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Improved upper bound to the entropy of a charged system
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Recently, we derived aimproveduniversal upper bound to the entropy othargedsystemS< 7 (2Eb
—q?)/4. There was, however, some uncertainty in the value of the numerical factor which multiplig$ the
term. In this paper we remove this uncertainty; we rederive this upper bound from an application of the
generalized second law of thermodynamics to a gedanken experiment in which an entropy-bearing charged
system falls into a Schwarzschild black hole. A crucial step in the analysis is the inclusion of the effect of the
spacetime curvature on the electrostatic self-interaction of the charged system.

PACS numbsg(s): 04.70.Dy, 05.70.Ce, 95.30.Tg

According to the thermodynamical analogy in black-hole  Other derivations of the universal upper bound equation
physics, the entropy of a black hoJé—3] is given byS,,  (2) which are based on black-hole physics have been given
=Al4h, where A is the black-hole surface are@Ve use in [5-8|. Few pieces of evidence exist concerning the valid-
gravitational units in whiclG=c=1.) Moreover, a system ity of the bound for self-gravitating syster{,6,9,10. How-
consisting of ordinary matter interacting with a black hole isever, the universal bound equati¢®) is known to be true
widely believed to obey the generalized second law of therindependently of black-hole physics for a variety of systems
modynamicgGSL): “ The sum of the black-hole entropy and jn which gravity is negligiblg11—15.
the common (ordinary) entropy in the black-hole exterior e noted[16,17], however, that there is one disturbing
never decreasesThis general conjecture is one of the cor- featyre of the universal bound equati@: Black holes con-
ner stones of black-hole physics. form to the bound4]; however, it is only the Schwarzschild

It is well known, hqweverz that the validity of the GSL ack hole which actually saturates the bound. This unique-
depends on théplausible existence of a universal upper ness of the Schwarzschild black hdla the sense that it is

bound to the entropy of a bounded systpfit Consider a the only black hole which have the maximum entropy al-

box filled with matter of proper energig and entropyS -
which is dropped into a black hole. The energy delivered tolowed by quantum theory and general relatiyitysomewhat

the black hole can be arbitrarily redshifted by letting thegisturdbing.hRecently, I—;o@lG] dgrived an(imprgved u%p('ahr
assimilation point approach the black-hole horizon. If thePQUNd to the entropy of a spinning system and provedetiat
box is deposited with no radial momentum a proper distanc&'ectrically neutral Kerr black holes have the maximum en-

R above the horizon and then allowed to fall in such that ropy allowed by quantum theory and general relativity. The
unity of physics(and of black holes in particulamotivates

R<#S/27E, (1) us to look for an improved upper bound to the entropy of a
charged system.
then the black-hole area increagm equivalently, the in- Moreover, the plausible existence of an upper bound

crease in black-hole entropis not large enough to compen- stronger than Eg2) on the entropy of a charged system has
sate for the decrease & in common (ordinary entropy. nhothing to do with black-hole physics; a part of the energy of
Arguing from the GSL, Bekenstei#] has proposed the ex- the electromagnetic field residing outside the charged system
istence of a universal upper bound to the entr&gf any  seems to be irrelevant for the system’s statistical properties.

system of total energf and effective proper radiug: This reduces the phase space available to the components of
a charged system. Evidently, an improved upper bound to the
S<27RHE/", (2 entropy of a charged system multcreasewith the (abso-

lute) value of the system’s charge. However, our simple ar-
whereR is defined in terms of the are& of the spherical gument cannot yield the exact dependence of the entropy
surface which circumscribe the systeRe (A/4w)Y? [4].  bound on the system’s parameters: its energy, charge, and
This restriction is necessary for enforcement of the GSL; theproper radius.
box’s entropy disappears but an increase in black-hole en- It is black-hole physic§more precisely, the GSlwhich
tropy occurs which ensures that the GSL is respected proyields a concrete expression for the universal upper bound,;
vided S is bounded as in Eq2). Evidently, this universal recently, we have derived amproved universal upper
upper bound is a qguantum phenométhe upper bound goes bound to the entropy of aharged system S<(2Eb
to infinity as#—0). This provides a striking illustration of —q?)/% [17]. There was, however, some uncertainty in the
the fact that the GSL is intrinsically a quantum law. Thevalue of the numerical factor which multiplies tigg term.
universal upper bound equatiof®) has the status of a In this paper we remove this uncertainty.
supplement to the second law; the latter only states that the We consider a charged body of rest masand chargey,
entropy of a closed system tends to a maximum withouwhich is dropped into a Schwarzschild black hole. The equa-
saying how large that should be. tion of motion of a charged body on a Schwarzschild back-
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ground is a quadratic equation for the conserved ené&rgy
(energy-at-infinity of the body[18]
r*E?— A(u?r?+pj)—(Ap,)°=0, 3

whereA=r2—2Mr. The quantitieg,, and p, are the con-
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validity of the GSL, one can derive an upper bound to the
entropyS of an arbitrary system of proper energy charge
g, and circumscribing radiuR (by definition,R=Db):

S<w(2ER—q?)/#. 9

served angular momentum of the body and its covariant ra-

dial momentum, respectively.

The conserved enerdy of a body having a radial turning
point atr=r,+¢& [19] (for é<r, wherer ,=2M is the
location of the black-hole horizgns given by Eq.(3)

E=u?+pg/ri(ér )" 1+0(&r )] @

This expression is actually the effective potentigiavita-
tional plus centrifugal for given values ofu andp,. It is
clear that it can be minimized by takinm,=0 (which also
minimizes the increase in the black-hole surface Jarea
However, the well-known analysis p18] is not complete
because it does not take into account the effect of the spac
time curvature on the particle’s electrostatic self-interaction
The black-hole gravitational field modifies the electrostati

particle experiences a repulsiies., directed away from the
black holg self-force. A variety of techniques have been
used to demonstrate this effd@0—24. The physical origin
of this force is the distortion of the charge’s long-range Cou

lomb field by the spacetime curvature. The contribution of

this effect to the particle’s energy M q?/2r? [24].

In order to find the change in black-hole surface are
caused by an assimilation of the body, one should evakiat
at the point of capture, a proper distarizteutside the hori-

e

It is evident from the minimal black-hole area increase Eq.
(8) that in order for the GSL to be satisfidAS)
=(AS)y,— S=0], the entropyS of the charged system must
be bounded as in Eq9). This upper bound is universal in
the sense that it depends only on the system’s paramgters
is independent of the black-hole mass which was used to
derive if).

This improved bound is very appealing from a black-hole
physics point of view[17]: consider a charged Reissner-
Nordstran black hole of charg€. Let its energy bes; then
its surface area is given by\=47rr2+=477(2Er+—Q2).
Rlow sinceS,,=A/4%, Syp=m(2Er, —Q?)/%, which is the
maximal entropy allowed by the upper bound equaii®n

. . T “Thus,all Reissner-Nordstra black holes saturate the bound.
self-interaction of a charged particle in such a way that theT

his proves that the Schwarzschild black holed unique
from a black-hole entropy point of view, removing the dis-
turbing feature of the entropy bound E@). This is pre-
cisely the kind of universal upper bound we were hoping for.
Evidently, systems with negligible self-gravitythe
charged system in our gedanken experimemtd systems
with maximal gravitational effect§.e., charged black holgs

%oth satisfy the upper bound equati@). Therefore, this

bound appears to be of universal validity. One piece of evi-
dence exists concerning the validity of the bound for the

zon. The relevant dimension of the body in our gedankery,e qific example of a system composed of a charged black
experiment is its shortest length. In other words, the entropy,sie in thermal equilibrium with radiatiofs].

bound is set by the smallest body’s dimensipnovidedb
>Hh/E [12]). This conclusion is supported by numerical
computations[11] for neutral systems. Thus, we should
evaluateE atr=r , + 8(b), where§(b) is determined by

frwﬁ(b)(l—2M/r)*1’2dr=b. (5)
Integrating Eq.(5) one obtaindfor b<<r )
8(b)=h?/8M, (6)
which implies(to leading order irb/M)
E=(2ub+q?)/8M. (7)

The intriguing feature of our derivation is that it uses a
law whose very meaning stems from gravitatitimee GSL, or
equivalently the area-entropy relation for black holesde-
rive a universal bound which has nothing to do with gravi-
tation (written out fully, the entropy bound would involve
andc, but notG). This provides a striking illustration of the
unity of physics.

In summary, an application of the generalized second law
of thermodynamics to a gedanken experiment in which an
entropy-bearing charged system falls into a Schwarzschild
black hole, enables us to derive iamproved universal upper
boundto the entropy of a&hargedsystem[17]. In doing so,
we removed the former uncertainty regarding the precise
value of the numerical coefficient which multiplies t@
term. A crucial step in the analysis is the inclusion of the

An assimilation of the charged body results in a changenfluence of the spacetime curvature on the system’s electro-

AM=E in the black-hole mass and a chan§®=q in its

charge. The relatioA= 47 M + (M?—Q?)Y?)2 implies that
(for Q=0) AA=87[4MAM—(AQ)?] (terms of order
(AM)? are negligible forb<M and|qg|<M). Thus, taking
cognizance of Eq(7) we find

(AA)in=4m(2b—0?), 8

which is theminimal black-hole area increase for given val-
ues of the body's parameteys, q, and b. Assuming the

static self-interaction.

Note added! have learned that recently Bekenstein and
Mayo [25] analyzed the same problem, and independently
obtained the universal upper boutwhich was already de-
rived in [17]).

I thank Jacob D. Bekenstein and Avraham E. Mayo for
helpful discussions. This research was supported by a grant
from the Israel Science Foundation.
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