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Fully localized brane intersections: The plot thickens
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We study fully localized Bogomol’nyi-Prasad-Sommerfield brane solutions in classical supergravity using a
perturbative approach to the coupled Born-Infeld or bulk supergravity system. We derive first order bulk
supergravity fields for world-volume solitons corresponding to intersectingM2-branes and to a fundamental
string ending on aD3-brane. One interesting feature is the appearance of certain off-diagonal metric compo-
nents and the corresponding components of the gauge potentials. Making use of a supersymmetric ansatz for
the exact fields, we formulate a perturbative expansion which applies toM2'M2(0), M5'M5(3) and
Dp'Dp (p22) intersections. We find that perturbation theory qualitatively distinguishes between certain
cases: perturbation theory breaks down at second order for intersectingM2-branes andDp-branes withp
<3 while it is well behaved, at least to this order, for the remaining cases. This indicates that the behavior of
the full nonlinear intersectingDp-brane solutions may be qualitatively different forp<3 than forp>4, and
that fully localized asymptotically flat solutions forp<3 may not exist. We discuss the consistency of these
results with world-volume field theory properties.

PACS number~s!: 04.50.1h, 04.65.1e, 11.25.2w, 11.27.1d
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I. INTRODUCTION

The fact that supersymmetric gauge theories describe
low energy dynamics of branes in string theory has yield
many important insights, some of which are reviewed
@1,2#. The most interesting physics arises when supersym
try is further broken by brane intersections. For examp
Witten @3# ~following earlier work in@4#! has shown how to
recover the results of Seiberg and Witten@5# on N52 gauge
theories in four dimensions via intersectingM5-branes in
eleven dimensions. The smooth complex curve describ
the M5-brane intersection in this construction provides
geometric realization of the Seiberg-Witten curve, describ
the renormalization group flow of the Yang-Mills coupling

The constructions referred to above involve branes e
bedded in flat space. One expects that useful complemen
information could be obtained from the curved space
scriptions of these same systems. Delocalized solutions
intersecting branes, in which the harmonic function asso
ated with each brane is smeared out over the directions
allel to the other branes, have been known for some time~see
e.g.,@6–25#, and especially@26–28# for reviews!. These so-
lutions are useful for many purposes, such as black h
entropy counting constructions, in which the delocalized
rections are compactified on a torus. However, the smea
wipes out much of the interesting physics.

Despite a good deal of effort, spacetimes describing fu
localized Bogomol’nyi-Prasad-Sommerfield~BPS! brane in-
tersections have proved quite difficult to find. In fact, it h
been shown@29,30# that certain intersections are necessa
delocalized. These results, however, were limited to eit
intersections in which one brane is fully contained with
another or to ‘‘partially’’ localized intersections in whic
one of the branes is smeared over the directions paralle
the other brane. In this paper we will consider the existe
0556-2821/99/61~2!/024012~14!/$15.00 61 0240
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of supergravity solutions for a class of fully localized inte
sections. By fully localized, we mean that the spaceti
fields have nontrivial dependence on the coordina
‘‘along’’ either brane, and that the sources are appropri
delta functions. Unlike the cases considered in@29,30#, we
are now faced with a nonlinear set of field equations to so
Consequently, our analysis will be restricted to a weak fi
perturbative expansion. We start withM2-branes, and solve
perturbatively for the spacetime fields due to a nonpla
M2-brane source; namely, one for which theM2-brane sur-
face is a certain holomorphic curve associated with ortho
nal intersecting branes. However, we find that the sec
order term in the perturbation series diverges. Intersecti
of D2-branes„D2'D2(0)… and D3-branes„D3'D3(1)…
behave similarly. On the other hand, in the case
M5-branes orDp branes withp>4, the second order term i
finite. One can interpret the second order results as supp
ing the gauge theory arguments of@30# about the existence
and/or nonexistence of fully localized BPS intersecti
D-brane solutions. Possibly the divergence in the pertur
tive expansion indicates a more general result that there
no fully localized, nonplanar, static, gravitating BP
M2-branes orDp-branes forp<3.

The question of existence probes an interesting aspec
the gauge theory description of brane dynamics. A version
the AdS conformal field theory~CFT! limit @31,32# implies
@30# that the near-horizon properties of intersectingD-brane
spacetimes have a dual gauge theory description. The s
over which brane intersections are delocalized in class
supergravity turns out to be dual to the quantum fluctuati
of a massless modulus field in the gauge theory. Comp
delocalization occurs when these fluctuations become la
due to infrared effects. This in turn is determined by t
dimensionality of the intersection. The gauge theory analy
in @30# accounts for the supergravity results that, for e
©1999 The American Physical Society12-1
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ample, Dp-branes cannot be localized withi
D(p14)-branes forp50 or p51, while they may be local-
ized for p>2.

As a starting point for the present analysis, consider
delocalized solution for a pair ofM2-branes, one in the
(t,1,2) plane and one in the (t,3,4) plane, intersecting at th
origin. The spacetime fields are

ds252~ f 1f 2!22/3dt21 f 1
22/3f 2

1/3~dx1
21dx2

2!

1 f 1
1/3f 2

22/3~dx3
21dx4

2!1~ f 1f 2!1/3~dx5
21¯1dx10

2 !,

At125 f 1
21, At345 f 2

21, f i5 f i~x5 ,...,x10!, ¹'
2 f i50,

~1.1!

where¹'
2 5]5

21¯1]10
2 . One can try to find localized inter

sections by starting with an ansatz of the form~1.1! and
allowing the functionsf 1 and f 2 to depend on all the spatia
coordinates, i.e., not only the directionsx5 ,...,x10 transverse
to both branes, but alsox1 , x2 , x3 , andx4 . However, the
equations of motion turn out to require that at least one of
branes remains delocalized@33–36#. If, for example, the
M2-brane in the (t34) plane is to be localized, we must ha
translation invariance in thex3,x4 directions, i.e., the (t12)
brane cannot be localized. Furthermore the supergra
equations then reduce to

¹'
2 f 150, ¹'

2 f 21 f 1~]1
21]2

2! f 250. ~1.2!

Given a solution to the first equation forf 1 , the second equa
tion for f 2 is then linear.1

It seems clear that in order to find fully localized interse
tions, one must consider a wider class of spacetimes. S
physical input is then necessary to determine an approp
generalization of the diagonal ansatz. Our strategy is q
simple. The key ingredients in determining the weak fie
limit of a given brane intersection are appropriate sou
terms for the field equations. These are provided by coup
the bulk supergravity fields to brane sources via the Bo
Infeld effective action. Now, sinceM2-branes have no
world-volume gauge fields, the term ‘‘Born-Infeld dynam
ics’’ may seem inappropriate. However, under dimensio
reduction what we refer to here as the Born-Infeld action
M2-branes reduces to the familiar Born-Infeld action
D-branes and it is convenient to use the same term for b
systems.

Smooth world-volume solitons, sometimes called ‘‘B
solitons,’’ describing certain nonplanar branes in a ba
ground flat spacetime have been studied, beginning with

1The partially localized intersections studied in@29,30# are solu-
tions to equations having this form, but with different numbers
relative transverse and overall transverse directions. The rela
transverse directions are taken to be compact andf 2 is expanded in
Fourier modes. Solutions for whichf 2 is localized can always be
found when the two branes are separated in the transverse d
tions. However, as the transverse separation is taken to zero
Fourier modes with nonzero wave number are driven to zero un
the numberd of overall transverse directions satisfiesd<3.
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work of @3,37–39#. Following the literature, we will refer to
these nonplanar branes as ‘‘intersecting.’’ These solito
configurations are appropriate sources for the bulk fi
equations linearized around flat space. In Sec. II, we w
out the linearized fields for the BI soliton source describi
intersectingM2-branes. We will see from the linearize
analysis that certain off-diagonal terms in the metric, as w
as certain additional components of the gauge field, are g
erated by BI soliton sources.

Any BI soliton generates a solution to the bulk field equ
tions linearized about flat space. Distinctions between diff
ent intersecting brane configurations, however, arise w
we look at higher orders in the weak field expansion. Car
ing out a perturbative expansion based directly on the fi
equations would be a tedious task. Fortunately, the su
symmetry of the BI soliton sources leads to considera
simplifications. Recently, Fayyazuddin and Smith@36# have
presented an ansatz for the spacetime fields of fully locali
intersectingM5-branes, which preserves half of the 32 s
persymmetries ofD511 supergravity.2 The remaining unde-
termined function in the ansatz satisfies a nonlinear se
equations.

It is straightforward to alter the form of the ansatz in@36#
to obtain an appropriate ansatz forM2-brane intersections
and this is done in Sec. III. The altered ansatz does in
guarantee the existence of Killing spinors appropriate to
tersectingM2-branes. A useful consistency check is that t
ansatz matches the linearized solutions of Sec. II. By dim
sional reduction andT duality, the same is true for solution
of Dp-branes intersectingDp-branes onp22 dimensional
spatial manifolds inD510 type II supergravities. We us
this structure to investigate the second order perturbation
the bulk supergravity fields. Although they are finite f
larger branes, for intersectingM2-, D2-, andD3-branes, we
find that the second order perturbations diverge at ev
point in spacetime as we take a delta function limit
smooth sources to represent fully localized branes. Sec
III shows that this holds for a simple ‘‘crossed-brane’’ co
figuration, while the more complicated calculations asso
ated with holomorphic curve brane configurations are p
sented in Appendix A. As will be discussed in Sec. IV, th
meshes well with arguments of@30# based on the low-energ
field theory on theD-branes and is likely to be connecte
with interesting properties of full nonlinear solutions.

Lastly, Appendix B considers the weak coupling limit of
fundamental string ending on aD3-brane. In this case, we d
not yet have an ansatz for the full nonlinear spacetime fie
but we hope that our first order results will help to motiva
such an ansatz. The weak field results do show that the B
Infeld spike soliton of@37–39# generates the appropriat
Neveu-Schwarz~NS! antisymmetric tensor field to be iden
tified with a fundamental string.

II. M2-BRANE INTERSECTIONS

We begin by studying the weak field limit of a pair o
M2-branes intersecting at a point. We take the action to

f
ve

ec-
the
ss2However, the actual intersecting solutions displayed in@36# are
diagonal and describe one localized and one delocalized brane
2-2
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FULLY LOCALIZED BRANE INTERSECTIONS: THE . . . PHYSICAL REVIEW D 61 024012
given by S5Sbulk1Sbrane, whereSbulk is the D511 super-
gravity action andSbrane is the Born-Infeld action for an
M2-brane embedded in curved spacetime. The bosonic p
of these are given by

Sbulk5
1

l pl
9 E d11xHA2gS R2

1

12
F2D

1
2

~72!2 em1¯m11Fm1m2m3m4
Fm5m6m7m8

Am9m10m11J
~2.1!

Sbrane52TE d3jHA2detG2
1

6
eabc~]aXm!~]bXn!

3~]cX
r!AmnrJ . ~2.2!

Here Gab5(]aXm)(]bXn)gmn is the induced metric on the
M2-brane world volume,gmn and Amnr are the spacetime
metric and gauge field, respectively, and theM2-brane ten-
sionT is related to theD511 Planck length byT51/l lp

3 . An
M2-brane configurationXm(j) carries stress-energyTbrane

mn

given by

Tbrane
mn ~x![

1

A2g

dSbrane

dgmn~x!

52
T

2A2g
E d3jA2detGGab~]aXm!

3~]bXn!d11
„x2X~j!…, ~2.3!

and current density for the antisymmetric tensor gauge fi
Jbrane

mnr given by

Jbrane
mnr ~x![

1

A2g

dSbrane

dAmnr~x!

5
T

A2g
E d3jeabc~]aXm!~]bXn!~]cX

r!

3d11
„x2X~j!…. ~2.4!

These are conserved if theM2-brane equations of motion ar
satisfied.

In a flat and empty background, intersectingM2-branes
can be described by a BPS soliton solution to the wo
volume equations of motion@3,37# with two separate
asymptotic regions

~X11 iX2!~X31 iX4!5a0
2, X55¯5X1050. ~2.5!

For a0
250 this describes a pair of orthogonally intersecti

planes in the~1,2! and ~3,4! planes. Fora0
2Þ0 the intersec-

tion region is smoothed out this scale andua0u is the size of
the ‘‘neck’’ where the two branes join. The Born-Infel
equations of motion in the flat background are satisfied
02401
rts
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anya0 in the complex plane. Now, the Born-Infeld effectiv
action is an approximation to the low-energy brane dynam
valid when certain derivatives are small. For largea0 , all
curvatures of the brane are small and the Born-Infeld
scription will therefore be accurate. Furthermore, in@40# a
related intersection ofD3-branes and fundamental string
was studied in which, due to supersymmetry, the Born-Inf
description could be shown to be exact. In the present c
we again expect that our Born-Infeld description of the bra
dynamics is exact for all values ofa0 .

Note that the parametera0 has nothing to do with the
charges of the branes; the symmetry of the holomorp
curve guarantees that we have the same number of bran
each of the two planes. A similar parameter occurs
D-brane intersections of the formDp'Dp(p22) and, in
that case, corresponds to a modulus in the low-energy fi
theory on the branes.

Let us choose coordinatesj0,1,25X0,1,2 on theM2-brane
world volume. Note that this choice introduces an asymm
try between the two asymptotic regions. The brane str
tensorTbrane

mn evaluated in a flat background then has diago
components

T00~x!5
T

2 S 11
a0

4

R4D d8~x2x0!,

T11~x!5T22~x!52
T

2
d8~x2x0!, ~2.6!

T33~x!5T44~x!52
a0

4T

2R4 d8~x2x0!,

and also nonzero off-diagonal components

T13~x!5T24~x!5
a0

2T~x1
22x2

2!

2R4 d8~x2x0!,

~2.7!

T23~x!52T14~x!5
2a0

2Tx1x2

2R4 d8~x2x0!,

whereR25x1
21x2

2 and

d8~x2x0![dS x32
a0

2x1

x1
21x2

2D dS x41
a0

2x2

x1
21x2

2D d~x5!¯d~x10!.

The nonzero gauge current density components are

J0125Td8~x2x0!, J0345
a0

4T

R4 d8~x2x0!,

J0135J02452
2a0

2Tx1x2

R4 d8~x2x0!, ~2.8!

J01452J02352
a0

2T~x1
22x2

2!

R4 d8~x2x0!.

We solve the linearized Einstein equation in the stand
way. Let gmn5hmn1hmn define gmn5hmn2 1

2 hmnh, and
2-3
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GOMBEROFF, KASTOR, MAROLF, AND TRASCHEN PHYSICAL REVIEW D61 024012
choose Lorentz gauge]rgrm50. The linearized Einstein
equation then reduces tol pl

29]r]rgmn522Tmn
brane. We find

that the solution is

ds252„12 2
3 ~ f 11 f 2!…dt21~12 2

3 f 11 1
3 f 2!~dx1

21dx2
2!

1~11 1
3 f 12 2

3 f 2!~dx3
21dx4

2!

1„11 1
3 ~ f 11 f 2!…dkldxkdxl12f~dx1dx31dx2dx4!

12c~dx2dx32dx1dx4!, ~2.9!

where the four functionsf 1(x), f 2(x), f(x), andc(x) sat-
isfy the flat, spatial, ten-dimensional Laplace equation w
different source terms,

¹2f 152 l pl
6 d8~x2x0!, ¹2f 252

a4l pl
6

R4 d8~x2x0!,

¹2f52
a2l pl

6 ~x1
22x2

2!

R4 d8~x2x0!, ~2.10!

¹2c52
2a2l pl

6 x1x2

R4 d8~x2x0!.

Similarly, the linearized gauge field is given by

A52 f 1dx0∧dx1∧dx22 f 2dx0∧dx3∧dx4

1c~dx0∧dx1∧dx31dx0∧dx2∧dx4!

1f~dx0∧dx1∧dx42dx0∧dx2∧dx3!. ~2.11!

Integral expressions for the functionsf 1(x), f 2(x), f(x),
andc(x) are then easily obtained using the ten-dimensio
Green’s function. The resulting expression, for e.g.,f 1(x) is
given by

f 1~x!5l l pl
6 E d2y$~x12y1!21~x22y2!2

1„x32a2y1 /~y1
21y2

2!…2

1„x41a2y2 /~y1
21y2

2!…21xkx
k%24, ~2.12!

wherel51/8v9 andv9 is the volume of the unit 9 sphere
This integral, like the similar ones forf 2 , f, andc, cannot
be simply evaluated analytically. However, the integral e
pressions can easily be manipulated to show that the foll
ing relations, necessary for the Lorentz gauge condition
hold, are satisfied

]1f 15]3f2]4c, ]2f 15]4f1]3c,
~2.13!

]3f 25]1f1]2c, ]4f 25]2f2]1c.

III. NONLINEAR INTERSECTING M2-BRANES

In Sec. II, we saw that it was straightforward to derive t
first order fields for a localized intersection ofM2-branes.
This raises the question of whether our analysis can be
tended to a full perturbation scheme. Here, we study
02401
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second order perturbations, which already show surpris
results.

To make the analysis tractable, we first find a comp
formulation of the full nonlinear intersectingM2-brane
problem. Our approach is based on the recent work of Fay
zuddin and Smith@36# on localizedM5-brane intersections
in which a supersymmetric ansatz is given for the spacet
fields. We start by adapting the results of@36# to the
M2-brane case. The ansatz in this case, as in@36#, depends
on a single unknown function which must satisfy a nonline
partial differential equation. The spacetime fields found
the previous section, because they are determined by a
source, give a leading order solution to these nonlinear eq
tions in weak field perturbation theory.

A. The non-perturbative ansatz

Fayyazudin and Smith@36# have given an ansatz for th
spacetime fields of a pair ofM5-branes intersecting on
3-brane. In this case, as withM2-branes intersecting at
point, each brane has two spatial dimensions not share
the other. The ansatz in@36# is built around a Ka¨hler metric
on this four-dimensional relative transverse space, with
unknown function being the Ka¨hler potential. Define com-
plex coordinatess5x11 ix2 andv5x31 ix4 on the relative
transverse space. The ansatz for intersectingM2-branes,
analogous to that in@36#, is then given by

ds252H22/3dt212H22/3gmn̄dzmdzn̄1H1/3dgsdxgdxs,
~3.1!

whereg, s55, . . . ,10,zm ranges overs, v, and gmn̄ is a
Kähler metric on the associated four-space; i.e., we may
troduce the potentialK such thatgmn̄5]m] n̄K. The function
H is related to the ‘‘determinant’’g of gmn̄ :

H54g54~gvv̄gss̄2gv s̄gsv̄!. ~3.2!

Taking the three-form gauge potentialA to be related to the
metric through

A0mn̄5
1

2
iH 21gmn̄ , ~3.3!

and calculating the supersymmetry variations of the fie
shows that this ansatz guarantees the existence of Kil
spinorsh satisfying the projection condition

G0mn̄h5 iH 21gmn̄h. ~3.4!

It therefore yields a supersymmetric solution of 1
dimensional supergravity when the equations of motion
the gauge field are satisfied. One can show that these re
to the same nonlinear equation for the Ka¨hler potentialK
found for M5-brane intersections in@36#,

1

2
]m] n̄„8g~K !1]g]gK…5Jmn̄ , ~3.5!

where in this case the sourceJmn̄ is related to the 3-form
currentJbrane

mnr defined in Eq.~2.4! by
2-4
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Jmn̄5
i

2
emm1

enn1
Jbrane

0m1n̄1A2detg11, ~3.6!

where detg11 is the determinant of the full 11-dimension
metric. Thei in Eq. ~3.6! guarantees thatJmn̄ is Hermitian.
Note that because the ‘‘determinant’’g5H/4 is a density,
rather than a scalar, Eq.~3.5! is not a tensor equation. Con
sequently, the form of Eq.~3.5! is invariant only under ho-
lomorphic changes of the coordinateszm for which the Jaco-
bian is the identity.

Following our general strategy, the sourceJmn̄ should be
consistent with the coupled bulk and/or Born-Infeld dyna
ics. Introducing a complex spatial coordinatej5j11 i j2 on
theM2-brane world volume, one can check that the BI eq
tions of motion are satisfied for any static holomorphic co
figuration Xg50, X05j0, Xm5Xm(j), Xn̄5Xn̄( j̄), when-
ever the bulk fields have the form described by Eqs.~3.1!
and ~3.3!. One technical difficulty is that for a single bran
with a delta function source, as in Sec. II, the metric a
three-form potential diverge at the source and, conseque
the Born-Infeld equations of motion are not well defined.
order to deal with this, one may introduce a ‘‘fluid’’ o
‘‘dust’’ of M2-branes which provides a smooth source
which the bulk fields need not diverge. Given the nonlinea
ties, the existence of smooth solutions is nontrivial even
smooth sources. However, if we assume that they do in
exist for arbitrary smooth sources, one may consider a li
in which the dust density approximates ad function. In this
sense, any holomorphic embedding of theM2-brane is a
consistent source for the full coupled nonlinear problem.
particular, since an arbitrary smooth source does lead
smooth bulk fields at first order in perturbation theory, a
holomorphic embedding of theM2-brane is a consisten
source at second order in perturbation theory.

Before studying the weak field perturbation expansion
Eq. ~3.5! for the Kähler potential, we introduce a new set
holomorphic coordinates for the relative transverse sp
(s,v), which will be useful in keeping the calculations com
pact. In complex coordinates the world volume of t
M2-brane source is given by the holomorphic curvesv
5a0

2. This is most easily described by making a holom
phic change of coordinates with unit Jacobian:

a5Asv, b5Asv ln s/v. ~3.7!

Translated into the present notation, the intersect
M2-brane holomorphic curve of Sec. II yields a source
the form

Jaā5
q

2
d~2!~a2a0!d~6!~x'! ~3.8!

with Jab̄ , Jbā , and Jbb̄ vanishing andx' representingxg

for g51 to 6. Hereq is a charge describing the number
branes that are present anda0 is the parameter describing th
‘‘neck’’ of the holomorphic curve. Note that such a holomo
phic source satisfies the obvious integrability condition
the existence of a solution to Eq.~3.5!: there is a potentia
J5(q/4p)lnua2a0ud(6)(x') such thatJmn̄5]m] n̄J. In terms
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of the ~a, b! coordinates, the field equations and source
just as for a flat brane, which will simplify the calculation
below. Note however, that what makes the problem n
trivial in the coordinates~a, b! are the boundary conditions
These are determined by the fact that the asymptotic me
takes the standard Cartesian form in terms of the originals, v
coordinates, and that thes, v coordinates are to range ove
~exactly! the complex plane. The result is that the coordin
b ranges only over a strip, and that the asymptotic form
the metric is complicated in terms ofa and b. Thus, it is
nontrivial to construct the exact solution.

However, for the purposes of this paragraph only, let
make the assumption that the boundary conditions at infi
are not important near the source. In this case, the stan
flat-brane solution holds~approximately! in this region. One
obtains a solution in which, as usual, the ‘‘source’’ ata
5a0 is replaced by a horizon through which the soluti
may be smoothly continued. Thus, if the boundary con
tions are indeed unimportant near the source, we shoul
the end obtain a solution of the sourceless 11-dimensio
supergravity equations.

B. Perturbation expansion

As noted in @36#, the nonlinear equation~3.5! for the
Kahler potentialK can be solved using a weak field expa
sion. Expand the Ka¨hler potential asK5Sn>0K (n), where
K (n) is proportional to qn, and also introducegnm̄

(n)

5]n]m̄K (n). We want to perturb around flat spacetime,
the zeroth order Ka¨hler metric isgmn̄

(0)5dmn̄ ~with dss̄5
1
2 ),

which follows from the zeroth order Ka¨hler potentialK (0)

5(ss̄1vv̄)/2. Since we perturb around flat spacetime, t
asymptotic boundary conditions will play a central role.

The nonlinear equation for the Ka¨hler potential~3.5! is
the same for both theM2-brane intersections considere
here and theM5-brane intersections studied in@36#. Solu-
tions for intersectingD2-branes can be constructed by co
sidering the setup forM2-branes, taking the source to b
independent ofx10 ~i.e., smearing the branes along this d
rection!, and using dimensional reduction. Further smear
of the source can create additional symmetry directions,
we can then use classicalT duality of the supergravity and
Born-Infeld theories to construct a fully localize
Dp'Dp(p22) solution in type-II supergravity coupled to a
appropriate brane source. Thus, by letting the indexg range
over an appropriate number (d572p) of transverse direc-
tions, Eq.~3.5! in fact describes intersecting solutions of th
form Dp'Dp(p22). However, as we perturb around fl
space and impose asymptotically flat boundary condition
thed dimensional transverse space, we will only analyze
cases withd>3 in detail below@i.e., Dp'Dp(p22) with
p<4 or intersectingM2- or M5-branes#.

Given the form of the zeroth order fields, the first ord
terms in Eq.~3.5! combine to give

1

2
¹2~gmn̄

~1!!5Jmn̄ , ~3.9!

where¹2 here denotes the (d14)-dimensional flat Laplac-
2-5
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ian in the four relative transverse coordinatess, s̄, v, v̄, and
the d overall transverse coordinatesxg, ¹254]s] s̄14]v] v̄
1]g]g . Let us introduce the notation@s#5215@ s̄#, @v#
5115@ v̄#. Then, withm(n̄) ranging overs, v ( s̄,v̄), all
the source components of Eq.~2.8! assemble using Eq.~3.6!
into the compact form
E

ic

s
ce
l
e

q

d
-

te
es
th

u
cu

02401
Jmn̄5e@m#b/2ae@ n̄#b̄/2ā
q

2
d~2!~a2a0!d~d!~x'!, ~3.10!

and the components of the first order Ka¨hler metric are given
by
gmn̄
~1!5

2g

~d12!vd13
E d2b8

e@m#b8/2a0e@ n̄#b̄8/2ā0

S (
g51

d

xgxg1us2a0e2b8/2a0u21uv2a0eb8/2a0u2D ~d12!/2 , ~3.11!
r
-
flat

nd

ive.

tur-
n-
r

ose

ion

is

se

c-
wherevd13 is again the volume of the unit (d13)-sphere.
These results are a more compact form of those given in
~2.9! in Sec. II ford56.

The sourcesJmn̄ do not depend on the background metr
Therefore, the right-hand side of Eq.~3.5! only has contribu-
tions at first order. Continuing to the expansion of Eq.~3.5!
we find that the terms of orderj satisfy

]m] n̄S ¹2K ~ j !18 (
1<k< j 21

~gss̄
~k!gvv̄

~ j 2k!2gv s̄
~k!gsv̄

~ j 2k!! D 50,

~3.12!

for j .1. Boundary conditions at infinity for localized brane
imply that the quantity in parenthesis must vanish. Hen
the higher order terms inK satisfy a flat ten-dimensiona
Laplace equation with sources given by products of low
order terms and are given formally by the integrals

K ~ j !~x0!5
4

~d12!vd13
E d10x

~gss
~k!gvv̄

~ j 2k!2gv s̄
~k!gsv̄

~ j 2k!!

ux02xud12 ,

~3.13!

where the notationx0 ,x includes the complex coordinatess,
v, as well as the transverse coordinatesxg. When the inte-
gral ~3.13! converges, it gives the unique solution to E
~3.12! satisfying the appropriate boundary conditions.

C. To converge, or not to converge?

The important question which needs to be addresse
whether the integrals~3.13! for K j do in fact converge, start
ing with the second order termj 52. We consider here the
limit a0→0 in which the smooth intersection degenera
into the singular intersection of two perpendicular plan
Although, due to the large curvature at the intersection,
Born-Infeld description of the dynamics is nota priori jus-
tified in this limit, the considerably more complicated calc
lations fora0Þ0 lead to the same conclusions. These cal
lations are presented in Appendix A. In thea0→0 limit, the
nonzero source terms in Eq.~3.8! are given simply by

Jss̄5
q

2
d2~s!d~x!, Jvv̄5

q

2
d2~v !d~x!. ~3.14!
q.

.

,

r

.

is

s
.
e

-
-

The fact thatJsv̄ , Jv s̄→0 even ats5v50 can be verified by
integratingJsv̄ ~at finite a0) over any region invariant unde
s→eius, v→e2 iuv. The first order metric for the crossed
plane source is just the superposition of the results for
branes ats50 andv50. For example, the componentgss̄

(1) is

gss̄
~1!5

2g

~d12!v113~xgxg1usu2!d/2 , ~3.15!

with an analogous expression forgvv̄
(1) . The off-diagonal

termsgsv̄ andgv s̄ both vanish.
The integral in Eq.~3.13! for K (2) then has the form

K ~2!~x0!5
4

~d12!3vd13
3 E q2

ux02xud12

3
ddx d2s d2v

~xgxg1usu2!d/2~xsxs1uvu2!d/2 . ~3.16!

Let us analyze this integral in a small region nearxg5s
5v50. In this region, we may approximateux02xu by a
constant. Introducingp25xgxg1usu21uvu2, the integral
over this small region factors into an integral over angles a
an integral overr of the form *p32ddp. The integral over
angles does not vanish as the integrand is strictly posit
Thus, whend>4, the integral diverges for anyx0 . However,
for d53, the integral converges and the second order per
bation is well defined. Although we have not explicitly co
sidered the cases withd,3, it is clear that the second orde
perturbation will have no short distance divergences in th
cases.

This calculation suggests that higher order perturbat
theory breaks down when the numberd of overall transverse
dimensions satisfiesd>4, which includes theM2-brane in-
tersection (d56). On the other hand, perturbation theory
potentially well defined ford53, which includesM5-brane
intersections. As will be discussed further in Sec. IV, the
results fit well with both the supergravity results of@30# in
similar, but slightly different situations and with the predi
tions of that work, based on arguments in theD-brane field
theory, for supergravity solutions of the present form.
2-6
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FULLY LOCALIZED BRANE INTERSECTIONS: THE . . . PHYSICAL REVIEW D 61 024012
Since the divergence of second order perturbations m
be unexpected, the reader may wonder if some subtlety
been passed over through the use of singular sources
show that such subtleties are under control, we consider
low the same calculations for smooth sources and study
limit in which the smooth sources approximate the de
functions above.

D. Smooth sources

Still keepinga050, we smooth the sources according

Jss̄5
q

2
f L~ usu21xgxg!, Jvv̄5

q

2
f L~ uvu21xgxg!,

~3.17!

where f L is a smooth, non-negative function which vanish
for r .L and has unit normalization; i.e., satisfyin
vd*0

L f (r )r d11dr51. Note that this smoothing is simple t
carry out because of the ‘‘no force’’ condition between BP
objects. With sources smoothed over any scaleL, solutions
exist at each order of perturbation theory. We want to stu
the behavior of solutions as we takeL→0. Typically there
are many ways to take such a limit in general relativity~see,
e.g.,@41#!. However, the present BPS system is highly co
strained. Fixing the volume integral of the current comp
nents Jmn̄ determines the total charge via Gauss’ la
¹mFmrst5Jrst. Therefore for eachL the solution has the
same charge in the above prescription. Expanding in mu
pole moments, we see that to leading order inr 21, K (1) stays
the same for allL.

Symmetry considerations guarantee that the first or
fields evaluated outside the dust distribution are identica
those from the delta-function source, and thatgsv̄ and gv s̄
remain identically zero. However, the first order fields a
now smooth everywhere, so the integral definingK (2) con-
verges. It therefore gives the correct second order pertu
tion for the smooth source.

Now, consider the limit in whichL→0 and f L becomes
the appropriate delta function. For any smoothf L approxi-
mating the singular source, we may divide the integral
K (2) into an integral over a region outside the support off L ,
and one over a region inside. Since the integrand in the
side region is just the same as in the delta-function case
have already seen that, ford>4, it grows without bound in
the limit. Now note that sincef is non-negative,gss̄

(1) andgvv̄
(1)

are positive and the source forK (2) is of a definite sign.
Thus, the integral over the region containing the source c
tributes toK (2) with the same sign as in the exterior regio
Thus, we conclude that ford>4, in the limit in which the
smooth source becomes a delta function,K (2) grows without
bound at eachx0 .

The effect of this divergence on a physical quantity
somewhat subtle. For example, although the divergence
curs at the same order inr 21 as the term fromK (1) that
encodes the total charge, it cannot in fact effect the to
charge computed at infinity. This is fixed by charge cons
vation, and the divergence can only appear inFmrst at
higher order inr 21. It is useful to note that arguments of th
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above form apply directly to the second order metric pert
bation gmn̄

(2) , and to the normi] ti2;H22/3 of the timelike
Killing field. The latter is a scalar under coordinate transfo
mations, so that its divergence shows that the result is no
artifact of our particular choice of gauge. Thus, we conclu
that perturbation theory breaks down at second order for
calized solutions of intersectingM2-, D2-, andD3-branes.
However, the second order perturbations do exist for loc
ized intersecting solutions of larger branes for whichd<3.

Now, on the one hand, it is no surprise that perturbat
theory cannot construct a full nonlinear solution correspo
ing to a delta-function source. We expect a full solution
have a horizon, which is a strong field effect. Sources may
characterized by a ‘‘charge radius’’r c;q1/(d21), and by a
length scaleL associated with the support off. One expects
perturbation theory to be useful for weak sources w
r c /L!1, but not for strong sources withr c /L;1 or greater.
Of course, the difference between weak and strong sourc
usually apparent only when one attempts to sum the per
bation series. What is interesting about our case is the
plicit divergence of the second order term and the fact t
the behavior is very different ford<3 than for d>4. Al-
though we can say nothing definite about the full nonline
solutions, this strongly suggests that their behavior is qu
tatively different ford>4 than ford<3. In particular, it is
consistent with the prediction of@30# that fully localized as-
ymptotically flat solutions should exist only ford<3. In Ap-
pendix A, we show that the same behavior holds fora0
Þ0.

IV. DISCUSSION

In this work we have explicitly constructed the first ord
perturbative bulk supergravity fields corresponding to int
sectingM2-branes. The corresponding results for a fund
mental string ending on aD3-brane appear in Appendix B
We also showed that, as one would expect, any solution
the coupled bulk supergravity/Born-Infeld system for inte
sections of the formM2'M2(0) orDp'Dp(p22) is con-
trolled by equations of the form presented in@36# for
M5'M5(3). Weused this structure to analyze the seco
order perturbations of the bulk fields. While these pertur
tions are finite and small, far from the branes for intersect
M5-branes and intersectingDp-branes withp>4, the sec-
ond order perturbations diverge everywhere in the space
for intersectingM2-branes and for intersectingDp-branes
with p52,3.

This result appears to fit well with the predictions of@30#
based on field theory considerations. That work started fr
the observation@29# that there are no fully localized solu
tions for one-branes inside five-branes. Solutions do e
when the branes are separated in the transverse direction
the one-branes necessarily delocalize as the transverse
ration is removed. The limit of zero separation gives on
branes ‘‘smeared’’ over the five-branes. It was shown in@30#
that similar results hold in a number of other contexts, su
as D(p24)-branes parallel toDp-branes forp53,4, or
Dp-branes intersecting smearedDp-branes on ap22 sur-
face forp<3. This behavior is in contrast with the situatio
2-7
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GOMBEROFF, KASTOR, MAROLF, AND TRASCHEN PHYSICAL REVIEW D61 024012
for larger branes in which the solutions remain localized
the transverse separation is removed.3

Similar effects are found in certain ‘‘near-horizon
spacetimes. Therefore, one expects to have a field th
description of this effect through an analogue of the duali
described in@31,32#. Understanding the field theory origin o
delocalization was the main goal of@30#. Consider first the
case ofD(p24)-branes parallel toDp-branes. Since both
are associated with a ‘‘width’’ of theD(p24) branes in the
directions along theDp-branes, a natural idea is that th
delocalization in classical supergravity is somehow relate
the scale size of the instantons that describe the sm
branes in the Higgs phase of theDp-brane field theory. In
dualities in general, strong field classical effects on one s
are related to strongly quantum mechanical effects on
other. It turns out that the supergravity delocalization is
lated to the quantum fluctuations of the scale size in the fi
theory. Fluctuations which would be large due to ultravio
effects are suppressed by a string-scale cutoff, but the fl
tuations can still be large due to infrared effects. The relev
field theory lives on the intersection of the two branes a
delocalization occurs in exactly those cases where thi
(011) or (111)-dimensional, for which the infrared effec
do indeed make the fluctuations large. This ‘‘fluctuatio
delocalization duality’’ correctly predicts both cases
which the supergravity should delocalize and the rate
which it does so as the transverse separation is remo
Now considerDp-branes intersectingDp-branes on a sur
face with (p22) spatial dimensions. Such intersectin
branes are associated with holomorphic curvesZ1Z25a0

2 in
C2, whereC denotes the complex numbers. It turns out th
a0 is a modulus and is related to the scale size modu
associated withD(p24)-branes insideDp-branes through T
duality. Thus, one expects similar behavior in this case, w
delocalization related to the quantum fluctuations ofa0 . As
little information was available regarding the classical sup
gravity solutions for fully localized intersecting branes,@30#
could compare the field theory only with the classical sup
gravity solutions in which one brane was smeared over
world volume of the other. For such cases, agreement
once again found with regard both to which cases sho
delocalize and how fast this should happen as the transv
separation is removed. The natural prediction is of cou
that a fully localized solution in which two branes are sep
rated in a transverse direction should also delocalize w
this separation is removed and, therefore, that fully locali
intersecting brane solutions withDp'Dp(p22) should not
exist for p<3. As a result, one expects thatM-theory solu-
tions with M2'M2(0) also should not exist. These are ju
the cases for which we found a divergence of the sec
order perturbations of the bulk fields. Note that since fi
order perturbation theory is linear, the lack of a well-defin
second order perturbation is the natural signature of the n
existence of fully localized asymptotically flat solutions.

3The first such localized solutions were found in@42# in the near-
core limit.
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small subtlety is that one should remember that the fi
theory is dual to the supergravity physics only in the ne
horizon region. As a result, it is not clear just what the fie
theory arguments have to say about the existence of asy
totically flat ~as opposed to near-horizon! supergravity solu-
tions for which the neck sizea0 of the supergravity solution
is comparable to or larger than the charge radiusr c of the
branes. For this reason,@30# could conclude that such solu
tions fail to exist only for smalla0 . It is interesting that our
perturbative results were qualitatively the same for all valu
of a0 , but it is not clear to what extent the existence of fu
nonlinear solutions for largea0 should be reflected in per
turbation theory.

Having found that the second order perturbations fail
exist for d>4, it is natural to ask about the higher ord
perturbations for the cased<3. Do they in fact exist? This is
far from clear. The source terms for the higher order pert
bations are more complicated, and there is the potential
subtle cancellations even in the casea050. We leave this
question for future work.
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APPENDIX A: SOURCES WITH a0Þ0

We now wish to consider the second order perturbat
K (2) for the casea0Þ0. Again, we will find thatK (2) exists
only for d<3. Let us consider the value ofK (2) at some
point x05(x0

g ,s0 ,s̄0 ,v0 ,v̄0). From Eq.~3.13!, this is

K ~2!~x0!5
4

~d12!vd13
E ddx d2s d2v

3
g,s8s̄8

~1!
~x!g,v8v̄8

~1!
~x!2g,s8v̄8

~1! g,v8s̄8
~1!

ux02xu~d12! , ~A1!

with gmn̄
(1) given by Eq.~3.11!. As before, a divergence ca

only result from integrating over the singularities in the fir
order fields that arise at the location of the source. Note
particular, that adding togmn̄

(1) any smooth function ofx with
the same largex behavior will not alter the convergence o
the above integral. This is the strategy we will invoke belo

If, instead of integrating over the entireb strip in Eq.
~3.11!, we restrict the integration to be over only the regi
ub82bu,2e0 , then this changesgmn̄

(1) only by a smooth
function of the sort mentioned above. In the remaini
~small b82b) region, it is useful to expand

e@m#b8/2a0e@m̄#b̄8/2ā0 in powers ofe/a0ª(b82b)/2a0 . We
2-8
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write the resulting infinite series ase@m#b/2a0e@m̄#b̄/2ā0Pmn̄
(1) .

The expressionPmn̄
(1) is a series ine, ē with constant coeffi-

cients.
We also expand terms in the denominator in powers

d/a0ªa/a021. Note that we have
-

n

s

02401
f

us2s8u25e2b/2a0e2b̄/2ā0ud~11b/2a!2e1O~d2,de ,e2!u2
~A2!

and similarly foruv2v8u2. The singularity ofux2x8u will be
controlled by
D5xgxg12 cosh~b/2a01b̄/2ā0!eē1F S 11
b

2a0
D S 11

b̄

2ā0
D e2b/2a0e2b̄/2ā01S 12

b

2a0
D S 12

b̄

2ā0
D e1b/2a0e1b̄/2ā0Gdd̄,

1F S 11
b

2a0
De2b/2a0e2b̄/2ā02S 11

b

2a0
De1b/2a0e1b̄/2ā0G ēd,

1F S 11
b̄

2ā0
D e2b/2a0e2b̄/2ā02S 11

b̄

2ā0
D e1b/2a0e1b̄/2ā0Ged̄ ~A3!
f

in-

un-

ot
ions
e
n-

n-

-

since we may write

ux2x8u25D1O~d3,d2e,de2,e3!

5DS 11
d2

D
O~d,e!1

e2

D
O~d,e! D . ~A4!

Since, for anyb,b̄ the objectD is a positive definite qua
dratic form inxg,d,e, the functionsd2/D, e2/D are bounded
by functions ofb,b̄. Thus, we may write

ux2x8u2~d12!5D2~d12!/2P~2!, ~A5!

whereP2 is a series in bothue/a0u and ud/a0u whose coef-
ficients involve functions of the forme2/D and d2/D. The
most important property ofP(2) is that it does not depend o
m,n̄.

Collecting these observations together, we have

~gmn̄
~1!!sing52

e@m#b/2ae@ n̄#b̄/2ā

~d12!vd13
E

ue,e0u

d2e Pmn̄
~1!P~2!

D~d12!/2 .

~A6!

Note that when considering sufficiently high order term
that arise in the productPmn̄

(1)P(2), the integral overd2b8 is
nonsingular, even forxg50, a5a8. Thus, dropping these
terms again changesgmn̄

(1) only by another smooth function o
appropriate decrease at infinity.

Having dropped the terms inPmn̄
(1)P(2) that are not singular

at e5xg5d50, let us consider takinge0→` to remove the
restriction on the region of integration. The highest rema
ing terms lead to logarithmic diverges at largee, but the
other terms remain finite. Thus, if we add appropriate co
terterms to regulate the logarithmic divergence, takinge0

→` changesgmn̄
(1) only by a bounded function and does n

effect the convergence of the second order perturbat
~A1! to the Kähler potential. The details of treating the larg
e logarithms are not important, as we will see that the co
vergence of Eq.~A1! at smalle is controlled by lower order
terms inPmn̄

(1)P(2).
Extending the integration region in this way over the e

tire complex e-plane, the integral~A6! may be evaluated
exactly ~see, for example,@43#!. The result has the form

@gmn̄
~1!#sing52

e@m#b/2ae@ n̄#b̄/2ā

~d12!vd13

Qmn̄

~xgxg12V2dd̄!d/2
,

~A7!

whereQmn̄ is a polynomial inudu whose coefficients are de
termined by those ofPnm̄

(1)P(2) and
V2~b,b̄ !5~12b/2a0!~12b̄/2ā0!eb/2a0eb̄/2ā01~11b/2a0!~11b̄/2ā0!e2b/2a0e2b̄/2ā0

2
u~12b/2a0!eb/2a0eb̄/2ā02~11b/2a0!e2b/2a0e2b̄/2ā0u2

2 cosh~b/2a01b̄/2ā0!
. ~A8!
2-9
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We must now see how the various terms in Eq.~A7!
effect the second order Ka¨hler potential~A1!. Note that the
first order fields enter quadratically, through the combinat
4H (1)5gss̄

(1)gvv̄
(1)2gsv̄

(1)gv s̄
(1) . The singular part of this expres

sion may be written

~H ~1!!sing5
4

~d12!2vd13
2

Qss̄Qvv̄2Qsv̄Qv s̄

~xgxg1V2dd̄!d/2
. ~A9!

The effects of a term inH (1) of given order inudu on the
second order perturbationK (2) are straightforward to ana
lyze. After rescalingd by V, theb,b̄ dependence factors ou
The integral overb,b̄ converges, and the only integrals r
maining to be done are of the form

E ddx d2duduk

~x21udu2!d . ~A10!

The convergence of such integrals can be studied by in
ps
tio
ur

02401
n

o-

ducing the radial coordinater5Axgxg1udu2. The expres-
sion ~A10! factors into a convergent angular integral and
radial integral that converges fork11>d.

Clearly, the relevant issue is which values ofk actually
contribute. This is just the question of determining the sm
est power ofudu that appears in the numerator of„H (1)

…sing,
which in turn can be found by studying how the first ord
fields ~3.11! enter into (H (1))sing. Let us first consider terms
of the form ~A10! that arise from the constant term inP(2);
i.e., for the moment takeP(2)51.

Note that the first few terms inPmn̄
(1) are

Pmn̄
~1!511@m#e/a01@ n̄#ē/ā01

@m#2

2
e2/a0

21
@ n̄#2

2
ē2/ā0

2

1@m#@ n̄#eē/a0ā01O~e3/a0!. ~A11!

To this same order, takingP(2)51, the singular part ofH (1)

is therefore
~H ~1!!sing
P~2!515

4

~d12!2vd13
2 S E Pss̄

~1!d2e

D~d12!/2 E Pvv̄
~1!d2e

D~d12!/22E Psv̄
~1!d2e

D~d12!/2 E Pv s̄
~1!d2e

D~d12!/2D
5

16

~d12!2vd13
2 a0ā0

S E eē d2e

D~d12!/2 E d2e

D~d12!/22E e d2e

D~d12!/2 E ē d2e

D~d12!/2D 1¯ , ~A12!
-

er

er
rd.

e

r-
as all terms of less than second order cancel out. The elli
above denote terms of higher order. The important ques
is whether the second order terms above also cancel. It t
out that this is not the case. To see this, writeD as AĀeē

1Be1B̄ē1CC̄5u(Ae1B/Ā)u21CC̄2uB/Au2 and change
integration variables tov5Ae1B/Ā. SinceD is even inv,
integrals of the form

E v d2v

D~d12!/2

vanish. As a result, we may write

~H ~1!!sing
P~2!515

16

~d12!2vd13
2 a0ā0uAu6

3E d2v

D~d12!/2 E vv̄ d2v

D~d12!/2

5~const!
1

a0ā0uAu6 ~xgxg1V2dd̄!22~d21!

~A13!

to the same order as in Eq.~A12!. Note thatA depends only
on b,b̄. Let us defined05Vd. ThenK (2) involves the inte-
es
n
ns

gral of the above expression~A13! with respect to the mea

sure V22d2bd2d0ddx' . The integral overb,b̄ converges

and clearly gives a result proportional to (d0d̄0

1xgxg)22(d21). We therefore see that the integral ov

d0 ,d̄0 ,xg converges ifd12.2(d21); i.e., for d<3. On
the other hand, ford>4, this contribution toK (2) diverges at
every point in the spacetime.

We have now shown that, ford>4, the terms that arise
from the order zero piece ofP(2) cause a divergence inK (2)

at orderk52 @in the counting of~A10!#. To conclude that
K (2) is in fact divergent, we need only show that higher ord
terms inP(2) cannot cancel this divergence. This is not ha
Let P(2)(1) be the collection of first order terms inP(2),
proportional to eitherueu or udu. A compensating divergenc
could only come from the interaction ofP(2)(1) with a term
of order e or ē in Pmn̄

(1) . Let Pmn̄
(1)(1) denote the first order

terms in Pmn̄
(1) . Due to the structure of our system,P(2)(1)

always appears with eitherPss̄
(1)(1)1Pvv̄

(1)(1) or Psv̄
(1)(1)

1Pv s̄
(1)(1) . However, both of these vanish. That a higher o

der divergence does not arise from the interaction ofP(2)(1)

with the zero order termPmn̄
(1)(0) in Pmn̄

(1) follows from the fact
that Pmn̄

(1)(0) is independent ofm,n̄. Thus,K (2)(x0) does in-
deed diverge for allx0 when d>4; i.e., for M2, D2, and
D3-branes.
2-10
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FIG. 1. Plot of 7v8f 2 ~which
corresponds to the dilaton! with
fixed x850 and a51. This plot
was made by evaluating the inte
gral ~B12! numerically.
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Once again, one may consider replacing the localized
tersecting brane with a smooth dust of branes concentrate
a region of sizeL in the transverse directions. This leads
smooth metric functionsgmn̄

(1) which converge to the localize
brane first order fields~3.11! in theL→0 limit. The analysis
proceeds much as in the case of a delta-function source
with extra integrals overa0 and the location of the brane i
the xg directions. In particular,H (1) has a similar structure
Thus, in the limit where the source becomes a delta funct
K (2)(x0) diverges for allx0 for d>4. As before, one can als
show thatgmn̄

(2) and i] ti2 diverge as well.
Thus, the second order perturbations are infinite and

turbation theory breaks down at second order ford>4,
though not ford>3. This suggests that the full nonlinea
localized solutions are quite different ford<3 than for d
>4. In particular, it is consistent with the prediction of@30#
that localized solutions should not exist, at least for sm
a0 . It is interesting that the divergence encountered h
does not in fact depend on the value ofa0 , but it is not clear
if such a feature of the full solutions should be apparen
this level of analysis.

APPENDIX B: STRINGS ENDING ON D3-BRANES

In this appendix we compute weak coupling solutions
the coupledD510 type-IIB supergravityD3-brane Dirac-
Born-Infeld system, starting from the world-volume spi
soliton describing a fundamental string ending on
D3-brane@37–39#. For this case, a useful ansatz for the f
nonlinear metric is not known, but we hope that our wo
below will help to motivate one. The total action is given b
S5Sbulk1Skinetic1SWZ , where these terms are given in th
Einstein frame by@44,45#
02401
-
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ut
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Sbulk5
1

gs
2 E d10xAgFR2

1

2
]mf]mf2

1

12
e2fH2

2(
n

1

2n!
eanfF @n#

~R!2G

Skinetic52
1

gs
E d4jA2det~Gab1e2f/2Fab!

SWZ52
1

6gs
E D2

1

4gs
E BR∧F2

1

8gs
E BNS∧BR

2
1

16gs
E lF∧F. ~B1!

Here, BNS is the NS-NS 2-form field,D,BR,l are the
Ramond-Ramond~RR! 4, 2, and 0-form fields, andf is the
dilaton. We have also definedGab5]aXm]bXngmn andFab

5Fab2]aXm]bXnBmn
NS, whereFab is the field strength asso

ciated with the U~1! connectionAa living on the brane. The
field H5dB(NS) is the NS-NS field strength,F @n# are the
field strengths of the corresponding RR gauge potentials,
a152, a351, a550. We have also setl s51. Recall thatF @5#

is a self-dual field strength. This information cannot be
serted in a covariant action, and therefore we must kee
mind that the complete solution forF @5# in terms of the field
D in our equations isF @5#5dD1* dD.

In the weak coupling limitgs→0, the field equations to
zeroth order ings are satisfied by the world-volume spik
soliton @37–39#, representing a fixed numberNF of funda-
2-11
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mental strings ending on theD3-brane in the flat backgroun
gmn5hmn , with all the other bulk fields equal to zero, give
in static gaugeja5Xa5xa, a50,1,2,3 by

X95
a2

r
, A05

a2

r
, ~B2!

where r 25x1
21x2

21x3
2 and a25gsNF . Although it looks

much like the parametera0 associated with the intersectin
brane solutions of Secs. II and III, the parametera appearing
here is physically much different. It does not correspond t
modulus in the field theory and in fact is quantized since
numberNF of fundamental string charge must be an integ

Our aim is to linearize the bulk field equations and co
pute the first order corrections ings . The form ~B2! solves
the Born-Infeld equations only in the limit of smalla @37#,
but this is achieved forgs→0 with NF fixed. Now, smalla
will in fact mean that, for example, the extrinsic curvature
th

in

02401
a
e
r.
-

f

the embedded (311) surface will be large. In general, w
would not expect even the exact Born-Infeld description
be valid in this domain. Luckily, for intersections of th
form, it was shown in@40# that the Born-Infeld description is
in fact exact.

The nonzero components of the brane stress tensor
given by

Tbrane
00 5

1

2gs
S 11

a4

r 4 D d~6!, Tbrane
i i 52

1

2gs
d~6!

~B3!

Tbrane
i9 5Tbrane

9i 5
a2

2gs

xi

r 3 d~6!, Tbrane
99 52

1

2gs

a4

r 4 d~6!,

where the index i ranges over 1, 2, 3 andd (6)

5d(x4)d(x5)¯d(x8)d„x92(a2/r )…. The final expression
for hmn can be given in terms of the following three inte
grals:
f 0~x!5
1

7v8
E d3x8

F ~x12x18!21¯1~x32x38!21x4
21¯x8

21S x92
a2

r 8 D 2G7/2,

f 1
i ~x!5

1

7v8
E x8 id3x8

r 83F ~x12x18!21¯1~x32x38!21x4
21¯x8

21S x92
a2

r 8 D 2G7/2,

f 2~x!5
1

7v8
E d3x8

r 84F ~x12x18!21¯1~x32x38!21x4
21¯x8

21S x92
a2

r 8 D 2G7/2, ~B4!
as

the
tal
with v8 being the area of the 8-sphere. The solution for
linearized Einstein metric is

h005
gs

2 S f 01
3a4

2
f 2D , hii 52

gs

2 S f 02
a4

2
f 2D

hAA5
gs

2 S f 01
a4

2
f 2D , h995

gs

2 S f 02
3a4

2
f 2D , ~B5!

h9i5hi95gsa
2f 1

i ,

whereA54, . . . ,8.
Varying the action with respect to the dilaton and keep

only terms that are first order ings yields to ]m]mf
5(gsa

4/2r 4)d (6) which has the solution

f52
1

2
gsa

4f 2 . ~B6!
e

g

For the Neveu-Schwarz~NS! 3-form field strength we have
the linearized equationgs

22]mHmab5J~NS!
ab with nonzero cur-

rent components

JNS
0i 52

a2xi

gsr
3 d~6!, J~NS!

09 5
a4

gsr
4 d~6!. ~B7!

In the ‘‘Lorentz Gauge,’’ these equations read simply
gs

22]m]mB~NS!
ab 5J~NS!

ab and have the solution

B0i
~NS!52a2gsf 1

i , B09
~NS!5a4gsf 2 , ~B8!

with all other components vanishing. These are exactly
bulk gauge fields that would be excited by a fundamen
string aligned in thex9 direction.

The first order equations for the Ramond-Ramond~RR!
fields are

1

gs
2 ¹mF @n#

~R!ma¯g
5J~R!a¯g

, ~B9!
2-12
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where the only nonzero currents are

J~R!
i j 52

a2xke
i jk

32gsr
3 d~6!, J0i jk5

ei jk

144gs
d~6!,

~B10!

J09jk52
a2e i jkxi

144gsr
3 d~6!,

and the components obtained by permutations of their in
ces. The current associated with the 0-forml vanishes. Again
we use the ‘‘Lorentz Gauge’’ to solve the equations, a
obtain

Bi j
~R!5

a2gs

32
e i jk f 1

k , D0i jk5
gs

144
e i jk f 0 ,

D09jk52
gsa

2

144
e i jk f 1

i . ~B11!

Let us now explore the form of the integralsf in Eq. ~B4!.
Considerf q with q50,2. The symmetries of all the expre
sions show that we can rotate thexi plane and the (x4 ,...,x8)
plane in such a way that any point in spacetime is equiva
to one such that the only nonzero components arex3 , x8 ,
andx9 . In that situation we integrate overu obtaining

f q~x3 ,x8 ,x9!5
4p

5x3v8
E

0

`

dr r 2~32q!

3F 1

~r 2@~r 2x3!21x8
2#1@a22rx9#2!5/2

2
1

~r 2@~r 1x3!21x8
2#1@a22rx9#2!5/2G .

~B12!

It is easy to see that these integrals will be convergent.
r→` they go like*dr r 22(q12). Note that whenx3→0 both
g
.

ys

02401
i-

d

nt

or

~infinite! terms in~B12! cancel each other. The only singu
larity occurs whenx is located over the source, that is, whe

x850, x3x956a2. ~B13!

This was expected, and means that our perturbative ana
is not valid near the source. Figure 1 shows a plot of 7v8f 2
~which corresponds to the dilaton! with fixed x850 anda
51. The plot was made by evaluating the integral~B12!
numerically.

The flat region is a ‘‘numerical cutoff’’ near the singula
ity at the source; i.e., it is just the region wherev8f 2>50.
Note how the singular region narrows, indicating a wea
singularity, far fromx350. Recall that largex3 is far from
the fundamental string. This behavior is therefore expec
since we know that a pureD3-brane by itself is not a sourc
for the dilaton. The other functionsf q and kq show similar
behavior.

Here we have studied only the lowest order bulk fields
the limit of small a. It would be interesting both to under
stand the first order fields produced by the exact bion so
tion @37# and to study higher order contributions to the bu
fields. For the case where the string passes through
D3-brane~and does not end on it!, @30# would again predict
that a fully localized intersecting brane solution does n
exist. The argument involves considering theS-dual system
of a D1-brane intersecting aD3-brane and identifying a se
of moduli which live on the (011)-dimensional intersection
manifold and which areT dual to the moduli that determin
the delocalization of theD2'D2(0) intersection. In this
case, these moduli are not associated with the parametea,
but rather with the fact that the two halves of the string
opposite sides of theD3-brane can separate. Note, howev
that the case considered here is somewhat different since
only have a string on a single side of theD3-brane. In par-
ticular, we cannot consider this solution as a limit of so
tions in which the branes are separated in a transverse d
tion. Therefore, it appears possible that the present case
have different behavior.
van

ev.
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