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Statistical mechanics on axially symmetric space-times with the Killing horizon
and entropy of rotating black holes in induced gravity
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We develop a method for computing the free energy of a canonical ensemble of quantum fields near the
horizon of a rotating black hole. We show that the density of energy levels of a quantum field on a stationary
background can be related to the density of levels of the same field on a fiducial static space-time. The effect
of the rotation appears in the additional interaction of the “static” field with a fiducial Abelian gauge potential.
The fiducial static space-time and the gauge potential are universal; i.e., they are determined by the geometry
of the given physical space-time and do not depend on the spin of the field. The reduction of the stationary
axially symmetric problem to the static one leads to a considerable simplification in the study of statistical
mechanics and we use it to draw a number of conclusions. First, we prove that divergences of the entropy of
scalar and spinor fields at the horizon in the presence of rotation have the same form as in the static case and
can be removed by renormalization of the bare black hole entropy. Second, we demonstrate that a statistical-
mechanical representation of the Bekenstein-Hawking entropy of a black hole in induced gravity is universal
and does not depend on the rotation.

PACS numbds): 04.60—m, 11.10.Gh, 97.60.Lf

I. INTRODUCTION [10-15 or alternative[16] approaches. These approaches
were always based on approximations and, hence, require a
There are different approaches to the explanation of thgustification. Calculations of the entropy were also done by
Bekenstein-Ha\Nking entropﬁBH of black holes. One of Mann and Solodukhin using the Euclidean formalism
them is to relateS®" to the statistical-mechanical entropy [17,18. In a recent papef15] Jing and Yan demonstrated
SSM of the thermal atmosphere of quantum fields near thdéhe agreement of WKB calculations of the black hole entropy
black hole horizor1,2]. SSM can be naturally interpreted as fOr rotating black holes with Euclidean results.
the entropy of entanglemef8—5] which arises as the result '€ aim of this work is twofold. First, we suggest a gen-
of quantum correlations on the horizon. For a review anoeral method for computing the ~spectrum and doing

recent development of these ideas $6k and references statistical-mechanical computations in the case of rotating
therein black holes. Second, we draw with its help a number of

Computation ofS°M is a delicate procedure because thetONSeduences concerning the entra}". The proposed

density of leveldn/de of sinal il o method uses the covariant Schwinger-DeWitt technique and
ensity of energy leveldn/de of single-particle excitations i .. pe applied to fields of different spins.

is divergent near the horizon. On static space-times the wave The terms in the wave equation which are linearain
equation for a"mode with a certain ener@yis similar to a appear due to the non-vanishing compongptof the back-
relativistic Schrainger equation. In this case, one can defineyround metric. Our idea is to include these terms in the defi-
a single-particle Hamiltoniaii as the “square root” of @ pjtion of a fiducial single particle HamiltoniaH (w) which
Laplace operator acting on a space whose 3-geometry is agepends on the energy as on an additional parameter. The
proximated by the hyperbolic geometry. It enables one to usgperatorH(w) can be interpreted as the Hamiltonian of a
rigorous methods to investigate the spectiwirof H and find  particle moving on a fiducial background and interacting
its densitydn/dw [7—9]. However, this approach cannot be with an external fiducial gauge potential with the only non-
applied directly to fields near a rotating black hole. The dif-vanishing componem,~g;, . In some regards the appear-
ficulty is that in the latter case the wave equation whichance of the potential is analogous to the origin of the gauge
determines the spectrum of energies contains terms whicfield from the componengs,, of the metric in Kaluza-Klein
are both quadratic and linear in. As a result, one cannot compactifications.
define the single-particle Hamiltonian by taking naively the  Thus, our method is to reduce the problem of computa-
“square root” prescription. tions on the stationary background to computations on a fi-
There was no rigorous and universal method how to avoidjucial static space-time with external gauge field, i.e., to the
this difficulty in computingS®™ for rotating black holes. For problem which is already solved. As we will see, the form of
this reason, many authors used the WKB approximationhe fiducial background and gauge field is determined by the
geometry of the physical space-time only and is the same for
fields of different spins. In this sense, the method is univer-
*Email address: frolov@phys.ualberta.ca sal. Moreover, the method can be applied to black holes in
"Email address: fursaev@thsuni.jinr.ru arbitrary dimensions.
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The paper is organized as follows. In Sec. Il we introduce =0+ 0y, . (2.2
the fiducial background and demonstrate our method for sca-
lar and spinor fields. In Sec. Ill we use the obtained results tddere Qy is the angular velocity of the black hole which is
derive the one-loop divergences of the entrdqi for a  constant at the horizon. The position of the horizdnis
rotating black hole in a most complete form. We show thatdetermined by the equation
this form is the same as in the case of static space-time and, )
hence, the known renormalization procedit8—27 can be (Gte) "~ 91ty =0, 23
applied to remove the divergences. In Sec. IV we discus

black hole entropy in models of induced gravi3a,24]. We While the angular velocitfy is

use the obtained results to prove that the statistical- Oto
mechanical form of the Bekenstein-Hawking entr&®' for Qu=——| . (2.9
static and rotating black holes in this theory is the same. This Yoo ln

fact may be considered as another piece of evidence that the
mechanism of generating the black hole e””@w] IS Ui the coordinates which are rigidly co-rotating with the black
versal. Our concluding remarks are presented in Sec. V. Iﬂole Let
the Appendix we demonstrate that geometrical characteris-~
tics of the physical and fiducial backgrounds at the horizon =0 Out; 2.5
coincide. We use this property in the main text of the paper. ' '

then metric(2.1) takes the form

For our purpose, it is convenient to rewrite mefi2cl) in

Il. STATISTICAL MECHANICS IN A SPACE-TIME

OF A ROTATING BLACK HOLE ds?=—N2dt*+g,,(de+ N, dt)?+ g dxdxs. (2.6
A. Stationary axisymmetric space-times Here,
We begin with the formulation of the statistical mechanics
' the T : . : 1 (9)*—9ug
of scalar and spinor fields on a stationary axially symmetric N2=— — — -2t Pe¢  Ne=N¢+0
space-time with a Killing horizon. Consideadimensional gtt 9o ’ H

space-timeM with two commuting Killing vector fieldsy,
and d,. We assume that the vectar; is time-like at
asymptotic infinity, and is normalized at infinity by the con- N¥= 9. 2.7
dition ;- 3= —1. The other Killing vector,, corresponds ¢
to the symmetry of space with respect to rotation. It com-It is evident that
mutes withd; and has closed integral curves. The fig|dis _
nonzero everywhere in the exterior region and at the horizon, N¢|,=0. (2.8
except on the rotation axis. We also assume that at the rota- _ 5 )
tion axis space-time is locally flat.e., there are no conical From Eq.(2.3) it follows thatN”=0 on the horizon(At the
singularities. The vector fieldsd, and d, possessing the @xis of symmetryN® can be defined by continuifyBy using
properties described above are uniquely defined in an axiali{?® condition of the regularity of the metric on the horizon it
symmetric asymptotically flat space-time. is possible to show that the rath#/N? is not singular orH.

In such a space-time one can introduce coordinates One can also rewrite the line elemef®.6) in a form
t,go,Xlk (k=2,...D—2) in which the metric takes the which will be especially useful for our purposes:
form

, ds?=—B(dt—Wdg)?+ Cdgp?+ g;dx dxk
ds?=g,dt*+ 29, dtde+g,,de?+ gjdxdx. (2.1 B
= —B(dt—Wdg)?+dI2. (2.9

Here O< ¢=<2, and the components of the metric depend
on coordinatex* only. Here

We assume that a stationary asymptotically flat space-

time M contains a rotating black hole and is a solution of B —fz—Nz( 1 (N‘P)Z) (2.10
Einstein equations with matter satisfying suitable hyperbolic N N Yoo NE A :
equations. In this case, the event horizdrcoincides with
the Killing horizon[27]. The latter is defined as a null sur- 1 1 (N#)2
face,H, to which a Killing vector¢ is normal. In the station- —= _< 1-Ope—— | (2.1
ary axisymmetric space-time the Killing vect@r can be C 9eo N2
written as 5

N¢

IStrictly speaking, this is true for vacuum 4D space-times. In a _ . _ _
more general case, when matter or fields are present, a so-called Consider a Killing observer, that is an observer which has
circularity conditionmust be satisfied. See, e.fRg). velocity u#~ &*. Let a pointp lying on the world line of this
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observer have coordinate4 = (t,¢,x). The condition that on a static backgroundt with the metric
another eveny®= (t+dt,¢+de,x) in its vicinity be simul-

taneous withp, that is lie in the plane orthogonal # im- ds’=g,, dx* dx'= —Bdt’+ Cde?+gjdx dx¥,
plies dt=Wdg. The spatial distance between these two (222
events isdl. and the Abelian gauge field
In the general case, the horizon of a rotating black hole is
surrounded by a region called the ergosphere. Inside the er- A=Wdep, (2.23

gospherét is time-like, while the vectop, is space-like.
provided that the metric coefficients B and &hd the field
B. Scalar fields potentia_tl W are given by relation$2.10), (2.11), and(2.12),
) ] ) respectively.
~ Let us now investigate the properties of the spectrum of  Eqyation(2.21) contains a real non-negative parameter
single-particle excitations in a space-time of a stationary royhich can be interpreted as the electric charge of the field
tating black hole. We begin with the free scalar field which is¢(x)_ The correspondence between the spectra means that a

described by the Klein-Gordon equation single-particle excitation with energy for wave operator

_ 2.13,(2.14 in space-time(2.1) is uniquely related to a

— VAV + = . (. ; o

(= VAV, +V)$=0, 213 single-particle excitation for operat¢2.21) taken at\ = w
V=ER+m?. (2.14 and having the same energy. For a static space-timB

=N?, C=9,,, W=0 and the two problems are equivalent.

In accordance with the assumed symmetry, we can write &n the general case, the geometry of spadediffers from
solution of this equation by using decomposition into modegshe geometry of physical space-time. To emphasize this

difference we callA and M the fiducial gauge field and the

— a—i(@+Qyht+il
Poit,@.x)=8 " F¢01(X), (219 fiducial background, respectively. The reduction of our prob-
iEdy (6o X)=wd, (t,0,X) (2.1 lem to the static one oM makes possible a considerable
@ @ simplification in the computations which we use in a mo-
_iago(ﬁw,l(t!()oix)zl¢w,|(tl¢!x)! (217) ment.

We now prove the above proposition. Let us first rewrite
wherex are the rest coordinates @#1. The corresponding EQ.(2.19 in the following equivalent form:
single-particle excitation of a scalar field has eneagyde-
fined with respect to the Killing vecto¢) and the integer
angular momenturh In the co-rotating coordinates the wave
function (2.15 takes the familiar form

1
w’— B( A+ E(' —wW)2+V

$,,1(X)=0, (2.24

where B, C, and W are given by relationg2.10—(2.12).
b, ,(t,E+QHt,x)=e‘i“‘+i';¢w|(x). (2.19  Equation(2.24) is the Fourier transform of the differential
' ’ equation
The equation for the spectrum follows from Eq. (2.1

?ggiisrt:bstltunon of the functio(2.15. One easily finds the [mZ—B(AX— é(%—in)%V) bo(@X)=0,
L L (2.25
m(w+|r?w>2—g—lz‘—AX—v b1 (x)=0, (2.19 .
#¢ Bul0=2] €'6,,(). (2.26

where
Let us introduce the second order differential operator on a

1 ) v )
A=— Tgﬁi[\/__gguk(gk]_ (2.20 (D —1)-dimensional space

=

The presence of linear i@ terms in this equation makes it
difficult to use standard methods for obtaining the density of
energy levels for this operator. We shall demonstrate nowvhere\ is a real parameter. Leﬁﬁf) be eigen-functions of
that this problem can be reduced to the problem in a statiéi?(\):
space-time.

Proposition. The spectrum of single-particle excitations H2(\) ¢ = w2g(M . (2.28
for the wave operaton2.13,(2.14 in space-time(2.1) is
uniquely defined by the spectrum of single-particle excitaObviously, the eigen-functiong enable one to solve the
tions for the wave operator eigen-problem2.25 because

H2(\)=B| A —i(a —iIAW)2+V (2.27
X C %] ) .

[—9*(V,—iNA)(V,—iNA)+V]eM =0 (2.20) bu(@.X) =0 (¢,X). (2.29
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Let us define now the field Killing field ¢£. In case of a black hole the entanglement
entropy has a thermal nature and it can be defined as the
o) _ —iwt 1(\) entropy of the thermal atmosphere around a black hole. More

¢ (Lex) ; & gy (eX). 2.39 formally, it can be shown that the entanglement density ma-

o e , trix for a rotating black hole i$~ exp(—H/Ty) whereH is

Then it is not difficult to see that the eigen-value problemy,e generator of canonical transformations along the Killing
(229 is eq_wvalent o the KIem-(_Sord_on equatig@.2l) in  fgq & andTy is the Hawking temperature; see, e[@8]. In
the s_pace-tlmeé_2.22) with the Abelian fl_eld(2._23). Tocome s regard, our approach is different from the approfic
to this conclusion one has to use the identity where the energy is determined with respect to the veftor
(2.31) In the latter case one always has to deal with the contribution

' of the superradiant modes which appear becausespace-
which is the consequence of E¢8.11) and(2.10. By using  like near the horizon. Thus, although the vectprcan be
Egs.(2.28 and(2.29 one also obtains the density of energy used to define the energy at spatial infinity, it is not related to
levelsw in Eq. (2.26), dn(w)/dw, as the density of energy the notion of entanglement entropy.
levelsdn®(w)/dw of the operatoH?(\) at A= w: As follows from Eq.(2.25, H?(\) is Hermitian operator

with respect to the inner product

BC=N?

PP

dn(w)  dn™(w) 232
do do ), (¢1,¢z)=f ded®~xy=gB™* ¢ (¢,X) da(e,X).
This equation completes the proof of the proposition. (2.39

Equation(2.32 is important because the density of en-
ergy levels plays a crucial role in the definition of the free
energy of the system:

Following the procedure elaborated in the case of static
space-timeg9] it is convenient to introduce another repre-
sentation ofH?(\):

dn(w _
F[ﬁ]: nﬁflf dw d(w )|n(1_ ne*ﬁw), (2.33) Hz()\)=e[_(D‘2)/2]”H2()\)e[('3‘2)/2]‘7, (2_33
—20_
where 8 is the inverse temperature ang=+1 for bosons e “"=B. (236

and = —1 for fermions. Finding the quantinyn(}‘_)(w)/dw In the new representation
enables one to determine all statistical-mechanical character-
istics of the canonical ensemble on the axially symmetric
background, including the entropy.

At this point several remarks are in order. As follows D—2(D—2 B B )

HZ(\) = —g?%(V,—iNAY) (Vp—iNA) +V, (2.37)

from Eq. (2.27), the operatorH?(\) is positive whenB V=BV+ —— ——(Vo)2-V2¢
=—¢2>0, that is in the region of the black-hole exterior 2 2
lying between the horizon and the null “cylinder,” a surface
where the co-rotation velocity reaches the velocity of light. =B
Outside of this region Eq2.25 may not have solutions for
real values of energies. This property is the manifestation - .
of the superradiance phenomenon in the gravitational field 0']1'he I|nd|c_esa,b n Eq. (?'37) run from 1 .tOD_ 1 and con-
a rotating black hole. In the presence of superradiance, theRectionsV, are determined for the metric
does not exist a stationary regular quantum state in the black 1
hole exterior. In order to escape the problem connected with d12=gapdx®dx’ == (Cde?+g;dxdx)).  (2.39
the superradiant modes it is possible to introduce a mirror- B
like boundary surrounding the black hole. One can define a ) S ) ]
canonical ensemble for the quantum field inside such &S earlier the fiducial vectoR, is defined by Eq(2.23.
boundary, provided it is chosen to be close enough to th&inally, the vectow,, in Eq.(2.38 is
black hole(inside the null “cylinder”). In what follows we 1
assume that such a boundary does exist. Note, however, that W =—V InB. (2.40
we shall be interested in the entropy which is determined by 2
the region in the vicinity of the horizon, and, hence, the_ . ) ) )
leading divergent contribution to the entropy does not deThis vector can be interpreted as an acceleration of a static
pend on the outer boundary. observer in the fiducial space-tine!.

Also it should be emphasized once again why we define The operatoH?(\) is Hermitian with respect to the stan-
the energy of the canonical ensemble with respect to theard inner product
Killing field ¢ rather than the vecta#;. The reasonﬁi@ that
our final goal is to compute the entanglement entr§py of _
fields. The origin of the entanglement entropy is closely re- (¢1’¢2):f ded® ZX\/E $1(@.X) bal@,X).
lated to the presence of the horizon and the structure of the (2.4

D-2(
Vet | Ve,

(2.38

2#)
WHAW, ||
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In static space-tim&= —g,; andw, coincides with the 1 .
acceleration in the physical space-time. In four dimensional YT+ YT e=77Vin(BC). (2.48
static space-time Ed2.37) reproduces the result ¢6,9].

The operatorH(\) is the Hamiltonian of a relativistic By using this identity it can be shown that the equation for
particle which propagates in the spagevith the metricg,,. ¥, obtained from Eq(2.42 with the help of Eq(2.43 takes
The effect of the rotation of the initial space-time is encodedhe simple form
in the properties of the background metric and in the pres-

ence of an additional gauge fiehl,. In the static limit the ) 1 Zrl a2l % iwa 1V N 0

operatorH(\) does not depend ok and coincides with the lw) \/§y V| VaTloAaT 5 Va0 | T ¥=0,

single-particle Hamiltonian considered in R€f8,9]. (2.49
C. Spinor fields wherea={¢,i}, andi=1, ... D—2. The quantitie®\, and

are defined by Egs2.23 and (2.36), respectively. The
We now show that the reduction of the stationary problemg . " g qsi2.23 ¢ d( .ﬂ? P (1 thy i
to the problem of a fiducial static space is universal and alsgP!N connections’, are computed with respect o the metric

possible for fields with non-zero spins. As an important ex- 2_ 20 A Avidvi
ample we consider spinor fieldg obeying the Dirac equa- dI"=Cde™+ g dxdx’. (2.50

tion Note that theith component ofV, coincides with theith

(y*V ,+m)y=0. (2.42 component of the spin connectidh, in the physical space-
time (2.6). The spectral probleni2.49 can be solved by

The spinor derivatives arg ,=3,+I,,, wherel,, are the introducing the fiducial Hamiltonian for spin 1/2 fields:

connections. From now on we work in the co-rotating frame
of the reference described by the met{2c6) and define the

-~ 1
— t .a i _
connections with respect to this metric. By choosing in these HOM=IVByy (Va IMa Zvao +m). (259
coordinates the appropriate basis of the one-forms we can
define they matrices The eigen-spinors dfi (\),
t 1 _t—f— CN‘P_‘P ¢ 1 9 (2.43 H(A)lﬂg\):wlﬂg‘), (2.52
Y==Yy T\ 2VY, vV E =7 .
B N Jc give the eigen-spinors for E@2.49:
Where B_a:nd C_are given by Eqs(2.1_0) and (2..1D..The %(QD,X):%@(QD,X)_ (253
matricesy" and y¢ are the standard Dirag matrices in the
corresponding representation, In complete analogy with the case of the scalar fields, one
L . o can define fiduciaD-dimensional spinors
(M?=-1, (9)?=1, {»*¥}=0. (244
_ —iw A
With this definition one has PG 0=2 e YPlex, (259
(¥)?=g"  (¥)?=g**, which obey the Dirac equation
{y',v}=2g", {7,¥'}=2g", (2.49 [V ,—iNA,) +m]gpM=0 (2.55

where ally' anticommute withy! and y*.

We are interested in single-particle excitations of the
spinor field which are the eigen-functions of the Killing vec-
tor ¢:

on fiducial static space-timé4 with the metric(2.22 and
interact with gauge field2.23. We see, therefore, that the
form of the fiducial background and the gauge field is uni-
versal for fields of different spins. This fact may be espe-
it Ol il cially important for supersymmetric models.
Yot x)=e HYe 9, (X)) =e e ?y,, | (X). The analysis of spinor fields goes along the lines of the
(2.46 work [9]. First, one can see that the spinor Hamiltonian

. . 25) is H iti ith t to the i duct
By following the method used for the scalar fields we make( 1 is Hermitian with respect to the inner produc

the Fourier transform

(Yr.2)= | dot® /=GB (901 it ..
ww(¢,x>=2l ey, 1(X). (2.47) (2.56

Second, for the further convenience, one can go to another
Direct computation gives representation
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e[—(D—l)/Z]Gﬁ()\)e[(D—1)/2]‘72H()\), (2.57

HN) =i yA(V,—iNAy) +me 7], (2.59

where the parameter was introduced in Eq(2.36 and y

PHYSICAL REVIEW D61 024007

(Lobachevsky manifold. Let us emphasize that these prop-
erties are the same as for static space-tifiies].

These properties are sufficient to conclude tha\) has
a continuous non-negative spectrum without a mass gap.
Thus, the density of eigen-valuési™(w)/dw is divergent

matrices and spin connections are defined with respect tand requires a regularization. To calculate this quantity and

metric (2.39, which is conformally related to metri@.50.

The operatoﬁ (\) is Hermitian with respect to the standard
inner product

(wl,w2>=f ded® 2ol ¢a(@,%)]" ¥a(@.X).
(2.59

The density of energy levelsin®(w)/dw, of the spinor
Hamiltonian can be computed with the help of relati@B)
by using of the heat kernel of the operator

H2(N)=—g*(V,—i AL (V5—iNAZ +V(N),
(2.60

— 1 i
V(N)= ZR+ B m?— my*V o+ E)\'y“y"FM) ,
(2.61)

where R is the curvature of the space.39 and F
=A, ,—A,, is the Maxwell tensor for the fiducial vector
potential.

Ill. PROPERTIES OF H2(\) AND DIVERGENCES
RELATED TO THE HORIZON

From now on we restrict the discussion to four-
dimensional space-time®E4). However, the analysis can
be carried out in higher dimensions as well.

Both scalar and spinor single-particle Hamiltoniahé\ )
are defined on the spad¢@.39. By following the conven-
tions adopted in Ref[6] we denote this spacB. In the

vicinity of the horizon the geometry df is simple. Ifp is

the proper distance to the horizon, thesee the Appendjx
N?=«?p?, C=g,,, B=N? (3.1
wherex is the surface gravity of the horizon. LBt=4. By

using these asymptotics and E¢®.38 and(2.61) one finds

investigate its divergence we use a metfh@fbased on the
relation

(3.3

_ w (N)
Tre*Hz(”)‘zf dw—dn () e o™,
0 dw

The densitydn®(w)/dw can be found from Eq(3.3) in

terms of the trace of the operaﬂgrz()\) by using the inverse
Laplace transform. The trace involves integration over the

non-compact spacB. The volume element df diverges at
small p asp~2 and this is the reason for the divergences of
the density of levels.

As was explained in Ref9], to study this divergence it is
sufficient to restrict oneself only by the asymptotic form of
the diagonal element of the heat kernel at small values of the
parametet:

[14+a,(M)t+a,(MNt2+---].
(3.4)

g2
[efH ()\)t] e
diag (47Tt)3/2

At this point one can make an important observation. The
gauge potentiah, appears in the heat kernel only in gauge

invariant combinations. Moreover, the coefficiemt does
not depend o\, and it is the same as in the case 0. The

coefficient a,(\) includes the Maxwell Lagrangian con-
structed ofA, . The latter term vanishes @8 and it does not
bring the divergence to the trace at smallThe same hap-
pens in the higher order coefficients which vanish at least as
fast asa,(\).

Thus, we come to the conclusion that in four-dimensional
space-time the fiducial gauge field does not change the di-
vergence. If one is interested only in the divergent part of the
density of levels, the parametar in the energy operator
H2(\) can be put equal to zero. This fact reduces our prob-

lem to Egs.(2.21), (2.55 on the static space-timé1 with
the gauge field neglected. The divergence of the density of

that the potential terms at the horizon act as a tachionic masgvels can be now computed by using the resultgg] and

V= — k2 for scalars and/= — 3 «2 for spinors. The presence

expressed in terms of the geometrical characteristicdfof

of the tachionic mass, however, is exactly compensated byear the horizon.
the mass gap which appears when a particle moves on the To put it in a more formal way, in four dimensions the

spaceB. Near the horizorp=0 the metric of 3 takes the
form

(3.2

where in the limitp—0 the metricdQ? coincides with the
metric on the horizon. In this limit the curvature & is
constantR= —6«?, and the space looks like a hyperbolic

regularized divergent part of the density of levels of a field
near a rotating black hole,

dn(w|w)
dow

dn®=0)( o] 1)
dw

div

: (3.5

div

where u is a regularization parameter. By working, for in-
stance, in the Pauli-Villars regularization and by using the
expressions of Ref$6,9], one finds
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dn{(w|w) 1 @2 this regularization is beyond the scope of this paper. For
= > f 2b+al—P+2 ——5) R” rotating black hole space-times this question was studied in
do P C N K 6 Refs.[10-13.
(3.6 The fact that the divergent paf8.10 of the entropy of
) ) quantum fields near a rotating black hole has the same form
dng”(w| ) __"d f obta ‘U_P+ °u = as for a static black hole has a number of immediate conse-
dw div (4m)°k])s K? 6 ' quences. One of the consequences is that for minimally

(3.7 coupled fields divergenc€s.10 is completely removed by
the standard renormalization of the gravitational couplings

Expressions(3.6) and (3.7) are referred to the scalar and (including the Newton constanin the bare tree-level part of
spinor densities of levels, respectively, being the dimen- the black hole entropy. Proof of this statement for static

sionality of the spinor representation. The integrations inblack holes can be found in Ref49-22 and it is general-
these expressions are taken over the bifurcation suace  ized without changes to rotating black holes. Another appli-
the horizon. As we show in the Appendix, the curvatures ofcation of our results is the problem of the black hole entropy

the physical space-timé1 and the fiducial one\t coincide  in models of induced gravity.
nearX. Thus, the quantityr in Egs.(3.6), (3.7) can be iden-
tified with the scalar curvature 0%, while other quantities v, ROTATING BLACK HOLES IN INDUCED GRAVITY

can be written in terms of the Riemann and Ricci tensors of ) ) .
M: Models of induced gravity23—25 were constructed with

the purpose of understanding the mechanism of the genera-

tion the Bekenstein-Hawking entropy of black holes in the
(3.9  situation when the low-energy gravity is induced by quantum

effects. It was argued that for a Schwarzschild black hole the
where P#"=|#"—p#p” is a projector onto a two- ultraheavy fields(constituents which induce the Einstein
dimensional surface orthogonal I, and p*, |* are two  gravity in the low-energy limit are microscopic degrees of
mutually orthogonal normals of (I1?=-—p?=1). The freedom which are responsible for the Bekenstein-Hawking
regularization parameten defines the scale of the Pauli- entropyS®". The important requirement of the modg2S—

P=2R—Q, Q=P*R,,, R=P*P“R

Villars masses, and at large, 25] is the absence of leading ultraviolet divergences, which
) ) imposes constraints on the parameters of th_e constituents. By
a~in’. b= 2InE)—m2In'u— 3.9 using these constraints one finds the relatlon_betv\&%h
m?’ K256 m? ' and the entropyS of the constituents propagating near the

black hole horizon:
wherem is the mass of the fiel¢see for detail$6]).
Note that the form of these equations is completely the SPH=5-Q. 4.2
same as in the static space-times. By using E8$), (3.7)

one can find the dive_rgences of the free energy of the fieldg,o quantityQ is the quantum average of the Noether charge
and the entropy which just repeat expressiod26 and 55 g which appears because of non-minimal couplings of
(4.27) of Ref. [6]. For instance, in the Pauli-Villars regular- yhe constituents with the curvature. Such couplings are nec-
ization the divergence of the entropy of the quanta near thgsgary to provide a cancellation of the leading ultraviolet
horizon is given by the expression divergences in the induced effective action. It is important
. that the same couplings provide finiteness of the induced
= Bekenstein-Hawking entropi4.1): the divergencé3.10 of
Sdiv 487sz[bfl+a(2p17>+ PzR+PsQ)]. (3.10 the entropysS of the constituents is compensated by the di-
vergence of the Noether char@e
For scalarsp=1, f;=1, p;=1/60, p,=1/6—§, p3=0; for We now have all means to generalize resdlt) of [23—
spinorsp=—1, f;=—ry4/2, p1=—7r4/480, p,=r4/24, p;  25] to Kerr black holes. Consider induced gravity models
= —r4/16. The entropy is evaluated at the Hawking temperawith spinor and non-minimally coupled scalar constituents
ture B = «/2m. For scalar fields the same result was re-only. The constraints on the parameters of the constituents
cently obtained by the WKB method [14,15. Also in the  and proof of relatior(4.1) for a Schwarzschild black hole are
scalar case one can find the divergent part of the entropy byiven in[23]. The Kerr black hole is the vacuum solution
using the Euclidean formalisiitonical singularity methgd  and the geometrical structures of the divergences in the ef-
see[17]. fective action for the Kerr and Schwarzschild backgrounds
Analogous results can be found in the dimensional reguare identical. The induced effective action for a Schwarzs-
larization. It should be noted that the divergences caused bghild solution contains logarithmic divergences of a topo-
the presence of the horizon can be also regularized by usiniggical form only. These divergences play no role and can be
an infrared type cutoff. In this regularization one just cuts allneglected 23]. We conclude that the same property is true
integrations near the horizon at some proper distance; see féor the action on the Kerr background. In this sense the in-
a review[6]. Our results can be used to find explicit expres-duced gravity{23—25 for vacuum static and rotating black
sions for the entropy in this case; however, a discussion dfioles is ultraviolet finite theory.
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Consider now the divergence of the entrdpfor a scalar M=T,6SBH+ Q83+ E- QT (4.5
or spinor constituent; see E@3.10. According to Egs.

(A16), (A24) of the Appendix, see[29]. Strictly speaking, this relation implies a definition

of M andJ at spatial infinity. For this reason, the energy and
0=0 j R=8m (4.2) angular momentum of fields are the integrals over the entire
"o)s black hole exteriof29]:

for the Kerr background. Thus,
E= f TA 2, (4.9
%t
7
Sdivzﬁbflfl‘f‘ C, (43)
. . j:_j T#V(P,udzyv 4.7
where A= [ is the area of the black hole horizon a@ds a %

divergent numerical constaigivhich is not observable and

can be neglectéd Thus, the entropy of the constituents in whereT#” is the stress-energy tensor of the fields.is the

the leading order is proportional to the area of the horizon ohypersurface of constant tini@ndd2,; is the future-directed

the Kerr black hole and looks similar to the Bekenstein-vector of the volume element &f;. The components, , ¢,
Hawking entropy. Equatior(4.3) has precisely the same correspond to the Killing vector fieldg, and d,,, respec-
form as the entropy for a Schwarzschild black hole. As fartively.

the Noether charg® is concerned, in the considered models In the induced gravity approach the constituents which
it is determined by the averages of the scalar operatbﬁ contribute to the black hole entropy are assumed to be very
on the horizorS. In quantum states where the Green func-heavy and have mass of the order of the Planckian mass.

[oR]

tions are analytical on the horizon, Since Hawking and the superradiant emissions of such par-
ticles are exponentially suppressed, they are practically

. 1 trapped inside the potential barrier. The latter in many re-

L<¢2>= 167sz«4, (4.4  spects plays the role of an external boundary which is re-

quired to define the canonical ensemble.

Thus, the dominant contribution to integrdk.6), (4.7)
comes from the region inside the null “cylinder(see the
discussion in Sec. Il Awhere one can define the energy of
fonstituents associated to the Killing fiede- d;+ Qpd,,:

where the functiorb is given in Pauli-Villars regularization
by Eqg.(3.9. This equation holds on all vacuum backgrounds
in the leading order approximation, and one can conclud
that the Noether charg&3 for the two black holes have the
same form.

These observations show that in induced gravity models ggzg_Qszj THvE dS . 4.9
Eq. (4.1) does hold for the Bekenstein-Hawking entropy of a Sy e
Kerr black hole. By using Eq$3.9), (4.3), (4.4) in Eq. (4.1
one can check how the divergence @fcompensates the After that variational formulg4.5) is represented as
divergence ofSand one gets gguite expression which coin-
cides with the induced entro . It is strong support of _ _ BH
the universality of the statistical-mechanical explanation of M=y 0J =Ty oS &, “9
the Bekenstein-Hawking entropy in induced gravity.

We complete this section with remarks concerning th

interpretation of the Noether char@e The origin of subtrac-

tion in Eq. (4.1) can be explained as followf5]. The M and J is related to the spectrum of energi€g of the
Bekenstein-Hawking entropy of a rotating black hole in in- constituents near the horizon. The crucial observation is that

he energy¢; and the HamiltoniarH; of the non-minimally
d ¢ ¢

massM and angular momentudhwhich determine the grand coupled constituents differ by a total derivative which picks
p a non-vanishing contribution on the inner boundary of

canonical ensemble. On the other hand the statisticag : 4 .
mechanical entropys is determined by the spectrum of the <t €., on.the horizon. The boundary term is the Noether
Hamiltonian; of the constituents. The operatdf; is the charge or:

generator of canonical transformations of the system along

and it looks somewhat similar to the formula for static black
eholes. Thus, for a black hole with fixed area the spectrum of

the Killing field &. In the presence of non-minimal couplings He=E=TyQ, (4.10
these spectra are different and subtractio@afh Eq. (4.1 is
required to go from one spectrum to another. whereTy is the Hawking temperature. It is because of Egs.

To make this statement more clear consider a small exci4.9), (4.10 that we expect the two entropieg2H and S, to
tation of constituent fields having ener§yand angular mo- be different and related by E¢.1). Studying further aspects
mentum.7 over a vacuum wittf= 7=0. Such an excitation of the subtraction in Eq(4.1) repeats the analysis of a
results in a change of the black hole magsand angular Schwarzschild black hole and we advise the corresponding
momentumJ: work in [25] for the interested reader.
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V. CONCLUDING REMARKS for the coordinate transformation which results in E4).
much easier problem is the reduction of the metAd) to

) A
Our results can be summarized as follows. We developegne form

a formalism of statistical-mechanical computations for a ca-

nonical ensemble of fields near the horizon of a rotating dL2=dp2+2 X) do dx+v(o.x) dx? A5
black hole. Such a canonical ensemble can be defined when p Alp.x)dp (px)dx’. (AS)

the reference frame co-rotates with the angular velocity ofye shall use this form for further calculations.

the black hole. We suggested a method as to how to reduce |t can be shown that for a geometry which is regular at the
computations on the stationary background to computationgorizon the following decompositions of the metric coeffi-

on a fiducial static space-time in the presence of a fiduciakients are valid near the horizdhe., at smallp):
gauge potential. Our method enables one to use the known

results for this problem and to get a number of rigorous B=k?p?[1+b(x)p?+0O(pH], (A6)
results for rotating black holes. We believe that the method
may be helpful in a number of applications, some of which Njo_ 2 i 4
were discussed in Secs. lll and IV. In particular, it is worth G N7=p"P(X)+ O, (A7)
pointing out here the proof of the universality of the _ 2 4
statistical-mechanical origin of the Bekenstein-Hawking en- 9pe=TF1(X) +F2(x)p"+O(p"), (A8)
tropy of vacuum black holes in models of induced gravity. _ 2 4

One of the results of our analysis is that the Euclidean v=va(X) +va(X)pT+ O(pT), (A9)
formulation of the theory based on the conical-singularity . 3
method[17] reproduces correctly the divergence of the en- q=pd1(x)+0O(p®), (A10)
tropy (3.10 for stationary space-times. In spite of this fact, p%(x)
the equivalence between the canonical formulation of statis- _ 1 2 4
. . ; . X C=f +| f +———|p°+0O . All
tical mechanics and the Euclidean one remains unclear in 1(x) 2(X) «2 P (P9 (ALD

this case. Unfortunately, one cannot apply the analysj9lof

given for static geometries. The difficulty is related not to theThe constanic is the surface gravity of the black hole hori-
horizon but to the prescription used for the Euclidean theoryon. Equation/A11) follows from Egs.(2.8) and (2.11).

which implies an analytical continuation of some parameters Now, by direct computation, one can express the compo-

of the metric. This issue is an interesting problem for furtherents of the Riemann and Ricci tensors on the horizon in
research. terms of the coefficients present in E§86)—(A11). Let us

define on the bifurcation surfade of the horizon the follow-
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whereP#” is the projector onto two-dimensional surface or-

APPENDIX A: GEOMETRY OF M AND M thogonal toX. For the spaceM,

NEAR THE HORIZON

2
a1
_opt _
In this appendix, we consider four-dimensional space- R—ZRPtP——Gb—Zv—l, (A13)
times. Generalization of the results to higher dimensions is
straightforward. Consider first a line elementj& 2,3) Q:g[_gb_ Q_i+ o ,_2_ i - p%
dL2=g; dx dx, (A1) 2R VA M R
which enters metricé2.6) and (2.22) of spacesM and M, 9 (vi fa
g + + , (Al4)
respectively, 2vy\vy  fy

d$’=-Bdt*+2g,,N dtdp+g,,de?+dL? (A2)  wheref'=df/dx. Then, by using Eqs(A6), (A9)—(A11)
one verifies that, for the spacket,

ds’=—Bdt?+ Cdp?+dL2 (A3)
R=R, 0=0. A15
Starting with an arbitrary surfacg and introducing geodesic Q=e (A19)
coordinates one can always rewrite E41) in the form According to the Gauss-Codacci equations,
dL?=dp?+v(p,x) dx2. (A4) R=Rs+20-R (A16)

It is convenient to choose the surface where p=0, to
coincide with the horizon. For the given metridl) it is
sometimes difficult to solve the geodesic equations required?These definitions coincide with E¢3.8).
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whereR andRy are scalar curvatures ¢¥1 and, respec- r=r.=M+M?-Q?-az% (A21)
tively. (Here we took into account that the extrinsic curva-

tures of2, vanish due to the isometjyThe same equation is The surface gravityc and the angular velocit§),, for the
valid for the scalar curvatur@ of M and one concludes that Kerr-Newman black hole are

S r.—Mm a

R (ALD KTrZial M i (h22)
Therefore, all the curvatures which characterize the geometry
of the physicalM and fiducial M space-times coincide at The Kerr-Newmann metri¢A18) can be brought to form
the horizons. As far as other geometrical propertiesg., (A2) when one goes to the corotating coordinate frame by
derivatives of the curvatures af) are concerned, they can the substitutionp=¢+Qy,t. The coordinatesd and x in
be different in general. This fact, however, is not importantEgs.(A2) and(A18) coincide; the coordinate is determined
when one studies the divergences of the density of energgs
levels in four-dimensional theory, Sec. Ill. .

For the sake of completeness, we give the expressions for — j 5 (r A

the surface invariants fo@ and R for the Kerr-Newman P r+dr 9re(1.6)- (A23)
black hole of mas#/, chargeQ, and angular momentuth

=aM. The metric in Boyer-Lindquist coordinates is By using Eqs.(A18)—~(A22) one can find the coefficients
p1, vi, f;, andq;. After some simple algebra one finds,
2Mr —Q? 2Mr —Q?)asirfé from Egs.(A13) and (A14),
d52=—(1— Q dt2—2( i de a
2 2 2Q2
Q= (A24)

Asir?o 37

3
+Kdr2+2d02+ de?, (A18)

2
= —a 2 —_ 2 2_
A=r2—2Mr+a?+Q?, 3I=r2+a2cof6, (AL9) R=galari(@Mr, -Q )+2.(Q°-6Mr )],
(A25)
A=(r?+a?%?—Aa’sirf. (A20) .
wherel | is the value o atr=r_ . The scalar curvatur@
The horizon is defined by the equatiar=0 and is located at of the Kerr-Newmann solution vanishes everywhere.
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