
PHYSICAL REVIEW D, VOLUME 61, 024002
Classical sequential growth dynamics for causal sets
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Starting from certain causality conditions and a discrete form of general covariance, we derive a very general
family of classically stochastic, sequential growth dynamics for causal sets. The resulting theories provide a
relatively accessible ‘‘halfway house’’ to full quantum gravity that possibly contains the latter’s classical limit
~general relativity!. Because they can be expressed in terms of state models for an assembly of Ising spins
residing on the relations of the causal set, these theories also illustrate how nongravitational matter can arise
dynamically from the causal set without having to be built in at the fundamental level. Additionally, our results
bring into focus some interpretive issues of importance for a causal set dynamics and for quantum gravity more
generally.
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I. INTRODUCTION

The causal set hypothesis asserts that spacetime,
mately, is discrete and that its underlying structure is tha
a locally finite, partially ordered set~a causal set!. The ap-
proach to quantum gravity based on this hypothesis has
perienced considerable progress in its kinematic aspects
example, one possesses natural extensions of the conce
proper time and spacetime dimensionality to causal sets,
these take us a significant way toward an answer to the q
tion, ‘‘when does a causal set resemble a Lorentzian m
fold?’’ The dynamics of causal sets~the ‘‘equations of mo-
tion’’ !, however, has not been very developed to date. On
the primary difficulties in formulating a dynamics for caus
sets is the sparseness of the fundamental mathematical s
ture. When all one has to work with is a discrete set an
partial order, even the notion of what we should mean b
dynamics is not obvious.

Traditionally, one prescribes a dynamical law by speci
ing a Hamiltonian to be the generator of the time evolutio
This practice presupposes the existence of a continuous
variable, which we do not have in the case of causal s
Thus one must conceive of dynamics in a more gen
sense. In this paper, evolution will be envisaged as a pro
of stochastic growth to be described in terms of the pr
abilities ~in the classical case, or more generally the quant
measures in the quantum case@1#! of forming designated
causal sets. That is, the dynamical law will be a rule wh
assigns probabilities to suitable classes of causal set~a
causal set being the ‘‘history’’ of the theory in the sense o
‘‘sum over histories’’!. One can then use this rule—
technically a probability measure—to ask physically me
ingful questions of the theory. For example, one could a
‘‘what is the probability that the universe possesses the
mond poset as a partial stem?’’~The term ‘‘stem’’ is defined
below.!

Why are we interested in a classical dynamics for cau
sets, when our ultimate aim is a quantum theory of gravi
One obvious reason is that the classical case, being m

*Email address: rideout@physics.syr.edu
†Email address: sorkin@physics.syr.edu
0556-2821/99/61~2!/024002~16!/$15.00 61 0240
lti-
f

x-
or

s of
nd
s-
i-

of
l
uc-
a
a

-
.
e

s.
al
ss
-

m

h

a

-
k,
a-

al
?
ch

simpler, can help us to get used to a relatively unfamil
type of dynamical formulation, bringing out the pertine
physical issues and guiding us toward physically suita
conditions to place on the theory. Is there, for example,
appropriate form of causality that we can impose? Should
attempt to express the theory directly in terms of gau
invariant~labeling-independent! quantities, or should we fol-
low precedent by enforcing gauge invariance only at
end? Some of these issues are well illustrated with the th
ries we construct herein.

One of the best reasons to be interested in a class
dynamics for causal sets is that quantum gravity must p
sess general relativity as a classical limit. Thus general r
tivity should be described as some type of effective class
dynamics for causal sets, and one may hope that the rele
dynamical law will be among the family delineated here
~One cannot be certain this will occur, because general r
tivity, as a continuum theory, seems most likely to arise as
effective theory for coarse-grained causal sets, rather t
directly as a limit of the microscopic discrete theory, a
there is no guarantee that this effective theory will have
same form as the underlying exact one.!

A question commonly asked of the causal set program
‘‘how could nongravitational matter arise from only a parti
order?’’ One obvious answer is that matter can emerge
higher level construct via the Kaluza-Klein mechanism@2#,
but this possibility has nothing to do with causal sets as su
The theory developed herein suggests a different mechan
It is possible to rewrite the theory in such a way that t
dynamics appears to arise from a kind of ‘‘effective action
for a field of Ising spins residing on the relations of th
causal set. A form of ‘‘Ising matter’’ is thus implicit in wha
would seem at first sight to be a purely ‘‘source-free
theory.

In subsequent sections of this paper we describe our
tation and terminology~some new language is required fo
the detailed derivation of our causal set dynamics!, introduce
and briefly discuss the transitive percolation model, pres
the physical requirements of Bell causality and discrete g
eral covariance that we will impose, derive the~generically!
most general theory satisfying these requirements~including
solving the inequalities which express that all probabilit
must fall between 0 and 1!, single out a few simple choice
©1999 The American Physical Society02-1
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D. P. RIDEOUT AND R. D. SORKIN PHYSICAL REVIEW D61 024002
of the free parameters and exhibit some properties of
resulting ‘‘cosmologies,’’ and exhibit a pair of state mode
for the dynamics that illustrate how not only geometry, b
other matter can arise implicitly from order.

A. Notation and terminology—sequential growth

First we establish our terminology and notation. For
fuller introduction to causal sets, see@3,4,5,6,7#. ~For recent
examples of other discrete models incorporating a causa
dering, see@8,9,10#.!

A causal set~or ‘‘causet’’! is a locally finite, partially
ordered set~or ‘‘poset’’!. We represent the order relation b
‘‘ a’’ and use theirreflexive conventionthat an element doe
not precede itself.

Let C be a poset. Thepast of an elementxPC is the
subset past (x)5$yPCuyax%. The past of a subset ofC is
the union of the pasts of its elements. An element ofC is
maximaliff it is to the past of no other element. Achain is a
linearly ordered subset ofC ~a subset, every two elements
which are related bya!; an antichain is a totally unordered
subset~a subset, no two elements of which are related bya!.
A partial stemof C is a finite subset which contains its ow
past.~A full stem is a partial stem such that every element
its complement lies to the future of one of its maximal
ements.! An automorphismof C is a one-to-one map ofC
onto itself that preservesa.

A link of a poset is an irreducible relation, that is, one n
implied by other relations via transitivity.1 A path in a poset
is an increasing sequence of elements, each related to
next by a link.

A poset can be represented graphically by a Hasse
gram, which is constructed as follows. Draw a dot to rep
sent each element of the poset. Draw a line connecting
two elementsxay related by a link, such that the precedin
elementx is drawn below the following elementy.

The dynamics which we will derive can be regarded a
process of ‘‘cosmological accretion’’ or ‘‘growth.’’ At each
step of this process an element of the causal set comes
being as the ‘‘offspring’’ of a definite set of the existin
elements—the elements that form its past. The phenom
logical passage of time is taken to be a manifestation of
continuing growth of the causet. Thus we do not think of t
process as happening ‘‘in time,’’ but rather as ‘‘constituti
time,’’ which means in a practical sense that there is
meaningful order of birth of the elements other than t
implied by the relationa.

In order to define the dynamics, however, we will treat t
births as if they happened in a definite order with respec
some fictitious ‘‘external time.’’ In this way, we introduce a
element of ‘‘gauge’’ into the description of the growth pr
cess which we will have to compensate by imposing app
priate conditions of ‘‘gauge invariance.’’ This fictitious orde
of birth can be represented as anatural labelingof the ele-
ments, that is, a labeling by integers 0, 1, 2,... which

1Links are often called ‘‘covering relations’’ in the mathematic
literature.
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compatible with the causal ordera in the sense thatx
ay⇒ label(x), label(y).2 The relevant notion of gauge in
variance~which we will call ‘‘discrete general covariance’’!
is then captured by the statement that the labels carry
physical meaning. We discuss this more extensively la
on.3

It is helpful to visualize the growth of the causal set
terms of paths in a posetP of finite causal sets.~Thus
viewed, the growth process will be a sort of Markov proce
taking place inP.! Each finite causet~or rather each iso-
morphism equivalence class of finite causets! is one element
of this poset. If a causet can be formed by accreting a sin
element to a second causet, then the former~the ‘‘child’’ !
follows the latter~the ‘‘parent’’! in P and the relation be-
tween them is a link. DrawingP as a Hasse diagram o
Hasse diagrams, we get Fig. 1.~Of course, this is only a
portion of the infinite diagram; it includes all the causal s
of fewer than five elements and 8 of the 63 five-elem
causets. The ‘‘decorations’’ on some of the transitions in F
1 are for later use.! Any natural labeling of a causetC
PP determines uniquely a path inP beginning at the empty
causet and ending atC. Conversely, any choice of upwar
path through this diagram determines a naturally labe
causet, or rather a set of them, since inequivalent label
can sometimes give rise to the same path inP.4 We want the
physics to be independent of labeling, so different paths iP
leading to the same causet should be regarded as repre
ing the same~partial! universe, the distinction between the
being ‘‘pure gauge.’’

The causal sets which can be formed by adjoining a sin
maximal element to a given causet will be called collective
a family. The causet from which they come is theirparent,
and they aresiblingsof each other. Each one is achild of the
parent. The child formed by adjoining an element which is
the future of every element of the parent will be called t
timid child. The child formed by adjoining an element whic
is spacelike to every other element will be called thegregari-
ous child. A child which is not a timid child will be called a
bold child.

2A natural labeling of an orderP is equivalent to what is called a
‘‘linear extension ofP’’ in the mathematical literature.

3The continuum analogue of a natural labeling might be a coo
nate system in whichx0 is everywhere timelike~and this in turn is
almost the same thing as a foliation by spacelike slices!. One could
also consider arbitrary labelings, which would be analogous to
bitrary coordinate systems. In that case, there would be a w
defined gaugegroup—the group of permutations of the caus
elements—and labeling invariance would signify invariance un
this group, in closer analogy with diffeomorphism invariance a
ordinary gauge invariance. However, we have not found a us
way to do this, and in this paper only natural labelings will ever
considered.

4We could restore uniqueness by ‘‘resolving’’ each linkC1aC2

of P into the set of distinct embeddingsi :C1→C2 that it represents.
Here, two embeddings count as distinct iff no automorphism of
child relates them~cf. the discussion of the Markov sum rule be
low!.
2-2
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FIG. 1. The poset of finite causets.
th

to

nd

b
ls

t
.

us
et
ib

en
n

e
ed

g
f

ry,
Each parent-child relationship inP describes a ‘‘transi-
tion’’ C→C8, from one causal set to another induced by
birth of a new element. The past of the new element~a subset
of C! will be referred to as theprecursor setof the transition
~or sometimes just the ‘‘precursor of the transition’’!. Nor-
mally, this precursor set is uniquely determined up to au
morphism of the parent by the~isomorphism equivalence
class of the! child, but ~rather remarkably! this is not always
the case. The symbolCn will denote the set of causets withn
elements, and the set of all transitions fromCn to Cn11 will
be calledstage n.

As just remarked, each parent-child transition correspo
to a choice of partial stem in the parent~the precursor of the
transition!. Since there is a one-to-one correspondence
tween partial stems and antichains, a choice of child a
corresponds to a choice of~possibly empty! antichain in the
parent, the antichain in question being the set of maxim
elements of the past of the new element. Note also that
new element will belinked to each element of this antichain

B. Some examples

To help clarify the terminology introduced in the previo
section, we give some examples. The 20-element caus
Fig. 2 was generated by the stochastic dynamics descr
herein, with the choice of parameters given by Eq.~16! be-
low. In the copy of this causet on the left, the past of elem
a is highlighted. Notice that since we use the irreflexive co
vention for the order,a is not included in its own past. In th
copy on the right, a partial stem of the causet is highlight
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Figure 3 shows and its children. The timid child is

Cb and the gregarious child isCc . The precursor set leadin
to the transition toCd is shown in the ellipse. An example o
an automorphism ofCa is the mapa↔c, b↔d ~the other
elements remaining unchanged!.

II. TRANSITIVE PERCOLATION

In a sum-over-histories formulation of causal set theo
one might expect sums such as

FIG. 2. An example of a~‘‘typical’’? ! 20-element causal set.
2-3
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FIG. 3. A family.
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A~C,$q%! ~1!

to be involved, whereA is a complex amplitude for the
causal setC, possibly depending on a set of parameters$q%.
Kleitman and Rothschild@28# have shown that the number o
posets of cardinalityn grows faster than exponentially inn
and that, asymptotically, almost every poset has a cert
almost trivial, ‘‘generic’’ form.~See@11#.! Such a ‘‘generic
poset’’ consists of three ‘‘tiers,’’ withn/2 elements in the
middle tier andn/4 elements in the top and bottom tiers. F
this reason, one might think that a sum like~1! would be
dominated by causets which in no way resemble a spacet
leading to a sort of ‘‘entropy catastrophe.’’ Nevertheless, i
not hard to forestall this catastrophe, and in fact the m
naive choice of stochastic dynamics already does so.~Maybe
this is not so different from the situation in ordinary quantu
mechanics, where the smooth paths, which form a se
measure zero in the space of all paths, are the ones w
dominate the sum over histories in the classical limit.!

The dynamics in question, which we will call ‘‘transitiv
percolation,’’ is perhaps the most obvious model of a ra
domly growing causet. It is an especially simple instance
a sequential growth dynamics, in which each new elem
forges a causal bond independently with each existing
ment with probabilityp, wherepP@0,1# is a fixed paramete
of the model.~Any causal relation implied by transitivity
must then be added in as well.!

From a more static perspective, one can also desc
transitive percolation by the following algorithm for gene
ating a random poset:~1! Start with n elements labeled
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0,1,2,...,n21 (n5` is not excluded!; ~2! with a fixed prob-
ability p, introduce a relation between every pair of poin
labeledi andj, wherei , j ; ~3! form the transitive closure o
these relations~e.g., if 2a5 and 5a8, then enforce that 2
a8.) Expressed in this manner, the model appears as a
cies of one-dimensional directed percolation; hence,
name we have given it~following Meyer @29#!.

From a physical point of view, directed percolation h
some appealing features, both as a model for a relativ
small region of spacetime and as a cosmological model
spacetime as a whole. Forp;1/n, there is a percolation
transition, where the causet goes qualitatively from a la
number of small disconnected universes forp,pcrit to a
single connected universe forp.pcrit . Moreover, computer
simulations suggest strongly that the model possesses a
tinuum limit and exhibits scaling behavior in that limit wit
p scaling roughly likec logn/n @12,13#. The ‘‘cosmology’’
of transitive percolation is also suggestive—the unive
cycles endlessly through phases of expansion, stasis,
contraction~via fluctuation! back down to a single elemen
@14# ~see Fig. 4!.

From all this, it is clear that the causets generated
transitive percolation do not at all resemble the three-t
generic causets of Kleitman and Rothschild, but rather t
have the potential to reproduce a spacetime or a part of
Nevertheless, the dynamics of transitive percolation is
viable as a theory of quantum gravity. One obvious reaso
that it is stochastic only in the purely classical sense, lack
quantum interference. Another reason is that the future
any element of the causet is completely independent of a
thing ‘‘spacelike related’’ to that element. Therefore, t
only spacetimes which a causal set generated by trans
2-4
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CLASSICAL SEQUENTIAL GROWTH DYNAMICS FOR . . . PHYSICAL REVIEW D 61 024002
percolation could hope to resemble would be homogene
such as the Minkowski or de Sitter spacetimes, but neithe
these possibilities is compatible with the periodic recollap
alluded to earlier. At best, therefore, one could hope to
produce a small portion of such a homogeneous spaceti

On the other hand, in computer simulations of transit
percolation @15#, two independent~and coarse-graining
invariant! dimension estimators have tended to agree w
each other, one such estimator being that of@16# and the
other being a simple ‘‘midpoint scaling dimension.’’~Some
other indicators of manifoldlike behavior have tended to
much more poorly, but those are not invariant under coa
graining, whereas one would in any case expect to obs
manifold like behavior only for a sufficiently coarse grain
causal set.! In the pure percolation model, however, the
dimension indicators vary with time~i.e., with n! and one
must rescalep if one wishes to hold the spacetime dimensi
constant. One may ask, then, if the model can be genera
by havingp vary with n in an appropriate sense. We will se
in the next section that something rather like this is in f
possible.

The transitive percolation model, incidentally, has
tracted the interest of both mathematicians and physicists
reasons having nothing to do with quantum gravity.
physicists, it has been studied as a problem in the statis
mechanical field of percolation, as we have already allu
to. By mathematicians, it has been studied extensively a
branch of random graph theory~a poset being the same thin
as a transitive acyclic directed graph!. Some references o
transitive percolation~viewed from whatever angle! are
@11,14,17,18,15,12,13#.

III. PHYSICAL REQUIREMENTS ON THE DYNAMICS

As discussed in the previous section, one can think
transitive percolation as a sort of ‘‘birth process,’’ but
such, it is only one special case drawn from a much lar
universe of possibilities. As preparation for describing the
more general possible dynamical rules, let us consider
growth sequence of a causal set universe.

First element ‘‘0’’ appears~say with probability 1, since
the universe exists!. Then element ‘‘1’’ appears, either re
lated to ‘‘0’’ or not. Then element ‘‘2’’ appears, either re
lated to ‘‘0’’ or ‘‘1,’’ or both, or neither. Of course, if 1
a0 and 2a1, then 2a0 by transitivity. Then element ‘‘3’’
appears with some consistent set of ancestors, and so on
so forth. Because of transitivity, each new element ends

FIG. 4. Transitive percolation cosmology.
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with a partial stem of the previous causet as its precursor
The result of this process, obviously, is a naturally labe
causet~finite if we stop at some finite stage, or infinite if w
do not! whose labels record the order of succession of
individual births. For illustration, consider the path in Fig.
delineated by the heavy arrows. Along this path, elem
‘‘0’’ appears initially, then element ‘‘1’’ appears to the fu
ture of element ‘‘0,’’ then element ‘‘2’’ appears to the futur
of element ‘‘0,’’ but not to the future of ‘‘1,’’ then elemen
‘‘3’’ appears unrelated to any existing element, then elem
‘‘4’’ appears to the future of elements ‘‘0,’’ ‘‘1’’ ~say, or
‘‘2,’’ it does not matter!, and ‘‘3,’’ then element ‘‘5’’ ap-
pears~not shown in the diagram!, etc.

Let us emphasize once more that the labels 0, 1, 2, e
are not supposed to be physically significant. Rather,
‘‘external time’’ that they record is just a way to concept
alize the process, and any two birth sequences related to
other by a permutation of their labels are to be regarded
physically identical.

So far, we have been describing the kinematics of sequ
tial growth. In order to define a dynamics for it, we ma
give, for eachn-element causetC, the transition probability
from it to each of its possible children. Equivalently, we gi
a transition probability for each partial stem withinC. We
wish to construct a general theory for these transition pr
abilities by subjecting them to certain natural conditions.
other words, we want to construct the most general~classi-
cally stochastic! ‘‘sequential growth dynamics’’ for causa
sets.5 In stating the following conditions, we will employ th
terminology introduced in the Introduction.

A. Condition of internal temporality

By this imposing sounding phrase, we mean simply t
each element is born either to the future of, or unrelated
all existing elements; that is, no element can arise to the
of an existing element.

We have already assumed this tacitly in describing w
we mean by a sequential growth dynamics. An equival
formulation is that the labeling induced by the order of bir
must benatural, as defined above. The logic behind the r
quirement of internal temporality is that all physical time
that of the intrinsic order defining the causal set itself. For
element to be born to the past of another would be con
dictory: it would mean that an event occurred ‘‘before
another which intrinsically preceded it.

B. Condition of discrete general covariance

As we have been emphasizing, the ‘‘external time’’
which the causal set grows~equivalently the induced label
ing of the resulting poset! is not meant to carry any physica

5By choosing to specify our stochastic process in terms of tra
tion probabilities, we have assumed in effect that the proces
Markovian. Although this might seem to entail a loss of general
the loss is only apparent, because the condition of discrete gen
covariance introduced below would have forced the Markov
sumption on us, even if we had not already adopted it.
2-5
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D. P. RIDEOUT AND R. D. SORKIN PHYSICAL REVIEW D61 024002
information. We interpret this in the present context as be
the condition that the net probability of forming any partic
lar n-element causetC is independent of the order of birth w
attribute to its elements. Thus, ifg is any path through the
poset P of finite causal sets that originates at the em
causet and terminates atC, then the product of the transitio
probabilities along the links ofg must be the same as for an
other path arriving atC. ~So general covariance in this se
ting is a type of path independence.! We should recall here
however, that, as observed earlier, a link inP can sometimes
represent more than one possible transition. Thus our s
ment of path independence, to be technically correct, sho
say that the answer is the same no matter which trans
~partial stem! we select to represent the link. Obviously, th
immediately entails that all such representatives share
same transition probability.

We might with justice have required here conditions th
are apparently much stronger, including the condition t
any two paths throughP with the same initial and final end
points have the same product of transition probabiliti
However, it is easy to see that this already follows from
condition stated.6 We therefore do not make it part of ou
definition of discrete general covariance, although we will
using it crucially.

Finally, it is well to remark here that just because t
‘‘arrival probability atC’’ is independent of path or labeling
that does not necessarily mean that it carries an invar
meaning. On the contrary a statement like ‘‘when the cau
had eight elements it was a chain’’ is itself meaningless
fore a certain birth order is chosen. This, also, is an aspec
the gauge problem, but not one that functions as a const
on the transition probabilities that define our dynami
Rather, it limits the physically meaningfulquestionsthat we
can ask of the dynamics. Technically, we expect that
dynamics~like any stochastic process! can be interpreted as
probability measure on a certains algebra, and the require
ment of general covariance will then serve to select the s
algebra of sets whose measures have direct physical m
ing.

C. Bell causality condition

The condition of ‘‘internal temporality’’ may be viewed
as a very weak type of causality condition. The further c
sality condition we introduce now is quite strong, being sim
lar to that from which one derives Bell’s inequalities. W
believe that such a condition is appropriate for a class
theory, and we expect that some analogue will be valid in
quantum case as well.~On the other hand, we would have
abandon Bell causality if our aim were to reproduce quant
effects from a classical stochastic dynamics, as is someti
advocated in the context of ‘‘hidden variable theories

6If g does not start with the empty causetC0 , but atCs , we can
extend it to start atC0 by choosing any fixed path fromC0 to Cs .
Then different paths fromCs to Ce correspond to different path
betweenC0 and Ce , and the equality of net probabilities for th
latter implies the same thing for the former.
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Given the inherent nonlocality of causal sets, there is
logical reason why such an attempt would have to fail.!

The physical idea behind our condition is that events
curring in some part of a causal setC should be influenced
only by the portion ofC lying to their past. In this way, the
order relation constitutingC will be causal in the dynamica
sense, and not only in name. In terms of our sequen
growth dynamics, we make this precise as the requirem
that the ratio of the transition probabilities leading to tw
possible children of a given causet depends only on the t
consisting of the two corresponding precursor sets and t
union.

Thus let C→C1 designate a transition fromCPCn to
C1PCn11 , and similarly forC→C2 . Then, the Bell causal-
ity condition can be expressed as the equality of two ratio7:

prob~C→C1!

prob~C→C2!
5

prob~B→B1!

prob~B→B2!
, ~2!

where BPCm , m<n, is the union of the precursor set o
C→C1 with the precursor set ofC→C2 , B1PCm11 is B
with an element added in the same manner as in the tra
tion C→C1 , andB2PCm11 is B with an element added in
the same manner as in the transitionC→C2 .8 ~Notice that if
the union of the precursor sets is the entire parent cau
then the Bell causality condition reduces to a trivial identit!

To clarify the relationships among the causets involved
may help to characterize the latter in yet another way. Lee1
be the element born in the transitionC→C1 and lete2 be the
element born in the transitionC→C2 . Then Ci5Cø$ei%
( i 51,2), and we haveB5(paste1)ø(paste2) and Bi
5Bø$ei% ( i 51,2).

By its definition, Bell causality relates ratios of transitio
probabilities belonging to one ‘‘stage’’ of the growth proce
to ratios of transition probabilities belonging to previo
stages. For illustration, consider the case depicted in Fig
The precursorP1 of the transitionC→C1 contains only the
earliest~minimum! element ofC, shown in the figure as a
pattern-filled dot. The precursorP2 of C→C2 contains as
well the next earliest element, shown as a~different-pattern-!

7In writing Eq. ~2!, we assume for simplicity that both numerato
and both denominators are nonzero, this being the only case we
have occasion to treat in the present paper.

8Recall that the precursor set of the transitionC→C1 is the sub-
poset ofC that lies to the past of the new element that formsC1 .

FIG. 5. Illustrating Bell causality.
2-6
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filled dot. The union of the two precursors is thusB
5P1øP25P2 . The elements ofC depicted as open dot
belong to neither precursor. Such elements will be ca
spectators. Bell causality says that the spectators can be
leted without affecting relative probabilities. Thus the ra
of the transition probabilities of Fig. 5 is equal to that
Fig. 6.

D. Markov sum rule

As with any Markov process, we must require that t
sum of the full set of transition probabilities issuing from
given causet be unity. However, the set we have to sum o
depends in a subtle manner on the extent to which we re
causal set elements as ‘‘distinguishable.’’ Heretofore
have identified distinct transitions with distinct precursor s
of the parent. In doing so, we have in effect been treat
causet elements as distinguishable~by not identifying with
each other, precursor sets related by automorphisms o
parent!, and this is what we shall continue to do. Indeed, t
is the counting of children used implicitly by transitive pe
colation, so we keep it here for consistency. With respec
the diagram of Fig. 1, this method of counting has the eff
of introducing coefficients into the sum rule, equal to t
number of partial stems of the parent which could be
precursor set of the transition. For the transitions depic
there, these coefficients~when not one! are shown next to the
corresponding arrow.9

We remark here that these sum-rule coefficients admi
alternative description in terms of embeddings of the par
into the child ~as a partial stem!. Instead of saying ‘‘the
number of partial stems of the parent which could be the p
of the new element,’’ we could say ‘‘the number of ord
preserving injective maps from the parent onto partial ste
of the child, divided by the number of automorphisms of t
child.’’ ~The proof of this equivalence will appear in@19#.!

IV. GENERAL FORM OF THE TRANSITION
PROBABILITIES

We seek to derive a general prescription which giv
consistent with our requirements, the transition probabi
from an element ofCn to an element ofCn11 . To avoid
having to deal with special cases, we will assume through
that no transition probability vanishes. Thus the solution
find may be termed ‘‘generic,’’ but not absolutely genera

In this connection, we want to point out that one proba
does not obtain every possible solution of our conditions
taking limits of the generic solution, and the special theor
which result from taking certain transition probabilities

9One might describe the result of setting these coefficients to u
as the case of ‘‘indistinguishable causet elements.’’ It appears
in this case a dynamics with a richer structure obtains: instea
the transition probability depending only on the size of the prec
sor set and the number of its maximal elements, it is sensitiv
more details of the precursor set’s structure.
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vanish must be treated separately.10 One such special theor
is theoriginary percolationmodel, which is the same as th
transitive percolation model, but with the added restricti
that each element except the original one must have at l
one ancestor among the previous elements. The net effe
that the growing causal set is required to have an ‘‘origi
(5unique minimum element! at all stages.~Generalizations
are also possible in which a more complex full stem of t
causet is enforced.! The poset of originary causets can b
transformed into the poset of all causets~exactly! by remov-
ing the origin from every originary causet. The transitio
probabilities for originary percolation are just those of ord
nary transitive percolation with an added factor of (12qn)
in the denominator at stagen.

A. Counting the free parameters

A theory of the sort we are seeking provides a probabi
for each transition, so without further restriction, it wou
contain a free parameter for every possible antichain of ev
possible~finite! causet. We will see, however, that the r
quirements described above in Sec. III drastically limit th
freedom.

Lemma 1.There is at most one free parameter per fam
Proof. Consider a parent and its children. Every su

child, except the timid child, participates in a Bell causal
equation with the gregarious child.~See the proof of lemma
5 in the Appendix.! Hence~since Bell causality equates ra
tios!, all these transitions are determined up to an ove
factor. This leaves two free parameters for the family. T
Markov sum rule gives another equation, which exhausts
self in determining the probability of the timid child. Henc
precisely one free parameter per family remains after B
causality and the sum rule are imposed. h

Lemma 2.The probability to add a completely discon
nected element~the ‘‘gregarious child transition’’! depends
only on the cardinality of the parent causal set.

Proof. Consider an arbitrary causetA, with a maximal
elemente, as indicated in Fig. 7. Adjoining a disconnecte
element toA produces the causetB. Then, removinge from
B leads to the causetC, which can be looked upon as th
gregarious child of the causetD5A\$e%. Adding another

ty
at
of
r-
to

10Indeed, the requirement of Bell causality itself must be given
unambiguous interpretation when some of the transition proba
ties involved are zero.

FIG. 6. Illustrating Bell causality—spectators do not affect re
tive probability.
2-7
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FIG. 7. Equality of ‘‘gregarious child’’ transitions.
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disconnected element toC leads to a causetE with ~at least!
two completely disconnected elements. Now, by general
variance,

ax5bw

and, by Bell causality,

y

w
5

b

a

~the disconnected element inC acts as the spectator here!.
Thus

ax5bw5ay⇒x5y.

~Recall that we have assumed that no transition probab
vanishes.! Repeating our deductions withC in the place ofA
in the above argument~and a new maximal elementf in the
place ofe!, we see thaty5z, wherez is the probability for
the transition fromF to G as shown. Continuing in this wa
until we reach the antichainAn shows finally thatx5qn ,
where we defineqn as the transition probability from th
n-antichain to the (n11)-antichain. Since our starting caus
A was not chosen specially, this completes the proof.h

If our causal sets are regarded as entire universes, th
gregarious child transition corresponds to the spawning
new, completely disconnected universe~which is not to say
that this new universe will not connect up with the existi
universe in the future!. Lemma 2 proves that the probabilit
for this to occur does not depend on the internal structure
the existing universe, but only on its size, which seems e
nently reasonable. In the sequel, we will call this probabi
qn .

With lemmas 1 and 2, we have reduced the numbe
free parameters~since every family has a gregarious child! to
one per stage or, what is the same thing, to one per causa
element. In the next sections we will see that no furth
reduction is possible based on our stated conditions. Thus
transition probabilitiesqn can be identified as the free param
02400
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ty

n a
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f

set
r
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eters or ‘‘coupling constants’’ of the theory. They are, ho
ever, restricted further by inequalities that we will deriv
below.

B. General transition probability in closed form

Given theqn , the remaining transition probabilities~for
the nongregarious children! are determined by Bell causalit
and the sum rule, as we have seen. Here we derive an
pression in closed form for an arbitrary transition probabil
in terms of causet invariants and the parametersqn .

1. Mathematical form of transition probabilities

We use the following notation:an , an arbitrary transition
probability fromCn to Cn11 ; bn , a transition whose precur
sor set is not the entire parent~‘‘bold’’ transition!; gn , a
transition whose precursor setis the entire parent~‘‘timid’’
transition!. Notice that the subscriptn here refers only to the
number of elements of the parent causet; it does not exh
which particular transition of stagen is intended. A more
complete notation might providea, b, and g with further
indices to specify both the parent causet and the precurso
within the parent.

We also setq0[1 by convention.
Lemma 3.Each transition probabilityan of stagen has the

form

qn (
i 50

n

l i

1

qi
, ~3!

where thel i are integers depending on the individual tra
sition in question.

Proof. This is easily seen to be true for stages 0 and
Assume it is true for stagen21. Consider a nontimid tran
sition probabilitybn of stagen. Bell causality gives

bn

qn
5

an21

qn21
,

2-8
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where an21 is an appropriate transition probability from
stagen21. So by induction

bn5an21

qn

qn21
5 (

i 50

n21

l i

qn21

qi

qn

qn21
5 (

i 50

n21

l i

qn

qi
. ~4!

For a timid transition probabilitygn , we use the Markov
sum rule:

gn512(
j

bn j , ~5!

where j labels the possible bold transitions~i.e., the set of
proper partial stems of the parent!.11 But then, substituting
Eq. ~4! yields immediately

gn512(
j

(
i 50

n21
l j i

qi
qn512 (

i 50

n21
( jl j i

qi
qn ,

which we clearly can put into the form~3! by taking l i
52( jl j i for i ,n andln51. h

2. Another look at transitive percolation

The transitive percolation model we described earlier
consistent with the four conditions of Sec. III. To see th
consider an arbitrary causal setCn of sizen. The transition
probability an from Cn to a specified causetCn11 of size
n11 is given by

an5pm~12p!n2Ã, ~6!

wherem is the number of maximal elements in the precur
set andÃ is the size of the entire precursor set.@This be-
comes clear if one recalls how the precursor set of a newb
element is generated in transitive percolation: first a se
ancestors is selected at random, and then the ancestor
plied by transitivity are added. From this, it follows imm
diately that a given stemS#Cn results from the procedur
iff ~i! every maximal element ofS is selected in the first step
and ~ii ! no element ofCn\S is selected in the first step.# In
particular, we see that the ‘‘gregarious transition’’ will occ
with probability qn5qn, whereq512p.

Now consider our four conditions. Internal temporali
was built in from the outset, as we know. Discrete gene
covariance is seen to hold upon writing the net probability
a givenCn explicitly in terms of causet invariants~writing it
in ‘‘manifestly covariant form’’! as

P~Cn!5WpLq~2
n
!2R,

where L is the number of links inCn , R the number of
relations, andW the number of~natural! labelings ofCn .

11Of course, more than one stem will in general correspond to
same link inP. If we redefinedj to run over links inP, then Eq.~5!
would readgn512( jx jbn j , wherex j is the ‘‘multiplicity’’ of the
j th link
02400
s
,

r

rn
f
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l
f

To see that transitive percolation obeys Bell causal
consider an arbitrary parent causet. The transition probab
to a given child is exhibited in Eq.~6!. Consider two differ-
ent children, one with (m,Ã)5(m1 ,Ã1) and the other with
(m,Ã)5(m2 ,Ã2). Bell causality requires that the ratio o
their transition probabilities be the same as if the parent w
reduced to the union of the precursor sets of the two tra
tions: i.e., it requires

pm1qn2Ã1

pm2qn2Ã2
5

pm1qn82Ã1

pm2qn82Ã2
,

wheren8 is the cardinality of the union of the precursor se
of the two transitions. Thus Bell causality is satisfied
inspection.

Finally, the Markov sum rule is essentially trivial. At eac
stage of the growth process, a preliminary choice of anc
tors is made by a well-defined probabilistic procedure, a
each such choice is mapped uniquely onto a choice of pa
stem. Thus the induced probabilities of the partial stems s
automatically to unity.

3. General transition probability

In the previous section we have shown that transitive p
colation produces transition probabilities~6! consistent with
all our conditions. By equating the right-hand side of Eq.~6!
to the general form~3! of lemma 3, we can solve for thel i
and thus obtain the general solution of our conditions:

an5(
i 50

n

l i

1

qi
qn5pm~12p!n2Ã5~12q!mqn2Ã.

Expanding the factor (12q)m and using the fact thatqn
5qn for transitive percolation, we get

l i5~2 !Ã2 i S m
Ã2 i D .

So an arbitrary transition probability in the general dynam
is, according to Eq.~3!,

an5(
i 50

n

~2 !Ã2 i S m
Ã2 i D qn

qi
.

Noting that the binomial coefficients are zero forÃ
2 i ¹$0,...,m% and rearranging the indices, we obtain

an5 (
k50

m

~2 !kS m
k D qn

qÃ2k
. ~7!

This form for the transition probability exhibits its caus
nature particularly clearly: except for the overall norma
ization factorqn , an depends only on invariants of the a
sociated precursor set.

C. Inequalities

Since thean are classical probabilities, each must lie b
tween 0 and 1, and this in turn restricts the possible value

e

2-9
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the qn . Here we show that it suffices to impose only o
inequality per stage; all the others~two per child! then fol-
low. More precisely, what we show is that, ifqn.0 for all n,
and if an>0 for the ‘‘timid’’ transition from then-antichain,
then all the otheran lie in @0,1#. This we establish in the
following two ‘‘claims.’’

Claim. In order that all the transition probabilitiesan fall
between 0 and 1, it suffices that each timid transition pr
ability be >0.

Proof.As described in the proofs of lemmas 1 and 5, ea
bold transition~of stagen! is given ~via Bell causality! by

an5am

qn

qm
,

where m is some natural number less thann. The q’s are
positive. So if the probabilities of the previous stages
positive, then the bold probabilities of stagen are also posi-
tive. It follows by induction that all but the timid transitio
probabilities are positive~since a05q051 obviously is!.
But for the timid transition of each family, we have

gn512(
i

b i , ~8!

where eachb i is positive. If any of theb i is greater than 1,
gn will obviously be negative. Also Eq.~8! plainly cannot be
greater than 1. Consequently, if we require thatgn be posi-
tive, then all transition probabilities in the family will be i
@0,1#. h

In a timid transition, the entire parent is the precursor s
soÃ5n. The inequalities constraining each probability o
given family to be in@0,1# therefore reduce to the sole co
dition

(
k50

m

~2 !kS m
k D 1

qn2k
>0. ~9!

Claim. The most restrictive inequality of stagen is the
one arising from then-antichain, i.e., the one for whichm
5n. All other inequalities of stagen follow from this in-
equality and the inequalities for smallern.

Proof. Assume that we have, form5n,

(
k50

n

~2 !kS n
kD 1

qn2k
>0.

Add to this the inequality from stagen21,

(
k50

n21

~2 !kS n21
k D 1

qn2k21
5 (

k50

n

~2 !k21S n21
k21D 1

qn2k
>0

to get

(
k50

n21

~2 !kS n21
k D 1

qn2k
>0.
02400
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This is the inequality of stagen for m5n21. @We have used
the identity (k

n)5(k
n21)1(k21

n21).] Adding the inequality of
stagen21 with m5n22 yields the inequality of stagen for
m5n22. Repeating this process will give all the inequaliti
of stagen. h

It is helpful to introduce the quantities

tn5 (
k50

n

~2 !n2kS n
kD 1

qk
. ~10!

Obviously, we havet051 ~sinceq051), and we have seen
that the full set of inequalities restricting theqn will be sat-
isfied iff tn>0 for all n. ~Recall we are assumingqn.0,
;n.) Moreover, given thetn , we can recover theqn by
inverting Eq.~10!.

Lemma 4.

1

qn
5 (

k50

n S n
kD tk . ~11!

Proof. This follows immediately from the identity

(
k50

n S n
kD ~2 !n2kS k

mD5dm
n .

h

Thus, thetn may be treated as free parameters~subject only
to tn>0 andt051), and theqn can then be derived from Eq
~11!. If this is done, the remaining transition probabilitiesan
can be reexpressed more simply in terms of thetn by insert-
ing Eq. ~11! into Eq. ~7! to get

an

qn
5(

l
t l(

k
~2 !kS m

k D S Ã2k
l D5(

l
t l S Ã2m

Ã2 l D ,

whence

an5
( l 5m

Ã ~Ã2 l
Ã2m!t l

( j 50
n ~ j

n!t j
. ~12!

Here, we have used an identity for binomial coefficients t
can be found on p. 63 of@20#.

In this way, we arrive at the general solution of our i
equalities.~Actually, we go slightly beyond our ‘‘generic
ity’’ assumption thatanÞ0 if we allow some of thetn to
vanish; but no harm is done thereby.!

Let us conclude this section by noting that Eq.~11! im-
plies

q0[1>q1>q2>q3>¯ . ~13!

If we think of the qn as the basic parameters or ‘‘couplin
constants’’ of our sequential growth dynamics, then it is a
the universe had a free choice of one parameter at each s
of the process. We thus get an ‘‘evolving dynamical law
but the evolution is not absolutely free, since the allowa
values ofqn at every stage are limited by the choices alrea
made. On the other hand, if we think of thetn as the basic
parameters, then the free choice is unencumbered at
2-10
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stage. However, unlike theqn , the tn cannot be identified
with any dynamical transition probability. Rather, they c
be realized as ratios of two such probabilities, namely, as
ratio xn /qn , wherexn is the transition probability from an
antichain ofn elements to the timid child of that antichain
~Thus, if we suppose that the evolving causet at the be
ning of stagen is an antichain, thentn is the probability that
the next element will be born to the future ofeveryelement,
divided by the probability that the next element will be bo
to the future ofno element.!

D. Proof that this dynamics obeys the physical requirements

To complete our derivation, we must show that the
quential growth dynamics given by Eq.~7! or ~12! obeys the
four conditions set out in Sec. III.

1. Internal temporality

This condition is built into our definition of the growt
process.

2. Discrete general covariance

We have to show that the product of the transition pro
abilitiesan associated with a labeling of a fixed finite caus
C is independent of the labeling. But this follows immed
ately from Eq.~7! @or Eq. ~12!# once we notice that wha
remains after the overall product

)
j 50

uCu21

qj

is factored out is a product over all elementsxPC of poset
invariants depending only on the structure of past (x).

3. Bell causality

Bell causality states that the ratio of the transition pro
abilities for two siblings depends only on the union of th
precursors. Looking at Eq.~7!, consider the ratio of two such
probabilitiesan1 andan2 . The qn factors will cancel, lead-
ing to an expression which depends only onÃ1 , Ã2 , m1 ,
andm2 . Since these are all determined by the structure of
precursor sets, Bell causality is satisfied.

4. Markov sum rule

The sum rule states that the sum of all transition pr
abilities an from a given parentC ~of cardinality uCu5n) is
unity. Since a child can be identified with a partial stem
the parent, we can write this condition, in view of Eq.~12!,
as

(
S

(
l

t l S uSu2m~S!

l 2m~S! D5(
j

t j S n
j D , ~14!

whereS ranges over the partial stems ofC. This must hold
for any t l , since they may be chosen freely. Reordering
sums and equating like terms yields
02400
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; l , (
S

S uSu2m~S!

l 2m~S! D5S n
l D , ~15!

an infinite set of identities which must hold if the sum rule
to be satisfied by our dynamics.

The simplest way to see that Eq.~15! is true is to resort to
transitive percolation, for whicht l5t l , where t5p/q
5p/(12p). In that case we know that the sum rule is s
isfied, so by inspection of Eq.~14!, we see that the identity
~15! must be true.

A more intuitive proof is illustrated well by the case o
l 53. Group the terms on the left side according to the nu
ber of maximal elements:

(
Sum~S!50

S uSu20
320 D1 (

Sum~S!51
S uSu21

321 D1 (
Sum~S!52

S uSu22
322 D

1 (
Sum~S!53

S uSu23
323 D

50 1 (
Sum~S!51

S uSu21
2 D1 (

Sum~S!52
~ uSu22!

1 (
Sum~S!53

15S n
3D .

The first term is zero because the only partial stem with z
maximal elements is empty~i.e., uSu50). The second term is
a sum over all partial stems with one maximal element. T
is equivalent to a sum over elements, with the elemen
inclusive past forming the partial stem. The summa
chooses every possible pair of elements to the past of
maximal element. Thus the second term overall cou
the three-element subcausets ofC with a single maximal
element. There are two possibilities here, the three-ch

and the ‘‘lambda’’ . The third term sums over partia

stems with two maximal elements, which is equivalent
summing over two-element antichains, the inclusive pas
the antichain being the partial stem. The summa
then counts the number of elements to the past of
two maximal ones. Thus the third term overall coun
the number of three element subcausets with precis
two maximal elements. Again there are two possibilitie
the ‘‘V’’ , and the ‘‘L’’ . Finally, the fourth term is

a sum over partial stems with three maximal elements,
this can be interpreted as a sum over all three-element a
chains• • • . As this example illustrates, then, the left-han
side of Eq.~15! counts the number ofl element subcausets o
C, placing them into ‘‘bins’’ according to the number o
maximal elements of the subcauset. Adding together the
sizes yields the total number ofl element subsets ofC, which
of course equals (l

n).

E. Sample cosmologies

The physical consequences of differing choices of thetn
remain to be explored. To get an initial feel for this questio
we list some simple examples.~Recall our convention tha
2-11
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t051 or, equivalently,q051, whereq0 is the probability
that the universe is born at all.12!

~i! ‘‘Dust universe’’

t051, t i50, i>1.

This universe is simply an antichain, since, according
Eq. ~11!, qn51 for all n.

~ii ! ‘‘Forest universe’’

t05t151, t i50, i>2.

This yields a universe consisting wholly of trees, sin
~see the next example! t25t35t45¯50 implies that no
element of the causet can have more than one past link.
particular choice oft151 has in addition the remarkabl
property that, as follows easily from Eq.~12!, every allowed
transition of stagen has the same probability 1/(n11).

~iii ! Case of limited number of past links

t i50, i .n0 .

Referring to expression~12! one sees at once thatan van-
ishes if m.n0 . Hence no element can be born with mo
thann0 past links or ‘‘parents.’’ This means in particular th
any realistic choice of parameters will havetn.0 for all n,
since an element of a causal set faithfully embeddable
Minkowski space would have an infinite number of pa
links.

~iv! Transitive percolation

tn5tn.

We have seen that for transitive percolation,qn5qn, where
q512p. Using the binomial theorem, it is easy to lea
from Eq. ~11! or ~10! that this choice ofqn corresponds to
tn5tn with t5p/q. Clearly, t runs from 0 to` as p runs
from 0 to 1.

~v! A more lifelike choice?

tn5
1

n!
. ~16!

We have seen that transitive percolation with constanp
yields causets which could reproduce—at best—only limi
portions of Minkowski space. To do any better, one wou
have to scalep so that it decreased with increasingn
@12,13,15#. This suggests thattn should fall off faster than in
any percolation model, hence~by the last example! faster
than exponentially inn. Obviously, there are many possibil
ties of this sort~e.g., tn;e2an2

), but one of the simplest is
tn;c/n! This would be our candidate of the moment for
physically most realistic choice of parameters.

12So is the answer to the old question why something exists ra
than nothing, simply that it is notationally more convenient for it
be so?
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V. STOCHASTIC GROWTH PROCESS AS SUCH

We have seen that, associated with everylabeledcausetC̃
of sizeN, is a net ‘‘probability of formation’’P(C̃) which is
the product of the transition probabilitiesa i of the individual
births described by the labeling:

P~C̃!5 )
i 50

N21

a i ,

wherea i5a( i ,Ã i ,mi) is given by Eq.~7! or ~12!. We have
also seen thatP is in fact independent of the labeling an
may be written asP(C) where C is the unlabeled cause
corresponding toC̃. To bring this out more clearly, let u
define

l~Ã,m!5 (
k5m

Ã S Ã2m
Ã2k D tk . ~17!

Thenqi5l( i ,0)21 and we have

a i~ i ,Ã i ,mi !5
l~Ã i ,mi !

l~ i ,0!
,

whence

P~C̃!5
) i 50

N21 l~Ã i ,mi !

) j 50
N21 l~ j ,0!

or, expressed more intrinsically,

P~C!5
PxPCl„Ã~x!,m~x!…

P j 50
uCu21l~ j ,0!

, ~18!

where Ã(x)5upastxu and m(x)5umaximal(pastx)u. This
expression, as far as it goes, is manifestly ‘‘causal’’ and ‘‘c
variant’’ in the senses explained above. As also explain
above, however, it has no direct physical meaning. Here
briefly discuss some probabilities whichdo have a fully co-
variant meaning and show how, in simple cases, they
related toN→` limits of probabilities like Eq.~18!.

First, let us notice that the net probability of arriving at
particularCPP is not P(C), but

ProbN~C!5W~C!P~C!,

where N5uCu and W(C) is the number of inequivalent13

labelings ofC or, in other words, the total number of path
through P that arrive atC, each link being taken with its
proper multiplicity.

Now as a rudimentary example of a truly covariant qu
tion, let us take ‘‘does the two-chain ever occur as a par
stem ofC?’’ ~Clearly, this is equivalent to asking whether

er
13Two labelings ofC are equivalent iff related by an automo

phism ofC.
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not C is an antichain.! The answer to this question will b
a probability,P, which it is natural to identify as

P5 lim
N→`

ProbN~XN!,

where XN is the event that, ‘‘at stageN,’’ C possesses a
partial stem which is a two-chain. In this connection, w
conjecture that questions of the form, ‘‘doesP occur as a
partial stem ofC?,’’ furnish a physically complete set, whe
P ranges over all~isomorphism equivalence classes of! finite
causets.

VI. TWO ISING-LIKE STATE MODELS

In this section, we present two Ising-like state mod
from which P(C) of Eq. ~18! can be obtained. In the mai
we just indicate the results, leaving the details to appear e
where @19#. The two models come from taking Eq.~7! or,
respectively, Eq.~12! as the starting point. In each case, t
idea is to interpret the binomial coefficients which occur
these formulas as describing a sum over subsets of rela
of C. If we work with Eq.~7!, these will be subsets of the s
of links of C; if we work with Eq. ~12!, they will be subsets
of the set of relations ofC that arenot links.

Let us take first Eq.~7!. Reinterpreting the binomial co
efficients in the manner indicated, and proceeding as in
derivation of Eq.~18!, we arrive at an expression forP(C) in
terms of a sum overZ2-valued ‘‘spins’’ s residing on the
relations ofC. In summing over configurations, however, th
spins s on the nonlink relations are set permanently to
only those on the links vary. Withs51 interpreted as ‘‘pres-
ence’’ ands50 as ‘‘absence,’’ the contribution of a particu
lar spin configurations is an overall sign times the produc
of one ‘‘vertex factor’’ for eachxPC. The vertex factor is
qr

21, wherer is the number of present relations havingx as
future end point, and the sign is (2)a, wherea is the number
of absent relations.@In addition, there is a constant overa
factor in P(C) of P j 50

uCu21qj .#
In the second state model, we begin with Eq.~12! or,

better, Eq.~18! itself, and proceed similarly. The result
again a sum over spinss residing on the relations, this tim
with all the terms being positive~as is required of physica
Boltzmann weights!. In this second model, the spins on th
links are set permanently to 1, while those on the nonlin
vary. The ‘‘vertex factor’’ coming fromxPC now is t r ,
wherer is again the number of relations present and ‘‘poi
ing to x.’’

These two models~and especially the second! show that
our sequential growth dynamics can be viewed as a form
‘‘induced gravity’’ obtained by summing over~‘‘integrating
out’’ ! the values of our underlying spin variabless. This
underlying ‘‘matter’’ theory may or may not be physical
reasonable.~Does it obey its own version of Bell causality
for example? Is it local in an appropriate sense?! But at a
minimum, it serves to illustrate how a theory of nongravi
02400
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tional matter can be hidden within a theory that one mig
think to be limited to gravity alone.14,15

VII. FURTHER WORK

Our dynamics can be simulated; fortn51/n! it takes a
minute or so to generate a 64-element causet on a DEC
pha 600 workstation. Analytic results, so far, are availa
only for the special case of transitive percolation. An impo
tant question, of course, is whether some choice of thetn can
reproduce general relativity, or at least reproduce a Lore
ian manifold for some range oft’s and ofn5uCu. Similarly,
one can ask whether our ‘‘Ising matter’’ gives rise to
interesting effective field theory and what relation it has w
the local scalar matter on a background causal set studie
@25,26#.

Another set of questions concerns the possibility of
more ‘‘manifestly covariant’’ formulation of our sequentia
growth dynamics—or of more general forms of causal
dynamics. Can Bell causality be formulated in a gauge
variant manner, without reference to a choice of birth
quence? Is our conjecture correct that all meaningful as
tions are logical combinations of assertions about
occurrence of partial stems?~Such questions seem likely t
arise with special urgency in any attempt to generalize
dynamics to the quantum case.!

Also, there are the special cases we left unstudied. Th
exist originary analogues of all of our dynamics, for e
ample. Are there other special, nongeneric cases of inter

We might continue multiplying questions, but let us finis
with the question of how to discover a quantum generali
tion of our dynamics. Since our theory is formulated as
type of Markov process and since a Markov process ma
ematically is a probability measure on a suitable sam
space, the natural quantum generalization would seem t
a quantum measure@1# ~or equivalent ‘‘decoherence func
tional’’ ! on the same sample space. The question then wo
be whether one could find appropriate quantum analogue
Bell causality and general covariance formulated in terms
such a quantum measure. If so, we could hope that, just a
the classical case treated herein, these two principles w

14In this connection, it bears remembering that Ising matter
produce fermionic as well as bosonic fields, at least in certain
cumstances@21,22#.

15References@23# and @24# describe a similar example of ‘‘hid-
den’’ matter fields in the context of two-dimensional random s
faces~Euclidean signature quantum gravity! and the associated ma
trix models in the continuum limit. Unfortunately, the matter fiel
used~Ising spins or ‘‘hard dimers’’! were unphysical in the sens
that the partition function was a sum of Boltzmann weights wh
were not in general real and positive. This is much like our fi
state model described above. To the extent that the analogy bet
these two, rather different, situations holds good, our results h
suggest that there might be, in addition to the matter fields e
ployed in @24#, another set of fields with physical choices of th
coupling constants, which could reproduce the same effective
namics for the random surface.
2-13
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FIG. 8. Two families related by Bell causality.
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lead us to a relatively unique quantum causet dynamics16 or,
rather, to a family of them among which a potential quant
theory of gravity would be recognizable.
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APPENDIX: CONSISTENCY OF THE CONDITIONS

Our analysis in Sec. IV unfolded in the form of sever
lemmas. Here we present some similar lemmas wh
strictly speaking, are not needed in the present context,
which further elucidate the relationships among our con
tions. We expect these lemmas can be useful in any atte
to formulate generalizations of our scheme, in particu
quantal generalizations.

Lemma 5.The Bell causality equations are mutually co
sistent.

Proof. The top of Fig. 8 shows three children of an arb
trary causal setCn . The shaded ellipses represent portions
Cn . The small square indicates the new element whose b
transformsCn into a causal setCn11 of the next stage. The
smaller ellipse ‘‘stacked on top of’’ the larger ellipse repr
sents a subcauset ofCn which does not intersect the precu
sor set of any of the transitions being considered~i.e., none
of its elements lie to the past of any of the new elemen!.
This small ellipse thus consists entirely of ‘‘spectators’’
the transitions under consideration. The bottom part of Fig

16See@27# for a promising first step toward such a dynamics.
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shows the corresponding parent and children when th
spectators are removed.

Notice that one of the three children is the gregario
child. We will show that the Bell causality equations b
tween this child and each of the others imply all remaini
Bell causality equations within this family. Since no Be
causality equation reaches outside a single family~and since,
within a family, the Bell causality equations that involve th
gregarious child obviously always possess a solution—
fact, they determine all ratios of transition probabilities e
cept for that to the timid child!, this will prove the lemma.

In the figuret1 and t2 represent a general pair of trans
tions related by a Bell causality equation, namely,

t1

t2
5

s1

s2
. ~A1!

But, as illustrated, each of these is also related by a B
causality equation to the gregarious child, to wit:

t1

t3
5

s1

s3
and

t2

t3
5

s2

s3
. ~A2!

Since Eq.~A1! follows immediately from Eq.~A2!, no in-
consistencies can arise at stagen, and the lemma follows by
induction onn. h

Lemma 6.Given Bell causality and the further cons
quences of general covariance that are embodied in lemm
all the remaining general covariance equations reduce
identities; i.e., they place no further restriction on the para
eters of the theory.

Proof. Discrete general covariance states that the pr
ability of forming a causet is independent of the order
which the elements arise; i.e., it is independent of the co
sponding path through the poset of finite causets. Now, g
eral covariance relations always can be taken to come f
‘‘diamonds’’ in the poset of causets, for the following re
2-14
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FIG. 9. Consistency of remain
ing general covariance conditions
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son. As illustrated in Fig. 9, any pair of children of a caus
~siblings! will have a common child obtained by adjoinin
both new elements of the two siblings, i.e., adding to
‘‘grandparent’’ both the new element which defines one s
ling and the new element which defines the other sibli
@For example, consider the case where the two-antichai
the grandparent and it has the child • • •~by adding a discon-
nected element! and the child ~by adding an element to

the future of both elements of the two-antichain!. To find
their common child add a disconnected eleme

to , or an element to the future of two of the elemen

of • • • . Now, still referring to Fig. 9, letuDu5n and suppose
inductively that all the general covariance relations are
isfied up through stagen. A new condition arising at stag
n11 says that some path arriving atB via x has the same
probability as some other path arriving viaz. But by our
inductive assumption, each of these paths can be modifie
la
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d-
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or

w
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go through D without affecting its probability. Thus the
equality of our two path probabilities reduces simply toax
5bz.

Now by Bell causality and lemma 2,

x

qn
5

b

qn21
,

whence

ax5ab
qn

qn21
.

But by symmetry, we also have

bz5ba
qn

qn21
;

therefore,ax5bz, as required. h
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