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We analyze an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville
fields in the conformal gauge. Its general solution represents a pair of “mirror” black holes with the same
temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the
Schwarzschild—de Sitter case. The existence sfconst solutions and their relation to the solution given by
the 2D Birkhoff theorem is then investigated in a more general context. We also point out some interesting
features of the semiclassical theory of our model and the similarity with the behavior gf Aa&k holes.

PACS numbds): 04.60.Kz, 04.60.Ds

. INTRODUCTION particular model [with a potential of the formV(¢)
=2 sinhB¢] which allows a degenerate solution having a

The existence of exactly solvable models of gravity inconstant value for the dilaton and a two-dimensional de Sit-
two dimensiong1] provides a rich arena for the study of the ter (or anti—de Sitter, depending on the sign of the constant
guantum aspects of black holes. These two-dimensiong) geometry. The situation is similar to that encountered in
black holes, in addition to their own interest, can describethe Schwarzschild—de Sitter case where the degenerate case
particular regimes of higher-dimensional black holes. Theof the Nariai metrid8] is also described by a constant dila-
Callan-Giddings-Harvey-Stroming¢€GHS model[2] de-  ton (i.e., the radial coordinateln Sec. V we shall analyze
scribes low-energy excitations of extrenfadagneti¢ string  the existence of such dilaton-constant solutions in a more
black holes in four dimensions. Ad®lack holes arise in the general setting. We will show in a simple way that these
near-horizon limits of extremal or near-extremal Reissnerconfigurations are possible for the zeros of the potential, after
Nordstron black holes[3,4]. By dimensional reduction, removing the kinetic term of the two-dimensional dilaton-
spherically symmetric gravity can also be described in termgravity theory, and are always accompanied by a constant
of an effective two-dimensional model. curvature geometry. Furthemore, they are always connected

The aim of this paper is to analyze a general family ofwith the presence of degenerate horizons in the theory. Fi-
integrable model$§5] which can recover all known solvable nally, in Sec. VI we make some comments on the semiclas-
models[CGHS[2], Jackiw-Teitelboim[6], and exponential sical behavior of our solutions and show interesting similari-
(Liouville) [7] modeld in some particular limits. The equa- ties with the behavior of AdSblack holes.
tions of motion of the models, in conformal gauge, are
equivalent to those of a pair of Liouville fields for linear
combinations of the conformal factor and the dilaton field. [I. INTEGRABILITY OF 2D DILATON GRAVITY
These properties will be briefly reviewed in Sec. Il. In Sec. MODELS
[l we investigate the properties of the classical solutions,
showing that, in the absence of matter fields, they represent
pair of eternal black holes. In Sec. IV we shall focus on on

Let us consider the general functional action describing a
dilaton-gravity model coupled tt 2D massless and
minimal scalar fields:
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whereV(¢) is an arbitrary function of the dilaton field and 1 9. A9 A
f; are the scalar matter fields. The above expression repre- p==In N2 5, (12
sents a generic model because one can get rid of the kinetic (1+ —A+A_)
term of the dilaton by a conformal reparametrization of the 2
fields and bring the action into the forfi) [9]. In the con- B B
formal gaugeds’= —e?’dx*dx", the equations of motion 1(d,a, d_a_
derived from the actioril) are ¢=- 209, A, TOA
20,9_p+N\?V'(p)e?’=0, 2 N2 A3 +A A,
2w 13
d.0_p+\NV(p)e*=0, (3 1+ —ALA
d,0_f;=0, (4)

as it was found in[10]. Finally we can also recover the
solution for the CGHS modely. =3) in a similar way.

N
—&i¢+251¢0rp—32 (9.f,)2=0. (5) Redefiningai:Ai—Z,BIXiéiaiAi in Egs.(10), (11) we
2= can perform the8—0 limit and we get
By introducing an arbitrary paramet@rwe can rewrite the 1
above equations of motiof2), (3) in the form p= 5'” I ALI_A_, (14)
22 dV(4) , .
d.9_(2p+ Bd)+N\°eP| BV(¢p)+ o =0, (6 d=—NA,A_+a,+a_. (15
dV(é) The above mechanism provides a very simple picture of
the origin of the integrability of these models and suggests a
_ _\2a2p R
9+9-(2p=pd)—N"e (BV(¢) do ) 0. @ particular analysis of the most general integrable hyperbolic

model (8). The hidden reason for this integrability can now
One way to ensure the integrability of the above equations ibe understood as all them are particular cases of a general
to reduce them to a pair of Liouville equatioffd. The most  Liouville integrability of which the hyperbolic model is, in a
general potential satisfying this requirement is sense, the maximal one. The hyperbolic model is then the
most complicated solvable model that we can study.
V(p)=y. e+ y e P, ®
. . . . 1ll. CLASSICAL THEORY AND ETERNAL BLACK HOLE
so that the corresponding equations of motion are a pair of SOLUTIONS
Liouville equations:
In this section we shall study the classical theory of the
9,9_(2p* Bo) =2y, BN\2e?P=F¢=0, (99  model(8) and look for black hole solutions. The functional
action is given by
This potential includes all known integrable models, that is,
for y.=3 and B—0 the CGHS model, fory,=—y_ 1 5
=1/28 and B—0 the Jackiw-Teitelboim theory, and for S= ﬁf d x\/—_g
v,.=1, y_=0 the exponentiafLiouville) model[10].

Rop+4AN2(y, ePP+ y_e PP

The general solution to Eq&) can be written in terms of 1 N
four arbitrary chiral function®. (x*), a. (x*), 3 21 (VE)2], (16)
=
I ALI_A_ i
20+ Bd=In I (10) and we have to note that, although one of the three param

eters\, y., vy_ is redundant, we shall maintain all of them
in order to simplify the equations.
The solutions to the unconstrained equations of motion of
, (11) the above theory are given by Eq40) and (11). Now, in
(1-y_BN\?a,a_)? terms of theA. , a. functions the constraint equatiofs)

_ ~ become
and allows us to recover the general solution of the limiting

models. The solution for the exponential model is immedi- ‘ 1 . .

ately recovered, making/, =1 and y_=0 in Egs. (10), Tio=— ﬁ({At X7 t={a. . x7}), 17)
(11). In the Jackiw-Teitelboim theory{, = —y_=1/2B)

we have to redefine the functioa§ Y introducing anew pair Where{ , } denotes the Schwartzian derivative.

a., ai:AiJrBEt. Afterwards we realize th@—0 limit In the absence of matter fields and in an appropriate
and then we get Kruskal-type gauge. =x~ the general solution is given by

(1+ 7+ BN2ALAL)?

d,a,d_a_

2p—pB¢=In
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—dx*dx”
ds’= , (18
B
(T+y+Cx+x‘)(1—y_)\2,8x+x‘)
1—y_N?Bx*Tx™
gpo LY NPXX (19
T+7+CX+X

where the paramet&? is related to the conserved quantity
[proportional to the Arnowitt-Deser-MisnéADM) masg:

_ic VB

B )\Z’Gw—?%—yﬁy_ : (20

In a “pure” two-dimensional context and in order to study
the full spacetime structure of the solution we will place no
restriction on the range of variation of the field Of course,

if our starting point were four dimensional, the identification
of ¢ with the radius of the two-sphemrewould imply that
only ¢>0 is allowed. The curvature of the solution is

1—y_ N2BxTXx™
R= _4)\23 Ya )\ZY—B
T—i_ )/+CX+X7
A2 L
T+’y+CX X (21)
[ y_N2BxTx”
and there are two curvature singularities at
_)\2
XX = —'[j (22
y+C
1
xtx = . (23
Yy \°B

In order to avoid timelike singularities we have two possi-
bilities: B<0, y,.>0, y_<0, or >0, v, <0, y_>0.
They are actually the same because the pote@jak sym-

metric under the interchange of both cases. The Kruskal dia-

gram is represented in Fig. 1.

The horizons §.e#?=0) are located ax™=0,+x, re-
spectively. The Killing vector/dt is timelike in regions |
and spacelike in the others.

Choosing3<0 we can definey>0 so that—y, /y_
=1/y and we are able to redefine the parama&tér order to
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FIG. 1. Kruskal diagram for the hyperbolic model.

1
S=— Rp+4N3(ePP— ye  B?)

2

J dx\—g

- (29)

N
_Zl (Vfi)z).

N| -

It is interesting to note that we do not lose generality by
restricting ourselves to the cage=1. In fact, even if we
consider y#1, the redefinitionse?*—ef%./y and \%\/y
—\? recast the potential in the=1 form. Moreover, the
constant shift in the fielé will produce an extra piece in the
action proportional td, but this, being just a boundary term,
does not affect the equations of motion. We then consider the
following potential:

V(¢)=2 sinhB . (25
Its geometry is given by the metric
—dxtdx”
ds?= 75 , (26)
(T+CX x>(1+)\2,8x+x)
with dilaton function
1+N2Bx X~
eft=— , (27)
T"PCX X~
andM and the curvature read
_1c +)\2'B 2) (28
B\x2g C '
\2pB
— + -
R=— 4028 1+A%Bx*x~ C XX
- )\2 2 4o —
—'3+Cx+x* 1+N\2B8xTx
C
(29

This model is interesting due to the presence of a dilaton-

absorb the extra parameter. In this way, a hyperbolic modetonstant solution. The curvature has generically two singu-

having eternal black hole solutions is given by the following
functional action:

larities at pointg22), (23) (v, =—vy_=1). However, in the
limit C—\?B it becomes regular and constant everywhere
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and the dilaton field is constae®=1. The similarity of is a diffeomorphism invariant parameter related to the ADM

this solution with a known one in Einstein gravity will be mass andl($)=f¢d$V($). For the mode(25) we get the
explored in the next section. following metric:

IV. DEGENERATE HORIZON SOLUTIONS ds?=—U(r)dt?®+U(r) *dr?, (38)
AND COMPARISON WITH THE

SCHWARZSCHILD —de SITTER CASE where

In this section we shall study the particular= 0 solution
of the model(25) because it has a special similarity with the
Nariai solution appearing in the Schwarzschild—de Sitter so-
lution [11,12. The Schwarzschild—de Sitter metric is the If we consider3<0, M <0 solutions, there are two horizons
static spherically symmetric solution of the Einstein equa{U(r.)=0) located at
tions with a cosmological constant. It is

U(r)=%(cosh)\ﬁr—1)—4M. (39

1 1
=+ — -
ds?=—0(r)dt?+U(r) " *dr?+r2dQ?, (30) e _kﬁarcosyéHZﬂM)’ 40
where but in the limit M—0 the horizons become coincidernt.(
=0) andU(r)—0 between them. There are two curvature
~ 2m A singularities ar = +« since the curvature is
U(r)=1—T—§r2. (31)
R=—8\2B cosh\ Sr. (41)

For 0<m<3A "2 U(r) has two positive roots correspond- \we can interpret this solution as two “mirror” black holes
ing to the black hole and cosmological horizons. But in thejgcated “at infinity” hidden by two horizons . . The space-
limit m— 3A ™" the two roots coincide and the horizons time between the horizons admits a timelike Killing vector
apparently merge. In this degenerate case the Schwarzschjld(r)>07], which becomes spacelike behind the horizons
coordinates become inappropriate sifdér)—0 between [U(r)<O0]. In the limit M—O0 the horizons coalesce and in
the two horizons. According to Ginsparg and Pdig] we  this regionU(r)—0, ¢—0, R— —8\24. In this limit the
can define new coordinatesand y: (t,r) coordinates become inappropriate and we need to per-
form a coordinate change.

1 1 1, If we define a paramete€ so thatM is written as Eq.
t= A o 1= N 1-ecosy— g€, (32 (28), theM—0 limit is recovered in th€—\?4 limit. Thus
€ let us try the following transformation:
where 2
ﬁ _ef)\Br
9m2A =1-3¢2, (33) S 42
C—A\2Be M’
with the property that the new metric has a well-defined limit
in the degenerate cage-0, x+
_ D eMPpIC-CINp)t (43)
1 1 X~
ds?’=— X(Slnz)(dljlz—d)(z)-i- XdQZ, (34

relating both Kruskal and Schwarzschild gauges as it brings
Egs. (39), (39), (36) into Egs.(26), (27), respectively. This
transformation is singular for the degenerate caSe
=\2B (M=0) as the Ginsparg-Perry one for the 4D
Schwarzschild—de Sitter gravifit2]. We can actually see it
as a perturbation around the poirt 0 where both horizons
coincide. WhenC=\28 there are no singularities and the

which turns out to be the Nariai solution.

A similar situation is found in the modéR5). To see this
feature we consider the static solutidqwe call this the
Schwarzschild gaugehat the 2D Birkhoff theoreml3] pro-
vides for a generic modéll). This solution is written as

d2=—[4J($)— AM]d2+[4I(p)— 4M]~tdr2, metric (26) turns into
(35) L
s —dx"dx a4
(ﬁ:)\ri (36) —(1+)\2BX+X_)2
where and, finally, the new transformation
M=J L vey 3 so_ 1 (sinhycoshy) —nX 45
=J(¢) 4)\2( ) (37 X —)\\/_—B(Sln y*cos l//)m (45
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brings it into the 2D-reduced part of the Nariai soluti@i
with topology H?:

2).

(46)

Note that even though the transformati@r), (43) is singu-
lar for the degenerate case, the coordinatesemain appro-

PHSICAL REVIEW D 61 024011

—dt?+dy?
ds?= ) )\2,3)2+4)\2,8 - (48)
C C COoSIT wy

The metric is manifestly static in this form and it is straight-
forward to find a new Schwarzschild-type gauge by means of
the new spacelike coordinates defined by

priate for this case too and the horizons’ radii also remain
different. The true reason for which this transformation be-

comes singular in the limi€—\?B is due to the fact that

both Kruskal gauge(constant dilaton and Schwarzschild )\23 2B
gauge(linear dilaton solutions are not diffeomorphism con- T 1- <
nected. They are indeed two different solutions and this mo-
tivates a revision of the 2D Birkhoff theorem which will be 2B
made in the next section. 1-—=
To finish this section we shall consider the thermodynam- X arctan T2, tanhwy (49
ics of this model. Since the static Schwarzschild ga(&fe 1+ _'8
is not the appropriate one to study the thermodynamics due c
to the degenerate limit, we look for another one, starting
from the conformal-Kruskal gaugé26). This is possible 1he new Schwarzschild-type metric is then
since the model always admits a timelike Killing vector.
Thus let us introduce new static coordinayes given by )
4 — 2
+oxT=e @Y (47) dSz——U(O')dt +U(0’)' (50)
where w?=—C. In terms of these coordinates the metric
becomes where
|
2
\?B\?
L = o )\zﬂ . \2B
. NZgpzent |t e c/”
U(o) - (51)
o .
1+2 1—tanlt 1+2 —xz—ﬂ
C C Tt
|
The horizondJ(o.)=0 are and the horizons still remain uncoincident
\23 .t
(1_T) or=E (54
arctanh—)\zﬂ—
1+ T) To get the horizon temperature we should construct the Eu-
oL=+ , . (52 cIi_dean mgtriq, setting = 7 and identify!ngf wiFh an appro-
1+ ﬁ 1- w priate period in order to remove the singularities. But this is
C c ¢ not so in this case because the Killing vector cannot be nor-

In these coordinates we can study the degenerate Case
=\2p since they will still be able to “see” the region be-
tween the horizons. In this limit the solution becomes

1-(4wo)?

U(o)=—

(53

malized at infinity as in the standard Schwarzschild case, due
to the presence of the singularities. Bousso and Hawking
[14] give the correct prescription. We need to find the point
a4 for which the orbit of the Killing vector coincides with
the geodesic going throughy . In such a point the effects of
both black hole attractions balance out exactly and an ob-
server will need no acceleratiof'f,=0) to stay there, just
like an observer at infinity in the standard Schwarzschild
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case. A straightforward calculation shows that this point isdegenerate there is again a Ginsparg-Perry-type transforma-
just where both horizons coincide in the degenerate case (tion connecting the constarfhow negativeé curvature, ¢
=0), that is,o,=0. With an adequate normalization the =0 solution with Eqs(38), (39), in much the same the way

horizon temperatures are given 4] as it has been done [i6] for the 2D dilaton-Maxwell grav-
ity.
1 1 U 55
2 zm Jo , ' V. 2D BIRKHOFF THEOREM REVISITED
Now we analyze the existence of dilaton-constant solu-
and then we get tions in a more general context. This feature leads us to
\2 perform a revision of the 2D Birkhoff theorem. Under some
T,=T. = (1+ /3) J-Cc (56) assumptions one can ensure tha_t the general solution is
2w C given, up to space-time diffemorphisms, by a one-parameter
] o family of static metric§13]. The parameter, related with the
and, in theC—\? limit, ADM mass, is diffeomorphism invariant and classifies all of
them. In particular, there exists a Schwarzschild gauge in
T,=T — VA '8. (57) which the solution is manifestly static and the dilaton field is

linear in the spacelike coordinate.

. o ~ Considering the gravitational sector of E@),
Note that the horizon temperatures are always coincident in

either the nondegenerate or degenerate case in a different 1 ) 5

way from the 4D Schwarzschild—de Sitter case. We can then S= ﬁf d?x\ = g[Reb+4N?V($)], (62)

complete the physical picture of this model; the two mirror

black holes are at the same temperature. This feature withis solution is written as Eq$35), (36), whereM, given by

have some important consequences on the semiclassidafl. (37), is the diffeomorphism-invariant parameter. We

theory as we will see later. shall show that there is also another type of solutions. For
Finally we have to note that the transformati¢tv) is certain potentials there is, in fact, another static solution pro-

performed in the region between the horizorisc <0. We  viding a constant curvature space with a constant dilaton

can realize a new transformation in order to take into accourfield. The equations of motio(2), (3) of the above func-

the black hole interiors™x~>0: tional action in a static gaugeg/dt=0=dp/ st (wherex™*
=t*+x) are
» t:eiwyi_ 58
(58 d?p ) 2pdV

In this case the static metric is - @“Lz)\ e @:07 (62

—dt?+dy? o2
ds=r— 75 g (59 ——¢+4>\ 2620/ =0, 63)

o e sinffwy dx?

) If d¢p/dx+#0, Eq.(63) admits a first integral
and a further transformation

d
1 - d—f+4>\2f dXe?PV () =4\M, (64)
. 7\2[3 /3
® 1+ — (1— — whereM is an integration constant and, using the constraints,
C C Eq. (62) turns into
B d
1— — Ne2= d¢ (65)
X arctan cotanhwy (60) X
1+ —_— Equation(64) gives the conformal factoe?’=4J(¢)—4M
and in the Schwarzschild gauge, defineddy=e?’dx, we

get finally the set35), (36). This is essentially the Birkhoff
theorem[13]. Now we are going to consider thkp/dx=0

We now wish to comment briefly on the cag8e-0 where ~ €aSe that is, dilaton-constant solutidn$his kind of solu-
the physical picture is completely different; i.e., the singu-tOn ¢ = ¢o can only exist for certain potentialé(¢) satis-
larities are timelike and in the region between the horizondYing
the Killing vector is spacelike. The Kruskal diagram is simi-
lar to that of a point electric charge intZ dimensiong15].
Formally, the analysis of this section can be repeated step by!The existence of these kinds of solutions was already noted in
step for this solution as well. When the two horizons becomé17].

brings the metric into the same geometBp), (51) so that
there is no difference from the last one as expected.

024011-6



INTEGRABLE MODELS AND DEGENERATE HORIZONS . .. PHSICAL REVIEW D 61 024011

dVv(¢) Let us consider again the general soluti@s), (36) for a
V(¢o)=0, e #0, (66)  general potentiaV/(¢) and introduceJ (r)=4J(r)—4M so
bo that the horizons are the roots bf(r). In order to study

models with horizon degeneration we wahgr) to have two
or more roots. Although all roots are distinct we can always
fit a valueM of the parametel for which two neighboring

so that Eq(69) is trivially satisfied and Eq(62) becomes

2
d_p+ &ezpzo, (67)  roots become coincident in, saty, which is then a double
dx> 2 root of U(r). The “critical” value of M is My=J(ry) and
the dilaton function at this point i§,=Ary. Now, sincer
where is an extremal ofJ(r), we get
R ——4)\2d—v =const (69) du
0= do| ~ : 0= ar =4\V(¢y), (72
#o o
Thus these solutions lead to constant curvature spacetimes. o2 q
Making the coordinate changl = e?’dx into the Schwarzs- 0+ U 24)\2_\/ (73)
child gauge Eq(67) is easily integrated and the solution is dr? d¢ %’

written as

R 1 which are just the condition®6), and theng= ¢, gives the
k— _°r2) dr?, (69)  constant dilaton solutio69), (70). It is straightforward to
2 check that the opposite is true as well:#f is a constant
dilaton solution,ry= ¢/ is a degenerate horizon fiv
¢= ¢p=const, (70 =Mo=J(y).
Let us now perform a perturbation around the degenerate

wherek is an integration constant. . P ; . g
) . radius of coincident horizons, as happens in the liMit
Obviously both solution€35), (36) and(69), (70) are not — Mg andU(r)—0 between the two horizons. We write

diffeomorphism connected as is manifested by the scalar di-
laton function. Note that this last dilaton-constant solution is k

not available for a generic potent( ¢) but only for those M=My— Zez, (74)
satisfying the conditiong66). One example is the sindy

potential (25); another one is provided in the Appendix
starting from Einstein-Maxwell gravity in 4D. In the confor-
mal gauge, in the special limE—\23, we obtained the
dilaton-constant ¢#=0) solution (44) with M=0 and con-
stant curvatureR=R,=—8\?B. In a manifestly static
gauge, it reads t

R
ds?= —(k— S r2|de

" wheree<1 andk is a constant with the same signRg The
degenerate case correspondste0. We introduce a new

coordinate pair{,r) defined by

m |~

. r=rg+er. (75)

ds?=—(1+4N2Br2)dt>+ (1+4N2Br2) "1dr2. (72)
Expanding the functiotJ(r) in powers ofr —r, we get

But ¢=0 is just the dilaton-constant solution for the sg
potential: V(0)=0, dV(¢)/d¢>|,,,0¢0 and moreoverJ(0)

=0 so that the expressidB7) becomes identically zero. The
above solution coincides with E¢9) (with k=1). Now we S )
can complete our understanding of Be-\23 limit of the ~ Which finally turns Eq(35) into
solution (26), (27) in the Kruskal gauge. ThE # %8 case

coincides, up to diffeomorphisms, with tHd+#0 param- dszz—(k— &’F2+O(e))d~tz+
etrized solution(35), (36) and theC=\28 case with the 2
unparametrized solutio(69), (70). These solutions are dif- (77)
ferent and they cannot be diffeomorphism connected. Th
special casé =0 in Egs.(35), (36), which at first sight we
could be tempted to identify with Eq§69), (70), is the ho-
rizon coincident case and region | of Fig. 1 is reduced to th
pointr =0 where¢=0 andR= — 8\?B. The transformation
(42), (43) connects both gauges in a similar way to the

Ginsparg-Perry one and this suggests that there is a deep VI. SEMICLASSICAL THEORY AND CONCLUSIONS

relation between the existence of constant dilaton solutions

and horizon degeneration. In fact this is what happens in We shall now make some semiclassical considerations
general and we shall show this in the remaining part of thisconcerning the sin8¢ model. The Hawking radiation is de-
section. termined by the usual expression

e+ 0(€e%), (76)

U(r)=(k— %’Fz

Ro~ -1
k— 7r2+ O(e)| dr2.

erhis in the “near-horizon” limite—0 becomes Eq.69).
We end by noting that foR,<<O—i.e., the solution has

econstant negative curvatureis negative and redefining it

ask=—m this is nothing but the Adsblack hole.
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i_ (79 APPENDIX: AdS,x S> GEOMETRY
C IN EINSTEIN-MAXWELL THEORY

In this appendix we shall describe a way to generate the
Robinson-Bertotti  (AdSXS?) geometry in Einstein-
Maxwell gravity based on the possibility of constructing

If we calculate(T__), we get

N(x™)2 1 1 constant-dilaton solutions explained in Sec. V. Let us start
(1L )= - : with the Einstein-Maxwell action
o 48 | 1+N?BxFx” 2
Cx"x +
X T 1

(80) f d*xV—g@[R®—(F¥)2]. (A1)

l=——
167G*)

This expression exactly vanishes when evaluated over thg e impose spherical symmetry on the gauge field and the
points of the curvg79). The interpretation is then that be- yetric

cause the two black holes placed at infinity have the same
temperature, there is a compensation between the Hawking 2

radiation coming from each black hole, giving no net Hawk- dss)=,.,dx dx"+ 2—)\2d92, (A2)
ing flux. The same considerations apply if we interchange

— with + in the previous formulas, and we have=0 as  wherex*“=(t,r), dQ? is the metric on the two-sphere, and
well. We can also wonder if it makes sense to choose\ -1 js the Planck length N 2=G), the dimensionally
“evaporating” boundary conditions_#t, . Atthe classical reduced action functional {€0]

level and by virtue of the Birkhoff theorem the solutions are

parametrized by a single constadt forcing the two black )
holes to have the same mass and temperature. However, at J d x\/—_g

1(¢> 1 )
E TR‘F Eg“”a#d)&y¢+)\
the semiclassical level the Birkhoff theorem no longer ap-

plies and we could try, for instance, to increase the mass of 1, v
one of the black holes and to see whether or not a new _§¢ FAF L) (A3)
equilibrium state is reached. Moreover, if in view of a
higher-dimensional interpretation we restrict ourselves to thé\fter an appropriate reparametrization
case$>0, then the physical spacetime contains only one
. . 2
black hole and it would seem natural to impose boundary ¢__)¢ (Ad)
conditions different from the ones used above. These ques- 4 '

tions and the related semiclassical dynamical evolutions will

be studied elsewhere. 90— 09,(20) 2, (A5)
It is interesting to comment that in the Jackiw-Teitelboim

limit the curvature singularities disappear and we get contarfhe two-dimensional action takes the fof@i]

curvature Ad$ black holes(if 8>0). AdS, black holes

have been claimed not to emit Hawking radiat{d] (if a f dzx\/—_g

nontrivial dilaton is present, however, this might not be true;

see[19]), which is exactly what happens in our si@h (A6)

model although there the lack of radiation can be understood h

by the presence of the mirror black hole. Therefore intu-"V"€"€

itively the AdS, black hole inherits the no-radiation property 1

_of the more general model the_y arise in a cer_taln limit. This V(d)=——, W(d)=(24)%2 (A7)

is not the case of the exponential model in which black holes \/ﬂ

evaporatg 7]. In this model and with the boundary condi-

tionst. =0 the solutions represent black holes in equilib- The equations of motion imply th421]

rium with a thermal bath. So the role of the mirror black hole

is interchanged with the existence of external radiation in- F=q e

coming onto the black hole. W(o)'’

: R+\2V —1W FHrF
Slo (@)= 7 W(H)F"F |,

2p
(A8)
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whereF=2F ., _ andq is a constant. Substituting the above Veis=0 (A11)
solution for F into the other equations of motion one finds
that they are equivalent to those of the mot&l) with the  and therefore
replacement
2
2 q

q d’o:ﬁ: (A12)

V(¢)—>V(¢)—mzveff (A9)
which turns out to be the radius of the horizon for the ex-
tremal Reissner-Nordstmo solution r . =r_=(1/\)2¢,

1 92 =q/\?%. Moreover, the two-dimensional geometry is AdS

Veif= - A10 with curvature

eff \/ﬁ )\2(2¢)3/2 ( )

and so in our case

4
and we can apply the arguments of Sec. V. We then have a R= — Z_T: - 2 ) (A13)
constant dilaton solutiog= ¢, for q rs
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