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Statistical mechanics on axially symmetric space-times with the Killing horizon
and entropy of rotating black holes in induced gravity
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We develop a method for computing the free energy of a canonical ensemble of quantum fields near the
horizon of a rotating black hole. We show that the density of energy levels of a quantum field on a stationary
background can be related to the density of levels of the same field on a fiducial static space-time. The effect
of the rotation appears in the additional interaction of the ‘‘static’’ field with a fiducial Abelian gauge potential.
The fiducial static space-time and the gauge potential are universal; i.e., they are determined by the geometry
of the given physical space-time and do not depend on the spin of the field. The reduction of the stationary
axially symmetric problem to the static one leads to a considerable simplification in the study of statistical
mechanics and we use it to draw a number of conclusions. First, we prove that divergences of the entropy of
scalar and spinor fields at the horizon in the presence of rotation have the same form as in the static case and
can be removed by renormalization of the bare black hole entropy. Second, we demonstrate that a statistical-
mechanical representation of the Bekenstein-Hawking entropy of a black hole in induced gravity is universal
and does not depend on the rotation.

PACS number~s!: 04.60.2m, 11.10.Gh, 97.60.Lf
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I. INTRODUCTION

There are different approaches to the explanation of
Bekenstein-Hawking entropySBH of black holes. One of
them is to relateSBH to the statistical-mechanical entrop
SSM of the thermal atmosphere of quantum fields near
black hole horizon@1,2#. SSM can be naturally interpreted a
the entropy of entanglement@3–5# which arises as the resu
of quantum correlations on the horizon. For a review a
recent development of these ideas see@6# and references
therein.

Computation ofSSM is a delicate procedure because t
density of energy levelsdn/dv of single-particle excitations
is divergent near the horizon. On static space-times the w
equation for a mode with a certain energyv is similar to a
relativistic Schro¨dinger equation. In this case, one can defi
a single-particle HamiltonianH as the ‘‘square root’’ of a
Laplace operator acting on a space whose 3-geometry is
proximated by the hyperbolic geometry. It enables one to
rigorous methods to investigate the spectrumv of H and find
its densitydn/dv @7–9#. However, this approach cannot b
applied directly to fields near a rotating black hole. The d
ficulty is that in the latter case the wave equation wh
determines the spectrum of energies contains terms w
are both quadratic and linear inv. As a result, one canno
define the single-particle Hamiltonian by taking naively t
‘‘square root’’ prescription.

There was no rigorous and universal method how to av
this difficulty in computingSSM for rotating black holes. For
this reason, many authors used the WKB approximat
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@10–15# or alternative@16# approaches. These approach
were always based on approximations and, hence, requ
justification. Calculations of the entropy were also done
Mann and Solodukhin using the Euclidean formalis
@17,18#. In a recent paper@15# Jing and Yan demonstrate
the agreement of WKB calculations of the black hole entro
for rotating black holes with Euclidean results.

The aim of this work is twofold. First, we suggest a ge
eral method for computing the spectrum and doi
statistical-mechanical computations in the case of rota
black holes. Second, we draw with its help a number
consequences concerning the entropySSM. The proposed
method uses the covariant Schwinger-DeWitt technique
it can be applied to fields of different spins.

The terms in the wave equation which are linear inv
appear due to the non-vanishing componentgtw of the back-
ground metric. Our idea is to include these terms in the d
nition of a fiducial single particle HamiltonianH(v) which
depends on the energyv as on an additional parameter. Th
operatorH(v) can be interpreted as the Hamiltonian of
particle moving on a fiducial background and interacti
with an external fiducial gauge potential with the only no
vanishing componentAw;gtw . In some regards the appea
ance of the potential is analogous to the origin of the ga
field from the componentg5m of the metric in Kaluza-Klein
compactifications.

Thus, our method is to reduce the problem of compu
tions on the stationary background to computations on a
ducial static space-time with external gauge field, i.e., to
problem which is already solved. As we will see, the form
the fiducial background and gauge field is determined by
geometry of the physical space-time only and is the same
fields of different spins. In this sense, the method is univ
sal. Moreover, the method can be applied to black holes
arbitrary dimensions.
©1999 The American Physical Society07-1
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The paper is organized as follows. In Sec. II we introdu
the fiducial background and demonstrate our method for
lar and spinor fields. In Sec. III we use the obtained result
derive the one-loop divergences of the entropySSM for a
rotating black hole in a most complete form. We show th
this form is the same as in the case of static space-time
hence, the known renormalization procedure@19–22# can be
applied to remove the divergences. In Sec. IV we disc
black hole entropy in models of induced gravity@23,24#. We
use the obtained results to prove that the statisti
mechanical form of the Bekenstein-Hawking entropySBH for
static and rotating black holes in this theory is the same. T
fact may be considered as another piece of evidence tha
mechanism of generating the black hole entropy@25# is uni-
versal. Our concluding remarks are presented in Sec. V
the Appendix we demonstrate that geometrical characte
tics of the physical and fiducial backgrounds at the horiz
coincide. We use this property in the main text of the pap

II. STATISTICAL MECHANICS IN A SPACE-TIME
OF A ROTATING BLACK HOLE

A. Stationary axisymmetric space-times

We begin with the formulation of the statistical mechan
of scalar and spinor fields on a stationary axially symme
space-time with a Killing horizon. Consider aD-dimensional
space-timeM with two commuting Killing vector fields] t
and ]w . We assume that the vector] t is time-like at
asymptotic infinity, and is normalized at infinity by the co
dition ] t•] t521. The other Killing vector]w corresponds
to the symmetry of space with respect to rotation. It co
mutes with] t and has closed integral curves. The field]w is
nonzero everywhere in the exterior region and at the horiz
except on the rotation axis. We also assume that at the r
tion axis space-time is locally flat~i.e., there are no conica
singularities!. The vector fields] t and ]w possessing the
properties described above are uniquely defined in an ax
symmetric asymptotically flat space-time.

In such a space-time one can introduce coordina
t,w,xk (k52, . . . ,D22) in which the metric takes the
form1

ds25gttdt212gtwdtdw1gwwdw21gikdxidxk. ~2.1!

Here 0<w<2p, and the components of the metric depe
on coordinatesxk only.

We assume that a stationary asymptotically flat spa
time M contains a rotating black hole and is a solution
Einstein equations with matter satisfying suitable hyperbo
equations. In this case, the event horizonH coincides with
the Killing horizon @27#. The latter is defined as a null su
face,H, to which a Killing vectorj is normal. In the station-
ary axisymmetric space-time the Killing vectorj can be
written as

1Strictly speaking, this is true for vacuum 4D space-times. In
more general case, when matter or fields are present, a so-c
circularity conditionmust be satisfied. See, e.g.,@26#.
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j5] t1VH]w . ~2.2!

Here VH is the angular velocity of the black hole which
constant at the horizon. The position of the horizonH is
determined by the equation

~gtw!22gttgww50, ~2.3!

while the angular velocityVH is

VH52
gtw

gww
U

H

. ~2.4!

For our purpose, it is convenient to rewrite metric~2.1! in
the coordinates which are rigidly co-rotating with the bla
hole. Let

w̃5w2VHt; ~2.5!

then metric~2.1! takes the form

ds252N2dt21gww~dw̃1Ñwdt!21gikdxidxk. ~2.6!

Here,

N2[2
1

gtt
5

~gtw!22gttgww

gww
, Ñw5Nw1VH ,

Nw[
gtw

gww
. ~2.7!

It is evident that

ÑwuH50. ~2.8!

From Eq.~2.3! it follows thatN250 on the horizon.~At the
axis of symmetryN2 can be defined by continuity.! By using
the condition of the regularity of the metric on the horizon
is possible to show that the ratioÑw/N2 is not singular onH.

One can also rewrite the line element~2.6! in a form
which will be especially useful for our purposes:

ds252B~dt2Wdw̃ !21Cdw̃21gikdxidxk

52B~dt2Wdw̃ !21dl2. ~2.9!

Here

B52j25N2S 12gww

~Ñw!2

N2 D , ~2.10!

1

C
5

1

gww
S 12gww

~Ñw!2

N2 D , ~2.11!

W5C
Ñw

N2
. ~2.12!

Consider a Killing observer, that is an observer which h
velocity um;jm. Let a pointp lying on the world line of this

a
led
7-2
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STATISTICAL MECHANICS ON AXIALLY SYMMETRIC . . . PHYSICAL REVIEW D 61 024007
observer have coordinatesxm5(t,w̃,xi). The condition that
another eventym5(t1dt,w̃1dw̃,xi) in its vicinity be simul-
taneous withp, that is lie in the plane orthogonal toj, im-
plies dt5Wdw̃. The spatial distance between these t
events isdl.

In the general case, the horizon of a rotating black hol
surrounded by a region called the ergosphere. Inside the
gospherej is time-like, while the vector] t is space-like.

B. Scalar fields

Let us now investigate the properties of the spectrum
single-particle excitations in a space-time of a stationary
tating black hole. We begin with the free scalar field which
described by the Klein-Gordon equation

~2¹m¹m1V!f50, ~2.13!

V5jR1m2. ~2.14!

In accordance with the assumed symmetry, we can wri
solution of this equation by using decomposition into mod

fv,l~ t,w,x!5e2 i (v1VHl )t1 i l wfv,l~x!, ~2.15!

i jfv,l~ t,w,x!5vfv,l~ t,w,x!, ~2.16!

2 i ]wfv,l~ t,w,x!5 lfv,l~ t,w,x!, ~2.17!

wherex are the rest coordinates ofM. The corresponding
single-particle excitation of a scalar field has energyv ~de-
fined with respect to the Killing vectorj) and the integer
angular momentuml. In the co-rotating coordinates the wav
function ~2.15! takes the familiar form

fv,l~ t,w̃1VHt,x!5e2 ivt1 i l w̃fv,l~x!. ~2.18!

The equation for the spectrumv follows from Eq. ~2.1!
after substitution of the function~2.15!. One easily finds the
relation

F 1

N2 ~v1 lÑw!22
1

gww
l 22Dx2VGfv,l~x!50, ~2.19!

where

Dx[2
1

A2g
] i@A2ggik]k#. ~2.20!

The presence of linear inv terms in this equation makes
difficult to use standard methods for obtaining the density
energy levels for this operator. We shall demonstrate n
that this problem can be reduced to the problem in a st
space-time.

Proposition. The spectrum of single-particle excitatio
for the wave operator~2.13!,~2.14! in space-time~2.1! is
uniquely defined by the spectrum of single-particle exc
tions for the wave operator

@2g̃mn~¹̃m2 ilAm!~¹̃n2 ilAn!1V#f (l)50 ~2.21!
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ds̃25g̃mn dxm dxn52Bdt21Cdw21gikdxidxk,
~2.22!

and the Abelian gauge field

A5Wdw, ~2.23!

provided that the metric coefficients B and C, and the field
potential W, are given by relations~2.10!, ~2.11!, and ~2.12!,
respectively.

Equation~2.21! contains a real non-negative parameterl
which can be interpreted as the electric charge of the fi
f (l). The correspondence between the spectra means t
single-particle excitation with energyv for wave operator
~2.13!,~2.14! in space-time~2.1! is uniquely related to a
single-particle excitation for operator~2.21! taken atl5v
and having the same energyv. For a static space-timeB
5N2, C5gww , W50 and the two problems are equivalen
In the general case, the geometry of spaceM̃ differs from
the geometry of physical space-timeM. To emphasize this
difference we callA andM̃ the fiducial gauge field and th
fiducial background, respectively. The reduction of our pro
lem to the static one onM̃ makes possible a considerab
simplification in the computations which we use in a m
ment.

We now prove the above proposition. Let us first rewr
Eq. ~2.19! in the following equivalent form:

Fv22BS Dx1
1

C
~ l 2vW!21VD Gfv,l~x!50, ~2.24!

where B, C, and W are given by relations~2.10!–~2.12!.
Equation~2.24! is the Fourier transform of the differentia
equation

Fv22BS Dx2
1

C
~]w2 ivW!21VD Gfv~w,x!50,

~2.25!

fv~w,x!5(
l

eil wfv,l~x!. ~2.26!

Let us introduce the second order differential operator o
(D21)-dimensional space

H2~l!5BS Dx2
1

C
~]w2 ilW!21VD , ~2.27!

wherel is a real parameter. Letfv
(l) be eigen-functions of

H2(l):

H2~l!fv
(l)5v2fv

(l) . ~2.28!

Obviously, the eigen-functionsfv
(l) enable one to solve the

eigen-problem~2.25! because

fv~w,x!5fv
(v)~w,x!. ~2.29!
7-3
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Let us define now the field

f (l)~ t,w,x!5(
v

e2 ivtfv
(l)~w,x!. ~2.30!

Then it is not difficult to see that the eigen-value proble
~2.28! is equivalent to the Klein-Gordon equation~2.21! in
the space-time~2.22! with the Abelian field~2.23!. To come
to this conclusion one has to use the identity

BC5N2gww , ~2.31!

which is the consequence of Eqs.~2.11! and~2.10!. By using
Eqs.~2.28! and~2.29! one also obtains the density of ener
levelsv in Eq. ~2.26!, dn(v)/dv, as the density of energ
levelsdn(l)(v)/dv of the operatorH2(l) at l5v:

dn~v!

dv
5

dn(l)~v!

dv U
l5v

. ~2.32!

This equation completes the proof of the proposition.
Equation~2.32! is important because the density of e

ergy levels plays a crucial role in the definition of the fr
energy of the system:

F@b#5hb21E dv
dn~v!

dv
ln~12he2bv!, ~2.33!

whereb is the inverse temperature andh511 for bosons
andh521 for fermions. Finding the quantitydn(l)(v)/dv
enables one to determine all statistical-mechanical chara
istics of the canonical ensemble on the axially symme
background, including the entropy.

At this point several remarks are in order. As follow
from Eq. ~2.27!, the operatorH2(l) is positive whenB
52j2.0, that is in the region of the black-hole exteri
lying between the horizon and the null ‘‘cylinder,’’ a surfac
where the co-rotation velocity reaches the velocity of lig
Outside of this region Eq.~2.25! may not have solutions fo
real values of energiesv. This property is the manifestatio
of the superradiance phenomenon in the gravitational fiel
a rotating black hole. In the presence of superradiance, t
does not exist a stationary regular quantum state in the b
hole exterior. In order to escape the problem connected w
the superradiant modes it is possible to introduce a mir
like boundary surrounding the black hole. One can defin
canonical ensemble for the quantum field inside such
boundary, provided it is chosen to be close enough to
black hole~inside the null ‘‘cylinder’’!. In what follows we
assume that such a boundary does exist. Note, however
we shall be interested in the entropy which is determined
the region in the vicinity of the horizon, and, hence, t
leading divergent contribution to the entropy does not
pend on the outer boundary.

Also it should be emphasized once again why we de
the energy of the canonical ensemble with respect to
Killing field j rather than the vector] t . The reason is tha
our final goal is to compute the entanglement entropySSM of
fields. The origin of the entanglement entropy is closely
lated to the presence of the horizon and the structure of
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Killing field j. In case of a black hole the entangleme
entropy has a thermal nature and it can be defined as
entropy of the thermal atmosphere around a black hole. M
formally, it can be shown that the entanglement density m
trix for a rotating black hole isr̂;exp(2Ĥ/TH) whereĤ is
the generator of canonical transformations along the Kill
field j andTH is the Hawking temperature; see, e.g.,@28#. In
this regard, our approach is different from the approach@13#
where the energy is determined with respect to the vector] t .
In the latter case one always has to deal with the contribu
of the superradiant modes which appear because] t is space-
like near the horizon. Thus, although the vector] t can be
used to define the energy at spatial infinity, it is not related
the notion of entanglement entropy.

As follows from Eq.~2.25!, H2(l) is Hermitian operator
with respect to the inner product

~f1 ,f2!5E dwdD22xA2gB22 f1* ~w,x!f2~w,x!.

~2.34!

Following the procedure elaborated in the case of st
space-times@9# it is convenient to introduce another repr
sentation ofH2(l):

H̄2~l!5e@2~D22!/2#sH2~l!e@~D22!/2#s, ~2.35!

e22s5B. ~2.36!

In the new representation

H̄2~l!52ḡab~¹̄a2 ilAa!~¹̄b2 ilAb!1V̄, ~2.37!

V̄5BV1
D22

2 S D22

2
~¹̄s!22¹̄2s D

5BFV1
D22

2 S ¹mwm2
D22

2
wmwmD G . ~2.38!

The indicesa,b in Eq. ~2.37! run from 1 toD21 and con-
nections¹̄a are determined for the metric

d l̄ 25ḡabdxadxb5
1

B
~Cdw21gi j dxidxj !. ~2.39!

As earlier the fiducial vectorAa is defined by Eq.~2.23!.
Finally, the vectorwm in Eq. ~2.38! is

wm5
1

2
¹mln B. ~2.40!

This vector can be interpreted as an acceleration of a s
observer in the fiducial space-timeM̃.

The operatorH̄2(l) is Hermitian with respect to the stan
dard inner product

~f1 ,f2!5E dwdD22xAḡ f1* ~w,x!f2~w,x!.

~2.41!
7-4
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In static space-timeB52gtt and wm coincides with the
acceleration in the physical space-time. In four dimensio
static space-time Eq.~2.37! reproduces the result of@6,9#.

The operatorH̄(l) is the Hamiltonian of a relativistic
particle which propagates in the spaceB̄ with the metricḡab .
The effect of the rotation of the initial space-time is encod
in the properties of the background metric and in the pr
ence of an additional gauge fieldAa . In the static limit the
operatorH̄(l) does not depend onl and coincides with the
single-particle Hamiltonian considered in Refs.@6,9#.

C. Spinor fields

We now show that the reduction of the stationary probl
to the problem of a fiducial static space is universal and a
possible for fields with non-zero spins. As an important e
ample we consider spinor fieldsc obeying the Dirac equa
tion

~gm¹m1m!c50. ~2.42!

The spinor derivatives are¹m5]m1Gm , whereGm are the
connections. From now on we work in the co-rotating fram
of the reference described by the metric~2.6! and define the
connections with respect to this metric. By choosing in th
coordinates the appropriate basis of the one-forms we
define theg matrices

g t5
1

AB
ḡ t1AC

N2Ñwḡw, gw5
1

AC
ḡw, ~2.43!

where B and C are given by Eqs.~2.10! and ~2.11!. The
matricesḡ t and ḡw are the standard Diracg matrices in the
corresponding representation,

~ ḡ t!2521, ~ ḡw!251, $ḡw,ḡ t%50. ~2.44!

With this definition one has

~g t!25gtt, ~gw!25gww,

$g t,gw%52gtw, $g i ,g j%52gi j , ~2.45!

where allg i anticommute withg t andgw.
We are interested in single-particle excitations of t

spinor field which are the eigen-functions of the Killing ve
tor j:

c~w,t,x!5e2 i (v1VHl )teil wcv,l~x!5e2 ivteil w̃cv,l~x!.
~2.46!

By following the method used for the scalar fields we ma
the Fourier transform

cv~w,x!5(
l

eil wcv,l~x!. ~2.47!

Direct computation gives
02400
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g tG t1gwGw5
1

4
g i¹ i ln~BC!. ~2.48!

By using this identity it can be shown that the equation
cv obtained from Eq.~2.42! with the help of Eq.~2.43! takes
the simple form

H ~2 iv!
1

AB
ḡ t1FgaS ¹̃a2 ivAa2

1

2
¹as D1mG J cv50,

~2.49!

wherea5$w,i %, andi 51, . . . ,D22. The quantitiesAa and
s are defined by Eqs.~2.23! and ~2.36!, respectively. The
spin connections¹̃a are computed with respect to the metr

dl25Cdw21gi j dxidxj . ~2.50!

Note that thei th component of¹̃a coincides with thei th
component of the spin connection¹m in the physical space
time ~2.6!. The spectral problem~2.49! can be solved by
introducing the fiducial Hamiltonian for spin 1/2 fields:

H~l!5 iABḡ tFgaS ¹̃a2 ilAa2
1

2
¹as D1mG . ~2.51!

The eigen-spinors ofH(l),

H~l!cv
(l)5vcv

(l) , ~2.52!

give the eigen-spinors for Eq.~2.49!:

cv~w,x!5cv
(v)~w,x!. ~2.53!

In complete analogy with the case of the scalar fields, o
can define fiducialD-dimensional spinors

c (l)~ t,w,x!5(
v

e2 ivtcv
(l)~w,x!, ~2.54!

which obey the Dirac equation

@ g̃m~¹̃m2 ilAm!1m#c (l)50 ~2.55!

on fiducial static space-timeM̃ with the metric~2.22! and
interact with gauge field~2.23!. We see, therefore, that th
form of the fiducial background and the gauge field is u
versal for fields of different spins. This fact may be esp
cially important for supersymmetric models.

The analysis of spinor fields goes along the lines of
work @9#. First, one can see that the spinor Hamiltoni
~2.51! is Hermitian with respect to the inner product

~c1 ,c2!5E dwdD22xA2gB21@c1~w,x!#1c2~w,x!.

~2.56!

Second, for the further convenience, one can go to ano
representation
7-5
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e@2~D21!/2#sH̄~l!e@~D21!/2#s5H~l!, ~2.57!

H̄~l!5 i ḡ t@ ḡa~¹̄a2 ilAa!1me2s#, ~2.58!

where the parameters was introduced in Eq.~2.36! and g
matrices and spin connections are defined with respec
metric ~2.39!, which is conformally related to metric~2.50!.
The operatorH̄(l) is Hermitian with respect to the standa
inner product

~c1 ,c2!5E dwdD22xAḡ@c1~w,x!#1c2~w,x!.

~2.59!

The density of energy levels,dn(l)(v)/dv, of the spinor
Hamiltonian can be computed with the help of relation~3.3!
by using of the heat kernel of the operator

H̄2~l!52ḡab~¹̄a2 ilAa!~¹̄b2 ilAb!1V̄~l!,
~2.60!

V̄~l!5
1

4
R̄1BS m22mgm¹ms1

i

2
lgmgnFmnD ,

~2.61!

where R̄ is the curvature of the space~2.39! and Fmn

5An,m2Am,n is the Maxwell tensor for the fiducial vecto
potential.

III. PROPERTIES OF H̄ 2
„l… AND DIVERGENCES

RELATED TO THE HORIZON

From now on we restrict the discussion to fou
dimensional space-times (D54). However, the analysis ca
be carried out in higher dimensions as well.

Both scalar and spinor single-particle HamiltoniansH̄(l)
are defined on the space~2.39!. By following the conven-
tions adopted in Ref.@6# we denote this spaceB̄. In the
vicinity of the horizon the geometry ofB̄ is simple. If r is
the proper distance to the horizon, then~see the Appendix!

N2.k2r2, C.gww , B.N2, ~3.1!

wherek is the surface gravity of the horizon. LetD54. By
using these asymptotics and Eqs.~2.38! and~2.61! one finds
that the potential terms at the horizon act as a tachionic m
V̄52k2 for scalars andV̄52 3

2 k2 for spinors. The presenc
of the tachionic mass, however, is exactly compensated
the mass gap which appears when a particle moves on
spaceB̄. Near the horizonr50 the metric ofB̄ takes the
form

d l̄ 2.
1

k2r2 ~dr21dV2!, ~3.2!

where in the limitr→0 the metricdV2 coincides with the
metric on the horizon. In this limit the curvature ofB̄ is
constant,R̄526k2, and the space looks like a hyperbol
02400
to

ss,

y
he

~Lobachevsky! manifold. Let us emphasize that these pro
erties are the same as for static space-times@7,8#.

These properties are sufficient to conclude thatH̄2(l) has
a continuous non-negative spectrum without a mass g
Thus, the density of eigen-valuesdn(l)(v)/dv is divergent
and requires a regularization. To calculate this quantity a
investigate its divergence we use a method@9# based on the
relation

Tr e2H̄2(l)t5E
0

`

dv
dn(l)~v!

dv
e2v2t. ~3.3!

The densitydn(l)(v)/dv can be found from Eq.~3.3! in
terms of the trace of the operatorH̄2(l) by using the inverse
Laplace transform. The trace involves integration over
non-compact spaceB̄. The volume element ofB̄ diverges at
small r asr23 and this is the reason for the divergences
the density of levels.

As was explained in Ref.@9#, to study this divergence it is
sufficient to restrict oneself only by the asymptotic form
the diagonal element of the heat kernel at small values of
parametert:

@e2H̄2(l)t#diag.
1

~4pt !3/2
@11ā1~l!t1ā2~l!t21•••#.

~3.4!

At this point one can make an important observation. T
gauge potentialAa appears in the heat kernel only in gau
invariant combinations. Moreover, the coefficientā1 does
not depend onAa and it is the same as in the casel50. The
coefficient ā2(l) includes the Maxwell Lagrangian con
structed ofAa . The latter term vanishes asr4 and it does not
bring the divergence to the trace at smallr. The same hap-
pens in the higher order coefficients which vanish at leas
fast asā2(l).

Thus, we come to the conclusion that in four-dimensio
space-time the fiducial gauge field does not change the
vergence. If one is interested only in the divergent part of
density of levels, the parameterl in the energy operato
H2(l) can be put equal to zero. This fact reduces our pr
lem to Eqs.~2.21!, ~2.55! on the static space-timeM̃ with
the gauge field neglected. The divergence of the densit
levels can be now computed by using the results of@6,9# and
expressed in terms of the geometrical characteristics ofM̃
near the horizon.

To put it in a more formal way, in four dimensions th
regularized divergent part of the density of levels of a fie
near a rotating black hole,

Fdn~vum!

dv G
div

5Fdn(l50)~vum!

dv G
div

, ~3.5!

wherem is a regularization parameter. By working, for in
stance, in the Pauli-Villars regularization and by using t
expressions of Refs.@6,9#, one finds
7-6
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Fdns
(0)~vum!

dv G
div

5
1

~4p!2kES
H 2b1aFv2

k2P12S 1

6
2j DRG J ,

~3.6!

Fdnd
(0)~vum!

dv G
div

5
r d

~4p!2kES
F2b1aS v2

k2P1
R

6
1

Q
4 D G .

~3.7!

Expressions~3.6! and ~3.7! are referred to the scalar an
spinor densities of levels, respectively,r d being the dimen-
sionality of the spinor representation. The integrations
these expressions are taken over the bifurcation surfaceS of
the horizon. As we show in the Appendix, the curvatures
the physical space-timeM and the fiducial oneM̃ coincide
nearS. Thus, the quantityR in Eqs.~3.6!, ~3.7! can be iden-
tified with the scalar curvature ofM, while other quantities
can be written in terms of the Riemann and Ricci tensors
M:

P52R2Q, Q5PmnRmn , R5PmnPlrRmlnr ,
~3.8!

where Pmn5 l ml n2pmpn is a projector onto a two-
dimensional surface orthogonal toS, and pm, l m are two
mutually orthogonal normals ofS ( l 252p251). The
regularization parameterm defines the scale of the Paul
Villars masses, and at largem,

a. ln
m2

m2 , b.m2ln
729

256
2m2ln

m2

m2 ~3.9!

wherem is the mass of the field~see for details@6#!.
Note that the form of these equations is completely

same as in the static space-times. By using Eqs.~3.6!, ~3.7!
one can find the divergences of the free energy of the fie
and the entropy which just repeat expressions~4.26! and
~4.27! of Ref. @6#. For instance, in the Pauli-Villars regula
ization the divergence of the entropy of the quanta near
horizon is given by the expression

Sdiv5
h

48pES
@b f11a~2p1P1p2R1p3Q!#. ~3.10!

For scalarsh51, f 151, p151/60, p251/62j, p350; for
spinorsh521, f 152r d/2, p1527r d/480, p25r d/24, p3
52r d/16. The entropy is evaluated at the Hawking tempe
ture bH

215k/2p. For scalar fields the same result was
cently obtained by the WKB method in@14,15#. Also in the
scalar case one can find the divergent part of the entrop
using the Euclidean formalism~conical singularity method!;
see@17#.

Analogous results can be found in the dimensional re
larization. It should be noted that the divergences cause
the presence of the horizon can be also regularized by u
an infrared type cutoff. In this regularization one just cuts
integrations near the horizon at some proper distance; se
a review@6#. Our results can be used to find explicit expre
sions for the entropy in this case; however, a discussion
02400
n

f

f

e

s

e

-
-

by

-
by
ng
ll
for
-
of

this regularization is beyond the scope of this paper.
rotating black hole space-times this question was studie
Refs.@10–13#.

The fact that the divergent part~3.10! of the entropy of
quantum fields near a rotating black hole has the same f
as for a static black hole has a number of immediate con
quences. One of the consequences is that for minim
coupled fields divergence~3.10! is completely removed by
the standard renormalization of the gravitational couplin
~including the Newton constant! in the bare tree-level part o
the black hole entropy. Proof of this statement for sta
black holes can be found in Refs.@19–22# and it is general-
ized without changes to rotating black holes. Another ap
cation of our results is the problem of the black hole entro
in models of induced gravity.

IV. ROTATING BLACK HOLES IN INDUCED GRAVITY

Models of induced gravity@23–25# were constructed with
the purpose of understanding the mechanism of the gen
tion the Bekenstein-Hawking entropy of black holes in t
situation when the low-energy gravity is induced by quant
effects. It was argued that for a Schwarzschild black hole
ultraheavy fields~constituents! which induce the Einstein
gravity in the low-energy limit are microscopic degrees
freedom which are responsible for the Bekenstein-Hawk
entropySBH. The important requirement of the models@23–
25# is the absence of leading ultraviolet divergences, wh
imposes constraints on the parameters of the constituents
using these constraints one finds the relation betweenSBH

and the entropyS of the constituents propagating near t
black hole horizon:

SBH5S2Q. ~4.1!

The quantityQ is the quantum average of the Noether cha
@25,29# which appears because of non-minimal couplings
the constituents with the curvature. Such couplings are n
essary to provide a cancellation of the leading ultravio
divergences in the induced effective action. It is importa
that the same couplings provide finiteness of the indu
Bekenstein-Hawking entropy~4.1!: the divergence~3.10! of
the entropyS of the constituents is compensated by the
vergence of the Noether chargeQ.

We now have all means to generalize result~4.1! of @23–
25# to Kerr black holes. Consider induced gravity mode
with spinor and non-minimally coupled scalar constitue
only. The constraints on the parameters of the constitue
and proof of relation~4.1! for a Schwarzschild black hole ar
given in @23#. The Kerr black hole is the vacuum solutio
and the geometrical structures of the divergences in the
fective action for the Kerr and Schwarzschild backgroun
are identical. The induced effective action for a Schwar
child solution contains logarithmic divergences of a top
logical form only. These divergences play no role and can
neglected@23#. We conclude that the same property is tr
for the action on the Kerr background. In this sense the
duced gravity@23–25# for vacuum static and rotating blac
holes is ultraviolet finite theory.
7-7
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Consider now the divergence of the entropyS for a scalar
or spinor constituent; see Eq.~3.10!. According to Eqs.
~A16!, ~A24! of the Appendix,

Q50, E
S
R58p ~4.2!

for the Kerr background. Thus,

Sdiv5
h

48p
b f1A1C, ~4.3!

whereA5*S is the area of the black hole horizon andC is a
divergent numerical constant~which is not observable an
can be neglected!. Thus, the entropy of the constituents
the leading order is proportional to the area of the horizon
the Kerr black hole and looks similar to the Bekenste
Hawking entropy. Equation~4.3! has precisely the sam
form as the entropy for a Schwarzschild black hole. As
the Noether chargeQ is concerned, in the considered mode
it is determined by the averages of the scalar operators^f̂2&
on the horizonS. In quantum states where the Green fun
tions are analytical on the horizon,

E
S
^f̂2&5

1

16p2bA, ~4.4!

where the functionb is given in Pauli-Villars regularization
by Eq.~3.9!. This equation holds on all vacuum backgroun
in the leading order approximation, and one can concl
that the Noether chargesQ for the two black holes have th
same form.

These observations show that in induced gravity mod
Eq. ~4.1! does hold for the Bekenstein-Hawking entropy o
Kerr black hole. By using Eqs.~3.9!, ~4.3!, ~4.4! in Eq. ~4.1!
one can check how the divergence ofQ compensates the
divergence ofS and one gets a finite expression which co
cides with the induced entropySBH. It is strong support of
the universality of the statistical-mechanical explanation
the Bekenstein-Hawking entropy in induced gravity.

We complete this section with remarks concerning
interpretation of the Noether chargeQ. The origin of subtrac-
tion in Eq. ~4.1! can be explained as follows@25#. The
Bekenstein-Hawking entropy of a rotating black hole in
duced gravity is related to the spectrum of the black h
massM and angular momentumJ which determine the grand
canonical ensemble. On the other hand the statisti
mechanical entropyS is determined by the spectrum of th
HamiltonianHj of the constituents. The operatorHj is the
generator of canonical transformations of the system al
the Killing field j. In the presence of non-minimal coupling
these spectra are different and subtraction ofQ in Eq. ~4.1! is
required to go from one spectrum to another.

To make this statement more clear consider a small e
tation of constituent fields having energyE and angular mo-
mentumJ over a vacuum withE5J50. Such an excitation
results in a change of the black hole massM and angular
momentumJ:
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dM5THdSBH1VHdJ1E2VHJ; ~4.5!

see@29#. Strictly speaking, this relation implies a definitio
of M andJ at spatial infinity. For this reason, the energy a
angular momentum of fields are the integrals over the en
black hole exterior@29#:

E5E
S t

TmntmdSn , ~4.6!

J52E
S t

TmnwmdSn , ~4.7!

whereTmn is the stress-energy tensor of the fields.S t is the
hypersurface of constant timet anddS t is the future-directed
vector of the volume element ofS t . The componentstm , wm
correspond to the Killing vector fields] t and ]w , respec-
tively.

In the induced gravity approach the constituents wh
contribute to the black hole entropy are assumed to be v
heavy and have mass of the order of the Planckian m
Since Hawking and the superradiant emissions of such
ticles are exponentially suppressed, they are practic
trapped inside the potential barrier. The latter in many
spects plays the role of an external boundary which is
quired to define the canonical ensemble.

Thus, the dominant contribution to integrals~4.6!, ~4.7!
comes from the region inside the null ‘‘cylinder’’~see the
discussion in Sec. II A! where one can define the energy
constituents associated to the Killing fieldj5] t1VH]w :

Ej5E2VHJ5E
S t

TmnjmdSn . ~4.8!

After that variational formula~4.5! is represented as

dM2VHdJ5THdSBH1Ej , ~4.9!

and it looks somewhat similar to the formula for static bla
holes. Thus, for a black hole with fixed area the spectrum
M and J is related to the spectrum of energiesEj of the
constituents near the horizon. The crucial observation is
the energyEj and the HamiltonianHj of the non-minimally
coupled constituents differ by a total derivative which pic
up a non-vanishing contribution on the inner boundary
S t , i.e., on the horizon. The boundary term is the Noeth
charge onS:

Hj2Ej5THQ, ~4.10!

whereTH is the Hawking temperature. It is because of E
~4.9!, ~4.10! that we expect the two entropies,SBH andS, to
be different and related by Eq.~4.1!. Studying further aspects
of the subtraction in Eq.~4.1! repeats the analysis of
Schwarzschild black hole and we advise the correspond
work in @25# for the interested reader.
7-8
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V. CONCLUDING REMARKS

Our results can be summarized as follows. We develo
a formalism of statistical-mechanical computations for a
nonical ensemble of fields near the horizon of a rotat
black hole. Such a canonical ensemble can be defined w
the reference frame co-rotates with the angular velocity
the black hole. We suggested a method as to how to red
computations on the stationary background to computat
on a fiducial static space-time in the presence of a fidu
gauge potential. Our method enables one to use the kn
results for this problem and to get a number of rigoro
results for rotating black holes. We believe that the meth
may be helpful in a number of applications, some of wh
were discussed in Secs. III and IV. In particular, it is wor
pointing out here the proof of the universality of th
statistical-mechanical origin of the Bekenstein-Hawking e
tropy of vacuum black holes in models of induced gravity

One of the results of our analysis is that the Euclide
formulation of the theory based on the conical-singular
method@17# reproduces correctly the divergence of the e
tropy ~3.10! for stationary space-times. In spite of this fa
the equivalence between the canonical formulation of sta
tical mechanics and the Euclidean one remains unclea
this case. Unfortunately, one cannot apply the analysis of@9#
given for static geometries. The difficulty is related not to t
horizon but to the prescription used for the Euclidean the
which implies an analytical continuation of some paramet
of the metric. This issue is an interesting problem for furth
research.
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APPENDIX A: GEOMETRY OF M AND M̃
NEAR THE HORIZON

In this appendix, we consider four-dimensional spa
times. Generalization of the results to higher dimension
straightforward. Consider first a line element (i , j 52,3)

dL25gi j dxi dxj , ~A1!

which enters metrics~2.6! and ~2.22! of spacesM andM̃,
respectively,

ds252Bdt212gwwÑwdtdw̃1gwwdw̃21dL2, ~A2!

ds̃252Bdt21Cdw̃21dL2. ~A3!

Starting with an arbitrary surfaceS and introducing geodesi
coordinates one can always rewrite Eq.~A1! in the form

dL25dr21v~r,x! dx2. ~A4!

It is convenient to choose the surfaceS, where r50, to
coincide with the horizon. For the given metric~A1! it is
sometimes difficult to solve the geodesic equations requ
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for the coordinate transformation which results in Eq.~A4!.
A much easier problem is the reduction of the metric~A1! to
the form

dL25dr212 q~r,x! dr dx1v~r,x! dx2. ~A5!

We shall use this form for further calculations.
It can be shown that for a geometry which is regular at

horizon the following decompositions of the metric coef
cients are valid near the horizon~i.e., at smallr):

B5k2r2@11b~x!r21O~r4!#, ~A6!

gwwÑw5r2p1~x!1O~r4!, ~A7!

gww5 f 1~x!1 f 2~x!r21O~r4!, ~A8!

v5v1~x!1v2~x!r21O~r4!, ~A9!

q5rq1~x!1O~r3!, ~A10!

C5 f 1~x!1S f 2~x!1
p1

2~x!

k2 D r21O~r4!. ~A11!

The constantk is the surface gravity of the black hole hor
zon. Equation~A11! follows from Eqs.~2.8! and ~2.11!.

Now, by direct computation, one can express the com
nents of the Riemann and Ricci tensors on the horizon
terms of the coefficients present in Eqs.~A6!–~A11!. Let us
define on the bifurcation surfaceS of the horizon the follow-
ing quantities:2

Q5PmnRmn , R5PmnPlrRmlnr , Pmn5 l ml n2pmpn,
~A12!

wherePmn is the projector onto two-dimensional surface o
thogonal toS. For the spaceM,

R52Rrtr
t 526b22

q1
2

v1
, ~A13!

Q52F23b2
q1

2

v1
1S q1

v1
D 8

2
v2

v1
2

1

f 1
S f 21

p1
2

k2D
1

g1

2v1
S v18

v1
1

f 18

f 1
D G , ~A14!

where f 8[d f /dx. Then, by using Eqs.~A6!, ~A9!–~A11!

one verifies that, for the spaceM̃,

R̃5R, Q̃5Q. ~A15!

According to the Gauss-Codacci equations,

R5RS12Q2R ~A16!

2These definitions coincide with Eq.~3.8!.
7-9
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whereR andRS are scalar curvatures ofM andS, respec-
tively. ~Here we took into account that the extrinsic curv
tures ofS vanish due to the isometry.! The same equation i
valid for the scalar curvatureR̃ of M̃ and one concludes tha

R̃5R. ~A17!

Therefore, all the curvatures which characterize the geom
of the physicalM and fiducialM̃ space-times coincide a
the horizonS. As far as other geometrical properties~e.g.,
derivatives of the curvatures atS) are concerned, they ca
be different in general. This fact, however, is not importa
when one studies the divergences of the density of ene
levels in four-dimensional theory, Sec. III.

For the sake of completeness, we give the expression
the surface invariants forQ and R for the Kerr-Newman
black hole of massM, chargeQ, and angular momentumJ
5aM. The metric in Boyer-Lindquist coordinates is

ds252S 12
2Mr 2Q2

S Ddt222
~2Mr 2Q2!a sin2u

S
dtdw

1
S

D
dr21Sdu21

A sin2u

S
dw2, ~A18!

D5r 222Mr 1a21Q2, S5r 21a2cos2u, ~A19!

A5~r 21a2!22Da2sin2u. ~A20!

The horizon is defined by the equationD50 and is located a
D

av

B

m
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r 5r 15M1AM22Q22a2. ~A21!

The surface gravityk and the angular velocityVH for the
Kerr-Newman black hole are

k5
r 12M

r 1
2 1a2 , VH5

a

r 1
2 1a2 . ~A22!

The Kerr-Newmann metric~A18! can be brought to form
~A2! when one goes to the corotating coordinate frame
the substitutionw5w̃1VHt. The coordinatesu and x in
Eqs.~A2! and~A18! coincide; the coordinater is determined
as

r5E
r 1

r

dr Agrr ~r ,u!. ~A23!

By using Eqs.~A18!–~A22! one can find the coefficientsb,
p1 , v i , f i , and qi . After some simple algebra one find
from Eqs.~A13! and ~A14!,

Q52
2Q2

S1
2 , ~A24!

R5
2

S1
3 @4r 1

2 ~2Mr 12Q2!1S1~Q226Mr 1!#,

~A25!

whereS1 is the value ofS at r 5r 1 . The scalar curvatureR
of the Kerr-Newmann solution vanishes everywhere.
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