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Universal entropy bound for rotating systems
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~Received 4 November 1998; published 22 December 1999!

We conjecture a universal upper bound to the entropy of a rotating system. The entropy bound follows from
application of the generalized second law of thermodynamics to an idealized gedanken experiment in which an
entropy-bearing rotating system falls into a black hole. This bound is stronger than the Bekenstein entropy
bound for nonrotating systems.

PACS number~s!: 04.70.Dy, 05.70.Ce, 95.30.Tg, 97.60.Lf
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One of the most intriguing features of both the classi
and quantum theory of black holes is the striking analo
between the laws of black-hole physics and the unive
laws of thermodynamics@1–6#. In particular, Hawking’s
~classical! theorem@3#, ‘‘The surface area of a black hol
never decreases,’’ is a property reminiscent of the entrop
a closed system. This striking analogy had led Bekens
@7–9# to conjecture that the area of a black hole~in suitable
units! may be regarded as the black-hole entropy — entr
in the sense of information about the black-hole interior
accessible to observers outside the black hole. This con
ture is logically related to a second conjecture, known as
generalized second law of thermodynamics~GSL!: ‘‘ The
sum of the black-hole entropy~now known to be1

4 of the
horizon’s surface area! and the common~ordinary! entropy
in the black-hole exterior never decreases.’’

The general belief in the validity of the ordinary seco
law of thermodynamics rests mainly on the repeated fail
over the years of attempts to violate it. There currently ex
no general proof of the law based on the known microsco
laws of physics. In the analog case of the GSL considera
less is known since the fundamental microscopic laws
physics, namely, the laws of quantum gravity are not
known. Hence, one is forced to consider gedanken exp
ments in order to test the validity of the GSL. Such expe
ments are important since the validity of the GSL underl
the relationship between black-hole physics and thermo
namics. If the GSL is valid, then it is very plausible that t
laws of black-hole physics are simply the ordinary laws
thermodynamics applied to a self-gravitating quantum s
tem. This conclusion, if true, would provide a striking dem
onstration of the unity of physics. Thus, it is of considera
interest to test the validity of the GSL in various gedank
experiments.

In a classical context, a basic physical mechanism
known by which a violation of the GSL can be achieve
Consider a box filled with matter of proper energyE and
entropy S which is dropped into a black hole. The ener
delivered to the black hole can be arbitrarily redshifted
letting the assimilation point approach the black-hole ho
zon. As shown by Bekenstein@9,10#, if the box is deposited
with no radial momentum a proper distanceR above the
horizon, and then allowed to fall in such that

R,\S/2pE, ~1!
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then the black-hole area increase~or equivalently, the in-
crease in black-hole entropy! is not large enough to compen
sate for the decreaseS in common~ordinary! entropy. Bek-
enstein has proposed a resolution of this apparent viola
of the GSL which is based on the quantum nature of
matter dropped into the black hole. He has proposed
existence of a universal upper bound on the entropySof any
system of total energyE and maximal radiusR @11#:

S<2pRE/\. ~2!

It has been argued@11–13#, and disputed@14,15# that this
restriction is necessary for enforcement of the GSL;
box’s entropy disappears but an increase in black-hole
tropy occurs which ensures that the GSL is respected
vided S is bounded as in Eq.~2!. Other derivations of the
universal bound Eq.~2! which are based on black-hole phy
ics have been given by Zaslavskii@16–18# and by Li and Liu
@19#. Few pieces of evidence exist concerning the validity
the bound for self-gravitating systems@16,20,21#. However,
the universal bound Eq.~2! is known to be true indepen
dently of black-hole physics for a variety of systems
which gravity is negligible@22–25#. In particular, Schiffer
and Bekenstein@24# had provided an analytic proof of th
bound for free scalar, electromagnetic and massless sp
fields enclosed in boxes of arbitrary shape and topology.

In this paper we test the validity of the GSL in an idea
ized gedanken experiment in which an entropy-bearing ro
ing system falls into a stationary black hole. We argue t
while the bound Eq.~2! may be a necessary condition for th
fulfillment of the GSL, it may not be a sufficient one.

It is not difficult to see why a stronger upper bound mu
exist for the entropyS of an arbitrary system with energyE,
intrinsic angular momentums and radiusR: The gravita-
tional spin-orbit interaction@26# ~the analog of the more fa
miliar electromagnetic spin-orbit interaction! experienced by
the spinning body~which, of course, was not relevant in th
above mentioned gedanken experiment! can decrease the en
ergy delivered to the black hole. This would decrease
change in black-hole entropy~area!. Hence, the GSL will be
violated unless the spinning-system entropy~what disappears
from the black-hole exterior! is restricted by a bound stron
ger than Eq.~2!.

Furthermore, there is one disturbing feature of the univ
sal bound Eq.~2!. As was pointed out by Bekenstein@11#,
Kerr black holes conform to the bound; however, only t
©1999 The American Physical Society18-1
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Schwarzschild hole actually attains the bound. This uniq
ness of the Schwarzschild black hole~in the sense that it is
the only black hole which have the maximum entropy
lowed by quantum theory and general relativity! among the
electrically neutral Kerr-family solutions is somewhat d
turbing. Clearly, the unity of physics demands a stron
bound for rotating systems in general, and for black hole
particular~see also@27#!.

In fact, the plausible existence of an upper bound stron
than Eq.~2! on the entropy of a rotating system has nothi
to do with black-hole physics. Classically, entropy is a m
sure of the phase space available to the system in ques
Consider a system whose energy is no more thanE. The
limitation imposed onE amounts to a limitation on the mo
mentum space available to the system’s components~pro-
vided the potential energy is bounded from below!. Now, if
part of the system’s energy is in the form of a coher
~global! kinetic energy~in contrast to random motion of it
constituents!, then the momentum space available to the s
tem’s components is further limited~part of the energy of the
system is irrelevant for the system’s statistical properties!. If
the system has a finite dimension in space, then its ph
space is limited. This amounts to an upper bound on its
tropy. This bound evidently decreases with the abso
value of the intrinsic angular momentum of the syste
However, our simple argument cannot yield the exact dep
dence of the entropy bound on the system’s parameters
energy, intrinsic angular momentum~spin!, and proper ra-
dius.

In fact, black-hole physics~more precisely, the GSL! pro-
vides a concrete universal upper bound for rotating syste
We consider a spinning body of rest massm, ~intrinsic! spin
s and proper cylindrical radiusR, which is descending into a
black hole. We consider plane~equatorial! motions of the
body in a Kerr-Newman background@28#, with the~intrinsic!
spin orthogonal to the plane~the general motion of a spin
ning particle in a Kerr-Newman background is very comp
cated, and has not been analyzed so far!. The black-hole
~event and inner! horizons are located at

r 65M6~M22Q22a2!1/2, ~3!

where M, Q and a are the mass, charge and angul
momentum per unit mass of the hole, respectively~we use
gravitational units in whichG5c51). The test particle ap
proximation impliesusu/(mr 1)!1.

The equation of motion of a spinning body in the equa
rial plane of a Kerr-Newman background is a quadratic eq
tion for the conserved energy~energy-at-infinity! E of the
body @29#

ãE222b̃E1g̃50, ~4!

where the expression forã, b̃ and g̃ are given in@29#.
The actual role of buoyancy forces in the context of t

GSL is controversial~see, e.g.,@12–15#!. Bekenstein@13#
has recently shown that buoyancy protects the GSL, p
vided the floating point~see@14,12,13#! is close to the black-
hole horizon. In addition, Bekenstein@13# has proved that
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one can derive the universal entropy bound Eq.~2! from the
GSL when the floating point is near the horizon~this is the
relevant physical situation for macroscopic and mesosco
objects with a moderate number of species in the radiat
which seems to be the case in our world!. The entropy bound
Eq. ~2! is also a sufficient condition for the validity of th
GSL. For simplicity, and in the spirit of the original analys
of Bekenstein@11#, we neglect buoyancy contribution to th
energy bookkeeping of the body. As in the case of nonro
ing systems@13# we expect this not to effect the final entrop
bound.

The gradual approach to the black hole must stop w
the proper distance from the body’s center of mass to
black-hole horizon equalsR, the body’s radius. Thus, in or
der to find the change in black-hole surface area caused
an assimilation of the spinning body, one should first so
Eq. ~4! for E and then evaluate it at the point of capturer
5r 11d(R), whered(R) is determined by

E
r 1

r 11d(R)

~grr !
1/2dr5R, ~5!

with grr 5(r 21a2cos2u)D21, andD5(r 2r 2)(r 2r 1). Inte-
grating Eq.~5! one finds~for u5p/2 andR!r 1)

d~R!5~r 12r 2!
R2

4r 1
2 . ~6!

Thus, the conserved energyE of a body having a radial turn
ing point atr 5r 11d(R) @30# is

E5
aJ

a
2

Js~r 12r 2!r 1

2ma2 1
R~r 12r 2!

2a
Am21J2

r 1
2

a2,

~7!

where the ‘‘rationalized area’’a is related to the black hole
surface areaA by a5A/4p, andJ is the body’s total angular
momentum. The second term on the right-hand side of
~7! represents the above mentioned gravitational spin-o
interaction between the orbital angular momentum of
body and its intrinsic angular momentum~spin!.

An assimilation of the spinning body by the black ho
results in a changedM5E in the black-hole mass and
changedL5J in its angular momentum. Using the first la
of black hole thermodynamics@6#

dM5
k

8p
dA1VdL, ~8!

wherek5(r 12r 2)/2a andV5a/a are the surface gravity
~2p times the Hawking temperature@31#! and rotational an-
gular frequency of the black hole, respectively, we find

da52
2Jsr1

ma
12RAm21J2

r 1
2

a2 . ~9!

The increase in black-hole surface area Eq.~9! can be
minimized if the total angular momentum of the body
given by
8-2
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J5J* [
sa

Rr1A12S s

mR
D 2

. ~10!

For this value ofJ the area increase is

~DA!min58pmRA12S s

mR
D 2

, ~11!

which is the minimal increase in black-hole surface a
caused by an assimilation of a spinning body with giv
parametersm,s andR. Obviously, a minimum exists only fo
s<mR. Otherwise,DA can be made~arbitrarily! negative,
violating the GSL. Moller’s well-known theorem@32# there-
fore protects the GSL.

Arguing from the GSL, we derive an upper bound to t
entropySof an arbitrary system of proper energyE, intrinsic
angular momentums and proper radiusR:

S<2pA~RE!22s2/\. ~12!

It is evident from this suggestive argument that in order
the GSL to be satisfied@(DS) tot[(DS)bh2S>0#, the en-
tropy S of the rotating system should be bounded as in
~12!. This upper bound is universal in the sense that it
pends only on the system’s parameters~it is independent of
the black-hole parameters which were used to derive it!.

It is in order to emphasize an important assumption m
in obtaining the upper bound Eq.~12!; We have not taken
into account second-order interactions between the partic
angular momentum and the black hole, which are expec
to be of orderO(J2/M3). Taking cognizance of Eq.~10! we
learn that this approximation is justified for rotating syste
with negligible self-gravity, i.e., rotating systems withm
!R.

Although our derivation of the entropy bound is val
only for rotating systems with negligible self-gravity, w
conjecture that it might be applicable also for strongly gra
tating systems; A positive evidence for the validity of t
bound is the fact that any Kerr black hole saturates it, p
vided the effective radiusR is properly defined for the black
hole: consider an electrically neutral Kerr black hole. Let
th
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energy and angular momentum beE5M and s5Ma, re-
spectively. The black-hole entropySBH5A/4\5p(r 1

2

1a2)/\ exactly saturates the entropy bound provided o
identifies the effective radiusR with (r 1

2 1a2)1/2, wherer 1

5M1(M22a2)1/2 is the radial Boyer-Lindquist coordinat
for the Kerr black-hole horizon. The identification may b
reasonable because 4p(r 1

2 1a2) is exactly the black-hole
surface area.

Evidently, systems with negligible self-gravity~the rotat-
ing system in our gedanken experiment! and systems with
maximal gravitational effects~i.e., rotating black holes! both
satisfy the upper bound Eq.~12!. Thus, this bound appears t
be of universal validity. The intriguing feature of our deriv
tion is that it uses a law whose very meaning stems fr
gravitation ~the GSL, or equivalently the area-entropy rel
tion for black holes! to derive a universal bound which ha
nothing to do with gravitation@written out fully, the bound
Eq. ~12! would involve\ andc, but notG]. This provides a
striking illustration of the unity of physics.

In summary, an application of the generalized second
of thermodynamics to an idealized gedanken experimen
which an entropy-bearing rotating system falls into a bla
hole, enables us to conjecture an improved upper boun
the entropy of a rotating system. The bound is stronger t
Bekenstein’s bound for nonrotating systems. Moreover,
bound seems to be remarkable from a black-hole phy
point of view: provided the effective radiusR is properly
defined, all Kerr black holes saturate it~although we empha-
size again that our specific derivation of the bound is con
tent only for systems with negligible self-gravity!. This sug-
gests that the Schwarzschild black hole is not unique from
black-hole entropy point of view, removing the disturbin
feature of the entropy bound Eq.~2!. Thus, all electrically
neutral black holes seem to have the maximum entropy
lowed by quantum theory and general relativity. This pr
vides a striking illustration of the extreme character d
played by~all! black holes, which is, however, still within
the boundaries of more mundane physics.

I thank Jacob D. Bekenstein for helpful discussions. T
research was supported by a grant from the Israel Scie
Foundation.
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