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Black hole polarization and new entropy bounds
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Zaslavskii has suggested how to tighten Bekenstein’s bound on entropy when the object is electrically
charged. Recently Hod has provided a second tighter version of the bound applicable when the object is
rotating. Here we derive Zaslavskii’s optimized bound by considering the accretion of an ordinary charged
object by a black hole. The force originating from the polarization of the black hole by a nearby charge is
central to the derivation of the bound from the generalized second law. We also conjecture an entropy bound
for charged rotating objects, a synthesis of Zaslavskii’s and Hod’s. On the basis of the no hair principle for
black holes, we show that this last bound cannot be tightened further in a generic way by knowledge of
‘‘global’’ conserved charges, e.g., baryon number, which may be borne by the object.

PACS number~s!: 04.70.Dy, 04.70.Bw, 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

A universal bound on the entropy of a macroscopic obj
of maximal radiusR bearing energyE has been proposed b
one of us@1#:

S<2pER/\ ~1.1!

~units withG5c51 are used!. This bound was first inferred
by considering the infall of the relevant object into a bla
hole, and arranging for the infall conditions to cause a m
mum of horizon area growth. Appealing to the generaliz
second law~GSL! @2# then gave bound~1.1! as a condition
for the overall entropy not to decrease. This derivation w
criticized @3# for leaving out the effects of buoyancy in th
acceleration~Unruh! radiation. In some scenarios this mak
a difference in the energy that is added to the black hole
the infall, and thus to its horizon area increase. Howeve
has become clear@4,5# that if the Unruh acceleration buoy
ancy comes from a small number of particle species~as it
must in our universe!, then for objects which are not too thi
in one of their dimensions, and whose parts are describe
quantum mechanics, the buoyancy correction is indeed n
ligible, and one can derive bound~1.1! by appealing to the
GSL.

Independent support exists for bound~1.1!. It is satisfied
trivially for composites of nonrelativistic particles by virtu
of the fact that entropy of a system is never far from t
number of particles involved. And for free massless quant
fields enclosed in volumes of various shapes, the boun
validity has been checked directly. Both numerical verific
tion @6# and analytical proof@7# exist ~see the review by
Schiffer and Bekenstein@8#!. The entropy bound can also b
inferred directly from the properties of the acceleration
diation @9#.

Regarding self-gravitating systems, Sorkin, Wald, and
@10# gave evidence that bound~1.1! is valid for thermal ra-
diation on the verge of gravitational collapse, wh
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Zaslavskii@11# proves the bound for a system consisting o
static black hole in equilibrium with thermal radiation in
box. When the black hole has chargee, Zaslavskii@12# infers
the tighter bound

S<
2pER

\ S 12
e2

2ERD , ~1.2!

although he admits to some uncertainty regarding the
merical coefficients. Zaslavskii does not claim this form
the bound for systemsnot containing a black hole.

In its original form ~1.1!, the entropy bound is saturate
by the Schwarzschild black hole@whose entropy is
4p(2M )2/4\52pM (2M )/\#. This prompted the observa
tion @1# that the Schwarzschild black hole is the most e
tropic object for given size and energy. But the Kerr bla
hole’s entropy falls below bound~1.1! ~this will be true for
any reasonable interpretation of the radiusR of the non-
spherical Kerr hole!.

This asymmetric state of affairs motivated Hod@13# to
search for a tighter bound on entropy for objects with an
lar momentum which is saturated by the Kerr hole. Hod
peats Bekenstein’s derivation@14,15# of the minimal incre-
ment in Kerr-Newman~KN! horizon area that is caused b
an object’s infall. That derivation applied the idea
Christodoulou@16# together with Carter’s@17,18# integrals
of the Lorentz equations of motion to a particle of rest ma
m and radiusR moving in a KN background. The minima
growth in horizon area was found from the conservation la
and the relation they establish between the change in b
hole parameters and the energy and orbital angular mom
tum of a particle in an orbit such that the particle’s center
mass~CM! can get to distanceR from the horizon:

~DA!min58pmR. ~1.3!

It is remarkable that this minimal area growth is independ
of the black hole parameters. Becausem can be identified
with the total proper energy of the object, bound~1.1! fol-
lows from Eq.~1.3! and the GSL.
©1999 The American Physical Society22-1
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JACOB D. BEKENSTEIN AND AVRAHAM E. MAYO PHYSICAL REVIEW D 61 024022
The spin of the particle was not taken into account
Carter’s integrals. Hod refers instead to Hojman and H
man’s@19# integrals of motion for a neutral object with sp
s moving on a KN background. Repeating the argument t
led to Eq.~1.3!, Hod obtains

~DA!min58pmR~12s2m22R22!1/2. ~1.4!

Appeal to the GSL then allows Hod to infer

S<
2pER

\ S 12
s2

E2R2D 1/2

. ~1.5!

As Hod remarks, a Kerr black hole of massE5m and spin
s5 j <m exactly saturates bound~1.5! provided one identi-
fies R with (r 1

2 1 j 2/m2)1/2, wherer 15m1(m22 j 2/m2)1/2

is the radial Boyer-Lindquist coordinate for the Kerr horizo
The identification is reasonable because 4p(r 1

2 1 j 2/m2) is
exactly the area of the Kerr horizon.

In Sec. II we take up the question of how to derive bou
~1.2! for an ordinary charged object~not a system including
a black hole as in Zaslavskii@12#! by analogy with the origi-
nal derivation of bound~1.1! using the GSL. In Sec. III we
calculate the change in horizon area that results from low
ing a charged object into an electrically isolated black ho
and thus furnish a derivation from the GSL of Zaslavski
bound~1.2!. Section IV contains a variant using an elect
cally grounded black hole; it leads to the same result. In S
V we conjecture an entropy bound for rotating charged
jects, assemble supporting evidence, and also give a pa
proof that it cannot generically be made tighter by taki
other conserved quantities, e.g., baryon number, into
count.

II. THE ROLE OF BLACK HOLE POLARIZATION

Granted the validity of the original entropy bound~1.1!
for a macroscopic object, is Hod’s bound reasonable from
mundane point of view? For smalls ~nonrelativistic rotation!
we may expand the right-hand side~RHS! of Eq. ~1.5! to
obtain

S<
2pR

\ FE2
s2

2mR2G1O~s4!, ~2.1!

where we have replacedE→m ~rest mass! in the denomina-
tor. Now an object with moment of inertiaI has internal
energye5E2s2/2I . For a thin spherical shellI reaches its
maximum,2

3 mR2, so that the internal energy for givenE and
R is also maximized:emax5E23s2/(4mR2). The phase
space available to the object’s degrees of freedom is c
trolled bye. Hence, if bound~1.1! is valid ats50, we would
infer S<(2pR/\)@E23s2/(4mR2)# when sÞ0. Hod’s
bound is a bit more liberal; as a result, it manages to enc
pass the Kerr black hole.

Now for a nonrotating object of massm, radiusR, and
chargee, the Coulomb energy attains its minimum,e2/2R,
when the charge is uniformly spread on a thin shell of rad
R. Thus the internal energy of the object has the maxim
emax5E2 1

2 e2/R. If bound ~1.1! is valid ate50, we expect
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the tighter entropy boundS<(2pR/\)(E2 1
2 e2/R) for the

charged object. This coincides with Zaslavskii’s propos
Eq. ~1.2!, and suggests its general validity.

Is Zaslavskii’s proposed bound saturated by the Reiss
Nordström ~RN! black hole? Let the black hole’s mass bem
and its chargeq. If bound ~1.2! applies to black holes, it
predicts that

SBH<
2pm

\
~m1Am22q2!S 12

q2

2m~m1Am22q2!
D
~2.2!

@we setE5m and R5r 1[m1Am22q2#. Multiplying out
the factors we see that the right-hand side is preciselyA/4\,
whereA is the horizon area of the RN black hole,

A54pr 1
2 54p~m1Am22q2!2. ~2.3!

Thus the RN black hole saturates Zaslavskii’s bound; thi
a further point in favor of the bound’s validity and efficienc
In Sec. V we shall arrive at a hybrid bound which embod
fully the requirement that the black hole be the most entro
state for a given quantity of energy, charge, and angular
mentum.

Nobody has thus far given a derivation of bound~1.2! for
charged objects patterned after those originally used to
rive bounds~1.1! and ~1.5! from the GSL. Both those deri
vations focused on accretion of the relevant object by a bl
hole, and on the concomitant change in horizon area. Ex
sion of this type of argument to the charged object isnot
straightforward. Suppose we work with a Schwarzsch
black hole and a charged particle devoid of spin. Naively
particle’s track is a geodesic, and so the minimal change
area will still be given by Eq.~1.3!. In fact, if the black hole
is a KN one, the same result is obtained by using Carte
integrals of motion for orbits of the Lorentz equation of m
tion @15#. Thus no improved entropy bound results for a no
rotating charged object. This is disturbing from the point
view of the derivation of entropy bounds by use of the GS
if this approach is tenable, it should be possible to derive
physically reasonable bound~1.2! from the GSL once one
accepts bound~1.1!.

As we make clear in Sec. III, the mentioned problem m
be traced to the neglect of a certain force that acts on
object. A charged particle in a black hole’s vicinity is acte
upon by not only the Lorentz force from the black hole
electromagnetic field, but also by the~Abraham-Lorentz-
Dirac! radiation reaction force, as well as by the force orig
nating from the black hole’s polarization by the particle
electric field. Now it is known that a particle at rest in a sta
black hole background does not radiate~despite its being
accelerated!. Hence we expect the radiation reaction force
vanish. This suggests focusing on the accretion by a st
black hole of an object which is lowered slowly from a larg
distance to the horizon. We can then suppose that only
gravitational, Coulomb, and polarization~image! forces act
upon it. By this approach we succeed below in derivi
bound ~1.2! by use of the GSL. Now,if as is sometimes
claimed, the GSL functions independently of entro
2-2
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BLACK HOLE POLARIZATION AND NEW ENTROPY BOUNDS PHYSICAL REVIEW D61 024022
bounds, there should not have been reason for an idio
cratic effect~black hole polarization here! to supply precisely
the missing element in the derivation of the entropy bou
for charged objects from the GSL. This, to our mind, is t
main significance of the mentioned success: a new dem
stration that the GSL provides a valid road to entro
bounds.

III. LOWERING A CHARGED BODY
IN A BLACK HOLE’S FIELD

We use the signature$2,1,1,1% and denote the time
like coordinate outside the black hole, assumed to b
spherical static one, byx0. First consider a test particle o
massm and chargee. Its motion, were it subject only to
gravitation and electromagnetic influences, would be g
erned by the Lagrangian

L52mE A2gabẋaẋbdt1eE Âaẋadt ~3.1!

where xa(t) denotes the particle’s trajectory,t the proper
time, an overdot stands ford/dt, and Âa means the back
ground electromagnetic four-potential evaluated at the pa
cle’s spacetime position. Recalling thatgabẋaẋb521, it
follows from the Lagrangian that the canonical momenta
pa5dL/d ẋa5mgabẋb1eÂa . The stationarity of the envis
aged background means there is a timelike Killing vec
ja5$1,0,0,0%. The quantity

E[2paja52mg0bẋb2eÂ0 ~3.2!

is easily shown to be conserved@18#; it corresponds to the
usual notion of energy as measured at infinity. Its first te
expands tom1 1

2 m(dx/dt)2 in the Newtonian limit. The sec
ond term,2eÂ0, is thus the electric potential energy.

In our gedanken experiment the object of rest massm and
chargee, idealized as spherically symmetric, is suspended
some means to keep it from falling freely, and is slow
lowered radially towards the black hole. Of course, t
forces keeping it quasistatic change its energy measure
infinity. The idea is to bring the object as close to the horiz
as possible, and then drop it in, inferring from the ene
measured at infinity at its last prefall position the increase
horizon area that this causes. A complication—the Unr
Wald buoyancy in acceleration radiation@3#—may cause the
object to float neutrally some distance from the horizon, th
arresting the contemplated descent. But as mentioned in
I, provided the number of relevant particle species in nat
is not large~which seems to be true in our universe!, and
provided the object is composed of parts that obey quan
mechanics, the buoyancy is negligible all the way to ve
near the horizon, and makes no practical difference to
energetics of the process~if the object is dropped from a bi
off the horizon@4#!.

For generality we allow the black hole to carry a chargeq;
we require thatq and the chargee of the object be very smal
on the scale ofm, the mass of the hole. There are now tw
parts to the electromagnetic potential: one linear inq, suit-
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ably namedÂ0
(q) , which is produced by the black hole, and

second one,A0
(e) , linear in e, whose source is the objec

itself. Because the last is a self-field, it has no caret sym
As elucidated by Vilenkin@20# and corroborated by Smith
and Will @21#, by contrast to the situation in flat spacetime,
the presence of a Schwarzschild black hole this self-poten
makes a nontrivial contribution to the object’s energy me
sured at infinity. Those calculations are quite involved; h
we recover that effect in a much simpler way. We may s
write the energy as measured at infinity as in Eq.~3.2!; how-
ever, we must there replaceÂ0 by Â0

(q)1 1
2 A0

(e) . The factor1
2

is familiar from flat-spacetime electrodynamics; it takes c
of the fact that the object owes part of its energy to its o
field, not to the background one~we thank B. Linet for re-
minding us of this elementary fact!. Smith and Will bring out
the factor1

2 with an explicit calculation.
Correct toO(e), which we regard as the same asO(q),

the metric may be taken as Schwarzschild’s. In isotropic
ordinates it is

ds252S 12m/2r

11m/2r D 2

~dx0!21S 11
m

2r D 4

@dr21r2~du2

1sin2udf2!#. ~3.3!

We see that the horizon resides atr5m/2. Because the ob
ject is nearly stationary, its four velocity, which we norma
ize to21, must have the formẋa'$(2g00)

21/2,0,0,0%. Sub-
stitution in Eq. ~3.2! from the metric gives for the energy
when the object’s CM is atr5a andu50,

E5mS 12
m

2aD S 11
m

2aD 21

2e~Â0
(q)1 1

2 A0
(e)!r5a,u50 .

~3.4!

Equation ~A4! of the Appendix givesA0(r,u), the full
electromagnetic four potential due to a stationary~or nearly
so! point chargee in the background of a spherical blac
hole with small chargeq. This expression, accurate toO(e2),
is a trivial extension of an early brilliant solution by Copso
@22#, as modified by Linet@23#. Its structure shows that on
can think of the potential as getting a contribution from im
age charges on the black hole.A0(r,u) naturally diverges at
r5a andu50, the charge’s position. Thus if we want to u
it for our finite object, we must regularize the potential b
fore going to the limitr→a and u→0 as required by for-
mula ~3.4!.

The simplest procedure is as follows. We re-expressA0 in
terms of new coordinates$%,q,f% centered on the charge
rather than on the black hole center, as was the case
$r,u,f%, but sharing the same polar axis. This implies t
substitutions

r cosu→a1% cosq, ~3.5!

r→Aa21%212a% cosq. ~3.6!
2-3
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A small metric sphere of proper radiusR located atr5a and
u50 is the coordinate sphere%5(11m/2a)22R;;q. Thus
it makes sense to expandA0 in a Laurent series in%:

A052
~12m/2a!

~11m/2a!3

e

%
24a

4mae1m2q14aq~a1m!

~2a1m!4

1C~a,m,e,q!cosq1O~% !, ~3.7!

whereC is a complicated function independent of%.
Now the divergent term in Eq.~3.7! corresponds to the

Coulomb potential of the chargee in flat spacetime; there we
expectA052e%21 ~sign because we deal with the covaria
component!. A factor (12m/2a)(11m/2a)21 is required to
redshift the fourth component of a four vector to the point
question@see Eq.~3.3!#. Finally, a factor (11m/2a)22 is
required to convert the coordinate distance% in the denomi-
nator to proper distance. Thus when taking the limitr→a
andu→0 (%→0) of A0, we must discard the first term i
the RHS of Eq.~3.7! ~put another way, the energy that com
from it is absorbed into the renormalized rest massm @21#!.

Our spherically symmetric finite object samples all dire
tions about its center without discrimination. Because
metric also looks isotropic in coordinates$%,q,f%, we must
thus average out the third term in the RHS of Eq.~3.7! over
all anglesq and f; as a result its contribution vanishe
Terms ofO(%) vanish as the size of the object shrinks. Th
the second~constant! term in the RHS of Eq.~3.7! furnishes
the entire electrostatic contribution toE. We separate tha
into the partsA0

(q) ~black hole’s! and Â0
(e) ~image charges’!

defined earlier. Substituting these in Eq.~3.4! we find

E5mS 12
m

2aD S 11
m

2aD 21

14ae
2mae1q~2a1m!2

~2a1m!4

1OS e4

m3D . ~3.8!

The caseq50 of this result is equivalent to results give
earlier ~in Schwarzschild coordinates! by Vilenkin @20# for
a@m and by Smith and Will@21# for all a.

When the object is near the horizon, the proper dista
from its CM to the horizon is

l[E
m/2

a

~grr!1/2dr'4~a2m/2!1O@~a2m/2!2#.

~3.9!

Expressinga in Eq. ~3.8! in terms ofl by means of Eq.~3.9!
we get

E5S 2m l 1e2

8m D F11OS l

mD G1
eq

2m
1OS e4

m3D . ~3.10!

Since we are obviously considering a black hole large
massive compared to the object’s proper radius and mass
corrections ofO( l /m) are appropriately neglected, as a
those ofO(e4/m3) by virtue of the assumed smallness ofe.
The gradual approach to the horizon must stop when
02402
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proper distance from the object’s CM to the horizon reac
the object’s proper radiusR. Hence,

E>
2mR1e214eq

8m
. ~3.11!

As mentioned, our primary concern is with changes in
horizon area. Although we have used Schwarzschild’s me
in the above discussion, the true metric is closer to that o
RN solution; it is thus best to use as a first approximation
area appropriate to the RN black hole, namely Eq.~2.3!. This
formula must be corrected for the perturbation of the me
originating in the object, which in linear approximatio
should be ofO(m) andO(e2), the first caused by the energ
momentum tensor of the object’s mass, and the second
the overall electromagnetic energy momentum tensor@recall
that we takeO(e)5O(q)#. We now argue that the correc
tions to the area formula actually appear only in the n
higher orders.

For suppose the areaA were indeed perturbed in linea
approximation toO(m) and O(e2). By spherical symmetry
of the background these corrections would not depend on
direction along which the object was lowered. Ifn equal
bodies were lowered, each along a different radial directi
the perturbation would ben times larger by linearity of the
approximation. But if enough bodies were disposed on
spherical shell concentric with the black hole, the pertur
tion of the metric at the horizon should tend to zero
Birkhoff’s theorem@18# that the metric exterior to a spherica
charged black hole is exactly RN if the surroundings a
spherically symmetric too. We thus get a contradiction u
less we admit that the perturbations ofO(m) and O(e2)
vanish in linear theory. Any corrections toA must be of
higher order, likeO(m2), etc., Hence by Eq.~2.3!

A58p~2m22q2!1O~q4/m2!1O~m2!1O~me2/m!,
~3.12!

where we have included all possible second order term
the correct dimensions;O(e4/m2) is subsummed in the
O(q4/m2) which is the remainder of the expansion ofA in
powers ofq. Below we denote the above sort of correctio
by the ellipsis.

The descent of the object, if sufficiently slow, is known
be an adiabatic process which causes no change in the
zon area@24,25#. It follows that to the stated accuracy,m is
unchanged in the course of the lowering process itself
causeq and A are unchanged. When the object is fina
absorbed by the black hole,m increases byE while q is
augmented bye; after the suspension machinery has be
withdrawn ~if adiabatically done, this will cause no furthe
area increase@24,25#!, we get an unperturbed RN black ho
with massm1E and chargeq1e.

Calculating its horizon area from Eq.~3.12! and subtract-
ing the area of what was at first an unperturbed RN bla
hole of massm and chargeq ~becausee was still distant!, we
find the change
2-4
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BLACK HOLE POLARIZATION AND NEW ENTROPY BOUNDS PHYSICAL REVIEW D61 024022
DA58p~4mE22qe2e2!1O~E 2!1•••. ~3.13!

Finally substitution of Eq.~3.11! gives

DA>~8pmR24pe2!F11OS mR

m2 D G1•••. ~3.14!

Notice that the black hole parametersm andq have dropped
out from the dominant terms, in analogy with results f
uncharged@14# or spinning @13# objects. The minimum
change in black hole entropy,DA/4\ corresponding to the
equality in Eq.~3.14!, is thus a property of the object itsel
The entropy of the object cannot exceed this amount, lest
overall entropy of the world decrease upon the object’s
similation. We thus find the bound on the entropy of
object of chargee, proper energyE5m, and radiusR to
coincide with Zaslavskii’s proposal, Eq.~1.2!.

IV. VARIANT EMPLOYING A GROUNDED BLACK HOLE

In Sec. III the black hole is electrically isolated so i
chargeq is fixed. One can consider a variant gedanken
periment involving a black hole which is electrical
grounded. An approximation of this could be achieved
having a conducting ‘‘wire’’ connect the horizon to matter
large distances. One wonders whether a different, perh
tighter, bound on entropy would be obtained from a rep
tion of the above gedanken experiment. Here we show
the same bound arises despite the differences in the ene
ics.

Equation ~A5! in the Appendix gives the potentia
A0

(g)(r,u) engendered by a chargee located atr5a and u
50 in the vicinity of a grounded spherical static black ho
This potential vanishes both at infinity and at the horiz
(r5m/2), and may be obtained by setting

q528ame~2a1m!22 ~4.1!

in the expression forA0(r,u), Eq. ~A4!. Although now the
hole’s charge~aside from the image charge! is controlled by
the external charge’s position, the contribution ofq to energy
is still lumped with the black hole~see below!. Therefore,q
is still regarded as generating an external potential fore. We
may thus take over Eq.~3.8! for the object’s energy, but with
q replaced according to Eq.~4.1!.

Expression~3.10! for E is thereby replaced by

E5S 2m l 23e2

8m D F11OS l

mD G1OS e4

m3D . ~4.2!

Neglecting the corrections we obtain in place of Eq.~3.11!
the very different result

E>
2mR23e2

8m
. ~4.3!

Unlike the case discussed in Sec. III, hereE is not the
exclusive contribution to the change inm. When the object
with chargee is very distant from it, the black hole is exact
Schwarzschild@becauseq50 by Eq.~4.1!# with massm and
02402
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horizon area 16pm2. As the object approaches, charge flow
into the hole through the wire, andq varies according to Eq
~4.1!. Because the descent is slow, the change in the ho
adiabatic; thus it should not cause growth of the horizo
area@24,25#. We shall assume the current flows reversib
~in the sense of Christodoulou’s transformations@16#!, so
that it does not cause a change of area either. Accordin
Eq. ~3.12!, m will have to grow to compensate for the in
crease inq. In the limit a→m/2, q→2e so thatm→m8
[Am21e2/2'm1e2/4m. When the object is assimilated
its chargee exactly neutralizes the hole’s charge, while
energy augments the hole’s massm8 to m95m1e2/4m1E.
The new horizon area is thus 16p(m1e2/4m1E)2. Substi-
tuting E from Eq. ~4.3!, and substracting 16pm2 we obtain
the overall change in area

DA>8pmRF11OS mR

m2 D G24pe21•••. ~4.4!

This is the same as Eq.~3.14!, so that from its minimum
value we reproduce the bound on entropy of a charged
ject, Eq.~1.2!.

How do we get the same area increase out of two differ
expressions for the energy of the object, Eq.~3.10! and Eq.
~4.2!? The difference is compensated by a complemen
difference in the behavior of the electric potential of the h
rizon. In the first case asa→m/2, A0→2(e1q)/2m. In
the second caseA0

(g)(m/2,u)50 identically. Thus in the first
case the infall of the charge contributes a change in hori
area through the change in black hole charge, while in
second it does not.

V. THE OPTIMAL BOUND

For an object with spins, chargee, maximal radiusR, and
mass-energyE5m we may, by comparing Eqs.~1.2! and
~1.5!, conjecture the tighter entropy bound

S<2p
AE2R22s22e2/2

\
. ~5.1!

As a check we look at the case of slow rotation:

S<
2pR

\ FE2
s2

2mR2 2
e2

2RG1O~s4!. ~5.2!

Comparing with remarks made in Sec. II we see that here
maximum possible Coulomb energy and2

3 of the maximum
possible rotational energy are deducted from the total ene
with the remainder taken as theE in the original entropy
bound~1.1!. Obviously, for a nonrelativistically rotating or
dinary object, bound~5.2! is correct, and on the liberal side

This correspondence argument does not prove the cor
ness of bound~5.1!; that bound is not the unique progenito
of the nonrelativistic form~5.2!. In addition, one could argue
that there seems to be something missing from Eq.~5.1!. A
spinning charged object has a magnetic dipole moment
portional ofO(es/m) which generates a magnetic field, an
thus contributes to the electromagnetic energy. We see
2-5
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such contribution reflected in bound~5.2!. However, it must
be recalled that magnetic dipole energy is of higher orde
c21 than Coulomb energy. If we care about this higher ord
we should continue the Taylor expansion of the root in E
~5.1! to O(s4) which is of the same order. However, we ha
just mentioned that bound~5.2! understates the amount o
rotational energy in the system by a substantial factor alre
at O(s2). It is thus pointless to go to higher order in rot
tional or electromagnetic energy. Bound~5.2! is not strict,
but liberal, and so is bound~5.1!. Thus at present we find n
reason to cast doubt on the general bound~5.1!.

A more positive point for bound~5.1! is the fact that any
KN black hole~massm, chargeq, and angular momentumj )
saturates it. The horizon area of such a black hole is@18#

A54p~r 1
2 1 j 2/m2!; r 1[m1~m22 j 2/m22q2!1/2.

~5.3!

Substitutingr 1 , squaring as required, and canceling ter
gives

A52p~4mr12q2!52p@4m~r 1
2 1 j 2/m22 j 2/m2!1/22q2#.

~5.4!

In light of Eq. ~5.3! it is reasonable interpret (r 1
2

1 j 2/m2)1/2 as the radiusR of the hole. Incorporating this in
the last equation and dividing by 4\ gives for the black hole
entropy

SBH5
2p

\
@~m2R22 j 2!1/22q2/2#. ~5.5!

If we identify m↔E, q↔e, and j↔s, this is exactly the
upper bound of Eq.~5.1!. Hence the KN black hole saturate
the proposed entropy bound. This property would be los
modifications were made to the bound. Hence we adopt
the form given. Study of the role of spin-curvature effects
the discussion in Sec. III is in progress in order to provid
more direct argument for the full bound~5.1!.

Parenthetically we should mention another way to look
the saturation. Suppose we had some means to slowly lo
a small KN black hole with massm, chargee, and angular
momentums into a much larger KN black hole with corre
sponding parametersm, q, andj. Then the black holes would
merge reversibly, i.e., with no overall growth in horizo
area. This is obvious becauseif bound~5.1! can be derived
by the arguments expounded in Secs. III and IV, then
overall growth in area of the big black hole must correspo
precisely to the equality case in bound~5.1! ~for parameters
m, e, ands) multiplied by 4\. But this just says that the big
horizon expands by precisely the area of the small horiz
so that the merged horizon has area equal to the sum o
two original ones.

Bound ~5.1! is readily generalized to include magnet
monopole chargeg. Duality of electromagnetism leaves littl
doubt that one should just replacee2→e21g2. The deeper
question arises, can one give generic bounds on ent
which are tighter than Eq.~5.1! by virtue of the object pos-
sessing some conserved ‘‘quantum number’’ apart fromq, g,
or s? A case in point would be a tighter bound for an obje
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with definite and known baryon number. We now marsh
evidence in support of the conjecture that bound~5.1!, with
the extension to magnetic monopole, cannot be bettered
nerically. By ‘‘generically’’ we mean without knowledge o
details about the object’s structure and dynamics. Wh
these are known it is possible to compute by means of
tistical mechanics bounds on the entropy which can be sm
compared to bound~1.1!, for example,@6#. But if we use no
such information, we must go back to the black hole deri
tion of the entropy bounds, and it is for this situation that w
conjecture that bound~5.1! cannot be bettered.

The ‘‘no hair’’ conjecture is central to our argument.
large amount of work has certified that a stationary bla
hole can have just a few parameters. The incontestable
are mass, charge, magnetic monopole, and angular mom
tum. Skyrmion number is an extra possibility@26#, but one
whose physical significance is unclear@15#. Other candi-
dates, such as color@27#, scalar charge@28#, and massive
Yang-Mills charge@29#, are associated with unstable blac
holes@30#. The sort of arguments we have given in Secs.
and IV make sense only if the black hole is stable to outs
perturbations. Hence we focus on the KN black holes w
parametersm, q, g, and j.

Suppose we add to such a black hole an object carrying
extra additive conserved quantityb. If b is a ‘‘global’’ quan-
tity, such as baryon or lepton numbers are thought to be
generates no field of its own. The energy-momentum ten
originating in the object is thus unaffected byb ~put another
way, effects ofb can be absorbed in the mass!. Hence, even
if perturbations of the metric are taken into account,b cannot
directly perturb the horizon area formula~5.3!, and som is
unaffected by slow~adiabatic! lowering of the object. Fur-
ther, absence ofb from the list of black hole parameter
means the black hole has no chemical potential conjugat
b. Thus when the object finally enters the hole, it cann
change the horizon area except through the change inm,
which isE. But E getsno contribution specific tob since the
latter does not generate a field that could polarize the h
c.f. Eq. ~3.2!. Therefore, the change in horizon area isb
independent. But then the bound that can be set on the
tropy by the argument of Sec. III is also independent ofb:
the new quantity does not allow tightening of the entro
bound.

Much the same conclusion can be reached ifb generates a
short range field, schematically denoted byB. For example,b
could be weak hypercharge, a source of the short ran
Z-boson mediated, weak force. Although there is now a c
tribution to the energy-momentum tensor fromB, it is local-
ized around the object, and thus can be lumped into its u
energy-momentum tensor. No novel perturbation to the m
ric arises from this. Hence,b cannot directly perturb the ho
rizon area formula~5.3!, and som is unaffected by slow
lowering of the object. Furthermore, no novel potential te
is contributed toE by B unless the particle is already next
the horizon; otherwise the short range fieldB does not reach
down to the horizon and cannot polarize it. Hence, in t
case also, the change in horizon area turns out to beb inde-
pendent, andb cannot appear in a generic entropy bound
2-6
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The third and last case is whenb is the source of a long
range field, again denotedB. The range may be finite if large
compared to typical object size. Now the area formula m
differ from Eq.~5.3! by terms depending onb because of the
perturbation thatB’s energy momentum tensor exerts on t
metric. UnlessB is a gauge field which~unlike theZ andW
boson fields of Weinberg-Salam theory! remains massless i
the classical~or low energy! limit, we cannot rule out such
dependence, as we did in Sec. III. This is because Birkh
type theorems exist only for massless vector fields, and f
our point of view the electromagnetic field is the only o
such, and has already been accounted for in Secs. III and
Thus, while the area stays constant during the descen
required by the adiabatic theorem,m may change by a quan
tity of O(b2) as the object descends. The sign of this qu
tity is unclear without a specific model.

In addition,E is most likely to have a term ofO(b2) for
the same reasons as in Eq.~3.10! ~by ‘‘no hair’’ there is now
no analog ofq). It may even be that this term is also positiv
here, yet it does not follow that the effect ofb is to suppress
the growth of area, as it did in Sec. III, because of the c
rection of indefinite sign to the area formula. Thus witho
calculating linear corrections to the metric, one cannot se
the question of whether the change in area is incremente
depressed byb’s presence. However, we have as yet unc
ered no clear evidence that an improved bound~5.1! will
result for a long-range field which is not a massless vec
field. The conjecture that bound~5.1! is the tightestgeneric
bound on entropy thus seems reasonable.

Note added. One of us~J.D.B.! has recently reconfirmed
@31# that buoyancy does not spoil derivations of entro
bounds under the conditions stated in Secs. I and II.
second author~A.E.M.! has recently validated@32# some of
the conjectures made here in Sec. V.
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APPENDIX: COPSON-LINET SOLUTION FOR CHARGE
IN BLACK HOLE BACKGROUND

Here we determineA0 resulting from a chargee in the
Schwarzschild background~3.3!. Using the conventions o
Misner, Thorne, and Wheeler@18# we write the electromag
netic field asFab5Ab,a2Aa,b . We express the Maxwel
equationsFab

;b54p j a for the axisymmetric stationary field
of a test point chargee situated at$r,u%5$a,0% as

F r2 A0,r

~12m/2r!~11m/2r!2G
,r

1
A0,uu

~12m/2r!~11m/2r!2

54ped~r2a!d~u!d~f!. ~A1!
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The source term takes on the indicated form because
relevant three-dimensional Dirac delta function has the fo
(2g)21/2d(r2a)d(u)d(f).

A convenient solution of this equation was found by Co
son @22# long ago:

A0
(C)~r,u!52e

x1m2/4a2x

~11m/2r!2r~11m/2a!2
~A2!

where

x~r,u![Fr21~m2/4a!222~m2/4a!r cosu

r21a222ar cosu G1/2

. ~A3!

In A0
(C) there appears in the denominators not only the E

clidean distance (r21a222ar cosu)1/2 between the field
point $r,u% and the charge’s position, but also the distan
of the former from the point$m2/4a,0%, which is the appro-
priate location for the image charge in the solution
Laplace’s equation for a charge near a conducting spher
radiusm/2 by the method of images. This is consistent w
the expectation that the black hole is polarized by influen
of the chargee.

As noted by Linet@23#, the coefficient of the 1/r term in
the asymptotic form of this potential indicates that a total
charge e2e(m/a)(11m/2a)22 resides in the spacetime
The chargee being the only source outside the black ho
one must perforce admit that the black hole bears chargẽ
52e(m/a)(11m/2a)22. Of course such charge mus
modify the metric, as does the exterior chargee. But such
perturbations will be of ordere2 and may be ignored in com
puting A0

(C) correct to O(e2). Linet proposes that a mor
relevant solution to the problem is to be had by adding
A0

(C) a monopole field with charge2ẽ. We shall push this a
little farther and add toA0

(C) the monopole potential appro

priate to chargeq2ẽ. Since the spherically symmetric, ev
erywhere regular, solution of Eq.~A1! is r21(11m/2r)22,
we must write

A0~r,u!5A0
(C)~r,u!2

q14ema/~2a1m!2

r~11m/2r!2
. ~A4!

The charge in the spacetime is nowq1e, with q in the black
hole, as it should. So long asq is of ordere and this last is
small on the scale ofm, we do not have to correct the metr
or Eq. ~A1! to getA0 correct toO(e2).

Potential ~A4! has the constant value2q/2m24ae(2a
1m)22 on the horizon (r5m/2). One can ask the question
what would be the potential if the chargee were to coexist
with a black hole which is grounded. In practice this cou
be achieved by having a conductor connect the horizon
matter at large distances. The desired solution of Eq.~A1! is
now one satisfyingA0(m/2,u)5A0(`,0)50. It is easily
checked that the desired potential can be obtained fromA0 in
Eq. ~A4! by settingq→28ame(2a1m)22. We denote it by
2-7



hole

ugh

JACOB D. BEKENSTEIN AND AVRAHAM E. MAYO PHYSICAL REVIEW D 61 024022
A0
(g) ~‘‘g’’ for ‘‘grounded’’ !:

A0
(g)~r,u!5A0

(C)~r,u!14
ema/~2a1m!2

r~11m/2r!2
. ~A5!
it.

02402
Of course, in the present case the charge on the black
varies witha; this is because as the chargee draws near the
black hole, opposite charges are drawn into the hole thro
the conductor.
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