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Electromagnetic contribution to gravitational mass of a current-conducting channel

Boris E. Meierovich*
P.L. Kapitza Institute of Physics Problems, 2 Kosygina Str., Moscow 117334, Russia

~Received 4 May 1999; published 16 December 1999!

The analysis of electromagnetic contribution to the total mass of a strong current channel is conducted on the
basis of Einstein’s equations of general theory of relativity. The current dependence of the ratioR of the
contribution of the magnetic field to the contribution of the charges has a maximum. While the current is small
~from the point of view of its influence on the metric! the ratioR grows with the current. ThenR reaches its
maximum, and in the region of a strong current up to the collapse boundary it is a decreasing function of the
current. If the drift velocity is not too small, the magnetic contribution can be many orders of magnitude higher
than the sum of masses of the charges.

PACS number~s!: 04.40.Nr
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According to the modern point of view the Universe ha
cellular and filamentary structure. Within the area access
for observations 99.999% of its volume consists of plasm
basically of electrons and protons. Filaments of space pla
are current conducting, and according to some estimates@1#
intergalactic currents can reach 1019–1020 A.

In stationary conditions the interaction of the electroma
netic field with matter depends on the sign of a field invari
FikFik. (Fik—4-tensor of an electromagnetic field. In th
Galilean metricFikFik5H22E2.! In the caseFikFik,0 one
can find a reference frame where the magnetic field is z
so the field is electrostatic. In this frame of reference ther
a nonzero space charge. In order to confine the charged
ter, gravitational attraction must be stronger than elec
static repulsion. For protons the ratio of gravitational forc
to electrostatic ones isGmi

2/e2;10236. Therefore@2# in the
caseFikFik,0 a fraction of the uncompensated charges
space objects cannot exceed 10218. Hence, the magnetic
field, originated by rotation of a charged celestial object
very small@3#.

In caseFikFik.0 one can find a frame, where electr
static field and the charge are zeros. However the magn
field and the current are different from zero. Such a situat
takes place, for example, if the current is caused by rela
motion of subsystems of electrons and ions. In this case
velocity of relative motion~drift velocity! is different from
zero, and there is no frame of reference, where both s
systems are simultaneously at rest. In the frame of refere
where the charge is zero, magnetic forces are the major o
There are conditions, when the charges of both signs
attracted to the axis by the magnetic forces~pinch effect!. In
equilibrium the compression is balanced by pressure; h
ever, there is no restriction on the relation between magn
and gravitational forces of compression. In caseFikFik.0
the magnetic field is not connected with rotation of a cha
as a whole. Therefore generally speaking there is no rea
to consider the magnetic field of celestial objects to be
ways weak. The magnetic field of a current channel cur
the metric of space-time the same way the charges do,
cause energy-momentum tensors of particles and mag
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0556-2821/99/61~2!/024004~6!/$15.00 61 0240
le
,
a

-
t

o,
is
at-
-

s

n

s

tic
n
e

he

b-
e,

es.
re

-
tic

e
on
l-
s
e-
tic

field enter Einstein equations additively.
In this paper we consider a contribution of the prop

magnetic field to the total mass of a current-conducting ch
nel. In the most simple geometry we consider a channel w
a strong current as a cylindrically symmetric system cons
ing of two counterstreaming subsystems~ions and electrons!
moving in the electromagnetic field of their collective inte
action. Our approach to the problem of equilibrium of a hi
current filament in general relativity@4# is a traditional ap-
proach within the electromagnetic hydrodynamics of id
charged plasma, with or without the account of gravitation
is clear that the results of the analysis of a cylindrically sy
metric current channel cannot be applied directly to the
jects with central symmetry—stars, pulsars, and black ho
However the example of a current-conducting channel
lows us to reveal some common features, and, in particu
to determine the area of parameters, where the electrom
netic contribution to the total mass of an object is comp
rable to or exceeds the contribution of particles.

Without gravitation the magnetic field of a long conduct
slowly decreases with distance from the axis:H
52I /cr, r 0&r &L, L and r 0—length and radius of a cur
rent channel,I—current. The energy per unit length is

Em5
1

8pLE H2dV5
1

4E0

`

H2~r !rdr 5S I

cD 2

lnS L

r 0
D . ~1!

At r 0!L the main contribution to the logarithmic integra
~1! comes fromr 0&r &L. The ratio of magnetic energyEm
to the energy of particlesEp5Nimic

2,

Em

Ep
5

e2Nb2

mic
2

lnS L

r 0
D , ~2!

is proportional to the number of particles per unit length o
channelN. In case of nonrelativistic drift velocityb5V/c
!1 the linear densities of electrons and ions are equal:Ne
5Ni5N. One can see from Eq.~2! that if the energy of
magnetic compression per one particlee2Nb2 becomes of
the order of the rest mass of an ion, it is reasonable to ex
that electromagnetic contribution to the curvature of spa
time exceeds total mass of the particles. In case of relativi
©1999 The American Physical Society04-1
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BORIS E. MEIEROVICH PHYSICAL REVIEW D61 024004
drift velocity b;1 the ratio ~2! becomes of the order o
unity at a currentI;107 A. Respectively, for intergalactic
currents of the orderI;1019 A magnetic energy exceeds th
rest mass of the charges atb*10212.

The formula~2! does not take into account the curvatu
of space-time caused by the matter. It is valid only if t
current is weak from the point of view of general relativit
The condition of its applicability is@5#

i[G1/2I /c3! ln21~L/r 0!. ~3!

The parameteri, introduced in Eq.~3!, is a dimensionless
value of the current. It reaches unity at the currentI
;1025 A. For intergalactic currents that are now under d
cussion in the literature@1# parameteri is of the order 1025

or even smaller. Nevertheless, it is interesting to trace
current dependence of electromagnetic contribution to
mass through the whole area of equilibrium up to the c
lapse boundary.

In the region of strong~from the point of view of genera
relativity! current
ld

02400
-

e
e

l-

ln21~L/r 0!! i &1 ~4!

gravitational field of a long (L@r 0) stationary current chan
nel is located within a small~in comparison withL) distance
from the axis@5#. All physical properties of the system de
pend only on one coordinate. A complete set of equati
determining equilibrium structure of a cylindrically symme
ric current-conducting filament in general relativity is writte
down in@4#. It is valid for arbitraryb without any limitations
on the strength of a gravitation field. For nonrelativistic dr
velocityb!1 the space charge is negligible, the nondiago
components of the metric tensor are not essential, and th
of Einstein equations simplifies considerably. If one e
presses the metric tensor via functionsFi : gik
5diag(e2F0,2e2F1,2e2F2,2e2F3), and selects the coordi
natex1 so thatFi satisfy a Bronnikov condition@6#

F01F21F35F1 , ~5!

then the Einstein equations take the form@5#
F095
8pG

c4
e2F1S (

a

Ea13Pa

2
1

F13F
13

8p D ,

2~F28F381F38F081F08F28!2F195
8pG

c4
e2F1S (

a

Ea2Pa

2
1

F13F
13

8p D ,

~6!

2F295
8pG

c4
e2F1S (

a

Ea2Pa

2
2

F13F
13

8p D ,

2F395
8pG

c4
e2F1S (

a

Ea2Pa

2
1

F13F
13

8p D .
a-

es.

vi-
n-
Energy Ea , pressurePa , and densityna of the type a
charges are expressed via the nonzero componentA3 of vec-
tor potential of the magnetic field:

Ea5
4pga

~2p\c!3Emac2

`

dE
E2AE22ma

2c4

11exp@~E2ma!/Ta#
,

Pa5
4pga

3~2p\c!3Emac2

`

dE
~E22ma

2c4!3/2

11exp@~E2ma!/Ta#
,

~7!

na5
4pga

~2p\c!3Emac2

`

dE
EAE22ma

2c4

11exp@~E2ma!/Ta#
,

2ma5BaTa1eae2F0A3Va /c.

Here ga is a g-factor,ma is a chemical potential,A3 is a
nonzero component of vector potential of the magnetic fie
 :

F135dA3 /dx1, Va is the speed of the subsystem of typea
charges in the laboratory frame of reference,Ba is a constant.
In case of an electrically neutral filament the Maxwell equ
tion

e22F2~e2F1F13!854pe2F0(
a

eanaVa /c ~8!

is a consequence of the Einstein equations~6! and relations
~7!, containing equations of state for relativistic Fermi gas
In equilibrium TaeF05const, Va does not depend onx1,
and consequently

F135A3852
c

eaVa
~eF0ma!8. ~9!

In the theory of general relativity one can exclude a gra
tation field in an arbitrary selected point of space. We co
4-2



,
n

nd

ar

nel.
tal

ual:
t

ks
the
atio

of
is of
the
ase

te
e
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sider the space-time to be flat on the axis of a channelx1

→2`. This is achieved by the selection of boundary co
ditions:

F050, F0850, F2851, F350, F3850, x1→2`.
~10!

Actually necessary conditions of regularity atx1→2` are
F085F3850, F2851. ConditionsF05F350 are a matter of
convenience.

Total mass per unit length of a filament can be fou
using Tolman’s formula~@7#, page 425!:

M5
c2

4pGLE dVe2F1R0
05

c2

2G
F08~`!.

Equation~6! allows one to separate the contributions of p
ticles and electromagnetic field into the total mass:

M5~2Em1E13P!/c2. ~11!

Here

E52p(
a
E

2`

1`

dx1e2F1Ea

and
a-

e

ub
re
es
g-

ed

02400
-

-

P52p(
a
E

2`

1`

dx1e2F1Pa .

E is the energy of particles per unit length andP is the
pressure, integrated over the cross section of a chan
Both—particles and magnetic field—contribute to the to
mass. In the ultrarelativistic caseE53P the contributions to
Eq. ~11! from the particle energies and pressures are eq
M52(Em1E)/c2. The electromagnetic field is equivalen
to ultrarelativistic particles~photons!, and for this reasonEm
enters in Eq.~11! with the factor 2. Actually this is the sum
of energy and tripled pressure of the magnetic field. It loo
reasonable to characterize the relative contribution of
magnetic field and the particles to the total mass by the r

R5
2Em

E13P
. ~12!

The estimate~2! shows that the most interesting region
the parameters is the one where the energy per particle
the order of the proton rest mass. The temperatures of
charges do not play any basic role, so we consider the c
Ta!ma;mic

2. This allows one to putTa50 and express
the energy, the pressure, and the density of charges~7! via
the chemical potentials. AtTa50 the charges are degenera
relativistic Fermi gases. ForE.ma expressions under th
integrals~7! tend to zero atTa→0, and so the interval of
integration reduces to (mac2,ma), ma.mac2. For instance,
na5H 4pga

~2p\c!3Emac2

ma
dEEAE22ma

2c45
4pga

3~2p\c!3
~ma

22ma
2c4!3/2, ma.mac2,

0, ma,mac2.
d

At me;mic
2 the electrons are ultrarelativistic. For ultrarel

tivistic electrons (me;mic
2@mec

2, ge52) at T50 we
have

ne5H me
3

3p2~\c!3
, me.0,

0, me,0.

Other integrals in Eqs.~7! are calculated similarly and giv
the expressions for(a(Ea1Pa) and(a(Ea23Pa), used in
Eqs.~13! below.

Magnetic forces, acting on the counterstreaming s
systems of the charges, are different. For this reason the
an electric polarization supporting the balance of forc
However atb!1 in equilibrium the space charge is insi
nificant in comparison with the electric current:Q,bI /c
!I /c. Therefore atb!1 the space charge can be neglect
The electrical neutralityne5ni allows one to expressm i in
terms ofme . In view of mi@me andTa50 we have
-
is
.

.

m i
25mi

2c41me
2 , mi@me .

It follows from Eq. ~5! that F091F291F395F19 . A linear
combination of Eqs.~6! allows one to exclude the secon
derivatives:

F13F
13

8p
52(

a
Pa1

c4

8pG
e22F1~F28F381F38F081F08F28!,

and expressF13F
13 in terms of (aPa and (F28F381F38F08

1F08F28). Replacing the second Eq.~6! with Eq. ~8!, we get
~in the rest mass frame of ions!

e22F2~e2F1F13!854pe2F0eeneVe /c,

F092~F28F381F38F081F08F28!5
4pG

c4
e2F1(

a
~Ea1Pa!,

F292~F28F381F38F081F08F28!52
4pG

c4
e2F1(

a
~Ea1Pa!,
4-3
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F391~F28F381F38F081F08F28!52
4pG

c4
e2F1(

a
~Ea23Pa!.

By using Eq.~9!, shifting the zero-points ofF2 andx1,

F2→F22
1

2
lnS 4

3p

e2b2mi
2c

\3 D ,
o

io

io

02400
x1→x11
1

2
lnS 4

3p

e2b2mi
2c

\3 D ,

and introducing a dimensionless chemical potentialM
5me /mic

2, we come to the following system of ordinar
differential equations:
@e22F3~eF0M !8#85H 2e2F12F0M3, M.0,

0, M<0,

F092~F28F381F38F081F08F28!5H Pe2F1M3~M1AM211!, M.0,

0, M<0,
~13!

F292~F28F381F38F081F08F28!5H 2Pe2F1M3~M1AM211!, M.0,

0, M<0,

F391F28F381F38F081F08F285H 3

2
Pe2F1@MAM2112 ln~M1AM211!#, M.0,

0, M<0.
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All boundary conditions are given on the same left side
the area of integration:

F05F085F35F385M 850,

F25x1, F2851, M5M0 , x1→2`.
~14!

E,P, andEm in Eq. ~12! are expressed viaFi8(`):

E5
c4

8G
@F08~`!2F38~`!22F28~`!12#,

P5
c4

8G
@F08~`!1F38~`!#,

Em5
c4

8G
@F08~`!2F38~`!21#.

Total mass per unit length of a channel and the dimens
less value of the current, introduced in Eq.~3!, are

M5
c2

2G
F08~`!, i 52

AP

2
@e22F3~eF0M !8#x15` .

There are two dimensionless parameters in the equat
~13! and boundary conditions~14!:

M0 and P5
Gmi

2

e2b2
.

f

n-

ns

M0 is the value of a chemical potential of electrons on t
axis in the units ofmic

2 ~dimensionless Fermi energy!. P is
the ratio of gravitational energy to the magnetic one.
Gmi

2/e2;10236, parameterP, as a rule, is small:P!1.
Only for b<10218 parameterP exceeds unity.

Equilibrium structure of a current-conducting filament
determined by four functionsFi ,i 50,2,3 andM. Each one
of them depends on the coordinatex1 and the two parameter
P and M0. By selecting the coordinatex1 by the condition
~5!, we reduced the Einstein equations to a rather sim
form. The solution does not contain fictitious singularitie
Coordinatex1 varies from2` to 1`, and overlaps the rea
distance from the axis from zero to infinity. In the limit of
weak curvature of space-timex1→ ln r . Integrating the sys-
tem ~13! at fixed values of the parametersP andM0, we find
distribution in space for all characteristics of a current ch
nel; energy of the particles, energy stored in the magn
field, the pressure of each subsystem, as well as the dist
tions of mass and current density.

Among all the solutions of equations~13! with boundary
conditions~14! we have to select only those that satisfy t
physical conditions of finiteness of the current and the po
tiveness of energy densities of the particles and magn
field. These conditions impose limitations on the area of p
sible values of the parametersP and M0. Instead ofP and
M0 it is possible to use any two other physical parameter
describe an equilibrium configuration: for example, dime
sionless values of the total currenti ~3! and the total mass pe
unit lengthm5GM/c2. In the variablesi andm the area of
equilibrium configurations is shown in Fig. 1 between so
4-4
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ELECTROMAGNETIC CONTRIBUTION TO . . . PHYSICAL REVIEW D61 024004
and dashed lines. The condition of positiveness of magn
energy density is violated on the dashed curve.1 Another
boundary of equilibrium domain—solid line—is the depe
dencei (m) for the ultrarelativistic equation of state~see Fig.
3 in @5#! known as the collapse boundary. The dotted lin
inside the equilibrium domain correspond to the variation
the parameterM0 from zero up to the boundary valu
M0(P) at fixed values of the parameterP. The smallerP is,
the stronger the energy of magnetic compression is, and
closer a dotted lineP5const, 0,M0,M0(P) approaches
the collapse boundary. It is necessary to remember, that
~13! are valid in the region of a strong current, and for th
reason the equilibrium domain is limited ati→0 by the con-
dition ~4!.

The dashed and solid boundaries of the equilibrium
main in Fig. 1 intersect ati m50.175, mm50.385. Equilib-
rium configurations exist atm,mm , and atP→0 they trans-
form into configurations found in@5# for the ultrarelativistic
equation of state of protons. Atm.mm Eqs.~13! do not have
solutions meeting physical requirements for equilibrium co
figurations. However in the approximation of ultrarelativis
charges the equilibrium configurations exist up tom50.6
@5#. Apparently equilibrium configuration withi . i m and
0.6.m.mm cannot be realized by real charges with a no
zero rest mass.

1Regular solutions meeting physical requirements in the wh
interval 2`,x1,` exist only within the area of the paramete
shown in Fig. 1. Outside this area solutions of Eqs.~13! with
boundary conditions~14! are singular. FunctionsFi become infinite
at some pointxm

1 5xm
1 ( i ,m),`. When the parametersi ,m ap-

proach the boundary of equilibrium domain from outside, the po
of singularityxm

1 ⇒`. So in the close vicinity of the dashed line th
singular solutions are ‘‘almost regular’’—numerical instabili
starts far outside the channel. For singular solutions the densit
magnetic energyF13F

13/8p changes sign within the interval2`
,x1,xm

1 . This property provides a sensitive tool to rule out s
gular solutions in the early stage of integration. This simplifies
numerical procedure of finding the dashed boundary of the equ
rium domain.

FIG. 1. Area of equilibrium configurations in variablesi andm.
02400
tic

s
f

he

qs.

-

-

-

Coordinate dependences of mass per unit length, loc
at x,x1, are shown in Fig. 2. All the curves are built fo
P50.1846. This value corresponds to the boundary of eq
librium domain forM051.2. The figures at each curve ind
cate appropriate values of the parameterM0.

For fixedP the currenti is a monotonically growing func-
tion of M0. Figure 2 shows that the smallerM0 is, the slower
m reaches its total value. In particular, atM050.2 one can
see two segments of growth of the mass. There is a
increase ofm at x1;25 approximately up to one-half of its
total value. Thenm continues to grow slowly withx1 and
reaches its maximum atx1;20. There are no particles in th
field of slow growth, so this slow increase of the mass
stipulated by the magnetic field of the current. AtM0!1
~and i !1) the magnetic field of the current is located f
outside the area occupied by the charges. Therefore the m
contribution of the magnetic field to the curvature of spa
time comes from the circumferential area of the curre
channel. With an increase ofi the energy, stored in the mag
netic field, grows and the curvature of space-time amplifi
As a result the magnetic field of a current becomes more
more confined to the axis of a channel. Ati;1 the magnetic
field appears to be concentrated in the same area as
charges.

The ratioR ~12! of magnetic contribution to the contribu
tion of the particles as a function of currenti is displayed in
Fig. 3. Solid curves are functionsR( i ) at fixed values of drift
velocity. Corresponding values ofP for these five curves are
P50.2,0.08,0.013,0.0033,0.0002. The dotted line is
functionRultra( i ) for the ultrarelativistic equation of state o
the ions. Ati !1 Rultra( i ); i 21. The ratioR( i ) ~12! devi-
ates fromRultra( i ) at i→0 and tends to a constant. Th
constantR(0) is proportional to the drift velocity:R(0)
;P21/25Ae2/Gmp

2b, P→0.
FunctionR( i ) in general is shown schematically in Fig.

le

t

of

e
-

FIG. 2. Coordinate dependence of mass, located atx,x1. P
50.1846. The figures indicate appropriate values ofM0 for each
curve.
4-5
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In the strong current limit~4! up to the boundary of the
collapse the relative contribution of the magnetic field to
gravitational mass decreases with an increase of current
the contrary, in the limit of a weak current~3!, according to
Eq. ~2!, R( i ) grows with current:2

R~ i !52iP21/2ln~L/r 0!, i ! ln21~L/r 0!. ~15!

2In regular units Eq.~15! has a formR52(bI /I p)ln(L/r0). HereI
is the current in amperes,I p5mpc3/e531.2 MA, mp is the rest
mass of a proton. Expressingb via I ~in amperes! andN ~in cm21),
we getR513.4(I 2/N)ln(L/r0), i!ln21(L/r0).

FIG. 3. Current dependence of the relative contribution of
magnetic field to the mass of a current channel. Solid lines
functions R( i ) found numerically for P50.2, 0.08, 0.013,
0.0033, 0.0002. The dotted line is the dependenceRultra( i ).
,

02400
e
n

Therefore in the intermediate areai; ln21(L/r0) the function
R( i ) has a maximum, and this maximum is of the order
P21/25bAe2/Gmp

2;1018b.
Thus, if the drift velocityV is not extremely small (b

@10218, i.e.,V@1028 cm/sec), the electromagnetic contr
bution to the gravitational mass of a current channel can
many orders of magnitude higher than a simple sum
masses of the charges.
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FIG. 4. General view ofR( i ). Electromagnetic contribution
grows with the current in the area~3!, has a maximum ati
; ln21(L/r0), and decreases with the current in the region~4! up to
the collapse boundary.
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