitrary functions~with their
parenthetical superindices indicating the number of differ
tiations!, and whereAj

ls are constant coefficients given by

Aj
sl5

~2l 2 j !!

j ! ~ l 2 j 2s!!
. ~34!

The above initial data forcn50
l uniquely determine a specifi

solution for this function@but not for either of the functions
g0(u) andh0(v) in separate#. For the outgoing pulse initia
setup it is possible to write this specific solution in a conv
nient form by takingh0(v)[0, in which case we have

cn50
l 5(

j 50

l 2s

Aj
sl

g0
( j )~u!

~v2u! l 2 j
, ~35!

with the functiong0(u) given by5

g0
l .s~u!5u~2u!

l 2s

~ l 1s!! Eu0

u

~u/u8! l 1s11~u2u8! l 2s21

3~2u8!sG~u8!du8, ~36a!

g0
l 5s~u!5

~2u!s

~2s!!
G~u!. ~36b!

4Note that the homogeneous equation~32! is invariant upon si-
multaneously transformingu
v ands→2s. The two sums in Eq.
~33! constitute two independent homogeneous solutions, which
obtained from each other by this transformation.

5The calculation leading to Eq.~36! is a straightforward generali
zation of the one described in detail in Ref.@7# for s50.
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Here,u(x) is the standard step function, taking the value
or 0 according to whetherx is positive or negative, respec
tively. Equations~35! and ~36! describe how the function
cn50

l can be constructed given any formG(u) for the com-
pact initial outgoing pulse.

Equation~36! implies that the wavecn50
l is sharply ‘‘cut

off’’ at retarded timeu50. This effect is due to ingoing and
outgoint waves destructively interfering with each other
the origin of coordinates (r 50) inside the flat region interna
to the material layer, at retarded timesu.0. @For a scalar
field in the ‘‘complete’’ Schwarzschild model we found i
Ref. @8# an exponential decay of the waves atu.0 rather
than a sharp cutoff — thus the main support ofcn50

l remains
compact even in this more sophisticated~and much more
complicated! model.#

Obviously, sincecn50
l is strictly compact in retarded time

~it is supported only in the rangeu0,u,0), it does not
contribute to the overall late time~largeu) radiation at null
infinity. Rather, the functioncn50

l will serve @via Eq. ~30!#
as a source to higher-order (n>1) terms of the iteration
scheme, which will form the late time tail of decay, as w
show below.

C. Green’s function of the iteration scheme

Using the Green’s function method, we formally have, f
each of the functionscn.0

l ,

cn
l ~v,u!5E

0

v
dv8E

u0

u

du8Gl~v,u;v8,u8!Sn
l ~v8,u8!,

~37!

which allows one, in principle, to calculate these functio
one by one, in an inductive manner. Here,G(v,u;v8,u8) is
the time domain Green’s function in Minkowski spacetim
defined as satisfying the equation

G,uv
l 1V0

l ~r !Gl1R0~r !G,t
l 5d~u2u8!d~v2v8!, ~38!

with the causality condition

Gl~u,u8!5Gl~v,v8!50. ~39!

To solve forG, we use a straightforward generalization
the method used in Ref.@7#. First one shows that for Eq.~38!
to be consistent with the causality conditions~39!, one must
have G(v5v8)5@(v82u)/(v82u8)#s and G(u5u8)
5@(v82u8)/(v2u8)#s. This establishes a characterist
initial-value problem for the Green’s function atu.u8 and
v.v8. Then, with the help of Eq.~36!, one can obtain~see
@7# for more details!

Gl~v,u;v8,u8!5(
j 50

l 2s

Aj
sl g

( j )~u;v8,u8!

~v2u! l 2 j
u~u2u8!

3u~v2v8!u~v82u!, ~40!

where the functiong(u;v8,u8) is given by

re
6-7
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g~u;v8,u8!5
1

~ l 1s!!

~v82u! l 1s~u2u8! l 2s

~v82u8! l
, ~41!

and where thej differentiations of this function are with re
spect tou. The factoru(v82u) in Eq. ~40! is related, again,
to the presence of the origin of coordinates inside the
internal region.

Finally, a general comment should be made about
application of the iterative scheme to the Kerr spacetim
Here ~unlike in the Schwarzschild case! the characteristic
surfaces of the iterative scheme~i.e. the surfaces of constan
u or constantv, which are not null but rather timelike! do not
coincide with the actual characteristics of the Kerr geome
Thus, strictly speaking, the ‘‘causality condition’’ stated
Eq. ~39! does not hold for the actual Green’s function in t
Kerr spacetime. However, the surfacesu5const andv
5const do approach the actual null characteristics of
Kerr background at large distances. Recalling that the fo
of the late time radiation at null infinity is shaped main
during the propagation at large distances, it is reasonab
expect that the above problem will not crucially affect t
validity of our results.

D. First-order iteration term

The first contribution to the late time~large-u) tail at null
infinity comes from the functioncn51

l . This contribution
also turns out to be the most dominant one, with those of
functions cn.1

l smaller by one or more factors ofM /uu0u
~recall that in our model we haveuu0u@M ). It is therefore of
special importance to analyze in detail the behavior ofcn51

l ,
and derive its late time form at null infinity, as we shall d
now.

The functioncn51
l is calculated from Eq.~37!, with n

51. Since we only look for the behavior at null infinity, w
take the limit v→` of this equation. At that limit, the
Green’s function appearing in the integrand is dominated
merely thej 5 l 2s term of the sum in Eq.~40!:

Gl~v→`!>
~ l 1s!!

~ l 2s!!
v2s@g~u;u8,v8!# ( l 2s)

3u~u2u8!u~v82u! ~42!

~where the derivatives ofg are with respect tou).
With Eq. ~41! we now obtain, forcn51

l at null infinity ~for
eachl ),

cn51
l ~u,v→`!

5
v2s

~ l 2s!! Eu0

0

du8E
u

`

dv8

3
@~v82u! l 1s~u2u8! l 2s# ( l 2s)

~v82u8! l
Sn51

l ~u8,v8! ~43!

~where, again, thel 2s derivatives are with respect tou). In
this expression, the lower limit of the integration overv8 was
set to v85u due to the factoru(v82u) appearing in the
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Green’s function, and the upper limit of theu8 integration
was set tou850 in view of the compactness ofcn50

l ~im-
plying the compactness of the sourceSn51

l as well!.
The source functionSn51

l is calculated from Eq.~31!,
with n51. It contains, in general, contributions from th

modes l 85 l ,l 61,l 62 of cn50
l 8 . These contributions to

cn51
l @via Eq. ~43!# are additive, and may be calculated o

by one. The details of this calculation are given in the A
pendix. In brief, it contains two steps for each of the abo
contributions: First, the definite integration overv8 is carried
out explicitly. The integrand of the remainingu8 integration

then becomes a finite sum over derivatives ofg0
l 8(u8), each

multiplied by a power of (u2u8). In the second and fina
step we use successive integrations by parts to eliminate

derivatives ofg0
l 8(u8), with all resulting surface terms van

ishing in virtue of the compactness of this function.~This
procedure is clarified in the Appendix.!

The following is a description of the outcome from th

above calculation. Let us denote bycn51
l 8→ l the contribution to

the model of cn51 at null infinity from all terms inSn51
l

associated with the model 8 of cn50. We then find atu@
2u0, to leading order inM /u and inu0 /u ~see the Appendix
for details!,

cn51
l 22→ l>a22

l I 0
l 22v2su2( l 2s12),

cn51
l 21→ l>a21

l I 0
l 21 v2s u2( l 2s12)

3F11b21
l lnS u

r 12r 2
D G ,

cn51
l→ l >a0

l I 0
l v2su2( l 2s12),

cn51
l 11→ l>a11

l I 0
l 11v2su2( l 2s14)

3F11b11
l lnS u

r 12r 2
D G ,

cn51
l 12→ l>a12

l I 0
l 12v2su2( l 2s16), ~44!

where thea ’s and b ’s are constant coefficients~depending
on s,l ,m), and whereI 0

l is, for eachl, a simple functional of
g0

l :

I 0
l [E

u0

0

g0
l ~u8!du8. ~45!

For a scalar field,s50, the contributionscn51
l 61→ l vanish~as

the coefficientsa61
l are proportional tos). Also, there is no

contribution cn51
l 21→ l for l , l 011 and no contribution

cn51
l 22→ l for l , l 012, wherel 0 is the lowest radiatable mul

tipole mode for givens andm:

l 05max~ usu,umu!. ~46!

Equations~44! implies that for any givens and m, the
most dominant mode ofcn51 at null infinity, at largeu, is l 0.
It also tells us that the dominant contribution to this mo
6-8
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comes solely from this mode itself~namely, it iscn51
l 0→ l 0),

since in this case there are no contributions from low
modes, and the ones from higher modes are negligibl
largeu. Hence, the decay of the dominant mode ofcn51 at
null infinity ~for any givens and m) is described at large
retarded timeu by

cn51
l 0 ~u,v→`!5a0

l 0I 0
l 0v2su2( l 02s12), ~47!

to leading order inM /u and inu0 /u. Recall that the function
g0

l 0(u) and, hence, the functionalI 0
l 0 are nonvanishing,6 as

long as we make the assumption that the initial data hav
generic angular form~so that it particularly contains the low
est multipole model 0 for any givens andl ). The case where
the lowest modes are initially missing will be discussed
brief below.

E. Late time tail at null infinity

Equation~37! provides a formal means for calculating th
higher iteration terms,cn>2

l . However, exact analytic calcu
lations become very tedious already for then52 term. In the
case of a scalar field in Schwarzschild spacetime@7# we have
explicitly derivedcn52

l at null infinity, and showed that i
exhibits the same power-law decay ascn51

l at largeu, yet
with an amplitude reduced by a factor proportional
(M /uu0u)!1. For this case, analytic considerations su
gested that a similar reduction of the amplitude by a fac
}M /u0 occurs also forn.2, whenevern is increased by 1.
This conclusion was verified numerically for the first fe
iterative terms@7#. Our numerical calculations also indicate
that the sum of iterative termscn seems to converge rathe
fast at null infinity for largeuu0u/M ~say, in the order of
100).

We now proceed under the assumption that the same
siderations also apply in our case, of general-s fields on the
Kerr background. That is, we assume that~for any given
s,l ,m) the functionscn>2

l decay at null infinity at largeu
with the same tail ascn51

l ; yet the amplitude of these func
tions is smaller by at least one factor of orderO(M /u0).
This assumption seems plausible, because the above pro
of the iterative scheme@namely, the scaling ofcn as
}(M /u0)n# seems to stem from the basic structure of
iteration procedure, rather than from the details of the sou
function Sn , which distinguishes the Schwarzschild,s50,
case from the more complicated case studied in the cur
paper.

Adopting the above assumption, we conclude that,
large uu0u/M , the ‘‘overall’’ function c l is well approxi-
mated at null infinity at largeu by merely the termcn51

l . In
particular,l 0 is the dominant mode ofc there, for any given
s andm. By virtue of Eqs.~9! and ~47! we then finally ob-
tain, for the Newman-Penrose fieldCsm ~for any givens,m),

6This is true unless the initial data are very finely tuned such a
make the integral in Eq.~45! vanish.
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Csm>a0
l 0I 0

l 0Ysl0m~u,w!v22s21u2( l 02s12)

~dominant mode at scri1, large u!. ~48!

This result is accurate to leading order inM /u, in u0 /u, and
in M /u0. In the generic case where the initial pulse includ
all values ofm, we find that the behavior is dominated by th
modes with 0<umu<usu and l 5usu, which decay at null in-
finity with the late time tailu22 for s>0 or u2s22 for s
<0.

One may also ask about the behavior of the other, fa
decaying, modes at null infinity. From Eq.~44! we find that
~for any given s and m) the modesl . l 0 of c1 are also
‘‘fed’’ by strong contributions coming from modes o
smaller l: In general, the functioncn51

l . l 0 has leading-order
contributions from the modesl 21 andl 22 of cn50. In the
exceptional scalar field case (s50) this contribution comes
only from thel 22 mode~providedl> l 012), and provides
the same tail as the contribution from the model itself,
namelyu2( l 2s12). We thus have, for alll> l 0 in the scalar
field case,cn51

l }u2( l 2s12) at null infinity, largeu. Under
the above assumption that the ‘‘overall’’ fieldc l is well ap-
proximated there byc1

l ~for all l ), we conclude thatin the
scalar field case, the decay ofanyof the modesl> l 0 at null
infinity is given at largeu by

C lm}Ylm~u,w!v21u2 l 22 ~any mode of a scalar field!,

~49!

whereYlm are the spherical harmonics.
As to the non-dominating modes of thesÞ0 fields: Equa-

tion ~44! suggests that these modes would exhibit not a st
power-law tail but rather a tail of the form}u2( l 2s12)

3 ln@u/(r12r2)#. We feel, however, that this result cannot b
taken as conclusive, and needs a further support~e.g. from
numerical analysis!. ~We comment that such logarithmic de
pendence does not arise from the frequency-domain ana
in Ref. @24#.! We emphasize our conclusion, Eq.~48!, that
the leading-order tail at null infinity, belonging to the mo
dominant mode, decays with a strict power-law.

IV. LATE TIME EXPANSION

The target of this work is to explore the behavior of t
fields Cs at late timeanywhereoutside the KBH~and along
its EH!. To that end we shall apply the late time expansi
scheme, a version of which was used in Ref.@8# to analyze a
scalar field in the Schwarzschild case.

We assume that at late time, the fieldsCs admit an ex-
pansion of the form

Cs~v,r ,u,w!5 (
k50

` F (
l 5usu

`

(
m52 l

l

Yslm~u,w!Fk
slm~r !Gv2k02k,

~50!
to
6-9
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LEOR BARACK PHYSICAL REVIEW D 61 024026
to which we shall refer as thelate time expansion. Here,k0 is
a constant parameter which we later determine.7 As we show
in this paper, the LTE is consistent with the field equatio
with the tail form at null infinity, and with regularity require
ments at the EH. We adopt an expansion in 1/v, rather than
in 1/t, because it appears to be more adequate for analy
the behavior near and along the EH~as the coordinatev,
unlike t, is regular through the EH!.

Inserting the form~50! into the master field equation~7!,
and collecting terms of commonv powers and of common
multipole numbersl @with the aid of Eqs.~12! and ~14!#,
yields an ordinary equation for each of the unknown fun
tions Fk

slm(r ):

Dslm@Fk
slm~r !#5Zk

slm , ~51!

in which Dslm is a differential operator given by

Dl[D
d2

dr2
12~s11!~r 2M !

d

dr
1Fa2m212isma~r 2M !

D

2~ l 2s!~ l 1s11!G , ~52!

and the source termZk
l reads

Zk
l 52~k01k21!H ~r 21a2!

dFk21
l

dr

1F2M @s~r 22a2!2 imar#

D
1r 2 iasc0

l GFk21
l

2 ias~c1
l Fk21

l 11 1c2
l Fk21

l 21 !1
a2

2
~k01k22!~C0

l Fk22
l

1C11
l Fk22

l 12 1C1
l Fk22

l 11 1C2
l Fk22

l 21 1C22
l Fk22

l 22 !J ,

~53!

with Fk,0
l [0, and with the various coefficientscl and Cl

given in Eqs.~13! and ~15!.
An essential feature of Eq.~51! is the fact that it actually

constitutes a hierarchy of effectivelydecoupledequations, as
each of the functionsFk.0 satisfies an inhomogeneous equ
tion whose source depends only on the functionsFk8,k pre-
ceding it in the hierarchy. The first function,Fk50

l , obeys a
closed homogeneous equation. Thus, in principle, we m
solve for all modes of all functionsFk one by one, starting
with k50. For eachk, one should be able to solve for a
modesl of Fk , and then carry on tok11.

Now, Eq. ~51! is a second-order differential equation f
each of the various functionsFk

l . In principle, to determine

7It should be noted thatby definitionthe parameterk0 does not
depend onl ,m: whereas in the Schwarzschild case@8# a separate
parameterk0

l has been defined for each model ,m, in the present
paper a single parameterk0 is related with the overall fieldCs.
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these functions, proper boundary conditions should be sp
fied at the EH~which is, mathematically speaking, a ‘‘regu
lar singular point’’ of the equation! and at space-like infinity.
~These two boundary conditions should determine the
arbitrary parameters which occur in the general solution
each of the functionFk

l .! The behavior ofCs at infinity is
known from the previous section, and in Sec. VII below w
discuss the matching to this asymptotic region. At the E
the only obvious requirement concerns the regularity of
physical fields there. In the rest of the present section
obtain the boundary conditions for the functionsFk

l at the
EH, based on local regularity considerations.

One expects ‘‘measurable’’ physical quantities to ma
tain a perfectly regular behavior at the EH, which is a surfa
of a perfectly regular local geometry. Accordingly, the com
ponents of the Weyl and Maxwell tensors should be perfe
smooth through the EH, provided these components are
pressed in a coordinate system regular at the EH. To c
struct boundary conditions for the scalarsCs at the EH, it
then remains to relate these scalars to the regular compon
of the Weyl and Maxwell tensors.

To that end we must first write the tetrad basis~4!, used to
construct the scalarsCs, in EH-regular coordinates. Recal
ing that the BL coordinatest andw go irregular at the EH,
we introduce the Kruskal-like coordinates

U[2e2k1u and V[ek1v, ~54!

and the regularized azimuthal coordinate

w̃1[w2V1t ~55!

~see Sec. 58 in Ref.@32#!, where

V15
a

2Mr 1
. ~56!

(V1 is the ‘‘angular rate of inertial frame dragging’’ at th
EH.! In the EH-regular coordinate system (V,U,u,w̃1), the
components of the ingoing and outgoing tetrad legs have
EH-asymptotic forms

l m}D21ek1v@1,0,0,0#,

nm}De2k1v@0,1,0,0#. ~57!

Recall thatv is regular at the EH, and thatD50 there.
Now, the construction of the scalarsCs involves usu pro-

jections of the Weyl and Maxwell tensors on the tetrad le
l m ~for s.0) or nm ~for s,0). Since the components o
these tensors must be EH regular in the coordinate sys
(V,U,u,w̃1), then by virtue of Eq.~57! we find thatDsCs

must be EH regular as well.
To formulate the regularity condition for the function

Fk
l (r ), we note that the functionsYslm(u,w) in Eq. ~50! are

irregular at the EH formÞ0, due to the factoreimw: We
have

eimw5eim(w̃11V1t)5@eimw̃1
•eimV1v#e2 imV1r

* , ~58!
6-10
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where the factor in square brackets is EH regular, but
following factor oscillates rapidly towards the EH. From E
~50! we thus find that it is the quantityDse2 imV1r

* Fk
l which

must be perfectly regular at the EH~for all k).
Hence, the regularity condition at the EH can be phra

as follows: Define the ‘‘physical’’ variables

Ĉs[DsCs and F̂k
l [Dse2 imV1r

* Fk
l . ~59!

Then, we must have that~for all k)

Ĉs and F̂k
l are smooth functions at the EH.~60!

Mathematically, we shall require these functions and all th
derivatives with respect to an EH-regular coordinate~such as
r or U) to be continuous through the EH.

Equation~60! constitutes the required boundary conditi
at the EH for all functionsFk

l (r ).

V. GLOBAL SOLUTION FOR k50

The dominant late time decay at world lines of fixedr is
described by thek50 term of the LTE, Eq.~50!.8 In this
section we derive an exact analytic expression for this te
~namely, for all modesl of the functionFk50

l ). SinceFk50
l is

a solution of a second-order differential equation, it sh
contain two arbitrary parameters. One of these parame
will be determined in this section by the regularity conditi
at the EH. The other parameter will be determined in S
VII through matching at infinity.

By definition,Zk50
l 50, and the functionFk50

l admits the
homogeneous equation

DlFk50
l 50, ~61!

with the operatorDl given in Eq.~52!. This is nothing but
the static fieldequation in Kerr spacetime. The static sol
tions play an important role in our analysis, for two reaso
~i! As just mentioned, the late time behavior can be appro
mated by knowingFk50

l , which must be a static solution
and~ii ! we shall use a basis of static solutions in construct
the functionsFk.0

l using the Wronskian method.
For reasons that will become clear below, we continue

treating separately the casessÞ0 ands50. Also, for sÞ0
we will consider separately the casesmÞ0 ~nonaxially sym-
metric modes! andm50 ~axially symmetric modes!.

A. sÞ0 fields: Nonaxially symmetric modes

For sÞ0 and mÞ0, a basis of exact solutions to th
homogeneous static field equation~61! is given by

f r5~z1 /z2! imgD2sF~2 l 2s,l 2s11;12s12img;2z1!,

~62a!

8Actually, in Sec. VI we discuss an exception to this stateme
For m50 modes ofs.0 fields, the behavior along the EH is dom
nated by thek51 term. However, in this case too, the decay alo
lines of constantr .r 1 is still dominated by thek50 term.
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f ir 5~z1 /z2!2 imgF~2 l 1s,l 1s11;11s22img;2z1!,

~62b!

wherez6 are the dimensionless radial variables defined
Eq. ~21!,

g[
a

r 12r 2
5

V1

2k1
, ~63!

andF denotes thehypergeometric function@37#. ~We use this
notation because, as we discuss below,f r is physically regu-
lar at the EH, whereasf ir is irregular there.!

The hypergeometric functionF(â,b̂; ĉ;y) ~where â, b̂,
and ĉ are complex parameters andy is a complex indepen-
dent variable! admits the series expansion

F~ â,b̂; ĉ;y!511 (
n51

`
~ â!n~ b̂!n

~ ĉ!n

yn

n!
~64!

~see, e.g., Sec. 2.1.1 in@38#!, where

~ â!n[â~ â11!•••~ â1n21!5G~ â1n!/G~ â! ~65!

is the ‘‘rising factorial.’’9 Two results arising from Eq.~64!

are that~i! the hypergeometric function is not defined ifĉ is
a non-positive integer@as in this case a zero factor occurs
the denominator in Eq.~64!#, and that~ii ! if either â or b̂ are
non-positive integers, the expansion~64! terminates, and the
hypergeometric function becomes a polynomial of orde
2â or 2b̂, respectively.

Item ~i! above implies that formÞ0 both solutions~62a!,
~62b! are defined; however, in the casem50 ~which we treat
separately below! only one of these solutions is defined (f r
for s,0, or f ir for s.0). We further find, by item~ii !
above, that both hypergeometric functions in the solutio
~64! are simplypolynomialsof z1 ~and thus ofr too!.

For mÞ0, the general static solution is constructed fro
the two basis functions~62!. With the help of Eqs.~22!, ~63!,
and~64!, one finds the asymptotic forms of these functions
be

f r>H D2seimV1r
* as r * →2`~D,z1→0!,

Bs
lmr l 2s as r ,z1→`,

~66!

and

f ir >H e2 imV1r
* as r * →2`~D,z1→0!,

~B2s
lm !* r l 2s as r ,z1→`,

~67!

where the coefficientBs
lm is given by

Bs
lm5

~2l !!G~12s12img!

~ l 2s!!G~ l 12img11!
~r 12r 2!2 l 2s. ~68!

t:
9Note that (â)n is well defined even when the expression invol

ing the gamma functions is not. In this case, of course, the sec
equality in Eq.~65! is invalid.
6-11
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We now use Eq.~59! to construct the ‘‘physical’’ fields
f̂ r[Dse2 imV1r

* f r and f̂ ir [Dse2 imV1r
* f ir associated

with the static solutionsf r andf ir . From the EH-regularity
criterion ~60! we then learn that the static solutionf r is
physically regular at the EH, whereasf ir is irregular there:
For s,0 the irregularity off̂ ir is obvious, as it diverges like
;D2usu at the EH. Fors.0, f̂ ir is continuous through the
EH, yet itssth derivative with respect toU ~which is a regu-
lar coordinate through the EH! diverges there like
}e22imV1r

* . Higher orderU derivatives of f̂ ir are un-
bounded in magnitude at the EH.

Obviously, f r is the only solution of the homogeneou
static equation~up to some global constant factor! which is
physically-regular at the EH, because any combinationaf r
1bf ir with bÞ0 will be irregular there. In a physical setu
where a static source presents outside the BH, the field m
behave as}f r near and through the EH. In vacuum,f r is
the only global static solution physically regular at the E
This field does not vanish at infinity~where it behaves like
}r l 2s); hence it cannot represent a physical static pertur
tion. There exists a static solution which dies off fast enou
at infinity @this is the solution (B2s

lm )* f r2Bs
lmf ir , which

dies off as}r 2 l 2s21 at large r @37##, yet this solution is
physically irregular at the EH. Similar results apply also
the staticm50 modes, which we study below. We thus co
clude thatthere cannot exist physical vacuum static mod
outside the Kerr BH. This, of course, is a manifestation
the ‘‘no hair’’ principle.

In the framework of the LTE, each of the functionsFk
l (r )

must be subject to the EH-regularity criterion~60!. Since
Fk50

l must be a static solution, it thus have to be proportio
to f r

l . To conclude the above discussion we therefore ta

Fk50
l ~r !5a0

l f r
l ~r !. ~69!

The constanta0
l is to to be determined in Sec. VII by match

ing at null infinity.

B. sÞ0 fields: Axially symmetric modes

We remarked earlier that in the casem50 only one of the
basis functions~62a!, ~62b! is defined—the one in which
depending on the sign ofs, the third parameter of the hype
geometric function is a positive integer. Denoting this fun
tion by f r

m50 , we have

f r
m505F~2 l 1s,l 1s11;s11;2z1![f r

1 for s.0
~70a!

and

f r
m505D2sF~2 l 2s,l 2s11;2s11;2z1!

[f r
2 for s,0. ~70b!

The asymptotic forms of this solution are

f r
m50~r !>H D0 ~ for s.0!

D2s ~ for s,0!
at the EH ~71!
02402
st

.

a-
h

s
f

l
e

-

and, for boths.0 ands,0,

f r
m50~r !>B2usu

l ,m50r l 2s as r ,z1→`. ~72!

Recall thatF is simply a polynomial ofz1 ~and of r ), and
thus so isf r

m50 . From Eq.~70! we find that the ‘‘physical’’

field f̂ r
m50[Dsf r

m50 is also a polynomial, and therefore
clearly,f r

m50 is physically regular at the EH.
We still have to construct a second independent ba

static solution for them50 case.~This will allow us to tell
whether or not the above solutionf r

m50 is the only regular
one.! Fortunately, at that point we can benefit from the wo
already done in Ref.@28# for the Schwarzschild case: Whe
expressed in terms of the variablez1 ~rather thanr ), the
static field equation~61! for m50 takes exactly the sam
form as for the Schwarzschild BH@see Eq.~21! in @28##,
where in the latter case we use the variablez[(r
22M )/(2M ). Therefore, each static solution in th
Schwarzschild spacetime becomes a static axially symme
(m50) solution in Kerr spactime, upon replacingz→z1 .
Moreover, in terms of the variablesz ~in the SBH case! and
z1 ~in the KBH case!, the EH-regularity criterion become
the same for both spacetimes, and thus the classificatio
regular and irregular solutions at the EH is also conserve

As a second basis function we then take the static solu
given in Eq.~24! of Ref. @28#:

f ir
m505Ãlsz1

2sz2
2 l 21F~ l 2s11,l 11;2l 12;z2

21!

[f ir
1 for s.0 ~73a!

and

f ir
m505Ãlsz2

2 l 2s21F~ l 1s11,l 11;2l 12;z2
21!

[f ir
2 for s,0, ~73b!

where we have replacedz with z1 ~and thusz11 with z2).
Here,Ãsl is a normalization factor,

Ãsl51/F~ l 2usu11,l 11;2l 12;1!5
l ! ~ l 1usu!!

~2l 11!! ~ usu21!!
~74!

@cf. Eq. ~46! in Sec. 2.8 of@38##, chosen such thatf ir
m50

takes a simple asymptotic form at the EH~see below!. From
Ref. @28# we also know thatf ir

m50 admits the following se-
ries expansion near the EH:

f ir
m50~r !

5H D2s~11ã1D1••• !1b̃f r
1ln z1 ~ for s.0!,

~11ã2D1••• !1b̃f r
2ln z1 ~ for s,0!,

~75!

in which the coefficientb̃ is nonvanishing,

b̃5
~21!s11~ l 1usu!!

~ usu21!! ~ usu!! ~ l 2usu!! ~r 12r 2!22usu. ~76!
6-12
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It is clear ~e.g. by comparing the EH-asymptotic form!
that the two solutionsf r

m50 andf ir
m50 are independent, an

thus form a complete basis of solutions. As already
plained in Ref.@28#, f ir

m50 is physically irregular at the EH

For s,0 the ‘‘physical’’ field f̂ ir
m50 diverges there asD2usu.

For s.0 f̂ ir
m50 is continuous through the EH, yet itssth

derivative with respect toU diverges there~as } ln z1).
Therefore, Eq.~69! applies tom50 as well, where for this
case the functionf r is given by Eq.~70!.

It is instructive to compare between the asymptotic beh
ior of the sÞ0 static solutions in the casemÞ0 @Eqs. ~66!
and~67!# and in the casem50 @Eqs.~71! and~75!#. Focus-
ing on the asymptotic dependence onD ~and ignoring for
this discussion the oscillatory factor presents in themÞ0
case!; we find that for thes.0 fields the regular and irregu
lar solutions ‘‘switch roles’’: FormÞ0 modes the regula
solution is the one that behaves likeD2s at the EH and the
irregular solution is the one that behaves like}const there,
whereas form50 modes the opposite is true. Such an int
change of roles does not occur in the cases,0. This effect
is explored and explained in detail in Ref.@28#

C. Scalar field case„s50…

For s50 we use the new radial variable

z̄[z11z25
2r 2r 12r 2

r 12r 2
~77!

~note the relationz̄52z11152z221), to write the static
field equation~61! in the form

~12 z̄2!F9~ z̄!22z̄F8~ z̄!1@4m2g2~12 z̄2!21

1 l ~ l 11!#F~ z̄!50, ~78!

where a prime denotesd/dz̄. This is the familiar Legendre’s
differential equation~see, for example, Sec. 3.2 in Ref.@38#!.
Two independent solutions to this equation are@38#

f r
s505~z1 /z2! imgF~2 l ,l 11;112img;2z1!,

~79a!

and

f ir
s505

~ z̄221! img

z̄l 12img11
F~ l /21 img11,1/21 img

11/2;l 13/2;z̄22!, ~79b!

which are~up to a customary normalization! the associated

Legendre functionsof the first and second kinds,Pl
m( z̄) and

Ql
m( z̄), respectively, withm52img.10

10Note that the two independent solutionsf r
sÞ0 and f ir

sÞ0 , Eqs.
~62a! and~62b!, degenerate to the single solution~79a! in the scalar
field case~i.e., when settings50).
02402
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Using the EH-asymptotic relations z1.e2k1r
*

5eV1r
*

/g andz2.1, and recalling that the hypergeometr
function appearing in Eq.~79a! is a polynomial~of order l )
of z1 , we findf r

s50.eimV1r
* near the EH. The ‘‘physical’’

field f̂ r
s50[e2 imV1r

* f r
s50 associated with this solution i

therefore regular at the EH.
It remains to verify thatf r

s50 represents theonly physi-
cally regular solution for the scalar field~up to a constant
factor!. For mÞ0, the solutionf r

s50 and its complex conju-
gate (f r

s50)* constitute a complete basis of static solution
The ‘‘physical’’ field e2 imV1r

* (f r
s50)* becomes indefinite

at the EH~where it behaves likee22imV1r
* ), and we find

that for mÞ0, f r
s50 is indeed the only physically regula

solution. In the casem50, f r
s50 becomes real~it is then the

Legendre polynomial, up to a normalization!, and a complete
basis of solutions is given by (f r

s50 ,f ir
s50). These two basis

functions then admit a relation of the formf ir
s50( z̄)

}f r
s50( z̄)3 ln(z1 /z2)1 polynomial in z̄ @see Eq.~24! in

Sec. 3.6.2 of@38##. Sincef r
s50 is physically regular, it is

therefore clear thatf ir
s50 is physically irregular.

In conclusion, because the functionFk50
s50 must be a static

solution physically regular at the EH, it must be proportion
to f r

s50 . Therefore, Eq.~69! applies to the scalar field too
with f r given in Eq.~79a!.

VI. LATE TIME BEHAVIOR AT THE EH

The LTE, Eq.~50!, is an expansion in inverse powers
advanced timev, with r-dependent coefficients. Since alon
the EH itself r is constant andv takes finite values, this
expansion seems especially convenient for analyzing
‘‘late time,’’ v@M , behavior of the fields at the EH. Poten
tially, this behavior should be described by thek50 of the
LTE. However, a possible divergence or vanishing of va
ous ‘‘coefficient’’ functionsFk(r ) at r 5r 1 may alter this
simple picture, leading to a different prediction for the la
time power-law decay at the EH. Indeed, as it turns out
this section, there is a case~the one ofs.0, m50) in which
the termk51 is found to dominate the termk50 at the EH.

It is therefore important to analyze also the behavior
the k>1 terms at the EH. This task is further motivated
our wish to verify that the LTE is fully consistent with regu
larity at the EH: It will be shown that for eachk there exists
a solutionFk physically regular at the EH. These EH-regul
functions will then construct, via the LTE, a fieldCs repre-
senting a physical perturbation which is regular along the
at all v.

With the above motivations in mind, we first derive in th
section expressions for the EH-asymptotic behavior of e
of the functionsFk>1.

A. Behavior of the k>0 terms at the EH

Each of the functionsFk.0
l admits the inhomogeneou

equationDlFk
l 5Zk

l @Eq. ~51!#, and is subject to the EH
regularity condition~60!. For eachk.0, the general solution
to Eq. ~51! has the form
6-13
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Fk.0
l ~r !5akf r~r !1bkf ir ~r !1fk

ih~r !, ~80!

whereak andbk are ~yet! arbitrary coefficients,f r andf ir
are two independent homogeneous solutions~those derived
in the previous section!, andfk

ih(r ) is a solution to the in-
homogeneous equation.

For eachk.0, an inhomogeneous solutionfk
ih is given

by

fk
ih~r !5f r~r !E r f ir ~r 8!Zk~r 8!/D~r 8!

W~r 8!
dr8

2f ir ~r !E r f r~r 8!Zk~r 8!/D~r 8!

W~r 8!
dr8, ~81!

in which

W5D2s21 ~82!

is the Wronskian associated with the homogeneous equa
DlFk

l 50. We can now make use of the relation

f ir 52f r~r !E r

f r
22~r 8!W~r 8!dr8 ~83!

to re-express the above inhomogeneous solution in a m
convenient form, as

fk
ih~r !5E

r 1

r

dr8E
r 2

r 8
dr9

f r~r !f r~r 9!

@f r~r 8!#2

W~r 8!

W~r 9!

Zk~r 9!

D~r 9!
,

~84!

wherer 1 and r 2 are constant integration limits.11 This form
is obtained from Eq.~81! by first substituting forf ir , using
Eq. ~83!, and then integrating the resulting expression
parts. It is advantageous in that it only involves the homo
neous solutionf r , which is of a more simple form thanf ir
in all the cases considered in the previous section.

Equation~84! can be used, in principle, to calculate a
functionsFk

l (r ) in an inductive manner. In general, for ea
k.0 the source functionZk

l depends on variousl modes of
the functionsFk21 andFk22, which are to be calculated a
previous steps of the induction procedure. As we show
low, for eachk, the value of one of the coefficientsak or bk
is dictated by regularity at the EH. The other coefficient is
be specified by matching at large distance, as we explai
Sec. VII.

We now use Eq.~84! to obtain the EH-asymptotic form
of all functionsFk.0

l . The special cases.0,m50 shall be
treated separately from all other cases.

11The constant limitsr 1 andr 2 will be specified as convenient fo
each of the various cases analyzed below in separate. Of co
changing these limits amounts to adding a homogeneous solutio
Fk

l , which is merely equivalent to re-defining the coefficientsak or
bk in Eq. ~80!
02402
on

re

y
-

e-

in

1. s<0 case and s>0 with mÞ0 case

We start withk51. The sourceZk51
l is calculated from

Eq. ~53!, in which, according to the results of the previo
section, we setFk50

l 5a0
l f r

l . For s<0, and also fors.0
with mÞ0, we find by Eqs.~62a!, ~70b!, and~79a! that the
function Fk50

l has the formFk50
l }f r

l 5D2s1 img3 f 0(r ),
where f 0(r ) is a certain function analytic at the EH an
nonvanishing there. Substituting this form in Eq.~53! yields

Zk51
l ~r !5D2s1 img3 f̄ 1~r !, ~85!

where f̄ 1(r ) is a function analytic at the EH.12

With Eqs.~82! and ~85!, Eq. ~84! becomes~for k51)

fk51
ih 5f r~r !E

r 1

r

dr8E
r 2

r 8
dr9

@D~r 9!#2s12img

@f r~r 8!#2@D~r 8!#s11
f̃ 1~r 9!,

~86!

wheref̃ 1(r 9) is analytic at the EH, and where we have spe
fied the lower limit of the integration overr 8 as r 15r 1 .
Integrating overr 9 @recalling D5(r 2r 1)(r 2r 2)#, we ob-
tain

fk51
ih 5f r~r !E

r 1

r

dr8
@D~r 8!#2s1112img1 c̄

@f r~r 8!#2@D~r 8!#s11
f̂ 1~r 8!

5f r~r !E
r 1

r

dr8~ c̃1 c̄@D~r 8!#s2122img! f̄̄ 1~r 8!, ~87!

where f̂ 1(r 8) and f̄̄ 1(r 8) are analytic at the EH,c̃ is a certain
nonvanishing constant, andc̄ is an integration constant
which, of course, depends on the value of the lower integ
tion limit r 2. In the cases<0, a convenient choice isr 2

5r 1 , which makesc̄ vanish. Fors.0 we taker 252r 1

~say!, as the choicer 25r 1 is forbidden.13 In that case, the
contribution proportional toc̄ to the integral in Eq.~87! must
coincide ~up to a multiplicative constant! with one of the
static solutions,f r or f ir , because changing the integratio
limit r 2 ~thus changingc̄) amounts to adding a static solutio
to Eq. ~80!. By integrating overr 8 we find that this contri-
bution has the asymptotic form} c̄ D2 img} c̄e2 imV1r

* at the
EH; hence it must admit the global form} c̄f ir @see Eq.
~67!#. The term proportional toc̄ in fk51

ih can therefore be
absorbed in the termb1f ir of Eq. ~80!, by re-defining the
coefficientb1. One is left with the contribution proportiona

se,
to

12In deriving Eq.~85! one should notice that whenFk50
l is sub-

stituted in Eq.~53!, the term containingdFk50
l /dr and the one

containingFk50
l /D cancel out at the leading order inD. As a con-

sequence, leading-order contributions toZk51
l arise from all terms

in ~53!, including the interaction terms.
13In the cases512 we can makec̄ vanish by takingr 25`.

However, fors511 no choice ofr 2 nullifies c̄.
6-14
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to c̃, which, after integrating overr 8, readsf r•D f 1(r ),
where f 1(r ) is a function analytic at the EH.

From Eq. ~80! we now find thatFk51
l 5a1f r1b1f ir

1f rD f 1(r ). The EH-regularity criterion~60! then dictates
b150, finally leading to

Fk51
l 5f r@a11D• f 1~r !#. ~88!

Recall ~i! that f 1(r ) is analytic at the EH, and~ii ! that the
regular solution is physically regular there in the sense
cussed in previous sections. This implies that the funct
Fk51

l of Eq. ~88! is physically regular at the EH~namely, the

‘‘physical’’ function F̂k51
l associated withFk51

l is math-
ematically regular there!. Note also that, as far as the leadin
order term inD is concerned,Fk51

l has the same asymptot
behavior asFk50

l at the EH, which is that of the regular stat
solution:}D2seimV1r

* .
We can now carry on in an inductive manner, and anal

the termsk>2. In general, let us assume that for a giv
k8>2 we have, for allk,k8,

Fk
l 5f r@ak1D• f k~r !#, ~89!

wheref k(r ) are functions analytic at the EH.~This form was
already verified above fork50 andk51.! By substituting in
Eq. ~53! it is straightforward to show that

Zk8
l

~r !5D2s1 img f̄ k8~r !, ~90!

where f̄ k8(r ) is analytic at the EH. This, following the sam
calculation as for Fk51

l , leads to Fk8
l

5ak8f r1bk8f ir

1f rD f k8(r ). The EH-regularity condition~60! then dictates
bk850, and one finds that Eq.~89! is also valid fork5k8.
Thus, by induction, Eq.~89! is verified for allk>0.

In conclusion, we have constructed EH-regular solutio
for each of the functionsFk

l (r ). It was found that for all
modesl, all functionsFk

l (r ) behave near the EH like a regu
lar static solution, }f r ; namely, they all admit the
asymptotic form

Fk
l ~r !>ak D2seimV1r

* near the EH, for allk>0.
~91!

2. Case s>0, m50

In this case, the functionFk50
l 5a0f r

1 is simply a poly-
nomial, admitting the EH-asymptotic formFk50

l ,m50>a0D0

@see Eq.~71!#. To obtain the sourceZk51
l , insertFk50

l into
Eq. ~53!. This yields

Zk51
s.0,l ,m5054Msk0a0~r 1

2 2a2!D211h̄~r !, ~92!

whereh̄(r ) is a function analytic at the EH. Note that now
sinceFk50

l is a polynomial, the asymptotic form ofSk51
l at

the EH is dominated by merely the term}D21Fk50
l in Eq.

~53!, while the other terms~including the derivative term and
the interaction terms! contribute only to higher orders inD.
02402
-
n

e

s

To calculatefk51
ih , we substituteSk51

l in Eq. ~84!. Re-
calling that in the present case the functionf r is a polyno-
mial, one finds

fk51
ih 54Msk0a0~r 1

2 2a2!f r
1~r !E

r 1

r

dr8E
r 1

r 8
dr9

3
@D~r 9!#s211@D~r 9!#sh̃~r 9!

@f r
1~r 8!#2@D~r 8!#s11

, ~93!

whereh̃(r 9) is analytic at the EH.~Here, we have specified
one of the integration limits,r 25r 1 .) Carrying the integra-
tion we arrive at

fk51
ih 54Mk0a0

r 1
2 2a2

r 12r 2
f r

1~r !E
r 1

r

dr8@D21~r 8!1ĥ1~r 8!#

5g̃1f r
1ln z11 h̄̄1~r !, ~94!

in which ĥ1(r 8) and h̄̄1(r ) are analytic at the EH, and wher
the coefficientg̃1 is given by

g̃154Mk0a0

r 1
2 2a2

~r 12r 2!2
Þ0. ~95!

By virtue of Eq.~75! we finally obtain, forFk51
l ~in the case

s.0, m50),

Fk51
l ~r !5a1

1f r
11b1

1f ir
11fk51

ih

5a1
1f r

11b1
1@D2s~11ã1D1••• !

1b̃f r
1ln z1#1g̃1f r

1ln z11 h̄̄1~r !. ~96!

Now, the EH-regularity criterion~60! forces the ‘‘physi-
cal’’ function F̂k51

l [DsFk51
l to be perfectly smooth at the

EH ~wherez150). This implies thatFk51
l must contain no

logarithmic terms of the form} ln z1 : If such a logarithmic
term is present,F̂k51

l would indeed be continuous at the EH
yet itssth derivative with respect tor or U ~which are regular
coordinates at the EH! would diverge there. We therefor
find that the regularity condition dictates the value of t
coefficientb1

1 :

b1
152g̃1 /b̃Þ0. ~97!

Hence, from Eq.~96! we obtain the form

Fk51
l ~r !5D2sh1~r !, ~98!

whereh1(r ) is a function analytic at the EH, satisfying

h1~r 5r 1!5b1
1Þ0. ~99!

@The analytic functionh1(r ) contains also the termsa1
1f r

1

and h̄̄1(r ) appearing in Eq.~96!, multiplied byDs. Note that
the polynomial homogeneous solution does not affect
6-15
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leading order term ofFk51
l at the EH.# It is important that

h1(r ) does not vanish atr 5r 1 : It implies that at the EH
itself ~in the case ofs.0 with m50) the termFk51

l domi-
nates the termFk50

l , which is only proportional toD0 there.
The application of this result to the late time tail will b
discussed below.

We now turn to the termsk>2, and show by mathemati
cal induction that for allk>1 there exists a solution admi
ting the form

Fk>1
l ~r !5D2shk~r ! ~100!

@with hk(r ) being functions analytic at the EH#, and thus
satisfying the EH-regularity condition~60!. This form was
already verified in the casek51, for which we also showed
that h1(r 1)Þ0.

Let us assume that Eq.~100! applies for all 1<k,k8
wherek8.1 is arbitrary, and show that it is also valid fo
k5k8. Substituting the form~100! into Eq. ~53! we find
Zk8

l
5D2sh̄k8(r ) whereh̄k8(r ) is analytic at the EH. We then

have

fk8
ih

5E
r 1

r

dr8E
r 1

r 8
dr9

f r
1~r !f r

1~r 9!

@f r
1~r 8!#2

h̄k8~r 9!

@D~r 8!#s11

5f r
1~r !E

r 1

r

dr8D2s~r 8!h̃k8~r 8!

5g̃k8f r
1~r !ln z11D2s11ĥk8~r !, ~101!

whereh̄k8 , h̃k8 , andĥk8 are analytic at the EH, andg̃k8 are
constant coefficients.~Here we have takenr 25r 1 .) For Fk8

l

we thus obtain

Fk8
l

~r !5ak8
1 f r

11bk8
1

@D2s~11ã1D1••• !1b̃ ln~z!f r
1#

1g̃k8ln z1f r
11D2s11ĥk8~r !. ~102!

This result is analogous to Eq.~96!, only here we have no
ruled out the possibility that some of the coefficientsg̃k8 may
vanish~for k8.1) .

TABLE I. The asymptotic behavior of the ‘‘physically regular
functions Fk

l (r ) at the EH. Presented are the leading order inD
forms of these functions, for the various cases studied in the
For axially symmetric (m50) modes the asymptotic behavior d
pends on whethers.0 or s<0, as discussed in the text. Note th
these asymptotic forms are in all cases independent of the multi
numberl of the modes under consideration.

Case Fk50 Fk51 Fk>2

am50,s.0 D0 D2s <D2s

All other cases D2seimV1r
* for all k>0
02402
For the regularity condition to be met, we must now ha
bk8

1
52g̃k8 /b̃. Consequently, Eq.~100! is recovered fork

5k8 as well. By induction, then, we conclude that Eq.~100!
applies to allk>1.

Recall that it is possible for some of the coefficientsg̃k

~with k>2) to vanish. If, for a certaink, g̃k happens to
vanish, then, to maintain EH regularity, one must havebk

1

50. In that case Eq.~102! yields for Fk
l a divergence rate

slower thanD2s at the EH ~for this specifick). This, of
course, does not contradict Eq.~100!, which should be re-
garded as merely setting an upper bound to the diverge
rate of the functionsFk>2

l . It is only for Fk51
l that we veri-

fied the actual asymptotic behavior}D2s, by showing
h1(r 1)Þ0. This information, however, would be sufficien
for the late time analysis at the EH.

The above results, concerning the behavior of the ph
cally regular functionsFk

l (r ) at the EH, are arranged in
Table I. The table shows the leading-order forms of the
functions for the various cases studied above. Below we
these results to discuss the late time behavior of the fieldsCs

along the EH.

B. Late time tail along the EH

When discussing the field behavior along the EH, it
most natural to refer to the ‘‘physical field’’Ĉs5DsCs,
which, by construction, is a linear combination~with regular
coefficients! of the regular Weyl or Maxwell components
Expressing the LTE in terms ofĈs, and using Eq.~58!, we
find

Ĉs~v,r ,u,w̃1!

5 (
k50

`

(
l ,m

Yslm~u,w̃1!eimV1v

3@Dse2 imV1r
* Fk

slm~r !#v2k02k. ~103!

Here, the factor in the square brackets is the functionF̂k
l (r )

which, by the above construction, is regular at the EH~for all
k). Recall also that the angular dependence here is EH re
lar, and that thev-dependent factors take finite values at t
EH. Thus, each of the terms in the sum overk in Eq. ~103! is
indeed physically regular at the EH.

Now, at largev, the fieldCs should, potentially, be domi-
nated by thek50 term in Eq.~103!. For thes<0 fields and
for mÞ0 modes of thes.0 fields, we find from Table I that
at the EH itself the factor in the square brackets in Eq.~103!
admits @ #k}const for all k>0. Therefore, in these case
the late time decay ofCs along the EH is indeed dominate
by thek50 term, with other terms smaller by factors of 1/v.
Let us denote byCsm the part of Cs which includes all
multipole modesl of a givenm. To leading order in 1/v, we
then find for all modesm of the s<0 fields, and for non-
axially symmetric (mÞ0) modes of thes.0 fields,

Ĉsm~r 5r 1!5(
l

a0
l Yslm~u,w̃1!eimV1vv2k0. ~104!

t.

le
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The situation is different in the case of axially symmet
(m50) modes of thes.0 fields. Here, the factor in the
square brackets in Eq.~103! vanishes at the EH likeDs for
k50, whereas fork51 it is finite. Hence, in this case, th
k51 term dominates thek50 term. For each of thek>2
terms the above factor is at most finite~and may even vanish
for somek); hence these terms are negligible with respec
the k51 term at largev. We conclude that for axially sym
metric modes of thes.0 fields the late time behavior alon
the EH is dominated by thek51 term:

Ĉs.0,m50~r 5r 1!5(
l

b1
1Ysl,m50~u!v2k011, ~105!

to leading order in 1/v ~here, the coefficientb1
1 is also l

dependent!.
At this stage, we still do not know the mode compositi

of the above leading-order tails; neither can we tell what
power indexk0 and the amplitude coefficients are. The
pieces of information will be obtained below by matchin
the LTE to the form of the late time field at null infinity.

However, one feature of the behavior along the EH
already manifested in Eq.~104! above: Non-axially symmet
ric (mÞ0) modes of the fields do not exhibit a strict powe
law decay along the EH; rather, the amplitude of the pow
law tail oscillatesalong the null generators of the EH, wit
an ~advanced time! frequencymV1 . This phenomenon wa
first observed by Ori@22#, and was further analyzed in Ref
@21,23,24#.

We comment that the above oscillations are not ma
fested when using the Kerr coordinatew̃, defined bydw̃

5dw1(a/D)dr, instead ofw̃1 ~cf. Ref. @18#, which adopts
the coordinatew̃). Both coordinates are regular at the E
however, the horizon’s null generators are lines of cons
w̃1 but varying w̃.14 Note that the oscillation of the scala
field along the horizon’s null generators is a coordina
independent phenomenon.

VII. LATE TIME BEHAVIOR AT FIXED r>r 1

In this section we obtain the global late time behavior
any of the modes of the fieldCs at any fixed value ofr
.r 1 . This task is to be accomplished in two steps: First,
consider the model 5 l 0 ~for each givens andm), which in
Sec. III we found to be the~single! dominant mode at nul
infinity at late time. By evaluating the form of this mode
the LTE at null infinity, and comparing it to the form ob
tained independently in Sec. III, we derive the unkno

14To see that, we point out that, in the (v,r ,u,w̃) system, the null

generators of the EH are lines ofu5const, r 5r 1 , w̃52al, and
v52(r 1

2 1a2)l, where l is an affine parameter along th
generators—see Sec. 33.6 in Ref.@39#. Thus, along the null genera

tors we findw̃5V1v. Now, at the EH the two coordinatesw̃ and

w̃1 are related bydw̃5dw̃11V1dv, from which we conclude tha

dw̃150 along the null generators of the EH.
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power indexk0, as well as the amplitude coefficient of th
late time tail at fixedr. Provided with the value ofk0, we can
then carry on and, in the second step, obtain the tail form
all other modes at fixedr .r 1 . In particular, we then find
that the single model 0 dominates the behavior of the fiel
Csm also at fixedr.

A. Mode l 5 l 0

Substitutingv5t1r * in Eq. ~50!, we find that along any
r 5const.r 1 world line, at the late time limitt@ur * u, the
behavior of the modeCsl0m ~for each givens and m) is
described by

Csl0m5Ysl0m~u,w!Fk50
sl0m

~r !t2k0

5a0
l 0Ysl0m~u,w!f r

l 0~r !t2k0 ~106!

to leading order inur * u/t, where the second equality is du
to Eq. ~69!. To obtain the unknown power indexk0 and the
amplitude coefficienta0

l 0, we now match the LTE to the form
of the field at null infinity, as derived in Sec. III.

In order for Eqs.~48! and~50! to agree at null infinity for
the model 5 l 0, we must have

F (
k50

`

Fk
sl0m

~r !v2k02kG
at scri1

[cLTE
l 0

5a0
l 0I 0

l 0v22s21u2( l 02s12).

~107!

Here,cLTE
l 0 denotes the time-radial part of the model 0 at null

infinity, as calculated from the LTE, whereas the express
on the right-hand side~RHS! is the one derived in Sec. II
using the iterative expansion scheme. As it turns out~see
below!, all termsk of the sum on the LHS of this equatio
contribute in the same order of magnitude at null infini
and thus should be all summed up when evaluatingcLTE

l 0 . To
that end, we first need to obtain the large-r asymptotic form
of all functionsFk

l 0(r ).

Starting with k50, we have, from Eq.~69!, F0
sl0m

5a0
l 0f r

l 0 . Using Eqs. ~66! and ~72! we find the large-r
asymptotic form

Fk50
sl0m

~r @r 1!>g0
l 0r l 02s, ~108!

where the constant coefficientg0
l 0 is given by

g0
l 05a0

l 03H B
2s
l 0 ,m50 for s.0 with m50,

Bs
l 0m in all other cases

~109!

@with the coefficientsBs
l 0m given in Eq.~68!#.

To analyze the functionsFk>1
l 0 we use Eq.~80!, with the

coefficientsbk taken to be the ones determined above
EH-regularity considerations~e.g. bk50 for mÞ0). We
6-17
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now show by mathematical induction that for allk, these
functions admit the large-r asymptotic form

Fk
l 0~r @r 1!>gk

l 0r l 02s1k ~110!

~to leading order inr ), wheregk
l 0 are constant coefficients

To that end, we assume that Eq.~110! applies to allk,k8
~where k8 is an arbitrary integer greater than zero!, and
verify its validity to k5k8.

First, we must calculate the large-r asymptotic form of
the source functionZ

k8

l 0 . From Eq.~53! we obtain, to leading
order in r,

Z
k8

l 0 >2~k01k821!@r 2~dF
k821

l 0 /dr !1rF
k821

l 0 #

>ĝ
k8

l 0 r l 02s1k8, ~111!

whereĝ
k8

l 0 52(k01k821)(l 02s1k8)g
k821

l 0 are constants.15

Substituting this leading-order form in Eq.~84! and per-
forming the double integration, we obtain, to leading order
r, fk8

ih >g
k8

l 0 r l 02s1k8, with

g
k8

l 0 5
ĝ

k8

l 0

k8~2l 01k811!
5

2~k01k821!~ l 02s1k8!

k8~2l 01k811!
g

k821

l 0 .

Thus, for allk8.0, the contribution fromfk8
ih to F

k8

l 0 at large
r @via Eq. ~80!# dominates the contribution from the hom
geneous solutions, which is at most;r l 02s. We therefore
haveF

k8

l 0 >fk8
ih at larger; hence Eq.~110! is satisfied fork

5k8 as well. We also know by Eq.~108! that Eq.~110! is
valid for k50. This, by mathematical induction, verifies E
~110! for all k>0, with the coefficientsgk

l 0 given by

gk
l 05

~2l 011!!g0
l 0

~k021!! ~ l 02s!! F2k~k01k21!! ~ l 02s1k!!

k! ~2l 01k11!! G .
~112!

We are now in position to evaluate the sum overk on the
LHS of Eq. ~107! at null infinity. Substituting forFk(r ) @us-
ing Eq. ~110!#, and recallingr >r * 5(v2u)/2 at larger, we
obtain

cLTE
l 0 >v l 02s2k0(

k50

`

gk
l 0F1

2 S 12
u

v D G l 02s1k

. ~113!

To evaluate the sum of this power series at null infinity,
make use of the auxiliary identity, valid foruqu,1,

15Actually, the sourceZ
k8

l 0 contains also contributions from othe
modes (l 5 l 011,l 012). However, as we show later in this sectio
such contributions are negligible at larger, and do not affect the
asymptotic form~111!.
02402
(
k50

`
~k01k21!! ~ l 2s1k!!

k! ~2l 1k11!!
qk

5q22l 21Fqk021S ql 2s

12qD ( l 2s)G (k022l 22)

, ~114!

where the derivatives on the RHS are with respect toq. @To
prove this identity, insert the power expansionql 2s/(12q)
5ql 2s(k50

` qk into the RHS.# We now make the substitu
tions q→(12u/v) and l→ l 0. At v@u ~recall that at null
infinity v→` whereasu takes finite values!, the expression
on the RHS of Eq.~114! is then dominated by the term
resulting fromk02 l 2s22 differentiations of the factor (1
2q)21 — which yields (k02 l 02s
22)!(u/v)2(k02 l 02s21). Substituting this result in Eq
~113!, we obtain

cLTE
l 0 >

22 l 01s~2l 011!! ~k02 l 02s22!!g0
l 0

~k021!! ~ l 02s!!

3v22s21u2(k02 l 02s21). ~115!

Comparison of Eqs.~107! and ~115! finally yields

k052l 013, ~116!

and also, with the help of Eq.~109!,

a0
l 05a0

l 0I 0
l 03

2l 02s11~ l 011!

l 02s11

3H 1/B
2s
l 0 ,m50 for s.0 with m50,

1/Bs
l 0m in all other cases.

~117!

The parameterk0 derived above is, in view of Eq.~106!,
the power index of thel 0 mode’s tail at fixedr .r 1 for each
given s and m @recall l 05max(usu,umu)#. The coefficienta0

l 0

describes the amplitude of this tail, with Eq.~117! relating it
to the amplitude of thel 0-mode’s tail at null infinity~which
is a0

l 0I 0
l 0).

B. Modes l> l 0

We now turn to analyze the behavior of the other mod
l . l 0, at fixed r. Here, the coupling between modes in t
Kerr case shall appear to have a crucial effect on the form
the late time tail. To discuss this effect, it is most instructi
to first consider a situation without coupling. Thus, at fir
we shall ‘‘turn off’’ the interactions between modes by ig
noring for a while all terms inZk

l @Eq. ~53!# which couples
the model to other modes.~This will qualitatively describe
the situation in the Schwarzschild case.! Then, in the second
part of the following discussion, we restore the coupling~by
taking into account all terms inZk

l ), and discuss its importan
effect on the late time tail of decay.
6-18
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1. Case with no coupling between modes

Considering a model . l 0 and ignoring its interaction
with other modes, we can follow the same calculation as
the l 0 mode, and obtain at null infinity cLTE

l

}a0
l v22s21u2(k02 l 2s21), in a full analogy with Eq.~115!.16

However, since for anyl . l 0 we havek02 l 2s2152l 0
2 l 2s12, l 2s12, this result cannot match the knownu
power at null infinity, u2( l 2s12), unless a0

l 50. The
‘‘boundary condition’’ at null infinity thus dictates the van
ishing of a0

l , and thus ofF0
l , for all l . l 0. This, of course,

means that the modesl . l 0 will decay faster thant2k0 at
fixed r.

This argument demonstrates that in order to determine
form of the late time tail at fixedr, it is necessary to find out
for each given model . l 0, what is the smallestk value for
which Fk

l does not vanish. Denoting this value byk̃( l ), we

find that the tail of any model is given by t2k02 k̃( l )

5t22l 0232 k̃( l ).
What is k̃( l ) then? We shall answer this question

matching the LTE at null infinity for each model . l 0. First,
we must obtain the asymptotic form of the functionsFk

l at

large r. By definition of k̃ we haveFk, k̃
l

50. If no interac-

tion occurs between various modes, then the functionFk5 k̃
l

must be a static solution~the regular one!: Fk5 k̃
l

5ak̃
l
f r

>ak̃
l
r l 2s at larger, where the constant coefficientak̃

l does

not vanish by definition ofk̃. Following the same calculation
as for the l 0 mode ~again, with the interaction betwee
modes ignored for a while!, we obtain for eachk> k̃ the
large-r asymptotic form

Fk> k̃
l >gk

l r l 2s1(k2 k̃), ~118!

wheregk
l are constant coefficients. Hence, for each modl

. l 0 we find, to leading order inu/v,

cLTE
l >(

k5 k̃

`

gk
l r

*
l 2s1k2 k̃v2k02k5v2k01 l 2s2 k̃ f ~u/v !,

~119!

where f [(k5 k̃
`

gk
l @(12u/v)/2# l 2s1k2 k̃ is a function ofu/v

only.17

Now, we know independently from Sec. III that anyl
mode decays at null infinity with a tail of the form
}v22s21u2( l 2s12). By comparing thev power in Eq.~119!
to this form, we find~settingk052l 013) that the function

16Recall that in obtaining Eq.~115! for the l 0 mode, the interac-
tion between modes was not taken into account~this will be justi-
fied below!. Thus, the analogy with this case is straightforward: o
only needs to replacel 0 with l in Eq. ~115!.

17Here we do not sum overk in an explicit manner, as we did fo
the l 0 mode. Rather, we use a simpler argument, which is yet so
what less rigorous.
02402
r

e

f (u/v) must admit the asymptotic form f (u/v)
>(u/v)22l 02 k̃1 l 1s22. Then, by comparing the power ofu,
we finally obtain

k̃~ l !52~ l 2 l 0! ~no coupling; SBH case!. ~120!

We conclude that for each model . l 0, the form of the
field at null infinity ~acting as a boundary condition! dictates
the vanishing of all term of the LTE withk,2(l 2 l 0). The
first nonvanishing term, the one withk52(l 2 l 0), exhibits
the late time tailt2k022(l 2 l 0)5t22l 23. Other terms, the one
with k.2(l 2 l ), decay faster at late time. Therefore, subs
tuting v5t2r * in Eq. ~50!, we find, for each of the mode
l> l 0,

Cslm~ t@ur * u!

}Yslm~u,w!f r
l ~r !t22l 23 ~no coupling; SBH case!

~121!

to leading order inur * u/t.

2. Effect of coupling between modes

Let us now ‘‘turn back on’’ the interactions betwee
modes, and consider their effect on the late time tail. F
each of the functionsFk

l , the inhomogeneous partf ih
l in Eq.

~80! now contains contributions not only from the function
Fk21

l and Fk22
l but also fromFk22

l 62 , and ~for sÞ0) from
Fk21

l 61 andFk22
l 61 . For example, the functionFk51

l 011 admits~for

sÞ0) a nonvanishing source}aFk50
l 0 5aa0

l 0f r
l 0 . Since we

havea0
l 0Þ0 ~by definition ofk0), then, necessarily, the func

tion Fk51
l 011 is nonvanishing. Thus, for the model 5 l 011 we

find k̃51, implying a late time tail of the formt2k02 k̃

5t22l 024. This is different than in the ‘‘no-coupling’’ situ-
ation, in which for thel 5 l 011 mode we hadk̃52 @Eq.
~120!#, leading to the tailt22l 025 @Eq. ~121!#. We may sum-
marize the result in this example by saying that the inter
tion ‘‘excites’’ the model 011 already atk51, whereas the
boundary condition at null infinity ‘‘excites’’ this mode only
at k52. We arrive at the conclusion that for this mode t
effect of interaction dominates the late time behavior.

The generalization of this result to alll . l 0 is straightfor-
ward: For eachl> l 0, the functionFk̃

l
@recall thatk̃( l ) is, for

a given model, the smallestk for which Fk
l is nonvanishing#

serves as a source, viaZk̃
l , to Fk̃12

l 12 and ~for sÞ0) to Fk̃11
l 11

andFk̃12
l 11 . These three functions are then necessarily non

nishing. Since we havek̃( l 5 l 0)50, we obtain in the case
sÞ0, k̃( l )5 l 2 l 0 for all l> l 0. In the scalar field case (s
50) the interaction couples only between next-to-near
modes. In this case, the model 5 l 011 ~for example! is not
excited by interaction, but rather by the boundary condit
at null infinity, yielding k̃( l 5 l 011)52 @see Eq.~120!#. In
general, fors50 we thus findk̃5 l 2 l 0 for even l 2 l 0, and
k̃5 l 2 l 011 for odd l 2 l 0. We can express the results in a
the above cases by writing

e

e-
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k̃~ l !5 l 2 l 01q ~with coupling!, ~122!

where

q5H 1 for s50 with oddl 2 l 0 ,

0 otherwise.
~123!

By comparing Eqs.~120! and ~122! we find that interac-
tion excites any of the modesl . l 0 at smaller kthan do the
boundary conditions at null infinity. In other words, it is th
interaction~rather than the boundary conditions at null infi
ity! which first excites any of these modes, and thus de
mines the form of the leading order tail at late time. This t
shall admit the formt2k02 k̃5t2 l 2 l 0232q.

More precisely, for each givens and m, and for each of
the modesl> l 0, we find from Eq.~50!, to leading order in
ur * u/t,

Cslm~ t@ur * u!

}Yslm~u,w!Fk5 l 2 l 01q
l ~r !t2( l 1 l 0131q) ~Kerr case!.

~124!

Note that for eachl . l 0 ~for the scalar field—for eachl
. l 011) the late time tail decaysslower than the corre-
sponding tail of the same mode in the Schwarzschild ca
Eq. ~121!. These slowly decaying tails are produced by t
interaction, as discussed above. On the other hand, the m
l 0 ~for eachs andm), whose form is not shaped by intera
tion, exhibits the same decay rate in both the SBH and
KBH cases:t22l 023.

There now remains an important question to deal with
what way does the matching of the LTE at null infini
change under the effect of interaction between modes? D
the LTE remain consistent with the boundary conditi
there? In particular, we would like to show that the calcu
tion made above for thel 0 mode is still valid even when the
interaction is taken into account.

To answer these questions we must first examine
large-r asymptotic form of the various functionsFk

l , this
time taking into account also the effect of interaction b
tween modes. As we recall from Eq.~80!, each functionFk

l

contains a ‘‘homogeneous’’ part,ak
l f r

l 1bk
l f ir

l , and an ‘‘in-
homogeneous’’ part,@fk

l # ih. The homogeneous part vanish
identically for all k,2(l 2 l 0) @by virtue of Eq.~120!#, and
behaves asr l 2s at larger for k>2(l 2 l 0). The inhomoge-
neous part vanishes identically for allk, l 2 l 01q @by virtue
of Eq. ~122!#. Its large-r form can be calculated for eachk
and l using Eqs.~53! and ~84!, given the large-r form of all

functionsFk8
l 8 which serve as sources toFk

l .
Using Eqs.~53! and ~84!, one may formulate two practi

cal calculation rules:
~i! If the function Fk21

l admits the large-r form ;r p

~wherep is some positive power index, and a ‘‘;9 symbol
represents the asymptotic form to leading order inr ), then
the contribution toFk

l due to the term inZk
l involving Fk21

l

would be of order;r p11. For example, the source functio
02402
r-
l

e,
e
de

e

n

es

-

e

-

Fk50
l 0 ~which is an EH-regular homogeneous solution a

thus admits;r l 02s) induces onFk51
l 0 ~throughZk51

l 5 l 0) a non-
vanishing contribution of order;r l 02s11.

~ii ! The contribution to a functionFk
l due to interaction

with a source functionFk8
l 8Þ l admits the same large-r form as

the source function itself. This is the situation with all inte
action sources ofFk

l and, also, with the source functio
Fk22

l . For example, the sourceFk50
l 0 ;r l 02s induces on

Fk52
l 012

~throughZk52
l 5 l 012) a nonvanishing contribution of or

der;r l 02s. It also, for example, contributes in order;r l 02s

to Fk52
l 0 ~throughZk52

l 5 l 0).
With the above two ‘‘rules of thumb’’ one can now in

ductively construct expressions for the large-r form of each
of the functionsFk

l , starting withFk50
l 0 ;r l 02s. This easily

yields Fk
l ;r ( l 02s)1k2( l 2 l 0), namely,

Fk
l ~r @r 1 !;r 2l 02 l 2s1k ~125!

for each l> l 0 and k> k̃( l )5 l 2 l 01q.18 This is the same
asymptotic form as obtained for the functionsFk

l in the ab-
sence of interaction, fork>2(l 2 l 0) — see Eq.~118! with
k̃52(l 2 l 0). @The important difference is that without a
interaction the termsl 2 l 01q<k,2(l 2 l 0) all vanish iden-
tically.#

We conclude the following:
~I! For any mode l, the ‘‘inhomogeneous’’ part

(;r 2l 02 l 2s1k) of Fk
l dominates its ‘‘homogeneous part’’

(;r l 2s) at larger for all k exceptk52(l 2 l 0), where both
parts contribute to order;r l 2s @recall that the homogeneou
contribution vanishes identically fork,2(l 2 l 0)#. Thus, for
each model, only one arbitrary parameter@the one belonging
to the homogeneous solution atk52(l 2 l 0)# is involved in
the leading order form at larger—as we may expect.~For
each l, this parameter is to be determined, in principle,
matching at null infinity.! Note also that the first non
vanishing function of eachl ~namelyFk̃

l ), is always propor-

tional to the parametera0
l 0 , which originates from the mode

l 5 l 0 at k50, and ‘‘propagates’’ through interaction t
higher modes.@This parameter was determined above, E
~117!, by matching the model 0 at null infinity.#

~II ! Whether the interactions are taken into account or n
one obtains the large-r form Fk

l }r 2l 02 l 2s1k @for all k>2(l
2 l 0)#, though with different proportion coefficients. Tha
difference only affects the amplitude of the functioncLTE

l

18In fact, this result, Eq.~125!, is not completely accurate, as th

functionsF
k. k̃

l . l 0 turn out to involve logarithmic factors which com
plicate the situation. This logarithmic dependence will be discus
at the end of this section; meanwhile we shall ignore it to make
discussion more clear, and refer only to the power-law depende
of the functionsFk

l ~which is not affected by the presence of th
logarithmic factors!.
6-20
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@e.g. in Eq.~119!#, yet the matching of the modesl . l 0 at
null infinity, discussed above, remains qualitatively t
same.

~III ! As to the effect of the interaction on the model 0: By
Eq. ~125! we have for allk, at the leading order inr, Fk

l 0

;r l 02s1k. This function has, in general, interaction-induc
contributions coming fromFk21

l 11 , Fk22
l 11 , andFk22

l 12 , which by
Eq. ~125! and the above rule~ii ! are of order;r l 02s1k22,
;r l 02s1k23, and;r l 02s1k24, respectively. Thus, the large
r leading order behavior of the functionsFk

l 0 is not affected
by interaction with other modes. This result is valid only f
the l 0 mode~and, fors50, also for l 011) which only in-
teracts with modes of largerl. It justifies ignoring the inter-
actions when evaluating the behavior of the model 0 at null
infinity, as we did above. Particularly, the values deriv
above for the parameterk0 @Eq. ~116!# and for the coefficient
a0

l 0 @Eq. ~117!# remain valid also with interaction betwee
modes taken into account.

Finally, it should be commented on that in the above d
cussion~regarding thel . l 0 modes! we have ignored a cer
tain complication for the sake of clarity: Actually, the inte
gration in Eq.~84! produces, for certain values ofk and l, a
logarithmic dependence onr. This leads to an asymptoti
form of Fk

l which is not strictly a power law@as in Eq.
~125!#, but, in fact, having the formFk

l ;r 2l 02 l 2s1k(ln r)L. It
can be shown that for eachl andk, the logarithmic powerL
may take only integer values between 0 andl 2 l 0. Particu-
larly, we find no logarithmic dependence in all functionsFk
belonging to the model 0, and thus no modification is re
quired in the above analysis for this mode. Also, we c
show thatL50 for all modesFk̃

l
~i.e. for the first nonvanish-

ing functionFk of each model ), and therefore the function
Fk

l in Eq. ~124! exhibit no logarithmic dependence at larger.
Finally, the matching of thel . l 0 modes at null infinity,
discussed above, was based merely on the power-law de
dence of the functionsFk

l (r ), which is not affected by the
presence of the logarithmic factors. However, it is not cl
to us whether the logarithmic factors themselves prope
match at null infinity@recall that in Sec. III the logarithmic
dependence~in u) of the modesl . l 0 at null infinity has not
been fully investigated#. This question remains open.

VIII. SUMMARY AND DISCUSSION

In this paper we have explored analytically the late tim
decay of the Newman-Penrose scalarsCs ~representing sca
lar, electromagnetic, and gravitational perturbations! in the
background of a realistic Kerr black hole. Our analy
method can be summarized as follows: We assume tha
late time each of the fieldsCs admits thelate time expan-
sion, Eq. ~50!. This reduces the master perturbation equat
to a hierarchy of ordinary differential equations for the rad
functions Fk

l (r ). The homogeneous part of each of the
equations is just the static field equation in Kerr spacetim
to which there exists an analytic basis of exact solutions
addition, for eachl and k.0, each of these equations po
sesses an inhomogeneous part depending on functionsFk8,k
02402
-

n

en-

r
ly

at

n
l
e
e,
n

~including functions which belong to other modes!. Using
the Wronskian method we can then explore, in an induct
manner, the general solution for each of the functionsFk

l .
Each of these solutions contains, in advance, two unkno
parameters. One of these parameters is determined by r
larity requirements at the EH. The other parameter is de
mined by the form of the field at null infinity~serving as a
boundary condition!. To obtain the behavior of the fields a
null infinity, we apply theiterative scheme, as described in
Sec. III.

Following is a summary of our main results. These resu
are valid in the most realistic initial setup of a compact pu
composed of all multipole modes~and in particular, the low-
est radiatable model 0 for each value ofm; below we also
briefly discuss the more special case where this mod
missing!.

A. Tail form at fixed r>r 1

Along any world line of fixedr outside the KBH, each
specific model ,m decays at late time with the tail

Cslm~ t@ur * u!}t2( l 1 l 0131q)

for each l> l 05max~ usu,umu!, ~126!

to leading order inur * u/t @see Eq.~124!#. Recall thatq50,
except fors50 with odd l 2 l 0 in which caseq51.

The most dominant modes of theoverall field Cs are
those withl 5usu and2usu<m<usu. From Eq.~106! we find,
to leading order inur * u/t,

Cs~ t@ur * u!5 (
m52usu

usu

a0
l 5usuYs,l 5usu,m~u,w!

3f r
l 5usu~r !t2(2usu13) ~overall behavior!.

~127!

Here, the functionf r
l (r ) is the physically regular static so

lution, whose exact analytic form is given in Eqs.~62a!, ~70!,
and~79a!, corresponding, respectively, to the casesÞ0 with
mÞ0, the casesÞ0 with m50, and the cases50. The
constant coefficienta0 ~which is alsom dependent! is related
in Eq. ~117! to the amplitude of the leading-order tail at nu
infinity, which, in turn, is expressed as a functional of t
initial data function—see Eq.~45! and the Appendix. Note
that Eq.~127! constitutes an exact analytic expression~accu-
rate to leading order inur * u/t) for the late time behavior of
the fieldsCs, valid anywhereat fixed r .r 1 .

The power-law indices predicted in Eqs.~126! and ~127!
agree with those obtained by Hod@24# at fixed r @M ~the
result by Hod refers only to this asymptotic domain!. The
result in Eq.~127! has support from numerical simulation
~in 211 dimensions! by Krivan et al.— see Ref.@18# for s
50 and Ref.@19# for s522. Also, the validity of our pre-
6-21
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diction, Eq.~126!, has recently demonstrated numerically
Krivan @27#.

B. Tail form along the EH

It is most natural to express the results at the EH in te
of the ‘‘physical’’ fields Ĉs[DsCs, which are related
through an EH-regular transformation to the components
the Maxwell and Weyl tensors~see the discussion in Se
IV !. By virtue of Eqs.~104!, ~105!, and~122!, we find each
specific model ,m to decay along the EH with the tail
ld

f
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f

Ĉslm~v@ur * u!}H v2( l 1 l 0141q) for s.0,m50,

eimV1vv2( l 1 l 0131q) in all other cases
~128!

~to leading order inur * u/v), with V1 defined in Eq.~56!.
Note that for thes.0 fields the axially symmetric (m50)
mode decays faster than other modes. Consequently, the
time behavior of theoverall field Ĉs.0 is dominated by the
non-spherically symmetric,mÞ0, modes. These modes o
cillate along the null generators of the EH with~advanced
time! frequenciesmV1 . We find, to leading order inur u/v,
*
Ĉs~v@ur * u!55 (
umu51

usu

a0
l 5usuYs,l 5usu,m~u,w̃1!eimV1vv2(2usu13), overalls.0 field,

(
umu50

usu

a0
l 5usuYs,l 5usu,m~u,w̃1!eimV1vv2(2usu13), overalls<0 field,

~129!
ed
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where the regularized azimuthal coordinatew̃1 is the one
defined in Eq.~55!. Thus, the late time behavior of the fie
Ĉs.0 along the EH ischaracteristically oscillatory. On the
other hand, the behavior of the scalar field (s50) is charac-
teristically non-oscillatory, whereas the fieldĈs,0 involves
both oscillatory and non-oscillatory modes.

As recently discussed by Ori@29#, the characteristics o
the late time decay along the EH — both the value of
power index and the oscillatory nature of the waves — h
important implications to the structure of the infinite blu
shift singularity at the inner horizon of the KBH. This sin
gularity is related with the behavior of the ingoing comp
nent C05Cs52 of the Weyl perturbation. As it turns ou
@29#, this singularity is generically oscillatory.

C. Tail form at null infinity

For each specific model ,m, the analysis in Sec. III pre
dicts at null infinity a late time tail of the form

Cslm~u@M !}Yslm~u,w!v22s21u2( l 2s12)3@ l.d.#
~130!

to leading order inu0 /u and inM /u0. ~We assume here tha
the initial pulse is emitted at large distance, so that2u0
@M .! In this expression, ‘‘@l.d.#’’ represents a possible loga
rithmic dependence of the form lnL@u/(r12r2)#, where the
powerL is some positive integer. Such a logarithmic fac
does not occur for the dominant modesl 0 of eachm, and also
for all modes of a scalar field (s50). Our analysis indicates
that logarithmic factors do occur for the less dominant mo
( l . l 0) of sÞ0 field; however, this point was not studied b
us in full detail. In any case, for each givens and m, the
dominant late time decay at null infinity is described by E
~48!, in which no logarithmic factors occur.
e
e

r

s

.

The overall field Cs is dominated at null infinity by the
modes withl 5usu and2usu<m<usu:

Cs~u@M !5 (
m52usu

usu

a0
l 5usuI 0

l 5usuYs,l 5usu,m~u,w!

3v22s21u2(usu2s12) ~overall behavior!

~131!

to leading order inu0 /u and inM /u0. Here,I 0
l 5usu is a func-

tional whose construction from the initial data is describ
by Eqs.~45! and ~36!.

The power-law indices given in Eqs.~130! and ~131! are
in agreement with Hod’s results@23,24#, though Hod indi-
cates no logarithmic dependence for any on the modes.

D. Non-generic initial data

We now briefly discuss the case where the initial pulse
of a non-generic mode composition, such that~for given s
and m) it does not contain the model 5 l 0. For example,
what can we say about a case in which, for as562 field,
the angular dependence of the initial pulse is that of a p
modem50, l 54?

The calculation scheme presented in Sec. VII, based
the LTE, allows one to obtain the power-index of the tail
fixed r regardless of the initial setup, provided only that t
power index at null infinity is known. Suppose that, for
specific initial setup and for a certainm, the most dominant
mode,l 05max(usu,umu), falls off at null infinity with a tail of
the formCsm}u2w. Then, from Eq.~115! ~whose derivation
does not involve any reference to the details of the ini
data! we must havew5k02 l 02s21, wherek0 is the power
index of the tail at fixedr. Therefore, forany initial mode
composition, there exists a simple relation between
power-law indices at null infinity and at fixedr. Symboli-
6-22
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cally, we may write~for eachm)

Cscri1
sm }u2w⇒C r 5const.r 1

sm }t2(w1 l 01s11), ~132!

which is valid for any initial mode composition.
The main challenge, then, is to obtainw, the power index

at null infinity. Our iterative scheme, presented in Sec.
provides a formal way for accomplishing this task; howev
in the case of a non-generic initial mode composition t
technique becomes less practical, for the following reas
Consider, for example, an initial pulse of scalar radiatio
composed of only the modem50, l 54. Then, the function
cn51 ~namely, the first-order iteration term; we use here
notation of Sec. III! would contain only the three modesl
52,4,6. The most dominant mode of the overall field, tha
l 50, would be excited only atn52 ~and, as we suspec
will gain its typical power-law form only atn53). Thus, in
this example, it would require us to go through at least th
successive iteration stages in order to recover the tail form
the dominant mode.~Recall that in this paper we only dis
cussed the first iteration; the second iteration already
comes very complicated for analytic treatment.! In general,
as larger is the difference between the initial mode andl 0, as
greater becomes the number of iterations required to ex
the exact tail form of the dominant mode. It is only for th
generic case discussed in this paper that a single itera
suffices for this goal.

The case of non-generic initial data~specifically, the case
of any pure initial mode! was studied by Hod in Refs.@23#
and@24#. However, recent numerical experiments by Kriv
@26# show disagreement with Hod’s results in this case. F
ther work is needed, both analytic and numerical, to cla
this point.

E. Final remarks

We recall that in this paper we have considered only n
extremal, uau,M , Kerr BHs. Clearly, the extremal cas
needs to be analyzed separately@note, for example, that Eqs
~19!–~21! cease to be valid in the caseuau5M #. A basic
property of the effective potential in both the SBH and t
non-extremal KBH spacetimes — its exponential decay
wards the EH~with respect tor * ) — is no longer valid in the
extremal Kerr case: rather thanV(r )}e2k1r

* for uau,M
near the EH, one findsV(r )}r

*
22 for uau5M @where in both

cases the tortoise variabler * is defined through the differen
tial relationdr* /dr5(a21r 2)/D#. Consequently, some ba
sic parts of the analysis presented in this paper may fa
apply in the extremal case. In particular, the crucial assu
tion made in Sec. III, that the late time tail at null infinity
exclusively dominated by waves scattered at very large
tances, need not necessarily hold in this case: Here,
strong contribution to the tail may occur also from bac
scattering atsmall distances. To clarify the situation in th
extremal case, a separate detailed analysis is thus requi

Finally, we should comment on the limited significance
‘‘multipole modes’’ in the Kerr spacetime: The spin
weighted spherical harmonic functionsYslm are not related
here to an underlying symmetry group, as they are in sph
02402
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cally symmetric backgrounds. Consequently, the ‘‘mu
poles’’ associated with these functions have no invari
meaning, but are rather related to~and defined through! the
specific choice of the coordinates. Yet, the functio
Yslm(u,w) with u,w being the Boyer-Lindquist coordinate
are signified as the natural basis for our purpose, becaus
the late time limit, the field equation becomes separable
terms of these functions.~This separability is manifested in
the k50 term of the LTE, which exhibits no coupling be
tween the various modesl ,m.! Note also that the late time
behavior of the overall fieldCs is in all cases governed by
pure model.
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APPENDIX: CALCULATION OF cn51
l AT NULL

INFINITY

In this appendix we calculate the ‘‘1st-order’’ iteratio
term cn51

l at null infinity, at large retarded time~that is, for
v→` with fixed u@M ). In the cases>0 we shall give full
details of the calculation. For brevity, the cases,0 ~which
turns out slightly more complicated to analyze for techni
reasons—see below! will be discussed in less detail.

The starting point for the calculation would be Eq.~43!, in
which the source functionSn51

l is given by Eq.~31! as a
function of various modes ofcn50. The radial functions
dV(r ), dR(r ), andK(r ) involved in the expression forSn51

l

are implicit functions ofr * 5(v2u)/2 ~becauser is an im-
plicit function of r * ). We can expand each of these rad
functions in powers of 1/r * . By virtue of Eqs.~25! and~28!
we then obtain the leading order forms

dV~r !5

M2 imsa1 l ~ l 11!M F2 lnS r *
r 12r 2

D21G
2r

*
3

1OF ~ ln r * !2

r
*
4 G ~A1a!

and

dR~r !5

sF iac0
l 23M12M lnS r *

r 12r 2
D G

2r
*
2

1OF ~ ln r * !2

r
*
3 G ,

~A1b!

with the asymptotic form ofK(r ) given in Eq.~25c!.
The various terms in the sourceSn51

l contribute addi-
tively to cn51

l @via Eq.~43!#. The analysis below implies tha
the dominant contribution tocn51

l at null infinity at largeu
comes only from the leading-order form~in 1/r * ) of each of
these source terms: Roughly speaking, each additional 1r *
factor in the source leads to an additional factor of 1/u in the
contribution to cn51

l at null infinity. Hence, to calculate
6-23
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cn51
l to leading order in 1/u, one may replace the actua

functions dV, dR, and K(r ), with their above asymptotic
forms.

Let us now consider the contribution tocn51
l due to a

source term of the form

Sn51
l ~u8,v8; l 8Pd![~2r * !2P@a1b ln~2r̃ * !#

dd~c0
l 8!

dtd
,

~A2!

where a tilde symbol over a quantity shall represent the r
of that quantity and (r 12r 2) @so that r̃ * [r * /(r 12r 2)#.
This is the general form~to leading order in 1/r *) of all
contributing terms inSn51

l , with the integer numbersP, l 8,
and d admitting the possible valuesP52,3, l 85 l ,l 61,62
andd50,1,2, and wherea andb are constant coefficients

Let us denote the contribution ofSn51
l (u8,v8; l 8Pd) to

cn51
l at null infinity by cn51

l l 8Pd . Then, from Eqs.~43! and
~35! we find

cn51
l l 8Pd5

v2s

~ l 2s!! (
j 50

l 82s

Aj
l 8s

3E
u0

0

du8@g0
l 8~u8!# ( j 1d)

3E
u

`

dv8
dl 2s

dul 2s F ~v82u! l 1s~u2u8! l 2s

~v82u8! l 1 l 82 j 1P G
3@a1b ln~ ṽ82ũ8!#. ~A3!

Note that fors>0, all derivatives with respect tou can be
‘‘taken out’’ of the v8 integration, due to the factor (v8
2u) l 1s appearing in the integrand. This manipulatio
~which is not possible fors,0) much simplifies the calcu
lation in thes>0 case. For brevity, we therefore continu
from this point by concentrating on the cases>0. Our cal-
culations fors,0, whose details shall not be presented he
yield the same qualitative results as those obtained below
s>0, yet they are slightly more tedious~as they involve
more complicated combinatorial expressions!. Unfortu-
nately, we could not figure out a way for treating thes,0
case in a simple manner as thes>0 case, though we think
this should be possible.

After ‘‘taking the u derivatives out’’ of the integration
over v8, we can now easily extract theu dependence o

cn51
l l 8Pd by transforming in Eq.~A3! to the new integration

variable,x(v8)5(u2u8)/(v82u8). This yields

cn51
l l 8Pd5

v2s

~ l 2s!! (
j 50

l 82s

Aj
l 8sE

u0

0

du8@g0
l 8~u8!# ( j 1d)

dl 2s

dul 2s

3„~u2u8! l 2 l 82P111 j$ā j@a1b ln~ ũ2ũ8!#

2b̄ jb%…, ~A4!

whereā j and b̄ j are constant coefficients given by
02402
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,
or

ā j[E
0

1

dx~12x! l 1sxl 82s2 j 1P22

5
~ l 82s1P222 j !! ~ l 1s!!

~ l 1 l 81P212 j !!
,

b̄ j[E
0

1

dx~12x! l 1sxl 82s2 j 1P22ln x.

~A5!

@The coefficientā j is just the standard beta function,B( l 8
2s1P212 j ,l 1s11).#

Next, in Eq. ~A4! we integrate by partsj 1d successive
times with respect tou8. All resulting surface terms vanish

due to the compactness ofg0
l 8(u8), and one is left with

cn51
l l 8Pd5

v2s

~ l 2s!! (
j 50

l 82s

Aj
l 8sE

u0

0

du8g0
l 8~u8!

dl 2s1 j 1d

dul 2s1 j 1d

3 „~u2u8! l 2 l 82P111 j$ā j@a1b ln~ ũ2ũ8!#

2b̄ jb%…. ~A6!

Here, we have used the fact that theu8 derivatives operate on
functions of (u2u8) only, to make the replacement]u8→
2]u . Evaluated at late retarded time,u@2u0, the last ex-
pression takes the form~accurate to leading order inu/u0)

cn51
l l 8Pd>I 0

l 8 v2s

~ l 2s!! (
j 50

l 82s

Aj
l 8s dl 2s1 j 1d

dul 2s1 j 1d
$ul 2 l 82P111 j

3@ā j~a1b ln ũ!2b̄ jb#%, ~A7!

where I 0
l 8 is the functional constructed from the functio

g0
l 8(u) according to Eq.~45!.

Finally, performing the multiple differentiation in Eq
~A7!, we find

cn51
l l 8Pd>I 0

l 8@l l l 8Pd~a1b ln ũ!1bh l l 8Pd#

3v2su2( l 82s1P211d), ~A8!

in whichl l l 8Pd andh l l 8Pd are constant coefficients. Here, th
term proportional tol l l 8Pd contains only contributions which
arise from alll 2s1 j 1d derivatives in Eq.~A7! acting on
the powerul 2 l 81 j 2P11, with nonacting on lnũ. The order of
differentiation, l 2s1 j 1d, is in all relevant cases greate
than the power indexl 2 l 81 j 2P11. Hence, the only con-
tributions to the coefficientl l l 8Pd arise when the powerl
2 l 81 j 2P11 is negative, i.e. from the terms withj < l 8
2 l 1P22. Since the indexj takes no negative values, w
find that there would be no contribution tol l l 8Pd unlessP
> l 2 l 812. Namely,

lP, l 2 l 81250. ~A9!
6-24
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For P> l 2 l 812, the coefficientl l l 8Pd is given by

lP> l 2 l 8125
~ l 1s!!

~ l 2s!! (
j 50

j̄

Aj
l 8s~21! l 82s1 j 1d

3
~ l 82s1P222 j !! ~ l 82s1P1d22!!

~ l 1 l 81P212 j !! ~ l 82 l 1P222 j !!
,

~A10!

where j̄ 5min(l82s,l82l1P22) ~in accordance with the
above discussion!. An expression for the coefficienth l l 8Pd

can also be written down explicitly, using Eq.~A7!. It can be
verified that this coefficient is non-vanishing for all releva
values ofl ,l 8,P,d.

Equation~A8! suggests that, potentially, one may expe
logarithmic dependence to occur at the leading order ta
null infinity. In the following we show, however, that due t
vanishing of the coefficientl l l 8Pd in certain cases, this loga
rithmic dependence is avoided as far as the most domi
mode of the overall field is concerned: this dominant mo
shall appear to die off with a pure power-law tail.

Note also that Eq.~A8! confirms our above assertion, th
to leading order in 1/u, the contribution from each given

term in Sk51
l 8 ~with given l 8 andd) comes merely from the

leading order in 1/r
*
8 : For higher-order terms in the 1/r

*
8

expansion of the source there correspond larger values oP,
leading to a faster decay in Eq.~A8!.19

Using Eq.~A8! we can now analyze the contribution
cn51

l at null infinity at late retarded time, belonging to ea
of the various source modesl 8:

~a! Contribution of the mode l85 l 22. For this source
mode we haved52, and, at the leading order in 1/r

*
8 , P

52 andb50 @see Eqs.~31! and~25c!#. Since for this order
P, l 2 l 81254, the correspondingl coefficient vanishes in
Eq. ~A8!. Thus, we find no contribution at all toCn51

l from
the orderO@(r

*
8 )22# of this source mode. Turning next t

the following order, withP53, we find again thatl van-
ishes~as P,4). However, at this order the logarithmic co
efficient b of the source does not vanish@we have b
58Ma2C22

l —see Eqs.~31! and ~25c!#, and from Eq.~A8!
we find the nonvanishing,nonlogarithmiccontribution

cn51
l 22→ l>8Ma2C22

l hP53,d52
l 85 l 22 I 0

l 22v2su2( l 2s12),
~A11!

where we adopt the notationcn51
l 8→ l to represent the late tim

contribution to cn51
l at null infinity due to the model 8.

Here, the symbol ‘‘>9 stands for ‘‘leading order inM /u and
in u0 /u. ’’

19Higher-order terms in the 1/r
*
8 expansion of the source woul

exhibit higher lnr̃
*
8 powers, leading to higher logarithmic powers

Eq. ~A8!; however, theu2( l 82s1P211d) power law would remain
the same for the higher order terms as well, withP denoting the
power of 1/r

*
8 for each term.
02402
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~b! Contribution of the mode l85 l 21. For this source
mode there are two contributions: one withd51 @the one
proportional toc2

l — see Eq.~17!# and one withd52 ~pro-
portional toC2

l ). Both contributions haveP52 andb50 at
the leading order in 1/r

*
8 . Clearly, in view of Eq.~A8!, the

term with d51 dominates the contribution from this mod
Now, for the leading order,O@(r

*
8 )22#, we haveP, l 2 l 8

1253; thus the correspondingl coefficient vanishes. Since
for this order we also haveb50, one finds no contribution
from this order tocn51

l . The dominant contribution would
come from the next order~with P53), for which both co-
efficientsl andb•h are nonvanishing. Therefore, this co
tribution will contain a logarithmic dependence:

cn51
l 21→ l>8iasM c2

l I 0
l 21@lP53,d51

l 85 l 21 ~1/21 ln ũ!

1hP53,d51
l 85 l 21 #v2su2( l 2s12). ~A12!

~c! Contribution of the mode l85 l . There are three term
in the sourceSn51

l which are not due to interaction with
other modes@see Eq.~31!#. These are~i! the term propor-
tional todV, for which P53 andd50; ~ii ! the term propor-
tional to dR, for which P52 andd51; and ~iii ! the term
proportional toC0

l , with P52 andd52. Clearly, thedV
term and thedR term contribute tocn51

l at the same order o
1/u, whereas the contribution from the third term in smal
by a factor of 1/u. We thus concentrate on the first tw
terms, both of which haveP> l 2 l 81252 already at the
leading order in 1/r

*
8 . Hence, the dominant contribution t

cn51
l would come from this leading order. From Eq.~A8!,

using Eqs.~A1a! and~A1b!, we obtain, for the contributions
of these two terms,

cn51
l→ l ~due todV!>24M I 0

l v2su2( l 2s12)$lP53,d50
l 85 l

3@12 imsa/M2 l ~ l 11!

12l ~ l 11!ln ũ#12l ~ l 11!hP53,d50
l 85 l %,

~A13a!

cn51
l→ l ~due todR!>22Ms I0

l v2su2( l 2s12)

3@lP52,d51
l 85 l ~ ic0

l a/M2312 ln ũ!

12hP52,d51
l 85 l 21 #. ~A13b!

Now, from Eq.~A10! we find

lP53,d50
l 85 l 5

s~21! l 2s~ l 2s11!~ l 1s!!

2l ~ l 11!~2l 11!
,

lP52,d51
l 85 l 5

~21! l 2s11~ l 1s!!

2l 11
. ~A14!

Substituting these values in Eqs.~A13a! and ~A13b!, and
adding up these two equations to construct the overall c
tribution from the model 85 l , we find that the two logarith-
mic terms exactly cancel each other.~In the scalar field case
6-25
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s50, each of the two logarithmic terms vanishes indep
dently.! The leading order overall contribution from th
mode l 85 l will therefore benonlogarithmic, exhibiting a
strict power-law tail of the form

cn51
l→ l }M I 0

l v2s u2( l 2s12). ~A15!

~d! Contribution of the mode l85 l 11. For this mode,
there contribute two terms inSn51

l , the ones proportional to
c1

l and toC1
l . These two terms have, respectively,d51 and

d52, and both have~at the leading order in 1/r
*
8 ) P52 and

b50. However, both coefficientslP52,d51
l 85 l 11 and lP52,d52

l 85 l 11

turn out to vanish, resulting in the dominant contribution
cn51

l coming from P53. The contribution from the term

proportional toc1
l ~which is }u2( l 2s14)ln ũ) dominates the

one from the term proportional toC1
l (}u2( l 2s15)ln ũ), and

one finds, in summary,

cn51
l 11→ l>8iasMc1

l I 0
l 11@lP53,d51

l 85 l 11 ~1/21 ln ũ!

1hP53,d51
l 85 l 21 #v2su2( l 2s14). ~A16!

~e! Contribution of the mode l85 l 12. This mode hasd
52 and ~at the leading order in 1/r

*
8 ) P52 and b50.

However, the coefficientlP52,d52
l 85 l 12 , as well aslP53,d52

l 85 l 12 ,
turns out to vanish, resulting in the leading order contrib
tion from this mode tocn51

l coming atP53 from the term
in Eq. ~A8! proportional tob•h. Hence, this contribution
would benonlogarithmic:
ys

ys

Ho

02402
-

-

cn51
l 12→ l>8Ma2C11

l hP53,d52
l 85 l 12 I 0

l 12 v2s u2( l 2s16).
~A17!

Equations~A11!, ~A12!, ~A15!, ~A16!, and ~A17! de-
scribe the various contributions to the tail ofcn51

l at null
infinity from all various source modes. These results
summarized in Eq.~44! ~in Sec. III D! using a different no-
tation for the amplitude coefficients. We point out that E
~A8!, as well as all power-law formulas derived in this a
pendix, is also valid in the cases,0, though with different
amplitude coefficients.~As we mentioned above, we foun
these coefficients to be more complicated to calculate fos
,0; still, the same coefficientsl found to vanish fors>0
also appear to vanish in the cases,0, which finally leads to
the same power-law contributions.!

The following are the main conclusions that can be dra
from the analysis in this appendix:

~i! In general, the dominant contribution to the late tim
tail of a model of cn51 at null infinity is due to the source
modesl, l 22, and~for sÞ0) l 21. These contributions al
have the form}ul 2s12 ~multiplied by a logarithmic factor in
the l 85 l 21 case!. Contributions due to the modesl 11 and
l 12 are negligible.

~ii ! Consequently, for givens and m, the most dominant
mode of the fieldcn51

sm at null infinity is the lowest radiatable
one, namely the multipolel 5 l 0[min(usu,umu).

~iii ! This mode (l 0) admits no contributions from lower
l , l 0, multipoles, and thus, to leading order in 1/u, it is not
affected by interactions with other modes. Equation~A15!
then implies that this mode~and thus also the overall field
cn51) admits the strict late time power-law ta
}u2( l 02s12), with no logarithmic dependence.
,
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