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Brane junctions in the Randall-Sundrum scenario
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We present static solutions to Einstein’s equations corresponding to branes at various angles intersecting in
a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-
Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the
junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the
theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological
constants, and thus cannot have a dynamical origin. We present these conditions in detail for two simple
examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios,
and outline the desired features of the brane configurations which may bring us closer towards a resolution of
the cosmological constant problem.

PACS numbd(s): 04.50+h

[. INTRODUCTION on these ideas by noting that our understanding of Kaluza-
Klein (KK) gravity models has been largely limited to fac-

The principal challenge facing particle theorists is to un-torizable metrics where the components of the metric tensor

derstand the physics at energy scales of a few TeV. It seento not depend on the coordinates of the extra dimension

inevitable that the standard model will be amended at theskt,5]. RS noted that if this is not the case, the properties of
scales. The most popular scenario is that the world is supecompactification may change radically. In particJldf, fol-

symmetric, with the scale of supersymmetry breaking beindowing the idea that the standard model fields may reside on

around a few hundred GeV. Thus in this scenario all supera 3-brane, RS considered two 3-branes embedded into (4

partners would become visible around the TeV scale. Thist 1)-dimensional spacetime, with the extra dimension being
possibility would explain why there is such a big hierarchy 3 compacs!/z, manifold (this latter motivated by3]). The

betwee_n the weak and the Planck scales. Thus the bqu_of_thﬂ“k cosmological constant was chosen to be negative, while

efforts in the past 20 years has been devoted to modifying,e tensions of the two branes are of opposite signs. RS

particle physics above the weak scale in order to &CCOMMQy ng that if a particular fine-tuning relation between the

date this huge hierarchy. Very recently it has been under(:osmological constant and the brane tensions is obeyed,

Stoo_d that th_ere exists a _dlfferen_t way towards recorycﬂmgchere will be a static solution to Einstein’s equations, which
partlcl_e phy5|c_s with gravity at h'gh energies, by rad|callyis given by two slices of anti—de Sitt€AdS) space glued
changing our ideas how gravity will work above the TeVv together at the location of the branes. The metric tensor has a

scale[1-3]. Most notably, Arkani-Hamed, Dimopoulos and non-trivial exponential dependence on the coordiyakong

Dvali suggestedl1] that in fact the fundamental Planck scale . . . ) .
itself could be as low as a few TeV, if there are large extrathe extra dimensioh This exponential determines the natural

dimensions. This way the problem of the hierarchy betweefass scale at the locatignThus it is not inconceivable that
the Planck and the weak scales is translated into the questicYWq'gl)e the mass scale at the brane with pc_JSItlye t_enS|0n is
of why the size of the extra dimensions is much larger than0~_GeV, due to the exponential suppression it might be a
its natural scale of 1/TeV. The fundamental new ingredienf€W TV on the brane with negative tension, thereby possi-
in this idea is that the reason why we do not see the effects djly SOIvVing the hierarchy problei,7]. RS further notedd]

the large extra dimensions is because the standard modglat the brane with positive tension supports a single bound
fields reside on a 3-brane, and the only fields which carptat&(zero modgof gravitons, thereby “trapping” gravity to
propagate in the extra dimensions are the gravitons. this wall. This is a very appealing feature of the theory, since

Recently, Randall and SundrufRS) further developed in this case one might as well move the second brane with
’ negative tension far awagin fact making the size of the

extra dimension infinitely large while Newton's law of
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gravity is still correctly reproduced on the brane due to the A\
trapped zero mode. The idea of having non-compact extra
dimensions is also explained in Ref8,9]. Since the trap-
ping of the zero mode crucially depends on the fact that one
has a brane of co-dimension 1, one would think that this
feature of trapping gravity on a 3-brane can only hold if one Ay A,
has a (4+1)-dimensional spacetime. However, Arkani-
Hamedet al. have pointed ouf10] that if one considers in-
tersecting branes of co-dimension(ibtersecting orthogo-
nally in a single 3-braneone can still find static solutions to
Einstein’s equations, which will trap gravity to the intersec-
tion of the branes. Further solutions to Einstein’s equation F|G. 1. A single 3-brane with tensionV divides the
have been given ifiL1], within the context of supergravity in (44 1)-dimensional space-time into two domains with different
[12,13, and the relation to string theory and holography hascosmological constants.
been explained if14]. The cosmological aspects of the RS
models have been studied[ib5,16, while the issue of bulk This paper is organized as follows: in Sec. Il we review
scalars and stabilization of the radius[iv,18. the RS solution by considering a 3-brane in
In this paper we consider more general intersections of4+1)-dimensional spacetime separating two domains with
branes. In particular, we discuss “brane junctions,” that isdifferent cosmological constants. In Sec. Ill we give our gen-
intersections of semi-infinite branes intersecting in a singleeral setup for brane junctions in451 dimensions and dis-
3-brane. We will mainly concentrate on junctions of cuss the general algorithm of finding the solutions to Ein-
4-branes, but we expect that it will be straightforward tostein’s equations and the fine-tuning relations. In Sec IV we
generalize the algorithm of gluing sectors of static AdSwork out the solutions and fine-tuning relations in detail for
spacetimes together to higher dimensions. We find that brangvo simple junctions. In Sec. V we summarize our observa-
junctions can yield static solutions to Einstein’s equations iftions about the cosmological constant problem, and we con-
some fine-tuning conditions between the tensions and thelude in Sec. VI.
cosmological constants are satisfied. Moreover, the balance
of m_echapical forces on the junption arising frpm the brane | reviEW OF THE RANDALL-SUNDRUM SOLUTION
tensions is a necessary condition for the existence of the
static solution. We present these conditions for some simple We first briefly review the original Randall-Sundrum so-
examples in detail. lution by presenting a slightly generalized version of it. In
A crucial ingredient of the RS solution is the fine-tuning this setup we have a single 3-braméth positive tensiorV)
between the brane tension and the bulk cosmological corembedded into (4 1)-dimensional spacetime, where the
stant, which ensures that there is a static universe with thbranes divide the space into two domains: one with cosmo-
effective 4-dimensional cosmological constant vanishinglogical constant\, the other withA, (both of them nega-
Thus the cosmological constant problem in four dimensiongive). This setup is depicted in Fig. 1. The original RS solu-
is translated into the problem of the tuning between the brangon for A;=A,=A is given by
tension and the fundamentdive dimensionalcosmological
constant. In the case of branes intersecting at angles one ds?=e~ 2l 5 dxedxP—dy?, 2.1
expects that there will be similar relations, which also in-
volve the angles of the branes. A simple way of understandwherea,b=0,1,2,3 are the coordinates of the four dimen-
ing the cosmological constant problem would then be tosional spacetime, whilg is the coordinate along thenfi-
imagine that one starts with a setup of branes whose angleste) extra dimension. In order for this to be the solution to
do not satisfy the required tuning relation. Then one lets theéhe Einstein equations, the parametehas to satisfy
system relax, and perhaps it would settle to a configuration
where the angles of the branes take the right value, thus ) K2A
providing a flat 4 dimensional universe with a vanishing cos- m==-" (2.2
mological constant. For this scenario to be viable, one would
need to find a solution of intersecting branes, where all finewhere x2 is Newton's constant in five dimensionscy
tuning conditions can be satisfied by the choice of angles- 1/M2 whereM, is the five dimensional Planck scaland
between the branes. Moreover, this configuration should be fhe tension of the brane has to be tuned to be
ground state of the system once the dynamics of the branes is
included. Unfortunately, as we will see, this is not the case in
. ) . ) . 6A
the solutions based on junctions presented in this paper. V=A/— —. (2.3
There is always at least one remaining fine-tuning involving K2
only the tensions and the cosmological constants. One may
hope, however, that a more clever configuration of brane&or the generalizations to be presented below it turns out to
may possess the necessary features and thus provide a dye useful following 10] to redefine the coordinates such that
namical interpretation of the cosmological constant problemone obtains a conformally flat metric:
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dy=e "ldz (2.4
In these coordinates
ds’= w?(2) n,,dx“dx", (2.5
where
o Yz)=m|z|+1, (2.6)

if one wants to have the location of the brane to bez at
=0. In these coordinates it is easy to see why EX5)

solves the Einstein equations with a negative cosmological

constantA and a brane with tensiov at z=0.
The Einstein tensor for a metric of the formg,,

= wzéw in d dimensions is given by

G,=8yut (d-2)| ¥ ,Jog¥ Jogw -7, ¥ Joge

, (2.7

= d-3 ~ )
Velogw + T(Vlogw)

+ g,u.v

where the covariant derivativds are evaluated with respect
to the metricg. Since in our case the metric is conformally

flat, g uv= T, all covariant derivatives can be replaced by

ordinary derivatives, and for the same reafé));y=0. For
the casew 1(z)=m|z|+1 one can easily see that the Ein-
stein equations at an arbitrary point of the buk#0) are

satisfied if 8n?= — k?A, since the energy-momentum tensor

in the bulk is given byr%%= A 5,,,w?(z). The singularities

in the second derivatives @ result in the additional term

6mw(z)8(z)diag 1,—1,—1,— 1,0 2.9
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FIG. 2. The setup of semi-infinite 4-branes intersecting in a
single 3-brane in 51 dimensions. The brane tensions are denoted
by V;, while the bulk cosmological constants are givenAy.

and the tension of the brane is determined by

3(m1+ mz) = KZV.

(2.12

Thus the fine-tuning condition in this case is given by

K2v2=§(\/—Al+\/—A2)2. (2.13

Clearly by construction the solution we found is static.
However, we included the brane as an internal source nailed
at z=0. The dynamics of the brane is not included in this
simple description, and thus it is impossible to determine if
the solution is stable against small fluctuations.

The above example already suggests how one can further
generalize these solutions by fitting slices of AdS space with

in the Einstein tensor, which must be balanced by the ternflifférent cosmological constants together. Indeed, Arkani-
from the energy-momentum tensor of the brane on the righflamedet al. have shown that one can find solutions corre-

hand side of Einstein’s equations,
k’w(z)V8(z)diag1,—1,—1,—1,0), (2.9

thus yielding 6n= «2V.

sponding to orthogonally intersecting branes. In the next sec-
tion we show that one can also find solutions corresponding
to the junction of semi-infinite branes intersecting in a single
3-brane. We will concentrate on the case of 4-branes embed-
ded in (5+1)-dimensional spacetime, but we expect that

This solution represents two slices of anti—de Sitter spacgeneralizations to higher dimensions based on the algorithm
(the solution of Einstein’s equations with negative cosmo-described below should be straightforward.

logical constant glued together az=0. The brane repre-

sents the source necessary for fitting the two pieces together.

Now it is trivial to generalize this solution to the case with

Ill. GENERAL SETUP

two domains with different cosmological constants. It is a \ye consider a junction of ha{semi-infinite in one direc-

space with two slices of AdS spaces with differeris glued
together. Thus one expects a conformally flat metBic)
with

o Yz2)=mz6(z) —myz6(—2)+1,

(2.10

whered(z) =1 for z>0 and#(z)=0 for z<O0 is the Heavi-

tion) 4-branes in 5-1 spacetime dimensions. These branes
intersect in a single 3-brane, and the tension of therane

is V;. The bulk cosmological constant in the region between
the " and (i+ 1) brane is taken to bé ;. This general
setup is depicted in Fig. 2. We want to fit slices of static
(5+1)-dimensional anti—de Sitter space together such that

side step function. Einstein’s equations in the bulk requirdh€ resulting full solution exactly corresponds to the setup

that

K2Al
6 1

K2A2
6 1

(2.11

ml:_

given in Fig. 2. A patch of (5 1)-dimensional AdS space
can be described by the conformally flat metric

ds?= w?(x,y) 7, dx“dx”, (3.1
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wherexg ;  zare the coordinates of the 4 dimensional space- koL o
time, andx,=X, xs=y are the coordinates in the extra di- w’1=1+2 (m;-x)6(n;_1-x)8(—n;-Xx), (3.3
mensions. The conformal factor is given by =1

1 - wheren; = (—sin¢;,Cc0Sg;) is a unit vector in the,-x5 plane
@ (xy)=m-x+1, (32 normal to the'" brane, andp; is the angle between the brane
and the coordinate axis. Clearly, one linear combination of
wherex= (x.y), the parameterm (my,my) are rZeIated to angles is an unphysical parameter corresponding to the over-
(neg?tlve) the bulk cosmological constant as m;+mj all rotation of the configuration. Thus we can choose the
—(K /10)A, and«? is Newton’s constant in six dimensions coordinate system such thay=0. We conclude that the

4
(f‘ =1M, , whereM, is the fundgmental Planck scale in ansatz(3.3 depends ork vectorsm; andk—1 angles, alto-
Six dlmensmn}: Note that the requirement that the confor- gether X—1 parameters.

mal factorw be positive imposes certain inequalities on the™ \ya now turn to the energy-momentum tensor of the con-

possible values ofh in each AdS patch. figuration ofk AdS patches separated by branes. In the bulk
In order to find the full solution to Einstein’s equations we of g given patch the energy momentum tensor is given by
need to glue thev's together such that Tu*'=Aw?n,,. Thus at the generic point the energy-

(i) the metric tensor is continuous at the location of themomentum tensor can be written as
branes,

(ii) the discontinuity in the derivatives along the branes bulk 9 = - - -
reproduces the energy momentum tensor of the brane with Ty :gl Ao 0(ni—1-X) O(=Ni-X) 77, (3.4
given tensionV; rotated into the appropriate direction.

It is convenient to write the conformal factor in a space The energy-momentum tensor of a 4-brane rotated by an

k

composed ok AdS patches as angle ¢ from the horizontal directiox is given by
1
-1
b -1
T, ranei = v w(x,y) 8(n; - X) 1 (3.5
—coS ¢ —sing; cosy;
—sing; COSep; —sirfe;

Thus the total stress-energy tensor in our space is given byrhe requirements that the singularities in the derivatives at
the brane reproduce the brane tension will yield two equa-

tions at each brafe
— bqu branei
=Tb) Z Toranel, (3.6)
- > > K2Vi >
Ami:mi+1—mi:Tni. (39)
The Einstein tenso@ Ry ngR for a conformally
flat metricg,,,= w? e |n d dimensions is given by _ ]
To summarize, we foundk3equations on thel3—1 param-

eters of the ansat@.1), (3.3). Therefore, generically thk
bulk cosmological constants; and thek brane tension¥,
need to satisfy a singlébut quite complicatedfine-tuning
condition. We will discuss this fine-tuning condition in more
3.7 detail in the particular examples in the following section.
Once this fine-tuning condition is satisfied a static solution of
the form(3.1), (3.3 exists and its parameters are completely

We are now ready to solve the Einstein equations. At agetermmed

generic point in the bulk we find

=(d-2)

d,logwd, logw—4,d,log w

2 d—3 2
Jlogw+ ——(dlogw)“||.

R/ 5

2 2This is easy to see by going to a coordinate system in which the
m2= — K_A_ (3.9 brane under consideration is horizontal, so that the relevant parts of
: 0" ' both the energy-momentum and the Einstein tensors are diagonal.
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A\ o~ H(xy)=f1(x,y) 0(y) f(xcosp—y sing)
+f2(x,y) 6(y) 6(y sinp—Xx cose)
A, A, +fa(X,y)0(—y)o(y sinp—x cosep)
[0) +f4(X,y)0(—y)O(x cosp—ysing) +1,
V2 .1
A; Ay where 1,2,3,4 label the four domains where the value of the

cosmological constant i4 , 3,4, and thef;(x,y) are func-
tions linear inx,y and positive everywhere inside the do-

main:
FIG. 3. Two 4-branes with tensions andV, intersecting at an f.(x,y)=m; X+m, Jy- (4.2
angle ¢. The four domains may have different cosmological con- ’ '
stants. The Einstein equations in the bulk result in the conditions
It is worth noting that(as should have been expedtéae mi,+mi,=—X\y, M3 +mi=—X\,,
solution satisfies the requirement ttalassical mechanical
forces acting at the junction exactly balance. Indeed sum- m§X+ m§y= — A3, mﬁx+ m§y= —Ng,
ming up Eqgs(3.9 we find (4.3
K where we have used the notatian=(«%/10)A;. The Ein-
2 V. hi=0 (3.10 stein equations at the position of the branes will give the
=t ' conditions

which can be rewritten as Moy =My, =V31COS@, My~ My =V;SIiNg,

mzy_m3y:V2, m3x_m2X:0,

k
V;=0, 3.1 .
i:El I 319 Mgy —Myy=V1COS@,  Myx— Mg=V;SINQ,

- ) Myy— My =V,, My—Myy=0, 4.4
whereV;=(V,;,Vy )= (V,cosg; ,Vising). The latter equa- y Ty e T @4
tion is exactly the condition of vanishing force. where we have used the notatiop= (x%/4)V;. We can ex-

press all variables with the help afy,, m;,, and¢ using
IV. EXAMPLES the discontinuity equations as
Below we will apply the formalism presented in the pre- Moy =My, —V4SiNg, My=m;,+V;COSe,
vious section to discuss two particular examples in detail.
The first example will involve two 4-branes intersecting at an M3, =My, —V3SiNg, Mg =m;,—V,+V;COSe,
angle, with different bulk cosmological constants in the four
domains of spacetime, while the second example will in- Mgy =Myy,  Mgy=My,— V5. (4.5

volve three semi-infinite 4-branes intersecting in a single . . )
3-brane(a “triple junction”). We will give the necessary Using these expressions the equations in the bulk can be
fine-tuning conditions in detail, and find the metric tensor infeéwritten as

every sector of spacetime. M2, + m%y: g,
A. Four-branes intersecting at an angle (mlx_vlsin¢)2+ (m1y+V1COS(P)2: —N,,

In our first example we will consider two 4-branes em-
bedded into a (5 1)-dimensional spacetime. The tensions Mi,+ (Myy—Vp)2=—\y,
of the two branes are given by, and V,, and the four
domains may have different cosmological constants. The (M= V3SiNg@)?+(My—V,+V1C0Se)?= —\3.
setup is given in Fig. 3. Note that since we are considering (4.6)
infinite 4-branes, the condition on the forces balancing at the . . .
junction is automatically satisfied: thus at this point the angld oM the equations involving; and\, we learn that
¢ between the branes is arbitrary.

Following the general formalism of the previous section,

Na—N1+V3
we write the metric in the formyw:wz(x,y) N, Where '

Myy = 4.7

2V2
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Vl o 1(X,y)=f1(X,y) 0(X) 6(ysin ¢, — XCOS¢@;)
+fo(X,y) 8(—X) B(ySin g, + XCOSe,)

+f3(X,y)8(X cOSp,—Sing,)

A, Ay
@Q X 6(—ysing,—XCc0Sp,)+ 1, (4.10

where 1,2,3 label the three domains where the value of the
cosmological constant i§; , 3, and thef;(x,y) are functions
A3 linear inx,y and positive everywhere inside the domain:

\Y \'A

2 fi(X,y)=m; ,x+m; Y. (4.1

FIG. 4. Three semi-infinite 4-branes intersecting at angles

: ) The Einstein equations in the bulk are given by
and ¢, in a single 3-brane.

2 2 _
. . . . - mlx+ mly_ )\11
Plugging this back into the other two equations and eliminat-

ing my,, we get that m§X+ m§y= -\,
Na=NotNi—=Ng 2 (Ag—AptAi—Ay) M3, +m3y=—\s, (4.12
cose= 2vqv 5 2 '
12 k“V1Va 18 where we have again used the notatigr («2/10)A;. The
(4.8 Einstein equations at the position of the branes will give the
_ . S _ conditions
In particular, this relation implies that in the case when the
bulk cosmological constant is isotropicA{=A,=A3 My, —Myy=0, My —My=vy,

=A,) the only possible angle between the branesrig.
The converse, however, is not true, and branes can be or-

: ; . . Moy — Mgy =V,SiN@y, My — Mg =V,C0S¢p,,
thogonal with cosmological constants different in each sec- oo o

tor. We now have two different expressions foi, which Myy— Mg, =V3SiN@;, Mg— My, =V5C0Se,
can be obtained from Eq$4.6). Equating them and substi- (4.13
tuting the valueg4.7) for m;, and(4.8) for cose we obtain
the fine-tuning condition where again we have used the notatigs: («%/4)V; . It is
convenient to combine the discontinuity equations to obtain
(A1= A2 HFN3=Na) (N3 = NN ) +VE(A 1= No) (A g—Ny) }Sr?c(t:i?;qition for the mechanical balance of the forces at the

+VIN1—Ng)(Na—N2) = (A1 +No+ N3+ AgVivs . .
VoSINg,=V3SIngq,
—vivi(vi+v3)=0. 4.9
V3C0S@q+V,C0Sp,+Vv,=0. (4.19

Note that the first three terms vanish if all cosmological con-

stants are set to be equal, and one is left with the fine-tunin hese equations completely determine the anglpsby the

equation— 2\ =v?2, implying k?V?=—% A, which exactly elations
reproduces the fine-tuning condition obtained 10]. Thus 2_.,2_.2
X . . . . V5—V5—V]
we find that the existence of the static solution determines COSp=—r—"
the angle between branes uniquely, and moreover, there is 2V1Vs
one fine-tuning condition involving the cosmological con- s o o
stants and the brane tensions. For simplicity in our discus- cos _VsTVaT Vo 4.15
sion we considered a specific case of infinite branes. Had we #2 2vyVy '

considered semi-infinite branes with different tensions, the
solution would still exist subject to a singlalthough more We can now express the remaining variables with the help of
complicatedl fine-tuning condition. m,, andm;,, using the discontinuity equations as

B. Triple junction of semi-infinite 4-branes Mox=Mix=Va,  May=TMay.
. .In_ our second examplelwe will cqn5|der three semi- May= My, +V3C0SE;, Mgy =My, —V;SiNg;.

infinite 4-branes embedded into a{3)-dimensional space- (4.16

time, intersecting in a single 3-brane. The setup is depicted

in Fig. 4. Similarly to the previous example, we write the Using these expressions the equations in the bulk can be
metric in the formngwz(x,y) M0, Where rewritten as

024008-6
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2 2 _
M+ mi,=—N\g,
2
(M= V)2 +miy=—Xp,
(M +V3C0S@y) 2+ (Myy—V3asing;)?= —\3. (4.17)
From the first two equations,, can be expressed as

)\2_)\1+Vi
2v,

(4.18

Myx=

Using this formula, the expression fon,, from the first
equation, and the values of cpdrom Eqgs.(4.15 we again

PHYSICAL REVIEW D61 024008

effective 4 dimensional cosmological constant to zero. One
might hope, however, that brane configurations exist where
the effective cosmological constant can be set to zero by
adjusting only the orientations of the branes. In order for
such a brane setup to be interesting, the values of the angles
of the branes at the point where the effective cosmological
constant vanishes also have to depend on the tension of the
3-brane at the intersectiqa quantity which we did not con-
sider in the models presented in this pap@&his is required

so that it is possible to cancel the quantum corrections to the
effective 4 dimensional cosmological constant due to the
fields localized on the intersection by readjusting the angles
of the branes. If such a solution indeed existed, then one

obtain a single fine-tuning relation between the tensions angdg, ;|4 translate the cosmological constant problem to a com-

the cosmological constants:

VIVEVEH VAV HVE—VE) FAVE(VIHVE-V))

+)\3V%(V%+V§_V%)+Vi()\l_)\3)()\2_)\3)
+V3(A = A1) (Az3— N+ VE(A1—A)(A3—\2)=0.
(4.19

In the case ofA;=A,=A3;=A andV;=V,=V3=V this
relation simplifies tov?= — 3\, that is

24
K?V2=— —A

5 (4.20

V. COMMENTS ON THE COSMOLOGICAL
CONSTANT PROBLEM

pletely dynamical problem in the given brane setup—that is,
why the angles of the branes are adjusted such that the ef-
fective cosmological constant vanishes. Such a dynamical
formulation would be by itself a useful step towards the un-
derstanding of the cosmological constant problem. If such a
brane configuration indeed existed, one could then further-
more speculate that the reason for the adjustment of the
angles to a setup with zero effective cosmological constant is
due to the following mechanism: initially, the positions of
the branes are not adjusted and the effective 4 dimensional
cosmological constant does not vanish. Therefore, the uni-
verse is inflating, thereby exerting pressure on the branes,
which are slowly relaxing towards the static solution at
which the effective 4 dimensional cosmological constant
vanishes. Of course, for this speculative picture to hold, one
would need to investigate the dynamics of the braies
yond finding a static brane solution with the described fea-
tureg. In this paper we only looked at the particular static

One of the biggest puzzles in particle physics is the vanansatz leading to the flat four-dimensional metric. Therefore,

ishing of the cosmological constafar why its value is at

our results only indicate that the point with vanishing cos-

least 120 orders of magnitudes smaller than its natural size @fiological constant is the extremum of the potential for the
the orderM3, would be. There is no symmetry that could angles, but not necessarily the minimum.

forbid the appearance of the cosmological constant term. From a four-dimensional point of view, the angles of the
Thus the best hope is that there is a dynamical reason behifttanes appear as scalar fields. Thus one expects that they
the vanishing of the cosmological constant. However, withinneed to be light to potentially provide a solution to the cos-
four dimensional theories it is very difficult to find a dynami- mological constant problem. Even then one is confronted
cal adjustment mechanism that would naturally achieve thisvith the usual problem of the adjustment mechanisms for

goal (for a review se¢19]).

solving the cosmological constant problem. It is difficult to

In the Randall-Sundrum scenario discussed in this papainderstand why the potential for one or a few scalars is such
the vanishing of the effective four-dimensional cosmologicalthat at the minimum of the potential the cosmological con-
constant is a consequence of a fine-tuning between the fustant vanishes. Moreover, quantum corrections seem to de-
damental5 dimensional cosmological constant and the ten- stroy this tuning even if it was true at the tree level. How-
sion of the 3-brane. Thus in the original RS scenario there igver, it might be possible that what seems to be a terrible
no new information gained about how the cosmological confine-tuning in the effective 4 dimensional theory is a simple

stant problem could be solved dynamically.

consequence of the brane dynamics in higher dimensions,

One can, however, imagine a more complicated scenariwith no tuning required in the full theory of branéafter all,
like one of the setups presented in this paper, where thig a solution of the desired type existed, the value of the

3-brane we live on arises as an intersection of differentosmological constant in the bulk would be gengritthis
branes. The effective 4 dimensional cosmological constant ifine-tuning in the effective theory is indeed the consequence
then a function of not only the 5 dimensional cosmologicalof brane physics in the higher dimensional theory, one might
constant and the brane tensigircluding the tension of the hope that it is stable under radiative corrections, since the
intersection brane but also the positiongangleg of the  quantities that presumably govern the dynamics of the branes
branes. Brane configurations considered in this paper are the full quantum corrected ones.

their most obvious generalizationequire at least one fine- In the setup considered here there is another possibility
tuning in addition to the adjustment of the angles to set thdor improvement on the fine-tuning of the potential in the
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effective 4 dimensional theory. As we noted, for a given sefpaper there is one fine-tuning relation which is independent
of parameters the requirement for the existence of the statiof the angles of the branes and thus cannot have a dynamical
solutions with the flat four-dimensional metric completely origin. It would be very important to understand whether or
determines the angles. Thus from the four-dimensional poinbot static brane configurations of this sénthere all tuning

of view, the potential for the angles is determined mostly byconditions can be satisfied by adjusting the positions of the
their interactions with the metric, in particular with its light brane$ do exist and, if so, whether they can be minima of
KK excitations. The description of the four-dimensional ef- the scalar potential of the angles in the effective 4 dimen-
fective theory in RS configurations includes a large numbesional theory.

of arbitrarily light KK excitations. Thus it is not inconceiv-

able that their interactions with the angles lead to a situation
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