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Classical sequential growth dynamics for causal sets
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Starting from certain causality conditions and a discrete form of general covariance, we derive a very general
family of classically stochastic, sequential growth dynamics for causal sets. The resulting theories provide a
relatively accessible “halfway house” to full quantum gravity that possibly contains the latter’s classical limit
(general relativity. Because they can be expressed in terms of state models for an assembly of Ising spins
residing on the relations of the causal set, these theories also illustrate how nongravitational matter can arise
dynamically from the causal set without having to be built in at the fundamental level. Additionally, our results
bring into focus some interpretive issues of importance for a causal set dynamics and for quantum gravity more
generally.

PACS numbgs): 04.60.Nc, 02.10.Gd, 02.50.Ga, 04.20.Gz

[. INTRODUCTION simpler, can help us to get used to a relatively unfamiliar
type of dynamical formulation, bringing out the pertinent
The causal set hypothesis asserts that spacetime, ulfphysical issues and guiding us toward physically suitable
mately, is discrete and that its underlying structure is that otonditions to place on the theory. Is there, for example, an
a locally finite, partially ordered sdéf causal s¢t The ap-  appropriate form of causality that we can impose? Should we
proach to quantum gravity based on this hypothesis has exattempt to express the theory directly in terms of gauge-
perienced considerable progress in its kinematic aspects. Fmvariant(labeling-independeptjuantities, or should we fol-
example, one possesses natural extensions of the concepts@i precedent by enforcing gauge invariance only at the
proper time and spacetime dimensionality to causal sets, arehd? Some of these issues are well illustrated with the theo-
these take us a significant way toward an answer to the queges we construct herein.
tion, “when does a causal set resemble a Lorentzian mani- One of the best reasons to be interested in a classical
fold?” The dynamics of causal setthe “equations of mo- dynamics for causal sets is that quantum gravity must pos-
tion”), however, has not been very developed to date. One afess general relativity as a classical limit. Thus general rela-
the primary difficulties in formulating a dynamics for causal tivity should be described as some type of effective classical
sets is the sparseness of the fundamental mathematical strudy¢namics for causal sets, and one may hope that the relevant
ture. When all one has to work with is a discrete set and alynamical law will be among the family delineated herein.
partial order, even the notion of what we should mean by dOne cannot be certain this will occur, because general rela-
dynamics is not obvious. tivity, as a continuum theory, seems most likely to arise as an
Traditionally, one prescribes a dynamical law by specify-effective theory for coarse-grained causal sets, rather than
ing a Hamiltonian to be the generator of the time evolution.directly as a limit of the microscopic discrete theory, and
This practice presupposes the existence of a continuous tinthere is no guarantee that this effective theory will have the
variable, which we do not have in the case of causal setsame form as the underlying exact one.
Thus one must conceive of dynamics in a more general A question commonly asked of the causal set program is,
sense. In this paper, evolution will be envisaged as a proces$iow could nongravitational matter arise from only a partial
of stochastic growth to be described in terms of the proborder?” One obvious answer is that matter can emerge as a
abilities (in the classical case, or more generally the quantunhigher level construct via the Kaluza-Klein mechanigah
measures in the quantum calsd) of forming designated but this possibility has nothing to do with causal sets as such.
causal sets. That is, the dynamical law will be a rule whichThe theory developed herein suggests a different mechanism.
assigns probabilities to suitable classes of causal &ets It is possible to rewrite the theory in such a way that the
causal set being the “history” of the theory in the sense of adynamics appears to arise from a kind of “effective action”
“sum over histories’). One can then use this rule— for a field of Ising spins residing on the relations of the
technically a probability measure—to ask physically mean-causal set. A form of “Ising matter” is thus implicit in what
ingful questions of the theory. For example, one could askwould seem at first sight to be a purely “source-free”
“what is the probability that the universe possesses the diatheory.
mond poset as a partial stem®The term “stem” is defined In subsequent sections of this paper we describe our no-
below) tation and terminologysome new language is required for
Why are we interested in a classical dynamics for causathe detailed derivation of our causal set dynamitgroduce
sets, when our ultimate aim is a quantum theory of gravityZand briefly discuss the transitive percolation model, present
One obvious reason is that the classical case, being muche physical requirements of Bell causality and discrete gen-
eral covariance that we will impose, derive tfgenerically
most general theory satisfying these requireménisuding
*Email address: rideout@physics.syr.edu solving the inequalities which express that all probabilities
TEmail address: sorkin@physics.syr.edu must fall between 0 and)1single out a few simple choices
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of the free parameters and exhibit some properties of thegompatible with the causal ordex in the sense thak
resulting “cosmologieg,” and exhibit a pair of state models < y— |abel(x) <label(y).? The relevant notion of gauge in-
for the dynamics that illustrate how not only geometry, butyariance(which we will call “discrete general covariancg”

other matter can arise implicitly from order. is then captured by the statement that the labels carry no
physical meaning. We discuss this more extensively later
A. Notation and terminology—sequential growth on?

. . . . It is helpful to visualize the growth of the causal set in
First we establish our terminology and notation. For Qerms of paths in a oseP of finite causal sets(Thus
fuller introduction to causal sets, sg®4,5,6,7. (For recent P P

examples of other discrete models incorporating a causal o?’-'e.W“-‘d' the g.rowth process \.N'” be a sort of Markov process
dering, sed8,9,10.) taking place inP.) Each finite causetor rather each iso-

A causal set(or “causet”) is a locally finite, partially morphism equivalence class of finite caugé&tsone _elemeqt
ordered sefor “poset”). We represent the order relation by of this poset. If a causet can be formed by accreting a single
“ <" and use theirreflexive conventiothat an element does €l€ment to a second causet, then the forftlee “child” )
not precede itself. follows the Ia_tter(the “paren'F”) in P and the rel_atlon be-

Let C be a poset. Theast of an elementxe C is the tween them is a link. Drawing® as a Hasse diagram of

subset pastx) ={y e C|y<x!. The past of a subset & is Hasse diagrams, we get Fig. (Of course, this is only a
the union of the pasts of its elements. An elemenCofs portion of the infinite diagram; it includes all the causal sets
maximaliff it is to the past of no other element. ghainis a of fewer than five elements and 8 of the 63 five-element

linearly ordered subset @ (a subset, every two elements of CaUS€ts. The “decorations” on some of the transitions in Fig.
which are related by<); an antichainis a totally unordered 1 &re for later use. Any natural labeling of a causet
subseta subset, no two elements of which are relateckpy ~ € 7 détermines uniquely a path # beginning at the empty
A partial stemof C is a finite subset which contains its own causet and ending &. Conversely, any choice of upward
past.(A full stem is a partial stem such that every element ofPath through this diagram determines a naturally labeled
its complement lies to the future of one of its maximal el- Causet, or rather a set of them, since inequivalent labelings
ements. An automorphisnof C is a one-to-one map ¢  €a@n SOmetimes give rise to the same patW.i‘_hWe want the
onto itself that preserves. physics to be independent of labeling, so different path® in

A link of a poset is an irreducible relation, that is, one not!€ading to the same causet should be regarded as represent-
implied by other relations via transitivityA pathin a poset N9 the samépartia) universe, the distinction between them

is an increasing sequence of elements, each related to th&iNg “pure gauge.” o _
next by a link. The causal sets which can be formed by adjoining a single

A poset can be represented graphically by a Hasse dia{paximal element to a given causet will be cal_led C(_)Ilectively
gram, which is constructed as follows. Draw a dot to repre- family. The causet from which they come is thearent
sent each element of the poset. Draw a line connecting ar@d they areiblingsof each other. Each one iscaild of the
two elementsc<y related by a link, such that the preceding parent. The child formed by adjoining an element which is to
elementx is drawn below the following element t.hel futu_re of every element of thg parent will be called.the

The dynamics which we will derive can be regarded as 6{|m|d chll_d. The child formed by ad10|r_1|ng an element WhICh
process of “cosmological accretion” or “growth.” At each 1S Spacelike to every other element will be called gnegari-
step of this process an element of the causal set comes inf¥'S child A child which is not a timid child will be called a
being as the “offspring” of a definite set of the existing bold child.
elements—the elements that form its past. The phenomeno-
logical passage of time is taken to be a manifestation of this
continuing growth of the causet. Thus we do not think of the 2A natural labeling of an ordeP is equivalent to what is called a
process as happening “in time,” but rather as *“constituting “linear extension ofP” in the mathematical literature.
time,” which means in a practical sense that there is no *The continuum analogue of a natural labeling might be a coordi-
meaningful order of birth of the elements other than thamate system in whick® is everywhere timelik¢and this in turn is
implied by the relation<. almost the same thing as a foliation by spacelike slic®se could

In order to define the dynamics, however, we will treat thealso consider arbitrary labelings, which would be analogous to ar-
births as if they happened in a definite order with respect tditrary coordinate systems. In that case, there would be a well-
some fictitious “external time.” In this way, we introduce an defined gaugegroup—the group of permutations of the causet
element of “gauge” into the description of the growth pro- elgments—;_ind labeling invariar_me would signi_fy in_varia_nce under
cess which we will have to compensate by imposing approlh's_ group, in clqser _analogy with diffeomorphism invariance and
priate conditions of “gauge invariance.” This fictitious order °rdinary gauge invariance. However, we have not found a useful
of birth can be represented asatural labelingof the ele- way to do this, and in this paper only natural labelings will ever be

; : . - onsidered.
ments, that is, a labeling by integers 0, 1, 2.... which arec4We could restore uniqueness by “resolving” each ligk<C,

of P into the set of distinct embeddingsC,— C, that it represents.
Here, two embeddings count as distinct iff no automorphism of the
Links are often called “covering relations” in the mathematical child relates thenicf. the discussion of the Markov sum rule be-
literature. low).
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FIG. 1. The poset of finite causets.

_ Each parent-child relationship i® describes a “transi- Figure 3 showcm and its children. The timid child is
tion” C—C’, from one causal set to another induced by the
birth of a new element. The past of the new elenfargubset Cb and the gregarious child 8. The precursor set leading
of C) will be referred to as therecursor sebf the transition [0 the transition t&, is shown in the ellipse. An example of
(or sometimes just the “precursor of the transitignNor- N automorphism o€, is the mapa—c, b—d (the other
mally, this precursor set is uniquely determined up to auto€l€ments remaining unchanged
morphism of the parent by th@somorphism equivalence
class of the child, but(rather remarkablythis is not always Il. TRANSITIVE PERCOLATION
the case. The symbdl, will denote the set of causets with
elements, and the set of all transitions fréinto C,. 1 will
be calledstage n

As just remarked, each parent-child transition corresponds
to a choice of partial stem in the pardttie precursor of the
transitior). Since there is a one-to-one correspondence be-
tween partial stems and antichains, a choice of child also
corresponds to a choice gbossibly empty antichain in the
parent, the antichain in question being the set of maximal
elements of the past of the new element. Note also that the
new element will bdinkedto each element of this antichain.

In a sum-over-histories formulation of causal set theory,
one might expect sums such as

B. Some examples

To help clarify the terminology introduced in the previous
section, we give some examples. The 20-element causet of ;
Fig. 2 was generated by the stochastic dynamics described
herein, with the choice of parameters given by Ef) be-
low. In the copy of this causet on the left, the past of element
ais highlighted. Notice that since we use the irreflexive con- Past of element ‘a’
vention for the ordera is not included in its own past. In the
copy on the right, a partial stem of the causet is highlighted. FIG. 2. An example of &"typical™?) 20-element causal set.

A partial stem
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FIG. 3. A family.

0,1,2,..n—1 (n=c is not excludey (2) with a fixed prob-
> ACah) (1) ability p, introduce a relation between every pair of points
¢ labeledi andj, wherei <j; (3) form the transitive closure of
) ) ) these relationge.g., if 2<5 and 5<8, then enforce that 2
to be involved, whereA is a complex amplitude for the gy Expressed in this manner, the model appears as a spe-
causal set, possibly depending on a set of paramef@els  cies of one-dimensional directed percolation; hence, the
Kleitman and Rothschil{28] have shown that the number of name we have given ifollowing Meyer[29]).
posets of cardinalityr grows faster than exponentially im From a physical point of view, directed percolation has
and that, asymptotically, almost every poset has a certairsome appealing features, both as a model for a relatively
almost trivial, “generic” form.(See[11].) Such a “generic  small region of spacetime and as a cosmological model for
poset” consists of three “tiers,” witn/2 elements in the spacetime as a whole. Fgr—~1/n, there is a percolation
middle tier andn/4 elements in the top and bottom tiers. For transition, where the causet goes qualitatively from a large
this reason, one might think that a sum lik® would be  number of small disconnected universes foxpgi; to a
dominated by causets which in no way resemble a spacetimegingle connected universe fpr>p.;. Moreover, computer
leading to a sort of “entropy catastrophe.” Nevertheless, it issimulations suggest strongly that the model possesses a con-
not hard to forestall this catastrophe, and in fact the mostinuum limit and exhibits scaling behavior in that limit with
naive choice of stochastic dynamics already doesMaybe p scaling roughly likec logn/n [12,13. The “cosmology”
this is not so different from the situation in ordinary quantumof transitive percolation is also suggestive—the universe
mechanics, where the smooth paths, which form a set ofycles endlessly through phases of expansion, stasis, and
measure zero in the space of all paths, are the ones whidontraction(via fluctuation back down to a single element
dominate the sum over histories in the classical limit. [14] (see Fig. 4
The dynamics in question, which we will call “transitive From all this, it is clear that the causets generated by
percolation,” is perhaps the most obvious model of a rantransitive percolation do not at all resemble the three-tier,
domly growing causet. It is an especially simple instance ofyeneric causets of Kleitman and Rothschild, but rather they
a sequential growth dynamics, in which each new elemertave the potential to reproduce a spacetime or a part of one.
forges a causal bond independently with each existing eleNevertheless, the dynamics of transitive percolation is not
ment with probabilityp, wherep e [0,1] is a fixed parameter viable as a theory of quantum gravity. One obvious reason is
of the model.(Any causal relation implied by transitivity that it is stochastic only in the purely classical sense, lacking
must then be added in as well. guantum interference. Another reason is that the future of
From a more static perspective, one can also describany element of the causet is completely independent of any-
transitive percolation by the following algorithm for gener- thing “spacelike related” to that element. Therefore, the
ating a random poset:(1) Start with n elements labeled only spacetimes which a causal set generated by transitive
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with a partial stem of the previous causet as its precursor set.
The result of this process, obviously, is a naturally labeled
causetfinite if we stop at some finite stage, or infinite if we
do nod whose labels record the order of succession of the
individual births. For illustration, consider the path in Fig. 1
delineated by the heavy arrows. Along this path, element
“0” appears initially, then element “1” appears to the fu-
ture of element “0,” then element “2” appears to the future
of element “0,” but not to the future of “1,” then element
“3" appears unrelated to any existing element, then element
FIG. 4. Transitive perCOIation Cosmology. “q” appears to the future of elements “0'” “1”(Say, or
“2,” it does not mattey, and “3,” then element “5” ap-
percolation could hope to resemble would be homogeneouggears(not shown in the diagrametc.
such as the Minkowski or de Sitter spacetimes, but neither of Let us emphasize once more that the labels 0, 1, 2, etc.,
these possibilities is compatible with the periodic recollapsesire not supposed to be physically significant. Rather, the
alluded to earlier. At best, therefore, one could hope to re*external time” that they record is just a way to conceptu-
produce a small portion of such a homogeneous spacetimealize the process, and any two birth sequences related to each
On the other hand, in computer simulations of transitiveother by a permutation of their labels are to be regarded as
percolation [15], two independent(and coarse-graining- physically identical.
invariany dimension estimators have tended to agree with So far, we have been describing the kinematics of sequen-
each other, one such estimator being tha{X8] and the tial growth. In order to define a dynamics for it, we may
other being a simple “midpoint scaling dimension(Some  give, for eachn-element causet, the transition probability
other indicators of manifoldlike behavior have tended to dofrom it to each of its possible children. Equivalently, we give
much more poorly, but those are not invariant under coarsa transition probability for each partial stem withth We
graining, whereas one would in any case expect to obserwsish to construct a general theory for these transition prob-
manifold like behavior only for a sufficiently coarse grained abilities by subjecting them to certain natural conditions. In
causal sef. In the pure percolation model, however, theseother words, we want to construct the most genéchdssi-
dimension indicators vary with timé.e., with n) and one cally stochastig “sequential growth dynamics” for causal
must rescal@ if one wishes to hold the spacetime dimensionsets® In stating the following conditions, we will employ the
constant. One may ask, then, if the model can be generalizeédrminology introduced in the Introduction.
by havingp vary with n in an appropriate sense. We will see
in the next section that something rather like this is in fact A. Condition of internal temporality
possible. L . . :
The transitive percolation model, incidentally, has at- BY thiS imposing sounding phrase, we mean simply that

racted h neestof b mathemticians and pysiss ) SETETL S A v 0 e e o o el o,
reasons having nothing to do with quantum gravity. By ¢ % I ’t ' P
physicisfcs, it _has been studi_ed as a problem in the statistic&) Wee;](:vglglfezrgegésume d this tacitly in describing what
mechanical field of percolation, as we have already alluded b y ass | hd yi A 9 |
to. By mathematicians, it has been studied extensively as ‘tﬁe mean by a sequential growth dynamics. An equivalent

: : lation is that the labeling induced by the order of birth
branch of random graph theo(s poset being the same thing ormu . X .
as a transitive acyclic directed graptSome references on must benatural, as defined above. The logic behind the re-

transitive percolation(viewed from whatever angleare quirement of internal temporality is that all physical time is
[11,14,17,18,15,12,13 that of the intrinsic order defining the causal set itself. For an

element to be born to the past of another would be contra-
dictory: it would mean that an event occurred “before”
ll. PHYSICAL REQUIREMENTS ON THE DYNAMICS another which intrinsically preceded it.

As discussed in the previous section, one can think of
transitive percolation as a sort of “birth process,” but as
such, it is only one special case drawn from a much larger As we have been emphasizing, the “external time” in
universe of possibilities. As preparation for describing thesavhich the causal set growgquivalently the induced label-
more general possible dynamical rules, let us consider th#g of the resulting posgts not meant to carry any physical
growth sequence of a causal set universe.

First element “0” appeargsay with probability 1, since
the universe exisjs Then element “1" appears, either re-  sgy choosing to specify our stochastic process in terms of transi-
lated to “0” or not. Then element “2” appears, either re- ton probabilities, we have assumed in effect that the process is
lated to “0” or “1,” or both, or neither. Of course, if 1  Markovian. Although this might seem to entail a loss of generality,
<0 and 21, then 2<0 by transitivity. Then element “3”  the loss is only apparent, because the condition of discrete general
appears with some consistent set of ancestors, and so on agglariance introduced below would have forced the Markov as-
so forth. Because of transitivity, each new element ends upumption on us, even if we had not already adopted it.

B. Condition of discrete general covariance
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information. We interpret this in the present context as being O 0O ({ O

the condition that the net probability of forming any particu- /@ C, / C

lar n-element causet is independent of the order of birth we / g

attribute to its elements. Thus, ¥ is any path through the

posetP of finite causal sets that originates at the empty \ /

causet and terminates @t then the product of the transition O O

probabilities along the links of must be the same as for any /

other path arriving aC. (So general covariance in this set-

ting is a type of path independenge We should recall here,

however, that, as observed earlier, a linkiican sometimes FIG. 5. lllustrating Bell causality.

represent more than one possible transition. Thus our state-

ment of path independence, to be technically correct, shouliven the inherent nonlocality of causal sets, there is no

say that the answer is the same no matter which transitiolpgical reason why such an attempt would have to fail.

(partial stem we select to represent the link. Obviously, this ~ The physical idea behind our condition is that events oc-

immediately entails that all such representatives share theurring in some part of a causal sétshould be influenced

same transition probability. only by the portion ofC lying to their past. In this way, the
We might with justice have required here conditions thatorder relation constituting€ will be causal in the dynamical

are apparently much stronger, including the condition thagense, and not only in name. In terms of our sequential

any two paths throughP with the same initial and final end growth dynamics, we make this precise as the requirement

points have the same product of transition probabilities_’[hat the ratio of the transition probabilities leading to two

However, it is easy to see that this already follows from thepossible children of a given causet depends only on the triad

condition stated.We therefore do not make it part of our consisting of the two corresponding precursor sets and their

definition of discrete general covariance, although we will beunion.

using it crucially. Thus let C—C; designate a transition fror€eC, to
Finally, it is well to remark here that just because theC;€C,.1, and similarly forC—C,. Then, the Bell causal-

“arrival probability atC” is independent of path or labeling, ity condition can be expressed as the equality of two rétios

that does not necessarily mean that it carries an invariant

meaning. On the contrary a statement like “when the causet proC—C,) probB—B,)

had eight elements it was a chain” is itself meaningless be- proolC—C;) prob(B—B,)’

fore a certain birth order is chosen. This, also, is an aspect of

the gauge problem, but not one that functions as a constraiq\t,here BeC

on the transition probabilities that define our dynamics

Rather, it limits the physically meaningfguestionghat we

can ask of the dynamics. Technically, we expect that ou

dynamics(like any stochastic processan be interpreted as a

probability measure on a certainalgebra, and the require-

; - t
ment of general covariance will then serve to select the SUb[’hen the Bell causality condition reduces to a trivial identity.

_algebra of sets whose measures have direct physical mean- 4 clarify the relationships among the causets involved, it
Ng. may help to characterize the latter in yet another way.g,et
] - be the element born in the transiti@— C, and lete, be the
C. Bell causality condition element born in the transitio@—C,. ThenC;=CU{e;}
The condition of “internal temporality” may be viewed (i=1,2), and we haveB=(paste;)U (paste,) and B;
as a very weak type of causality condition. The further cau=BU{e;} (i=1,2).
sality condition we introduce now is quite strong, being simi- By its definition, Bell causality relates ratios of transition
lar to that from which one derives Bell's inequalities. We probabilities belonging to one “stage” of the growth process
believe that such a condition is appropriate for a classicalo ratios of transition probabilities belonging to previous
theory, and we expect that some analogue will be valid in thetages. For illustration, consider the case depicted in Fig. 5.
guantum case as wellOn the other hand, we would have to The precursoiP; of the transitionC— C; contains only the
abandon Bell causality if our aim were to reproduce quantunearliest(minimum) element ofC, shown in the figure as a
effects from a classical stochastic dynamics, as is sometimgzattern-filled dot. The precursd?, of C—C, contains as
advocated in the context of “hidden variable theories.” well the next earliest element, shown a&liferent-patterny

)

m,» M=n, is the union of the precursor set of
‘C—C; with the precursor set o0€—C,, B1eC,+1 IS B

with an element added in the same manner as in the transi-
tion C—Cy, andB,e (1 is B with an element added in
the same manner as in the transit®a-C, .8 (Notice that if

he union of the precursor sets is the entire parent causet,

81f y does not start with the empty causj, but atC, we can "In writing Eq. (2), we assume for simplicity that both numerators
extend it to start aC, by choosing any fixed path fro@, to Cs. and both denominators are nonzero, this being the only case we will
Then different paths fronCg to C, correspond to different paths have occasion to treat in the present paper.
betweenC, and C,, and the equality of net probabilities for the ®Recall that the precursor set of the transit®n- C; is the sub-
latter implies the same thing for the former. poset ofC that lies to the past of the new element that foiths
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filed dot. The union of the two precursors is this

=P,UP,=P,. The elements ofC depicted as open dots ® B
belong to neither precursor. Such elements will be called g/ B 2
spectators. Bell causality says that the spectators can be de- !

leted without affecting relative probabilities. Thus the ratio \ /

of the transition probabilities of Fig. 5 is equal to that of

Fig. 6.

gt

) . FIG. 6. lllustrating Bell causality—spectators do not affect rela-
As with any Markov process, we must require that theyye probability.

sum of the full set of transition probabilities issuing from a

given causet be unity. However, the set we have to SUm OV&fanish must be treated separatélyne such special theory
depends in a subtle manner on the extent to which we regard the originary percolationmodel, which is the same as the
causal set elements as “distinguishable.” Heretofore Weansitive percolation model, but with the added restriction
have identified distinct transitions with distinct precursor set§nat each element except the original one must have at least
of the parent. In doing so, we have in effect been treatingyne ancestor among the previous elements. The net effect is
causet elements as distinguishaliy not identifying with  that the growing causal set is required to have an “origin”
each other, precursor sets related by automorphisms of tr‘(e: unique minimum elemehtat all stages(Generalizations
pareny, and this is what we shall continue to do. Indeed, thisgre 150 possible in which a more complex full stem of the
is the counting of children used implicitly by transitive per- cqset is enforceld. The poset of originary causets can be
colati_on, SO we k_eep it here for consistency. With respect tQransformed into the poset of all causésactly by remov-

the diagram of Fig. 1, this method of counting has the effeciyg the origin from every originary causet. The transition
of introducing coefficients into the sum rule, equal to theprgpapiiities for originary percolation are just those of ordi-

number of partial stems of the parent which could be théyary transitive percolation with an added factor of-(q")
precursor set of the transition. For the transitions depicteg, the denominator at stage

there, these coefficientashen not ongare shown next to the
corresponding arrow.

We remark here that these sum-rule coefficients admit an
alternative description in terms of embeddings of the parent A theory of the sort we are seeking provides a probability
into the child (as a partial stein Instead of saying “the for each transition, so without further restriction, it would
number of partial stems of the parent which could be the pagtontain a free parameter for every possible antichain of every
of the new element,” we could say “the number of order possible(finite) causet. We will see, however, that the re-
preserving injective maps from the parent onto partial stemguirements described above in Sec. Ill drastically limit this
of the child, divided by the number of automorphisms of thefreedom.

D. Markov sum rule

A. Counting the free parameters

child.” (The proof of this equivalence will appear [ih9].) Lemma 1There is at most one free parameter per family.

Proof. Consider a parent and its children. Every such

IV. GENERAL FORM OF THE TRANSITION child, except the timid child, participates in a Bell causality
PROBABILITIES equation with the gregarious chil@See the proof of lemma

5 in the Appendix. Hence(since Bell causality equates ra-
We seek to derive a general prescription which givestios), all these transitions are determined up to an overall
consistent with our requirements, the transition probabilityfactor. This leaves two free parameters for the family. The
from an element ofC, to an element ofC, ;. To avoid  Markov sum rule gives another equation, which exhausts it-
having to deal with special cases, we will assume throughouelf in determining the probability of the timid child. Hence
that no transition probability vanishes. Thus the solution Weprecisely one free parameter per family remains after Bell
find may be termed “generic,” but not absolutely general. causality and the sum rule are imposed. O
In this connection, we want to point out that one probably |Lemma 2.The probability to add a completely discon-
does not obtain every possible solution of our conditions byhected elementthe “gregarious child transition)’ depends
taking limits of the generic solution, and the special theoriesnly on the cardinality of the parent causal set.
which result from taking certain transition probabilities to  proof. Consider an arbitrary causét, with a maximal
elemente, as indicated in Fig. 7. Adjoining a disconnected
element toA produces the caus& Then, removinge from
B leads to the causeE, which can be looked upon as the

%0One might describe the result of setting these coefficients to unit)?reganous child of the caus@=A\{e}. Adding another

as the case of “indistinguishable causet elements.” It appears that

in this case a dynamics with a richer structure obtains: instead of

the transition probability depending only on the size of the precur- %ndeed, the requirement of Bell causality itself must be given an
sor set and the number of its maximal elements, it is sensitive tainambiguous interpretation when some of the transition probabili-
more details of the precursor set’s structure. ties involved are zero.
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FIG. 7. Equality of “gregarious child” transitions.

disconnected element © leads to a causéi with (at least  eters or “coupling constants” of the theory. They are, how-
two completely disconnected elements. Now, by general coever, restricted further by inequalities that we will derive
variance, below.

ax=hbw
B. General transition probability in closed form
and, by Bell causality, Given theq,, the remaining transition probabiliti€gor
the nongregarious childremre determined by Bell causality
and the sum rule, as we have seen. Here we derive an ex-
pression in closed form for an arbitrary transition probability
in terms of causet invariants and the parametgrs

y_
w

QT

Emﬁsdlsconne(:ted element (@ acts as the spectator hgre 1. Mathematical form of transition probabilities
We use the following notationt,,, an arbitrary transition
ax=bw=ay=x=y. probability fromC, to C,+1; By, @ transition whose precur-

sor set is not the entire parefitbold” transition); y,, a

(Recall that we have assumed that no transition probabilitjf@nsition whose precursor sistthe entire parenttimid”

vanishes. Repeating our deductions within the place ofA transition). Notice that the subscript here refers only to the
in the above argumeriand a new maximal elemein the number of elements of the parent causet; it does not exhibit

place ofe), we see thay=z, wherez is the probability for which particula_r tran;ition of §tage is intende_d. A more

the transition fromF to G as shown. Continuing in this way COMPlete notation might provide, 3, and y with further

until we reach the antichaim,, shows finally thatx=q,, mghges to specify both the parent causet and the precursor set
where we defineg, as the transition probability from the Within the parent.

n-antichain to the f+ 1)-antichain. Since our starting causet We also sefjp=1 by' c':onventlon'..

A was not chosen specially, this completes the proof.C] Lemma 3Each transition probability, of stagen has the
If our causal sets are regarded as entire universes, thenl @M

gregarious child transition corresponds to the spawning of a

new, completely disconnected universehich is not to say

that this new universe will not connect up with the existing dn E N —, (3)

universe in the futune Lemma 2 proves that the probability =0 4

for this to occur does not depend on the internal structure of

the existing universe, but only on its size, which seems emiwhere the\; are integers depending on the individual tran-

nently reasonable. In the sequel, we will call this probabilitysition in question.

dn- Proof. This is easily seen to be true for stages 0 and 1.
With lemmas 1 and 2, we have reduced the number ofAssume it is true for stage— 1. Consider a nontimid tran-

free parametergsince every family has a gregarious chitd  sition probability 3, of stagen. Bell causality gives

one per stage or, what is the same thing, to one per causal set

element. In the next sections we will see that no further

reduction is possible based on our stated conditions. Thus the ﬁ _ 1

transition probabilitieg,, can be identified as the free param- Un  On-1
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where «,,_, is an appropriate transition probability from  To see that transitive percolation obeys Bell causality,
stagen—1. So by induction consider an arbitrary parent causet. The transition probability
to a given child is exhibited in Eq6). Consider two differ-
On On-1 _ ent children, one withrf,w)=(m;,@,) and the other with
ﬂn:“n—lqnfl? Aj a CIn L ; (4) (m,w)=(m,,w,). Bell causality requires that the ratio of
their transition probabilities be the same as if the parent were
For a timid transition probabilityy,, we use the Markov reduced to the union of the precursor sets of the two transi-
sum rule: tions: i.e., it requires

pmlqn—wl pmlqn'—ml

'}’n:l_; ﬁnja (5 pmzqnfmzz pmzqn/_mz!

wherej labels the possible bold transitiofise., the set of wheren’ is the cardinality of the union of the precursor sets
proper partial stems of the par@gﬂﬂ: But then, substituting of the two transitions. Thus Bell causality is satisfied by
Eq. (4) yields immediately inspection.

Finally, the Markov sum rule is essentially trivial. At each

J “ stage of the growth process, a preliminary choice of ances-

Yn=1- E E —Qn - 2 ) tors is made by a well-defined probabilistic procedure, and

=0 each such choice is mapped uniquely onto a choice of partial

stem. Thus the induced probabilities of the partial stems sum

which we clearly can put into the forntB) by taking \; automatically to unity

— 3\ fori<n andi,=1. ]

. . 3. General transition probabilit
2. Another look at transitive percolation P y

In the previous section we have shown that transitive per-
colation produces transition probabilitié®) consistent with
"all our conditions. By equating the right-hand side of €.
to the general forn{3) of lemma 3, we can solve for the
and thus obtain the general solution of our conditions:

The transitive percolation model we described earlier is
consistent with the four conditions of Sec. Ill. To see this,
consider an arbitrary causal g8, of sizen. The transition
probability «, from C, to a specified causet, ,, of size
n+1 is given by

n
_ 1
an:pm(l—p)n m', (6) anzz )\iq_qn:pm(l_p)n*w:(l_q)mqnfw.
i=0 i

wherem s the number of maximal elements in the precursor ) " .
set andw is the size of the entire precursor sgEhis be- Expandmg the factor (+q)™ and using the fact thad,
comes clear if one recalls how the precursor set of a newborit d" for transitive percolation, we get
element is generated in transitive percolation: first a set of m
w—i )

ancestors is selected at random, and then the ancestors im- N=(—)""
plied by transitivity are added. From this, it follows imme-

So an arbitrary transition probability in the general dynamics
is, according to Eq(3),

diately that a given ster8C C,, results from the procedure
iff (i) every maximal element @is selected in the first step,
and (i) no element ofC,\S is selected in the first stelpln

particular, we see that the “‘gregarious transition” will occur n m \q
with probability g,=q", whereq=1—p. an=2, (=)= )—”
Now consider our four conditions. Internal temporality i=0 ai

was built in from the outset, as we know. Discrete general
covariance is seen to hold upon writing the net probability OfNOtIng that the binomial coefficients are zero fas
a givenC, explicitly in terms of causet invariantarriting it | ¢ 10~} and rearranging the indices, we obtain
in “manifestly covariant form’) as

2 (-) (

This form for the transition probability exhibits its causal
nature particularly clearly: except for the overall normal-
ization factorq,,, «, depends only on invariants of the as-
sociated precursor set.

()

P(C,)=Wp-q@ R qm K
where L is the number of links inC,,, R the number of
relations, andV the number ofnatura) labelings ofC,.

H0f course, more than one stem will in general correspond to the
same link inP. If we redefined to run over links inP, then Eq.(5)
would ready,=1—3x;B,;, Wherey; is the “multiplicity” of the Since thea,, are classical probabilities, each must lie be-
jth link tween 0 and 1, and this in turn restricts the possible values of

C. Inequalities
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the q,,. Here we show that it suffices to impose only oneThis is the inequality of stagefor m=n—1.[We have used

inequality per stage; all the othefsvo per child then fol-
low. More precisely, what we show is thatgf> 0 for all n,
and if a,=0 for the “timid” transition from then-antichain,
then all the other, lie in [0,1]. This we establish in the
following two “claims.”

Claim. In order that all the transition probabilities, fall

between 0 and 1, it suffices that each timid transition prob-

ability be =0.

the identity §)=({" ")+ (}-1).] Adding the inequality of
stagen—1 with m=n-—2 yields the inequality of stagefor
m=n— 2. Repeating this process will give all the inequalities
of stagen. O

It is helpful to introduce the quantities

=3, (—)”k(ﬂ 10

a .

Proof. As described in the proofs of lemmas 1 and 5, each

bold transition(of stagen) is given (via Bell causality by

LB

=ty
Um

wherem is some natural number less thanThe g's are

Obviously, we havey,=1 (sinceqy=1), and we have seen
that the full set of inequalities restricting tlg will be sat-
isfied iff t,=0 for all n. (Recall we are assuming,>0,
Vn.) Moreover, given the,, we can recover the,, by
inverting Eq.(10).

Lemma 4.

positive. So if the probabilities of the previous stages are

positive, then the bold probabilities of stagere also posi-

tive. It follows by induction that all but the timid transition

probabilities are positiveésince ag=qo=1 obviously is.
But for the timid transition of each family, we have

ynzl—Ei Bi, ®

where eaclB; is positive. If any of thes; is greater than 1,
vn Will obviously be negative. Also Ed8) plainly cannot be
greater than 1. Consequently, if we require thratbe posi-

Ly ”)t ay
Qn_k=0 k)
Proof. This follows immediately from the identity
n
n _\h—k k _ qn
kzo (k)( ) m/ = om-
O

Thus, thet, may be treated as free parametexsbject only
tot,=0 andty=1), and they, can then be derived from Eq.

tive, then all transition probabilities in the family will be in (11). If this is done, the remaining transition probabilities

[0,1].

can be reexpressed more simply in terms oftthby insert-

In a timid transition, the entire parent is the precursor seting Eq. (11) into Eq.(7) to get

sow =n. The inequalities constraining each probability of a
given family to be in[0,1] therefore reduce to the sole con-

dition

n _k(m 1 _
k§=:O( )(k>an/0.

©)

Claim. The most restrictive inequality of stageis the
one arising from ther-antichain, i.e., the one for whicim
=n. All other inequalities of stage follow from this in-
equality and the inequalities for smaller

Proof. Assume that we have, fon=n,

=0.

n _kn
kEo()(k

On-k

Add to this the inequality from stage—1,

n—-1 n
‘ n—1) 1 k_l(n—l) 1 _
— = — —=0
kzo( ) ( K Jdn_k-1 kzo( ) k=1/qn_
to get
n—-1 (_)k(n_1> 1 -0
k=0 k ank/

e e e [ R b

| W — I
whence

Im:m(gilm)tl
= 12
RO 2
Here, we have used an identity for binomial coefficients that
can be found on p. 63 ¢R0].

In this way, we arrive at the general solution of our in-
equalities.(Actually, we go slightly beyond our “generic-
ity” assumption thata,#0 if we allow some of the, to
vanish; but no harm is done therepy.

Let us conclude this section by noting that Ef1) im-
plies

Qo=1=0;=0>=qz=>""" (13
If we think of theq, as the basic parameters or “coupling
constants” of our sequential growth dynamics, then it is as if
the universe had a free choice of one parameter at each stage
of the process. We thus get an “evolving dynamical law,”
but the evolution is not absolutely free, since the allowable
values ofq,, at every stage are limited by the choices already
made. On the other hand, if we think of theas the basic
parameters, then the free choice is unencumbered at each
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stage. However, unlike thg,, thet, cannot be identified |S|—m(S) n
with any dynamical transition probability. Rather, they can vi, 23 ( I—m(S) ):(|
be realized as ratios of two such probabilities, namely, as the

ratio x,/q,, wherex, is the transition probability from an

ichain ofn el he timid child of th ichai an infinite set of identities which must hold if the sum rule is
antichain ofn elements to the timid child of that antic ain. (o pe satisfied by our dynamics.

(Thus,f if we suppose th?]t t_he ﬁvol\/_lnghcausebt z;’;l_thehbegln— The simplest way to see that Ed5) is true is to resort to
nt;ng 0 ste}gm IS an_”art;tlcbam,t er?” 'fSt e E;fo a :'tyt al  transitive percolation, for whicht;=t', where t=p/q
the next element will be born to the future @veryelement,  _ ;1 _ o) | that case we know that the sum rule is sat-

divided by the probability that the next element will be born isfied, so by inspection of Eq14), we see that the identity
to the future ofno element). (15) rﬁust be true '

A more intuitive proof is illustrated well by the case of
D. Proof that this dynamics obeys the physical requirements | =3. Group the terms on the left side according to the num-

To complete our derivation, we must show that the seP€r of maximal elements:

quential growth dynamics given by E() or (12) obeys the

: (15

- , g-0 19— 1 |9 -2
four conditions set out in Sec. Ill. (| + ( +
Sm(S)=0 3-0 S|m(23):1 3-1 S|m(ES):2 3-2
1. Internal temporality |S| _3
This condition is built into our definition of the growth +S\m($)—3 ( 3-3 )
process. N
. _ 1S—1
2. Discrete general covariance =0 + 5 | (18/—2)
» sm(S)=1 sm(S)=2
We have to show that the product of the transition prob-
abilities a, associated with a labeling of a fixed finite causet n
C is independent of the labeling. But this follows immedi- + 27 12(3)-
ately from Eq.(7) [or Eqg. (12)] once we notice that what Sim(s)=3
remains after the overall product The first term is zero because the only partial stem with zero

maximal elements is emptj.e.,|S|=0). The second term is

a sum over all partial stems with one maximal element. This

J.HO aj is equivalent to a sum over elements, with the element’s
inclusive past forming the partial stem. The summand

chooses every possible pair of elements to the past of the

maximal element. Thus the second term overall counts

the three-element subcausets @fwith a single maximal

_ element. There are two possibilities here, the three-chain

3. Bell causality and the “lambda” A . The third term sums over partial

Bell causality states that the ratio of the transition prob-stems with two maximal elements, which is equivalent to
abilities for two siblings depends only on the union of their summing over two-element antichains, the inclusive past of
precursors. Looking at Eq7), consider the ratio of two such the antichain being the partial stem. The summand
probabilitiesa,; and a,,. The g, factors will cancel, lead- then counts the number of elements to the past of the

Ic|-1

is factored out is a product over all elemenrts C of poset
invariants depending only on the structure of pagt (

ing to an expression which depends only®iR, w,, m;, two maximal ones. Thus the third term overall counts
andm,. Since these are all determined by the structure of thehe number of three element subcausets with precisely
precursor sets, Bell causality is satisfied. two maximal elements. Again there are two possibilities,

the “V” v , and the ‘L” I i Finally, the fourth term is

a sum over partial stems with three maximal elements, and
The sum rule states that the sum of all transition prob+this can be interpreted as a sum over all three-element anti-
abilities a, from a given paren€ (of cardinality|C|=n) is  chainse<+. As this example illustrates, then, the left-hand
unity. Since a child can be identified with a partial stem ofside of Eq.(15) counts the number dfelement subcausets of
the parent, we can write this condition, in view of EG2), C, placing them into “bins” according to the number of

4. Markov sum rule

as maximal elements of the subcauset. Adding together the bin
sizes yields the total number bélement subsets &, which
|9 — m(g)) ( n) of course equals/Y.
t = til |, 14
pIpY (I—man 24l 19
E. Sample cosmologies

where S ranges over the partial stems ©f This must hold The physical consequences of differing choices oftthe
for anyt,, since they may be chosen freely. Reordering thaemain to be explored. To get an initial feel for this question,
sums and equating like terms yields we list some simple examplefRecall our convention that
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to=1 or, equivalently,qo=1, whereqq is the probability
that the universe is born at é
(i) “Dust universe”

tozl, ti=0, |>1

PHYSICAL REVIEW D61 024002

V. STOCHASTIC GROWTH PROCESS AS SUCH

We have seen that, associated with evabeledcauseC
of sizeN, is a net “probability of formation”P(C) which is
the product of the transition probabilities of the individual
births described by the labeling:

This universe is simply an antichain, since, according to

Eqg. (11, g,=1 for all n.
(ii) “Forest universe”
i=2.

toztlzl, ti=0,

This yields a universe consisting wholly of trees, since

(see the next exampld,=t;=t,=---=0 implies that no

element of the causet can have more than one past link. T
particular choice oft;=1 has in addition the remarkable

property that, as follows easily from EL2), every allowed
transition of stagen has the same probability 1/¢-1).
(iii) Case of limited number of past links
ti= 0, P> Ng.

Referring to expressiofil2) one sees at once that, van-
ishes ifm>n,.

any realistic choice of parameters will haye>0 for all n,

Hence no element can be born with more
thanng past links or “parents.” This means in particular that

N—-1

P(6)=i[[0 a,

wherea;= a(i,w;,m,) is given by Eq.(7) or (12). We have
also seen thaP is in fact independent of the labeling and
may be written af?(C) where C is the unlabeled causet

rresponding ta&C. To bring this out more clearly, let us
efine

Nw,m=, __T)tk. 17

Theng;=\(i,0) ! and we have

A (oo ,m;)

ai(i!miimi): )\(l 0) ’

whence

since an element of a causal set faithfully embeddable in

Minkowski space would have an infinite number of past

links.
(iv) Transitive percolation

ty=t".

We have seen that for transitive percolatign=q", where

g=1-p. Using the binomial theorem, it is easy to learn

from Eq. (11) or (10) that this choice ofy,, corresponds to
t,=t" with t=p/q. Clearly,t runs from 0 toe asp runs
from O to 1.

(v) A more lifelike choice?

(16)

We have seen that transitive percolation with consgant
yields causets which could reproduce—at best—only limite
portions of Minkowski space. To do any better, one would

have to scalep so that it decreased with increasing
[12,13,19. This suggests thaf, should fall off faster than in
any percolation model, henddy the last examplefaster

- N:l)\(m-,m-)
_ =0 i i
P(C)_ N:Ol )\(J ’0)

or, expressed more intrinsically,

I oA (w (%), M(X))
%50 ().0

P(C)= , (18)

where w(x) =|pastx| and m(x)=|maximal(pask)|. This
expression, as far as it goes, is manifestly “causal” and “co-
variant” in the senses explained above. As also explained
above, however, it has no direct physical meaning. Here we
briefly discuss some probabilities whiclo have a fully co-
variant meaning and show how, in simple cases, they are
related toN— o limits of probabilities like Eq.(18).

First, let us notice that the net probability of arriving at a

dparticularC e Pis notP(C), but

Proly(C)=W(C)P(C),

where N=|C| and W(C) is the number of inequivaletit
labelings ofC or, in other words, the total number of paths

than exponentially im. Obviously, there are many possibili- through 7 that arrive atC, each link being taken with its
ties of this sort(e.g.,t,~e" an? ), but one of the simplest is proper multiplicity.

t,~c/n! This would be our candidate of the moment for a

physically most realistic choice of parameters.

Now as a rudimentary example of a truly covariant ques-
tion, let us take “does the two-chain ever occur as a partial
stem ofC?” (Clearly, this is equivalent to asking whether or

1250 is the answer to the old question why something exists rather
than nothing, simply that it is notationally more convenient for itto ‘*Two labelings ofC are equivalent iff related by an automor-

be so?

phism ofC.
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not C is an antichair). The answer to this question will be tional matter can be hidden within a theory that one might
a probability,P, which it is natural to identify as think to be limited to gravity alon&°

P= lim Prol(Xy), VIl. FURTHER WORK

N—c

Our dynamics can be simulated; foy=1/n! it takes a
minute or so to generate a 64-element causet on a DEC Al-
pha 600 workstation. Analytic results, so far, are available
only for the special case of transitive percolation. An impor-
tant question, of course, is whether some choice of tfoan
reproduce general relativity, or at least reproduce a Lorentz-
ian manifold for some range ¢% and ofn=|C|. Similarly,
one can ask whether our “Ising matter” gives rise to an
interesting effective field theory and what relation it has with
the local scalar matter on a background causal set studied in
[25,26.

VI. TWO ISING-LIKE STATE MODELS Another set of questions concerns the possibility of a
In this section, we present two Ising-like state modelsMore “manifestly covariant” formulation of our sequential

from which P(C) of Eq. (18) can be obtained. In the main growth_ dynamics—or of more general forms_ of causal set
we just indicate the results, leaving the details to appear elsgynamlcs. Can Be'II causality be formulatedlln a gauge in-
where[19]. The two models come from taking E€7) or, variant manner, W|t_hout reference to a choice _of birth se-
respectively, Eq(12) as the starting point. In each case, theduence? Is our conjecture correct that all meaningful asser-

idea is to interpret the binomial coefficients which occur intions are logical combinations of assertions about the

these formulas as describing a sum over subsets of relatioffs cUrrence of p_artlal stem:{_Such questions seem Ilke_ly to
of C. If we work with Eq.(7), these will be subsets of the set arise with special urgency in any attempt to generalize our

; e ; . dynamics to the quantum cape.
of links of C; if we work with Eq.(12), they will be subsets . .
of the set of relations of that arenot links. Also, there are the special cases we left unstudied. There

Let us take first Eq(7). Reinterpreting the binomial co- exist originary analogues O.f all of our (_jynamics, fpr ex-
efficients in the manner indicated, and proceeding as in thgtmple. Are there other special, nongeneric cases of interest?

derivation of Eq(18), we arrive at an expression f&{(C) in wit\r/nvtehmlght thimrt]'m:ehmvvl:'plgi'ng %U?St'ons’n?u:‘JEI uns frmlliih
terms of a sum over,-valued “spins” o residing on the € question of how 1o discover a quantum generaliza-

relations ofC. In summing over configurations, however, thetlon of our dynamics. Since our theory is formulated as a
spins o on the nonlink relations are set permanently to 1;tyloe .Of 'V'af""" process _and since a Markov process math-
only those on the links vary. Witr=1 interpreted as “pres- ematically is a probability measure on a suitable sample
ence” ando=0 as “absence,” the contribution of a particu- space, the natural quantum gce_nelrallz;igon v;/]ould seefm o be
lar spin configuratioro is an overall sign times the product ? qu?ptumtrrpeasu@] (or quuwa enfl_h eco et_renct:ﬁ unc- Id
of one “vertex factor” for eactx e C. The vertex factor is o & ) on the same sample space. The question then wou

~1 wherer is the number of present relations havioas be Whether_one could find appropriate quantum analogues of
dr = . rolp . a Bell causality and general covariance formulated in terms of
future end point, and the sign is-()?, wherea is the number

t absent relati In addition. th . tant I such a quantum measure. If so, we could hope that, just as in
of absent refation 'CT,? ttion, here 1S a constant overall y,a classical case treated herein, these two principles would
factor in P(C) of II;Z; “q; .]

In the second state model, we begin with Ef2) or,
better, Eq.(18) itself, and proceed similarly. The resultis o ) )
again a sum over spins residing on the relations, this time In this connection, it bears remembering that Ising matter can
with all the terms being positivéas is required of physical produce fermionic as well as bosonic fields, at least in certain cir-
Boltzmann weights In this second model, the spins on the cumstances21,22.

15 . . . “ .
nks are set permanently to L, while those on the noniinks, SEEREER T B8 TERER 8 R SRS B
vary. The “vertex factor” coming fromxe C now is t,,

wherer is again the number of relations present and “ Oint_faces(EucIidean signature quantum grayignd the associated ma-
ing to x.” 9 P P trix models in the continuum limit. Unfortunately, the matter fields

. used(lsing spins or “hard dimers)’ were unphysical in the sense
These two modelgand especially the seconghow that that the partition function was a sum of Boltzmann weights which

our sequential growth dynamics can be viewed as a form Qjere not in general real and positive. This is much like our first
“induced gravity” obtained by summing ovéfintegrating  state model described above. To the extent that the analogy between
out”) the values of our underlying spin variables This  these two, rather different, situations holds good, our results here
underlying “matter” theory may or may not be physically suggest that there might be, in addition to the matter fields em-
reasonable(Does it obey its own version of Bell causality, ployed in[24], another set of fields with physical choices of the
for example? Is it local in an appropriate senseBut at a  coupling constants, which could reproduce the same effective dy-
minimum, it serves to illustrate how a theory of nongravita-namics for the random surface.

where Xy is the event that, “at stag®l,” C possesses a
partial stem which is a two-chain. In this connection, we
conjecture that questions of the form, “doBsoccur as a
partial stem ofC?,” furnish a physically complete set, when
P ranges over allisomorphism equivalence classe$ firfite
causets.
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FIG. 8. Two families related by Bell causality.

lead us to a relatively unique quantum causet dynathms  shows the corresponding parent and children when these
rather, to a family of them among which a potential quantumspectators are removed.
theory of gravity would be recognizable. Notice that one of the three children is the gregarious
child. We will show that the Bell causality equations be-
tween this child and each of the others imply all remaining
ACKNOWLEDGMENTS Bell causality equations within this family. Since no Bell
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here was supported in part by NSF grant PHY-9600620 angregarious child obviously always possess a solution—in

by a grant from the Office of Research and Computing OffaCt, they determine all ratios of transition prObabiIitieS ex-
Syracuse University. cept for that to the timid child this will prove the lemma.
In the figuret; andt, represent a general pair of transi-
tions related by a Bell causality equation, namely,
APPENDIX: CONSISTENCY OF THE CONDITIONS
Our analysis in Sec. IV unfolded in the form of several '[_1: i,
lemmas. Here we present some similar lemmas which, 2 S
strictly speaking, are not needed in the present context, b

which further elucidate the relationships among our condiEgUt’ as illustrated, each of these is also related by a Bell

. . causality equation to the gregarious child, to wit:
tions. We expect these lemmas can be useful in any attempf’Jl y €q greg

to formulate generalizations of our scheme, in particular t, s
guantal generalizations. ==

Lemma 5The Bell causality equations are mutually con-

sistent. Since Eq.(Al) follows immediately from Eq(A2), no in-

Proof. The top of Fig. 8 shows_three children of an arbi- consistencies can arise at stagend the lemma follows by
trary causal se€,,. The shaded ellipses represent portions of

C. Th - : Lnduction onn. O

n- The small square indicates the new element whose birth ) oy 4 6 Given Bell causality and the further conse-
transformsC,, into a causal seC,,, of the next stage. The o ,0nceg of general covariance that are embodied in lemma 2,
smaller ellipse “stacked on top of the_ larger ellipse TePre-all the remaining general covariance equations reduce to
sents a subcauset f, Wh'(?h does not lnters_ect'the Precur-jqentities; i.e., they place no further restriction on the param-
sor set of any of the transitions being considefieel, none

fits el i h f ¢ th | eters of the theory.
of its elements lie to the past of any of the new elements 4t piscrete general covariance states that the prob-
This small ellipse thus consists entirely of “spectators” to

. . . .~ ability of forming a causet is independent of the order in
the transitions under consideration. The bottom part of Fig. § hich the elements arise; i.e., it is independent of the corre-
sponding path through the poset of finite causets. Now, gen-
eral covariance relations always can be taken to come from

165ee[27] for a promising first step toward such a dynamics.  “diamonds” in the poset of causets, for the following rea-

(A1)

t S
1= 22 A2
t3 S3 an t3 S3 (A2)

024002-14



CLASSICAL SEQUENTIAL GROWTH DYNAMICS FQR . .. PHYSICAL REVIEW D 61 024002

C FIG. 9. Consistency of remain-
ing general covariance conditions.

z
q x \ q,

n_

son. As illustrated in Fig. 9, any pair of children of a causetgo throughD without affecting its probability. Thus the
(siblings will have a common child obtained by adjoining equality of our two path probabilities reduces simplyato
both new elements of the two siblings, i.e., adding to the=bz

“grandparent” both the new element which defines one sib- Now by Bell causality and lemma 2,

ling and the new element which defines the other sibling.
[For example, consider the case where the two-antichain is i: b
the grandparent and it has the child «by adding a discon- On  On-1’
nected elementand the child/\ (by adding an element to
the future of both elements of the two-antichaifio find
their common child A add a disconnected element dn

to A , or an element to the future of two of the elements ax=ab

of e« . Now, still referring to Fig. 9, lefD|=n and suppose
inductively that all the general covariance relations are sat-

whence

n—-1

But by symmetry, we also have

isfied up through stage. A new condition arising at stage On
n+1 says that some path arriving Btvia x has the same bz=ba
probability as some other path arriving via But by our -1
inductive assumption, each of these paths can be modified therefore,ax=bz, as required. O
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