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We study analytically, via the Newman-Penrose formalism, the late time decay of scalar, electromagnetic,
and gravitational perturbations outside a realistic rotatiigrr) black hole. We find a power-law decay at
timelike infinity, as well as at null infinity and along the event horiz&h). For generic initial data we derive
the power-law indices for all radiating modes of the various fields. We also give an exact analytic expression
(accurate to leading order int)/for the r dependence of the late time tail at anySome of our main
conclusions are the followindi) For generic initial data, the late time behavior of the fields is dominated by
the modéd =|s| (with s being the spin parameemhich dies off at fixed ast~2%73 _ as in the Schwarzs-
child background(ii) However, other modes admit decay rates slower than in the SchwarzschildiicaEer
s>0 fields, non-axially symmetric modes dominate the late time behavior along the EH. These modes oscillate
along the null generators of the EH.

PACS numbd(s): 04.70.Bw, 04.25.Nx

I. INTRODUCTION found to bev~2"3% or v=2'72 (for a compact or a static
initial mode, respectively where v is the (Eddington-
Small perturbations of the Schwarzschild black holeFinkelstein advanced-time coordinate.

(SBH) geometry die off at late time with an inverse power- As was already explained by Price, the late time tails of
law tail. This well-known phenomenon was discovered bydecay outside spherically symmetric BHs originate from
Price early in the 1970s. Price explored the dynamics oPackscattering of the outgoing radiation off spacetime curva-
linear scalar and metric perturbatiofis] (and that of all ~ ture atvery large distances. In the framework of a frequency-

integer-spin fields in the Newman-Penrose formaligshy ~ domain perturbation analysig3,6,10, these tails are ex-

propagating on the SBH background. His analysis provided ained in terms of a branch cut in tfizequency domain

detailed description of the relaxation mechanism througtréen’s function, which is, again, associated with the form
which the black holéBH) exterior settles down at late time of the curvature-induced potential at large distance. This sug-

into its stationary “no hair” state. In particular, Price was gests that the form of the de<_:ay at late time refigatsd S
able to characterize the actual form of the late time falloff Ofaffected by me rely the large d|stanc¢ struciure of spacetime,
the perturbations: He found that any radiative multipoleand may be independent of the existence or absence of an

L . . . event horizon. This assertion found further support in the
model,m of an initially compact linear perturbation dies off

; o3 X R analysis by Gundlaclet al. [15], who studied the purely

at late time adt (wheret is the Schwarzschild time  goperical collapse of a self-gravitating minimally coupled
coordinatg. In the case there eX|st|s an initially static multi- gc4|ar field. It was demonstrated numerically that in this case
pole model,m it will decay ast™?~2 These power-law |ate time tails form even when the collapse fails to create a
decay tails were found to be the same for all kinds of perpjack hole.(On the other hand, quasi-normal ringing are
turbations, whether scalar, electromagnetic or gravitationafound to dominate the early stage of the waves’ evolution
(and in this respect, the scalar field model proved to be anly if a BH forms)
useful toy model for more realistic fields Until quite recently, the issue of the late time decay of BH

Price’s results were later reproduced using several differperturbations has been considered only in spherically sym-
ent approaches, both analytical and numer{@&it8], and  metric models of BHs. It is known, however, that astrophysi-
were generalized to other spherically symmetric BH spaceeally realistic BHs are spinnindl6], and thus are not spheri-
times[4,9-14. (A brief review of the works on this subject cally symmetric but are rather of the axially symmetric Kerr
can be found in the Introduction of R¢f7].) The validity of  type. Moreover, it is suggested, in virtue of the “no hair”
the perturbativelinear approach was supported by numeri- principle [17], that the Kerr black holéKBH) might be the
cal analyses of the fully nonlinear dynamid$,11], indicat-  only realistic BH (realistic BHs are not expected to carry a
ing virtually the same power-law indices for the late time significant amount of net electric chajgélence, generaliza-
decay. tion of the above-mentioned analyses to the KBH case seems

For a scalar field on the background of a SBH, power-lawo be of an obvious importance. Still, such a generalization
decay tails were found to be exhibited also at future nullhas awaited almost three decades, as the lack of spherical
infinity [3,4,8 and along the future event horizgd,8]. It  symmetry in the Kerr background makes both analytical and
was shown that at null infinity the scalar field dies off with numerical exploration significantly more complicated.
respect to retarded time asu~'"2 (for a compact initial The “no hair” principle for BHs implies that perturba-
mode or asu~'~? (for a static initial modg The decay of tions of the KBH must “radiate away” at late time. No
the scalar perturbation along the event horiZ&t) was  further information is available from this general principle as
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to the actual details of this decay process. A question arisesf all multipole modes and, in particular, the lowest radiat-
as to what effect rotation has on the form of the late timeable one. It will be explained why an initial setup in which
tails. More basically, does the decay of the perturbing field¢he lowest modes are missing is more complicated to explore
still obey a power law? If so, are the power indices the sama!sing our approach. Hod’s analy$23—2§ provides predic-

as in the SBH case? tions for this case as well; however, these are not in agree-

Such questions were addressed only recently, by severflent with recent numerical results by Krivaa6]. It thus
authors. First, Krivaret al. carried out a numerical simula- S€eéms that further analytic work is needassing either
tion of the evolution of linear scaldi8] and gravitational Hod’s method or oussto clarify this point.

[19] waves on the background of a Kerr black hole. The first _1he arrangement of this paper is as follows. In Sec. Il we
analytic treatment of this problem, for a scalar field, was latePri€fly review the subject of perturbations of the Kerr geom-
presented by Barack and Q20,21 (following a prelimi- etry via the Newr_nan-Penrpse _formall_sm. We th_en reduce_ the
nary analysis by Ofi22]). Most recently, Hod used a differ- master perturbajuon eqqatlon in fche time doma|r_1 to obtain a
ent approach to study the late time decay of both a scaldroupled set of time-radial equations for the various mode_s.
field [23] and nonzero-spin Newman-Penrose fidl24,25 The evolution problem for each_ of the_ _modes is mathemati-
on the Kerr background(Hod’s analysis, which follows cally formulated as a character_lstlc initial _value problem_. In
some preliminary considerations by Anders§éh is carried ~ S€¢. lll we analyze the late time behavior of the various
out in the frequency domain, whereas Barack and Ori use godes at null infinity. To that end we apply thierative
time domain analysisFinally, the analytic progress has mo- Schemewhich is, basically, an extension of a technique pre-
tivated a further numerical study by Krivd@6,27. viously tested for_ a scalar field in thg SBH backgromﬂm&}].

The above analyses all indicate that power-law tails of? Sec. IV we introduce thdate time expansionLTE)
decay are exhibited in the Kerr background as well. In theScheme, which allows a global treatment of the decay at late
Kerr case, however, the lack of spherical symmewyples t|me_. The late 'qme behawor of fields gt a fixed distance
between various multipole modes, which results in thedutside the EH is dominated by the leading term of the late
power-law indices of specific modes being found to be dif-time expansion, for which we derive an analytic expression
ferent, in general, from the ones obtained in spherically symin Sec. V. In Sec. VI we then carefully explore the behavior
metric BHs. Another interesting phenomenon caused by ro2/ong the EH itself. Finally, in Sec. VII, we use the LTE
tation (first observed if22]) is the oscillatory nature of the sch_eme combm_ed with the results at null infinity, in or_der to
late time tails along the null generators of the EH of the Kerrderive the late time decay rates for all modes of the fields at
BH for nonaxially symmetric perturbation modes. any fixed distance. We concludien Sec. V) by summariz-

The purpose of the present paper is to extend the analys{89 Our results and discussing their relation to other works.
described in Ref[21] to electromagnetic and gravitational
perturbations of the Kerr background, and supply the full Il. MODE-COUPLED FIELD EQUATION
technical details of our approacfin Ref. [21] we merely
outlined the application of our technical scheme to a scalar
field, and gave a brief description of the results in this gase.
The analysis to be described in this paper provides a more The line element in Kerr spacetime reads, in Boyer-
complete and accurate picture of the late time decay okindquist(BL) coordinated,r,6,¢,
physical fields, than already available. Among the results

A. Perturbations of the Kerr geometry via the Newman-
Penrose formalism(definitions and a brief review)

which appear here for the first time: ds’=—(1-2Mr/3)dt*+(2/A)dr?+2de?

(i) We derive the fprm of the Ia’ge time tail for all radiative +(r2+a%+2a2Mr sir?0/3 ) sir?0d o2
modesanywhereoutside the KBH(i.e. at all distances We
also give an exact analytic expression for the radial depen- — (4aMr sirfa/3)dedt, (D)

dence of this tail.(In [23—-29 Hod only analyzes the
asymptotic behavior at very large distance, and along th&here M and a are, correspondingly, the BH's mass and
EH.) specific angular momenturt,=r2+ a®cos¢, and
(ii) A careful analysis of the decay along the EH reveals
an interesting phenomenon: Fer 0 fields, it is the oscilla- A=r2—2Mr+a? 2
tory nonaxially symmetric fHi>>0) modes which dominate
the late time behavior there. This result has important impli{Throughout this paper we use relativistic units, witis G
cations to the structure of the singularity at the inner horizor=1.) We shall consider in this paper only a BH solution
of the KBH [29]. In a different papef28] Barack and Ori  with |a|<M: the extremal caseéa|=M, requires a separate
further explore and explain this phenomenon, and discuss tHeeatment, as we later briefly explain. The event and inner
reason for the incorrect prediction made in H@#4] for the  horizons of the (non-extremal KBH are the two null
decay rate along the EH in th&>0 case.(Recently[25], 3-surfaceg =r . andr=r _, respectively, where
following the appearance of Rd28], Hod has corrected his
result) r.=M=M?-a? 3
For simplicity, we shall refer in this paper only to the
(most realisti¢ situation in which the initial perturbation has are the two roots of the “horizons functiorX(r) defined in
a rather generic angular distribution, such that it is composeéq. (2).
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To discuss perturbations of the Kerr spacetime via the
Newman-PenroséNP) formalism [30], introduce Kinners-
ley’s null tetrad basi§31] [1#,n*,m*,m*#] (where an aster-

(r’+a??
A

4Mar

A \I,,S'(‘P

—aZsinzev}\If?n—A—S(A'ﬁlxlf?,wr

isk denotes complex conjugatijonin BL coordinates, the a2 1 1

" ” H H _ s  _ S oj

legs” of this tetrad are given by A _sin20 oo —Sina(\lfﬁsm 0) .o
I*=A"1r2+a%A,0 .

[ al a(r—M) L cosd| ) [M(rz—az)
- - 28| ————r

n“=(23) Yr2+a%—A,0a] A sirfg | ¢ A
m“=(2Y25)"[ia sin 6,0,1j/sin 6] —ia cosf| WS+ (s’cof H—s)¥S=0. 7

(4)

(with the fourth tetrad vector obtained from* by complex ~ Here, W*(t,r,6,¢) represents the various radiative fields ac-

conjugation, wherep=r +iacosé. In the framework of the cording to the following st

NP formalism, the gravitational field in vacuum is com- d=ws0 (scalar field,

pletely described by five complex scala¥s, . .., ¥, con-
structed from the Weyl tensaZ ;3,5 by projecting it on the B

. . . By . . . _\I,S—+l
above tetrad basis. Likewise, the electromagnetic field is Po= '
completely characterized by the three complex scalars
©0,P1,P2, constructed by similarly projecting the Maxwell (Pzz(;*)—Z«pS:—l,
tensorF,, . In particular,

) :\I,S=+2
Vo=—C,p,sl “m’I’m° and 0 ’

V= —C,p,sn“m*An7m*? (5) V,=(p*) s 2, (8)
represent, respectively, the ingoing and outgoing radiativerhe master equatiofiv) is fully separable only in the fre-
parts of the Weyl tensor, and quency domain, by means of thpin-weighted spheroidal

e . harmonicfunctionsS®'™(— a%w?, cosé) [33], wherew is the
eo=F,,l*m” and @ =F,,m**n (6)  temporal frequencythe separated equations are referred to

o ) o as “Teukolsky’s equation). Because the functiors®™(6)
represent the ingoing and outgoing radiative parts of theyq,, dependent, separation of tidedependence is not pos-

electromagnetic field. sible in the time domairinamely, without first decomposing
In the (unperturbeglKerr background all Weyl scalars but ha field into its Fourier components

W, vanish(as directly implied by the Goldberg-Sachs theo-
rem in view of Kerr spacetime being of Petrov type D; see
Secs. 9b, 9c if32)). In the framework of a linear perturba-
tion analysis, the symbolsWVy,¥,,6¥,,¥;, ¥, and The target of the present work is to explore the behavior
¢0,0¢1,¢, are thus used to represent first-order perturbaof the fieldsW¥* at late time. In principle, the analysis can be
tions of the corresponding fields(with o&6V,=V¥, carried out in the frequency domain, as in R¢&3-25. In
—phackground ot0) One can showsee Sec. 29b if82]) that  this technique, the requested temporal behavior is finally to
¥, andW¥,, and alsopy and ¢,, areinvariant under gauge be extracted by an inverse Fourier transform. Our analysis is
transformationgnamely, under infinitesimal rotations of the based on a different approach, motivated by the following
null basis and infinitesimal coordinate transformatjoffhe  argument: In the late time, stationary, limit-¢ «), one ex-
scalars¥'; and V3 are not gauge invariant, and may be nul- pects the very low frequencyw(—0) Fourier modes to
lified by a suitable rotation of the null frame. The entities dominate the behavior. For such waves, the functions
5%, and d¢, represent perturbations of the “Coulomb- €™¢S'™(4) reduce to thespin-weighted spherical harmonic
like,” non-radiative, part of the fieldgin fact, one can also functionsYs'™(6,¢) [34]. This may motivate one to try and
nullify s¥, by a suitable infinitesimal coordinate transfor- extract the angular dependence of the fieltfsby using the
mation. It is therefore only the scalars defined in E¢S.  functionsY'™S. As a result of the lack of spherical symmetry,
and (6) which carry significant information about the radia- the resulting(time-domain field equations will possess cou-
tive part of the fields(Note, however, that gauge invariance pling between the various multipole modeshowever, one
of the radiative fields is guaranteed only within the frame-should expect this coupling to be “small,” in a sense, at late
work of linear perturbation theory. time. In the sequel we show how this coupling can be treated
Teukolsky[33] first obtained a single master perturbationin an iterative manner, in both the frameworks of tteza-
equation governing linear perturbations of scalar, electrotive expansionSec. Il) and thelate time expansioriSec.
magnetic, and gravitational fields. In vacuum, this mastetV).
perturbation equation reads Led by the above argument, we expand the fieltfsas

B. Reduction of the master field equation in the time domain
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WS(t,r,0,0)=(r?+a?) Y2A~s? c,,=c !,
w

slm sim,
X|;s| 2 YT(.e) L), (9)

Il gal+1
CL=c,(cy "+cp),

Co=(c)>+(c\)*+(cp)*~ 1,
where the radial factor in front of the summation symbols is

introduced for conveniendes it eliminates the term i, c'=c' (ch+cy b,

from Eq.(23) below]. Note that the summation over modes

excludes thé <|s| modes, which are nonradiativéor a dis- cl_=c*cl. (15
cussion regarding the nonradiatable modes, see Sec. [lID 4 " | | . .
in Ref.[2]). All constant coefficient' and C' are nonvanishing, with

Inserting the expansiof®) into the master field equation ©"Y th? foIIowing exceptions:
(7), we obtain (i) C_ andc_ vanish forl=|m| or | =|s|.

(i) C'__ vanishes fofm|<I<|m|+1 or|s|<I<|s|+1.
(i) ¢y, C',, andC" vanish form=0 or s=0.

(It can be verified thaC'0 is always negative definite.

] R Substituting Eqs(12) and(14) in Eq. (10) we obtain, by
t2iascosf(4>™) (]=0, (10 the orthogonality of the function¥s'™

.E YSIM(9,@)[D(t,r) M- aZsirt oy

whereD(t,r) is a certain differential operator independent of E(t,r)g/;' +Z(P L 2 =0 (16)
0,¢. Note in Eq.(10) how the two last terms in the squared

brackets(proportional toa) avoid a full separation of vari- for eachl,m,s satisfyingl=|m| and|=|s|, whereD is yet
ables. another differential operator, ardiis a functional describing

Now, the product cog-Y*'™ can be re-expanded in terms couplingbetween thé mode and thé+1 andl+2 modes:
of the functionsY®'™ (which form a complete set of functions

on the unit 2-sphere for ead). The “matrix elements” of  Z(y'* 1, ¢/ *?)=a?(C!, , ¢/ 2+ C' y'*1+C' ¢/~ 1
the function co® with respect to thérs'™ basis are given by

[35] +CL_y7?) o+ 2ias(c! g eyt
17
|’ | = QO Yslm * Yslm ) ] ]
(sl"mjcosf|sim) 3{; dey( )" cosé( ) Note that, obviously, modes of differemt do not interact
112 with each other, as the Kerr geometry is axially symmetric.
_ 21+1 (11moJ1’m) We also point out that the scalar field case is special, in that
21"+1 for this case thd mode does not interact with thlet1

modes, but only with thé+2 modedrecall that the interac-
X(11-s0[l"' —s), (1) tion coefficientsC, vanish fors=0).
To write Eq. (16) explicitly in a convenient form, we
introduce the advanced and retarded time coordinates, de-
fined, respectively, by

where(j1j,mim,|jm) are the standard Clebsch-Gordan co-
efficients[36]. We find that

RV NS NV BN SIPARV I B AV BT
cosf-Y'=c "Y' T +cpY +el Y T, (12 v=t+r, and u=t—r, (18
where . . .
(which are nonethelessot null coordinates in Kerr space-
(12— 82) (12— m?) 12 time). Here, the “tortoise” radial coordinate, is defined by
|
07: —_ -
12(21-1)(21+1) re=r—r,+2«.) tnz,—(2«_) 4nz_, (19
| ms with «. being the horizons’ “surface gravity” parameters,
Cf‘m, (13 .
=" 20)
ol =+t AEERVTVIN (
L=c_ .

(Here, as we shall often do below, we omit the indisas and where the dimensionless radial varialdesare given by

for the sake of brevity.This also easily leads to

r— r+
_ o Z.=———. (21
—sirPg-Y'=Cl2y! 2y iyl L gyl Clo ! re—r-
+c'+—+2y|—2, (14) [Note the relatiomA=z,z_(r,—r_)?. Also, recall that we
are dealing in this paper only with non-extremal black holes,
where for which r . >r _ and, consequentlyz.. are well defined.
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The coordinater, , satisfying dr, /dr=(a®+r?)/A, in-
creases monotonically with from —« (at the EH to +«
(at spacelike infinity. Later we shall find useful the
asymptotic relations

A

e2K+r*z _—
(ro—r_)?

z, (for r,<—M,r—r,),

r.,=r (for r,>M,r—oo), (22

The explicit form of the mode-coupled field equatidr®)
is now!

YoV O YR Y+ K(D[QCoyl + Ty g )]
=0, (23
whereV!(r), R'(r), andK(r) are radial functions given by

aVi(ry=(r?+a? 2[(I-s)(I+s+1)A—m?a?

—2ismar—M)]—(r?+a? %2

XA_SIZ_H'E

d
s+1 2 2\—1/2p —s/2
ol ATl a?) TSR

(243

2R'(r)=(r?+a%) " 2imMar—sM(r2-a?
+sA(r+iach)], (24b)
4K(r)=(r?+a’ 2A. (240

Of importance will be the large-asymptotic forms of
these functions, which in terms of ther ]/expansion reads

1(1+1)
Vi = 4r2

,
M—imsa+I(I+1)M 2In< * )—1}
. ro—r_
2rd
Inr, )2
{( 4*)], 253
r*
| M
S|aco—3M+2MIn( — ”
R(r)= N ro—r_
2I'* 2!’3_
Inr, )2
+o( 3*)1, (25b)
r*

Yn Eq. (23), the derivatives,, is taken with fixedv, 4, is taken
with fixed u, andd, with fixedr.
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r*
r+—r”+o (Inr,)?

3 4
2r, ry

M|1+2In

K _ -
(0=

*

(250

Equation(23) already provides a qualitative picture of one
aspect of the fields’ evolution: Unlike in spherically symmet-
ric spacetimes, multipole modes of differdninteract with
each other while propagating on the Kerr backgrotifiar
example, if a physicalg#0) perturbation is initially com-
posed of a puré,m mode, then, in general, we may expect
all possible modesl’,m—namely, all modes withl’
=max(m|,|s)—to be generated while the perturbation
evolves in time.[The unrealistic case of a scalar field (
=0) is special, as for this field only those of the above
modes with eveh—1" are expected to be excitgédNote that
all interaction terms in Eq(23) involve derivatives of the
field with respect td. It is this feature which, by means of
the LTE scheme, allows one to effectively decouple @8),
as we show in Sec. IV.

C. Initial setup

We shall consider an initial perturbation in the form of a
compact outgoing pulse of radiation, which is relatively
short, yet arbitrarily shaped. We take this pulse to be emitted
at u=ug, v=vg, and without limiting the generality we
take, for simplicity,vo=0. We further assume that the initial
pulse has a rather generic angular shape, so that it is com-
posed of all multipole moddsm [and in particular, for each
m it contains the lowest possible modes max(m|,|s|)]. For-
mulated mathematically, this initial setup takes the form

I'M(u) at v=0,
0 at u=ug,

Im_

(26)

where, for eachh andm, I''™(u) is an arbitrary(but nonva-
nishing function with a compact support betweer u, and
(say u=u;>Ug, with u;—ug<<|ug|. This type of initial data
corresponds to the physical scenario in which no ingoing
radiation is coming from past null infinity.

It will be assumed in the following that the initial pulse is
emitted far away from the BH; namely, we takeuy>M.
This assumption greatly simplifies our analysss we ex-
plain in Sec. Ill; cf.[7,8]); yet, it seems reasonable to expect
the late time behavior in this case to remain characteristic of
the general situation.

2See, however, our remark in the concluding section, with regard
to the definition of “multipole moments” in the Kerr geometry
being somewhat ambiguous.

31t should be noted that, strictly speaking, these initial data
[supplemented to the coupled field equati@3)] do not form a
well posed characteristic initial-value problem, @&s const andv
=const arenot characteristic hypersurfaces of the Kerr geometry
(these hypersurfaces are timelike rather than)nWie further com-
ment on this issue below.

024026-5



LEOR BARACK PHYSICAL REVIEW D 61 024026

Ill. LATE TIME BEHAVIOR AT NULL INFINITY: with S, _,=0 and with
THE ITERATIVE SCHEME

| — 141 | | 2| |

In this section we derive the form of the late time decay at Sh=0= 7 Vi1~ OR (Y1) = K(D[ACo (1)
future null infinity, that is forv— at finiteu>M. This has Iy )] (31)
two main motivations: First, the results at null infinity will
appear to serve in the framework of the late time expansioWe take the initial conditions for the various functioﬂzb to
scheme as necessary “boundary conditions” for the globabe y},_,=¢' and¢!_,=0 on the initial surfaces=u, and
late time evolution problenfas we discuss in Sec. )VThe v=0.
results at null infinity also have their own physical signifi-  Equation (30), supplemented by the above initial data,
cance, for the following reason: Consider a stdfired+) constitutes a hierarchy of characteristic initial data problems
observer located at very large distance. Met and At rep-  for the various functiongy),. Formal summation oven re-
resent, respectively, the retarded and the static observergpvers the original evolution problem faf'. For eachn
time elapsed since this observer gets the first signal from the.9 (and for all 1), the function lﬂln admits an inhomoge-
perturbing field. With respect to this observer, the relevanheoys field equation, with a source term depending only on
information about the decay at finifeu=At is the one cal-  the functionsy, -, preceding it in the hierarchy, and with
culated at the null infinity domairwhich we may call, in - the functiony/, _, satisfying a closed homogeneous equation.
this context, the “astrophysical zone” of the waye®nly 15 strycture allows one, in principle, to solve for all func-
whgn the' time Iapsg becomes infinitely Ia‘r‘gehlle F T® " tions w'n in an iterative manner: first for all modésf wL,o,
mains finite does this observer enters the “future timelike Which then serve as sources lﬂh:l, etc. In general, each

infinity” zone, t>r (the late time behavior in this domain function &' shall have sources comina from the modek
will be discussed in Sec. VI unction ¢y, ve sou ing e
+1, andl =2 of ¢,_1.

For this part of the analysi;:amely, for the derivation of . . .
b ysi y Of course, the effectiveness of the proposed iteration

the late time tails at null infinity we apply theiterative . X .
schemefirst developed and tested for scalar waves on th(—?‘Cheme crucially depends on its convergence properties. In

Schwarzschild background in Refg,8]. Since the technical that respect, the scheme as formulated above may seem prob-

details of the calculations involved are often very similar tolematl_c, becl?use, W.h'le theh zerothl?.rdlgr h€0) field
those in the above references, we mainly describe here t uation well approximates the actual field equalid® at

new resultgfor spin=s fields in Kerp, and direct the reader to arge distance, it fails to plo so at the highly c_urved small-
Refs.[7,8] for further details. region (actually, the functiond/, andR,, as defined above,

diverge atr, =0).
It is possible(by redefiningV, and Ry at smallr) to

A. Formulation of the iterative scheme construct a more sophisticated iteration scheme that would

We define account for the smali-region of spacetime as well — as was
done in Ref[8] for the case of a scalar field in the Schwarzs-
N (Y child spacetime. In that case, it was demonstrgggthat the
olN= ar2 small+ details of the background geometry have merely a

* negligible effect on the late time behavior at null infinity. In

the Schwarzschild case, we were able to greatly simplify the
(27)  analysis by considering a toy model of a thin spherically
2r, symmetric shell of matter having a flat interior. In that
model, the late time behavior of the scalar field at null infin-
ity turned out to well approximate the actual behavior in a
“complete” Schwarzschild mode(see[7,8] for detaily.
The above results all indicate that the late time decay of
Lo the scalar field is predominantly governed by the large-
SRI(r)=R(r)=Ro(r). (28 structure of the Schwarzschild spacetini®his conclusion
. | stemmed already from several previous works, as we men-
The functionsVo(r) and R(r) extract at larger the (flat  tjoned in the Introduction.We shall assume in this paper
spacg asymptotic behavior of the functions(r) andR'(r)  that the same is also valid for all fieldk® propagating on
appearing in Eq(23). The “curvature 'I”dUCEd” reledual part the Kerr background. To be concrete, we will consider in this
of these functions is represented 8y (r) and 6R'(r). section, only for the sake of the calculation at null infinity, a
We now decompose each of the functiaiS™ (for each  model in which the Kerr interior geometry is replaced by a
I,m) as flat (Minkowski) manifold. There is no way of smoothly at-
L | | taching a flat interior to a Kerr exterior through a thin spheri-
=gttt (29 cally symmetric material shellas was done if7] in the
Schwarzschild caggalternatively, we take this attachment
such that each of the functiordé] satisfies the field equation tg pe made through a material layer of a finite width. The
| | | | | external “radius” of this layer should be of order of a few
Yot VolP) i+ Ro(N) ¢ =S, (300 M. Based on our experience with the Schwarzschild case, we

S

Ro(r)=

and

sVI(r)=V!(r)—Vy(r),
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expect the details of our model at small distan¢asd, in
particular, the internal structure of the material layés
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Here, 6(x) is the standard step function, taking the value 1
or 0 according to whethex is positive or negative, respec-

merely have a negligible affect on the behavior of the wavesively. Equations(35) and (36) describe how the function

at null infinity, atu>M.

z,b'n=0 can be constructed given any fodi{u) for the com-

We emphasize that the above simplified model is adopte@act initial outgoing pulse.

only for the analysis at null infinity, where it greatly reduces  Equation(36) implies that the waves!,_ is sharply “cut
the amount Of technical details one Sh0u|d deal W|th For th%ff” at retarded t|meu:0 Th|s effect iS due to ingoing and

global analysis carried out in the rest of this paper, theputgoint waves destructively interfering with each other at

“complete” KBH geometry shall be considered.

B. Zeroth order iteration term

By definition, the functiony!,_, obeys(for all I) the ho-
mogeneous equation

Yo+ Vo(1) o+ Ro(r) ¢ =0,

with the initial conditionsy},_o(v=0)=T"(u) and },_,(u
=ug)=0. Equation(32) simply describes the free propaga-
tion of the fieldzpﬁ'zo in Minkowski spacetime, provided that
r. is replaced with the radial Minkowski coordinate

The general solution to this equation reads

h(v)
— (33

(32

I—s I+s

eneral_
sy —J_E_:O A

o 98'(u)
Yiv—u)i

_*S'
Y-
in which go(u) andhg(v) are arbitrary functiongwith their

i=o

parenthetical superindices indicating the number of differen>

tiationy, and WhereA}S are constant coefficients given by
si_ (21=j)!
T EDIE

The above initial data foqu'n:() uniquely determine a specific

solution for this functiorfbut not for either of the functions
do(u) andhy(v) in separate For the outgoing pulse initial

(39

the origin of coordinatesr(=0) inside the flat region internal
to the material layer, at retarded times-0. [For a scalar
field in the “complete” Schwarzschild model we found in
Ref. [8] an exponential decay of the waveswat0 rather
than a sharp cutoff — thus the main support/xquO remains
compact even in this more sophisticatethd much more
complicatedl model]

Obviously, sinca,k'n=0 is strictly compact in retarded time
(it is supported only in the range,<u<0), it does not
contribute to the overall late tim@garge u) radiation at null
infinity. Rather, the functions!,_, will serve [via Eq. (30)]
as a source to higher-orden®¥1) terms of the iteration
scheme, which will form the late time tail of decay, as we
show below.

C. Green’s function of the iteration scheme

Using the Green’s function method, we formally have, for
each of the functiong/,_,,

df'n(v,w:fvdV’fudU’G'(v,U;V’,U’)SL(V’.U’),
0 Ug
(37)

which allows one, in principle, to calculate these functions
one by one, in an inductive manner. He@&(v,u;v’',u’) is
the time domain Green’s function in Minkowski spacetime,

setup it is possible to write this specific solution in a conve-defined as satisfying the equation

nient form by takinghy(v)=0, in which case we have

I—s

Phoo=2, A

j=0

o 99w

; -, 35
Fv—u)! 39
with the functiongy(u) given by

| — u
g{)>s(u): 0(_u)(| +SS)' fuo(u/u1)|+s+l(u_ur)lsl

X (—=u")T'(u")du’, (368
=sw=" D) (36D
Yo (2s)! '

“Note that the homogeneous equati@®) is invariant upon si-
multaneously transforming=v ands— —s. The two sums in Eq.

Gy +Vo(r)G'+Ry(r)G' = s(u—u")s(v—v"), (39
with the causality condition

G'(u<u’)=G'(v<v’)=0. (39)
To solve forG, we use a straightforward generalization of
the method used in R€f7]. First one shows that for E¢38)
to be consistent with the causality conditioi38), one must
have G(v=v')=[(v'—u)/(v'=u’)]® and G(u=u')
=[(v'=u’)/(v—u’)]®. This establishes a characteristic
initial-value problem for the Green'’s function at>u’ and
v>v’. Then, with the help of Eq(36), one can obtairisee
[7] for more details

I—s

D (uv' 0’
Gl =3, AV
=0

i e O(u—u')

(v—

(33) constitute two independent homogeneous solutions, which are

obtained from each other by this transformation.
The calculation leading to E¢36) is a straightforward generali-
zation of the one described in detail in RE?] for s=0.

XO(v—v')o(v'—u), (40)

where the functiorg(u;v’,u’) is given by
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1 (v'—u'*su—u’)'-s Green'’s function, and the upper limit of thé integration
g(u;v',u")= ES] 3 (4D was set tou’=0 in view of the compactness af,_, (im-
' (vi—u’) plying the compactness of the sourSle_, as wel).
and where the differentiations of this function are with re-  The source functior§,,_; is calculated from Eq(31),
spect tou. The factoré(v' —u) in Eq. (40) is related, again, With n=1. It contains, in general, contributions from the
to the presence of the origin of coordinates inside the flamodes|’'=I,+1|+2 of z/;L/:O. These contributions to
internal region. . _, [via Eq.(43)] are additive, and may be calculated one

Finally, a general comment should be made about thgy one. The details of this calculation are given in the Ap-
application of the iterative scheme to the Kerr spacetimependix. In brief, it contains two steps for each of the above
Here (unlike in the Schwarzschild cas¢he characteristic contributions: First, the definite integration oweris carried
surfaces of the iterative scherfiee. the surfaces of constant gyt explicitly. The integrand of the remaining integration

coimcide with fhe actual characteritce of the Kerr geomety!"e" becomes a finite sum over derivativegf{u’), each
9 y'rnultiplied by a power of §—u’). In the second and final

Thus, stictly speaking, the “causality condition” stated in step we use successive integrations by parts to eliminate the
Eq. (39) does not hold for the actual Green’s function in the™ " " v i )
Kerr spacetime. However, the surfaces-const andy  derivatives ofg, (u’), with all resulting surface terms van-
—const do approach the actual null characteristics of théshing in virtue of the compactness of this functidithis
Kerr background at large distances. Recalling that the fornprocedure is clarified in the Appendjx.

of the late time radiation at null infinity is shaped mainly ~ The following is a description of the outcome from the
during the propagation at large distances, it is reasonable @bove calculation. Let us denote W:l' the contribution to
expect that the above problem will not crucially affect thethe model of -, at null infinity from all terms inS},_,

validity of our results. associated with the modé of ,_,. We then find at>
— Uy, to leading order itM/u and inug/u (see the Appendix
D. First-order iteration term for detaily,
The first contribution to the late timgargeu) tail at null P2z gl =2y sy (-s+2)
infinity comes from the functiony!_,. This contribution nt 20 ’
also turns out to be the most dominant one, with those of the Til=g! 1ty syt (st

functions ¢!, smaller by one or more factors ofi/|ug|
(recall that in our model we hajeg|>M). It is therefore of
special importance to analyze in detail the behaviap:pjl,
and derive its late time form at null infinity, as we shall do

X

| u
1+B_4In =) |

now. Pl =aglpvSu=(75+2),

The functiony!,_, is calculated from Eq(37), with n
=1. Since we only look for the behavior at null infinity, we l=al gt sy (s
take the limitv—oo of this equation. At that limit, the
Green’s function appearing in the integrand is dominated by X 1+,3|+1|“( - ”
merely thej =1 —s term of the sum in Eq(40): ry—r-

(4o N LT L R

Gl(v—oe)= =gV To(uiu’ vt
' where thea's and B8’'s are constant coefficieniglepending
X O(u—u")o(v'—u) (42 ons,l,m), and wherd'o is, for eachl, a simple functional of
|
Jo:
(where the derivatives af are with respect ta). 0
With Eq. (41) we now obtain, for!. _, at null infinity (for 0 o
eachl), " 1b= ] go(u")dur. (45)
0
Y- (Uv—) For a scalar fields=0, the contributionsj=%~" vanish(as
v'S [0 w0 the coefficientSa'il are proportional ts). Also, there is no
= (|——S)|f du’f dv’ contribution ! _%~" for I<ly+1 and no contribution
Tlup  Ju Y27 for I<ly+2, wherel, is the lowest radiatable mul-
[(v/ —u)*S(u—u’)'=s]0-9 | tipole mode for givers andm:
7 Sh—1(u’,v") (43
(v'—u’) lo=max(|s|,|m|). (46)
(where, again, thé—s derivatives are with respect t9. In Equations(44) implies that for any givers and m, the

this expression, the lower limit of the integration ovérwas  most dominant mode af,,— 1 at null infinity, at largeu, is| .
set tov’=u due to the factord(v' —u) appearing in the It also tells us that the dominant contribution to this mode
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comes solely from this mode itse(hamely, it is ¢L°:1'°), PSM= aIOOIIOOYSIOm(0,¢)v_25_1u_('0_5+2)
since in this case there are no contributions from lower _ .
modes, and the ones from higher modes are negligible at (dominant mode at scf, large u).  (48)

largeu. Hence, the decay of the dominant modeyQf.; at

null infinity (for any givens and m) is described at large ] ) ) ] )
retarded timeu by This result is accurate to leading orderitfu, in uy/u, and

in M/uq. In the generic case where the initial pulse includes
all values ofm, we find that the behavior is dominated by the
modes with Gs|m|<|s| andl=|s|, which decay at null in-
finity with the late time tailu™? for s=0 or u®~2 for s

to leading order ifM/u and inug/u. Recall that the function <0.

g:)O(U) and, hence, the functiona!)o are nonvanishin§,as One may also ask about the behavior of the other, faster

long as we make the assumption that the initial data have §8caying, modes at null infinity. From Eg#4) we find that
generic angular forniso that it particularly contains the low- (for any givens and m) the modesl>1, of ¢, are also
est multipole modé, for any givensandl). The case where €d” by strong contributions coming from modes of
the lowest modes are initially missing will be discussed insmallerl: In general, the functiony, _? has leading-order
brief below. contributions from the modds-1 andl —2 of ,,-¢. In the
exceptional scalar field cass=0) this contribution comes
only from thel —2 mode(providedl=1,+2), and provides
the same tail as the contribution from the moldéself,
Equation(37) provides a formal means for calculating the namelyu™ (=572, We thus have, for all=|, in the scalar
higher iteration termsy!,_, . However, exact analytic calcu- field case,i,_,u~ (752 at null infinity, largeu. Under
lations become very tedious already for the 2 term. Inthe  the above assumption that the “overall” field is well ap-
case of a scalar field in Schwarzschild spacefifjave have  proximated there by/,'l (for all 1), we conclude thain the
explicitly derived },_, at null infinity, and showed that it scalar field casethe decay ofiny of the modeg =1, at null
exhibits the same power-law decay za$:1 at largeu, yet infinity is given at largeu by
with an amplitude reduced by a factor proportional to
(M/]ug|)<1. For this case, analytic considerations sug-
gested that a similar reduction of the amplitude by a factor ¥'™=Y'™(8,¢0)v ™ 1u~ (any mode of a scalar field
«M/uq occurs also fon>2, wheneven is increased by 1. (49)
This conclusion was verified numerically for the first few
iterative termg7]. Our numerical calculations also indicated

I . .
that the sum of iterative termg, seems to converge rather whereY'™ are the spherical harmonics. .
fast at null infinity for large|ug//M (say, in the order of S tothe non-dominating modes of the 0 fields: Equa-
100). tion (44) suggests that these modes would exhibit not a strict

_ } - - —(I-s+2)
We now proceed under the assumption that the same coROWer-law tail but rather a tail of the formu
siderations also apply in our case, of generéields on the XIn[u/(r .—r_)]. We feel, however, that this result cannot be

Kerr background. That is, we assume tlffdr any given taken as conclusive, and needs a further supf®g. from

: numerical anal Wi mment that h logarithmi -
s,.l,m) the fUnCU(.)nSl/TInZZ decay at nuI! infinity at larges p:ndeenct?e 3023/ Sr?(s)t(arieseC?‘romethe friqilé(;\cy?ggmain gnti'laelysis
with the same tail ag/,_;; yet the amplitude of these func-

tions is smaller by at least one factor of orde(M/uy). in Ref. [24].) We emphasize our conclusion, E@8), that

This assumption seems plausible, because the above propeg]e leading-order tail at null infinity, belonging to the most

of the iterative schemdgnamely, the scaling ofy, as dminant mode, decays with a strict power-law.

«(M/ug)"] seems to stem from the basic structure of the

iteration procedure, rather than from the details of the source

function S,,, which distinguishes the Schwarzschikk=0,

case from the more complicated case studied in the current The target of this work is to explore the behavior of the

paper. fields ¥* at late timeanywhereoutside the KBH(and along
Adopting the above assumption, we conclude that, foits EH). To that end we shall apply the late time expansion

large |ug|/M, the “overall” function ¢' is well approxi- scheme, a version of which was used in R8f.to analyze a

mated at null infinity at large by merely the termp'nzl. In  scalar field in the Schwarzschild case.

particular,l4 is the dominant mode aof there, for any given We assume that at late time, the fielt§$ admit an ex-

s andm. By virtue of Egs.(9) and (47) we then finally ob-  pansion of the form

tain, for the Newman-Penrose field®™ (for any givens,m),

1//|n0:l(u’\/_>oo):a,:)0|:)ovfsu—(|073+2)’ (47)

E. Late time tail at null infinity

-2

IV. LATE TIME EXPANSION

o [ e |
VIV 6,0)= 2 [IZ > YS'm(0,<P)Fﬁ'm(r)}vkok,

5This is true unless the initial data are very finely tuned such as to k=0 | I=Ts| m=—1
make the integral in Eq45) vanish. (50
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to which we shall refer as tHate time expansiarHere ky is  these functions, proper boundary conditions should be speci-
a constant parameter which we later deternfids.we show fied at the EH(which is, mathematically speaking, a “regu-
in this paper, the LTE is consistent with the field equationsJar singular point” of the equatiorand at space-like infinity.
with the tail form at null infinity, and with regularity require- (These two boundary conditions should determine the two
ments at the EH. We adopt an expansion i, Tather than arbitrary parameters which occur in the general solution for
in 1/t, because it appears to be more adequate for analyzirgach of the functiorF} .) The behavior of¥#* at infinity is
the behavior near and along the HEHs the coordinate, known from the previous section, and in Sec. VII below we
unlike t, is regular through the EH discuss the matching to this asymptotic region. At the EH,
Inserting the form(50) into the master field equatiai),  the only obvious requirement concerns the regularity of the
and collecting terms of common powers and of common physical fields there. In the rest of the present section we
multipole numberd [with the aid of Egs.(12) and (14)], obtain the boundary conditions for the functioﬁb at the
yields an ordinary equation for each of the unknown func-EH, based on local regularity considerations.
tions F§'™(r): One expects “measurable” physical quantities to main-
tain a perfectly regular behavior at the EH, which is a surface
DSMER™(r)]=23"™, (51)  of a perfectly regular local geometry. Accordingly, the com-
_ ) ) _ ) ) ponents of the Weyl and Maxwell tensors should be perfectly
in which D®'™ is a differential operator given by smooth through the EH, provided these components are ex-
pressed in a coordinate system regular at the EH. To con-
a’m?+2ismar—M) struct boundary conditions for the scalab$ at the EH, it
A then remains to relate these scalars to the regular components
of the Weyl and Maxwell tensors.
To that end we must first write the tetrad bads used to
d (52 construct the scalar&s, in EH-regular coordinates. Recall-
ing that the BL coordinatesand ¢ go irregular at the EH,

d?
l=A _ I
D—Adr2+2(s+1)(r M)dr+

—(I=s)(I+s+1)

and the source terr}, reads we introduce the Kruskal-like coordinates
dF,_, =—-e Y and V=e*+Y, (54)
Z,=2(kot+k—1){ (r’+a®——
dr and the regularized azimuthal coordinate

2M[s(r?—a?)—imar -
+[ Ls( X ) ]+r—iasc'o Fi1 er=¢-Q,t (9
a2 (see Sec. 58 in Ref32]), where
—ias(c'+|:'ktll+c',|='k:11)+?(koJrk—z)(c'oF'k,2 R
| | I =l I =l | | Q+:2Mr+. (56)
+C\ L Fl2+CL R L+ Cl R 3+C _FL2 } _ o .
(Q . is the “angular rate of inertial frame dragging” at the

(53)  EH.) In the EH-regular coordinate systerd,(, 6, ¢ ), the

. | . ) o | components of the ingoing and outgoing tetrad legs have the
with Fi_,=0, and with the various coefficients and C EH-asymptotic forms

given in Egs.(13) and (15).

An essential feature of E@51) is the fact that it actually I#c A1 +v[1,0,0,0,
constitutes a hierarchy of effectivetiecouplecequations, as
each of the functionk - satisfies an inhomogeneous equa- ntocAe”%+V[0,1,0,d. (57)

tion whose source depends only on the functibps. pre-
ceding it in the hierarchy. The first functioﬁ}(zo, obeys a Recall thatv is regular at the EH, and that=0 there.
closed homogeneous equation. Thus, in principle, we may Now, the construction of the scala¥s® involves|s| pro-
solve for all modes of all functionE, one by one, starting jections of the Weyl and Maxwell tensors on the tetrad legs
with k=0. For eachk, one should be able to solve for all I* (for s>0) or n* (for s<0). Since the components of
modesl| of Fy, and then carry on ta+1. these tensors must be EH regular in the coordinate system
Now, Eq.(51) is a second-order differential equation for (\/,U,6,¢.), then by virtue of Eq(57) we find thatASws®
each of the various functiorFs'k. In principle, to determine  must be EH regular as well.
To formulate the regularity condition for the functions
Fi(r), we note that the function¥®'™(6,¢) in Eq. (50 are
It should be noted thaby definitionthe parametek, does not ~ irregular at the EH fom#0, due to the factoe'™?: We
depend onl,m: whereas in the Schwarzschild cd$3 a separate have
parameterk, has been defined for each moden, in the present ) . . )
paper a single parametky is related with the overall fielaV®, eiMme= Mo + 04 =T giMes . @M V]g=imyr, = (5g)
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where the factor in square brackets is EH regular, but theg, =(z, /z_) "™F(—|+s,|+s+1;1+s—2imy;—z,),

following factor oscillates rapidly towards the EH. From Eq. 62b)
(50) we thus find that it is the quantity®e™ "™ +"«F} which _ _ _ _ T
must be perfectly regular at the Effor all k). wherez.. are the dimensionless radial variables defined in
Hence, the regularity condition at the EH can be phrase(lj_:q- (21),
as follows: Define the “physical” variables a Q
_ _ A+

US=ASPS and Fi =A% M++F. (59 T 2k ©9

Then, we must have thator all k) andF denotes théaypergeometric functiof87]. (We use this

notation because, as we discuss belgwis physically regu-

¥s and F} are smooth functions at the EH60) ~ lar at the EH, whereag is irregular thers. o
The hypergeometric functiok(a,b;c;y) (wherea, b,
Mathematically, we shall require these functions and all theiq ¢ are complex parameters agds a complex indepen-
derivatives with respect to an EH-regular coordingtéch as  yant variablg admits the series expansion
r or U) to be continuous through the EH.
Equation(60) constitutes the required boundary condition - (é)n(B)n y"

at the EH for all functiong=}(r). F(ab;ciy)=1+ (64)

n=1 (6)n n!

V. GLOBAL SOLUTION FOR k=0 (see, e.g., Sec. 2.1.1 [88]), where

The dominant late time decay at world lines of fixed Al an A I -
described by thé&=0 term of the LTE, Eq(50).2 In this (@p=a(@+1)---(a+tn-1)=I(a+n)/I'(a) (&9
section we derive an exact analytic expression for this termy e «

el ; I -
(namely, for all modeof the functionFy_). Sincef_o is are that(i) the hypergeometric function is not definectifs

a solution of a second-order differential equation, it shall, non-positive integeas in this case a zero factor occurs in
contain two arbitrary parameters. One of these parameters

will be determined in this section by the regularity condition the denominator in Eq64)], and thatii) if eithera or b are
at the EH. The other parameter will be determined in Sechon-positive integers, the expansi(@¥) terminates, and the

rising factorial.”® Two results arising from Eq64)

VIl through matching at infinity. hypergeometric function becomes a polynomial of order
By definition, Z_,=0, and the functiorF}_, admits the ~—a or —b, respectively.
homogeneous equation Item (i) above implies that fom+ 0 both solutiong623),
(62b) are defined; however, in the case=0 (which we treat
D'FL:(,:O, (61 separately beloyonly one of these solutions is defined,(

for s<0, or ¢;, for s>0). We further find, by item(ii)
with the operatoD' given in Eq.(52). This is nothing but apove, that both hypergeometric functions in the solutions
the static fieldequation in Kerr spacetime. The static solu- (64) are simplypolynomialsof z, (and thus ofr too).
tions play an important role in our analysis, for two reasons: For m+0, the general static solution is constructed from
(i) As just mentioned, the late time behavior can be approxithe two basis function&?2). With the help of Eqs(22), (63),
mated by knowingF,_,, which must be a static solution, and(64), one finds the asymptotic forms of these functions to
and(ii) we shall use a basis of static solutions in constructinghe
the functionsF}. , using the Wronskian method.

. . —saime

For reasons that will become clear below, we continue by A ™l asr,——»(A,z,—0), 66
treating separately the caseg0 ands=0. Also, fors#0 b= BiMr! s as r,z, —o, (66)
we will consider separately the casas: 0 (nonaxially sym-
metric modesand m=0 (axially symmetric modes and

—imQry _
A. s#0 fields: Nonaxially symmetric modes —~ € " as r,——=(4,2,—0), 6
. . ¢|r— (Blm)*rl—s as .z, —soo ( 7)
For s#0 and m#0, a basis of exact solutions to the -s ot '

homogeneous static field equati is given b - .
g quaties) is g y where the coefficienB!" is given by

— imyA —spg( | — _ 1 — i -
b=(z, 12 )™A"F(—l—s,| =s+1;1-s+2imy;—z,), (21T (1—s+2imy)

Im_ _ —l-s
(629 B = s 2imysn) + ) - (69

8Actually, in Sec. VI we discuss an exception to this statement:
Form=0 modes o6>0 fields, the behavior along the EH is domi-  °Note that &), is well defined even when the expression involv-
nated by th&k=1 term. However, in this case too, the decay alonging the gamma functions is not. In this case, of course, the second
lines of constant >r . is still dominated by th&=0 term. equality in Eq.(65) is invalid.
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We now use Eq(59) to construct the “physical” fields and, for boths>0 ands<0,
b, =A%"M2T g and ¢, =A% ™2+ associated
with the static solutiong, and ¢;, . From the EH-regularity
criterion (60) we then learn that the static solutiap, is
physically regular at the EH, whereds, is irregular there:

Fors<O0 the irregularity ofg;, is obvious, as it diverges like
~A~Id at the EH. Fors>0, ¢;, is continuous through the

EH, yet itS.Sth derivative with respect .tU (which is a regu- We still have to construct a second independent basis
lar coordinate through the BH diverges there like gavic solution for then=0 case (This will allow us to tell

e #M2+Tx. Higher orderU derivatives of ¢, are un- hether or not the above solutigf™° is the only regular
bounded in magnitude at the EH. one) Fortunately, at that point we can benefit from the work
Obviously, ¢, is the only solution of the homogeneous gjready done in Ref28] for the Schwarzschild case: When
static equatior(up to some global constant factarhich is  expressed in terms of the variatie (rather thanr), the
physically-regular at the EH, because any combinaign  static field equatior{61) for m=0 takes exactly the same
+ b, with b#0 will be irregular there. In a physical setup form as for the Schwarzschild Bifsee Eq.(21) in [28]],
where a static source presents outside the BH, the field MU§fhere in the latter case we use the variatdes (r
behave as< ¢, near and through the EH. In vacuum, is  _2M)/(2M). Therefore, each static solution in the
the only global static solution physically regular at the EH. schwarzschild spacetime becomes a static axially symmetric
This field does not vanish at infinitjwhere it behaves like (m=0) solution in Kerr spactime, upon replacizg-z. .
ocr"s); hence it cannot represent a physical static Perturbalvloreover, in terms of the variables(in the SBH caspand
tion. There exists a static solution which dies off fast enougl’k+ (in the KBH casg the EH-regularity criterion becomes
at infinity [this is the solution B'")* ¢, —B."¢;,, which  the same for both spacetimes, and thus the classification of
dies off asecr='~5"* at larger [37]], yet this solution is regular and irregular solutions at the EH is also conserved.

physically irregular at the EH. Similar results apply also to  As a second basis function we then take the static solution
the staticom=0 modes, which we study below. We thus con- given in Eq.(24) of Ref.[28]:
clude thatthere cannot exist physical vacuum static modes

M0 =BT %' asr,z, -, (72)

Recall thatF is simply a polynomial oz, (and ofr), and
thus so is¢{“:°. From Eq.(70) we find that the “physical”
field $"~°=A3%¢"=C is also a polynomial, and therefore,
clearly, »™=C is physically regular at the EH.

outside the Kerr BH. This, of course, is a manifestation of dMO=Az 5z- R (I-s+1)+1;20+2;2° 1)
the “no hair” principle. N
In the framework of the LTE, each of the functioRj(r) =¢; for s>0 (73a

must be subject to the EH-regularity criteri@¢f0). Since

FL:(, must be a static solution, it thus have to be proportionafijd
to ¢, . To conclude the above discussion we therefore take m=0_R 77 \"S"IE(|+s+1)+1:21+2:2° Y
Ir S&— ! I [p o
Fio(r)=age(r). (69) =¢; for s<O0, (73b)
The constana'o is to to be determined in Sec. VII by match- where we have replacedwith z, (and thusz+1 with z_).
ing at null infinity. Here, A, is a normalization factor,
B. s#0 fields: Axially symmetric modes ~ (1 +|s|)!
, _ Ag=1F(I—|s|+1]+1;21+2;1)= | |
We remarked earlier that in the case=0 only one of the 21+ D) (|s|-1)!
basis functions62a, (62b) is defined—the one in which, (74)

depending on the sign &f the third parameter of the hyper-
geometric function is a positive integer. Denoting this func-
tion by ¢™=°, we have

[cf. Eq. (46) in Sec. 2.8 of(38]], chosen such thap!"~°
takes a simple asymptotic form at the Es€e below. From
Ref. [28] we also know thatﬁi”,"zo admits the following se-

[“:°=F(—I+s,l +s+1;s+1;—z,)=¢ for s>0 ries expansion near the EH:
(709 m=0(r)
A~(1+a*A+--)+Bp Inz, (for s>0),
- (1+a A+--)+ B¢, Inz, (for s<0),

and

M=O0=A"SF(—l—sl-s+1;—-s+1;-2,)

=¢, for s<O. (70b) (75)
The asymptotic forms of this solution are in which the coefficien3 is nonvanishing,
- A°  (for s>0) - —1)5 (1 +g)!
{”*O(r)z atthe EH (71 B= (ZD* (1 +]sD (r+—r_)‘2|s|. (76)

A~S (for s<0) (Is|=2)1(Ish! (1—]s])!
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It is clear (e.g. by comparing the EH-asymptotic forms
that the two solutiong!"~° and {1 ~° are independent, and

PHYSICAL REVIEW D 61 024026

Using the EH-asymptotic relations z, =<+«
=e'«/7andz_=1, and recalling that the hypergeometric

thus form a complete basis of solutions. As already exfunction appearing in E¢.799 is a polynomial(of orderl)

plained in Ref[28], ¢~ is physically irregular at the EH:
Fors<0 the “physical” field ¢'=° diverges there a& ~Il,
For s>0 ¢"° is continuous through the EH, yet isth
derivative with respect tdJ diverges there(as xInz,).
Therefore, Eq(69) applies tom=0 as well, where for this
case the functiorp, is given by Eq.(70).

It is instructive to compare between the asymptotic behav
ior of the s# 0 static solutions in the caga+#0 [Egs. (66)
and(67)] and in the casen=0 [Egs.(71) and(75)]. Focus-
ing on the asymptotic dependence An(and ignoring for
this discussion the oscillatory factor presents in the& 0
case; we find that for thes>0 fields the regular and irregu-
lar solutions “switch roles”: Form#0 modes the regular
solution is the one that behaves like ® at the EH and the
irregular solution is the one that behaves likeonst there,
whereas fom=0 modes the opposite is true. Such an inter-
change of roles does not occur in the cased. This effect
is explored and explained in detail in RE28]

C. Scalar field case(s=0)
For s=0 we use the new radial variable

2r—r,—r_
zzz++z,=#
+ =

(77)

(note the relatiorz= 2z, + 1=2z_-1), to write the static
field equation(61) in the form

(1-Z2)F"(z)—2zF ' (2)+[4m?y*(1-2?) 1

+1(I1+1)]F(2)=0, (78

where a prime denotetdz. This is the familiar Legendre’s
differential equatiorisee, for example, Sec. 3.2 in RE38]).
Two independent solutions to this equation E38]

S=0=(z, /z_)™F(—1,14+1;1+2imy;—z.),

(799
and
o (Z2—1)m
s=0_ . .
ir —WF(I/2+|my+l,1/2+lmy
+1/2;1+3/2;:272), (79b)

which are(up to a customary normalizatipthe assgciated
Legendre functionsf the first and second kind®{‘(z) and
[(z), respectively, withu=2imy.*°

ONote that the two independent solutiofi§”° and ¢5"°

Egs.
r 1
(623 and(62b), degenerate to the single solutitf9g in the scalar

field case(i.e., when setting=0).

of z, , we find ¢*~%=€™?+"+ near the EH. The “physical”
field ¢S~ %=e "M2+"x 450 associated with this solution is
therefore regular at the EH.

It remains to verify that;&fzo represents thenly physi-
cally regular solution for the scalar fieldip to a constant
facton. Form#0, the solutiorki)f':O and its complex conju-
gate (¢f:°)* constitute a complete basis of static solutions.
The “physical” field e ™+« ($5~%* becomes indefinite
at the EH(where it behaves like 2™?+'+) and we find
that for m#0, ¢f:° is indeed the only physically regular
solution. In the casen=0, ¢°~° becomes rediit is then the
Legendre polynomial, up to a normalizatjpand a complete
basis of solutions is given by/¢~°, 47 °). These two basis
functions then admit a relation of the forrgbisfo(z)
«S=%(z) xIn(z, /z_)+ polynomial in z [see Eq.(24) in
Sec. 3.6.2 of38]]. Since ¢~ is physically regular, it is
therefore clear thay)isfo is physically irregular.

In conclusion, because the functiéfj—3 must be a static
solution physically regular at the EH, it must be proportional
to qﬁf:O. Therefore, Eq(69) applies to the scalar field too,
with ¢, given in Eq.(793.

VI. LATE TIME BEHAVIOR AT THE EH

The LTE, Eq.(50), is an expansion in inverse powers of
advanced timey, with r-dependent coefficients. Since along
the EH itselfr is constant ands takes finite values, this
expansion seems especially convenient for analyzing the
“late time,” v>M, behavior of the fields at the EH. Poten-
tially, this behavior should be described by the 0 of the
LTE. However, a possible divergence or vanishing of vari-
ous ‘“coefficient” functionsF,(r) atr=r, may alter this
simple picture, leading to a different prediction for the late
time power-law decay at the EH. Indeed, as it turns out in
this section, there is a caéie one ofs>0, m=0) in which
the termk=1 is found to dominate the terk=0 at the EH.

It is therefore important to analyze also the behavior of
the k=1 terms at the EH. This task is further motivated by
our wish to verify that the LTE is fully consistent with regu-
larity at the EH: It will be shown that for eadhthere exists
a solutionF, physically regular at the EH. These EH-regular
functions will then construct, via the LTE, a field® repre-
senting a physical perturbation which is regular along the EH
at allv.

With the above motivations in mind, we first derive in this
section expressions for the EH-asymptotic behavior of each
of the functionsF~ .

A. Behavior of the k>0 terms at the EH

Each of the functiong ., admits the inhomogeneous
equation D'FL=Z'k [Eqg. (51)], and is subject to the EH-
regularity condition60). For eachk>0, the general solution
to Eqg.(51) has the form
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FL>0(r): agd,(r)+byi (r)+ ¢Lh(r), (80) 1. s<0 case and 30 with m+0 case

) o We start withk=1. The sourceZ}_, is calculated from
wherea, andby are (yey arbitrary coefficientsgy and#ir  Eq. (53), in which, according to the results of the previous
are two independent homogeneous soluti¢thsse derived section, we SeF'k:o=a'0¢'r. For s<0, and also fors>0

in the previous sectionand ¢'kh(r) is a solution to the in-  \ith m+0, we find by Eqs(62a), (700), and (794 that the

homogeneous equation. T function F,_, has the formF}_= ¢ =A"STMYxfq(r),
For eachk>0, an inhomogeneous solutiagl’ is given  yhere fo(r) is a certain function analytic at the EH and
by nonvanishing there. Substituting this form in E§3) yields
: T (r")Z(r")IA(r! I — A —STi 3
L“<r>=¢r(r)f Pl JZALVA0D g Zie=a(N)=A X (1), (85
W(r') B
, ) , wheref(r) is a function analytic at the E&.
_ ' (r)Z(rIACY) With Egs.(82) and(85), Eq. (84) becomegfor k=1)
dir (1) W) dr’, (81
; ; L= (r r r r",
in which k=1 ¢r r, r [¢r(r/)]2[A(r/)]s+l 1
w=a-sL (82 ()

is the Wronskian associated with the homogeneous equatic%ﬁh;rtifl(lr )is ?na}![yu;: ?r: thg tEH’ at_nd wher(,a we hal/e speci-
D'FI=0. We can now make use of the relation 1ed the ‘ower fimit of the integration over asr,=r. .

Integrating over” [recallingA=(r—r,)(r—r_)], we ob-

. tain
du=—di0) [ 620 Wanar (83 -
. r [A(r/)]—s+1+2lmy+CA
. - =) " ar )
to re-express the above inhomogeneous solution in a more re [H(r)A(r)]SHE
convenient form, as
N )W) Zi(r” (D) | dr@+efan A ), @7
¢|kh(r):f dr’f dr,,¢r(r)¢r(r2) W(r ) Zk(r )' Ju_ 1
oI [&e(r)]= W(r") A(r")

B4 \wheref,(r') andf,(r’) are analytic at the EH is a certain

wherer; andr, are constant integration limit$. This form ~ nonvanishing constant, and is an integration constant,
is obtained from Eq(81) by first substituting forg;, , using ~ Which, of course, depends on the value of the lower integra-
Eq. (83), and then integrating the resulting expression bytion limit r5. In the cases<0, a convenient choice is,
parts. It is advantageous in that it only involves the homoge=r ., which makesc vanish. Fors>0 we taker,=2r
neous solutionp, , which is of a more simple form thag;, (say), as the choice,=r, is forbidden'® In that case, the
in all the cases considered in the previous section. contribution proportional te to the integral in Eq(87) must
Equation(84) can be used, in principle, to calculate all coincide (up to a multiplicative constantwith one of the
functionsF|(r) in an inductive manner. In general, for each static solutionsg, or ¢;, , because changing the integration
k>0 the source functio@, depends on variousmodes of jimit r, (thus changing) amounts to adding a static solution
the functionsF,_; andF,_,, which are to be calculated at to Eq.(80). By integrating over’ we find that this contri-
previous steps of the induction procedure. _A_s we show bebution has the asymptotic forme A~ IMYocce M2 Ty at the
low, for eachk, the value of one of the coefficiendg or by ) . . —
is dictated by regularity at the EH. The other coefficient is toEH' hence it must admit the_globa_l formcé;, [see Eq.
be specified by matching at large distance, as we explain if67)]. The term proportional t@ in ¢, can therefore be
Sec. VII. absorbed in the terrb,¢;, of Eqg. (80), by re-defining the
We now use Eq(84) to obtain the EH-asymptotic forms coefficientb;. One is left with the contribution proportional
of all functionsF|,. The special case>0,m=0 shall be
treated separately from all other cases.
2n deriving Eq.(85) one should notice that wheff,_ is sub-
stituted in Eq.(53), the term containinglF,_,/dr and the one
The constant limits; andr, will be specified as convenient for containingF'k:O/_A cancel out at the leading order in As a con-
each of the various cases analyzed below in separate. Of coursggduence, leading-order coqtrlbutlonszigl arise from all terms
changing these limits amounts to adding a homogeneous solution {8 (53), including the interaction terms.
Fi., which is merely equivalent to re-defining the coefficiemtsor “In the cases=+2 we can makec vanish by takingr,=c.
by in Eq. (80) However, fors=+1 no choice ofr, nullifies c.
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to ¢, which, after integrating over’, readsd,-Af(r),
wheref(r) is a function analytic at the EH.

From Eq. (80) we now find thatFk 1=a1¢,tbidy,
+ ¢, Af,(r). The EH-regularity criterion60) then dictates
b,=0, finally leading to

1= dlag+A-fi(n)].

Recall (i) that f1(r) is analytic at the EH, andi) that the

(89)

PHYSICAL REVIEW D 61 024026

To calculateg) ;, we substituteS,_, in Eq. (84). Re-
calling that in the present case the functi¢pis a polyno-
mial, one finds

r ’
=4Msk0ao(ri—a2)¢r+(r)f dr’fr dr”
ri ry

[A(")]* ' +[AC")I%h(r")
[ (r)IP[A(r)

, (93

regular solution is physically regular there in the sense dis-
cussed in preVIOUS sections. This ImplleS that the fUnC“OWNhereh(r”) is ana|yt|c at the EH(Here we have Specmed

Fk 1 of EQ.(88) is phy5|cally regular at the Ekhamely, the
“physical” function F|_, associated withF_, is math-

ematically regular thebeNote also that, as far as the leading

order term inA is concernedF,_, has the same asymptotic

behavior asF'k:O at the EH, which is that of the regular static

solution; c A ~5e' M2+«

We can now carry on in an inductive manner, and analyze
In general, let us assume that for a given

the termsk=2.
k'=2 we have, for alk<k’,
Fi=dila+A-fi(n)], (89)
wheref,(r) are functions analytic at the EKiThis form was
already verified above fd¢=0 andk=1.) By substituting in
Eq. (593 it is straightforward to show that
A*SJrim'yf_k,(r),

Z(r)= (90)

Wheref_k,(r) is analytic at the EH. This, following the same

calculation as for F'kzl, leads to FL,=ak,¢r+bk,¢i,
+ ¢, Af(r). The EH-regularity conditioi60) then dictates
b,,=0, and one finds that Eq89) is also valid fork=k'.
Thus, by induction, Eq(89) is verified for allk=0.

one of the integration limits,,=r, .) Carrying the integra-

tion we arrive at

r2

Py =4Mkodo ¢r r>J dr'[AY(r")+hy(r")]

=Y Iz, +hy(r), (94)

in which ﬁl(r’) andﬁ(r) are analytic at the EH, and where
the coefficienty, is given by

2 2
~ rie—a
Y11= IM koao > #0 (95)
(ro—r-)
By virtue of Eq.(75) we finally obtain, forFL:1 (in the case

s>0, m=0),
Fiei(n=a; ¢, +bi ¢y + ¢y
=a; ¢, +bi [AS(1+atA+---)

+Bo Nz ]+ Yt Inz, +hy(r).  (96)

In CO”C'USlon we have constructed EH- regular solutions Now, the EH- regu|ar|ty CntenoniGO) forces the “phys|_

for each of the functlon§k(r) It was found that for all

modesdl, all funcUonst(r) behave near the EH like a regu-

lar static solution, = ¢,; namely, they all admit the

asymptotic form

a, A %™+« near the EH, for alk=0.
(91

Fi(r)=

2. Case s0, m=0

In this case, the functioﬁk 0=a9¢, is simply a poly-
nomial, admitting the EH- asymptotlc forr, "y O=ayA°
[see Eq(71)]. To obtain the sourcg,_,, insertF,_, into
Eq. (53). This yields

ZiZ3 M 0= aMskoao(r2 ~a?) AL h(r), (92

Whereﬁ(r) is a function analytic at the EH. Note that now,

sinceF}_, is a polynomial, the asymptotic form &_, at
the EH is dominated by merely the termA ~'F|_, in Eq.
(53), while the other term&ncluding the derivative term and
the interaction termscontribute only to higher orders iA.

cal” function Fj_;=ASF,_, to be perfectly smooth at the
EH (wherez, =0). This implies thaFk , must contain no
logarithmic terms of the fornxInz, : If such a logarithmic

term is present=}_, would indeed be continuous at the EH,
yet itssth derivative with respect toor U (which are regular
coordinates at the EHwould diverge there. We therefore
find that the regularity condition dictates the value of the
coefficientby :

by =—"71/B+0. (97)
Hence, from Eq(96) we obtain the form
Floa(r)=A"%hy(r), (98)

whereh,(r) is a function analytic at the EH, satisfying

hy(r=r )=b; #0. (99

[The analytic functiorh,(r) contains also the termes, ¢,

and?l(r) appearing in Eq(96), multiplied by A®. Note that
the polynomial homogeneous solution does not affect the
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TABLE I. The asymptotic behavior of the “physically regular” For the regularity condition to be met, we must now have
functions Fi(r) at the EH. Presented are the leading orden\in b+ — _;,k/ /,~8 Consequently, Eq(100) is recovered fork

forms of these functions, for the various cases studied in the text.” ,
For axially symmetric th=0) modes the asymptotic behavior de- _ k as well. By induction, then, we conclude that E£00)
applies to alk=1.

pends on whethes>0 or s<0, as discussed in the text. Note that
these asymptotic forms are in all cases independent of the multipole Recall that it is possible for some of the coefficients

numberl of the modes under consideration. (with k=2) to vanish. If, for a certairk, y, happens to
vanish, then, to maintain EH regularity, one must haye
Case Fr=o Fir=1 Fis2 =0. In that case Eq(102) yields for F} a divergence rate
am=0s>0 A0 A-S <A-S slower thanA ~*° at the EH (for this specifick). This, of
All other cases A—%eM2 s for all k=0 course, does not contradict EG.00, which should be re-

garded as merely setting an upper bound to the divergence
rate of the function§|_,. It is only for F}_, that we veri-

leading order term ofL_, at the EH] It is important that fied the actual asymptotic behaviorA™ by showing
hy(r) does not vanish at=r . : It implies that at the EH hi(r;+)#0. This information, however, would be sufficient

itself (in the case 0o6>0 with m=0) the termF}_, domi- for_I'EEe Ial;e time anl?lysis at the E|-t|h behavior of the bhvs
nates the ternfr}_,, which is only proportional ta\° there. € above results, concerning the behavior of the pnysi-

The application of this result to the late time tail will be 21 régular functionsF,(r) at the EH, are arranged in
discussed below Table I. The table shows the leading-order forms of these

We now turn to the termk=2, and show by mathemati- Iﬁnctmns fﬁr tthe d\_/arloustﬁasl,ets ?.tUd'%d sbo_ve. I?S:ov]\c/mvxéje use
cal induction that for alk=1 there exists a solution admit- - 1¢5€ FESUILS 10 GISCUSS he late ime benhavior of the S

ting the form along the EH.

| B B. Late time tail along the EH
Fie1(r)=A"%h(r) (100 . . , . o
When discussing the field behavior along the EH, it is

[with h,(r) being functions analytic at the BHand thus most natural to refer to the “physical fieldw = A™¥*,

satisfying the EH-regularity conditiot60). This form was which,_by construction, is a linear combinatiomith regular
already verified in the cade=1, for which we also showed coefficient3 of the regular Weyl or Maxwell components.

thath,(r,)+#0. Expressing the LTE in terms oF®, and using Eq(58), we

Let us assume that Eq100) applies for all &<k<k’  find
wherek’>1 is arbitrary, and show that it is also valid for

k=k'. Su_bstituting thE form(100) into Eg. (53) we find WAV, 0,0.0)
ZL,=A‘Shk,(r) whereh,.(r) is analytic at the EH. We then * o
have :2 IE YSIm(0,¢+)e'mQ+V
= ,m
¢”“frdrff“dr,,eﬁr(r)(br(r") P (1) X[AseT MRV (103
k' ’ ' A
[/ (r')]* [A(r)]P*t Here, the factor in the square brackets is the funckibfr)
. which, by the above construction, is regular at the (d+ all
= qbr*(r)J dr'A=S(r"Yhy (r") k). Recall also that the angular dependence here is EH regu-
£ lar, and that the/-dependent factors take finite values at the

EH. Thus, each of the terms in the sum okén Eq. (103 is
T+ —s+1f indeed physically regular at the EH.
=vede (Ninz, +4 e (1), (109 Now, at largev, the field¥* should, potentially, be domi-
_ R _ nated by th&k=0 term in Eq.(103). For thes<0 fields and
wherehy,, hy,, andh,, are analytic at the EH, angl, are  for m#0 modes of thes>0 fields, we find from Table | that
constant coefficient§Here we have taken,=r , .) For FL, at the EH itself the factor in the square brackets in @§3
we thus obtain admits[ ]y=const for allk=0. Therefore, in these cases,
the late time decay o¥*® along the EH is indeed dominated
by thek=0 term, with other terms smaller by factors o¥/1/
Let us denote bylrs™ the part of ¥° which includes all
multipole moded of a givenm. To leading order in 1/, we
then find for all modesn of the s<O0 fields, and for non-
axially symmetric (n#0) modes of thes>0 fields,
This result is analogous to E(6), only here we have not
rule_d out the possibility that some of the coefficiepts may Tsmr=r )= aBYslm(al'¢+)eim(2+vv—k0_ (104)
vanish(for k'>1) . [

Fio.(f)=a, ¢, +b [A™(1+a A+ )+BIn(z) ¢, ]

+y0inz, ¢+ A TSR (r). (102
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The situation is different in the case of axially symmetric power indexk,, as well as the amplitude coefficient of the
(m=0) modes of thes>0 fields. Here, the factor in the late time tail at fixed. Provided with the value d;, we can
square brackets in Eq103 vanishes at the EH likd® for  then carry on and, in the second step, obtain the tail form of
k=0, whereas fok=1 it is finite. Hence, in this case, the all other modes at fixed>r, . In particular, we then find
k=1 term dominates th&=0 term. For each of th&=2 that the single modé, dominates the behavior of the field
terms the above factor is at most finignd may even vanish W™ also at fixedr.
for somek); hence these terms are negligible with respect to

thek=1 term at largev. We conclude that for axially sym- A. Mode | =1,
metric modes of the>0 fields the late time behavior along _ . .
the EH is dominated by the=1 term: Substitutingv=t+r, in Eq. (50), we find that along any

r=const>r, world line, at the late time limit>|r,|, the
behavior of the modePso™ (for each givens and m) is
\ifs>°'m:°(r=r+)=2 by YSim=0(g)y ko1 (105  described by
\IISIOm: YSlom( 0,§D)Filgrg(r)t7ko
to leading order in 1 (here, the coefficienb; is alsol
dependent
At this stage, we still do not know the mode composition
of the above leading-order tails; neither can we tell what thet

: ; i o leading order irr, |/t, where the second equality is due
power indexk, and the amplitude coefficients are. These * .
pieces of information will be obtained below by matching to Eq. (69). To obtain the unknown power inddy, and the

. . . |
the LTE to the form of the late time field at null infinity.  @mplitude coefficiena, we now match the LTE to the form

However, one feature of the behavior along the EH isOf the field at null infinity, as derived in Sec. IIl.
already manifested in E4104) above: Non-axially symmet- In order for Eqs(48) and(50) to agree at null infinity for
ric (m+0) modes of the fields do not exhibit a strict power- the model =15, we must have
law decay along the EH; rather, the amplitude of the power-
law tail oscillatesalong the null generators of the EH, with
an (advanced timefrequencym() , . This phenomenon was
first observed by Orfi22], and was further analyzed in Refs.
[21,23,24. — o'oploy—2s- 1~ (lg—s+2)

_— . 0'o

We comment that the above oscillations are not mani-

fested when using the Kerr coordinate defined byde (107

=de+(a/A)dr, instead ofp.. (cf. Ref.[18], which adopts Here,'° _ denotes the time-radial part of the mdgeat null

L~ . ) LTE
the coordinatep). Both coordinates are regular at the EH; ity “as calculated from the LTE, whereas the expression

however, the horizon’s null generators are lines of constant, ihe right-hand sidéRHS) is the one derived in Sec. IlI
@ but varying ¢.* Note that the oscillation of the scalar using the iterative expansion scheme. As it turns (@ee
field along the horizon’s null generators is a coordinateelow), all termsk of the sum on the LHS of this equation

= aIOOYslom( 0, (P) ¢:’0(r)tfko (106)

slgm —kna—k _ 4l
kZO Feo(rv—ro } =T

at scrit+

independent phenomenon. contribute in the same order of magnitude at null infinity,
and thus should be all summed up when evaluaﬁt‘i&. To
VII. LATE TIME BEHAVIOR AT FIXED  r>r, that end, we first need to obtain the langesymptotic form

. |O

In this section we obtain the global late time behavior ofOf all fu.nctlon.st OF shm
any of the modes of the fieldS at any fixed value of Starting with k=0, we have, from Eq.(69), F,°
>r, . This task is to be accomplished in two steps: First, we= ag0¢'ro, Using Egs.(66) and (72) we find the large-
consider the mode=1,, (for each givers andm), which in asymptotic form
Sec. Il we found to be thésingle dominant mode at null
infinity at late time. By evaluating the form of this mode of Fi'ﬂrg(r>r+)g y'oor'o*s, (108
the LTE at null infinity, and comparing it to the form ob- -

tained independently in Sec. lll, we derive the unknownWhere the constant coefficiento is given by

B'Eémzo for s>0 withm=0,

1To see that, we point out that, in the,¢,0,¢) system, the null 7|0°=a|0°>< lom _ (109
generators of the EH are lines éf=const,r=r, , ¢=2a\, and Bs in all other cases
v:2(ri+a2))\, where N is an affine parameter along the ) - m . )
generators—see Sec. 33.6 in R@B). Thus, along the null genera- [With the coefficientB " given in Eq.(68)].
tors we finde=_v. Now, at the EH the two coordinates and To analyze the functionE:(oZl we use Eq(80), with the
9. arerelated bglo=de, +Q , dv, from which we conclude that  coefficientsb, taken to be the ones determined above by
dg. =0 along the null generators of the EH. EH-regularity considerationge.g. by=0 for m#0). We
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now show by mathematical induction that for &ll these

o e ! i (kog+k—1)!(I—s+Kk)!
unctions admit the arge—asymptotlc orm = k' 2|+k+1)

k

FO(rsr,)=y2rlo-stk (110

—s\ (I-95)7(kg—21-2)
) } , (114

[
o 44
—q 2l 1{qko l(l—q

(to leading order i), where y'o are constant coefficients.

To that end, we assume that 410 applies to allk<k'  where the derivatives on the RHS are with resped. oo

(where k’ is an arbitrary integer greater than zgrand  prove this identity, insert the power expansigh ¥/(1—q)

verify its validity to k=k’. _ =q'"S3;_,q¥ into the RHS] We now make the substitu-
First, we must clalculate the largeasymptotic form of  tijons q—(1—u/v) andl—l,. At v>u (recall that at null

the source functiorzko, . From Eq.(53) we obtain, to leading infinity v—c whereasu takes finite valugs the expression

order inr, on the RHS of Eq.(114) is then dominated by the term
resulting fromky,—1—s—2 differentiations of the factor (1
|0~ ) 2 lo —q) ¢t — which yields ko—lo—s
=2(ko+k'—1)[r2(dF'° _/dr)+rF 0710
(ko JLrdFR_fdn) -] —2)!(u/v)~ko~lo=s=1)  gupstituting this result in Eq.
_,y|0rlo sk’ (111) (113, we obtain
~ —lgt+s | ] —a—9)140
wherey'ko,=2(k0+k’—1)(I0—s+k’)y:(°,_1 are constant®’ lo EZ * @l Ditko—loms=2)!yg
Substituting this leading-order form in E¢B4) and per- LTE (ko= D)!(lo—9)!
forming the double integration, we obtain, to leading order in wy 25~ 1~ (kg~lp=s-1) (115

r, in=y,2r'o"s"K with
N Comparison of Eqs(107) and (115 finally yields
Yo 2kt k' —1)(lg—s+kK)
K'(2lg+k' +1) K(2lgtk' +1)  W-1 ko=2lo+3, (116

lo
’yk/

Thus, for allk’ >0, the contribution from, to FIO atlarge @nd also, with the help of Eq109),

r [via Eq. (80)] dominates the contribution from the homo-

geneous solutions, which is at mostr'o™S. We therefore alo— loj'o 2075 (I +1)
haveF:(O,Ecj)Lh, at larger; hence Eq(110) is satisfied fork o oo lo—s+1
=k’ as well. We also know by Eq108) that Eq.(110) is 1B'™0 for s>0 withm=0
valid for k=0. This, by mathematical induction, verifies Eq. % |_§1 . ' (117
(110 for all k=0, with the coefficientsy:(0 given by 1/B? in all other cases.
o (2lg+1)! y:JO 2(kg+k—1)1(1o—s+K)! The pargmeteko derived abovg is, i_n view of Eq106),
Y= (kg—1)!(Ig—9)! KI(2lg+k+1)! . the power index of thé, mode’s tail at fixed >r .. for each

(112 given s and m [recall | ;=max(s|,jm)]. The coefficienta'o0
describes the amplitude of this tail, with E4.17) relating it
We are now in position to evaluate the sum okem the  to the amplitude of thé;-mode’s tail at null infinity(which
LHS of Eq.(107 at null infinity. Substituting fofF,(r) [us-  is a2119).
ing Eq.(110], and recalling =r, =(v—u)/2 at larger, we

obtain
B. ModesI>I,
| 51 u\ Jfo—stk We now turn to analyze the behavior of the other modes,
Oe=vloTsThoy 0 5(1— —) (113 1>1,, at fixedr. Here, the coupling between modes in the
k=0 \

Kerr case shall appear to have a crucial effect on the form of

the late time tail. To discuss this effect, it is most instructive
To evaluate the sum of this power series at null infinity, wey first consider a situation without coupling. Thus, at first,

make use of the auxiliary identity, valid fog|<1, we shall “turn off’ the interactions between modes by ig-
noring for a while all terms inZ'k [Eq. (53)] which couples
the model to other modes(This will qualitatively describe
YActually, the sourceZ,| o contains also contributions from other the situation in the Schwarzschild cgsehen, in the second
modes [(=lg+1)y+2). However as we show later in this section, Part of the following discussion, we restore the couplibg
such contributions are negligible at largeand do not affect the taking into account all terms ifi,), and discuss its important
asymptotic form(111). effect on the late time tail of decay.
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1. Case with no coupling between modes f(u/v) must admit the asymptotic formf(u/v)

Considering a modé>|, and ignoring its interaction =(u/v) ?o~¥*'*572 Then, by comparing the power of
with other modes, we can follow the same calculation as forve finally obtain
the | mode, and obtain at null infinity | ¢ N _
ccapy 25"y~ ko=1=s71) in a full analogy with Eq(115).* k(l)=2(1—=1¢) (no coupling; SBH cage (120
However, since for any>l, we haveky—Il—-s—1=2l,
—l—s+2<|—s+2, this result cannot match the known
power at null infinity, u=(75"2)  unless aj=0. The
“boundary condition” at null infinity thus dictates the van-
ishing ofay,, and thus ofF},, for all 1>1,. This, of course,

We conclude that for each mode-1,, the form of the
field at null infinity (acting as a boundary conditipdictates
the vanishing of all term of the LTE witk<2(l —1y). The
first nonvanishing term, the one with=2(1—1,), exhibits
. T the late time tait %0~ 2(~'0)=t~2/=3  Other terms, the ones
means that the modes>lo will decay faster thart™ at with k>2(l—1), decay faster at late time. Therefore, substi-

fixedr. . I ,
This argument demonstrates that in order to determine tht@u&tllng v=t=r, in Bq. (50, we find, for each of the modes
=,

form of the late time tail at fixed, it is necessary to find out,
for each given modé>1,, what is the smalledt value for WSM(t>|r, |)
~ *

which FL does not vanish. Denoting this value k{f), we “m | s _
find that the tail of any modd is given by t *o~ kO Y20, @) (1)t (no coupling; SBH case
—t—2lo=3-k(I)_ (121

What isk(l) then? We shall answer this question by
matching the LTE at null infinity for each mode-1,. First,
we must obtain the asymptotic form of the functidﬁb at

larger. By definition ofk we haveF'k<~k=O. If no interac- , i
Let us now “turn back on” the interactions between

. . |

tion oceurs between various modes, then thel fundﬁlggk modes, and consider their effect on the late time tail. For
must be a static solutiorthe regular one F,_y=a;¢:  each of the function§,, the inhomogeneous pat,, in Eq.
Eallr'*s at larger, where the constant coefficiea{; does (80) now contains contributions not only from the functions

~ | [ 1=2
not vanish by definition ok. Following the same calculation F}(;ll and F!fZ but also fromF, 3, and (f0+rls¢0) from

. . . . |+ . | .
as for thel, mode (again, with the interaction between Fi_iandFi 5. For example, thelfunctloﬁlkozll admits(for
modes ignored for a while we obtain for eactk=k the  $#0) a nonvanishing sourceaF? j=aaj¢°. Since we

to leading order inr, |/t.

2. Effect of coupling between modes

large+ asymptotic form havea'o%ﬁo (by definition ofkg), then, necessarily, the func-
| _ tion FL°=+11 is nonvanishing. Thus, for the modles[,+1 we
Frag=nr! 777, (118 find k=1, implyi ime tai ok
k=k~ Yk find k=1, implying a late time tail of the formt

=t~2lo~4, This is different than in the “no-coupling” situ-
where yL are constant coefficients. Hence, for each mbde ation, in which for thel =1,+1 mode we hadk=2 [Eq.
>1o we find, to leading order in/v, (120)], leading to the tait %o~ ° [Eq. (121)]. We may sum-
marize the result in this example by saying that the interac-
| ” | stk ke Kot |- tion “excites” the model,+ 1 already ak=1, whereas the
¢LTEEZ Vil % v =y TS (U ), boundary condition at null infinity “excites” this mode only
k=k 119 & k=2. We arrive at the conclusion that for this mode the
effect of interaction dominates the late time behavior.
The generalization of this result to &l>1, is straightfor-

ward: For each=1,, the functionFJR [recall thatk(l) is, for

only.t’ . T .
Now, we know independently from Sec. Iil that amy a given modd, the smallesk f0|r+V\2/h|ch Fyis nonvan|sr|1|+nlg

mode decays at null infinity with a tail of the form SErves as a source, VZ%’ to Fy,> and(for s#0) to Fy_

ey~ 2571y~ (=5+2) By comparing they power in Eq.(119 ~ andFy 5. These three functions are then necessarily nonva-

to this form, we find(settingko=2lo+3) that the function pighing. Since we havk(l=1,)=0, we obtain in the case

s#0, k(I)=I—1, for all I=1,. In the scalar field cases(
=0) the interaction couples only between next-to-nearest

'®Recall that in obtaining Eq:115) for thel, mode, the interac-  modes. In this case, the motie |+ 1 (for examplé is not
tion between modes was not taken into accaims will be justi-  excited by interaction, but rather by the boundary condition

fied below. Thus, the analogy with this case is straightforward: oNeat null infinit ieldina k(1 =1.+1)=2 [see Eq(1201. In
only needs to replack with | in Eq. (115). Y.y gk(1=lo+1) [ a.120].

wherefEEf:EyL[(l—u/v)/2]'*3*k*T< is a function ofu/v

7Here we do not sum ovékin an explicit manner, as we did for 9€neral, fors=0 we thus findk=1-1, for evenl —I,, a'?'d
thel, mode. Rather, we use a simpler argument, which is yet somek=|—1¢+1 for oddl —1,. We can express the results in all
what less rigorous. the above cases by writing
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k()=1—1g+q (with coupling, (122 F:(OZO (which is an EH-regular homogeneous solution and
thus admits~r'o~%) induces orF'k°:1 (throughz::f) a non-
where vanishing contribution of orderr'o=S™1,
(ii) The contribution to a functioﬂFL due to interaction
(123 with a source functioﬂF'k/,’&I admits the same largeform as
the source function itself. This is the situation with all inter-

By comparing Eqs(120) and (122 we find that interac- acl:tlon sources of and, also, VY:)th th?O,SSOL.Jrce function
tion excites any of the modds-1, atsmaller kthan do the k-2 FOr exar|n=p|>Ie+,2 the source,’,~r¢"" induces on
boundary conditions at null infinity. In other words, it is the F,2_, (throughZ, _?"“) a nonvanishing contribution of or-
interaction(rather than the boundary conditions at null infin- der~r'o~S, It also, for example, contributes in ordem'oS
ity) which first excites any of these modes, and thus deterto F:(O—Z (throughz:(:_'zo _

mines the form of the leading order tail at late time. This tail  \yith the above two “rules of thumb” one can now in-

shall admit the formt ko~ k=t~!~lo=3-0q, ductively construct expressions for the lamgéerm of each

More precisely, for each givesandm, and for each of of the functionSFL’ starting Withl::(ozowrlo—s. This easily
ictlellrtnodedzlo, we find from Eq.(50), to leading order in yieldsFIKNI.(IO—S)-H(—(I—IO)’ namely,
* il

1 fors=0 with oddl—I,

q= 0 otherwise.

sim s
v (t>|r~k|) Flk(r>r+)~r2loflfs+k (125

Y0, @) Fi_y—y g1t 103D (Kerr casg.
124 o eachl=l, and k=k(I)=1-1,+q.'® This is the same

' asymptotic form as obtained for the functioﬁb in the ab-
> R
Note that for each >, (for the scalar field—for each sence of interaction, fok=2(1—l) — see Eq(118) with

>lp+1) the late time tail decayslower than the corre- ) ) i .
sponding tail of the same mode in the Schwarzschild cas&=2(I—1o). [The important difference is that without an
Eq. (121). These slowly decaying tails are produced by theinteraction the termé—Iy+q=<k<2(l —lo) all vanish iden-
interaction, as discussed above. On the other hand, the moégally.] _
I, (for eachs andm), whose form is not shaped by interac- ~ We conclude the following:
tion, exhibits the same decay rate in both the SBH and the (I) For any model, the “inhomogeneous” part
KBH casest 203 (~r?o~!=stky of F| dominates its “homogeneous part”
There now remains an important question to deal with: In(~r'~) at larger for all k exceptk=2(I—15), where both
what way does the matching of the LTE at null infinity parts contribute to orderr'~*[recall that the homogeneous
change under the effect of interaction between modes? Do@®ntribution vanishes identically fde<2(l —1,)]. Thus, for
the LTE remain consistent with the boundary conditioneach mode, only one arbitrary parametgthe one belonging
there? In particular, we would like to show that the calcula-to the homogeneous solution lket=2(l —1,) ] is involved in
tion made above for thigy mode is still valid even when the the leading order form at large—as we may expectFor
interaction is taken into account. eachl, this parameter is to be determined, in principle, by
To answer these questions we must first examine théwatching at null infinity. Note also that the first non-
larger asymptotic form of the various functiors, this  vanishing function of each(namerFJR), is always propor-
time taking into account also the effect of interactior: be-tional to the parameten:)o, which originates from the mode
tween modes. As we recall froml EFBO),I e?ch functiorF, | =|, at k=0, and “propagates” through interaction to
contains a “homogeneous” pary ¢, + by, , and an “in-  higher modes[This parameter was determined above, Eq.
homogeneous” parf,¢;]"™. The homogeneous part vanishes (117), by matching the modg, at null infinity.]

identically for allk<2(l—1y) [by virtue of Eq.(120)], and (I1) Whether the interactions are taken into account or not,
behaves as'~* at larger for k=2(1—1,). The inhomoge- one obtains the largeform FLar2o~!=s+k [for all k=2(I
neous part vanishes identically for &<l —1o+q [by virtue  —|)], though with different proportion coefficients. That

of Eq. (122)]. Its larger form can be calculated for ea¢h  gifference only affects the amplitude of the functigi .
andl using Egs(53) and(84), given the large- form of all

functionsFL’, which serve as sources K.
Using Egs.(53) and(84), one may formulate two practi- 18y fact, this result, Eq(125), is not completely accurate, as the

cal _calculatlon rul_es: | . functionsFL?I{J turn out to involve logarithmic factors which com-

(i) 1 t_he function _F_k—l admlt_s the large- form ~rP plicate the situation. This logarithmic dependence will be discussed
(wherep is some positive power index, and a" symbol 5t the end of this section; meanwhile we shall ignore it to make the
represents the asymptotic form to leading order)inthen  giscussion more clear, and refer only to the power-law dependence
the contribution toF} due to the term irZ, involving Fj_;  of the functionsF), (which is not affected by the presence of the
would be of order~rP*1. For example, the source function logarithmic factors
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[e.g. in EQ.(119], yet the matching of the modéds>1, at  (including functions which belong to other moglet)sing
null infinity, discussed above, remains qualitatively thethe Wronskian method we can then explore, in an inductive
same. manner, the general solution for each of the functiéhs

(111) As to the effect of the interaction on the mddeBy Each of these solutions contains, in advance, two unknown
Eqg. (125 we have for allk, at the leading order im, F'k° parameters. One of these parameters is determined by regu-
~r'o=sTk This function has, in general, interaction-inducedlarity requirements at the EH. The other parameter is deter-
contributions coming fronf "%, FI*3, andF} "3, which by mined by the form of the field at null infinityserving as a
Eq. (125 and the above ruléi) are of order~rlo=s+k-2, bour}de_lry condition To ot_)tam _the behavior of the f|elds_ at

lo=s+k=3 gnd~rlo~stk=4 respectively. Thus, the large- gull |r|1|f||n|ty, we apply theiterative schemeas described in

ec. lll.

Following is a summary of our main results. These results
are valid in the most realistic initial setup of a compact pulse
composed of all multipole modéand in particular, the low-
est radiatable modk, for each value oim; below we also
briefly discuss the more special case where this mode is
missing.

~r
r leading order behavior of the functionﬁé0 is not affected
by interaction with other modes. This result is valid only for
the Iy mode (and, fors=0, also forly+1) which only in-
teracts with modes of largér It justifies ignoring the inter-
actions when evaluating the behavior of the mbglat null
infinity, as we did above. Particularly, the values derived
above for the parametéy [Eq. (116)] and for the coefficient
a:)" [Eqg. (117)] remain valid also with interaction between
modes taken into account. A. Talil form at fixed r>r.,

Finally, it should be commented on that in the above dis-  Along any world line of fixedr outside the KBH, each

cussion(regarding thd >1, modesg we have ignored a cer- gpecific modd,m decays at late time with the tail
tain complication for the sake of clarity: Actually, the inte-

gration in Eq.(84) produces, for certain values kfandl, a WsIMgs|r, [)oct™(Flot3%0)

logarithmic dependence on This leads to an asymptotic

form of FL which is not strictly a power lawas in Eg.

(125)], but, in fact, having the forrf} ~r2'o='=s*k(Inr)-, It for eachl=l,=max|s|,/m|), (126

can be shown that for eadrandk, the logarithmic powet

may take only integer values between 0 dnd,. Particu-

larly, we find no logarithmic dependence in all functidag a , ) ) -

belonging to the modé,, and thus no modification is re- excehpt fors—%wn_h Oddl_lé’ n th'(rzglcasﬁqf._&j' ws

quired in the above analysis for this mode. Also, we can The most ominant modes of treverall fie are
_ » : : those withl =|s| and—|s|<m=]|s|. From Eq.(106) we find,

show thatl =0 for all modesF; (i.e. for the first nonvanish- . .

_ _ k _ to leading order inr,|/t,

ing functionF, of each mode), and therefore the functions

FL in Eq. (124) exhibit no logarithmic dependence at lamge

Finally, the matching of thd>I, modes at null infinity, sl _

discussed above, was based merely on the power-law depen-V3(t>|r,|)= Z aly lslys!=Islm( g, o)

dence of the functionE'k(r), which is not affected by the m=-|

to leading order irr, |/t [see Eq(124)]. Recall thatq=0,

presence of the logarithmic factors. However, it is not clear % ¢Ir:|5\(r)t—(2\sl+3) (overall behavior.
to us whether the logarithmic factors themselves properly
match at null infinity[recall that in Sec. Ill the logarithmic (127

dependencén u) of the moded >1, at null infinity has not

been fully investigatefi This question remains open. Here, the functionzb'r(r) is the physically regular static so-

lution, whose exact analytic form is given in E¢823a), (70),
VII. SUMMARY AND DISCUSSION and(79a), corresponding, respectively, to the case0 with
m#0, the cases#0 with m=0, and the cass=0. The
In this paper we have explored analytically the late timeconstant coefficierd, (which is alsom dependentis related
decay of the Newman-Penrose scal#fs(representing sca- in Eq. (117) to the amplitude of the leading-order tail at null
lar, electromagnetic, and gravitational perturbatjoinsthe infinity, which, in turn, is expressed as a functional of the
background of a realistic Kerr black hole. Our analyticinitial data function—see Eq45) and the Appendix. Note
method can be summarized as follows: We assume that @tat Eq.(127) constitutes an exact analytic expressjancu-
late time each of the field¥® admits thelate time expan- rate to leading order ifr, |/t) for the late time behavior of
sion Eq. (50). This reduces the master perturbation equatiorthe fieldsWs, valid anywhereat fixedr>r .. .
to a hierarchy of ordinary differential equations for the radial The power-law indices predicted in Eq426) and (127)
functions FL(r). The homogeneous part of each of theseagree with those obtained by H¢a4| at fixedr>M (the
equations is just the static field equation in Kerr spacetimetesult by Hod refers only to this asymptotic domaiihe
to which there exists an analytic basis of exact solutions. Imesult in Eq.(127) has support from numerical simulations
addition, for eacH andk>0, each of these equations pos- (in 2+1 dimensions by Krivan et al— see Ref[18] for s
sesses an inhomogeneous part depending on fundfipng =0 and Ref[19] for s=—2. Also, the validity of our pre-
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diction, Eq.(126), has recently demonstrated numerically by vy (+lota+a) for s>0m=0,

Krivan [27]. PsImoys|Ir. |)oe! _ .
[27] (v=ra) gimivy =(+lo+3+0a) i g|| other cases

(128

(to leading order inr,|/v), with Q, defined in Eq.(56).

It is most natural to express the results at the EH in term&lote that for thes>0 fields the axially symmetricni=0)
of the “physical” fields PS=ASPS which are related Mode decays faster than other modes. Consequently, the late
through an EH-regular transformation to the components ofime behavior of theverall field ¥5>° is dominated by the
the Maxwell and Weyl tensorésee the discussion in Sec. non-spherically symmetrian#0, modes. These modes os-
IV). By virtue of Egs.(104), (105, and(122), we find each cillate along the null generators of the EH withdvanced
specific modd,m to decay along the EH with the tail time) frequenciesn() , . We find, to leading order ifr, |/v,

B. Tail form along the EH

Is]
; ay lslys!=Islm g & )eim@.vy = (@sl+3)  overalls>0 field,
m|=1

R |

(v =1 (129
; allslys!=Isim g & )eimivy~(2s+3) - overalls<0 field,
Im[=0

where the regularized azimuthal coordinate is the one The overall field ¥* is dominated at null infinity by the
defined in Eq(55). Thus, the late time behavior of the field modes withl =|s| and —|s|<m=<|s|:
Ps>0 along the EH ischaracteristically oscillatory On the Is|
oth'er. hand, the be.haV|or of the scalar f|.ekslf(0) Is charac- VS(u>M)= > al SIlslysi=Islmgg, o)
teristically non-oscillatory whereas the field’s<? involves m=—]s|
both oscillatory and non-oscillatory modes. xy~25-1y=(s=s+2)  (gyerall behavio
As recently discussed by OFR9], the characteristics of v ( d
the late time decay along the EH — both the value of the (131

power index and the oscillatory nature of the waves — have ) ) ) I=|s| :

important implications to the structure of the infinite blue- {0 léading order inus/u and inM/u,. Here,l, ™ is a func-
shift singularity at the inner horizon of the KBH. This sin- tional whose construction from the initial data is described
gularity is related with the behavior of the ingoing compo- by Eas.(45) and(36). o

nentW,=Ws=2 of the Weyl perturbation. As it turns out _ 1N power-law indices given in Eq&l30) and(131) are

[29], this singularity is generically oscillatory. in agreement with Hod's resul{23,24], though Hod indi-
cates no logarithmic dependence for any on the modes.

C. Tail form at null infinity D. Non-generic initial data

_ For each specific modem, the analysis in Sec. Ill pre- e now briefly discuss the case where the initial pulse is
dicts at null infinity a late time tail of the form of a non-generic mode composition, such ttfar given s
YSIM(ys M) YSI( 9, o)y 25~ 1y~ (-5+ 2% [1.d ] and m) it does not contain the mode=1,. For example,

(130 what can we say about a case in which, fas=a+2 field,

the angular dependence of the initial pulse is that of a pure

modem=0, |=47
to leading order irug/u and inM/ug. (We assume here that The calculation scheme presented in Sec. VII, based on
the initial pulse is emitted at large distance, so thait, the LTE, allows one to obtain the power-index of the tail at
>M.) In this expression, f1.d.]” represents a possible loga- fixed r regardless of the initial setup, provided only that the
rithmic dependence of the formYmi/(r,—r_)], where the power index at null infinity is known. Suppose that, for a
powerL is some positive integer. Such a logarithmic factorspecific initial setup and for a certam, the most dominant
does not occur for the dominant modg®f eachm, and also  mode,| ,=max(s|,|m|), falls off at null infinity with a tail of
for all modes of a scalar fields& 0). Our analysis indicates the formW¥*™cu~%, Then, from Eq(115 (whose derivation
that logarithmic factors do occur for the less dominant modesloes not involve any reference to the details of the initial
(I>1,) of s#0 field; however, this point was not studied by data we must havev=Kky—1,—s—1, wherek is the power
us in full detail. In any case, for each givenand m, the  index of the tail at fixed. Therefore, forany initial mode
dominant late time decay at null infinity is described by Eg.composition, there exists a simple relation between the
(48), in which no logarithmic factors occur. power-law indices at null infinity and at fixed Symboli-
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cally, we may write(for eachm) cally symmetric backgrounds. Consequently, the “multi-
poles” associated with these functions have no invariant
W cu =Wy ot W0t (132) meaning, but are rather related (@nd defined througtthe
specific choice of the coordinates. Yet, the functions

which is valid for any initial mode composition. Y*'™(6,) with 6, being the Boyer-Lindquist coordinates
The main challenge, then, is to obtainthe power index —are signified as the natural basis for our purpose, because, at

at null infinity. Our iterative scheme, presented in Sec. Il the late time limit, the field equation becomes separable in

provides a formal way for accomp|ishing this task; however'terms of these fUnCti0n$ThiS Separability is manifested in

in the case of a non-generic initial mode composition thisthe k=0 term of the LTE, which exhibits no coupling be-

technique becomes less practical, for the following reasonfween the various moddsm.) Note also that the late time

Consider, for example, an initial pulse of scalar radiation,0ehavior of the overall fiel*® is in all cases governed by a

composed of only the mode=0, | =4. Then, the function Pure mode.

Yn=1 (namely, the first-order iteration term; we use here the

notation of Sec. Il would contain only the three modés ACKNOWLEDGMENTS

=2,4,6. The most dominant mode of the overall field, that is

=0, would be excited only ah=2 (and, as we suspect

will gain its typical power-law form only ah=3). Thus, in

this example, it would require us to go through at least three |

successive iteration stages in order to recover the tail form of APPENDIX: CALCULATION OF = ¢, AT NULL

the dominant mode(Recall that in this paper we only dis- INFINITY

cussed the first it(_aration; the secqnd iteration already be- | this appendix we calculate the “1st-order” iteration

comes very com_phcated for analytic tr_ez?\t_mbzmn general,  erm ' _, at null infinity, at large retarded timghat is, for

as larger is the difference between the_ initial que lpds |, & with fixed u>M). In the cases=0 we shall give full

greater becqmes the number pf iterations requwed to extragfatails of the calculation. For brevity, the case0 (which

the exact tail form of the dominant mode. It is only for the ,.nq ot slightly more complicated to analyze for technical

generic case _dlscussed in this paper that a single iteratiq o sons—see belowvill be discussed in less detail.

suffices for this goal. L . The starting point for the calculation would be E43), in
The case .Of. non-generic initial .da(lspeuﬁcallly, the case which the source l‘unctiorS'n:1 is given by Eq.(31) as a

of any pure initial modpwas studied by Hod in Ref$23] function of various modes of/,—-o. The radial functions

and[24]. However, recent numerical experiments by Krivan SV(r), SR(r), andK(r) involved in the expression f(Blnzl

[26] show disagreement with Hod’s results in this case. Fur- " ‘. licit functi f=(v—u)/2 (b X i
ther work is needed, both analytic and numerical, to clarifyare implicit functions ofr, =(v—u) ecause 1s an im-

I wish to thank Professor Amos Ori for his guidance
' throughout this research and for many helpful discussions.

plicit function of r, ). We can expand each of these radial

this point. . ) ;
'S POl functions in powers of 1/, . By virtue of Eqs.(25) and(28)
we then obtain the leading order forms
E. Final remarks
We recall that in this paper we have considered only non- M—imsa+I(1+1)M|2 In( M ) — 1}
extremal, |a|<M, Kerr BHs. Clearly, the extremal case L

needs to be analyzed separafelpte, for example, that Egs. ov(r)=

(19—-(21) cease to be valid in the case|=M]. A basic
property of the effective potential in both the SBH and the {(m r*)Zl
non-extremal KBH spacetimes — its exponential decay to- +O| —5—
wards the EHwith respect ta, ) — is no longer valid in the
extremal Kerr case: rather thavi(r)«<e®<+'« for |a|<M
near the EH, one findg(r)«=r, % for |a|=M [where in both
cases the tortoise variahlg is defined through the differen-
tial relationdr, /dr=(a%+r?)/A]. Consequently, some ba- S —
sic parts of the analysis presented in this paper may fail to §R(r)= 5 * 0 3
apply in the extremal case. In particular, the crucial assump- 2r; M
tion made in Sec. lll, that the late time tail at null infinity is (Alb)
exclusively dominated by waves scattered at very large dis- . . . .
tances, need not necessarily hold in this case: Here, th‘@'th the as_ymptotlc form oK(r) given in Eq.(2_5c). )
strong contribution to the tail may occur also from back- "€ various terms in the Sour‘ﬁ]fl contribute addi-
scattering asmall distances. To clarify the situation in the tively to ¢,,_, [via Eq.(43)]. The analysis below implies that
extremal case, a separate detailed analysis is thus requiredhe dominant contribution tg},_, at null infinity at largeu
Finally, we should comment on the limited significance of comes only from the leading-order forgim 1/r,) of each of
“multipole modes” in the Kerr spacetime: The spin- these source terms: Roughly speaking, each additiongl 1/
weighted spherical harmonic functio$'™ are not related factor in the source leads to an additional factor of itV the
here to an underlying symmetry group, as they are in spherieontribution to !, _, at null infinity. Hence, to calculate

2r3

*

4

-

and

M

iacy—3M +2M In(r—

(Inr,)?

3
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z//'n:1 to leading order in 1/, one may replace the actual
functions 6V, SR, andK(r), with their above asymptotic
forms.

Let us now consider the contribution #),_, due to a
source term of the form

d
S (u' v Pd)=(2r,) Pla+BIn(2T,)]—— (%)

(A2)

PHYSICAL REVIEW D 61 024026

1
— e o
ajEJ dX(l—X)I+SX| s—j+tP-2
0

C(I'=s+P—2-])I(I+s)!
(1 +P—1-j)!

1 , i
,BJEJ dx(1—x)' X! TSTITP=2In x|
0

(A5)

where a tilde symbol over a quantity shall represent the ratio

of that quantity and (. —r_) [so thatr,=r, /(r,—r_)].
This is the general formito leading order in 1) of all
contributing terms irS,_, , with the integer number8, |/,
and d admitting the possible valueB=2,3,|'=1,1+=1,£2
andd=0,1,2, and wherex and 8 are constant coefficients.
Let us denote the contribution &,_,(u’,v’;l’Pd) to

zpn , at null infinity by ¢” P4 Then, from Egs(43) and
(35) we find

s -
Il"Pd_

I's
n=1

(EOI g

0 , .
< [ auwgy i
Uo

fdvI
S

X[a+BIn(v' =u")].

V _u)l+5(u u )I s
)|+| —j+P

(v'—u
(A3)

Note that fors=0, all derivatives with respect to can be
“taken out” of the v’ integration, due to the factorv(

—u)'*s appearing in the integrand. This manipulation

(which is not possible fos<<0) much simplifies the calcu-

lation in thes=0 case. For brevity, we therefore continue

from this point by concentrating on the casz 0. Our cal-

[The coeff|C|enta] is just the standard beta functioB(l’
—s+P—-1-j,l+s+1).]
Next, in Eq.(A4) we integrate by partg+d successive
times with respect ta’. All resulting surface terms vanish

due to the compactness gE’(u’), and one is left with

wllLPd: 2 Al Sfodu g|’(ul)li;j_+d
n=1 (I=s)! ] o 0 dul—sti+d
X (u=u")'""" P et gIn(u—1")]
~BiBY). (A6)

Here, we have used the fact that tifederivatives operate on
functions of U—u’) only, to make the replacemeat, —
—d,. Evaluated at late retarded times> —u,, the last ex-
pression takes the forifaccurate to leading order un'ug)

'—s

2 A

=0

— |
v_S

(I—s)!
X[a;(a+BIn0)- B8]},

dlfs+j+d

I'Pd_Il’ I=1"—=P+1+]j
Yn=1=lo dul—s+j+d{

(A7)

where I'O' is the functional constructed from the function

gb (u) according to Eq(45).
Finally, performing the multiple differentiation in Eq.

culations fors<0, whose details shall not be presented here(rA7) we find

yield the same qualitative results as those obtained below f

s=0, yet they are slightly more tediougs they involve
more complicated combinatorial expressipndJnfortu-
nately, we could not figure out a way for treating the 0
case in a simple manner as tee0 case, though we think
this should be possible.

After “taking the u derivatives out” of the integration
over v', we can now easily extract the dependence of

"9 by transforming in Eq(A3) to the new integration
variable,x(v')=(u—u’)/(v' —u’). This yields

VoS I"—s 0 d-s
I1"Pd_ I's el NG+ d)
=g 2 A fodu [gh ()09

X ((u=un)'"" P gt BIn(U-U")]
~BiB,

Wheregj andﬁj are constant coefficients given by

(A4)

I’ Pd~|I

hFd=15[\""Pda+BInU)+ 87" P

vasuf(l’ferPfler), (A8)

in which\" P4 and »" P9 are constant coefficients. Here, the
term proportional to."" P9 contains only contributions which
arise from alll —s+j+d derivatives in Eq(A7) acting on
the poweru' ="' *1=P*1 with nonacting on In. The order of
differentiation,| —s+j+d, is in all relevant cases greater
than the power indek—1"+j—P+ 1. Hence, the only con-
tributions to the coefficienh"'P? arise when the powelr
—1"+j—P+1 is negative i.e. from the terms withj<I|’
—I+P—2. Since the index takes no negative values, we
find that there would be no contribution ' P unlessP
=|—1"+2. Namely,

)\P<|*|'+2=O. (Ag)
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For P=I—1"+2, the coefficient" P4 is given by (b) Contribution of the mode’El—1. For this source
mode there are two contributions: one will=1 [the one

(I+s)! i _ proportional toc' — see Eq(17)] and one withd=2 (pro-
P=[—1"+2 : I"s I"—s+j+d . | S
A == ZO A (1) portional toC' ). Both contributions hav®=2 andB=0 at
T the leading order in &/ . Clearly, in view of Eq.(A8), the
(I'=s+P—2—)I(I"=s+P+d—2)! term withd=1 dominates the contribution from this mode.

X - P —, Now, for the leading orderQ[(r.) 2], we haveP<I—I’
(I+17+P=1-PHl"=1+P=2-})! +2=3; thus the corresponding coefficient vanishes. Since
(A10)  for this order we also havg=0, one finds no contribution
_ from this order toy)_,. The dominant contribution would
where j=min(’'—s|’'—I+P-2) (in accordance with the come from the next ordewith P=3), for which both co-
above discussion An expression for the coefficieny! P4 efficients\ and 8- » are nonvanishing. Therefore, this con-
can also be written down explicitly, using E@\7). It can be  tribution will contain a logarithmic dependence:
verified that this coefficient is non-vanishing for all relevant

values ofl,I’,P,d. yh i '=8iasM 1 Np it (1/2+InT)
Equation(A8) suggests that, potentially, one may expect o
logarithmic dependence to occur at the leading order tail at + gtV SuT (7St (A12)

null infinity. In the following we show, however, that due to

vanishing of the coefficient” ' in certain cases, this loga- (€ Contribution of the mode’l=1. There are three terms

rithmic dependence is avoided as far as the most dominafft the sourceS,_, which are not due to interaction with

mode of the overall field is concerned: this dominant modePther modegsee Eq.(31)]. These argi) the term propor-

shall appear to die off with a pure power-law tail. tional to 6V, for which P=3 andd=0; (ii) the term propor-
Note also that Eq(A8) confirms our above assertion, that tional to 6R, for which P=2 andd=1; and(iii) the term

to leading order in 1f, the contribution from each given Proportional toCy, with P=2 andd=2. Clearly, thesV

’ ; |
term inS,_, (with given|’ andd) comes merely from the term and theSR term co_ntrlt_)ute tay,_, at the same _order of
leading order in ¥/. : For higher-order terms in the r1/ 1/u, whereas the contribution from the third term in smaller

: by a factor of 1. We thus concentrate on the first two
expansion of the source there correspond larger valu®s of . AR
leading to a faster decay in E(A\8).° terms, both of which havé=|—-1"+2=2 already at the

Using Eq.(A8) we can now analyze the contribution to leading order in ¥/, . Hence, the dominant contribution to
¢\ _, at null infinity at late retarded time, belonging to each ¥n=1 Would come from this leading order. From E@8),
of the various source modés using Eqs(Ala) and(Alb), we obtain, for the contributions

(a) Contribution of the mode’l=1—2. For this source ©f these two terms,
mode we havel=2, and, at the leading order inrl/, P I . loos —(I—s+2) 1 =I
=2 andB=0 [see Eqs(31) and(250]. Since for this order ¥n-1(due t0dV)=—4Mlqvu {ApZ34=0

P<I—1"+2=4, the correspondiny coefficient vanishes in X[1—imsaM—I(1+1)
Eq. (A8). Thus, we find no contribution at all t',_, from
the orderO[(r}) 2] of this source mode. Turning next to +21(1+1)Inu]+2I(l +1)77'F:::§’d:0 ,

the following order, withP=3, we find again thak van-

ishes(as P<4). However, at this order the logarithmic co- (Al33)
efficient B8 of the source does not vaniglwe have B 1 _ I = —(—s+2)
=8Ma?C' _—see Eqgs(31) and(250)], and from Eq.(A8) n-1(due todR)=—2Ms lov "u
we find the nonvanishingjonlogarithmiccontribution X[A'Fﬁjéyd:l(ic'oa/M ~3+21n0)
Yn i '=8MaCl gl i 2 1y Ay s um (e, 2ol g, A13b
(A11) 77P72,d—1] ( )
AN ) Now, from Eq.(A10) we find
where we adopt the notatiaf}, =;' to represent the late time
contribution to zp'n:1 at null infinity due to the modé’. o s(—1)' " 3(I—s+1)(1 +s)!
Here, the symbol ‘=" stands for “leading order iiv/u and P=3d=0" 210+ 1)(21+1) :
in ug/u.”
. (=D (1 +9)!
Np24-1= T m— (A14)

®Higher-order terms in the ] expansion of the source would
exhibit higher Irr.. powers, leading to higher logarithmic powers in Substituting these values in Eq@13a) and (A13b), and
Eq. (A8); however, theu™ (" ~s*P~1+d) power law would remain  adding up these two equations to construct the overall con-
the same for the higher order terms as well, wittdenoting the  tribution from the modé’ =1, we find that the two logarith-
power of 1f; for each term. mic terms exactly cancel each othén the scalar field case,
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s=0, each of the two logarithmic terms vanishes indepen- 1+2-1 - g\ a2C! 7]|/f|+g |l+2y, =5~ (I-s+6)
dently) The leading order overall contribution from the n=1 ++P=3d=2'0 (A17)
mode |’ =1 will therefore benonlogarithmic exhibiting a
strict power-law tail of the form Equations(All), (A12), (A15), (Al6), and (Al7) de-
scribe the various contributions to the tail ¢f_, at null
=l 1Ly sy (-s+2), (A15)  infinity from all various source modes. These results are

summarized in Eq44) (in Sec. Il D) using a different no-
o , . tation for the amplitude coefficients. We point out that Eq.
(d Contlrlbutlon of the dee El+1. For this .mode, (A8), as well as all power-law formulas derived in this ap-
trllere contnlbute two terms i, , the ones proportional o hangix, is also valid in the cage<0, though with different
¢, and toC’, . These two terms have, respectivaly; 1 and  amplitude coefficients(As we mentioned above, we found
d=2, and both havéat the leading orderinif) P=2 and these coefficients to be more complicated to calculatesfor
B=0. However, both coefficients',;j;gil and )\'p'::ﬂiz <0; still, the same coefficients found to vanish fors=0
turn out to vanish, resulting in the dominant contribution to@S0 @ppear to vanish in the case0, which finally leads to

| . _ - the same power-law contributions.
Un=1 Cf)m'”g from P_,S' .The 7cointr|but|9n from the term The follgwing are the main conclusions that can be drawn
proportional toc', (which iscu™(~5*4)Int) dominates the  fom the analysis in this appendix:
one from the term proportional t6', (cu=(~5*9InT), and (i) In general, the dominant contribution to the late time
one finds, in summary, tail of a model of ¢,,-1 at null infinity is due to the source
modesl, | -2, and(for s#0) |—1. These contributions all
have the forneu' ~S*2 (multiplied by a logarithmic factor in
thel’=1—1 casé. Contributions due to the modés- 1 and

"=1=1 1. —s —(I—st+4 | +2 are negligible.

*poaatalv U g (A16) (i) Consequently, for gives andm, the most dominant
mode of the fields;™; at null infinity is the lowest radiatable

ghiil=8iasMd, 15 N ZL L (1/2+1nT)

(e) Contribution of the mode’k=1+2. This mode hasl

_ : o - B one, namely the multipole=1y=min(g,|m)).
=2 and(at the leading Olfgirzm if) p=2 anl(,jff:zo' (iii) This mode () admits no contributions from lower,

However, the coefficienhp—-;4Z,, as well ashp—34Z,,  I<I,, multipoles, and thus, to leading order irulit is not
turns out to vanish, resulting in the leading order contribu-affected by interactions with other modes. Equatiévi5)
tion from this mode toy},_, coming atP=3 from the term  then implies that this modéand thus also the overall field
in Eqg. (A8) proportional to3- 5. Hence, this contribution ,—-,) admits the strict late time power-law tail

would benonlogarithmic sy~ (1075%2) with no logarithmic dependence.
[1] R.H. Price, Phys. Rev. B, 2419(1972. [16] J.M. Bardeen, Naturé_ondon 226, 64 (1970; K.S. Thorne,
[2] R.H. Price, Phys. Rev. B, 2439(1972. Astrophys. J191, 507 (1974).
[3] E. Leaver, J. Math. Phy7, 1238(1986; Phys. Rev. D34, [17] For a detailed review of the “no hair” theorems by Hawking,
384 (1986. Israel, Carter, and Robinson, see B. Cartel_@&s Astres Oc-
[4] C. Gundlach, R.H. Price, and J. Pullin, Phys. Rev4®) 883 clus edited by C. DeWitt and B.S. DeWittGordon and
(1994). Breach, New York, 1973
[5] R. Gamez, J. Winicour, and B.G. Schmidt, Phys. Rev4®) [18] W. Krivan, P. Laguna, and P. Papadopoulos, Phys. Rea4,D
2828(1994). 4728(1996.
[6] N. Andersson, Phys. Rev. b5, 468(1997). [19] W. Krivan, P. Laguna, P. Papadopoulos, and N. Andersson,
[7] L. Barack, Phys. Rev. 39, 044016(1999. Phys. Rev. D56, 3395(1997.
[8] L. Barack, Phys. Rev. 39, 044017(1999. [20] L. Barack, inInternal Structure of Black Holes and Spacetime
[9] J. Bicak, Gen. Relativ. Gravit3, 331 (1972. Singularities Volume XlII of the Israel Physical Society, ed-
[10] E.S.C. Ching, P.T. Leung, W.M. Suen, and K. Young, Phys. ited by L.M. Burko and A. Ori(Institute of Physics, Bristol,
Rev. Lett.74, 2414(1995. 1997).
[11] L.M. Burko and A. Ori, Phys. Rev. [36, 7820(1997). [21] L. Barack and A. Ori, Phys. Rev. Le®2, 4388(1999.
[12] P.R. Brady, C.M. Chambers, W. Krivan, and P. Laguna, Phys[22] A. Ori, Gen. Relativ. Gravit29, 881 (1997.
Rev. D55, 7538(1997. [23] S. Hod, Phys. Rev. Mto be publishel gr-qc/9902072.
[13] S. Hod, Plup. Rev. B0, 104053(1999. [24] S. Hod, gr-qc/9902073. See also S. Hod, Phys. Ret8D
[14] For a generalization to other types of scalar fields, see S. Hod ~ 104022(1998, which, however, does not correctly handle the
and T. Piran, Phys. Rev. B8, 044018(1998 and references coupling between modes.
therein (for a massive scalar field 58, 024019(1998 and [25] S. Hod, gr-qc/9907096v2.
references thereiffor a charged scalar field [26] W. Krivan, Phys. Rev. 060, 101501(1999.
[15] C. Gundlach, R.H. Price, and J. Pullin, Phys. Revd® 890  [27] W. Krivan (private communication
(1994. [28] L. Barack and A. Ori, Phys. Rev. B0, 124005(1999.

024026-26



LATE TIME DECAY OF SCALAR, ELECTROMAGNETIC. .. PHYSICAL REVIEW D 61 024026

[29] A. Ori, Phys. Rev. D61, 024001(2000. 649 (1973 [Eg. (3.9 therein.

[30] E.T. Newman and R. Penrose, J. Math. PI8/$566 (1962. [36] Handbook of Mathematical Functionsedited by M.

[31] W. Kinnersley, J. Math. Phy<.0, 1195(1969. Abramowitz and I.A. Stegun, U.S. Nat. Bur. Stand. Appl.

[32] S. Chandrasekhailhe Mathematical Theory of Black Holes Math. Ser. No. 53U.S. GPO, Washington, D.C., 196d able
(Oxford University Press, New York, 1983 27.9.2.

[33] S.A. Teukolsky, Phys. Rev. Let9, 1114(1972. [37] For a representation of the general static solution in a different

[34] J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F. Rohrlich, basis, see P.L. Chrzanowski, Phys. RevlD 2042 (1975.

and E.C.G. Sudarshan, J. Math. Ph§s2155(1967). Note, however, that the expression given in E5j31) of that
[35] In W.B. Campbell and T. Morgan, Physi¢Amsterdam 53, paper is not defined when=0 ands>0. Yet another basis of
264 (1971, use has been made of the relation between the solutions is given in Ref29], Egs.(96) and (97).

spin-weighted spherical harmonics and the rotation matricesfgs] A. Erddyi et al, Higher Transcendental Functio®lcGraw-
to express the product of any thrg&'™ functions as a sum of Hill. New York ' 1953, Vol. 1

. slm . _ i
functions Y*'™, using the standard Clebsch-Gordan coeffi [39] C.W. Misner, K.S. Thorne and J.A. WheeleGravitation

cients. The special case relevant to our pajtey. (11)] is .
stated in W.H. Press and S.A. Teukolsky, Astrophysl85, (Freeman, San Francisco, 1973

024026-27



