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Recent x-ray variability observations of accreting neutron stars may provide the first evidence for frame
dragging effects around spinning relativistic objects. Motivated by this possibility and its implications for
neutron-star structural properties, we calculate new optimal bounds on the masses, radii, and moments of
inertia of slowly rotating neutron stars that show kilohertz quasi-periodic oscillat@R©3. These bounds
are derived under minimal assumptions about the properties of matter at high densities and therefore are largely
independent of the unknown equation of state. We further derive a semi-analytical upper bound on the neutron-
star moment of inertia without making any assumptions about the equation of state of matter at any density. We
use this upper bound to show that the maximum possible nodal precession frequency of an inclined circular
orbit around a slowly spinning neutron stanige~45.2(v4300 Hz) Hz, where is the spin frequency of the
neutron star. We conclude that the nodal-precession interpretation of low-frequency QPOs in accreting neutron
stars is inconsistent with the beat-frequency interpretation of the kHz QPOs or the identification of the highest-
frequency QPO with that of a circular Keplerian orbit in the accretion disk.

PACS numbse(s): 04.40.Dg, 04.80.Cc, 97.60.Jd, 97.80.Jp

I. INTRODUCTION tion (HBO), is often observed simultaneously with the kHz
QPOs[8,3]. Soon after its discovery the origin of this QPO
Astrophysical observations of general relativistic phe-was linked to the interaction between the accretion disk and
nomena are rare and often confined to effects observablbe magnetosphere of the neutron 4@ Recently, how-
within our solar systerfil]. Among galactic sources, relativ- ever, this interpretation has been challenf&@d by the un-
istic compact objects, such as neutron stars and black holederstanding that the accretion disks appear to penetrate closer
are the prime candidates for the detection of such phenonte the stellar surface than what is required by the model
ena. In these sources, however, the effects of general relati{3,5,11]. As an alternative model, Stella and Vi€ttiO] sug-
ity are often convolved in complex ways with other astro-gested that the frequency of the HBO is the general relativ-
physical phenomena, making their identification oftenistic Lense-Thirring precession frequency, caused by frame
impossible. The observation, via precise pulsar timing, ofdragging, of an inclined circular orbit that has a Keplerian
orbital shrinkage in double neutron-star systems representgbital frequency equal to the frequency of the highest-
the most successful to date identification of purely generalfrequency kHz QPO. The physical mechanism responsible
relativistic effects in galactic compact obje¢H. for producing brightness oscillations at the precession fre-
The recent discovery with th®ossi X-ray Timing Ex- quency of a particular orbit in the accretion disk is still a
plorer of quasi-periodic oscillations with variable kilohertz matter of active researdi2]. However, when the effects on
frequencieghereafter kHz QPQdrom many accreting neu- the precession frequency of the quadrupole moment of the
tron stars has provided us with a new clock that measurestellar gravitational field can be neglected, the theoretically
accurately their variabilityf3]. The centroid frequencies of predicted correlation between the precession and orbital fre-
the highest-frequency kHz QPOs in each source have beaquencies is consistent with observatidi®,11 (see Ref.
identified with Keplerian frequencies of stable orbits in the[11] for a discussion of the discrepancy between the pre-
accretion disks very close to the stfBs-5]. These QPOs can dicted and observed trends at the high frequenciése nor-
therefore be used as probes of the physical conditions imalization of the observed correlation, though, is relatively
regions where general relativistic effects in the strong-fieldhigh. In other words, the magnitude of the observed HBO
regime are non-negligiblg5]. This identification has led to frequencies can be accounted by the modaly if the mo-
new upper bounds on the masgggically =<2.2 M) and  ments of inertia of the neutron stars axet—5 times larger
radii (typically =15 km) of the accreting neutron stars than predicted by any realistic equation of stdfe0S
[5,6]. In one specific x-ray sourc@U 1820-30), the asso- [10,11,13. Therefore, whether frame-dragging effects pre-
ciation of a kHz QPO with the Keplerian orbital frequeraty  dicted by general relativity have actually been observed in
the radius of the innermost stable circular orbit around theaccreting neutron-stars depends crucially on our knowledge
neutron star may provide us with the first evidence of thisof the moments of inertia of neutron stars.
prediction of general relativity as well as with the identifica-  Theoretical calculations of neutron-star properties such as
tion of the first relatively massive=£2.2M ) neutron star their masses, radii, and moments of inertia require knowl-
[7]. edge of the equation of state of neutron-star matter up to
In many accreting neutron stars, a third low-frequency densities>10"> gcm 3. However, the equation of state at
(=10-70 Hz) QPO, the so-called horizontal-branch oscilla-densities higher than the nuclear saturation densi2.{

0556-2821/99/6(2)/0240098)/$15.00 61 024009-1 ©1999 The American Physical Society



VASSILIKI KALOGERA AND DIMITRIOS PSALTIS PHYSICAL REVIEW D 61 024009

x 10" gem ) is still largely unknown and the subject of ments of inertia under aet of minimal assumptiorfer the
intense theoretical and experimental reseatef). Therefore  equation of state of neutron-star matter above some fiducial
accurate predictions for neutron-star structural properties arenergy densitypy. These arga) the matter is cold(b) the
hampered by the current uncertainty in the equation of statpressure in a given fluid element is determined uniquely by
of high-density neutron-star mattgt5]. its energy density(c) the energy density and pressure are
In principle, the equation of state of matter at high densi-everywhere positive, an@l) dP/dp=0 (microscopic stabil-
ties could be constrained by astrophysical measurements @f). In deriving these new bounds we make use of the recent
neutron-star masses and radii, although such measurememtsservations of kHz QPOs in LMXBs to constrain the mac-
are relatively rare. The masses of the compact objects iroscopic properties of neutron stars in these systems, i.e.,
double neutron-star systems measured via precise pulsar tirtheir masses and radib].
ing of the evolution of their binary orbit?] were found to The inferred spin frequencies of the neutron stars in the
cluster around=1.39M [16]. Mass estimates of neutron systems that show kHz QPOs and HBO ar250—350 Hz
stars in other binary systems depend strongly on the un:3-5], which are significantly smaller than te1500 Hz
known inclination of the binary orbit and provide little addi- breakup frequency of a typical neutron sfab]. We there-
tional information on neutron-star properti¢s6]. Astro- fore assume that the neutron stars in all these systems are
physical measurements of the radii of neutron stars based atowly rotating. Hereafter, we also setG=1, wherec is
the emitting area of their thermal emission during thermo-the speed of light an is the gravitational constant.
nuclear burst$17], during the quiescence phase in transient The frequencies of the kHz QPOs observed in the x-ray
systemd18], or during the cooling phase of isolated neutronbrightness of accreting neutron stars and their dependence on
stars[19] are also difficult because of the systematic uncermass-accretion rate have led to the identification of the
tainties in the predicted model spectra. Based on these mehighest-frequency QPOs with Keplerian frequencies of stable
surements so far no significant constraints were imposed ocircular orbits in the accretion disk8-5]. In this interpre-
any of the current equations of state. tation, the observation of kHz QPOs from an accreting neu-
Bypassing the uncertainties of the equation of state afron star imposes two constraints on its mass and rdéius
high densities, optimal bounds on the masses, radii, and m@i) The radius of the orbit responsible for the highest-
ments of inertia of neutron stars have been derived underequency kHz QPO must be larger than the radius of the
minimal assumptions about the validity of general relativityinnermost stable circular orbit around the neutron star. This

and the microscopic stability of neutron-star matf20]. leads to an upper bound on the neutron-star mass:
Stricter bounds can be obtained if the so-called causality
limit is imposed, i.e., by requiring that the speed of sound be M ns< (V8647 vma) L, (1)

less than the speed of light everywhere in the neutron star

[21], although the Va'ldlty of this requirement has been queSyhere Vimax is the maximum observed frequency of the

tioned. Such limits on the macroscopic properties of the neuhjghest-frequency QPdii) The radius of the orbit respon-

tron stars are largely independent of their unknown equatiosjple for the highest-frequency kHz QPO must be larger than

of state. the radius of the neutron-star itself. This leads to a mass-
In this paper, we obtain optimal bounds on the momentgjiependent upper limit on the neutron star radius:

of inertia of the neutron stars that show kHz QPOs under

minimal or no assumptions about their structure and equation M 13

of state, taking into account the bounds on their masses and 2Mys<Rys= Z—NEJ , 2

radii imposed by the observations of these QPOs. Our aim is 4w

to address the possibility that low-frequency QPOs in neu-

tron star sources are related to general relativistic framavhere the lower limit on the neutron star is simply the re-

dragging which leads to Lense-Thirring precession of in-quirement that the central compact object not be a black

clined orbits. hole. In writing Egs.(1) and(2) we have neglected the fact
In Sec. Il, we discuss our assumptions and method ofhat the neutron star is slowly spinning; for the inferred spin
solution of the relevant equations. In Sec. lll, we presenfrequencies of neutron stars in these systems, the correction

numerical and semi-analytical bounds on neutron-stais only =10% towards increasing these upper bounds.
masses, radii, and moments of inertia and derive an EOS- In calculating the structure of a neutron star with mass
independent maximum limit on th@.ense-Thirring nodal  and radius consistent with the above bounds, we divide it
precession frequency. In Sec. 1V, we discuss the implicationgto two regions, given a value of the fiducial density,
of our results for the Lense-Thirring interpretation of the above which we do not trust the equation of state: the core,
observed HBOs in accreting neutron stars. with massM and radiusR; in which p=p,, and the enve-
lope exterior to the core. It has been shoj@0] that the
combined stellar configuration satisfies the set of minimal
Il. ASSUMPTIONS AND METHOD OF SOLUTION assumptions for the equation of state for neutron-star matter

In the absence of detailed knowledge of the equation off @nd only if
state of matter at very high densities- {0** gcn?), we )
shall follow the procedure outlined by Sabbadini and Hartle =z _ 2p (14 25 \1/
[20] to obtain bounds on neutron-star masses, radii, and mo- Me 9 R{1-67RPo+ (1+67R:Po) ™) 3
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and d
( +4r3f—=0 (13)

4 3
M= —2Ripo, (4) .
for the radial dependence &f

Given a fiducial densitypy and the corresponding pres-
rePg, as well as a core madd and radiusR., we inter-

rate numerically Eqs(6) and (7) outwards from the core-

nvelope interface until the intergration reaches the surface
of the neutron star defined B(Rys)=0. The mass of the
neutron star is then simpimn(Rys) =Mys.

For the core configuration that maximizes the neutron-star

whereP, is the pressure that corresponds to the energy derg—u
Sity po at the edge of the core.

Among all core configurations that satisfy the core mas
limits (3) and (4), there is one that maximizes the stellar
moment of inertig 20]. The maximizing core configuration
is that of constant density.=p,. For a given equation of

state and fiducial energy densjiy and for a given neutron- et of inertia(i.e., the one with constant energy density
star mass and radius, we calculate the structure of the NeY the core, we integrate analytically the same equations
tron star for the core configuration that maximize its momen;Eqs 6) (75] but inwards from the core-envelope interface

of inertia. We then scan the ranges of neutron-star mass . : :

- . the resulting neutron-star mass and radius satisfy the con-
and radii allowed by the kHz QPOs and obtain the globaly ;i imposed by the kHz QPOs, we then solve numeri-
optimal bounds on the neutron-star moment of inertia as

. %ally Eq. (8) with the boundary conditiorwv(Ryg)=In[1
function of pq. S oMo /Ry. NS

_To first order in the stellar_ angular velocify, the metric Equation(11) is a second-order partial differential equa-
in and around a slowly rotating star [i22] tion with the boundary conditions

1
__an(ny+2 24 204021 i 2 df
ds?=—e’dt?+ 1—2m(r)/rdr +r2(d6?+sirf6dp?) [d_ ~0 (12)
) Mi-o
—2w(r)r?sirfod ¢dt, (5)
_ _ - and
wherew(r) is the angular velocity of a locally non-rotating
frame at radiusr measured by an asymptotic inertial ob- |
server. Under these assumptions, the quantitiés and f(r=Ryg=1-2—-, (13
m(r) satisfy the Oppenheimer-Volkoff equations NS
dpP m+ 43P wherel is the moment of inertia of the neutron star given in
—=—(P+p) 57— (6)  closed form by[23
dr (P+p r2(1—2mir) M23]
2 (Rns dj(r)
and N R 3
I 3J'0 ar f(ryr=dr
dm
—— =472, (7) 87 (Rns f(r)j(ryr*
dr - s
3 ), (p+P)1—2m(r)/rdr' (14)
as well as the equation
We integrate Eq(11) outwards from the center of the neu-
dv m+ 43P tron star, using the boundary conditi¢t?) and a trial value
=2 (8)  fyat the inner boundary. We call this trial solutifg(r) and

=2 ,
dr r%(1-2m/r) calculate the corresponding moment of inettjausing Eq.

hereP is th h densi gi (14). We note that Eq11) is scale free and therefore assum-
whereP is the pressure and the energy density at a radius ing a different value off at the inner boundaryf(r=0)

r inside the neutron star. In order to solve for the quantity_ ¢fo, Where ¢ is a constant, results in the solutidigr)
w(r), and h_ence for t_he moment of inertia of the neutronzgf"’(r) and the correspondi,ng moment of inertia £l .
star, we define, following Hartig22], Given the trial solution, we can then calculate the value of
the parameteg for which the boundary conditioi13) is

f(ry=1- or) (9 satisfied, i.e.,
Q
2 -1
and £=| fu(r=Ryg) +—5 Iy (15
12 Ris
m
j=e " 1-2— (10) . -
r| As a result, the solution of Ed11) that satisfies boundary
conditions(12) and (13) is just f(r)=&f,(r) and the mo-

and solve the equation ment of inertia of the neutron star is
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Ly ———

Black

I:
fu(r=Rys) +214/Ris

We performed all numerical integrations using a fourth-
order Runge-Kutta scheme. We verified our numerical
implementation of the procedure outlined above and our in-
tegration algorithms by taking the limji,—, i.e., assum-
ing that we know the equation of state everywhere in the
neutron star, and comparing the calculated moments of iner-
tia for different neutron star parameters and equations of
state with the values given by Cook, Shapiro, and Teukolsky
[15]. We performed an additional test by taking the limit

Mass (M)

po—0, i.e., assuming a constant-density neutron star, and Radius (km)

comparing the calculated moments of inertia for different

neutron star parameters with the values given by Sabbadini A '-
and Hartle[20] and Abramowicz and Wagoné24]. In all er Ropo<6M ]

tests the agreement was better thaf.5%.

IIl. BOUNDS ON NEUTRON-STAR PROPERTIES

A. Optimal bounds on neutron-star masses and radii

Mass (M,)

The constraint€1) and (2) imposed on the neutron-star
mass and radius by the identification of the highest-
frequency kHz QPO with a Keplerian orbital frequency are
derived without any assumptions regarding the equation of
state for neutron-star matt¢b]. These constraints can be
further optimized assuming an equation of state for the en- Radius (km)
velope of the neutron star and constraining the properties of FIG. 1. Bounds on the mass and radius of a neutron star im
of assumpions ciscussed in Sec. 1. For a given equaton dioSed bY the dentifcation of 2 1220 Hz QPO with a Keplerian
state and fiducial density, and for each core mass and orbital frequency. The two panels correspond to different equations

. . - of state, which were assumed to be valid up to some fiducial den-
radius in the allowed range defined by the limi8s and (4), sity. Different line types correspond to the constraints imposed for

we integrate the Oppenheimer-Volkoff equations and Calcu('jiﬂerent values of the fiducial density. Dotted lines: equation-of-

late .the resulting neutron-star mass and radius. state independent limitEgs. (1) and (2)]. Short-dashed linesi,
Figure 1 shows the allowed ranges of stellar masses and; 7x 1014 gem 3. Long-dashed lines:po=7% 104 gcm 3,

radii for two representative equations of stélebeled ac-  gojig lines: py=2x 1015 gcm 2. The dotted lines for the maxi-
cording to Ref[15]) and for different values of the fiducial mum allowed radii in both panels overlap with the short-dashed
densitypy. In order to understand the qualitative behavior ofjines and have been omitted for clarity.

the bounds shown in Fig. 1, for a given equation of state, we

call pc(Mys) the central density anBegodMys) the radius  maximum allowed radius of a neutron star with mbsgs is

of the star of mas#/ s for this specific equation of state. R.,4Myg), which may be smaller than the upper bound on

In the limiting casepy— 0, i.e., when the equation of state the radius imposed by the kHz QPOs.
is assumed to be unknown everywhere in the star, the lower In Fig. 2 we plot the maximum allowed neutron-star ra-
bound on the neutron star radius corresponds to the generaius as a function of the fiducial density, for different equa-
relativistic requiremenRys=(9/4)M s [20], so that the cen- tions of state(labels according to Ref15]). As indicated
tral pressure in the neutron-star is not infinite. The uppefrom Fig. 1 already, using any equation of state up to about
bound on the neutron-star radius corresponds to the bountle nuclear saturation density =2.7x 10** gcm 3) does
(2) set by the kHz QPOs. not not alter the bounds on the neutron-star raflitc (2)]

For a non-zero fiducial density, the lower bound on theimposed by the kHz QPOs. Extending the use of any equa-
stellar radius corresponds to the requiremBgE (9/4)M:  tion of state to higher densitigap to 2 or 4 times,,) leads
imposed on theore (and not the stellaproperties. At high  to tighter constraints on the stellar radius that depend
fiducial densities, the mass and radius of the envelope betrongly on the assumed equation of state. The bound im-
come non-negligibleRys>R., and hence the lower bound posed by Eq(1) on the neutron star mass is not affected by
on the neutron-star radius for a given mass becomes tight&howledge of the equation of state.

(moves to the right in Fig.)1 For a non-zero fiducial density, Note here that all physical equations of state satisfy the
the upper bound on the stellar radius becomes tighter, aset of minimal assumptions used in constructing Figs. 1 and
well. The radius of a star of given mass decreases with in2. As a result, the bounds on the mass and radius of a neutron
creasing central density and hence, wipgh-p.(Mys), the  star plotted in these figures will not lead to any constraints on

20
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FIG. 4. Maximum neutron-star moment of inertia in units of its

FIG. 2. Maximum neutron-star radius allowed by the identifica- mass as a function of the maximum observed kHz QPO frequency.
tion of a 1220 Hz QPO with a Keplerian orbital frequency, as aThe upper bounds calculated using the numerical method described
function of the fiducial density, up to which an equation of state in Sec. Il (solid line) are compared to the ones calculated analyti-
was assumed to be known. Different curves correspond to differer‘(;auy in the limit of zero(dashed ling and maximum(dotted ling
equations of state. The nuclear saturation densitypjg=2.7 compactness of the neutron star.
X 10" gem 3,

wherel =1,510" gcn? is the neutron-star moment of iner-

the microscopic properties of the equation of state at highia, as a function of the fiducial density for different equa-
densities in addition to those already imposed by relationgions of state and for a maximum kHz QPO frequency of
(1) and(2). However, these considerations do impose addi1220 Hz. The maximum ratid 45/(Mys/Mo) decreases
tional constraints on the macroscopic properties of individualyith increasing fiducial density,, in part becausé/M ys
neutron stars, which in principle can be compared with otheg, RZ2, and the maximum allowed neutron-star radius de-
independent estimates of their masses and radii. Such addreases with increasing, (see Fig. 2 For fiducial densities
tional estimates may be obtained from the x-ray Spddffa  higher than the nuclear saturation density, the maximum ra-
or the amplitudes of the coherent oscillations during x-rayjq |,./(Mys/M) depends on the assumed equation of

bursts[25]. state.
For a neutron star showing kHz QPOs with a maximum
B. Bounds on neutron-star moments of inertia frequency vy, We can obtain the maximum value of the

For a given equation of state and fiducial dengigyand ~ 'atio l4s/(Mys/Mo), independent of the equation of state,
for a neutron star with a mass and radius consistent with they taking the limitpo—0. This corresponds to a star with
bounds calculated above, we calculate the upper bound diPhstant density and is the configuration that maximizes its
the stellar moment of inertia, as outlined in Sec. II. Figure 3moment of inertia. Figure 4solid ling) shows the resulting
shows the maximum value of the quantity/(Mys/My),  dependence; for a maximum kHz QPO frequency of 1220
Hz, 145/ (Mns/M ) =2.3.

We can obtain the dependence of the maximum ratio
- I 45/ (Mns/Mg) 0N vy at the limit pg—0 in the following
<1220 Hz | analyticalway. For any star, independent of the equation of
state, Sabbadini and Harfl20] showed that

L] | <éMyeRis (17)

Yaro

The parameteé is a function of the compactness of the star
] (Mys/Rys) and has the limiting valueg,,,=2/5 in the
v ] Newtonian limit Mys/Rys—0) and &,a=0.799=4/5 in
. the limit of maximum compactness allowed by general rela-
tivity (i.e., Mys/Rns=4/9) [20]. Combining Eq.(17) with

0-51(;14 BE— “1‘515 SR the radius boundg&l) and (2), we obtain

Maximum Lg/(M/M,)
o
T

I 1
FIG. 3. Maximum neutron-star moment of inertia in units of its M < f 7S > 2
mass allowed by the identification of a 1220 Hz QPO with a Keple- NS 247 Vg 30T ey
rian orbital frequency, as a function of the fiducial dengigyup to

which the equation of state was assumed to be known. Differentvhere ¢ corresponds to the compactness of the neutron star
curves correspond to different equations of state. The nuclear satihat maximizes the ratit/ M ys and in the last inequality we
ration density isope=2.7X 10" gcm 3. used the fact thag<4/5. In Fig. 4 we compare the analytical

, (18)
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upper bound18) for the two limiting values of¢ (£=2/5,
dashed line;¢=4/5, dotted ling to the one calculated nu-

-3
o
T

T T T

. . . . . i GX 17+2
merically in the limitpg—0 (solid line). 6o L e 1
Whenpy— 0, the maximum value of the ratidM yg cor- . Sre X2 g
responds to a neutron star of constant density with typically 7
the maximum radius allowed by constrait® imposed by GX 51~ 4

o
Sco X-1 8 - GX 340+0

Pl ———

the kHz QPOs. For such a neutron stdrys/Rys= 1/6 [see
Egs.(1) and(2)] and hence is closer to the Newtonian limit

of 2/5 than to its maximum value of 4/5, as suggested by Fig.
4. Indeed, by comparing the analytical scaling to the numeri-
cal result we find that a better approximation to the upper
bound of the ratid 45/ (Mys/Mg) corresponds t@¢=0.452
and is(see also Fig. %

—
—
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FIG. 5. Maximum HBO frequency versus inferred spin fre-
l s 1220 Hz 2 quency for five bright neutron-star sources. The dashed line is the
M /M = 3( 2) (19 maximum nodal precession frequency for an inclined circular orbit
Ns/ Mo

Vmax around a star of a given spin frequency.
This is the maximum value of the ratigs/(Mys/M¢) al- IV. DISCUSSION
lowed by general relativity for a neutron star that shows a
maximum kHz QPO frequency of,,, in its power spec- We have calculated optimal bounds on the masses, radii,
trum. and moments of inertia for slowly rotating neutron star in

which observed frequencies of kHz QPOs have been identi-
fied with Keplerian orbital frequencies. Assuming the valid-
ity of an equation of state up to some fiducial dengity
The orbital plane of an infinitesimally inclined circular these bounds become tighter @sincreases. In the limiting

orbit around a slowly spinning neutron star precesses becase ofpg—0, i.e., when we make no assumption regarding
cause of general relativistic frame dragging, as well as bethe equation of state, we have derived an analytical upper
cause of classical effects related to the quadrupole momehpound on the neutron-star moment of inertia for a given
of the stellar gravitation field. The nodal precession fre-maximum observed kHz QPO frequency. We also obtain

C. Maximum nodal precession frequency

guencyvyp of such an orbit i§10] analytically the maximum nodal precession frequency of an
inclined circular orbit around a neutron star, which depends

. _8772| 2 only on the spin frequency of the star and is independent of

PNPT LT T gy S Ps Tk T Ve 20 the other stellar properties, the equation of state, or the prop-

erties of the circular orbit.

In this section we use these constraints to address the
possible observational evidence for general relativistic
. . . . Sframe-dragging effects in the rapid variability of accreting
sion, respectivelyys is the spin frequency of the neutron o yron star§10]. Many such sources often show three dis-
star, andvy is the Keplerian orbital frequency of the orbit. types of QPOs that are not harmonically relaf8].

The frequency of the general relativistic precession is di—rne 1o QPOs at kilohertz frequencies are believed to occur
rectly proportional to the rati¢/M, for which we have ob- o he Keplerian frequency of a stable circular orbit in the
tained optimal bounds in the previous section. Given that the . retion disk and at its beat with the neutron-star spin fre-
effect of classical precession is to reduce the nodal prece§|—uency [4,5,13. According to Stella and Vietr[10], the
sion frequency_ and using the upper boud8) on the ratio third, low-frequency QPQlthe HBO occurs at the nodal
I/Mys we obtain precession frequency of the orbit responsible for the kHz

QPO.
1 Ve We can first test quantitatively the suggestion that the
VNPS §§VS:45'Z<WZ) Hz, (21)  HBO occurs at the nodal precession frequency of an inclined
circular orbit by comparing the maximum observed HBO
frequency in different sources with the maximum possible
where we used=0.452, for the reasons discussed in Secnodal precession frequency around a slowly spinning neutron
Il B. star[Eqg. (21)]. We use the data of five bright neutron stars,

Equation(21) shows that there exists an upper limit on thein which all three QPOs can be identified unambiguously, as
nodal precession frequency of a circular orbit around aliscussed in detail in Refll]. Figure 5 shows the maxi-
slowly spinning neutron star, which we have obtained anamum HBO frequencies in these sources plotted against their
lytically. It is remarkable that this upper limit is independent spin frequencies inferred from the peak separation of the kHz
of all the other properties of the neutron star, of the unknowrQPOs. The data points are compared to the maximum pos-
equation of state, or of the properties of the circular orbit. sible nodal precession frequency around a neutron star cal-

wherev 1 and v are the contributions of the general rela-
tivistic Lense-Thirring precession and of the classical prece
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culated in Sec. Il BEq. (21)]. Four out of the five sources 1220 Hz,l,5/(Mys/Mo)=<2.3, independent of the equation
are inconsistent with our optimal bound at least at tle 1 of state(extreme case of,=0). Moreover, assuming even
level. In particular, the observed HBO frequencies in thethe unrealistically stiff equation of stateup to twice nuclear
source GX 1# 2 can be excluded at high statistical signifi- saturation density results in an upper limit of
cance from being nodal precession frequencies, if the peak,./(Mys/Mo)=<1.7 (see Fig. 3. Assuming any other equa-
separation of the kHz QPOs is equal to the spin frequency ofon of state results in even lower values of the ratio
the neutron star. I 45/(Mys/M o) which are inconsistent at high statistical sig-
It is possible that the observed HBO occurs at the secongificance with the value required by the nodal-precession in-
harmonic of the nodal precession frequency. A precessingerpretation of the HBO.
circular orbit has a twofold symmetry that could, in prin-  We therefore conclude that the nodal-precession interpre-
ciple, produce even-order harmonics that are stronger thagtion of the HBO observed in several neutron-star sources is
the odd-order harmonics. The observation of a subharmonigconsistent with the identification of the higher-frequency
of the HBO in neutron-star sources as well as of subharmorkHz QPO with a Keplerian frequency of a circular orbit and
ics of similar QPOs in black-hole sourcgg5] gives addi-  with the identification of the frequency separation of kHz

tional weight to this conjecture. In this case, we address the)POs with the spin frequency of the neutron $26].
nodal-precession interpretation of the HBO using the ob-

served correlation between the HBO and kHz QPO frequen-
cies in the same five bright neutron-star sources discussed in
Ref.[11]. We are grateful to Greg Cook and Cole Miller for provid-

When the effects of classical precession are negligibleing us with the pressure-density relations of the various
observation of a Keplerian, spin, and nodal precession freequations of state for neutron-star matter. We thank R. Wag-
guencies leads to a direct measurement of the tédlb of  oner for his comments. We also thank for their hospitality
the neutron stafsee Eq.(20)]. Identification of the HBO the astronomy group at the University of Leicester, the as-
frequency in four of these five sources with the second hartronomical institute of the University of Amsterdam, and the
monic of the nodal precession frequency requiresMax-Planck Institute for Radioastronomie in Bonn, where
l45/(Mys/Mg)=2.3 at the 99% confidence leVidll]. How-  parts of this work were completed. This work was supported
ever, for the maximum observed kHz QPO frequency ofin part by the Smithsonian Institute.
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