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Electromagnetic contribution to gravitational mass of a current-conducting channel
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The analysis of electromagnetic contribution to the total mass of a strong current channel is conducted on the
basis of Einstein’s equations of general theory of relativity. The current dependence of th® rtithe
contribution of the magnetic field to the contribution of the charges has a maximum. While the current is small
(from the point of view of its influence on the mefrithe ratioR grows with the current. TheR reaches its
maximum, and in the region of a strong current up to the collapse boundary it is a decreasing function of the
current. If the drift velocity is not too small, the magnetic contribution can be many orders of magnitude higher
than the sum of masses of the charges.

PACS numbsd(s): 04.40.Nr

According to the modern point of view the Universe has afield enter Einstein equations additively.
cellular and filamentary structure. Within the area accessible In this paper we consider a contribution of the proper
for observations 99.999% of its volume consists of plasmamagnetic field to the total mass of a current-conducting chan-
basically of electrons and protons. Filaments of space plasmzel. In the most simple geometry we consider a channel with
are current conducting, and according to some estinjdfes a strong current as a cylindrically symmetric system consist-
intergalactic currents can reach3010%° A. ing of two counterstreaming subsystefiens and electrons

In stationary conditions the interaction of the electromag-mnoving in the electromagnetic field of their collective inter-
netic field with matter depends on the sign of a field invariantaction. Our approach to the problem of equilibrium of a high
FiF'*. (F;«—4-tensor of an electromagnetic field. In the current filament in general relativity4] is a traditional ap-
Galilean metridk F'*=H?—E?.) In the caseé~;,F'*<0 one  proach within the electromagnetic hydrodynamics of ideal
can find a reference frame where the magnetic field is zerasharged plasma, with or without the account of gravitation. It
so the field is electrostatic. In this frame of reference there igs clear that the results of the analysis of a cylindrically sym-
a nonzero space charge. In order to confine the charged matetric current channel cannot be applied directly to the ob-
ter, gravitational attraction must be stronger than electrojects with central symmetry—stars, pulsars, and black holes.
static repulsion. For protons the ratio of gravitational forcesHowever the example of a current-conducting channel al-
to electrostatic ones i6m?/e?>~ 1036, Therefore[2] in the  lows us to reveal some common features, and, in particular,
caseFikF”‘<0 a fraction of the uncompensated charges into determine the area of parameters, where the electromag-
space objects cannot exceed 1 Hence, the magnetic netic contribution to the total mass of an object is compa-
field, originated by rotation of a charged celestial object, is/able to or exceeds the contribution of particles.
very small[3]. Without gravitation the magnetic field of a long conductor

In caseF;,F>0 one can find a frame, where electro- Slowly decreases with distance from the axisi
static field and the charge are zeros. However the magnetig 2/cr, ro=r=<L, L andr,—length and radius of a cur-
field and the current are different from zero. Such a situatioeént channel] —current. The energy per unit length is
takes place, for example, if the current is caused by relative )
motion of subsystems of electrons and ions. In this case the L
velocity of relative motion(drift velocity) is different from In(ﬂ)' @)
zero, and there is no frame of reference, where both sub-

systems are simultaneously at rest. In the frame of referenc@y r <| the main contribution to the logarithmic integral

where the charge is zero, magnetic forces are the major oneg, comes fromr,<r=<L. The ratio of magnetic energg,,
There are conditions, when the charges of both signs arg) ihe energy of particIeEp=Nimic2,

attracted to the axis by the magnetic for¢pmch effeci. In

E

= H2dV—1me2 dr=| -
m= gl =), Hnrdr=| ¢

equilibrium the compression is balanced by pressure; how- NP

. L ) X En e°Ng L
ever, there is no restriction on the relation between magnetic e nl—|, 2
and gravitational forces of compression. In c&ggF'“>0 Ep  mc? o

the magnetic field is not connected with rotation of a charge
as a whole. Therefore generally speaking there is no reasas proportional to the number of particles per unit length of a
to consider the magnetic field of celestial objects to be alchannelN. In case of nonrelativistic drift velocity3=V/c
ways weak. The magnetic field of a current channel curves<l1 the linear densities of electrons and ions are equal:
the metric of space-time the same way the charges do, be=N;=N. One can see from Ed2) that if the energy of
cause energy-momentum tensors of particles and magnetinagnetic compression per one partieféNB? becomes of
the order of the rest mass of an ion, it is reasonable to expect
that electromagnetic contribution to the curvature of space-
*Email address: bem@kapitza.ras.ru time exceeds total mass of the particles. In case of relativistic
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drift velocity B~1 the ratio(2) becomes of the order of In"Y(L/rg)<i=1 4
unity at a current ~10° A. Respectively, for intergalactic
currents of the order~ 10" A magnetic energy exceeds the grayitational field of a longl(>r,) stationary current chan-
rest mass of the charges @102 nel is located within a smalin comparison with_) distance
The formula(2) does not take into account the curvature from the axis[5]. All physical properties of the system de-
of space-time caused by the matter. It is valid only if thepend only on one coordinate. A complete set of equations
current is weak from the point of view of general relativity. getermining equilibrium structure of a cylindrically symmet-
The condition of its applicability i$5] ric current-conducting filament in general relativity is written
U231 down in[4]. Itis valid for arbitraryB without any limitations
I=GHA/c*<In"(L/ro). ©) on the strength of a gravitation field. For nonrelativistic drift
The parametei, introduced in Eq(3), is a dimensionless Velocity 3<1 the space charge is negligible, the nondiagonal
value of the current. It reaches unity at the currént COmponents of thg metric tensor are not essential, and the set
~10%° A. For intergalactic currents that are now under dis-Of Einstein equations simplifies considerably. If one ex-
cussion in the literaturfl] parametei is of the order 10° ~ Presses__ the Lmetric _ tensor - via functions;:  gix
or even smaller. Nevertheless, it is interesting to trace thé” diag(e™®, —e™, —e’"z, —e"s), and selects the coordi-
current dependence of electromagnetic contribution to th8atex™ so thatF; satisfy a Bronnikov conditioii6]
mass through the whole area of equilibrium up to the col-

lapse boundary. FotFat+Fa=Fy, )
In the region of strongfrom the point of view of general
relativity) current then the Einstein equations take the fdrid
|
87G E,+3P, FF¥
"_ 2F, a a 13
Fo=—a @ (; 2 g7 |’
re re re " 7G Ea_ Pa |:13|:13
2(F4F4+F4FL+FFY) —Fi= 0 eZFl(Ea) 5 |
s (6)
87G E,—P FqiF
e 2F, a a 13
F2 a ® ( ; 2 8w ) '
» 871G ¢ 5 E,— P, FiF®
3T T e T2 8

Energy E,, pressureP,, and densityn, of the typea  F ,=dA;/dx}, V, is the speed of the subsystem of type

charges are expressed via the nonzero compokgof vec-  charges in the laboratory frame of refererBgjs a constant.
tor potential of the magnetic field: In case of an electrically neutral filament the Maxwell equa-

tion
4mg, J’w dE E2\E?—mZc?
2" (2mhe)? 1+exf (E— pa)/Tal’
(2mhC)*Jmec® eXHL(E = p1a)/ Tl e 2F2(e?F1F1d) =47e Fod) e,n,V,/c )
a
o Amg, (= (E2—m32c*)%? ' o . '
a— mjmacz Tt exf(E—po)Ta]’ is a consequence of the Einstein equati@@sand relations

(7), containing equations of state for relativistic Fermi gases.
2 (7 In equilibrium T,eTo=const, V, does not depend oxr?,
47g, f‘” EVE —mgc and consequently

Ng=——— dE ,
b 2mhc)dmer 1+ exd(E—ua)/T,]
c
Fia=A{=— e"ou,)’. 9
— pa=B.Tate.e oAV, /c. 13- A3 " g v, (€ 0k ©
Here g, is a g-factor,u, is a chemical potentialA; is a In the theory of general relativity one can exclude a gravi-

nonzero component of vector potential of the magnetic fieldtation field in an arbitrary selected point of space. We con-
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sider the space-time to be flat on the axis of a chandel, +o
— —o, This is achieved by the selection of boundary con- P=272 J' dx'e’F1P,.
ditions: A
¢ is the energy of particles per unit length afiis the
Fo=0, F,=0, F,=1, F3=0, F}=0, x'——oo. pressure, integrated over the cross section of a channel.
(10 Both—particles and magnetic field—contribute to the total
mass. In the ultrarelativistic cage= 3% the contributions to
Actually necessary conditions of regularity xét— —c are  Eq. (11) from the particle energies and pressures are equal:
Fo=F3=0, F;=1. ConditionsFo,=F3;=0 are a matter of 9M=2(E,+ @)/c?. The electromagnetic field is equivalent

convenience. to ultrarelativistic particlegphotons$, and for this reasok,,
Total mass per unit length of a filament can be foundenters in Eq(11) with the factor 2. Actually this is the sum
using Tolman’s formuld[7], page 425k of energy and tripled pressure of the magnetic field. It looks

reasonable to characterize the relative contribution of the
magnetic field and the particles to the total mass by the ratio

F
M= 47TGLJ dVEFIR)= 5= Fo().

2E,
Equation(6) allows one to separate the contributions of par-
ticles and electromagnetic field into the total mass: The estimaté2) shows that the most interesting region of
the parameters is the one where the energy per particle is of
M= (2Ep+ E+3P)/c?. (11)  the order of the proton rest mass. The temperatures of the
charges do not play any basic role, so we consider the case
Here T,<ma~m;c2 This allows one to puT,=0 and express
. the energy, the pressure, and the density of chaffesgia
= 27r2 J dxle?F1E, the chemical potentials. At,=0 the charges are degenerate
relativistic Fermi gases. FOE>u, expressions under the
integrals(7) tend to zero aff,—0, and so the interval of
and integration reduces tonf,c?, u,), wa>m,c2. For instance,
&f EEJVEZ_ 2 4—ﬂ(,u§—m2c4)3/2, 11> M,
Na=1 (27#c)3)myc? 3(2mhe)®
0, pa<myc2.
|
At ue~m;c? the electrons are ultrarelativistic. For ultrarela- wi=mict+u2, m>m,.
tivistic electrons fro~m;c?>m.c?, g.=2) at T=0 we
have It follows from Eq. (5) that Fg+F5+F3=F]. A linear
combination of Eqs(6) allows one to exclude the second
3 derivatives:
fe me>0 13 4
[l e [
ne=1 3m2(hc)® P S Pyt e TURLEL FFL RO,
0, wme<0. a

and expresssF™ in terms of S,P, and F,F5+F5F)
Other integrals in Eqs(7) are calculated similarly and give +FoF2). Replacing the second E¢6) with Eq. (8), we get
the expressions foE,(E,+ P,) and3,(E,—3P,), used in  (in the rest mass frame of ions
Egs.(13) below. CoFe. oF 13 E

Magnetic forces, acting on the counterstreaming sub- e “T2(eTIFY) =4me ToggneVelc,

systems of the charges, are different. For this reason there is
an electric polarization supporting the balance of forces
However atB<1 in equilibrium the space charge is insig-
nificant in comparison with the electric curre@<pgl/c
<I/c. Therefore aj3<1 the space charge can be neglected. 4G
The electrical ne_utralitylezni allows one to expresg; in Fo— (FAFL+F4Fs+FoF,) = — LeZFlE (Ex+P,)
terms of u.. In view of m>m, andT,=0 we have c* a

‘" rc! rc! It 47TG 2F
Fo_(F2F3+F3Fo+FoF2):7e 1; (EatPa),
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47G

Fi+(FyF5+FiFp+ Ry = — ——e®F1>) (E.—3P,).
C a

By using Eq.(9), shifting the zero-points of , andx?,

1 [ 4 e*p’mic
F2—>F2—§|ﬂ 57 )

|
[e2F3(eF0M)r]r:[

Fi— (FyF 4+ LR +FOFY) =
Fy— (F5F 4+ F4Fo+FoFD)

Fi+FoFs+FiF(+ROF=
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4 e’B?mic

1,1
X —X"+ =In
37 p3

2

and introducing a dimensionless chemical potentidl
= ue/m;c?, we come to the following system of ordinary
differential equations:

—e?f1iFoM3, M>0,
0, M =0,
PeFIM3(M +MZ+1), M>0,
0, M =0,
(13
—PeFIM3(M+M2+1), M>0,
0, M =0,
3
EPeZFl[M\/M7+1—In(M+\/Mz+1)], M >0,
0, M=<0.

All boundary conditions are given on the same left side ofm is the value of a chemical potential of electrons on the

the area of integration:
Fo=Fy=F3=F;=M'=0,
xt— —oo,

Fo=x', F3=1, M=M,,

(14)

¢,B, andE,, in Eq. (12) are expressed vig; («):
C4
¢=ggFo(®) —Fa(e)—2F () +2],

C4
P= g5 Fo(=) +Fi=)],

C4
En=gg Fo(*)~Fi(=)-1]

Total mass per unit length of a channel and the dimension

less value of the current, introduced in Eg), are

c? _ JP

M= Fo(), i=- T[e_z':?’(eFOM)’]Xl:x.

There are two dimensionless parameters in the equatio

(13) and boundary conditiondl4):

My and P=

e2B2'

axis in the units ofn;c? (dimensionless Fermi energyP is
the ratio of gravitational energy to the magnetic one. As
Gn/e?~107%, parameterP, as a rule, is smallP<1.
Only for B<10 8 parametelP exceeds unity.

Equilibrium structure of a current-conducting filament is
determined by four functionk;,i=0,2,3 andM. Each one
of them depends on the coordinateand the two parameters
P andM,. By selecting the coordinate' by the condition
(5), we reduced the Einstein equations to a rather simple
form. The solution does not contain fictitious singularities.
Coordinatex! varies from—o to + 9, and overlaps the real
distance from the axis from zero to infinity. In the limit of a
weak curvature of space-timé— Inr. Integrating the sys-
tem (13) at fixed values of the parametd?sandM,, we find
distribution in space for all characteristics of a current chan-
nel; energy of the particles, energy stored in the magnetic
field, the pressure of each subsystem, as well as the distribu-
tions of mass and current density.
" Among all the solutions of equatiori$3) with boundary
conditions(14) we have to select only those that satisfy the
physical conditions of finiteness of the current and the posi-
tiveness of energy densities of the particles and magnetic
field. These conditions impose limitations on the area of pos-
sible values of the parametePsand M. Instead ofP and
r}ao it is possible to use any two other physical parameters to
describe an equilibrium configuration: for example, dimen-
sionless values of the total curreén(B) and the total mass per
unit lengthm=GM/c?. In the variables andm the area of
equilibrium configurations is shown in Fig. 1 between solid
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FIG. 1. Area of equilibrium configurations in variableandm. 0.2
f T ] i x!
and dashed lines. The condition of positiveness of magnetic -20 0 20 40

energy density is violated on the dashed curv/nother
boundary of equilibrium domain—solid line—is the depen- _ ol i

dencei (m) for the ultrarelativistic equation of stateee Fig. - 0-1846. The figures indicate appropriate values\igf for each
3 in [5]) known as the collapse boundary. The dotted lines Ve
inside the equilibrium domain correspond to the variation of

the parameteM, from zero up fo the boundary value at x<x!, are shown in Fig. 2. All the curves are built for

Mo(P) at fixed values of the parameter The smaller is, P=0.1846. This value corresponds to the boundary of equi-

2;?:?%3&‘3|ﬁ,r£EZOC:STa(gKn :‘;‘C <c|?/|m(p Fr)t)as;;)opr; C;Z’CEQS ﬂ]ﬁarium domain forM,=1.2. The figures at each curve indi-
’ 0-"90 cate appropriate values of the parametsy.

the collapse boundary. It is necessary to remember, that Eq For fixedP the current is a monatonically growing func-

(13) are valid in the region of a strong current, and for this_. . ;
reason the equilibrium domain is limitediat-0 by the con- tion of M. E|gure 2 shows that thg smalli is, the slower
dition (4). m reaches its total value. In particular, Mdty=0.2 one can

The dashed and solid boundaries of the equilibrium do>€€ two segments of growth of the mass. There is a fast

main in Fig. 1 intersect ait,=0.175, m,=0.385. Equilib- increase ofn atx'~ —5 approximately up to one-half of its

. . l
rium configurations exist ah<<m,,, and atP— 0 they trans- totalhvalqte. The_rm CO;EE”;; t_lc_)hgrow slowty Wt'trr G.m?h
form into configurations found if5] for the ultrarelativistic reacnes Its maximum -U. Ihere are no particles in the
equation of state of protons. At>m,, Egs.(13) do not have f|§Id of slow growth, so t.h'S.SIOW increase of the mass is
solutions meeting physical requirements for equilibrium Con_stlpulated by the magnetic field of the current. Kip<1

figurations. However in the approximation of ultrarelativistic (and.|<1) the magnet!c field of the current is located far .
charges the equilibrium configurations exist upte=0.6 outside the area occupied by the charges. Therefore the main

51 Apparently equilibrium configuration with>i. and qontribution of the magn_etic field to_the curvature of space-
[5]. App y €4 g m time comes from the circumferential area of the current

0.6>m>m,, cannot be realized by real charges with a non- , . . .
M= M y g channel. With an increase othe energy, stored in the mag-
zero rest mass. C . >
netic field, grows and the curvature of space-time amplifies.
As a result the magnetic field of a current becomes more and
L ' _ . ' . more confined to the axis of a channel.iAt1 the magnetic
Regular solutions meeting physical requirements in the wholeield appears to be concentrated in the same area as the
interval —e<x'<co exist only within the area of the parameters charges.
shown in Fig. 1. Outside this area solutions of E(3) with The ratioR (12) of magnetic contribution to the contribu-
boundary condition¢14) are singular. Functions; become infinite  {jon of the particles as a function of curreiris displayed in
at some pointx,=Xn(i,m)<e. When the parametersm ap-  fjg 3. Solid curves are functiom(i) at fixed values of drift
proach the boundary of equilibrium domain from outside, the po'm\/elocity. Corresponding values Bffor these five curves are:
of singularityx#:oo. So in the close vicinity of the dashed line the P=0.20.08.0.013.0.0033.0.0002. The dotted line is the

singular solutions are *almost regular’—numerical instability . . S .
starts far outside the channel. For singular solutions the density of netion Ryira (1) for the ultrarelativistic equation of state of

magnetic energf - 98 changes sign within the intervatee € 10NS. A<l Ryra(i)~i % The ratioR(i) (12) devi-
<x1<x#. This property provides a sensitive tool to rule out sin- ates from Ru'tfﬁ}(l) at '_)_O and tends K_) a Constant' The
gular solutions in the early stage of integration. This simplifies thecONStantR(0) is proportional to the drift velocityR(0)
numerical procedure of finding the dashed boundary of the equilib~ P~ **=\e’/Gm;B, P—0.

rium domain. FunctionR(i) in general is shown schematically in Fig. 4.

FIG. 2. Coordinate dependence of mass, located<ax'. P

Coordinate dependences of mass per unit length, located
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FIG. 4. General view ofR(i). Electromagnetic contribution

0 0.05 01 0.15 02 grows with the current in the areé8), has a maximum at

~In~Y(LIry), and decreases with the current in the regidnup to
FIG. 3. Current dependence of the relative contribution of thethe collapse boundary.

magnetic field to the mass of a current channel. Solid lines are

functions R(i) found numerically for P=0.2, 0.08, 0.013, ) ) ) ) 1 )
0.0033, 0.0002. The dotted line is the dependeRge.(i). Therefore in the intermediate arealn™(L/ro) the function

R(i) has a maximum, and this maximum is of the order of
In the strong current limit4) up to the boundary of the p-12=g./e2/GmZ~ 10'83.
. . . . T P
collapse the relative contribution of the magnetic field to the  Thys if the drift velocityV is not extremely small 8
gravitational mass decreases with an increase of current. QQ 1 )-18
the contrary, in the limit of a weak curref®), according to
Eq. (2), R(i) grows with current

i.e., V=108 cmi/sec), the electromagnetic contri-
bution to the gravitational mass of a current channel can be
many orders of magnitude higher than a simple sum of
R()=2iP Yan(L/ry), i<In"L(L/ry). (15) masses of the charges.
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