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Universal entropy bound for rotating systems
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We conjecture a universal upper bound to the entropy of a rotating system. The entropy bound follows from
application of the generalized second law of thermodynamics to an idealized gedanken experiment in which an
entropy-bearing rotating system falls into a black hole. This bound is stronger than the Bekenstein entropy
bound for nonrotating systems.

PACS numbes): 04.70.Dy, 05.70.Ce, 95.30.Tg, 97.60.Lf

One of the most intriguing features of both the classicalthen the black-hole area increaga equivalently, the in-
and quantum theory of black holes is the striking analogycrease in black-hole entropis not large enough to compen-
between the laws of black-hole physics and the universagate for the decreasgin common(ordinary entropy. Bek-
laws of thermodynamic§1-6]. In particular, Hawking’s €nstein has proposed a resolution of this apparent violation
(classical theorem[3], “The surface area of a black hole of the GSL which is based on the quantum nature of the
never decreases,” is a property reminiscent of the entropy omatter dropped into the black hole. He has proposed the
a closed system. This striking analogy had led Bekensteigxistence of a universal upper bound on the enti®py any
[7-9] to conjecture that the area of a black héle suitable ~ System of total energi and maximal radiu® [11]:
units) may be regarded as the black-hole entropy — entropy
in the sense of information about the black-hole interior in- S<2nRE/h. v
accessible to observers outside the black hole. This conjec-
ture is logically related to a second conjecture, known as thé& has been arguefil1-13, and disputed 14,15 that this
generalized second law of thermodynami{&SL): “ The restriction is necessary for enforcement of the GSL; the
sum of the black-hole entropfnow known to be; of the  box’s entropy disappears but an increase in black-hole en-
horizon’s surface argaand the commorordinary entropy  tropy occurs which ensures that the GSL is respected pro-
in the black-hole exterior never decreases.” vided S is bounded as in Eq2). Other derivations of the

The general belief in the validity of the ordinary seconduniversal bound E¢2) which are based on black-hole phys-
law of thermodynamics rests mainly on the repeated failurécs have been given by Zaslavskli6—1§ and by Li and Liu
over the years of attempts to violate it. There currently exist§19]. Few pieces of evidence exist concerning the validity of
no general proof of the law based on the known microscopithe bound for self-gravitating systerfi6,20,2]. However,
laws of physics. In the analog case of the GSL considerablyhe universal bound Eq2) is known to be true indepen-
less is known since the fundamental microscopic laws oflently of black-hole physics for a variety of systems in
physics, namely, the laws of quantum gravity are not yetwhich gravity is negligible[22—25. In particular, Schiffer
known. Hence, one is forced to consider gedanken experand Bekensteii24] had provided an analytic proof of the
ments in order to test the validity of the GSL. Such experi-bound for free scalar, electromagnetic and massless spinor
ments are important since the validity of the GSL underliesfields enclosed in boxes of arbitrary shape and topology.
the relationship between black-hole physics and thermody- In this paper we test the validity of the GSL in an ideal-
namics. If the GSL is valid, then it is very plausible that theized gedanken experiment in which an entropy-bearing rotat-
laws of black-hole physics are simply the ordinary laws ofing system falls into a stationary black hole. We argue that
thermodynamics applied to a self-gravitating quantum syswhile the bound Eq(2) may be a necessary condition for the
tem. This conclusion, if true, would provide a striking dem- fulfillment of the GSL, it may not be a sufficient one.
onstration of the unity of physics. Thus, it is of considerable It is not difficult to see why a stronger upper bound must
interest to test the validity of the GSL in various gedankenexist for the entropys of an arbitrary system with enerds;
experiments. intrinsic angular momentuns and radiusR: The gravita-

In a classical context, a basic physical mechanism igional spin-orbit interactioi26] (the analog of the more fa-
known by which a violation of the GSL can be achieved: miliar electromagnetic spin-orbit interactipaxperienced by
Consider a box filled with matter of proper energyand the spinning bodywhich, of course, was not relevant in the
entropy S which is dropped into a black hole. The energy above mentioned gedanken experimeain decrease the en-
delivered to the black hole can be arbitrarily redshifted byergy delivered to the black hole. This would decrease the
letting the assimilation point approach the black-hole hori-change in black-hole entroggrea. Hence, the GSL will be
zon. As shown by Bekenste[®,10], if the box is deposited violated unless the spinning-system entrépfat disappears
with no radial momentum a proper distanBeabove the from the black-hole exterigris restricted by a bound stron-
horizon, and then allowed to fall in such that ger than Eq(2).

Furthermore, there is one disturbing feature of the univer-
sal bound Eq(2). As was pointed out by Bekenstejifil],
R<hS2wE, (1) Kerr black holes conform to the bound; however, only the
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Schwarzschild hole actually attains the bound. This uniqueene can derive the universal entropy bound &j.from the

ness of the Schwarzschild black hdla the sense that it is GSL when the floating point is near the horiz@his is the

the only black hole which have the maximum entropy al-relevant physical situation for macroscopic and mesoscopic

lowed by quantum theory and general relativigmong the objects with a moderate number of species in the radiation,

electrically neutral Kerr-family solutions is somewhat dis- which seems to be the case in our worlthe entropy bound

turbing. Clearly, the unity of physics demands a strongelEq. (2) is also a sufficient condition for the validity of the

bound for rotating systems in general, and for black holes irGSL. For simplicity, and in the spirit of the original analysis

particular(see alsd27]). of Bekensteir{11], we neglect buoyancy contribution to the
In fact, the plausible existence of an upper bound strongeenergy bookkeeping of the body. As in the case of nonrotat-

than Eq.(2) on the entropy of a rotating system has nothinging systemg$13] we expect this not to effect the final entropy

to do with black-hole physics. Classically, entropy is a mea-bound.

sure of the phase space available to the system in question. The gradual approach to the black hole must stop when

Consider a system whose energy is no more tBaiThe the proper distance from the body’s center of mass to the

limitation imposed orE amounts to a limitation on the mo- black-hole horizon equalR, the body’s radius. Thus, in or-

mentum space available to the system’s compongmis  der to find the change in black-hole surface area caused by

vided the potential energy is bounded from beloiNow, if  an assimilation of the spinning body, one should first solve

part of the system’s energy is in the form of a coherentEq. (4) for E and then evaluate it at the point of capture

(global kinetic energy(in contrast to random motion of its =r 4+ §(R), where 5(R) is determined by

constituents then the momentum space available to the sys-

tem'’s components is further limite@art of the energy of the J"**‘S(R)( )2 =R ®)

system is irrelevant for the system’s statistical propertiks r, Grr '

the system has a finite dimension in space, then its phase

space is limited. This amounts to an upper bound on its erwith g,; = (r*+a?cogf)A ™% andA=(r—r_)(r—r,). Inte-

tropy. This bound evidently decreases with the absolut@rating Eq.(5) one finds(for 6= =/2 andR<r )

value of the intrinsic angular momentum of the system.

However, our simple argument cannot yield the exact depen- S(R)=(r, —r )R_Z 6)
dence of the entropy bound on the system’s parameters: its A

energy, intrinsic angular momentufspin), and proper ra-

dius. Thus, the conserved energyof a body having a radial turn-

In fact, black-hole physicémore precisely, the GSlpro-  ing point atr =r , + §(R) [30] is
vides a concrete universal upper bound for rotating systems. 5
We consider a spinning body of rest mass(intrinsic) spin aJ Js(ry—r)ry R(ro—ro) [ 1%
s and proper cylindrical radiuR, which i§ descgnding into a - o 2ua? + 20 wotd o2
black hole. We consider plan@quatorial motions of the 7)
body in a Kerr-Newman backgroufas], with the (intrinsic)
spin orthogonal to the planghe general motion of a spin- where the “rationalized area is related to the black hole

ning particle in a Kerr-Newman background is very compli- surface ared by a=A/4w, andJ is the body’s total angular
cated, and has not been analyzed s9.fahe black-hole momentum. The second term on the right-hand side of Eq.

(event and innerhorizons are located at (7) represents the above mentioned gravitational spin-orbit
interaction between the orbital angular momentum of the
r+=M*(M>-Q*-a*"? (3)  body and its intrinsic angular momentuspin).

An assimilation of the spinning body by the black hole
where M, Q and a are the mass, charge and angular-results in a changeM=E in the black-hole mass and a

momentum per unit mass of the hole, respectiv@lg use  changedL=J in its angular momentum. Using the first law
gravitational units in whicltG=c=1). The test particle ap- of black hole thermodynamid$]

proximation implies|s|/(ur ) <1.

The equation of motion of a spinning body in the equato- K
rial plane of a Kerr-Newman background is a quadratic equa- dM= 8_7-,dA+Qd L, ®
tion for the conserved energgnergy-at-infinity E of the
body[29] wherex=(r, —r_)/2a andQ)=al« are the surface gravity
(27 times the Hawking temperatuf81]) and rotational an-
aE?—2BE+75=0, (4)  gular frequency of the black hole, respectively, we find
~ o~ ~ 2
where the expression far, 8 andy are given in[29]. da=— 25ty +2R\/ 2+\]2r—+ 9
The actual role of buoyancy forces in the context of the = wa K a?’ ©)

GSL is controversialsee, e.g.[12-15). Bekenstein[13]

has recently shown that buoyancy protects the GSL, pro- The increase in black-hole surface area ER).can be
vided the floating pointsee[14,12,13) is close to the black- minimized if the total angular momentum of the body is
hole horizon. In addition, Bekenste[d3] has proved that given by
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Sa

J=J*= . (10
s 2
Rr 1-|—
+ uR
For this value of] the area increase is
s 2
(AA)min=8muR 1—(—R) : (11

L . . . i
which is the minimal increase in black-hole surface area

caused by an assimilation of a spinning body with given
parameterg:,s andR. Obviously, a minimum exists only for
s=uR. Otherwise,AA can be maddarbitrarily) negative,
violating the GSL. Moller’'s well-known theoreff82] there-
fore protects the GSL.

Arguing from the GSL, we derive an upper bound to the
entropyS of an arbitrary system of proper energyintrinsic
angular momenturs and proper radiu:

S<2m7(RE)?>—s?/h.

12

It is evident from this suggestive argument that in order for,

the GSL to be satisfiefi(AS),i=(AS)p,—S=0], the en-
tropy S of the rotating system should be bounded as in Eq
(12). This upper bound is universal in the sense that it de
pends only on the system’s parametétss independent of
the black-hole parameters which were used to derive it

It is in order to emphasize an important assumption mad
in obtaining the upper bound E¢l2); We have not taken
into account second-order interactions between the particle
angular momentum and the black hole, which are expecte
to be of orderO(J?/M?3). Taking cognizance of Eq10) we
learn that this approximation is justified for rotating system
with negligible self-gravity, i.e., rotating systems wijla
<R.

Although our derivation of the entropy bound is valid
only for rotating systems with negligible self-gravity, we
conjecture that it might be applicable also for strongly gravi-
tating systems; A positive evidence for the validity of the
bound is the fact that any Kerr black hole saturates it, pro
vided the effective radiuR is properly defined for the black
hole: consider an electrically neutral Kerr black hole. Let its

S
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energy and angular momentum Be=M and s=Ma, re-
spectively. The black-hole entropySg,=A/4h=m(r?
+a?)/h exactly saturates the entropy bound provided one
identifies the effective radiuR with (r? +a?)?, wherer
=M+ (M?-a?? s the radial Boyer-Lindquist coordinate
for the Kerr black-hole horizon. The identification may be
reasonable becauserr(lriJraz) is exactly the black-hole
surface area.

Evidently, systems with negligible self-gravifthe rotat-
ng system in our gedanken experimeand systems with
maximal gravitational effect§.e., rotating black holgshoth
satisfy the upper bound E¢L2). Thus, this bound appears to
be of universal validity. The intriguing feature of our deriva-
tion is that it uses a law whose very meaning stems from
gravitation (the GSL, or equivalently the area-entropy rela-
tion for black holes to derive a universal bound which has
nothing to do with gravitatiofwritten out fully, the bound
Eqg. (12 would involveZ andc, but notG]. This provides a
striking illustration of the unity of physics.

In summary, an application of the generalized second law
of thermodynamics to an idealized gedanken experiment in

which an entropy-bearing rotating system falls into a black

hole, enables us to conjecture an improved upper bound to
the entropy of a rotating system. The bound is stronger than
Bekenstein’s bound for nonrotating systems. Moreover, this
bound seems to be remarkable from a black-hole physics

goint of view: provided the effective radiuR is properly

defined, all Kerr black holes saturatdatithough we empha-

Size again that our specific derivation of the bound is consis-

gent only for systems with negligible self-gravityThis sug-
gests that the Schwarzschild black hole is not unique from a
black-hole entropy point of view, removing the disturbing
feature of the entropy bound E¢R). Thus, all electrically
neutral black holes seem to have the maximum entropy al-
lowed by quantum theory and general relativity. This pro-
vides a striking illustration of the extreme character dis-
played by(all) black holes, which is, however, still within
the boundaries of more mundane physics.

I thank Jacob D. Bekenstein for helpful discussions. This
research was supported by a grant from the Israel Science
Foundation.

[1] D. Christodoulou, Phys. Rev. Le®5, 1596(1970.

[2] D. Christodoulou and R. Ruffini, Phys. Rev.4)3552(1971).

[3] S. W. Hawking, Phys. Rev. Let26, 1344 (1971).

[4] S. W. Hawking, Commun. Math. Phy&5, 152 (1972.

[5] B. Carter, Nat. Phys. Sc238 71 (1972.

[6] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math.
Phys.31, 161 (1973.

[7] J. D. Bekenstein, Ph.D. thesis, Princeton University, 1972.
[8] J. D. Bekenstein, Lett. Nuovo Cimently 737 (1972.

[9] J. D. Bekenstein, Phys. Rev. D) 2333(1973.

[10] J. D. Bekenstein, Phys. Rev. @) 3292(1974.

[11] J. D. Bekenstein, Phys. Rev. ZB, 287 (1981).

[12] J. D. Bekenstein, Phys. Rev. 49, 1912(1994.

02401

[13] J. D. Bekenstein, Phys. Rev. &0, 124010(1999

[14] W. G. Unruh and R. M. Wald, Phys. Rev. Zb, 942 (1982);
27, 2271(1983.

[15] M. A. Pelath and R. M. Wald, Phys. Rev. B0, 104009
(1999.

[16] O. B. Zaslavskii, Phys. Lett. A60, 339(1991).

[17] O. B. Zaslavskii, Gen. Relativ. Gravi24, 973 (1992.

[18] O. B. Zaslavskii, “Bekenstein entropy upper bound and laws
of thermodynamics,” Kharkov University report, 1993.

[19] L. X. Li and L. Liu, Phys. Rev. D46, 3296(1992.

[20] R. D. Sorkin, R. M. Wald, and Z. Z. Jiu, Gen. Relativ. Gravit.
13, 1127(1981).

8-3



SHAHAR HOD PHYSICAL REVIEW D 61 024018

[21] W. H. Zurek and D. N. Page, Phys. Rev.2D, 628(1984. (1999.

[22] J. D. Bekenstein, Phys. Rev. 8D, 1669(1984). [28] C. W. Misner, K. S. Thorne, and J. A. Wheel&jyavitation

[23] J. D. Bekenstein and M. Schiffer, Int. J. Mod. Phys1(355 (Freeman, San Francisco, 1973
(1990. [29] R. Hojman and S. Hojman, Phys. Rev.1B, 2724(1977).

[24] M. Schiffer and J. D. Bekenstein, Phys. Rev. 39, 1109 [30] As our task is to test the validity of the GSL in the most
(1989. “dangerous” situationwith (AS),, as small as possibjeve

[25] J. D. Bekenstein and E. I. Guendelman, Phys. Re@5D716 consider the case of a spinning body which is captured from a
(1987). radial turning point of its motion. This minimizes the increase

[26] R. Wald, Phys. Rev. B, 406 (1972. in black hole surface area, and thus allows one to derive the

[27] S. Hod, e-print gr-qc/9901035; S. Hod, e-print gr-qc/9903010; strongest bounds on the various physical quantities.
S. Hod, Phys. Rev. [to be publishe J. D. Bekenstein and [31] S. W. Hawking, NaturgLondon 248 30 (1974; Commun.
A. E. Mayo, ibid., e-print gr-qc/9903002; B. Linet, e-print Math. Phys.43, 199 (1975.
gr-qc/9903064; B. Linet, Class. Quantum Grals, 2947  [32] C. Moller, Commun. Dublin Inst. Advan. Stud. % 1 (1949.

024018-4



