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We analyze an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville
fields in the conformal gauge. Its general solution represents a pair of ‘‘mirror’’ black holes with the same
temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the
Schwarzschild–de Sitter case. The existence off5const solutions and their relation to the solution given by
the 2D Birkhoff theorem is then investigated in a more general context. We also point out some interesting
features of the semiclassical theory of our model and the similarity with the behavior of AdS2 black holes.
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I. INTRODUCTION

The existence of exactly solvable models of gravity
two dimensions@1# provides a rich arena for the study of th
quantum aspects of black holes. These two-dimensio
black holes, in addition to their own interest, can descr
particular regimes of higher-dimensional black holes. T
Callan-Giddings-Harvey-Strominger~CGHS! model @2# de-
scribes low-energy excitations of extremal~magnetic! string
black holes in four dimensions. AdS2 black holes arise in the
near-horizon limits of extremal or near-extremal Reissn
Nordström black holes @3,4#. By dimensional reduction
spherically symmetric gravity can also be described in te
of an effective two-dimensional model.

The aim of this paper is to analyze a general family
integrable models@5# which can recover all known solvabl
models@CGHS @2#, Jackiw-Teitelboim@6#, and exponential
~Liouville! @7# models# in some particular limits. The equa
tions of motion of the models, in conformal gauge, a
equivalent to those of a pair of Liouville fields for linea
combinations of the conformal factor and the dilaton fie
These properties will be briefly reviewed in Sec. II. In Se
III we investigate the properties of the classical solutio
showing that, in the absence of matter fields, they represe
pair of eternal black holes. In Sec. IV we shall focus on o
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particular model @with a potential of the formV(f)
52 sinhbf] which allows a degenerate solution having
constant value for the dilaton and a two-dimensional de
ter ~or anti–de Sitter, depending on the sign of the const
b) geometry. The situation is similar to that encountered
the Schwarzschild–de Sitter case where the degenerate
of the Nariai metric@8# is also described by a constant dil
ton ~i.e., the radial coordinate!. In Sec. V we shall analyze
the existence of such dilaton-constant solutions in a m
general setting. We will show in a simple way that the
configurations are possible for the zeros of the potential, a
removing the kinetic term of the two-dimensional dilato
gravity theory, and are always accompanied by a cons
curvature geometry. Furthemore, they are always conne
with the presence of degenerate horizons in the theory.
nally, in Sec. VI we make some comments on the semic
sical behavior of our solutions and show interesting simila
ties with the behavior of AdS2 black holes.

II. INTEGRABILITY OF 2D DILATON GRAVITY
MODELS

Let us consider the general functional action describin
2D dilaton-gravity model coupled toN 2D massless and
minimal scalar fields:

S5
1

2pE d2xA2gS Rf14l2V~f!2
1

2 (
i 51

N

~¹ f i !
2D ,

~1!
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whereV(f) is an arbitrary function of the dilaton field an
f i are the scalar matter fields. The above expression re
sents a generic model because one can get rid of the kin
term of the dilaton by a conformal reparametrization of t
fields and bring the action into the form~1! @9#. In the con-
formal gaugeds252e2rdx1dx2, the equations of motion
derived from the action~1! are

2]1]2r1l2V8~f!e2r50, ~2!

]1]2f1l2V~f!e2r50, ~3!

]1]2 f i50, ~4!

2]6
2 f12]6f]6r2

1

2 (
i 51

N

~]6 f i !
250. ~5!

By introducing an arbitrary parameterb we can rewrite the
above equations of motion~2!, ~3! in the form

]1]2~2r1bf!1l2e2rS bV~f!1
dV~f!

df D50, ~6!

]1]2~2r2bf!2l2e2rS bV~f!2
dV~f!

df D50. ~7!

One way to ensure the integrability of the above equation
to reduce them to a pair of Liouville equations@5#. The most
general potential satisfying this requirement is

V~f!5g1ebf1g2e2bf, ~8!

so that the corresponding equations of motion are a pai
Liouville equations:

]1]2~2r6bf!62g6bl2e2r6bf50. ~9!

This potential includes all known integrable models, that
for g65 1

2 and b→0 the CGHS model, forg152g2

51/2b and b→0 the Jackiw-Teitelboim theory, and fo
g151, g250 the exponential~Liouville! model @10#.

The general solution to Eqs.~9! can be written in terms o
four arbitrary chiral functionsA6(x6), a6(x6),

2r1bf5 ln
]1A1]2A2

~11g1bl2A1A2!2
, ~10!

2r2bf5 ln
]1a1]2a2

~12g2bl2a1a2!2
, ~11!

and allows us to recover the general solution of the limit
models. The solution for the exponential model is imme
ately recovered, makingg151 and g250 in Eqs. ~10!,
~11!. In the Jackiw-Teitelboim theory (g152g251/2b)
we have to redefine the functionsa6 , introducing a new pair
ã6 , a65A61bã6 . Afterwards we realize theb→0 limit
and then we get
02401
re-
tic
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r5
1

2
ln

]1A1]2A2

S 11
l2

2
A1A2D 2 , ~12!

f52
1

2
S ]1ã1

]1A1
1

]2ã2

]2A2
D

1
l2

2

A1ã21A2ã1

11
l2

2
A1A2

, ~13!

as it was found in@10#. Finally we can also recover th
solution for the CGHS model (g65 1

2 ) in a similar way.
Redefininga65A622b*x6

â6]6A6 in Eqs.~10!, ~11! we
can perform theb→0 limit and we get

r5
1

2
ln ]1A1]2A2 , ~14!

f52l2A1A21â11â2 . ~15!

The above mechanism provides a very simple picture
the origin of the integrability of these models and sugges
particular analysis of the most general integrable hyperb
model ~8!. The hidden reason for this integrability can no
be understood as all them are particular cases of a gen
Liouville integrability of which the hyperbolic model is, in a
sense, the maximal one. The hyperbolic model is then
most complicated solvable model that we can study.

III. CLASSICAL THEORY AND ETERNAL BLACK HOLE
SOLUTIONS

In this section we shall study the classical theory of t
model ~8! and look for black hole solutions. The function
action is given by

S5
1

2pE d2xA2gS Rf14l2~g1ebf1g2e2bf!

2
1

2 (
i 51

N

~¹ f i !
2D , ~16!

and we have to note that, although one of the three par
etersl, g1 , g2 is redundant, we shall maintain all of them
in order to simplify the equations.

The solutions to the unconstrained equations of motion
the above theory are given by Eqs.~10! and ~11!. Now, in
terms of theA6 , a6 functions the constraint equations~5!
become

T66
f 52

1

2b
~$A6 ,x6%2$a6 ,x6%!, ~17!

where$ , % denotes the Schwartzian derivative.
In the absence of matter fields and in an appropri

Kruskal-type gaugea65x6 the general solution is given b
1-2
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ds25
2dx1dx2

S l2b

C
1g1Cx1x2D ~12g2l2bx1x2!

, ~18!

ebf5
12g2l2bx1x2

l2b

C
1g1Cx1x2

, ~19!

where the parameterC is related to the conserved quantityM
@proportional to the Arnowitt-Deser-Misner~ADM ! mass#:

M5
1

b S C

l2b
g12

l2b

C
g22g11g2D . ~20!

In a ‘‘pure’’ two-dimensional context and in order to stud
the full spacetime structure of the solution we will place
restriction on the range of variation of the fieldf. Of course,
if our starting point were four dimensional, the identificatio
of f with the radius of the two-spherer would imply that
only f.0 is allowed. The curvature of the solution is

R524l2bS g1

12g2l2bx1x2

l2b

C
1g1Cx1x2

2g2

l2b

C
1g1Cx1x2

12g2l2bx1x2 D , ~21!

and there are two curvature singularities at

x1x25
2l2b

g1C2
, ~22!

x1x25
1

g2l2b
. ~23!

In order to avoid timelike singularities we have two pos
bilities: b,0, g1.0, g2,0, or b.0, g1,0, g2.0.
They are actually the same because the potential~8! is sym-
metric under the interchange of both cases. The Kruskal
gram is represented in Fig. 1.

The horizons (]6ebf50) are located atx650,6`, re-
spectively. The Killing vector]/]t is timelike in regions I
and spacelike in the others.

Choosingb,0 we can defineg.0 so that2g1 /g2

51/g and we are able to redefine the parameterl in order to
absorb the extra parameter. In this way, a hyperbolic mo
having eternal black hole solutions is given by the followi
functional action:
02401
-

a-

el

S5
1

2pE d2xA2gS Rf14l2~ebf2ge2bf!

2
1

2 (
i 51

N

~¹ f i !
2D . ~24!

It is interesting to note that we do not lose generality
restricting ourselves to the caseg51. In fact, even if we
consider gÞ1, the redefinitionsebf→ebfAg and l2Ag
→l2 recast the potential in theg51 form. Moreover, the
constant shift in the fieldf will produce an extra piece in the
action proportional toR, but this, being just a boundary term
does not affect the equations of motion. We then consider
following potential:

V~f!52 sinhbf. ~25!

Its geometry is given by the metric

ds25
2dx1dx2

S l2b

C
1Cx1x2D ~11l2bx1x2!

, ~26!

with dilaton function

ebf5
11l2bx1x2

l2b

C
1Cx1x2

, ~27!

andM and the curvature read

M5
1

b S C

l2b
1

l2b

C
22D , ~28!

R524l2bS 11l2bx1x2

l2b

C
1Cx1x2

1

l2b

C
1Cx1x2

11l2bx1x2 D .

~29!

This model is interesting due to the presence of a dilat
constant solution. The curvature has generically two sin
larities at points~22!, ~23! (g152g251). However, in the
limit C→l2b it becomes regular and constant everywhe

FIG. 1. Kruskal diagram for the hyperbolic model.
1-3
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and the dilaton field is constantebf51. The similarity of
this solution with a known one in Einstein gravity will b
explored in the next section.

IV. DEGENERATE HORIZON SOLUTIONS
AND COMPARISON WITH THE

SCHWARZSCHILD –de SITTER CASE

In this section we shall study the particularf50 solution
of the model~25! because it has a special similarity with th
Nariai solution appearing in the Schwarzschild–de Sitter
lution @11,12#. The Schwarzschild–de Sitter metric is th
static spherically symmetric solution of the Einstein equ
tions with a cosmological constantL. It is

ds252Ũ~r !dt21Ũ~r !21dr21r 2dV2, ~30!

where

Ũ~r !512
2m

r
2

L

3
r 2. ~31!

For 0,m, 1
3 L21/2, Ũ(r ) has two positive roots correspond

ing to the black hole and cosmological horizons. But in t
limit m→ 1

3 L21/2 the two roots coincide and the horizon
apparently merge. In this degenerate case the Schwarzs
coordinates become inappropriate sinceŨ(r )→0 between
the two horizons. According to Ginsparg and Perry@12# we
can define new coordinatesc andx:

t5
1

eAL
c, r 5

1

AL
F12e cosx2

1

6
e2G , ~32!

where

9m2L5123e2, ~33!

with the property that the new metric has a well-defined lim
in the degenerate casee→0,

ds252
1

L
~sin2xdc22dx2!1

1

L
dV2, ~34!

which turns out to be the Nariai solution.
A similar situation is found in the model~25!. To see this

feature we consider the static solution~we call this the
Schwarzschild gauge! that the 2D Birkhoff theorem@13# pro-
vides for a generic model~1!. This solution is written as

ds252@4J~f!24M #dt21@4J~f!24M #21dr2,
~35!

f5lr , ~36!

where

M5J~f!2
1

4l2
~¹f!2 ~37!
02401
-

-

e

ild

t

is a diffeomorphism invariant parameter related to the AD
mass andJ(f)5*0

fdf̃V(f̃). For the model~25! we get the
following metric:

ds252U~r !dt21U~r !21dr2, ~38!

where

U~r !5
8

b
~coshlbr 21!24M . ~39!

If we considerb,0, M<0 solutions, there are two horizon
(U(r 6)50) located at

r 656
1

lb
arcoshS 11

1

2
bM D , ~40!

but in the limit M→0 the horizons become coincident (r 6

50) andU(r )→0 between them. There are two curvatu
singularities atr 56` since the curvature is

R528l2b coshlbr . ~41!

We can interpret this solution as two ‘‘mirror’’ black hole
located ‘‘at infinity’’ hidden by two horizonsr 6 . The space-
time between the horizons admits a timelike Killing vect
@U(r ).0#, which becomes spacelike behind the horizo
@U(r ),0#. In the limit M→0 the horizons coalesce and
this regionU(r )→0, f→0, R→28l2b. In this limit the
(t,r ) coordinates become inappropriate and we need to
form a coordinate change.

If we define a parameterC so thatM is written as Eq.
~28!, theM→0 limit is recovered in theC→l2b limit. Thus
let us try the following transformation:

2x1x25

l2b

C
2e2lbr

C2l2be2lbr
, ~42!

2
x1

x2
5e4l~l2b/C2C/l2b)t, ~43!

relating both Kruskal and Schwarzschild gauges as it bri
Eqs. ~38!, ~39!, ~36! into Eqs.~26!, ~27!, respectively. This
transformation is singular for the degenerate caseC
5l2b (M50) as the Ginsparg-Perry one for the 4
Schwarzschild–de Sitter gravity@12#. We can actually see i
as a perturbation around the pointr 50 where both horizons
coincide. WhenC5l2b there are no singularities and th
metric ~26! turns into

ds25
2dx1dx2

~11l2bx1x2!2
~44!

and, finally, the new transformation

x65
1

lA2b
~sinhc6coshc!

sinx

11cosx
~45!
1-4
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brings it into the 2D-reduced part of the Nariai solution@8#
with topologyH2:

ds25
21

4l2b
~2sin2xdc21dx2!. ~46!

Note that even though the transformation~42!, ~43! is singu-
lar for the degenerate case, the coordinatesx6 remain appro-
priate for this case too and the horizons’ radii also rem
different. The true reason for which this transformation b
comes singular in the limitC→l2b is due to the fact tha
both Kruskal gauge~constant dilaton! and Schwarzschild
gauge~linear dilaton! solutions are not diffeomorphism con
nected. They are indeed two different solutions and this m
tivates a revision of the 2D Birkhoff theorem which will b
made in the next section.

To finish this section we shall consider the thermodyna
ics of this model. Since the static Schwarzschild gauge~38!
is not the appropriate one to study the thermodynamics
to the degenerate limit, we look for another one, start
from the conformal-Kruskal gauge~26!. This is possible
since the model always admits a timelike Killing vecto
Thus let us introduce new static coordinatesy6 given by

6vx65e6vy6
, ~47!

where v252C. In terms of these coordinates the met
becomes
se
-

02401
n
-

-

-

e
g

ds25
2dt21dy2

S 12
l2b

C D 2

1
4l2b

C
cosh2 vy

. ~48!

The metric is manifestly static in this form and it is straigh
forward to find a new Schwarzschild-type gauge by mean
the new spacelike coordinates defined by

s5
1

vS 11
l2b

C D S 12
l2b

C D

3arctanhF S 12
l2b

C D
S 11

l2b

C D tanhvyG . ~49!

The new Schwarzschild-type metric is then

ds252U~s!dt21
ds2

U~s!
, ~50!

where
U~s!5

12

S 11
l2b

C D 2

S 12
l2b

C D 2 tanh2F S 11
l2b

C D S 12
l2b

C DvsG
S 11

l2b

C D 2H 12tanh2F S 11
l2b

C D S 12
l2b

C DvsG J . ~51!
Eu-

is
or-
due
ing
int

f
ob-

ild
The horizonsU(s6)50 are

s656

arctanh
S 12

l2b

C D
S 11

l2b

C D
S 11

l2b

C D S 12
l2b

C Dv

. ~52!

In these coordinates we can study the degenerate caC
5l2b since they will still be able to ‘‘see’’ the region be
tween the horizons. In this limit the solution becomes

U~s!5
12~4vs!2

4
~53!
and the horizons still remain uncoincident:

s656
1

4v
. ~54!

To get the horizon temperature we should construct the
clidean metric, settingi t 5t and identifyingt with an appro-
priate period in order to remove the singularities. But this
not so in this case because the Killing vector cannot be n
malized at infinity as in the standard Schwarzschild case,
to the presence of the singularities. Bousso and Hawk
@14# give the correct prescription. We need to find the po
sg for which the orbit of the Killing vector coincides with
the geodesic going throughsg . In such a point the effects o
both black hole attractions balance out exactly and an
server will need no acceleration (Gmn

r 50) to stay there, just
like an observer at infinity in the standard Schwarzsch
1-5
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case. A straightforward calculation shows that this poin
just where both horizons coincide in the degenerate casr
50), that is,sg50. With an adequate normalization th
horizon temperatures are given by@14#

T65
1

2p

1

2AU~sg!
U]U

]sU
s6

, ~55!

and then we get

T15T25
1

2p S 11
l2b

C DA2C ~56!

and, in theC→l2b limit,

T15T2→
A2l2b

p
. ~57!

Note that the horizon temperatures are always coinciden
either the nondegenerate or degenerate case in a diffe
way from the 4D Schwarzschild–de Sitter case. We can t
complete the physical picture of this model; the two mirr
black holes are at the same temperature. This feature
have some important consequences on the semiclas
theory as we will see later.

Finally we have to note that the transformation~47! is
performed in the region between the horizonsx1x2,0. We
can realize a new transformation in order to take into acco
the black hole interiorsx1x2.0:

vx65e6vy6
. ~58!

In this case the static metric is

ds25
2dt21dy2

S 12
l2b

C D 2

2
4l2b

C
sinh2vy

~59!

and a further transformation

s5
1

vS 11
l2b

C D S 12
l2b

C D

3arctanhF S 12
l2b

C D
S 11

l2b

C D cotanhvyG ~60!

brings the metric into the same geometry~50!, ~51! so that
there is no difference from the last one as expected.

We now wish to comment briefly on the caseb.0 where
the physical picture is completely different; i.e., the sing
larities are timelike and in the region between the horizo
the Killing vector is spacelike. The Kruskal diagram is sim
lar to that of a point electric charge in 211 dimensions@15#.
Formally, the analysis of this section can be repeated ste
step for this solution as well. When the two horizons beco
02401
s
(

in
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n

r
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-
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e

degenerate there is again a Ginsparg-Perry-type transfo
tion connecting the constant~now negative! curvature,f
50 solution with Eqs.~38!, ~39!, in much the same the wa
as it has been done in@16# for the 2D dilaton-Maxwell grav-
ity.

V. 2D BIRKHOFF THEOREM REVISITED

Now we analyze the existence of dilaton-constant so
tions in a more general context. This feature leads us
perform a revision of the 2D Birkhoff theorem. Under som
assumptions one can ensure that the general solutio
given, up to space-time diffemorphisms, by a one-param
family of static metrics@13#. The parameter, related with th
ADM mass, is diffeomorphism invariant and classifies all
them. In particular, there exists a Schwarzschild gauge
which the solution is manifestly static and the dilaton field
linear in the spacelike coordinate.

Considering the gravitational sector of Eq.~1!,

S5
1

2pE d2xA2g@Rf14l2V~f!#, ~61!

this solution is written as Eqs.~35!, ~36!, whereM, given by
Eq. ~37!, is the diffeomorphism-invariant parameter. W
shall show that there is also another type of solutions.
certain potentials there is, in fact, another static solution p
viding a constant curvature space with a constant dila
field. The equations of motion~2!, ~3! of the above func-
tional action in a static gauge]f/]t505]r/]t ~wherex6

5t6x) are

2
d2r

dx2
12l2e2r

dV

df
50, ~62!

2
d2f

dx2
14l2e2rV50. ~63!

If df/dxÞ0, Eq. ~63! admits a first integral

2
df

dx
14l2E dxe2rV~f!54lM , ~64!

whereM is an integration constant and, using the constrai
Eq. ~62! turns into

le2r5
df

dx
. ~65!

Equation~64! gives the conformal factore2r54J(f)24M
and in the Schwarzschild gauge, defined bydr5e2rdx, we
get finally the set~35!, ~36!. This is essentially the Birkhoff
theorem@13#. Now we are going to consider thedf/dx50
case, that is, dilaton-constant solutions.1 This kind of solu-
tion f5f0 can only exist for certain potentialsV(f) satis-
fying

1The existence of these kinds of solutions was already note
@17#.
1-6
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V~f0!50,
dV~f!

df U
f0

Þ0, ~66!

so that Eq.~63! is trivially satisfied and Eq.~62! becomes

d2r

dx2
1

R0

2
e2r50, ~67!

where

R0524l2
dV

df U
f0

5const. ~68!

Thus these solutions lead to constant curvature spaceti
Making the coordinate changedr5e2rdx into the Schwarzs-
child gauge Eq.~67! is easily integrated and the solution
written as

ds252S k2
R0

2
r 2Ddt21S k2

R0

2
r 2D 21

dr2, ~69!

f5f05const, ~70!

wherek is an integration constant.
Obviously both solutions~35!, ~36! and~69!, ~70! are not

diffeomorphism connected as is manifested by the scala
laton function. Note that this last dilaton-constant solution
not available for a generic potentialV(f) but only for those
satisfying the conditions~66!. One example is the sinhbf
potential ~25!; another one is provided in the Appendi
starting from Einstein-Maxwell gravity in 4D. In the confo
mal gauge, in the special limitC→l2b, we obtained the
dilaton-constant (f50) solution ~44! with M50 and con-
stant curvatureR5R0528l2b. In a manifestly static
gauge, it reads

ds252~114l2br 2!dt21~114l2br 2!21dr2. ~71!

But f50 is just the dilaton-constant solution for the sinhbf
potential: V(0)50, dV(f)/dfuf0

Þ0 and moreoverJ(0)

50 so that the expression~37! becomes identically zero. Th
above solution coincides with Eq.~69! ~with k51). Now we
can complete our understanding of theC→l2b limit of the
solution ~26!, ~27! in the Kruskal gauge. TheCÞl2b case
coincides, up to diffeomorphisms, with theMÞ0 param-
etrized solution~35!, ~36! and theC5l2b case with the
unparametrized solution~69!, ~70!. These solutions are dif
ferent and they cannot be diffeomorphism connected.
special caseM50 in Eqs.~35!, ~36!, which at first sight we
could be tempted to identify with Eqs.~69!, ~70!, is the ho-
rizon coincident case and region I of Fig. 1 is reduced to
point r 50 wheref50 andR528l2b. The transformation
~42!, ~43! connects both gauges in a similar way to t
Ginsparg-Perry one and this suggests that there is a
relation between the existence of constant dilaton soluti
and horizon degeneration. In fact this is what happens
general and we shall show this in the remaining part of t
section.
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Let us consider again the general solution~35!, ~36! for a
general potentialV(f) and introduceU(r )54J(r )24M so
that the horizons are the roots ofU(r ). In order to study
models with horizon degeneration we wantU(r ) to have two
or more roots. Although all roots are distinct we can alwa
fit a valueM0 of the parameterM for which two neighboring
roots become coincident in, say,r 0 which is then a double
root of U(r ). The ‘‘critical’’ value of M is M05J(r 0) and
the dilaton function at this point isf05lr 0. Now, sincer 0
is an extremal ofU(r ), we get

05
dU

dr U
r 0

54lV~f0!, ~72!

0Þ
d2U

dr2 U
r 0

54l2
dV

dfU
f0

, ~73!

which are just the conditions~66!, and thenf5f0 gives the
constant dilaton solution~69!, ~70!. It is straightforward to
check that the opposite is true as well: iff0 is a constant
dilaton solution,r 05f0 /l is a degenerate horizon forM
5M05J(f0).

Let us now perform a perturbation around the degene
radius of coincident horizons, as happens in the limitM
→M0 andU(r )→0 between the two horizons. We write

M5M02
k

4
e2, ~74!

wheree!1 andk is a constant with the same sign asR0. The
degenerate case corresponds toe→0. We introduce a new
coordinate pair (t̃ , r̃ ) defined by

t5
t̃

e
, r 5r 01e r̃ . ~75!

Expanding the functionU(r ) in powers ofr 2r 0 we get

U~r !5S k2
R0

2
r̃ 2D e21O~e3!, ~76!

which finally turns Eq.~35! into

ds252S k2
R0

2
r̃ 21O~e! Dd t̃21S k2

R0

2
r̃ 21O~e! D 21

dr̃2.

~77!

This in the ‘‘near-horizon’’ limite→0 becomes Eq.~69!.
We end by noting that forR0,0—i.e., the solution has

constant negative curvature—k is negative and redefining i
ask[2m this is nothing but the AdS2 black hole.

VI. SEMICLASSICAL THEORY AND CONCLUSIONS

We shall now make some semiclassical considerati
concerning the sinhbf model. The Hawking radiation is de
termined by the usual expression
1-7
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^T22
f &5

N

12
@]2

2 r2~]2r!22t2#, ~78!

and we now show why the choicet250 in Kruskal coordi-
nates is the most natural one. The privileged point (r 50) in
which the Killing vector must be normalized corresponds
Kruskal coordinates with the curve

x1x25
1

C
. ~79!

If we calculate^T22&, we get

^T22
f &5

N~x1!2

48 F 1

11l2bx1x22
1

Cx1x21
l2b

C
G 2

.

~80!

This expression exactly vanishes when evaluated over
points of the curve~79!. The interpretation is then that be
cause the two black holes placed at infinity have the sa
temperature, there is a compensation between the Haw
radiation coming from each black hole, giving no net Haw
ing flux. The same considerations apply if we interchan
2 with 1 in the previous formulas, and we havet150 as
well. We can also wonder if it makes sense to choo
‘‘evaporating’’ boundary conditionst2Þt1 . At the classical
level and by virtue of the Birkhoff theorem the solutions a
parametrized by a single constantC, forcing the two black
holes to have the same mass and temperature. Howeve
the semiclassical level the Birkhoff theorem no longer a
plies and we could try, for instance, to increase the mas
one of the black holes and to see whether or not a n
equilibrium state is reached. Moreover, if in view of
higher-dimensional interpretation we restrict ourselves to
casef.0, then the physical spacetime contains only o
black hole and it would seem natural to impose bound
conditions different from the ones used above. These q
tions and the related semiclassical dynamical evolutions
be studied elsewhere.

It is interesting to comment that in the Jackiw-Teitelbo
limit the curvature singularities disappear and we get con
curvature AdS2 black holes~if b.0). AdS2 black holes
have been claimed not to emit Hawking radiation@18# ~if a
nontrivial dilaton is present, however, this might not be tru
see @19#!, which is exactly what happens in our sinhbf
model although there the lack of radiation can be underst
by the presence of the mirror black hole. Therefore in
itively the AdS2 black hole inherits the no-radiation proper
of the more general model they arise in a certain limit. T
is not the case of the exponential model in which black ho
evaporate@7#. In this model and with the boundary cond
tions t650 the solutions represent black holes in equil
rium with a thermal bath. So the role of the mirror black ho
is interchanged with the existence of external radiation
coming onto the black hole.
02401
he

e
ng
-
e

e

, at
-
of
w

e
e
y
s-

ill

nt

;

d
-

s
s

-

-

ACKNOWLEDGEMENTS

This research has been partially supported by
DGICYT, Spain. J.C. acknowledges the Generalitat Valen
ana for financial support. D.J. Navarro wishes to thank
Spanish Ministry of Education and Culture for financial su
port and the Physics Department of Stanford University
hospitality. A.F. is supported by the INFN. We want to tha
A. Mikovic for interesting comments.

APPENDIX: AdS23S2 GEOMETRY
IN EINSTEIN-MAXWELL THEORY

In this appendix we shall describe a way to generate
Robinson-Bertotti (AdS23S2) geometry in Einstein-
Maxwell gravity based on the possibility of constructin
constant-dilaton solutions explained in Sec. V. Let us s
with the Einstein-Maxwell action

I 5
1

16pG(4)E d4xA2g(4)@R(4)2~F (4)!2#. ~A1!

If we impose spherical symmetry on the gauge field and
metric

ds(4)
2 5gmndxmdxn1

f2

2l2 dV2, ~A2!

wherexm5(t,r ), dV2 is the metric on the two-sphere, an
l21 is the Planck length (l225G(4)), the dimensionally
reduced action functional is@20#

E d2xA2gF1

2 S f2

4
R1

1

2
gmn]mf]nf1l2D

2
1

8
f2FmnFmnG . ~A3!

After an appropriate reparametrization

f2

4
→f, ~A4!

gmn→gmn~2f!21/2, ~A5!

the two-dimensional action takes the form@21#

E d2xA2gF1

2
@fR1l2V~f!#2

1

4
W~f!FmnFmnG ,

~A6!

where

V~f!5
1

A2f
, W~f!5~2f!3/2. ~A7!

The equations of motion imply that@21#

F5q
e2r

W~f!
, ~A8!
1-8
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whereF52F12 andq is a constant. Substituting the abov
solution for F into the other equations of motion one find
that they are equivalent to those of the model~61! with the
replacement

V~f!→V~f!2
q2

l2W~f!
5Ve f f ~A9!

and so in our case

Ve f f5
1

A2f
2

q2

l2~2f!3/2 ~A10!

and we can apply the arguments of Sec. V. We then ha
constant dilaton solutionf5f0 for
er

e

rg

ys

la

02401
a

Ve f f50 ~A11!

and therefore

f05
q2

2l2 , ~A12!

which turns out to be the radius of the horizon for the e
tremal Reissner-Nordstro¨m solution r 15r 25(1/l)A2f0
5q/l2. Moreover, the two-dimensional geometry is AdS2
with curvature

R52
2l4

q2 52
2

r 1
2 . ~A13!
it.
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