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Improved upper bound to the entropy of a charged system
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~Received 2 March 1999; published 27 December 1999!

Recently, we derived animproveduniversal upper bound to the entropy of achargedsystemS<p(2Eb
2q2)/\. There was, however, some uncertainty in the value of the numerical factor which multiplies theq2

term. In this paper we remove this uncertainty; we rederive this upper bound from an application of the
generalized second law of thermodynamics to a gedanken experiment in which an entropy-bearing charged
system falls into a Schwarzschild black hole. A crucial step in the analysis is the inclusion of the effect of the
spacetime curvature on the electrostatic self-interaction of the charged system.

PACS number~s!: 04.70.Dy, 05.70.Ce, 95.30.Tg
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According to the thermodynamical analogy in black-ho
physics, the entropy of a black hole@1–3# is given bySbh
5A/4\, where A is the black-hole surface area.~We use
gravitational units in whichG5c51.! Moreover, a system
consisting of ordinary matter interacting with a black hole
widely believed to obey the generalized second law of th
modynamics~GSL!: ‘‘ The sum of the black-hole entropy an
the common (ordinary) entropy in the black-hole exter
never decreases.’’ This general conjecture is one of the co
ner stones of black-hole physics.

It is well known, however, that the validity of the GS
depends on the~plausible! existence of a universal uppe
bound to the entropy of a bounded system@4#: Consider a
box filled with matter of proper energyE and entropyS
which is dropped into a black hole. The energy delivered
the black hole can be arbitrarily redshifted by letting t
assimilation point approach the black-hole horizon. If t
box is deposited with no radial momentum a proper dista
R above the horizon and then allowed to fall in such that

R,\S/2pE, ~1!

then the black-hole area increase~or equivalently, the in-
crease in black-hole entropy! is not large enough to compen
sate for the decrease ofS in common ~ordinary! entropy.
Arguing from the GSL, Bekenstein@4# has proposed the ex
istence of a universal upper bound to the entropyS of any
system of total energyE and effective proper radiusR:

S<2pRE/\, ~2!

whereR is defined in terms of the areaA of the spherical
surface which circumscribe the systemR5(A/4p)1/2 @4#.
This restriction is necessary for enforcement of the GSL;
box’s entropy disappears but an increase in black-hole
tropy occurs which ensures that the GSL is respected
vided S is bounded as in Eq.~2!. Evidently, this universal
upper bound is a quantum phenomena~the upper bound goe
to infinity as\→0). This provides a striking illustration o
the fact that the GSL is intrinsically a quantum law. T
universal upper bound equation~2! has the status of a
supplement to the second law; the latter only states that
entropy of a closed system tends to a maximum with
saying how large that should be.
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Other derivations of the universal upper bound equat
~2! which are based on black-hole physics have been gi
in @5–8#. Few pieces of evidence exist concerning the val
ity of the bound for self-gravitating systems@5,6,9,10#. How-
ever, the universal bound equation~2! is known to be true
independently of black-hole physics for a variety of syste
in which gravity is negligible@11–15#.

We noted@16,17#, however, that there is one disturbin
feature of the universal bound equation~2!: Black holes con-
form to the bound@4#; however, it is only the Schwarzschil
black hole which actually saturates the bound. This uniq
ness of the Schwarzschild black hole~in the sense that it is
the only black hole which have the maximum entropy
lowed by quantum theory and general relativity! is somewhat
disturbing. Recently, Hod@16# derived an~improved! upper
bound to the entropy of a spinning system and proved thaall
electrically neutral Kerr black holes have the maximum e
tropy allowed by quantum theory and general relativity. T
unity of physics~and of black holes in particular! motivates
us to look for an improved upper bound to the entropy o
charged system.

Moreover, the plausible existence of an upper bou
stronger than Eq.~2! on the entropy of a charged system h
nothing to do with black-hole physics; a part of the energy
the electromagnetic field residing outside the charged sys
seems to be irrelevant for the system’s statistical propert
This reduces the phase space available to the componen
a charged system. Evidently, an improved upper bound to
entropy of a charged system mustdecreasewith the ~abso-
lute! value of the system’s charge. However, our simple
gument cannot yield the exact dependence of the entr
bound on the system’s parameters: its energy, charge,
proper radius.

It is black-hole physics~more precisely, the GSL! which
yields a concrete expression for the universal upper bou
recently, we have derived animproved universal upper
bound to the entropy of acharged system S<p(2Eb
2q2)/\ @17#. There was, however, some uncertainty in t
value of the numerical factor which multiplies theq2 term.
In this paper we remove this uncertainty.

We consider a charged body of rest massm and chargeq,
which is dropped into a Schwarzschild black hole. The eq
tion of motion of a charged body on a Schwarzschild ba
©1999 The American Physical Society23-1
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ground is a quadratic equation for the conserved energE
~energy-at-infinity! of the body@18#

r 4E22D~m2r 21pf
2 !2~Dpr !

250, ~3!

whereD5r 222Mr . The quantitiespf and pr are the con-
served angular momentum of the body and its covariant
dial momentum, respectively.

The conserved energyE of a body having a radial turning
point at r 5r 11j @19# ~for j!r 1 where r 152M is the
location of the black-hole horizon! is given by Eq.~3!

E5Am21pf
2 /r 1

2 ~j/r 1!1/2@11O~j/r 1!#. ~4!

This expression is actually the effective potential~gravita-
tional plus centrifugal! for given values ofm and pf . It is
clear that it can be minimized by takingpf50 ~which also
minimizes the increase in the black-hole surface area!.

However, the well-known analysis of@18# is not complete
because it does not take into account the effect of the sp
time curvature on the particle’s electrostatic self-interacti
The black-hole gravitational field modifies the electrosta
self-interaction of a charged particle in such a way that
particle experiences a repulsive~i.e., directed away from the
black hole! self-force. A variety of techniques have bee
used to demonstrate this effect@20–24#. The physical origin
of this force is the distortion of the charge’s long-range Co
lomb field by the spacetime curvature. The contribution
this effect to the particle’s energy isMq2/2r 2 @24#.

In order to find the change in black-hole surface a
caused by an assimilation of the body, one should evaluaE
at the point of capture, a proper distanceb outside the hori-
zon. The relevant dimension of the body in our gedank
experiment is its shortest length. In other words, the entr
bound is set by the smallest body’s dimension~providedb
@\/E @12#!. This conclusion is supported by numeric
computations@11# for neutral systems. Thus, we shou
evaluateE at r 5r 11d(b), whered(b) is determined by

E
r 1

r 11d(b)

~122M /r !21/2dr5b. ~5!

Integrating Eq.~5! one obtains~for b!r 1)

d~b!5b2/8M , ~6!

which implies~to leading order inb/M )

E5~2mb1q2!/8M . ~7!

An assimilation of the charged body results in a chan
DM5E in the black-hole mass and a changeDQ5q in its
charge. The relationA54p@M1(M22Q2)1/2#2 implies that
~for Q50) DA58p@4MDM2(DQ)2# ~terms of order
(DM )2 are negligible forb!M and uqu!M ). Thus, taking
cognizance of Eq.~7! we find

~DA!min54p~2mb2q2!, ~8!

which is theminimal black-hole area increase for given va
ues of the body’s parametersm, q, and b. Assuming the
02402
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validity of the GSL, one can derive an upper bound to t
entropyS of an arbitrary system of proper energyE, charge
q, and circumscribing radiusR ~by definition,R>b):

S<p~2ER2q2!/\. ~9!

It is evident from the minimal black-hole area increase E
~8! that in order for the GSL to be satisfied@(DS) tot
[(DS)bh2S>0#, the entropyS of the charged system mus
be bounded as in Eq.~9!. This upper bound is universal in
the sense that it depends only on the system’s paramete~it
is independent of the black-hole mass which was used
derive it!.

This improved bound is very appealing from a black-ho
physics point of view@17#: consider a charged Reissne
Nordström black hole of chargeQ. Let its energy beE; then
its surface area is given byA54pr 1

2 54p(2Er12Q2).
Now sinceSbh5A/4\, Sbh5p(2Er12Q2)/\, which is the
maximal entropy allowed by the upper bound equation~9!.
Thus,all Reissner-Nordstro¨m black holes saturate the boun
This proves that the Schwarzschild black hole isnot unique
from a black-hole entropy point of view, removing the di
turbing feature of the entropy bound Eq.~2!. This is pre-
cisely the kind of universal upper bound we were hoping f

Evidently, systems with negligible self-gravity~the
charged system in our gedanken experiment! and systems
with maximal gravitational effects~i.e., charged black holes!
both satisfy the upper bound equation~9!. Therefore, this
bound appears to be of universal validity. One piece of e
dence exists concerning the validity of the bound for t
specific example of a system composed of a charged b
hole in thermal equilibrium with radiation@6#.

The intriguing feature of our derivation is that it uses
law whose very meaning stems from gravitation~the GSL, or
equivalently the area-entropy relation for black holes! to de-
rive a universal bound which has nothing to do with gra
tation ~written out fully, the entropy bound would involve\
andc, but notG). This provides a striking illustration of the
unity of physics.

In summary, an application of the generalized second
of thermodynamics to a gedanken experiment in which
entropy-bearing charged system falls into a Schwarzsc
black hole, enables us to derive animproved universal upper
boundto the entropy of achargedsystem@17#. In doing so,
we removed the former uncertainty regarding the prec
value of the numerical coefficient which multiplies theq2

term. A crucial step in the analysis is the inclusion of t
influence of the spacetime curvature on the system’s elec
static self-interaction.

Note added.I have learned that recently Bekenstein a
Mayo @25# analyzed the same problem, and independen
obtained the universal upper bound~which was already de-
rived in @17#!.

I thank Jacob D. Bekenstein and Avraham E. Mayo
helpful discussions. This research was supported by a g
from the Israel Science Foundation.
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