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Brane junctions in the Randall-Sundrum scenario
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We present static solutions to Einstein’s equations corresponding to branes at various angles intersecting in
a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-
Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the
junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the
theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological
constants, and thus cannot have a dynamical origin. We present these conditions in detail for two simple
examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios,
and outline the desired features of the brane configurations which may bring us closer towards a resolution of
the cosmological constant problem.
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I. INTRODUCTION

The principal challenge facing particle theorists is to u
derstand the physics at energy scales of a few TeV. It se
inevitable that the standard model will be amended at th
scales. The most popular scenario is that the world is su
symmetric, with the scale of supersymmetry breaking be
around a few hundred GeV. Thus in this scenario all sup
partners would become visible around the TeV scale. T
possibility would explain why there is such a big hierarc
between the weak and the Planck scales. Thus the bulk o
efforts in the past 20 years has been devoted to modify
particle physics above the weak scale in order to accom
date this huge hierarchy. Very recently it has been und
stood that there exists a different way towards reconcil
particle physics with gravity at high energies, by radica
changing our ideas how gravity will work above the Te
scale@1–3#. Most notably, Arkani-Hamed, Dimopoulos an
Dvali suggested@1# that in fact the fundamental Planck sca
itself could be as low as a few TeV, if there are large ex
dimensions. This way the problem of the hierarchy betwe
the Planck and the weak scales is translated into the que
of why the size of the extra dimensions is much larger th
its natural scale of 1/TeV. The fundamental new ingredi
in this idea is that the reason why we do not see the effect
the large extra dimensions is because the standard m
fields reside on a 3-brane, and the only fields which c
propagate in the extra dimensions are the gravitons.

Recently, Randall and Sundrum~RS! further developed
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on these ideas by noting that our understanding of Kalu
Klein ~KK ! gravity models has been largely limited to fa
torizable metrics where the components of the metric ten
do not depend on the coordinates of the extra dimens
@4,5#. RS noted that if this is not the case, the properties
compactification may change radically. In particular@4#, fol-
lowing the idea that the standard model fields may reside
a 3-brane, RS considered two 3-branes embedded into
11)-dimensional spacetime, with the extra dimension be
a compactS1/Z2 manifold ~this latter motivated by@3#!. The
bulk cosmological constant was chosen to be negative, w
the tensions of the two branes are of opposite signs.
found that if a particular fine-tuning relation between t
cosmological constant and the brane tensions is obe
there will be a static solution to Einstein’s equations, whi
is given by two slices of anti–de Sitter~AdS! space glued
together at the location of the branes. The metric tensor h
non-trivial exponential dependence on the coordinatey along
the extra dimension.1 This exponential determines the natur
mass scale at the locationy. Thus it is not inconceivable tha
while the mass scale at the brane with positive tension
1019 GeV, due to the exponential suppression it might b
few TeV on the brane with negative tension, thereby pos
bly solving the hierarchy problem@4,7#. RS further noted@5#
that the brane with positive tension supports a single bo
state~zero mode! of gravitons, thereby ‘‘trapping’’ gravity to
this wall. This is a very appealing feature of the theory, sin
in this case one might as well move the second brane w
negative tension far away~in fact making the size of the
extra dimension infinitely large!, while Newton’s law of

l

1Similar domain-wall solutions in the context of supergrav
theories have been considered in@6#.
©1999 The American Physical Society08-1
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gravity is still correctly reproduced on the brane due to
trapped zero mode. The idea of having non-compact e
dimensions is also explained in Refs.@8,9#. Since the trap-
ping of the zero mode crucially depends on the fact that
has a brane of co-dimension 1, one would think that t
feature of trapping gravity on a 3-brane can only hold if o
has a ~411!-dimensional spacetime. However, Arkan
Hamedet al. have pointed out@10# that if one considers in-
tersecting branes of co-dimension 1~intersecting orthogo-
nally in a single 3-brane!, one can still find static solutions t
Einstein’s equations, which will trap gravity to the interse
tion of the branes. Further solutions to Einstein’s equat
have been given in@11#, within the context of supergravity in
@12,13#, and the relation to string theory and holography h
been explained in@14#. The cosmological aspects of the R
models have been studied in@15,16#, while the issue of bulk
scalars and stabilization of the radius in@17,18#.

In this paper we consider more general intersections
branes. In particular, we discuss ‘‘brane junctions,’’ that
intersections of semi-infinite branes intersecting in a sin
3-brane. We will mainly concentrate on junctions
4-branes, but we expect that it will be straightforward
generalize the algorithm of gluing sectors of static A
spacetimes together to higher dimensions. We find that b
junctions can yield static solutions to Einstein’s equation
some fine-tuning conditions between the tensions and
cosmological constants are satisfied. Moreover, the bala
of mechanical forces on the junction arising from the bra
tensions is a necessary condition for the existence of
static solution. We present these conditions for some sim
examples in detail.

A crucial ingredient of the RS solution is the fine-tunin
between the brane tension and the bulk cosmological c
stant, which ensures that there is a static universe with
effective 4-dimensional cosmological constant vanishi
Thus the cosmological constant problem in four dimensi
is translated into the problem of the tuning between the br
tension and the fundamental~five dimensional! cosmological
constant. In the case of branes intersecting at angles
expects that there will be similar relations, which also
volve the angles of the branes. A simple way of understa
ing the cosmological constant problem would then be
imagine that one starts with a setup of branes whose an
do not satisfy the required tuning relation. Then one lets
system relax, and perhaps it would settle to a configura
where the angles of the branes take the right value, t
providing a flat 4 dimensional universe with a vanishing c
mological constant. For this scenario to be viable, one wo
need to find a solution of intersecting branes, where all fi
tuning conditions can be satisfied by the choice of ang
between the branes. Moreover, this configuration should
ground state of the system once the dynamics of the bran
included. Unfortunately, as we will see, this is not the case
the solutions based on junctions presented in this pa
There is always at least one remaining fine-tuning involv
only the tensions and the cosmological constants. One
hope, however, that a more clever configuration of bra
may possess the necessary features and thus provide
namical interpretation of the cosmological constant proble
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This paper is organized as follows: in Sec. II we revie
the RS solution by considering a 3-brane
(411)-dimensional spacetime separating two domains w
different cosmological constants. In Sec. III we give our ge
eral setup for brane junctions in 511 dimensions and dis
cuss the general algorithm of finding the solutions to E
stein’s equations and the fine-tuning relations. In Sec IV
work out the solutions and fine-tuning relations in detail f
two simple junctions. In Sec. V we summarize our obser
tions about the cosmological constant problem, and we c
clude in Sec. VI.

II. REVIEW OF THE RANDALL-SUNDRUM SOLUTION

We first briefly review the original Randall-Sundrum s
lution by presenting a slightly generalized version of it.
this setup we have a single 3-brane~with positive tensionV)
embedded into (411)-dimensional spacetime, where th
branes divide the space into two domains: one with cosm
logical constantL1, the other withL2 ~both of them nega-
tive!. This setup is depicted in Fig. 1. The original RS so
tion for L15L25L is given by

ds25e22muyuhabdxadxb2dy2, ~2.1!

where a,b50,1,2,3 are the coordinates of the four dime
sional spacetime, whiley is the coordinate along the~infi-
nite! extra dimension. In order for this to be the solution
the Einstein equations, the parameterm has to satisfy

m252
k2L

6
, ~2.2!

where k2 is Newton’s constant in five dimensions (k2

51/M
*
3 whereM* is the five dimensional Planck scale!, and

the tension of the brane has to be tuned to be

V5A2
6L

k2
. ~2.3!

For the generalizations to be presented below it turns ou
be useful following@10# to redefine the coordinates such th
one obtains a conformally flat metric:

FIG. 1. A single 3-brane with tensionV divides the
(411)-dimensional space-time into two domains with differe
cosmological constants.
8-2



t

ic

t
ly
by

n-

or

r
ig

ac
o

-
th
th
a

ir

ic.
iled
is
if

ther
ith
ni-

re-
ec-
ing

gle
ed-
at
thm

es

en

tic
that
tup

a
ted

BRANE JUNCTIONS IN THE RANDALL-SUNDRUM SCENARIO PHYSICAL REVIEW D61 024008
dy5e2muyudz. ~2.4!

In these coordinates

ds25v2~z!hmndxmdxn, ~2.5!

where

v21~z!5muzu11, ~2.6!

if one wants to have the location of the brane to be az
50. In these coordinates it is easy to see why Eq.~2.5!
solves the Einstein equations with a negative cosmolog
constantL and a brane with tensionV at z50.

The Einstein tensor for a metric of the formgmn

5v2g̃mn in d dimensions is given by

Gmn5G̃mn1~d22!F ¹̃mlogv¹̃mlogv2¹̃m¹̃nlogv

1g̃mnS ¹̃2logv1
d23

2
~¹̃ logv!2D G , ~2.7!

where the covariant derivatives¹̃ are evaluated with respec
to the metricg̃. Since in our case the metric is conformal
flat, g̃mn5hmn , all covariant derivatives can be replaced
ordinary derivatives, and for the same reasonG̃mn50. For
the casev21(z)5muzu11 one can easily see that the Ei
stein equations at an arbitrary point of the bulk (zÞ0) are
satisfied if 6m252k2L, since the energy-momentum tens
in the bulk is given byTmn

bulk5Lhmnv2(z). The singularities
in the second derivatives ofv result in the additional term

6mv~z!d~z!diag~1,21,21,21,0! ~2.8!

in the Einstein tensor, which must be balanced by the te
from the energy-momentum tensor of the brane on the r
hand side of Einstein’s equations,

k2v~z!Vd~z!diag~1,21,21,21,0!, ~2.9!

thus yielding 6m5k2V.
This solution represents two slices of anti–de Sitter sp

~the solution of Einstein’s equations with negative cosm
logical constant! glued together atz50. The brane repre
sents the source necessary for fitting the two pieces toge
Now it is trivial to generalize this solution to the case wi
two domains with different cosmological constants. It is
space with two slices of AdS spaces with differentm’s glued
together. Thus one expects a conformally flat metric~2.5!
with

v21~z!5m1zu~z!2m2zu~2z!11, ~2.10!

whereu(z)51 for z.0 andu(z)50 for z,0 is the Heavi-
side step function. Einstein’s equations in the bulk requ
that

m1
252

k2L1

6
, m2

252
k2L2

6
, ~2.11!
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and the tension of the brane is determined by

3~m11m2!5k2V. ~2.12!

Thus the fine-tuning condition in this case is given by

k2V25
3

2
~A2L11A2L2!2. ~2.13!

Clearly by construction the solution we found is stat
However, we included the brane as an internal source na
at z50. The dynamics of the brane is not included in th
simple description, and thus it is impossible to determine
the solution is stable against small fluctuations.

The above example already suggests how one can fur
generalize these solutions by fitting slices of AdS space w
different cosmological constants together. Indeed, Arka
Hamedet al. have shown that one can find solutions cor
sponding to orthogonally intersecting branes. In the next s
tion we show that one can also find solutions correspond
to the junction of semi-infinite branes intersecting in a sin
3-brane. We will concentrate on the case of 4-branes emb
ded in (511)-dimensional spacetime, but we expect th
generalizations to higher dimensions based on the algori
described below should be straightforward.

III. GENERAL SETUP

We consider a junction of half~semi-infinite in one direc-
tion! 4-branes in 511 spacetime dimensions. These bran
intersect in a single 3-brane, and the tension of the ith brane
is Vi . The bulk cosmological constant in the region betwe
the ith and (i11)st brane is taken to beL i . This general
setup is depicted in Fig. 2. We want to fit slices of sta
(511)-dimensional anti–de Sitter space together such
the resulting full solution exactly corresponds to the se
given in Fig. 2. A patch of (511)-dimensional AdS space
can be described by the conformally flat metric

ds25v2~x,y!hmndxmdxn, ~3.1!

FIG. 2. The setup of semi-infinite 4-branes intersecting in
single 3-brane in 511 dimensions. The brane tensions are deno
by Vi , while the bulk cosmological constants are given byL i .
8-3
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CSABA CSÁKI AND YURI SHIRMAN PHYSICAL REVIEW D 61 024008
wherex0,1,2,3are the coordinates of the 4 dimensional spa
time, andx4[x, x5[y are the coordinates in the extra d
mensions. The conformal factor is given by

v21~x,y!5mW •xW11, ~3.2!

wherexW5(x,y), the parametersmW 5(mx ,my) are related to
~negative! the bulk cosmological constantL as mx

21my
25

2(k2/10)L, andk2 is Newton’s constant in six dimension
(k251/M

*
4 , whereM* is the fundamental Planck scale

six dimensions!. Note that the requirement that the confo
mal factorv be positive imposes certain inequalities on t
possible values ofmW in each AdS patch.

In order to find the full solution to Einstein’s equations w
need to glue thev ’s together such that

~i! the metric tensor is continuous at the location of t
branes,

~ii ! the discontinuity in the derivatives along the bran
reproduces the energy momentum tensor of the brane
given tensionVi rotated into the appropriate direction.

It is convenient to write the conformal factor in a spa
composed ofk AdS patches as
b

t

02400
-

s
ith

v21511(
i 51

k

~mW i•xW !u~nW i 21•xW !u~2nW i•xW !, ~3.3!

wherenW i5(2sinwi ,coswi) is a unit vector in thex4-x5 plane
normal to the ith brane, andw i is the angle between the bran
and the coordinate axis. Clearly, one linear combination
angles is an unphysical parameter corresponding to the o
all rotation of the configuration. Thus we can choose
coordinate system such thatw150. We conclude that the
ansatz~3.3! depends onk vectorsmW i andk21 angles, alto-
gether 3k21 parameters.

We now turn to the energy-momentum tensor of the c
figuration ofk AdS patches separated by branes. In the b
of a given patch the energy momentum tensor is given
Tmn

bulk,i5L iv
2hmn . Thus at the generic point the energ

momentum tensor can be written as

Tmn
bulk5(

i 51

k

L iv
2 u~nW i 21•xW ! u~2nW i•xW !hmn . ~3.4!

The energy-momentum tensor of a 4-brane rotated by
anglew from the horizontal directionx is given by
Tmn
brane,i5Viv~x,y!d~nW i•xW !S 1

21

21

21

2cos2w i 2sinw i cosw i

2sinw i cosw i 2sin2w i

D . ~3.5!
at
ua-

re
n.
of
ly

the
ts of
nal.
Thus the total stress-energy tensor in our space is given

Tmn5Tmn
bulk1(

i 51

k

Tmn
brane,i . ~3.6!

The Einstein tensorGmn5Rmn2 1
2 gmnR for a conformally

flat metricgmn5v2hmn in d dimensions is given by

Gmn5~d22!F]mlogv]mlogv2]m]nlogv

1hmnS ]2logv1
d23

2
~] logv!2D G . ~3.7!

We are now ready to solve the Einstein equations. A
generic point in the bulk we find

mW i
252

k2

10
L i . ~3.8!
y

a

The requirements that the singularities in the derivatives
the brane reproduce the brane tension will yield two eq
tions at each brane2:

DmW i5mW i 112mW i5
k2Vi

4
nW i . ~3.9!

To summarize, we found 3k equations on the 3k21 param-
eters of the ansatz~3.1!, ~3.3!. Therefore, generically thek
bulk cosmological constantsL i and thek brane tensionsVi
need to satisfy a single~but quite complicated! fine-tuning
condition. We will discuss this fine-tuning condition in mo
detail in the particular examples in the following sectio
Once this fine-tuning condition is satisfied a static solution
the form~3.1!, ~3.3! exists and its parameters are complete
determined.

2This is easy to see by going to a coordinate system in which
brane under consideration is horizontal, so that the relevant par
both the energy-momentum and the Einstein tensors are diago
8-4
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BRANE JUNCTIONS IN THE RANDALL-SUNDRUM SCENARIO PHYSICAL REVIEW D61 024008
It is worth noting that~as should have been expected! the
solution satisfies the requirement that~classical! mechanical
forces acting at the junction exactly balance. Indeed su
ming up Eqs.~3.9! we find

(
i 51

k

Vi nW i50, ~3.10!

which can be rewritten as

(
i 51

k

VW i50, ~3.11!

whereVW i5(Vx,i ,Vy,i)5(Vicoswi ,Visinwi). The latter equa-
tion is exactly the condition of vanishing force.

IV. EXAMPLES

Below we will apply the formalism presented in the pr
vious section to discuss two particular examples in det
The first example will involve two 4-branes intersecting at
angle, with different bulk cosmological constants in the fo
domains of spacetime, while the second example will
volve three semi-infinite 4-branes intersecting in a sin
3-brane~a ‘‘triple junction’’ !. We will give the necessary
fine-tuning conditions in detail, and find the metric tensor
every sector of spacetime.

A. Four-branes intersecting at an angle

In our first example we will consider two 4-branes em
bedded into a (511)-dimensional spacetime. The tensio
of the two branes are given byV1 and V2, and the four
domains may have different cosmological constants. T
setup is given in Fig. 3. Note that since we are consider
infinite 4-branes, the condition on the forces balancing at
junction is automatically satisfied; thus at this point the an
w between the branes is arbitrary.

Following the general formalism of the previous sectio
we write the metric in the formgmn5v2(x,y)hmn , where

FIG. 3. Two 4-branes with tensionsV1 andV2 intersecting at an
anglew. The four domains may have different cosmological co
stants.
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v21~x,y!5 f 1~x,y!u~y!u~xcosw2y sinw!

1 f 2~x,y!u~y!u~y sinw2x cosw!

1 f 3~x,y!u~2y!u~y sinw2x cosw!

1 f 4~x,y!u~2y!u~x cosw2y sinw!11,

~4.1!

where 1,2,3,4 label the four domains where the value of
cosmological constant isL1,2,3,4, and thef i(x,y) are func-
tions linear inx,y and positive everywhere inside the d
main:

f i~x,y!5mi ,xx1mi ,yy. ~4.2!

The Einstein equations in the bulk result in the condition

m1x
2 1m1y

2 52l1 , m2x
2 1m2y

2 52l2 ,

m3x
2 1m3y

2 52l3 , m4x
2 1m4y

2 52l4 ,
~4.3!

where we have used the notationl i5(k2/10)L i . The Ein-
stein equations at the position of the branes will give
conditions

m2y2m1y5v1cosw, m1x2m2x5v1sinw,

m2y2m3y5v2 , m3x2m2x50,

m3y2m4y5v1cosw, m4x2m3x5v1sinw,

m1y2m4y5v2 , m4x2m1x50, ~4.4!

where we have used the notationv i5(k2/4)Vi . We can ex-
press all variables with the help ofm1x , m1y , andw using
the discontinuity equations as

m2x5m1x2v1sinw, m2y5m1y1v1cosw,

m3x5m1x2v1sinw, m3y5m1y2v21v1cosw,

m4x5m1x , m4y5m1y2v2 . ~4.5!

Using these expressions the equations in the bulk can
rewritten as

m1x
2 1m1y

2 52l1 ,

~m1x2v1sinw!21~m1y1v1cosw!252l2 ,

m1x
2 1~m1y2v2!252l4 ,

~m1x2v1sinw!21~m1y2v21v1cosw!252l3 .
~4.6!

From the equations involvingl1 andl4 we learn that

m1y5
l42l11v2

2

2v2
. ~4.7!

-

8-5
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Plugging this back into the other two equations and elimin
ing m1x we get that

cosw5
l32l21l12l4

2v1v2
5

2

5

~L32L21L12L4!

k2V1V2

.

~4.8!

In particular, this relation implies that in the case when
bulk cosmological constant is isotropic (L15L25L3
5L4) the only possible angle between the branes isp/2.
The converse, however, is not true, and branes can be
thogonal with cosmological constants different in each s
tor. We now have two different expressions form1x which
can be obtained from Eqs.~4.6!. Equating them and subst
tuting the values~4.7! for m1y and~4.8! for cosw we obtain
the fine-tuning condition

~l12l21l32l4!~l1l32l2l4!1v2
2~l12l2!~l32l4!

1v1
2~l12l4!~l32l2!2~l11l21l31l4!v1

2v2
2

2v1
2v2

2~v1
21v2

2!50. ~4.9!

Note that the first three terms vanish if all cosmological co
stants are set to be equal, and one is left with the fine-tun
equation22l5v2, implying k2V252 16

5 L, which exactly
reproduces the fine-tuning condition obtained in@10#. Thus
we find that the existence of the static solution determi
the angle between branes uniquely, and moreover, the
one fine-tuning condition involving the cosmological co
stants and the brane tensions. For simplicity in our disc
sion we considered a specific case of infinite branes. Had
considered semi-infinite branes with different tensions,
solution would still exist subject to a single~although more
complicated! fine-tuning condition.

B. Triple junction of semi-infinite 4-branes

In our second example we will consider three sem
infinite 4-branes embedded into a (511)-dimensional space
time, intersecting in a single 3-brane. The setup is depic
in Fig. 4. Similarly to the previous example, we write th
metric in the formgmn5v2(x,y)hmn , where

FIG. 4. Three semi-infinite 4-branes intersecting at anglesw1

andw2 in a single 3-brane.
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v21~x,y!5 f 1~x,y!u~x!u~ysinw12xcosw1!

1 f 2~x,y!u~2x!u~ysinw21xcosw2!

1 f 3~x,y!u~x cosw12sinw1!

3u~2ysinw22xcosw2!11, ~4.10!

where 1,2,3 label the three domains where the value of
cosmological constant isL1,2,3, and thef i(x,y) are functions
linear in x,y and positive everywhere inside the domain:

f i~x,y!5mi ,xx1mi ,yy. ~4.11!

The Einstein equations in the bulk are given by

m1x
2 1m1y

2 52l1 ,

m2x
2 1m2y

2 52l2 ,

m3x
2 1m3y

2 52l3 , ~4.12!

where we have again used the notationl i5(k2/10)L i . The
Einstein equations at the position of the branes will give
conditions

m2y2m1y50, m1x2m2x5v1 ,

m2y2m3y5v2sinw2 , m2x2m3x5v2cosw2 ,

m1y2m3y5v3sinw1 , m3x2m1x5v3cosw1 ,
~4.13!

where again we have used the notationv i5(k2/4)Vi . It is
convenient to combine the discontinuity equations to obt
the condition for the mechanical balance of the forces at
junction:

v2sinw25v3sinw1 ,

v3cosw11v2cosw21v150. ~4.14!

These equations completely determine the anglesw1,2 by the
relations

cosw15
v2

22v3
22v1

2

2v1v3
,

cosw25
v3

22v1
22v2

2

2v1v2
. ~4.15!

We can now express the remaining variables with the help
m1x andm1y using the discontinuity equations as

m2x5m1x2v1 , m2y5m1y ,

m3x5m1x1v3cosw1 , m3y5m1y2v3sinw1.
~4.16!

Using these expressions the equations in the bulk can
rewritten as
8-6
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m1x
2 1m1y

2 52l1 ,

~m1x2v1!21m1y
2 52l2 ,

~m1x1v3cosw1!21~m1y2v3sinw1!252l3 . ~4.17!

From the first two equationsm1x can be expressed as

m1x5
l22l11v1

2

2v1
. ~4.18!

Using this formula, the expression form1y from the first
equation, and the values of cosw from Eqs.~4.15! we again
obtain a single fine-tuning relation between the tensions
the cosmological constants:

v1
2v2

2v3
21l1v2

2~v1
21v3

22v2
2!1l2v3

2~v1
21v2

22v3
2!

1l3v1
2~v2

21v3
22v1

2!1v1
2~l12l3!~l22l3!

1v2
2~l22l1!~l32l1!1v3

2~l12l2!~l32l2!50.

~4.19!

In the case ofL15L25L35L and V15V25V35V this
relation simplifies tov2523l, that is

k2V252
24

5
L. ~4.20!

V. COMMENTS ON THE COSMOLOGICAL
CONSTANT PROBLEM

One of the biggest puzzles in particle physics is the v
ishing of the cosmological constant~or why its value is at
least 120 orders of magnitudes smaller than its natural siz
the orderM Pl

4 would be!. There is no symmetry that coul
forbid the appearance of the cosmological constant te
Thus the best hope is that there is a dynamical reason be
the vanishing of the cosmological constant. However, wit
four dimensional theories it is very difficult to find a dynam
cal adjustment mechanism that would naturally achieve
goal ~for a review see@19#!.

In the Randall-Sundrum scenario discussed in this pa
the vanishing of the effective four-dimensional cosmologi
constant is a consequence of a fine-tuning between the
damental~5 dimensional! cosmological constant and the te
sion of the 3-brane. Thus in the original RS scenario ther
no new information gained about how the cosmological c
stant problem could be solved dynamically.

One can, however, imagine a more complicated scen
like one of the setups presented in this paper, where
3-brane we live on arises as an intersection of differ
branes. The effective 4 dimensional cosmological constan
then a function of not only the 5 dimensional cosmologi
constant and the brane tensions~including the tension of the
intersection brane!, but also the positions~angles! of the
branes. Brane configurations considered in this paper~or
their most obvious generalizations! require at least one fine
tuning in addition to the adjustment of the angles to set
02400
d

-

of

.
ind
n

is

er
l
n-

is
-

io
e
t
is
l

e

effective 4 dimensional cosmological constant to zero. O
might hope, however, that brane configurations exist wh
the effective cosmological constant can be set to zero
adjusting only the orientations of the branes. In order
such a brane setup to be interesting, the values of the an
of the branes at the point where the effective cosmolog
constant vanishes also have to depend on the tension o
3-brane at the intersection~a quantity which we did not con
sider in the models presented in this paper!. This is required
so that it is possible to cancel the quantum corrections to
effective 4 dimensional cosmological constant due to
fields localized on the intersection by readjusting the ang
of the branes. If such a solution indeed existed, then
could translate the cosmological constant problem to a c
pletely dynamical problem in the given brane setup—that
why the angles of the branes are adjusted such that the
fective cosmological constant vanishes. Such a dynam
formulation would be by itself a useful step towards the u
derstanding of the cosmological constant problem. If suc
brane configuration indeed existed, one could then furth
more speculate that the reason for the adjustment of
angles to a setup with zero effective cosmological constan
due to the following mechanism: initially, the positions
the branes are not adjusted and the effective 4 dimensi
cosmological constant does not vanish. Therefore, the
verse is inflating, thereby exerting pressure on the bra
which are slowly relaxing towards the static solution
which the effective 4 dimensional cosmological consta
vanishes. Of course, for this speculative picture to hold, o
would need to investigate the dynamics of the branes~be-
yond finding a static brane solution with the described f
tures!. In this paper we only looked at the particular sta
ansatz leading to the flat four-dimensional metric. Therefo
our results only indicate that the point with vanishing co
mological constant is the extremum of the potential for t
angles, but not necessarily the minimum.

From a four-dimensional point of view, the angles of t
branes appear as scalar fields. Thus one expects that
need to be light to potentially provide a solution to the co
mological constant problem. Even then one is confron
with the usual problem of the adjustment mechanisms
solving the cosmological constant problem. It is difficult
understand why the potential for one or a few scalars is s
that at the minimum of the potential the cosmological co
stant vanishes. Moreover, quantum corrections seem to
stroy this tuning even if it was true at the tree level. Ho
ever, it might be possible that what seems to be a terr
fine-tuning in the effective 4 dimensional theory is a simp
consequence of the brane dynamics in higher dimensi
with no tuning required in the full theory of branes~after all,
if a solution of the desired type existed, the value of t
cosmological constant in the bulk would be generic!. If this
fine-tuning in the effective theory is indeed the conseque
of brane physics in the higher dimensional theory, one mi
hope that it is stable under radiative corrections, since
quantities that presumably govern the dynamics of the bra
are the full quantum corrected ones.

In the setup considered here there is another possib
for improvement on the fine-tuning of the potential in th
8-7
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effective 4 dimensional theory. As we noted, for a given
of parameters the requirement for the existence of the s
solutions with the flat four-dimensional metric complete
determines the angles. Thus from the four-dimensional p
of view, the potential for the angles is determined mostly
their interactions with the metric, in particular with its ligh
KK excitations. The description of the four-dimensional e
fective theory in RS configurations includes a large num
of arbitrarily light KK excitations. Thus it is not inconceiv
able that their interactions with the angles lead to a situa
qualitatively different from the usual considerations.

VI. CONCLUSIONS

In this paper we have presented static solutions to E
stein’s equations corresponding to branes at angles inter
ing in a single 3-brane. Such solutions might be useful
building models with extra dimensions in the Randa
Sundrum scenario. The solutions are obtained by glu
patches of AdS space together, with the boundaries give
the branes. We find that a static solution of this sort is o
possible if the forces from the brane tensions acting on
junction exactly balance. In addition to this condition we fi
other constraints that the parameters of the theory~the brane
tensions, angles of the branes and the bulk cosmological
stant! have to satisfy. In all the examples considered in t
B

et

s.

ys

.
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paper there is one fine-tuning relation which is independ
of the angles of the branes and thus cannot have a dynam
origin. It would be very important to understand whether
not static brane configurations of this sort~where all tuning
conditions can be satisfied by adjusting the positions of
branes! do exist and, if so, whether they can be minima
the scalar potential of the angles in the effective 4 dim
sional theory.

ACKNOWLEDGMENTS

We would like to thank Nima Arkani-Hamed, Tom
Banks, and Michael Dine for many useful discussions on
cosmological constant problem. We are also grateful
Michael Graesser, Barak Kol, Chris Kolda, Martin Schmal
Raman Sundrum, and John Terning for helpful discussi
and comments. We thank the Aspen Center for Phys
~where this work has been initiated! and the organizers of the
workshop ‘‘Phenomenology of superparticles and sup
branes’’ for their hospitality. The work of C.C. is supporte
in part by the U.S. Department of Energy under contr
DE-AC03-76SF00098 and in part by the National Scien
Foundation under grant PHY-95-14797. The work of Y.S.
supported in part by NSF grants PHY-9802484 and PHY
07194.
;

r,

,
hys.
d

@1# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
429, 263 ~1998!; I. Antoniadis, N. Arkani-Hamed, S. Di-
mopoulos, and G. Dvali,ibid. 436, 257 ~1998!.

@2# I. Antoniadis, Phys. Lett. B246, 377 ~1990!; J.D. Lykken,
Phys. Rev. D54, 3693~1996!; R. Sundrum,ibid. 59, 085009
~1999!; K.R. Dienes, E. Dudas, and T. Gherghetta, Phys. L
B 436, 55 ~1998!; G. Shiu and S.H. Tye, Phys. Rev. D58,
106007 ~1998!; Z. Kakushadze and S.H. Tye, Nucl. Phy
B548, 180 ~1999!.

@3# P. Horava and E. Witten, Nucl. Phys.B475, 94 ~1996!; B460,
506 ~1996!.

@4# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 3370~1999!.
@5# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 4690~1999!.
@6# M. Cvetic, S. Griffies, and S. Rey, Nucl. Phys.B381, 301

~1992!. For a review see M. Cvetic and H.H. Soleng, Ph
Rep.282, 159 ~1997!,

@7# J. Lykken and L. Randall, hep-th/9908076.
@8# V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett.125B, 139

~1983!; M. Visser, ibid. 159B, 22 ~1985!; E.J. Squires,ibid.
167B, 286 ~1986!; G.W. Gibbons and D.L. Wiltshire, Nucl
t.

.

Phys.B287, 717 ~1987!; M. Gogberashvili, hep-ph/9812296
hep-ph/9812365; hep-ph/9904383.

@9# M. Gogberashvili, hep-ph/9908347.
@10# N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and N. Kalope

hep-th/9907209.
@11# I. Oda, hep-th/9908104.
@12# A. Kehagias, hep-th/9906204.
@13# A. Brandhuber and K. Sfetsos, hep-th/9908116.
@14# H. Verlinde, hep-th/9906182.
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