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We study fully localized Bogomol'nyi-Prasad-Sommerfield brane solutions in classical supergravity using a
perturbative approach to the coupled Born-Infeld or bulk supergravity system. We derive first order bulk
supergravity fields for world-volume solitons corresponding to intersedfl2gbranes and to a fundamental
string ending on & 3-brane. One interesting feature is the appearance of certain off-diagonal metric compo-
nents and the corresponding components of the gauge potentials. Making use of a supersymmetric ansatz for
the exact fields, we formulate a perturbative expansion which appliédd 20 M2(0), M51L. M5(3) and
DpLDp (p—2) intersections. We find that perturbation theory qualitatively distinguishes between certain
cases: perturbation theory breaks down at second order for intersééngranes and p-branes withp
=<3 while it is well behaved, at least to this order, for the remaining cases. This indicates that the behavior of
the full nonlinear intersectin® p-brane solutions may be qualitatively different fo=3 than forp=4, and

that fully localized asymptotically flat solutions fpr<3 may not exist. We discuss the consistency of these
results with world-volume field theory properties.

PACS numbgs): 04.50:+h, 04.65+e, 11.25-w, 11.27:+d

[. INTRODUCTION of supergravity solutions for a class of fully localized inter-
sections. By fully localized, we mean that the spacetime

The fact that supersymmetric gauge theories describe thigelds have nontrivial dependence on the coordinates
low energy dynamics of branes in string theory has yieldedalong” either brane, and that the sources are appropriate
many important insights, some of which are reviewed indelta functions. Unlike the cases considered28,30, we
[1,2]. The most interesting physics arises when supersymmexre now faced with a nonlinear set of field equations to solve.
try is further broken by brane intersections. For exampleConsequently, our analysis will be restricted to a weak field
Witten [3] (following earlier work in[4]) has shown how to perturbative expansion. We start with2-branes, and solve
recover the results of Seiberg and Wit{é&h on /=2 gauge perturbatively for the spacetime fields due to a nonplanar
theories in four dimensions via intersectihg5-branes in  M2-brane source; namely, one for which te-brane sur-
eleven dimensions. The smooth complex curve describinface is a certain holomorphic curve associated with orthogo-
the M5-brane intersection in this construction provides anal intersecting branes. However, we find that the second
geometric realization of the Seiberg-Witten curve, describingorder term in the perturbation series diverges. Intersections
the renormalization group flow of the Yang-Mills coupling. of D2-branes(D2LD2(0)) and D3-branes(D3L.D3(1))

The constructions referred to above involve branes embehave similarly. On the other hand, in the case of
bedded in flat space. One expects that useful complementait5-branes oD p branes withp=4, the second order term is
information could be obtained from the curved space definite. One can interpret the second order results as support-
scriptions of these same systems. Delocalized solutions fdng the gauge theory arguments [80] about the existence
intersecting branes, in which the harmonic function associand/or nonexistence of fully localized BPS intersecting
ated with each brane is smeared out over the directions paB-brane solutions. Possibly the divergence in the perturba-
allel to the other branes, have been known for some tsee tive expansion indicates a more general result that there are
e.g.,[6-25, and especially26—-29 for reviews. These so- no fully localized, nonplanar, static, gravitating BPS
lutions are useful for many purposes, such as black hol&2-branes oD p-branes fop=<3.
entropy counting constructions, in which the delocalized di- The question of existence probes an interesting aspect of
rections are compactified on a torus. However, the smearinthe gauge theory description of brane dynamics. A version of
wipes out much of the interesting physics. the AdS conformal field theoryCFT) limit [31,32 implies

Despite a good deal of effort, spacetimes describing fully{30] that the near-horizon properties of intersectibiprane
localized Bogomol'nyi-Prasad-Sommerfigl8PS brane in-  spacetimes have a dual gauge theory description. The scale
tersections have proved quite difficult to find. In fact, it hasover which brane intersections are delocalized in classical
been showrj29,3Q that certain intersections are necessarilysupergravity turns out to be dual to the quantum fluctuations
delocalized. These results, however, were limited to eitheof a massless modulus field in the gauge theory. Complete
intersections in which one brane is fully contained within delocalization occurs when these fluctuations become large
another or to “partially” localized intersections in which due to infrared effects. This in turn is determined by the
one of the branes is smeared over the directions parallel tdimensionality of the intersection. The gauge theory analysis
the other brane. In this paper we will consider the existencén [30] accounts for the supergravity results that, for ex-
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ample, Dp-branes cannot be localized within work of [3,37—39. Following the literature, we will refer to
D(p+4)-branes fop=0 or p=1, while they may be local- these nonplanar branes as “intersecting.” These solitonic
ized forp=2. configurations are appropriate sources for the bulk field

As a starting point for the present analysis, consider th@quations linearized around flat space. In Sec. II, we work
delocalized solution for a pair ok2-branes, one in the Out the linearized fields for the Bl soliton source describing

(t,1,2) plane and one in the,8,4) plane, intersecting at the intersectingM2-branes. We will see from the linearized
origin. The spacetime fields are analysis that certain off-diagonal terms in the metric, as well

as certain additional components of the gauge field, are gen-

ds?=—(f,f,) ~22dt?+ £ 23 33(dx + dxd) erated by Bl soliton sources.
Any BI soliton generates a solution to the bulk field equa-
+ 11538, A+ doG) + (1) YA+ +dy), tions linearized about flat space. Distinctions between differ-
ent intersecting brane configurations, however, arise when
At12:f1_1’ At34:f2_1, fi=fi(Xs,....X10), Vifi:(), we look at higher orders in the weak field expansion. Carry-

(1.1 ing out a perturbative expansion based directly on the field
equations would be a tedious task. Fortunately, the super-

whereV?2 =2+ -+ 2, One can try to find localized inter- symmetry of the BI soliton sources leads to considerable
sections by starting with an ansatz of the fofinl) and  simplifications. Recently, Fayyazuddin and Snf{i#6] have
allowing the functions; andf, to depend on all the spatial presente_d an ansatz for the_ spacetime fields of fully localized
coordinates, i.e., not only the directiors, ... x,o transverse intersectingM5-branes, which preserves half of the 32 su-
to both branes, but alse,, X,, Xz, andx,. However, the persymmetnes_oD.:ll supergrawt)?..The remaining unde-
equations of motion turn out to require that at least one of th&€rmined function in the ansatz satisfies a nonlinear set of
branes remains delocalizd83—36. If, for example, the €duations.

M2-brane in the34) plane is to be localized, we must have to gg?a?;ri{gh;for\:\garﬂ;toe agtﬁsr;?ze f];g(x)rrzn.]b?;:]le iﬁ?esriteZ[c?;]ns
translation invariance in the® x* directions, i.e., thet(2) pprop

brane cannot be localized. Furthermore the supergravi gnd this is done ?n sec. ll. The alte_red ansatz dqes in f_act
. : t}fjuarantee the existence of Killing spinors appropriate to in-
equations then reduce to tersectingM 2-branes. A useful consistency check is that the
ansatz matches the linearized solutions of Sec. Il. By dimen-
sional reduction and duality, the same is true for solutions
of Dp-branes intersectin@® p-branes onp—2 dimensional
spatial manifolds inD=10 type Il supergravities. We use
this structure to investigate the second order perturbations to

tions, one must consider a wider class of spacetimes. So the bulk supergravity fields. Although they are finite for

P : ) X Srger branes, for intersecting2-, D2-, andD3-branes, we
physical input is then necessary to determine an appropriaig,q that the second order perturbations diverge at every

g_eneralization of _the di{igona_l ansatz. _O_ur strategy is qunﬁoint in spacetime as we take a delta function limit of
simple. The key ingredients in determining the weak fieldsmooth sources to represent fully localized branes. Section
limit of a given brane intersection are appropriate sourcq|| shows that this holds for a simple “crossed-brane” con-
terms for the field equations. These are provided by couplingigration, while the more complicated calculations associ-
the bulk supergravity fields to brane sources via the Bomyieq with holomorphic curve brane configurations are pre-
Infeld effective action. Now, sinceM2-branes have no gented in Appendix A. As will be discussed in Sec. 1V, this
world-volume gauge fields, the term “Born-Infeld dynam- meshes well with arguments [80] based on the low-energy
ics” may seem inappropriate. However, under dimensionalie|q theory on theD-branes and is likely to be connected
reduction what we refer to here as the Born-Infeld action ofith interesting properties of full nonlinear solutions.
M2-branes reduces to the familiar Born-Infeld action for Lastly, Appendix B considers the weak coupling limit of a
D-branes and it is convenient to use the same term for both,ndamental string ending on3-brane. In this case, we do
systems. _ _ not yet have an ansatz for the full nonlinear spacetime fields,
Smooth world-volume solitons, sometimes called “Bl ¢ we hope that our first order results will help to motivate
solitons,” describing certain nonplanar branes in a backgych an ansatz. The weak field results do show that the Born-
ground flat spacetime have been studied, beginning with thg,se|q spike soliton 0f[37—-39 generates the appropriate
Neveu-SchwarZNS) antisymmetric tensor field to be iden-
tified with a fundamental string.

V2f,=0, V2f,+f,(d5+35)f,=0. 1.2

Given a solution to the first equation fby, the second equa-
tion for f, is then lineatt
It seems clear that in order to find fully localized intersec-

The partially localized intersections studied[20,3( are solu-
tions to equations having this form, but with different numbers of II.

relative transverse and overall transverse directions. The relative We begin by studying the weak field limit of a pair of

transverse directions are taken to be .Compa.th@"d expandedin ) 2-branes intersecting at a point. We take the action to be
Fourier modes. Solutions for which, is localized can always be

found when the two branes are separated in the transverse direc-

tions. However, as the transverse separation is taken to zero, the

Fourier modes with nonzero wave number are driven to zero unless?However, the actual intersecting solutions displayed3] are
the numbed of overall transverse directions satisfis: 3. diagonal and describe one localized and one delocalized brane.

M2-BRANE INTERSECTIONS
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given by S= Sy k+ Sprane. Where Sy is the D=11 super-  any ao _in the compl_ex plane. Now, the Born-Infeld effectivg
gravity action andS,..e is the Born-Infeld action for an action is an approximation to the low-energy brane dynamics

M 2-brane embedded in curved spacetime. The bosonic partélid when certain derivatives are small. For largg, all
of these are given by curvatures of the brane are small and the Born-Infeld de-

scription will therefore be accurate. Furthermore[40] a
related intersection oD3-branes and fundamental strings
was studied in which, due to supersymmetry, the Born-Infeld
description could be shown to be exact. In the present case,
we again expect that our Born-Infeld description of the brane
dynamics is exact for all values afj,.
Note that the parametat, has nothing to do with the
(2.3) charges of the branes; the symmetry of the holomorphic
curve guarantees that we have the same number of branes in

1 - :
Sbrane:_Tf d?’fr*/—detG—geabc(aaxﬂ)(abxv) each of _the two planes. A similar parameter occurs in
D-brane intersections of the for@pL Dp(p—2) and, in

1 1
Sbu|k:®fdll><{ \/__(R_l_ZFZ

1uF F

+ oo et A
(72)2 Hikotaty Mshet7ig Moli0t11

that case, corresponds to a modulus in the low-energy field
X(ﬁcxp)Awp]- (2.2 theory on the branes.

Let us choose coordinated??=X%12 on theM2-brane
world volume. Note that this choice introduces an asymme-
try between the two asymptotic regions. The brane stress
tensorT} .evaluated in a flat background then has diagonal

Here G,p=(9X*)(9,X")g,,, is the induced metric on the
M2-brane world volumeg,, andA,,,, are the spacetime
metric and gauge field, respectively, and M&-brane ten-

sionT is related to théd =11 Planck length byr =1/ |3p An components
M2-brane configuratiork*(&) carries stress-energyf, e ag
given by TOx) = > + 4 58(x—xo),
&(X)— l 5Sbrane T
Thand¥)= "= 5g,,.(x) THOO=T?(x) = — 5 8%(x—Xo), 2.6
4
= 3 — ab M
2\/_ d°éy—detGG ((9 X#) T33(X)=T44(X): 2R4 58()( Xo),
X (9pX") ST = X(£)), (23 and also nonzero off-diagonal components
and current density for the antisymmetric tensor gauge field ag (Xf—xg)
JEre given by TR =T = ——pe— x—xo),
2.7)
1 5Syane. (
Juve — 2(1 TX;X
brané ) /— 5A,uvp(x TZS(X):_T14(X) ;Rlll 258()( XO)
- f d3§€abC((9aXM)(abXV)(aCXp) WhereRzZX%'i‘X% and
5 B asx, asx,
X SH(x— X(&)). (2.4 (X—Xg)= 6| X3~ —X§+X2 O Xgt x2+x O(Xs5)" *+ 8(X10)-

These are conserved if tihé2-brane equations of motion are 14 nonzero gauge current density components are
satisfied.

In a flat and empty background, intersectiki2-branes agT
can be described by a BPS soliton solution to the world- J02=T58(x—xo), J°34=? 8%(X—Xo),
volume equations of motion3,37] with two separate
asymptotic regions
3013 3024 _ 2a0TX1X2

(XX (K HiXY=ad, Xo=---=XD=0. (2.5 R O @8

abT(x{—x3)
R4

For ao 0 this describes a pair of orthogonally intersecting
planes in thg1,2) and(3,4) planes. Foraoqﬁo the intersec-
tion region is smoothed out this scale dag)| is the size of
the “neck” where the two branes join. The Born-Infeld We solve the linearized Einstein equation in the standard
equations of motion in the flat background are satisfied foway. Let g,,=»,,+h,, define yM,,:hW—%nwh, and

J014: _ J023: _

88(x—Xo).
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choose Lorentz gaugé’y,,=0. The linearized Einstein second order perturbations, which already show surprising
equation then reduces 13°99,y,,= —2T03". We find  results.

that the solution is To make the analysis tractable, we first find a compact
formulation of the full nonlinear intersectingd?2-brane
ds?=—(1— 2 (f1+,))d2+(1—2f,+ 3f,)(dXG+dx3) problem. Our approach is based on the recent work of Fayya-
zuddin and Smit{36] on localizedM 5-brane intersections,
+(1+ 35— 5f)(dXG+dX)) in which a supersymmetric ansatz is given for the spacetime

1 Kl fields. We start by adapting the results [86] to the
A+ 3(f1+12)07dxdx + 2(dx,dxs + dxodx,) M2-brane case. The ansatz in this case, d86h depends
+ 2(dx,dxz— dx;dxy,), (2.9 on a single unknown function which must satisfy a nonlinear
partial differential equation. The spacetime fields found in
where the four function$;(x), f,(x), ¢(x), andy(x) sat- the previous section, because they are determined by a BPS
isfy the flat, spatial, ten-dimensional Laplace equation withsource, give a leading order solution to these nonlinear equa-

different source terms, tions in weak field perturbation theory.
6
V2f1= —|S|58(X—Xo), V2f2= . a:4pl 58(X_X0), A. The non-perturbative ansatz
Fayyazudin and Smith36] have given an ansatz for the
o218 (x2—x2) spacetime fields of a pair df15-branes intersecting on a
2, pl{X1 7~ X3 i ; o ; ;

V2p=— ——7— 8%(x—Xg), (2.10 3-brane. In this case, as witkl2-branes intersecting at a

R point, each brane has two spatial dimensions not shared by
216 the other. The ansatz {186] is built around a Khler metric

V2= — 2a%15xaxp 5(X—Xo) on this four-dimensional relative transverse space, with the

unknown function being the Kder potential. Define com-
o o o plex coordinates=x'+ix? andv=x3+ix* on the relative
Similarly, the linearized gauge field is given by transverse space. The ansatz for intersectihg-branes,

A= — f,dx°0dx 0dx%— f,dx°0dx3Cidx* analogous to that if36], is then given by

+ lﬂ(dXODXmDdX‘a"‘ dXODdXZDdX4) dSZZ — H_2/3dt2+ 2H_2/3 m_ndZdeH‘i‘ H1/35de7dx",
(3.9
+ ¢(dx°Odx0dx*— dx°0dx?0dx®).  (2.11) _
where v, 0=5,...,10,Z™ ranges overs, v, andg,y is a
Integral expressions for the functiorig(x), f,(x), é(X), Kahler metric on the associated four-space; i.e., we may in-

and y(x) are then easily obtained using the ten-dimensionairoduce the potentig such thag,,,= d,dnK. The function
Green'’s function. The resulting expression, for efg(x) is  H is related to the “determinantq of g;:
given by

H=49=4(9,y9ss— 9vsOsv) - (3.2
fl(x)leg,f d2y{(x;—y1)?+ (Xo—Y5)? Taking the three-form gauge potentialto be related to the
metric through
+ (3= a?y1 /(YT +Y3))? .
+(Xat @Yo (Y2 +y2)) 2+ x84, (212 Aomn—751H 19 (3.3

where =1/8wg and wy is the volume of the unit 9 sphere. and calculating the supersymmetry variations of the fields
This integral, like the similar ones fdr,, ¢, and, cannot  shows that this ansatz guarantees the existence of Killing

be simply evaluated analytically. However, the integral ex-spinors satisfying the projection condition
pressions can easily be manipulated to show that the follow-

ing relations, necessary for the Lorentz gauge conditions to Iormm=iH " 1gm7- (3.9

hold, are satisfied ) . .
It therefore vyields a supersymmetric solution of 11-

f1=03p— s, 9of1=3d4p+d3p, dimensional supergravity when the equations of motion for
(2.13  the gauge field are satisfied. One can show that these reduce
d3fo=0d1+ doth,  I4fo=0dop— 1. to the same nonlinear equation for the Hexr potentialK

found for M5-brane intersections 86,
IIl. NONLINEAR INTERSECTING M2-BRANES 1
In Sec. Il, we saw that it was straightforward to derive the Eam‘;ﬁ(Sg(K) +950,K)= i, @9
first order fields for a localized intersection bf2-branes.

This raises the question of whether our analysis can be exwhere in this case the sourdg;; is related to the 3-form
tended to a full perturbation scheme. Here, we study theurrentJ;'? defined in Eq.(2.4) by
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i om-m of the (a, B) coordinates, the field equations and source are
Jmn=2 €mm, & Jprane ¥~ 4€G11, (3.6 just as for a flat brane, which will simplify the calculations
below. Note however, that what makes the problem non-

where degy; is the determinant of the full 11-dimensional trivial in the coordinatesa, ) are the boundary conditions.
metric. Thei in Eq. (3.6) guarantees that,; is Hermitian. ~ These are determined by the fact that the asymptotic metric
Note that because the “determinang’=H/4 is a density, takes the standard Cartesian form in terms of the original
rather than a scalar, EG3.5) is not a tensor equation. Con- coordinates, and that the v coordinates are to range over
sequently, the form of Eq3.5) is invariant only under ho- (exactly the complex plane. The result is that the c_oordlnate
lomorphic changes of the coordinat® for which the Jaco- B ranges only over a strip, and that the asymptotic form of
bian is the identity. the metric is complicated in terms ef and 8. Thus, it is
Following our general strategy, the sourkg; should be ~ nontrivial to construct the exact solution.
consistent with the coupled bulk and/or Born-Infeld dynam- However, for the purposes of this paragraph only, let us
ics. Introducing a complex spatial coordinate &1+i&2 on ~ Make the assumption that the boundary conditions at infinity
the M 2-brane world volume, one can check that the Bl equa@'® not important near the source. In this case, the standard
tions of motion are satisfied for any static holomorphic con-flat-brane solution holdéapproximately in this region. One
figuration X7=0, X0= £, XM=X"(£), X"=X"(£), when- obtains a solution in which, as usual, the “source” at

ever the bulk fields have the form described by E@s1)  _ *° is replaced by a _horizon through which the solutior_1
and (3.3). One technical difficulty is that for a single brane may be s_moothly c_ontmued. Thus, if the boundary Cond'f
with a delta function source, as in Sec. Il, the metric andions are md?Ed unimportant near the source, we shou_ld n
three-form potential diverge at the source and, consequentl ,e end o_btaln a s_olutlon of the sourceless 11-dimensional
the Born-Infeld equations of motion are not well defined. In upergravity equations.

order to deal with this, one may introduce a “fluid” or _ _

“dust” of M2-branes which provides a smooth source at B. Perturbation expansion

which the bulk fields need not diverge. Given the nonlineari- ~ As noted in[36], the nonlinear equatioii3.5 for the
ties, the existence of smooth solutions is nontrivial even folkahler potentialk can be solved using a weak field expan-
smooth sources. However, if we assume that they do in faddjon. Expand the Kaer potential aK=3.,-,K™, where
exist for arbitrary smooth sources, one may consider a limigc(n) g proportional to q", and also introducegf{%
in which the dust denS|_ty approxmateséeiunctlon. In 'Fhls = 3,9-K™M. We want to perturb around flat spacetime, so
sense, any holomorphic embedding of th2-brane is a

. i ian(0) - . 1
consistent source for the full coupled nonlinear problem. inihe zeroth order Kaler metric isg,;= éyn (With 8ss=3),

) . : i ‘Kede i (0)
particular, since an arbitrary smooth source does lead tgh'@ follows from the zeroth order Heer potentialk
smooth bulk fields at first order in perturbation theory, any= (SStVV)/2. Since we perturb around flat spacetime, the

holomorphic embedding of thé2-brane is a consistent @Symptotic boundary conditions will play a central role.
source at second order in perturbation theory. The nonlinear equation for the_ Keer po_tent|al(3.5)_ is
Before studying the weak field perturbation expansion of"€ same for both thé/2-brane intersections considered
Eq. (3.5) for the Kzhler potential, we introduce a new set of here and theMi5-brane intersections studied [86]. Solu-
holomorphic coordinates for the relative transverse spachOns for intersectind2-branes can be constructed by con-
(s,v), which will be useful in keeping the calculations com- Sidering the setup foM2-branes, taking the source to be
pact. In complex coordinates the world volume of theindependent oki, (i.e., smearing the branes along this di-
M2-brane source is given by the holomorphic cume  rection, and using dimensional reduction. Further smearing
=a§. This is most easily described by making a holomor-©f the source can create add|t|(_)nal symmetry dlrec_t|0ns, and
phic change of coordinates with unit Jacobian: we can then use qlassmﬁlduallty of the supergravity z_ind
Born-Infeld theories to construct a fully localized
a=+sv, B=\svinslv. (3.7) DL Dp(p—2) solution in type-Il supergravity coupled to an
appropriate brane source. Thus, by letting the ingleange
Translated into the present notation, the intersectingver an appropriate numbed€7—p) of transverse direc-
M2-brane holomorphic curve of Sec. Il yields a source oftions, Eq.(3.5) in fact describes intersecting solutions of the
the form form D,L D,(p—2). However, as we perturb around flat
space and impose asymptotically flat boundary conditions in
thed dimensional transverse space, we will only analyze the
cases withd=3 in detail below[i.e., DL Dy(p—2) with
p<4 or intersectingM 2- or M5-brane$
with J.5, Jgo, andJgg vanishing andx, representingc” Given the form of the zeroth order fields, the first order
for y=1 to 6. Hereq is a charge describing the number of terms in Eq.(3.5) combine to give
branes that are present amglis the parameter describing the
“neck” of the holomorphic curve. Note that such a holomor-
phic source satisfies the obvious integrability condition for
the existence of a solution to E¢B.5): there is a potential
J=(q/4m)In|a—ao|89(x,) such thatdm=dmdsJ. In terms  whereV? here denotes thed¢4)-dimensional flat Laplac-

S5 0% a— ag) 59(x,) 38

1
5 V(G = Jw, (3.9
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ian in the four relative transverse coordinasgs, v, v, and _—_q

the d overall transverse coordinates, V2=4d.ds+ 40,y Jmn= e[m]B/Zae[n]Bl2a§ 5P(a—ag)8(x,), (3.10
+4,d,. Let us introduce the notatiops]=—1=[s], [v]

=+1=[v]. Then, withm(n) ranging overs, v (s,v), all

the source components of EQ.8) assemble using E¢3.6) and the components of the first ordertfer metric are given
into the compact form by

elml ﬁ'/za()e[F]E’ 12

(L _ 9 '
m“deZﬂ'( @2 (31D

d
ST+ s age B 20|24 |y — agef 20[2
y=1

wherewg, 3 is again the volume of the unid{+ 3)-sphere.  The fact thatlg;, J,s—0 even as=v =0 can be verified by
These results are a more compact form of those given in EdntegratingJg, (at finite ag) over any region invariant under
(2.9 in Sec. Il ford=6. s—e'’s, v—e '%. The first order metric for the crossed-
The sourced;;do not depend on the background metric. plane source is just the superposition of the results for flat
Therefore, the right-hand side of E®.5) only has contribu-  pranes as=0 andv=0. For example, the compona‘yfbllg) is
tions at first order. Continuing to the expansion of E|5)
we find that the terms of ordgrsatisfy —g
W (3.15

. . , S (d+2) w4 3(XIXY+][s[H) ¥
&mﬁﬁ(VZK(J)+8 2 (g(h) (l:k)_g(‘ﬁ (Ek)) =0,
1< 1

<k$j— SS Jvv VS Jsv
(3.12  With an analogous expression fgf,f,—) The off-diagonal
termsgg; and g,5 both vanish.
for j>1. Boundary conditions at infinity for localized branes  The integral in Eq(3.13 for K(?) then has the form
imply that the quantity in parenthesis must vanish. Hence,

the higher order terms i satisfy a flat ten-dimensional 4 g2
Laplace equation with sources given by products of lower K@)(xq)= 4727552 xo—x[o72
order terms and are given formally by the integrals ( ) @43 0
- i dx d?s dPv
K y(i=k _ K=k
K(j)(X ): 4 j dlox(gss vV gvs gsv ) X(nyy+|S|2)d/2(xaxa+|v|2)d/2- (3-1@
O (d+2)wgs 3 |xo—x|?*? '

(3.13

where the notatioxg,x includes the complex coordinates
v, as well as the transverse coordinax&s When the inte-
gral (3.13 converges, it gives the unique solution to Eq.
(3.12 satisfying the appropriate boundary conditions.

Let us analyze this integral in a small region nedr=s
=v=0. In this region, we may approximate,—x| by a
constant. Introducingp®=x?x?+|s|2+|v|?, the integral
over this small region factors into an integral over angles and
an integral overp of the form fp3~9dp. The integral over
angles does not vanish as the integrand is strictly positive.
Thus, wherd=4, the integral diverges for ang. However,
for d= 3, the integral converges and the second order pertur-
The important question which needs to be addressed isation is well defined. Although we have not explicitly con-
whether the integral3.13 for K! do in fact converge, start- sidered the cases with< 3, it is clear that the second order
ing with the second order teri=2. We consider here the perturbation will have no short distance divergences in those
limit @g—0 in which the smooth intersection degeneratescases.
into the singular intersection of two perpendicular planes. This calculation suggests that higher order perturbation
Although, due to the large curvature at the intersection, theheory breaks down when the numlzkof overall transverse
Born-Infeld description of the dynamics is natpriori jus-  dimensions satisfied=4, which includes thévl2-brane in-
tified in this limit, the considerably more complicated calcu-tersection (=6). On the other hand, perturbation theory is
lations forap# 0 lead to the same conclusions. These calcupotentially well defined fod= 3, which includesM 5-brane
lations are presented in Appendix A. In thg—O0 limit, the  intersections. As will be discussed further in Sec. IV, these
nonzero source terms in E(B.8) are given simply by results fit well with both the supergravity results [80] in
q q similar, but slightly different situations and with the predic-
Y ) tions of that work, based on arguments in Dédrane field
33_55 () 80x), J""_E Fax). (319 theory, for supergravity solutiongs of the present form.

C. To converge, or not to converge?
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Since the divergence of second order perturbations magbove form apply directly to the second order metric pertur-
be unexpected, the reader may wonder if some subtlety hasation ggﬁ% and to the norméy|>~H 2 of the timelike
been passed over through the use of singular sources. Tqlling field. The latter is a scalar under coordinate transfor-
show that such subtleties are under control, we consider benations, so that its divergence shows that the result is not an
low the same calculations for smooth sources and study thgrtifact of our particular choice of gauge. Thus, we conclude
limit in which the smooth sources approximate the deltathat perturbation theory breaks down at second order for lo-
functions above. calized solutions of intersectinil2-, D2-, andD3-branes.

However, the second order perturbations do exist for local-
D. Smooth sources ized intersecting solutions of larger branes for whitk 3.

Now, on the one hand, it is no surprise that perturbation
theory cannot construct a full nonlinear solution correspond-
q q ing to a delta-function source. We expect a full solution to
JS?EfL(|S|2+X7X7), JVT—EfL(IVIZvLX’X’), have a horizon, which is a strong field effect. Sources may be

(3.17  Characterized by a “charge radiug’,~q¥@" Y, and by a
length scald. associated with the support bfOne expects

wheref, is a smooth, non-negative function which vanishesP€rturbation theory to be useful for weak sources with
for r>L and has unit normalization; i.e., satisfying "c/L<1, butnotfor strong sources with/L~1 or greater.
waf5F(r)rd*dr=1. Note that this smoothing is simple to Of course, the difference between weak and strong sources is
carry out because of the “no force” condition between BPSusuaIIy apparent only when one attempts to sum the pertur-

objects. With sources smoothed over any s¢aleolutions bﬁt'.ct)ré_se”es' Wh?tﬂ']S mteresélng dabotut our C;‘;‘ﬁ "?( th[etr? Xt
exist at each order of perturbation theory. We want to stud Icit divergence of the second order term and the fact tha

the behavior of solutions as we take-0. Typically there tEe bihavior is very difrl:_erendt fdeTB kt)harg tﬁ)r<:fl>”4. All'.
are many ways to take such a limit in general relativige, ough we can say nothing definite about the fufl noniinéar

i solutions, this strongly suggests that their behavior is quali-
e.g.,[41]). However, the present BPS system is highly con->". ! . o
strained. Fixing the volume integral of the current compo-tat've_Iy dlffer_ent ford>4_ than ford=3. In partlcu!ar, it is
nents J.— determines the total charge via Gauss' law consistent with the prediction ¢80] that fully localized as-
VMFWUTL 3097 Therefore for eaclt the solution has the YMPtotically flat solutions should exist only for<3. In Ap-

same charge in the above prescription. Expanding in multipendlx A, we show that the same behavior holds agr
pole moments, we see that to leading orderif, K stays
the same for allL.

Symmetry considerations guarantee that the first order IV. DISCUSSION
fields evaluated outside the dust distribution are identical to
those from the delta-function source, and thgt and g,

Still keepingay=0, we smooth the sources according to

In this work we have explicitly constructed the first order
0 . X ) perturbative bulk supergravity fields corresponding to inter-
remain identically zero. However: the first qrder )flelds aresectingM2-branes. The corresponding results for a funda-
now smooth everywhere, so the integral definkig’ con- mental string ending on B3-brane appear in Appendix B.

verges. It therefore gives the correct second order perturbggye aiso showed that, as one would expect, any solution of

tion for the smooth source. _ the coupled bulk supergravity/Born-Infeld system for inter-
Now, congder the limit in whiclk—0 andf, becomgs sections of the fornM2.. M2(0) orDp.L Dp(p—2) is con-
the appropriate delta function. For any smoéthapproxi-  qjled by equations of the form presented [i86] for
mating the singular source, we may divide the integral for 5, \15(3). Weused this structure to analyze the second
K® into an integral over a region outside the support,of  orger perturbations of the bulk fields. While these perturba-
and one over a region inside. Since the integrand in the oUtons are finite and small, far from the branes for intersecting
side region is just the same as in the delta-function case, W@ 5_pyranes and intersectirgp-branes withp=4, the sec-
have already seen that, fd=4, it grows W'tho‘{‘ boundl N ond order perturbations diverge everywhere in the spacetime
the limit. Now note that sincéis non-negativeg'y andg(y)  for intersectingM 2-branes and for intersectingp-branes
are positive and the source f&® is of a definite sign. with p=2,3.
Thus, the integral over the region containing the source con- This result appears to fit well with the predictions[80]
tributes toK? with the same sign as in the exterior region. based on field theory considerations. That work started from
Thus, we conclude that fa=4, in the limit in which the the observatiori29] that there are no fully localized solu-
smooth source becomes a delta functigf?) grows without  tions for one-branes inside five-branes. Solutions do exist
bound at eaclxg. when the branes are separated in the transverse direction, but
The effect of this divergence on a physical quantity isthe one-branes necessarily delocalize as the transverse sepa-
somewhat subtle. For example, although the divergence ocation is removed. The limit of zero separation gives one-
curs at the same order in ! as the term fromK®) that  branes “smeared” over the five-branes. It was showfBid]
encodes the total charge, it cannot in fact effect the totathat similar results hold in a number of other contexts, such
charge computed at infinity. This is fixed by charge conseras D(p—4)-branes parallel tdp-branes forp=3,4, or
vation, and the divergence can only appearFf¥°” at  Dp-branes intersecting smear@p-branes on gp—2 sur-
higher order irr ~. It is useful to note that arguments of the face forp=<3. This behavior is in contrast with the situation
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for larger branes in which the solutions remain localized asmall subtlety is that one should remember that the field
the transverse separation is removed. theory is dual to the supergravity physics only in the near-

Similar effects are found in certain “near-horizon” horizon region. As a result, it is not clear just what the field
spacetimes. Therefore, one expects to have a field theotj)eory arguments have to say about the existence of asymp-
description of this effect through an analogue of the dualitiegotically flat (as opposed to near-horizosupergravity solu-
described i131,32. Understanding the field theory origin of tions for which the neck size, of the supergravity solution
delocalization was the main goal (80]. Consider first the IS comparable to or larger than the charge radiusf the
case ofD(p—4)-branes parallel t®p-branes. Since both t?ranes.. For th_|s reasof30] could cor.1cllude tha}t such solu-
are associated with a “width” of th® (p—4) branes in the tions fail Fo exist only for smallho: It is interesting that our
directions along theDp-branes, a natural idea is that the perturbatlv_e _results were qualitatively the same for all values
delocalization in classical supergravity is somehow related t(?'c @0, DU It IS pot clear to what extent the eX|stenqe of full
the scale size of the instantons that describe the small onlm_ear solutions for largery should be reflected in per-

. . . urbation theory.

branes in the Higgs phase of thep-brane field theory. In Having found that the second order perturbations fail to
dualities in general, strong field classical effects on one Sid%xi

. st for d=4, it is natural to ask about the higher order
are related to strongly quantum mechanical effects on thBerturbations for the cagk<3. Do they in fact exist? This is

other. It turns out that the supergravity delocalization is '®%ar from clear. The source terms for the higher order pertur-

lated to the quantum fluctuations of the scale size in the fiel) .1ions are more complicated, and there is the potential for
theory. Fluctuations which would be large due to ultravioletg, e cancellations even in tr’1e casg=0. We leave this
effects are suppressed by a string-scale cutoff, but the flugs,,astion for future work.

tuations can still be large due to infrared effects. The relevan
field theory lives on the intersection of the two branes and
delocalization occurs in exactly those cases where this is ACKNOWLEDGMENTS
(0+1) or (1+1)-dimensional, for which the infrared effects

SOI lndle_eo[{_ malije th,,ﬂucwat'%ns Iarg_e.t Thb'str‘;ﬂucwat'o.n'Amanda Peet, P. Ramadevi, Larus Thorlacius and, espe-
elocallzation duallty - correctly predicls both Cases N .y jorge Pullin for useful discussions. This work was

Wh!Ch .the supergravity should delocalize and the rate a upported in part by National Science Foundation Grant No.
which it does so as the transverse separation is remove

. . . HY94-07194. D.M. and A.G. were also supported in part
Now considerD p-branes intersectin@ p-branes on a sur- by NSF Grant No. PHY97-22362 and funds from Syracuse
face with (p—2) spatial dimensions. Such intersecting University. The work of D.K. and J.T. was also supported in
branes are associated with hOlomOI’phiC CurZ§32=aS in part by NSFE Grant No. PHY98-01875.

C?, whereC denotes the complex numbers. It turns out that

ag is a modulus and is related to the scale size modulus

associated witlD (p— 4)-branes insid® p-branes through T APPENDIX A: SOURCES WITH a@,#0

duality._Thgs, one expects similar behavior in_this case, With  \y/e now wish to consider the second order perturbation
delocalization related to the quantum fluctuations:gf AS (@) for the casavg+0. Again, we will find thatk @ exists
little _mforma_tlon was avallable_ rega_rdlng the_ classical super-OnIy for d=3. Let us consider the value #? at some
gravity solutions for fully localized intersecting bran¢30] 0iNt Xo= (X7 S8,V o, Vg). From Eq.(3.13, this is

could compare the field theory only with the classical super? 071702020, %0, 10/ q.(2.19,
gravity solutions in which one brane was smeared over the

world volume of the other. For such cases, agreement was K@ (xg) = 4 f dx d2s By

once again found with regard both to which cases should T (d+2)wgss

delocalize and how fast this should happen as the transverse (1) D 1 (D
separation is removed. The natural prediction is of course 955X, (X) =979 5
that a fully localized solution in which two branes are sepa- X [Xo—x|[@F2 '
rated in a transverse direction should also delocalize when

this separation is removed and, therefore, that fully localized . 1) .
intersecting brane solutions wip. Dp(p—2) should not Wit Iy given by Eq.(3.11). As before, a divergence can

exist for p<3. As a result, one expects thettheory solu- only re;sult from intggrating over the singularities in the firs;
tions with M21 M2(0) also should not exist. These are just order fields that arise at the location of the source. Note, in
the cases for which we found a divergence of the secon@articular, that adding tg{+X any smooth function ok with
order perturbations of the bulk fields. Note that since firsthe same large behavior will not alter the convergence of
order perturbation theory is linear, the lack of a well-definedthe above integral. This is the strategy we will invoke below.
second order perturbation is the natural signature of the non- If, instead of integrating over the entig strip in Eq.
existence of fully localized asymptotically flat solutions. A (3.11), we restrict the integration to be over only the region
|B'— B|<2¢y, then this changegﬁnl% only by a smooth
function of the sort mentioned above. In the remaining

;L . S
3The first such localized solutions were found#2] in the near- (sma!l B ,i?), region, it is useful to expand
core limit. elMIB 2a0glmlB 220 in powers of e/ ag:=(B' — B)/2ay. We

We would like to thank Patrick Brady, Pablo Laguna,

(A1)
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write the resulting infinite series ag™#/2%0glmA/2a0p(L). |s—s'|2= e~ BlRa0g=Bl2%0| 5(1+ Bl2a) — e+ O( 82,5, , €2)|?
The expressioP't is a series ine, € with constant coeffi- (A2)
cients.

We also expand terms in the denominator in powers ofand similarly for|v—v'|?. The singularity ofx—x'| will be
Ol ag:=al ag— 1. Note that we have controlled by

B
1+2770

1+

g BlRagg— Bl2ayg +
2(10

A=XX7+2 coshi Bl2ay+ Bl2ay) €€+

1_£ 1_£_ e+,6/2a0e+E/230 56,
2(10 2 0 '

N <o,

1+ ﬁ e*ﬁ/Z“oe*E/ZEO— 1+ ﬁ e+Bl2a0e+E/2;0
Zao 26!0

|

+ € (A3)

14 E o+ BlRagg+ Bl2ag
Zao

1+ 2 ef,elza()efﬁ/z%_
26!0

since we may write nonsingular, even fox?=0, a=«'. Thus, dropping these
terms again chang@énl%only by another smooth function of
Ix—x'|2= A+ O( 6%, 6%, 8€2,€3) appropriate decrease at infinity.
Having dropped the terms Iﬁfﬁ#’(z) that are not singular
at e=x"=6=0, let us consider takingy— o to remove the
restriction on the region of integration. The highest remain-
ing terms lead to logarithmic diverges at largebut the
other terms remain finite. Thus, if we add appropriate coun-
terterms to regulate the logarithmic divergence, takéag
— 0 changesgfr% only by a bounded function and does not
effect the convergence of the second order perturbations
(A1) to the Kanler potential. The details of treating the large
|x—x'|~(d+2) = A~ (d+2/2p(2) (A5) € logarithms are not important, as we will see that the con-
vergence of Eq(Al) at smalle is controlled by lower order

2 2

5
—A 1+X0(5,e)+%0(5,e) (A9

Since, for anyB,3 the objectA is a positive definite qua-
dratic form inx?, 8, ¢, the functions5?/A, €?/A are bounded

by functions of3, 3. Thus, we may write

. . inp(Lp(2
whereP? is a series in bothe/ ao| and|s/ag| whose coef-  terms inPipP @),

ficients involve functions of the forna?/A and 6%/A. The  Extending the integration region in this way over the en-
most important property g is that it does not depend on tiré complex e-plane, the integralA6) may be evaluated
m,n. exactly (see, for exampld43]). The result has the form

Collecting these observations together, we have

elmlp/2a e[ﬁ] Bl2a Quim

[m]BI2a A[N]Bl2a d2e pPLp2 [9 ) gne= — —
e e € mnJsing
@y - - . mn_ d+2)w V¥ 2 so\df2
(O sing A+ 2 as LqO' K@ ( Jwg+z  (XYXY+20280) a7
(A6)

Note that when considering sufficiently high order termswhereQ,, is a polynomial in|8| whose coefficients are de-
that arise in the produd®{2p®?), the integral oved?g’ is  termined by those oP{2P®) and

O2(B,B)= (1~ Bl2ag)(1— BlZag)eP220eP 1200 + (1 + fl2c) (1+ Bl2ag) e #2e0e~Fl2ao

|(1— Bl2ag) ePl2e0eBl200 — (1 + BI2ay) e~ Pl2xog ™ Bl2ao|2

— (A8)
2 coshi Bl2ay+ Bl2ay)
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We must now see how the various terms in E47)  ducing the radial coordinate=\X”x”+[5]?>. The expres-
effect the second order IKéer potential(Al). Note that the sion (A10) factors into a convergent angular integral and a
first order fields enter quadratically, through the combinatiorradial integral that converges f&r 1=d.
4H(1):g(9 (l—)—g(l—) W The singular part of this expres- Clearly, the relevant issue is which valueslkofctually

sion ma;sbev;witt;\r/] v contribute. This is just the question of determining the small-
est power ofl| that appears in the numerator @12)g,q,
" 4 QsQyv— Qs Qvs which in turn can be found by studying how the first order
(H™)sing= A9)  fields(3.1D) enter into HM)ging. Let us first consider terms

d+2)%w] 25sdi2” .
(d+2)%04: 5 (xx7+0?60) of the form (A10) that arise from the constant term Rf2);

: : : i @)
The effects of a term itH®) of given order in|d| on the -6 for the moment take™=1. o
second order perturbatiok(® are straightforward to ana-  Note that the first few terms iR - are

lyze. After rescalings by ), the,B,Edependence factors out. 12
= m

2
The integral overB, 8 converges, and the only integrals re- PU=1+[m]elag+[N]elag+ [ 2l al+ @?/Eé
maining to be done are of the form 2 2

ddx d25] 8 +[m][n]€el agag+ O(€ arg). (A11)

N ERCE A10

O+ TP (A10

To this same order, taking‘®=1, the singular part ofi (%)
The convergence of such integrals can be studied by intras therefore

(PP =1 4 P(Slg)dze P\%—)dze Pg—)dze P\%dze
(H'™) ging :(d+2)2w§ . JA(d+2)/2fA(d+2)/2 JA(d+2)/2 AdT272
+

16 eed?e d?e ed?e ed?e
:(d+2)2w§+3a050 AT | AW@F IR | A[@TDR | A+

T (A12)

as all terms of less than second order cancel out. The ellipsegal of the above expressidAl3) with respect to the mea-
above denote terms of higher order. The important questiogyre () ~2d28d25,d%, . The integral overs, 3 converges
is whether the second order terms above also cancel. It turns . . -

o _ Z~_and clearly gives a result proportional to 5y6,
out that this is not the case. To see this, wiiteas AAce

t IS IS oo 0= , +x7x?)"2@-1)  We therefore see that the integral over
+Be+Be+ CC=[(Ae+B/A)|*+CC—|B/A]* and change 89,60,X? converges ifd+2>2(d—1); i.e., ford<3. On

integration variables ta=Ae+B/A. SinceA is even inw,  the other hand, fod= 4, this contribution tk @ diverges at
integrals of the form every point in the spacetime.
o d2e We have now shown that, fat=4, the terms that arise
f e from the order zero piece ¢¥®) cause a divergence K®
at orderk=2 [in the counting 0f(A10)]. To conclude that
K(?) is in fact divergent, we need only show that higher order
terms inP(®) cannot cancel this divergence. This is not hard.
Let P pe the collection of first order terms iR,

vanish. As a result, we may write

(HOHPZ=1_ 16 _ proportional to eithefe or |8. A compensating divergence
sing (d+2)2 2 |A|6 . . (2)(1) \nsi

Wq+3%pQ0 could only come from the interaction &f with a term

Po [ 0o de of order e or € in P{L. Let P{H™M denote the first order
XJ AGT2R | A2 terms inP{X. Due to the structure of our systerR(®®
always appears with eithePYM+pLM) or pLID)

=(cons}) __1 5 (X7X7+925g)72(d71) + Pf,lg)(l). However, both of these vanish. That a higher or-

agag|Al der divergence does not arise from the interactio®Gf(*)

(A13)  Wwith the zero order terrﬁ’ﬁnl%(o) in anl%follows from the fact

that P2 is independent ofm,f. Thus,K(?)(x,) does in-

to the same order as in E(A12). Note thatA depends only  deed diverge for alk, whend=4; i.e., forM2, D2, and
on B,B. Let us defines,=Q 6. ThenK(® involves the inte-  D3-branes.
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FIG. 1. Plot of 7wgf, (which
corresponds to the dilatprwith
fixed xg=0 and a=1. This plot
was made by evaluating the inte-
gral (B12) numerically.

f2

Once again, one may consider replacing the localized in- 1 1 1
tersecting brane with a smooth dust of branes concentrated in =~ Spuk=—=2 f leX\/g{ R=50,4"¢— 1—26_¢H2
a region of sizd. in the transverse directions. This leads to 9s
smooth metric functiongﬁ%which converge to the localized 1 se(R2
brane first order field&3.11) in theL—0 limit. The analysis _; o1 & " Fin)
proceeds much as in the case of a delta-function source, but
with extra integrals over, and the location of the brane in
the x” directions. In particularH®) has a similar structure. 1
Thus, in the limit where the source becomes a delta function, S, ..=— — j d*é\—del( Gy +e 2 F,,)

K(3)(x,) diverges for all, for d=4. As before, one can also 9s
show thatgff% and||d,|? diverge as well.

Thus, the second order perturbations are infinite and per-
turbation theory breaks down at second order dex4, Swz=— i D— i BROF— ij BNSOBR

. . z

though not ford=3. This suggests that the full nonlinear 69s 49 80s

localized solutions are quite different fak<3 than ford

=4. In particular, it is consistent with the prediction [@0] —

that localized solutions should not exist, at least for small 1695

aq. It is interesting that the divergence encountered here

does not in fact depend on the valueagf, but itis not clear Here BNS js the NS-NS 2-form field,D,BR,| are the

if such a feature of the full solutions should be apparent aRamond-RamondRR) 4, 2, and 0-form fields, ang is the

this level of analysis. dilaton. We have also define@,,=d,X"dpX"g,,, and Fap
=Fap— X" 3pX"B),>, whereF ,; is the field strength asso-

ciated with the W1) connectionA, living on the brane. The

field H=dB™S) is the NS-NS field strengthf,; are the

In this appendix we compute weak coupling solutions tofield strengths of the corresponding RR gauge potentials, and
the coupledD =10 type-lIB supergravityD3-brane Dirac- a;=2,a;=1,as=0. We have also sé{= 1. Recall thafFs;
Born-Infeld system, starting from the world-volume spike is a self-dual field strength. This information cannot be in-
soliton describing a fundamental string ending on theserted in a covariant action, and therefore we must keep in
D3-brane[37-39. For this case, a useful ansatz for the full mind that the complete solution f&i;s; in terms of the field
nonlinear metric is not known, but we hope that our workD in our equations i$s;=dD+*dD.
below will help to motivate one. The total action is given by  In the weak coupling limigs—0, the field equations to
S=Spukt Skinetict Swz, Where these terms are given in the zeroth order ings are satisfied by the world-volume spike
Einstein frame by 44,45 soliton [37—-39, representing a fixed numb& of funda-

f | FOF. (B1)

APPENDIX B: STRINGS ENDING ON D3-BRANES
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mental strings ending on tH&3-brane in the flat background the embedded (81) surface will be large. In general, we

9u»= Muv, With all the other bulk fields equal to zero, given would not expect even the exact Born-Infeld description to

in static gauget?=X?=x2, a=0,1,2,3 by be valid in this domain. Luckily, for intersections of this
form, it was shown if40] that the Born-Infeld description is
in fact exact.

VO (B2) The nonzero components of the brane stress tensor are
r’ T o given by

where r’=x2+x3+x3 and a®=g,Ng. Although it looks "y 1
much like the parameter, associated with the intersecting T e — |69, Tbrane —_—_5®
brane solutions of Secs. Il and Ill, the parametexppearing 2g, r 29s
here is physically much different. It does not correspond to a 5 i A (B3)
modulus in the field theory and in fact is quantized since the 79 _qoi _ % X—(S(G) T9 L _5@
numberNg of fundamental string charge must be an integer. brane™ T brane” 5¢ 3¢ v Tbrane™ ng r4

Our aim is to linearize the bulk field equations and com-
pute the first order corrections . The form(B2) solves where the indexi ranges over 1, 2, 3 ands®
the Born-Infeld equations only in the limit of small [37], = 8(x*) 8(x%)---8(x8) 8(x°— (a?/r)). The final expression
but this is achieved fogs— 0 with N fixed. Now, smalle  for h,, can be given in terms of the following three inte-
will in fact mean that, for example, the extrinsic curvature ofgrals:

d3xl

=X+ (Xg—X5) 2 X5+ xE+

1
fo(x)= 7_w8f [(
X1

a,2 2172
Xg—r—,

i 1 Xrid3X/
fl(X)=7—wsf i pawanirl

2
o
'3 (xg—x1)2+ -+ (Xg— X5) 2+ X5+ X5+ | Xo— r_’)
1 d3x’
fz(X):_7w8 i o2 272 (B4)
(X = X)) 2 (Xg— xg) 2 X+ x5+ | Xg— r_’)

with wg being the area of the 8-sphere. The solution for theFor the Neveu—Schwar(zNS) 3-form field strength we have

linearized Einstein metric is the linearized equatiog; 2 9, H*P= J(NS) with nonzero cur-
rent components
Js 3a’ Js a*
hOO:_(fO+_f ), hii:__<f0__f2 ; CYX a4
2 2 2 2 INs= g_§5( ) ‘](NS)_F 5. (B7)
h _9s f +01_4f ) h :%(f _3;'14f (B5) In the “Lorentz Gauge these equations read simply as
AAT 2\ 70T T2 9T |70 o T2 95 29"a,B{iE = I and have the solution
hei=hig=gsa?f} , BoY=—a’gsft,  Bog'=a’ysl2, 8)
with all other components vanishing. These are exactly the
whereA=4,...,8. bulk gauge fields that would be excited by a fundamental
Varying the action with respect to the dilaton and keepingstring aligned in the® direction.
only terms that are first order ims yields to ¢“d,¢ The first order equations for the Ramond-RamdR®)
= (gsa*/2r*) 5 which has the solution fields are

1 1 pary e
¢=-50:'T2. (B6) AT L 89
S
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where the only nonzero currents are (infinite) terms in(B12) cancel each other. The only singu-
20 ik ik larity occurs wherx is located over the source, that is, when
- a“Xye .
ij _ 6) Oijk — 6) _ _
Jr= 32903 0 J —144955 : Xg=0, XgX¢=* a?. (B13)
2 ik (B10) This was expected, and means that our perturbative analysis
309k — _ @€ X g is not valid near the source. Figure 1 shows a plot @17,
14493 ’ (which corresponds to the dilatbmith fixed xg=0 and «

) , . .=1. The plot was made by evaluating the integ(@llL2)
and the components obtained by permutations of their indipymerically.

ces. The current associated with the O-fdrvanishes. Again The flat region is a “numerical cutoff” near the singular-
we use the “Lorentz Gauge” to solve the equations, andy gt the source; i.e., it is just the region whevgf,=50.
obtain Note how the singular region narrows, indicating a weaker
a?g g singularity, far from?<3=0. Recall th_at I_arge<3 is far from
Bi(jR):g_zs Eijkfk' DOijk:1_4$45ijkai the fundamental string. This behavior is therefore expected,
since we know that a puri@3-brane by itself is not a source
gea? for the dilaton. The other functionk, andk, show similar
S

(Bll) behavior.

Here we have studied only the lowest order bulk fields in
the limit of small «. It would be interesting both to under-
. . X stand the first order fields produced by the exact bion solu-
Considerf, with q=0,2. The symmetries of all the expres- i, 37] and to study higher order contributions to the bulk
sions show that we can rotate tileplane and thex,,... Xs)  fields. For the case where the string passes through the
plane in such a way that any point in spacetime is equivaler 3_prane(and does not end on)j30] would again predict
to one such that the only nonzero components)xarexs,  that a fully localized intersecting brane solution does not

Dogik=— 144 eijkfil'

Let us now explore the form of the integrdlm Eq. (B4).

andx,. In that situation we integrate oveérobtaining exist. The argument involves considering ®eual system
Am [ of a D1-brane intersecting B3-brane and identifying a set
fo(Xs,Xe,X0) = 2 J drr2G-a of moduli which live on the (6 1)-dimensional intersection
X3wg Jo manifold and which ard dual to the moduli that determine
1 the delocalization of theéd21 D2(0) intersection. In this
X| — — 5 N case, these moduli are not associated with the parameter
(rL(r—xg)*+xg]+ [a”—rXq]%) but rather with the fact that the two halves of the string on
1 opposite sides of thB3-brane can separate. Note, however,
-— s 5 75 - that the case considered here is somewhat different since we
(rL(r+xg)“+xg]+[a®—rXe]%) only have a string on a single side of tBe8-brane. In par-

(B12)  ticular, we cannot consider this solution as a limit of solu-
tions in which the branes are separated in a transverse direc-
It is easy to see that these integrals will be convergent. Faion. Therefore, it appears possible that the present case may
r—oo they go likefdr r ~2(@%2), Note that wherx;—0 both  have different behavior.
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