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Black hole polarization and new entropy bounds
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Zaslavskii has suggested how to tighten Bekenstein’s bound on entropy when the object is electrically
charged. Recently Hod has provided a second tighter version of the bound applicable when the object is
rotating. Here we derive Zaslavskii's optimized bound by considering the accretion of an ordinary charged
object by a black hole. The force originating from the polarization of the black hole by a nearby charge is
central to the derivation of the bound from the generalized second law. We also conjecture an entropy bound
for charged rotating objects, a synthesis of Zaslavskii's and Hod’s. On the basis of the no hair principle for
black holes, we show that this last bound cannot be tightened further in a generic way by knowledge of
“global” conserved charges, e.g., baryon number, which may be borne by the object.

PACS numbgs): 04.70.Dy, 04.70.Bw, 95.30.Sf, 97.60.Lf

[. INTRODUCTION Zaslavskii[11] proves the bound for a system consisting of a
static black hole in equilibrium with thermal radiation in a
A universal bound on the entropy of a macroscopic objecbox. When the black hole has chamgeaslavskii[12] infers
of maximal radiusR bearing energy¥ has been proposed by the tighter bound
one of us[1]:
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(units withG=c=1 are usef This bound was first inferred

by considering the infall of the relevant object into a blackalthough he admits to some uncertainty regarding the nu-
hole, and arranging for the infall conditions to cause a mini-merical coefficients. Zaslavskii does not claim this form of
mum of horizon area growth. Appealing to the generalizedhe bound for systemsot containing a black hole.

second law(GSL) [2] then gave boundl.1l) as a condition In its original form(1.1), the entropy bound is saturated
for the overall entropy not to decrease. This derivation wady the Schwarzschild black holdwhose entropy is
criticized [3] for leaving out the effects of buoyancy in the 47(2M)?/4f=2m7M(2M)/#]. This prompted the observa-
acceleratior(Unrubh) radiation. In some scenarios this makestion [1] that the Schwarzschild black hole is the most en-
a difference in the energy that is added to the black hole byropic object for given size and energy. But the Kerr black
the infall, and thus to its horizon area increase. However, ihole’s entropy falls below boun€l.1) (this will be true for
has become cledd,5] that if the Unruh acceleration buoy- any reasonable interpretation of the radRsof the non-
ancy comes from a small number of particle spedgsit  spherical Kerr holg

must in our universg then for objects which are not too thin This asymmetric state of affairs motivated HpLB] to

in one of their dimensions, and whose parts are described bgearch for a tighter bound on entropy for objects with angu-
quantum mechanics, the buoyancy correction is indeed nedar momentum which is saturated by the Kerr hole. Hod re-
ligible, and one can derive bour(d.1) by appealing to the peats Bekenstein's derivatidi4,15 of the minimal incre-
GSL. ment in Kerr-Newman(KN) horizon area that is caused by

Independent support exists for bou(idl). It is satisfied an object’s infall. That derivation applied the idea of
trivially for composites of nonrelativistic particles by virtue Christodoulou[16] together with Carter'§17,1§ integrals
of the fact that entropy of a system is never far from theof the Lorentz equations of motion to a particle of rest mass
number of particles involved. And for free massless quantum, and radiusR moving in a KN background. The minimal
fields enclosed in volumes of various shapes, the bound’growth in horizon area was found from the conservation laws
validity has been checked directly. Both numerical verifica-and the relation they establish between the change in black
tion [6] and analytical proof7] exist (see the review by hole parameters and the energy and orbital angular momen-
Schiffer and Bekensteif8]). The entropy bound can also be tum of a particle in an orbit such that the particle’s center of
inferred directly from the properties of the acceleration ra-mass(CM) can get to distanc® from the horizon:
diation[9].

Regarding self-gravitating systems, Sorkin, Wald, and Jiu
[10] gave evidence that bourd.]) is valid for thermal ra-
diation on the verge of gravitational collapse, while

It is remarkable that this minimal area growth is independent

of the black hole parameters. Becaysecan be identified
*Electronic mail: bekenste@vms.huiji.ac.il with the total proper energy of the object, boufidl) fol-
TElectronic mail: Mayo@venus.fiz.huiji.ac.il lows from Eq.(1.3) and the GSL.

(AA) pin=87uR. (1.3
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The spin of the particle was not taken into account inthe tighter entropy boun®< (27R/%)(E—3€?/R) for the
Carter’s integrals. Hod refers instead to Hojman and Hojcharged object. This coincides with Zaslavskii's proposal,
man’s[19] integrals of mation for a neutral object with spin Eqg. (1.2), and suggests its general validity.

s moving on a KN background. Repeating the argument that s Zaslavskii's proposed bound saturated by the Reissner-

led to Eq.(1.3), Hod obtains Nordstron (RN) black hole? Let the black hole’s mass tne

o and its chargey. If bound (1.2) applies to black holes, it

(AA) pin=8muR(1-s?u 2R™%)2 (L4 predicts that
Appeal to the GSL then allows Hod to infer 2
Spn= 27Tm(m~|— Jym?—g?)| 1 a
2 1/2 BH™ "~ 2 - -
- 27ER LS L9 h 2m(m+Vm?—q?)
7 E’R? ' (2.2

As Hod remarks, a Kerr black hole of maBs-m and spin  [we setE=m and R=r,=m+ Jm?—qg?]. Multiplying out
s=j=m exactly saturates bound.5 provided one identi- the factors we see that the right-hand side is precié&,
fies R with (r2 +j%/m?)2 wherer , =m+(m?—j?/m??  whereA is the horizon area of the RN black hole,
is the radial Boyer-Lindquist coordinate for the Kerr horizon.
The identification is reasonable because(#> +j%/m?) is A=4qri =4m(m+m?—g?)?, 2.9
exactly the area of the Kerr horizon.
In Sec. Il we take up the question of how to derive boundThUS the RN black hole saturates Zaslavskii's bound; this is
(12) for an ordinary Charged Objecnot a System inc|uding a further pOint in favor of the bound’s Valldlty and eﬁiCiency.
a black hole as in Zas|avs|{ij_2]) by ana'ogy with the origi_ In Sec. V we shall arrive at a hybl’ld bound which embodies
nal derivation of bound1.1) using the GSL. In Sec. Ill we fully the requirement th_at the black hole be the most entropic
calculate the change in horizon area that results from lowerstate for a given quantity of energy, charge, and angular mo-
ing a charged object into an electrically isolated black holementum. _ o
and thus furnish a derivation from the GSL of Zaslavskii's Nobody has thus far given a derivation of bouiid?) for
bound(1.2). Section IV contains a variant using an electri- charged objects patterned after those originally used to de-
cally grounded black hole; it leads to the same result. In Sedive bounds(1.1) and (1.5 from the GSL. Both those deri-
V we conjecture an entropy bound for rotating charged obYations focused on accretion of the relevant object by a black
jects, assemble supporting evidence, and also give a partidple, and on the concomitant change in horizon area. Exten-
proof that it cannot generically be made tighter by takingsion of this type of argument to the charged objechds
other conserved quantities, e.g., baryon number, into actraightforward. Suppose we work with a Schwarzschild
count. black hole and a charged particle devoid of spin. Naively the
particle’s track is a geodesic, and so the minimal change in
Il. THE ROLE OF BLACK HOLE POLARIZATION area will still be given by Eq(1.3). In fact, if the black hole
is a KN one, the same result is obtained by using Carter’'s
Granted the validity of the original entropy bouid.1) integrals of motion for orbits of the Lorentz equation of mo-
for a macroscopic object, is Hod’'s bound reasonable from gon [15]. Thus no improved entropy bound results for a non-
mundane point of view? For smallnonrelativistic rotation  rotating charged object. This is disturbing from the point of
we may expand the right-hand sidB@HS) of Eq. (1.5 to  view of the derivation of entropy bounds by use of the GSL:

obtain if this approach is tenable, it should be possible to derive the
)R 5 physically reasonable bound.2) from the GSL once one
T s
S< E_ J|+0(sY, 2.1) accepts boundl.l). ' _
h 2uR As we make clear in Sec. I, the mentioned problem may

be traced to the neglect of a certain force that acts on the
where we have replacel— u (rest masgin the denomina-  object. A charged particle in a black hole’s vicinity is acted
tor. Now an object with moment of inertiahas internal  upon by not only the Lorentz force from the black hole’s
energye=E—s?/2l. For a thin spherical shell reaches its electromagnetic field, but also by thébraham-Lorentz-
maximum,3 «R?, so that the internal energy for givéhand  Dirac) radiation reaction force, as well as by the force origi-
R is also maximized:e=E—3s%/(4uR?). The phase nating from the black hole’s polarization by the particle’s
space available to the object’s degrees of freedom is corelectric field. Now it is known that a particle at rest in a static
trolled by e. Hence, if bound1.1) is valid ats=0, we would  black hole background does not radigtkespite its being
infer S<(2wR/A)[E—3s%(4uR?)] when s#0. Hod's accelerated Hence we expect the radiation reaction force to
bound is a bit more liberal; as a result, it manages to encomyanish. This suggests focusing on the accretion by a static
pass the Kerr black hole. black hole of an object which is lowered slowly from a large
Now for a nonrotating object of mags, radiusR, and  distance to the horizon. We can then suppose that only the
chargee, the Coulomb energy attains its minimuef/2R, gravitational, Coulomb, and polarizatidimage forces act
when the charge is uniformly spread on a thin shell of radiusipon it. By this approach we succeed below in deriving
R. Thus the internal energy of the object has the maximunbound (1.2) by use of the GSL. Nowif as is sometimes
€max=E— 2€?/R. If bound (1.1) is valid ate=0, we expect claimed, the GSL functions independently of entropy
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bounds, there should not have been reason for an idiosyrply namedd{?’, which is produced by the black hole, and a
cratic _effgct(black holg polarizatipn he}eo supply precisely  second oneA® , linear in e, whose source is the object
the missing element in the derivation of the entropy boundise, Because the last is a self-field, it has no caret symbol.
for charged objects from the GSL. This, to our mind, is theag ejucidated by Vilenkir[20] and corroborated by Smith
main significance of the mentioned success: a new demony,q || [21], by contrast to the situation in flat spacetime, in
stration that the GSL provides a valid road to entropyine presence of a Schwarzschild black hole this self-potential
bounds. makes a nontrivial contribution to the object’s energy mea-
sured at infinity. Those calculations are quite involved; here
. LOWERING A CHARGED BODY we recover that effect in a much simpler way. We may still
IN'A BLACK HOLE'S FIELD write the energy as measured at infinity as in 842); how-

We use the signaturg—,+,+,+} and denote the time- €Ver, we must there replaée by A+ ;ALY . The factor;
like coordinate outside the black hole, assumed to be #& familiar from flat-spacetime electrodynamics; it takes care
spherical static one, by?. First consider a test particle of Of the fact that the object owes part of its energy to its own

gravitation and electromagnetic influences, would be goviminding us of this elementary facSmith and Will bring out
erned by the Lagrangian the factorz with an explicit calculation.

Correct toO(e), which we regard as the same @$q),
— . the metric may be taken as Schwarzschild's. In isotropic co-
L= —,u,f V —gaﬁx“xﬁerr ef A x«dr (3.1 ordinates it is

wherex“(7) denotes the particle’s trajectory, the proper

- 1-m/2p)|? 0)2 m* 2. 200402
time, an overdot stands fat/dr, andA, means the back- ~ ds’=— T+ mizp (dx°)“+| 1+ % [dp®+p=(de
ground electromagnetic four-potential evaluated at the parti-
cle’s spacetime position. Recalling thgf,gx*xf=—1, it +sirfod¢?)]. (3.3

follows from the Lagrangian that the canonical momenta are

p.,= 5L/5>'<“=,ugaﬁ>'<f"+ eAa. The stationarity of the envis- We see that the horizon residespat m/2. Because the ob-
aged background means there is a timelike Killing vectorect is nearly stationary, its four velocity, which we normal-

£“={1,0,0,9. The quantity ize to — 1, must have the form®~{(—goy) ¥20,0,3. Sub-
. - stitution in Eq. (3.2 from the metric gives for the energy,
E=—Po£=—ugopx’—ehA (32 when the object's CM is gp=a and 6=0,

is easily shown to be conserv¢ii8]; it corresponds to the

; e ; m m
usual notion of energy as measured at infinity. Its first term €=,u( 1— 1+
expands tqu+ 1 u(dx/dt)? in the Newtonian limit. The sec- 2a 2a

ond term,—eA,, is thus the electric potential energy. 3.4

In our gedanken experiment the object of rest massd
chargee, idealized as spherically symmetric, is suspended by Equation(A4) of the Appendix givesAq(p,6), the full
some means to keep it from falling freely, and is slowly electromagnetic four potential due to a station@y nearly
lowered radially towards the black hole. Of course, theso point chargee in the background of a spherical black
forces keeping it quasistatic change its energy measured hole with small charge. This expression, accurate @{e?),
infinity. The idea is to bring the object as close to the horizonis a trivial extension of an early brilliant solution by Copson
as possible, and then drop it in, inferring from the energy{22], as modified by Linef23]. Its structure shows that one
measured at infinity at its last prefall position the increase ircan think of the potential as getting a contribution from im-
horizon area that this causes. A complication—the Unruhage charges on the black hokg(p, #) naturally diverges at
Wald buoyancy in acceleration radiatipBl—may cause the p=a and#=0, the charge’s position. Thus if we want to use
object to float neutrally some distance from the horizon, thust for our finite object, we must regularize the potential be-
arresting the contemplated descent. But as mentioned in Sefore going to the limitp—a and 6—0 as required by for-
[, provided the number of relevant particle species in naturenula (3.4).
is not large(which seems to be true in our univeysand The simplest procedure is as follows. We re-expresm
provided the object is composed of parts that obey quanturterms of new coordinatego, J, ¢} centered on the charge,
mechanics, the buoyancy is negligible all the way to veryrather than on the black hole center, as was the case for
near the horizon, and makes no practical difference to thép, 9, ¢}, but sharing the same polar axis. This implies the
energetics of the procesi the object is dropped from a bit substitutions
off the horizon[4]).

For generality we allow the black hole to carry a chagge

-1
— (A +3A8) -0 p-0-

; . + I, 3.
we require that] and the charge of the object be very small pcosf—ar+cos @9
on the scale ofn, the mass of the hole. There are now two
parts to the electromagnetic potential: one lineag,irsuit- p—/a’+ p%+2ap cosd. (3.6
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A small metric sphere of proper radikdocated app=a and  proper distance from the object’'s CM to the horizon reaches
6=0 is the coordinate sphe@=(1+m/2a) °R;V 9. Thus the object’s proper radiuR. Hence,
it makes sense to exparyg, in a Laurent series ip:

2
~ (1-m2a) e 4Amae+m?q+4aq(a+m) P 2uR+e +4eq.

(1-m2a) e (3.11)
a
(1+m/2a)d @ (2a+m)* 8m

+C(a,m,e,q)cosd+0O(e), 3.7 As mentioned, our primary concern is with changes in the
horizon area. Although we have used Schwarzschild’s metric
in the above discussion, the true metric is closer to that of a
RN solution; it is thus best to use as a first approximation the
area appropriate to the RN black hole, namely @3). This
formula must be corrected for the perturbation of the metric
originating in the object, which in linear approximation
should be 0of0(u) andO(e?), the first caused by the energy
momentum tensor of the object’'s mass, and the second by
the overall electromagnetic energy momentum tefiserall

whereC is a complicated function independent @f

Now the divergent term in E(3.7) corresponds to the
Coulomb potential of the chargein flat spacetime; there we
expectA,= —ep ! (sign because we deal with the covariant
component A factor (1—m/2a)(1+m/2a) ! is required to
redshift the fourth component of a four vector to the point in
question[see Eq.(3.3)]. Finally, a factor (¥ m/2a) 2 is
required to convert the coordinate distagcén the denomi-

nator to proper distance. Thus when taking the liphba ot we takeO(e)=0(q)]. We now argue that the correc-

and 6—0 (¢—0) of Ay, we must discard the first term in jong 1o the area formula actually appear only in the next
the RHS of Eq(3.7) (put another way, the energy that COMEShigher orders.

from it is absorbed into the renormalized rest masg21]). For suppose the are were indeed perturbed in linear

_ Our spher_ically symmgtric finitg o_bjept §amples all direc'approximation t00(x) and O(e?). By spherical symmetry
tions about its center without discrimination. Because the the hackground these corrections would not depend on the
metric also looks isotropic in coordinatgg, 9, ¢}, we must  girection along which the object was lowered. rifequal
thus average out the third term in the RHS of E%j7) over  pies were lowered, each along a different radial direction,
all angles 9 and ¢; as a result its contribution vanishes. e perturbation would ba times larger by linearity of the
Terms ofO(g) vanish as t_he size of the object shrm!(s. Thusapproximation. But if enough bodies were disposed on a
the secondconstantterm in the RHS of Eq(3.7) furnishes  gpherical shell concentric with the black hole, the perturba-
the entire electrostatic contribution @ We separate that jon of the metric at the horizon should tend to zero by

into the partsA{® (black hole’s andA{? (image charge$’  Birkhoff's theorem[18] that the metric exterior to a spherical

defined earlier. Substituting these in Eg.4) we find charged black hole is exactly RN if the surroundings are
. 5 spherically symmetric too. We thus get a contradiction un-
S=,u( LT +4an2mae+ q(2a+m) less we admit that the perturbations ©f ) and O(e?)
2a 2a = (2a+m)* vanish in linear theory. Any corrections # must be of
o higher order, likeO(u?), etc., Hence by Eq2.3)
m A=8m(2m?—q?) +O(q*/m?) + O(2) + O( ue?/m),
The caseq=0 of this result is equivalent to results given (3.19
earlier (in Schwarzschild coordinate®y Vilenkin [20] for
a>m and by Smith and Wil[21] for all a. where we have included all possible second order terms of
When the object is near the horizon, the proper distancéhe correct dimensionsOQ(e*/m?) is subsummed in the
from its CM to the horizon is 0(g*m?) which is the remainder of the expansion Afin
powers ofq. Below we denote the above sort of corrections
by the ellipsis.

a
— U2 e A — _ 2
= fm/z(g””) “dp~4(a—m/2)+O[(a~m/2)°]. The descent of the object, if sufficiently slow, is known to

(3.9  be an adiabatic process which causes no change in the hori-

2ul+e? 4

8m

eq
+ﬁ+0

zon ared 24,25. It follows that to the stated accuraay,is
Expressinga in Eq. (3.9) in terms ofl by means of Eq(3.9) unchanged in the course of the lowering process itself be-
we get causeq and A are unchanged. When the object is finally
absorbed by the black holen increases by while q is
O(I— _) (3.10 augmented bye; after the suspension machinery has been
m m3/” : withdrawn (if adiabatically done, this will cause no further
area increasg24,25), we get an unperturbed RN black hole
Since we are obviously considering a black hole large andvith massm+ £ and chargeg+e.
massive compared to the object’s proper radius and mass, the Calculating its horizon area from E¢3.12 and subtract-
corrections ofO(l/m) are appropriately neglected, as areing the area of what was at first an unperturbed RN black
those ofO(e*/m®) by virtue of the assumed smallnesseof  hole of massn and charge (because was still distank, we
The gradual approach to the horizon must stop when thénd the change
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AA=8m(4mE—2qe—e)+0(EH+---. (3.13 horizon area 16m?. As the object approaches, charge flows
into the hole through the wire, argivaries according to Eq.
Finally substitution of Eq(3.11) gives (4.1). Because the descent is slow, the change in the hole is

adiabatic; thus it should not cause growth of the horizon’s
area[24,25. We shall assume the current flows reversibly
(in the sense of Christodoulou’s transformatidri$]), so
that it does not cause a change of area either. According to
Notice that the black hole parametensandq have dropped Eq. (3.12, m will have to grow to compensate for the in-
out from the dominant terms, in analogy with results forcrease ing. In the limit a—m/2, g— —e so thatm—m’
uncharged[14] or spinning [13] objects. The minimum = /mZ+e?2~m+e%4m. When the object is assimilated,
change in black hole entroppA/47 corresponding to the jts chargee exactly neutralizes the hole’s charge, while its
equality in Eq.(3.14), is thus a property of the object itself. energy augments the hole’s mass to m”=m-+e?/4m-+¢.

The entropy of the object cannot exceed this amount, lest thepe new horizon area is thus 6m-+ e2/4m+ &)2. Substi-

overall entropy of the world decrease upon the object's asyting & from Eq. (4.3), and substracting ¥m? we obtain
similation. We thus find the bound on the entropy of anye gverall change in area

object of chargee, proper energyE=u, and radiusR to
coincide with Zaslavskii's proposal, E¢l.2).

AA= (87 uR—4me?)| 1+0 %z b (314

1+0 —4me+ . ... (4.4

nR
IV. VARIANT EMPLOYING A GROUNDED BLACK HOLE

This is the same as E@3.14), so that from its minimum

In Sec. 1l the black hole is electrically isolated so its value we reproduce the bound on entropy of a charged ob-
chargeq is fixed. One can consider a variant gedanken eX]ect Eq.(1.2

periment involving a black hole which is electrically

grounded. An approximation of this could be achieved by - :
having a conducting “wire” connect the horizon to matter at expressions for the energy of the object, E10 and Eq.

Y ; .
large distances. One wonders whether a different, perha (a-2? The difference is compensated by a complementary

tighter, bound on entropy would be obtained from a repetifﬁfference in the behavior of the electric potential of the ho-

. ) rizon. In the first case aa—m/2, Ag— —(e+q)/2m. In
tion of the above gedanken experiment. Here we show th e second casa®(m/2,6) =0 identically. Thus in the first
the same bound arises despite the differences in the energ 0 ’ y:

ics cE’;ise the infall of the charge contributes a change in horizon
Equation (A5) in the Appendix gives the potentia

| area through the change in black hole charge, while in the
A®(p,6) engendered by a chargelocated atp=a and ¢ second it does not.

=0 in the vicinity of a grounded spherical static black hole.

This potential vanishes both at infinity and at the horizon

(p=m/2), and may be obtained by setting For an object with spis, chargee, maximal radiusR, and
mass-energ\E=u we may, by comparing Eqg1.2) and

How do we get the same area increase out of two different

V. THE OPTIMAL BOUND

— -2
q=—8amg2a+m) 4.0 (1.5, conjecture the tighter entropy bound
in the expression foAy(p, 6), Eqg. (A4). Although now the ———
hole’s chargdaside from the image chargis controlled by S<2x E'R"—s"—e /2. (5.)
the external charge’s position, the contributiorgdd energy h

is still lumped with the black hol¢see below. Thereforeq .
is still regarded as generating an external potentiabfa/e ~ As a check we look at the case of slow rotation:
may thus take over E@3.8) for the object’s energy, but with

2 2
g replaced according to E¢4.1). S< ZWR{ S & +0(s?) (5.2
Expression3.10 for £ is thereby replaced by h 2uR? 2R ' '
[ 2ul —3e? | et Comparing with remarks made in Sec. Il we see that here the
- am 1+0 m +0 m3/ 42 maximum possible Coulomb energy afdf the maximum

possible rotational energy are deducted from the total energy,

Neglecting the corrections we obtain in place of E811)  with the remainder taken as the in the original entropy
the very different result bound(1.1). Obviously, for a nonrelativistically rotating or-
dinary object, bound5.2) is correct, and on the liberal side.

This correspondence argument does not prove the correct-
ness of bound5.1); that bound is not the unique progenitor
of the nonrelativistic forn{5.2). In addition, one could argue

Unlike the case discussed in Sec. lll, hetdés not the that there seems to be something missing from (Bd). A
exclusive contribution to the change in When the object spinning charged object has a magnetic dipole moment pro-
with chargeeis very distant from it, the black hole is exactly portional ofO(e< 1) which generates a magnetic field, and
Schwarzschildbecause=0 by Eq.(4.1)] with massmand  thus contributes to the electromagnetic energy. We see no

2uR—3¢€?
= — .

£ 8m

4.3

024022-5



JACOB D. BEKENSTEIN AND AVRAHAM E. MAYO PHYSICAL REVIEW D 61 024022

such contribution reflected in bourifl.2). However, it must  with definite and known baryon number. We now marshal
be recalled that magnetic dipole energy is of higher order irevidence in support of the conjecture that bodsd), with
¢~ ! than Coulomb energy. If we care about this higher orderthe extension to magnetic monopole, cannot be bettered ge-
we should continue the Taylor expansion of the root in Eqnerically. By “generically” we mean without knowledge of
(5.1) to O(s*) which is of the same order. However, we have details about the object's structure and dynamics. When
just mentioned that bountb.2) understates the amount of these are known it is possible to compute by means of sta-
rotational energy in the system by a substantial factor alreadystical mechanics bounds on the entropy which can be small
at O(s?). It is thus poin_tless to go to higher_ order in_ rota- compared to boundL.1), for example[6]. But if we use no
tional or electromagnetic energy. Boui8l.2) is not strict,  g;ch information, we must go back to the black hole deriva-
but liberal, and so is boun.1). Thus at present we find N0 {j5 of the entropy bounds, and it is for this situation that we
reason to cast_t_joubt on the general bf)(&d)' conjecture that boun¢b.1) cannot be bettered.

A more positive point for bounés.1) is the fact that any The “no hair” conjecture is central to our argument. A
KN black hole(massm, chargeq, and angular momentuy) large amount of work has certified that a stationary black

saturates it. The horizon area of such a black ho{d& hole can have just a few parameters. The incontestable ones
A=4m(r2+j2m?); r,=m+(m?—|%m?—q?)Y2 are mass, charge, magnetic monopole, and angular momen-
(5.3  tum. Skyrmion number is an extra possibilt#6], but one
whose physical significance is unclegk5]. Other candi-
Substitutingr ;. , squaring as required, and canceling termsdates, such as cold27], scalar chargg28], and massive
gives Yang-Mills charge[29], are associated with unstable black
holes[30]. The sort of arguments we have given in Secs. IlI
and IV make sense only if the black hole is stable to outside
perturbations. Hence we focus on the KN black holes with

In light of Eq. (5.3 it is reasonable interpretr{  Parametersn, g, g, andj. . _
+j2/m?) Y2 as the radiu of the hole. Incorporating this in Suppo_;e we add to such a black hqle an object carrying an
the last equation and dividing byi4gives for the black hole €Xtra additive conserved quantity If bis a “global” quan-
entropy tity, such as baryon or lepton numbers are thought to be, it
generates no field of its own. The energy-momentum tensor
originating in the object is thus unaffected byput another
way, effects ofb can be absorbed in the masklence, even
if perturbations of the metric are taken into accolindannot
If we identify m—E, q<e, andj«<s, this is exactly the directly perturb the horizon area formula.3), and som is
upper bound of Eq(5.1). Hence the KN black hole saturates unaffected by slow(adiabati¢ lowering of the object. Fur-
the proposed entropy bound. This property would be lost ither, absence ob from the list of black hole parameters
modifications were made to the bound. Hence we adopt it imeans the black hole has no chemical potential conjugate to
the form given. Study of the role of spin-curvature effects inb. Thus when the object finally enters the hole, it cannot
the discussion in Sec. lll is in progress in order to provide achange the horizon area except through the change,in
more direct argument for the full bour(8.1). which is&. But € getsno contribution specific td since the
Parenthetically we should mention another way to look atatter does not generate a field that could polarize the hole,
the saturation. Suppose we had some means to slowly lowetf. Eq. (3.2). Therefore, the change in horizon areabis
a small KN black hole with masga, chargee, and angular independent. But then the bound that can be set on the en-
momentums into a much larger KN black hole with corre- tropy by the argument of Sec. Ill is also independenbof
sponding parameters, g, andj. Then the black holes would the new quantity does not allow tightening of the entropy
merge reversibly, i.e., with no overall growth in horizon bound.
area. This is obvious becaugebound(5.1) can be derived Much the same conclusion can be reachdalgénerates a
by the arguments expounded in Secs. Il and IV, then theshort range field, schematically denotedyor exampleb
overall growth in area of the big black hole must corresponctould be weak hypercharge, a source of the short range,
precisely to the equality case in bouffll) (for parameters Z-boson mediated, weak force. Although there is now a con-
©, € ands) multiplied by 44. But this just says that the big tribution to the energy-momentum tensor frdit is local-
horizon expands by precisely the area of the small horizonized around the object, and thus can be lumped into its usual
so that the merged horizon has area equal to the sum of thenergy-momentum tensor. No novel perturbation to the met-
two original ones. ric arises from this. Hencdy cannot directly perturb the ho-
Bound (5.1) is readily generalized to include magnetic rizon area formula(5.3), and som is unaffected by slow
monopole chargg. Duality of electromagnetism leaves little lowering of the object. Furthermore, no novel potential term
doubt that one should just replaeé—e®+g?. The deeper is contributed ta€ by B unless the particle is already next to
question arises, can one give generic bounds on entropyie horizon; otherwise the short range fi@dloes not reach
which are tighter than Ed5.1) by virtue of the object pos- down to the horizon and cannot polarize it. Hence, in this
sessing some conserved “quantum number” apart fepigy case also, the change in horizon area turns out tb inele-
or s? A case in point would be a tighter bound for an objectpendent, andb cannot appear in a generic entropy bound.

A=2m(4mr, —q?) =2a[4m(r? + ]2 m>—j?/m?)Y2—q?].
(5.4)

2 )
SBHZT[(mZRZ_JZ)UZ_ q°/2]. (5.9
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The third and last case is whénis the source of a long- The source term takes on the indicated form because the
range field, again denote8l The range may be finite if large relevant three-dimensional Dirac delta function has the form
compared to typical object size. Now the area formula ma;(—g)*l/zé(p—a) 8(0) ().
differ from Eq.(5.3) by terms depending ombecause of the A convenient solution of this equation was found by Cop-
perturbation thaf3’s energy momentum tensor exerts on theson[22] long ago:
metric. Unless5 is a gauge field whicliunlike theZ and W
boson fie_lds of Weinberg-SgIa_m theprgmains massless in y+m2l4ay
the classicalor low energy limit, we cannot rule out such A (p,0)=—e (A2)
dependence, as we did in Sec. Ill. This is because Birkhoff- (1+m/2p)?p(1+m/2a)?
type theorems exist only for massless vector fields, and from
our point of view the electromagnetic field is the only onewhere
such, and has already been accounted for in Secs. Il and IV.

Thu;, while the area gtays constant during the descent as p?+ (m2l4a)2—2(m?/4a) p cose] Y2
required by the adiabatic theorem,may change by a quan- x(p,0)= > . (A3)
tity of O(b?) as the object descends. The sign of this quan- p~+a’—2apcost

tity is unclear without a specific model.

In addition, £ is most likely to have a term ab(b?) for In Agc) there appears in the denominators not only the Eu-
the same reasons as in E8.10 (by “no hair” there is now  clidean distance g%+ a?—2ap cos6)? between the field
no analog ofy). It may even be that this term is also positive point {p, 8} and the charge’s position, but also the distance
here, yet it does not follow that the effect bfis to suppress of the former from the poinfm?/4a,0}, which is the appro-
the growth of area, as it did in Sec. Ill, because of the corpriate location for the image charge in the solution of
rection of indefinite sign to the area formula. Thus withoutLaplace’s equation for a charge near a conducting sphere of
calculating linear corrections to the metric, one cannot settléadiusm/2 by the method of images. This is consistent with
the question of whether the change in area is incremented éhe expectation that the black hole is polarized by influence
depressed bi’'s presence. However, we have as yet uncov-of the chargee.
ered no clear evidence that an improved bouf®1) will As noted by Line{ 23], the coefficient of the }/term in
result for a long-range field which is not a massless vectothe asymptotic form of this potential indicates that a total of
field. The conjecture that boun@®.1) is the tightesgeneric  charge e—e(m/a)(1+m/2a) 2 resides in the spacetime.
bound on entropy thus seems reasonable. The chargee being the only source outside the black hole,

Note addedOne of us(J.D.B) has recently reconfirmed one must perforce admit that the black hole bears charge
[31] that buoyancy does not spoil derivations of entropy= —e(m/a)(1+m/2a) 2. Of course such charge must
bounds under the conditions stated in Secs. | and Il. Thenodify the metric, as does the exterior chayeBut such
second authofA.E.M.) has recently validatefB2] some of  perturbations will be of ordeg® and may be ignored in com-
the conjectures made here in Sec. V. puting A{”) correct toO(e?). Linet proposes that a more
relevant solution to the problem is to be had by adding to
A a monopole field with charge . We shall push this a
little farther and add td\gc) the monopole potential appro-

We thank Shahar Hod for discussions, and Bernard Linepriate to chargej—e. Since the spherically symmetric, ev-
for pointing out a crucial omission. This research is sup-erywhere regular, solution of EgA1) is p~1(1+m/2p) 2,
ported by a grant from the Israel Science Foundation, estalwe must write
lished by the Israel Academy of Sciences and Humanities.

ACKNOWLEDGMENTS

© q+4emd(2a+m)?
AO(pve):AO (pag)_ 2 . (A4)
APPENDIX: COPSON-LINET SOLUTION FOR CHARGE p(1+m/2p)
IN BLACK HOLE BACKGROUND

The charge in the spacetime is ngw- e, with g in the black
hole, as it should. So long apis of ordere and this last is
small on the scale ah, we do not have to correct the metric
or Eq. (A1) to getA, correct toO(e?).

Potential (A4) has the constant value g/2m—4ae(2a
+m) 2 on the horizon p=m/2). One can ask the question,
what would be the potential if the chargewere to coexist
with a black hole which is grounded. In practice this could
be achieved by having a conductor connect the horizon to

Here we determiné\, resulting from a charge in the
Schwarzschild backgroun(.3). Using the conventions of
Misner, Thorne, and Wheel¢i8] we write the electromag-
netic field asF ,z;=Az ,—A, 3. We express the Maxwell
equationsF“ﬁ;ﬁ:4wj “ for the axisymmetric stationary field
of a test point charge situated afp, 6}={a,0} as

p? Ao, n Ao matter at large distances. The desired solution of(Bd) is
(1—m/2p)(1+m/2p)? (1—m/2p)(1+m/2p)? now one satisfyingAqg(m/2,0) =Ay(,0)=0. It is easily

P checked that the desired potential can be obtained &giin
=4med(p—a)d(0)s(p). (A1) Eq. (A4) by settingg— —8ame(2a+m) ~2. We denote it by

024022-7
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A9 (“g” for “grounded” ):
emad(2a+m)?

AP (p,0)=A(p,0) +4 iz
p p

(A5)

PHYSICAL REVIEW D61 024022

Of course, in the present case the charge on the black hole
varies witha; this is because as the chargdraws near the
black hole, opposite charges are drawn into the hole through
the conductor.
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