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Inflationary solutions are constructed in a specific five-dimensional model with boundaries motivated by
heterotic M theory. We concentrate on the case where the vacuum energy is provided by potentials on those
boundaries. It is pointed out that the presence of such potentials necessarily excites bulk fields. We distinguish
a linear and a non-linear regime for those modes. In the linear regime, inflation can be discussed in an effective
four-dimensional theory in the conventional way. This effective action is derived by integrating out the bulk
modes. Therefore, these modes do not give rise to excited Kaluza-Klein modes from a four-dimensional
perspective. We lift a four-dimensional inflating solution up to five dimensions where it represents an inflating
domain wall pair. This shows explicitly the inhomogeneity in the fifth dimension. We also demonstrate the
existence of inflating solutions with unconventional properties in the non-linear regime. Specifically, we find
solutions with and without an horizon between the two boundaries. These solutions have certain problems
associated with the stability of the additional dimension and the persistence of initial excitations of the
Kaluza-Klein modes.

PACS numbgs): 98.80.Cq, 04.56:h, 11.25.Mj

[. INTRODUCTION damental scales around the grand unified théGiyT) scale
with the energy scale associated with the additional dimen-
Two important theoretical developments, the advent of Msions being an order of magnitude or so smaller, to models
theory and the discovery of branes have recently stimulatedith a fundamental scale of order a TeV with macroscopic
new ideas in early universe cosmology. There has been codditional dimensionf46]. It is clearly interesting to explore
siderable activity on various cosmological aspects of Mthe cosmology of these models and, recently, some work in
theory over the past two yeafd—24). The cosmology of this direction[47,21,31,33,4Bhas been done.
Horava-Witten theory25—-28, which describes M theory on  In this paper, we would like to study the important issue
the orbifoldS'/Z,, however, is much less studied sofag—  of how inflation relates to these new theoretical ideas. For
33]. This theory describes the strong coupling dual of thefecent related work on inflation se0,49,50,23,24,51
Eg X Eg heterotic string and is, therefore, of great importanceRather than presenting a general scenario, we will concen-
for M-theory particle phenomenology. Clearly, this propertytrate on a specific model which incorporates the M theory as
makes it a very interesting starting point for cosmology asvell as the brane aspects. This model can be interpreted as a
well. part of the five-dimensional effective action of M theory on
Various aspects of branes might be important in early8'/Z, [42,52,43,53 obtained by reducing the 11-
universe cosmology, such as their ability to smooth out sindimensional theory on a Calabi-Yau threefold. The five-
gularities[5,6,11,21,22 and their thermodynamical proper- dimensional space of this theory has the structig
ties[10,12,34,3% Most obviously, however, they play a role =SYZ,x M, and contains two four-dimensional orbifold
in the cosmology of particle physics models that have branefixed planesior boundaries M §) and M {2). It consists of
in their vacuum structure and, more specifically, that lead t@yauged\N'=1 supergravity plus vector and hypermultiplets
low-energy theories arising from the world volumes ofin the bulk coupled toV=1 theories with gauge and chiral
branes. Such models appear in the context of brane boxasultiplets on the orbifold fixed planes. The vacuum solution
[36,37, type-I string theory38—41 and M theory orS'/Z,  of this theory{42] is a BPS double three-bragomain wal)
[42—-45. A characteristic feature of many of those models iswith the three-brane world volumes identified with the orbi-
the possibility of one or more compact dimensions beingold planes. Upon reduction to four dimensions on this
large compared to the fundamental length scale of the theoryacuum solution, one arrives at Afi=1 supergravity theory
Such a situation can be described by a Kaluza-Klein theoryhich is a candidate for a realistic particle physics model
with gravity and possibly other fields in the bulk coupled tofrom M theory. The hidden and observable fields in this
a four-dimensional “brane-like” object with the standard model arise from the *“three-brane orbifold planes.” The
model fields on its world volume. A wide spectrum of scalestheory, therefore, allows us to study cosmology in a poten-
has been proposed for such models. These range from futially realistic particle physics environment and provides a
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concrete realization of the general idea of “getting the stanplorer (COBE) normalization and the typical magnitude of
dard model from a brane.” Simple cosmological solutions ofheterotic M-theory scales, we argue that inflation in this
this theory have been found in Ref81,33. In Refs.[44,45  theory may take place in both regimes. Interestingly, if the
non-perturbative vacua of heterotic M theory containing fiveorbifold and Calabi-Yau scales during inflation are at their
branes have been constructed. In the five-dimensional effephysical valueg28], the theory becomes linear fofi*<6
tive theory, these five branes appear as three branes which, #010'® GeV, right below the COBE scale.
addition to the two orbifold planes, are coupled to the bulk. It The proportionality ofe; to the sizeR of the additional
would clearly be interesting to study cosmological solutionsdimension can be understood from the linear behavior of the
of these more general theories with additional three branegne-dimensional Green’s function. For more than one addi-
In this paper, however, we restrict ourselves to the simpleional dimension, the Green’s function is logarithmic or fol-
setting of two orbifold planes. lows an inverse power law. As a consequence, in those cases,
For the application to cosmology, we hateonsistently  the theory is always in the linear regime. The case of het-
truncated this theory to a minimal field content suitable forerotic M theory with one large dimension is, therefore, the
inflationary models. Specifically, in the bulk we have keptonly one where inflation may take place in the non-linear
gravity and a scalar fields (the volume modulus of the regime.
internal Calabi-Yau spagewith a potential V of non- In the linear regime, we can compute a sensible four-
perturbative origin. In addition, on each orbifold plane we dimensional effective theory by integrating out the Kaluza-
have also kept a scalar field with a potentialV,; . The  Klein modes induced by the boundary sources. We show
theory is characterized by three scales, namely the fundaxplicity how this leads to corrections in the four-
mental scaléMs of the five-dimensional theory, the separa- dimensional theory. Since the bulk modes have been inte-
tion R of the orbifold planes and a scalethat sets the height grated out to obtain this effective action, they do not appear
of certain explicit potentials for the bulk field. These po- as excitations of the Kaluza-Klein modes from a four-
tentials are responsible for the existence of the domain walllimensional perspective but rather as corrections to the zero
solution. mode effective action. In other words, the Kaluza-Klein
Hence, we have a very simple setting with one additionaimodes in the four-dimensional effective action are defined
dimension and one “candidate inflaton” with potential in using a mode expansion around the inhomogeneous five-
each part of the space. In addition to the M-theory relationdimensional background. Hence, at the linear level, they are
we, clearly, also have a simple starting point to study infla-source free as seen from four dimensions. As a consequence,
tion in the general context of models with large additionalthe five-dimensional inhomogeneities do not lead to unusual
dimensions. cosmological effects other than those encoded in the correc-
The goal of this paper is not to construct explicit infla- tions to the zero mode action. In particular, these inhomoge-
tionary models by choosing specific potentials for the scalaneities do not cause non-trivial four-dimensional Kaluza-
fields in the theory. Rather, we are interested in how theKlein modes which would contribute to the energy density of
specific structure of the theory, that is, the coupling of thethe universe. This does not preclude, however, that these
five-dimensional bulk to four-dimensional boundary theo-four-dimensional modes are excited due to other physical
ries, effects inflation. We distinguish two different types of mechanisms. Examples of such mechanisms have been pre-
inflation, which we call bulk(or modul) and boundaryor  sented in Ref[47]. Our basic statement is that, in the linear
matter field inflation. For bulk inflation the vacuum energy regime, inflation can essentially be treated in the effective
is predominantly provided by the bulk potentM] whereas four-dimensional\/=1 supergravity theory. Nevertheless, to
for boundary inflation the boundary potentidg; dominate. get a physical picture, we find it useful to lift a generic four-
In this paper, we concentrate on the second case of boundagymensional inflating solution up to a five-dimensional one.
inflation. This option is particularly interesting in that it di- This five-dimensional solution represents a pair of inflating
rectly relates to the presence of the characteristic boundaryomain wall three branes and it has inhomogeneities in the
theories. Moreover, inflation from matter fields seems to beadditional dimension caused by the boundary potentials. On
in better accord with current directions in four-dimensionalthe other hand, initial inhomogeneities not induced by
inflationary model building54] than modular inflation. boundary sources are damped away in the linear regime due
Let us summarize our main results. One of the mainto the inflationary expansion and should not play any role.
themes of this paper is that energy density on the orbifoldAs a consequence, from the perspective of the four-
planes provides source terms localized on the fixed points idimensional effective action, the excitation of Kaluza-Klein
the additional dimension and, hence, excites bulk fields. I'modes is negligible at the end of inflation.
particular, this applies to vacuum energy on these planes as The situation is quite different in the non-linear regime,
needed for boundary inflation. Our first conclusion is thate;>1, where one has to solve the full five-dimensional
boundary inflation is necessarily inhomogeneous in the additheory. To do so, we assume that the bulk scalar fiekias
tional dimension, or, in other words, excites Kaluza-Kleinpeen stabilized by its potential and the boundary potentials
modes. The magnitude of those excitations is controlled byllow for slow roll behavior of the boundary scalars. Under
the dimensionless parameter=V,; R/Mg. For |j|<1 the these assumptions we find, in a first attempt, a simple solu-
excitations can be described by linearized gravity. This aption by separation of variables that exhibits inflation. This
proximation breaks down ife;|>1. One then has to use the solution represents the heterotic M-theory version of an old
full non-linear theory. Using the Cosmic Background Ex-four-dimensional domain wall solutiorb5,56|, recently ad-
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vocated[50] in a somewhat different approach to brane in-x 10'® GeV if the slow-roll parametes is not too small, or,
flation. Both boundaries expand in a de Sitter-like mannein other words, if the inflaton potential is not too flat.

with the Hubble parametets; related to the potentials in an An alternative possibility is that the orbifold and Calabi-
unconventional wayt;~|V,|Ms 3. The physical siz&Ry,s  Yau scales are not be at the coupling unification values dur-
of the additional dimension is constant in time and fixed ining inflation. Rather, they are such that the linear regime
terms of the boundary potentials. Ad§ andH, of the same  starts significantly below 1§ GeV, Vﬁ{14<1016 GeV. In
order,H;~H,~H, one haR,,,s~ 1/H. The Hubble param- this case, there are two options.

eter, therefore, equals the orbifold energy scale during infla- Inflation takes place in the non-linear regime and is based
tion. We find solutions with and without a horizon at someon the corresponding solutions given in this paper. This op-
point on the orbifold. The solutions without horizon require tion is somewhat speculative as it depends on the successful
potentials with opposite sign satisfying;+V,4,<<0. Signals  stabilization of the orbifold modulus. It would have very
travel from one boundary to the other in a finite time andunconventional properties. These include a linear relation be-
every signal emitted somewhere in the bulk will eventuallytween the Hubble parameter and the potential and inhomo-
reach one of the boundaries. For the solutions with a horizogeneities in the orbifold direction. Since space-time in this
one needs both potentials to be positiVg,>0. In this case, context is genuinely five-dimensional, analyzing density
the two boundaries are causally decoupled. A signal emittefluctuations requires some care and the standard equations
on one boundary will never reach the other one. may not apply.

In a second approach, we then find the general solution of Non-linear inflation does not take place. This might hap-
the model without assuming the separation of variables. Thipen for a number of reasons. For example, the potentials
is done exploiting the similarity of our equations to those ofmight not have the required properties, the initial conditions
two-dimensional dilaton gravit}57]. We recover the previ- may not be appropriate or, simply, non-linear inflation might
ous inflating solution as a special case if a certain continuousot work at all. Inflation could then start when the energy
parameter in the general solution is set to zero. For all othedlensity drops below/,,, and the linear regime is reached.
values of this parameter, however, the solution is non-This could be consistent with the COBE normalization for a
inflating and has a collapsing orbifold. This indicates an in-very small slow-roll parametes, that is, a very flat inflaton
stability of the solution which might be cured by stabilizing potential.
the modulus of the additional dimension. The construction of
a viable mf!atlonary backgrpund in the non.-Imear regime is, II. THE ACTION
therefore, tied to the question on how precisely such a stabi-
lization is realized. We discuss various options and their con- In this section, we would like to present the five-
sequences in our context. Another problem with the inflatingdimensional action that we are going to use in this paper
solution which is made visible by its generalization is thealong with its most important properties. This includes a dis-
appearance of an arbitrary periodic function in the solutioncussion of its origin and interpretation, its “vacuum” solu-
This function encodes the initial inhomogeneities in the adtion and the related four-dimensional effective low-energy
ditional dimension. Unlike in the linear case, here these intheory that is obtained as a reduction on this vacuum solu-
homogeneities are not damped away. This seems to be iion. Making contact with the four-dimensional theory is par-
contradiction with the inflationary paradigm that all initial ticularly useful, in our context, whenever the relation to
information should be wiped out. On the other hand, if suf-“conventional” four-dimensional inflation is analyzed.
ficiently small, these inhomogeneities may lead to interesting Our starting point is the five-dimensional action
predictions. Given those problems, we point out that conven-
tional inflation in the linear regime remains a perfectly viable
option for heterotic M theory. For models with more than S5= [f \/_
one large dimension it is the only possibility. 2K5

Based on the results of this paper, we would like to pro- 2
pose three scenarios for inflation in heterotic M-theory. 2 J

The orbifold and the Calabi-Yau scales during inflation =
are at the specific values that at low-energy lead to coupling
unification. In this case, th(/a4the?/zy becomes linear for bound-
ary potentials satisfying/;*<Vi*=6x10'® GeV. At the . .
unification point the Cala?al Ya:IJn scale and the fundamentaYVhere the potentials are given by
11-dimensional Planck scale are also of the ordéf 1BeV.

This theory undergoes a transition from a pure M-theory re- U(¢)= —v 267204 \/( ), (2.2)
gime at energies above ¥0GeV (where no description in

terms of 11-dimensional supergravity applidgectly to the

linear regime. Inflation can then take place in the conven-

tional way, presented in this paper. In this scenario, the en-1ye have changed somewhat the notation with respect to Ref.

ergy density at the beginning of inflation is directly linked to [42] to be in better accord with conventions in cosmology. The
the fundamental scales of the theory and is, in this sens@calar fields is related to the field/ of Ref.[42] by V=e?. The

explained. It fits the COBE normalizatioN}*=s%46.7  constanty was calleday there.

R+ = (9 «Pd* P+ U(¢)}

N e ,¢)”

(2.1
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Ui(di, )= 12\/§V9_¢+Vi(¢i b). action. Hence, the bulk potentials V have dimension two
(2.3y  whereas the boundary potentidls, V; and the constant
have dimension one.

Here k5 is the five-dimensional Newton constant. Coordi- Let us now discuss the interpretation of the actiarl)—
natesx® with indicesa,8,v, ...=0,...,3,5 are used for (2.3) in terms of M theory. More specifically, we will con-
the five-dimensional spacéts. We consider a space-time sider Hoava-Witten theory; that is, 11-dimensional super-
with structureMs=S'/Z,X M, whereS'/Z, is an orbifold  gravity on the spac&'/Z,x M,, where M, is a smooth
and.M, a smooth four-manifold. The coordinate$son M,  ten-dimensional manifold. The two 10-dimensional orbifold
are labeled by indicegt,v,p, ...=0,...,3while the re- fixed planes of this theory carry additional degrees of free-
maining coordinatey=x> parametrizes the orbifold. It is dom that couple to the bulk supergravity, namely ti#&g
chosen in the rangg e[ —R,R] with the endpoints identi- gauge multiplets, one on each plane. Now consider reducing
fied, whereR= mp andp is the radius of the orbicircle. The this theory on a Calabi-Yau threefold assuming that the ra-
Z, symmetry acts asy——y and leaves two four- dius of the Calabi-Yau space is smaller than the orbifold
dimensional planes, characterized py=0 and y,=R, radius. For the present values of these radii, such a relation is
fixed. These planes, separated by a distéRcare denoted suggested by coupling constant unificat{@8]. We then ar-
by M), wherei=1,2. The action(2.1) describes five- rive at a sensible five-dimensional theory on the space time
dimensional gravity plus a scalar fieltd with potentialU in ~ Ms=S"Z;X M,, where the two four-dimensional fixed
the bulk coupled to four-dimensional theories on the orbifoldPlanes of the orbifold result from the original 10-dimensional

fixed planes each carrying a scalar figldwith potentialU; . planes. For the standard embedding of the spin connection
The bulk fields have to be truncated in accordance with thénto one of theEg gauge groups, this effective action has
Z2 Symmetry_ Specifica”y, one should require been Computed in Refi42,52,43 The generalization to
non-standard embedding has been described in[B&. It
d(—y)=(y), turns out that the bulk theory is a five-dimensioné 1
gauged supergravity coupled to vector- and hypermultiplets.
Uu(—Y)=0,.Y), This bulk theory is coupled to two four-dimension&l= 1
theories that reside on the now four-dimensional orbifold
9,5(—Y)=—0,s(Y), (2.4 planes. More specifically, these boundary theories contain
gauge multiplets as well as chir@dauge mattgrmultiplets.
Uss(— V) =0ss(Y). Upon appropriate reduction on the orbifold to four dimen-

sions(in a way to be specified belgwone obtains a candi-
Hence,¢, g,,. Uss are even under thg, symmetry, while date for a “realistic” N_=1 supergravity theory with the
9,5 is odd. Also note that thg derivative of an even field is observable sector coming from one plane and the hidden
odd and vice versa. Whereas even fields are continuouggctor from the other.
across the orbifold planes, an odd field jumps from a certain The action(2.1) is a “universal” version of this five-
value on one side to its negative on the other side. An alterdimensional effective theory truncated to the field content
native and equivalent way to think about the five-that seems essential to discuss cosmology. Let us try to make
dimensional space, in contrast with the orbifold picturethis statement more precise by explaining the meaning of the
which we have used so far, is the boundary picture. In thigarious objects in Eq$2.1)—(2.3) in terms of the underlying
picture, the coordinatgis restricted to one half of the circle, 11-dimensional theory. In terms of the 11-dimensional New-
yel=[0,R] and five-dimensional space time is written aston constantx and the Calabi-Yau volumecy the five-
Msg=1X M,. The orbifold fixed planes then turn into the dimensional Newton constant is given by
boundaries of this five-dimensional space. We will some-
times find it more convenient to work in this boundary pic- 2 K
ture. Ks=1 - (2.6)

CY
The potentialg2.2) and(2.3) have been split into explicit,

exponential potentials fop with a height set by the constant The bulk field ¢ is simply the modulus associated with the
v and potentiald/ andV; which, at this point, are arbitrary. Calabi-Yau volume such that the *“physical” volume is
The — sign in Eq.(2.3 refers to the plané=1, the+ sign  given bye®v.y. Clearly, the Calabi-Yau space has, in gen-
to the pland =2. The reason for writing the potentials in this eral, many more moduli associated with its shape and com-
form will be explained shortly. It is useful to collect the mass plex structure. For simplicity, we have kept the volume
dimensions of the various objects that we have introduced. Imodulus only, since it is the geometrical modulus common
five dimensions, the Newton constangz has dimension to all Calabi-Yau spaces. It is in this sense that we are refer-
three and we write ring to the action as universal. Also, for simplicity, we have

dropped a number of other bulk fields such as the axions

ks 2=M3. (2.5  associated withp and the vector fields in the vector multip-

lets. All these fields can be consistently set to zero in the full
HereMs is the “fundamental” scale of the five-dimensional equations of motion. Therefore, our solutions will be solu-
theory. In order to make subsequent equations simpler, wions of the complete action of heterotic M theory as well.
have pulled the Newton constant in front of the completeWe have, however, kept a feature of the action that arises
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from the gauging of the bulk supergravity and is essential tathe orbifold and two four-dimensional branelike theories
discuss cosmology; namely, the explicit bulk potential dor corresponding to an observable and a hidden sector. In addi-

in Eq. (2.2). The constant in this potential is given by tion to bulk gravity, we have a bulk scalar field with poten-
tial and a scalar field with potential on each plane; in other

7 k\?n words, a minimal setting for inflation. The explicit potentials

V= E A VTC/\B; 27 in Egs.(2.2), (2.3 that originate from M theory can always

be switched off by setting=0, if desired. Our results are,

wheren is an instanton number related to the tangent spactherefore, not limited by their presence. What does limit our
and gauge instantons in the internal Calabi-Yau space. Weesults is the presence of only one additional dimension,
have added another potenti(¢) in the bulk which one Something that is appropriate for heterotic M theory but not
expects to arise from non-perturbative effects like internallyneécessarily otherwise. We will comment on the modification
wrapped membranes. The explicit computation of this poten©f our results in the case of two or more large dimensions as
tial for M-theory is not very well understood at pres¢see, ~We proceed. . _

however,[59,60). It is, however, clear that such a potential ~ For later reference, let us collect the equations of motion
is eventually needed to stabilize the moduli. Given the lackderived from the actiof2.1). We have the Einstein equation

of theoretical knowledge, we will not assume any specific 1 2
origin for V but, rather, try to specify what properties it R o =a sR=T ot S TO s(v—v. 28
should be required to have from a cosmological viewpoint. ap 29“3 p .21 apOlY V) 28

Let us now move on to the four-dimensional theories on
the orbifold planes and their M theory origin. As already With the bulk and boundary energy momentum tensors
mentioned, these planes arise directly from the 10-
dimensional planes of Hava-Witten theory upon reduction - E( _ E 2

. Ta aa(ﬁaﬁ(ﬁ gaﬁ(a¢)
on the Calabi-Yau space. On each of these planes, we have 2 2
introduced a scalar fielgh; with potentialU; that represents
the scalar partners of the matter fields. In fact, for non- ) _
standard embedding such matter fields generally arise on " #¥

1
+50.6U, (29

1 —1/2] 1 2
_5955 (9,u.¢i(9v¢i_§g,uv(a¢i) _g,u,yui )

both planes. Of course, restricting to one scalar field on each (2.10
plane is a tremendous simplification from the particle phys- (i (i)
ics point of view. Cosmologically, however, it seems reason- T,5=0, Ts5=0. (211

able to choose such a model with one “candidate inflaton”
on each orbifold plane, especially in a first study of inflation
in such models. Although the potentials in Eq. (2.3 are 2
known in principle for a given Calabi-au compactification,  [j,¢—5,U—gs22 > 9,U;8(y—y;) =0, (212
here we will not attempt to be more specific about their form. i=1
Instead of going into such detailed questions of model build-
ing, we will assume that they have the cosmologically de- Lapi— a4 Vi=0, (2.13
sired properties. There is another, explicit part of the bound-
ary potential in Eq(2.3) which depends on the projection of where s and [, are the Laplacians associated with the
the bulk field ¢ onto the orbifold planes. These potentials five-dimensional metriqg,z and its four-dimensional part
originate directly from Hoava-Witten theory and are related g,,, projected onto one of the orbifold planes.
to the explicit bulk potential forp. Note that, in particular, Which types of solutions to these equations are we inter-
the height is set by the same constantlefined in Eq(2.7).  ested in? For a cosmological solution, one would like to have
As we will see, they support a three-brane domain wall soa three-dimensional maximally symmetric subspace which,
lution of the five-dimensional theory. In the following, we, for simplicity, we take to be flat. Studying open and closed
therefore, refer to them as domain wall potentials. Of courseyniverses would be clearly interesting as well. Later, we will
there will be gauge multiplets on the orbifold planes as welldistinguish between a linear and a non-linear case. While the
which we have not written in Eq2.1). They could play a generalization to include spatial curvature is straightforward
role in cosmology via gaugino condensation. However, wen the linear case, the non-linear case is significantly more
will not consider this explicitly in the present paper. To sum-complicated. Still, we do not expect our main conclusions to
marize, the actior{2.1)—(2.3) can be viewed as part of the depend on the choice of spatial curvature. Clearly, the maxi-
five-dimensional effective theory of heterotic M theory and itmally symmetric subspace cannot contain the orbifold.
contains the basic cosmologically relevant ingredients of thisience, the solutions are independenkef(x*,x?,x%). They
theory. can, however, depend on the time=x° as well as on the
The M-theory context is not obligatory here. Instead, theorbifold coordinatey. As we will see in a moment, the pres-
action(2.1) could be viewed in the general context of theo- ence of fields and potentials on the boundaries in fact forces
ries with large additional dimensions where the standardis to consider orbifold dependence. Therefore, we start with
model arises from a brane world volume. In fact, in thisthe ansatz
context, our action is about the simplest appropriate to stud
inflationary cosmology. We have one “Iarge’r’) dimension g dsg=—e®d7*+e’*dx*+e*dy?, (2.14

For the scalar fields we find
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v=v(1Y), (2.15
a=a(ry), (2.16
B=B(1.Y), (2.17)
d=o(1y), (2.18
b= di(7). (2.19

PHYSICAL REVIEW D 61 023506

the above equations have to be dropped and are replaced by
the following boundary conditions:

Here « is the scale factor of the three-dimensional universe

andg is an additional scale factor that measures the orbifold e Pp'|,_, = ii[%ui] .
size. In some cases, we will choose the conformal gauge Y= 2 Y=

1 .
e—ﬁa’|y:yi=:—2 Ee—2V¢>i2+UI , (2.26
Y=Y
1 .
e vy =F 5| ~ 50 TeiHU| (2.27)
Y=Y,
(2.28

= B in the above metric. Note that we can choose this gauge

in the (r,y) subspace in such a way that the boundaries ar

tlere the uppetlower sign applies to the first boundary at

mapped to hypersurfaces=const. Usually, then, we can Y= Y1 (the second boundary gt=y5). The 5-function terms,

shift the boundaries back t=0,R so that our conventions
for the coordinate system remain intact. A special case o
curs if a boundary has been “mapped to infinity” due to a
singularity in the reparametrization. To be able to deal with
this case, we keep arbitrary in the subsequent formulas.
The equations of motion for the above ansatz are given th

3e #(a’+ap)—3e (o'~ a' B’ +2a'?)

T | 11
— o 2v 2 T A—2B412 A B
1€ ¢+ e Py SU+ e

1 o
Ee_zv¢i +Ui|o(y—vyi), (2.20

2
X2
=1

e—ZV[zd_;_B—I—(Sd-I— ZB—Z;/).OH'(.B_ V)B]

—e 2P[2a"+ V" +(3a' —2B' +2v)a'+(v' =B )v']

1 . 1 1 1
T am2032. “a=2B4124 T (J_ _a-B
4e ¢>+4e 1) ~|—2U 2e

2
1 .
x% §e2V¢$—ui}5<y—yi>, (2.2
3 (a—va+2a®) -3¢ F(a'?+v'a’)
1 . 1 1
— " a2v32_ T A-2B 412,
4e ¢ 4e ¢ +2U, (2.22
. . . . 1.
3(a'+aa’—av'—,8a’)=—§¢¢’, (2.23

e 2[¢p+(3a+B—v)pl—e P[¢"+(3a' =B +v')¢']
2

=—3¢U—e‘5i§1 a4Ui8(y—y)), (2.24)

bi+(3a—v) i +€?9,V;=0, (2.25

or equivalently the right-hand sides of the boundary condi-

dions, are non-vanishing if there is any kinetic or potential

energy on the boundaries. Hence, in this most interesting
case, the solution is necessarily inhomogeneous in the orbi-
fold coordinatey.

For the application to cosmology, one is also interested in
e four-dimensional effective action of E¢R.1) that is,
roughly speaking, valid when all energy scales are smaller
than the orbifold scale R. Normally, this action could be
derived by a simple truncation where all the bulk fields are
taken to be independent of the orbifold coordinate. While, in
our case, this gives the correct answer to lowest order, it
neglects higher-order corrections that can be relevant. These
corrections appear because, strictly, we are not allowed to
take the bulk fields independent of the orbifold coordinate,
thereby neglecting all contributions from bulk modes. In-
stead, as we have just seen, every non-vanishing term in the
boundary actions produce an orbifold dependence that needs
to be integrated out and, typically, leads to corrections to the
effective action. Hence, from a four-dimensional perspective,
the five-dimensional inhomogeneities are not seen as excita-
tions of Kaluza-Klein modes but rather as corrections to the
zero mode action. The four-dimensional Kaluza-Klein
modes, on the other hand, are defined using a mode expan-
sion on the inhomogeneous five-dimensional background.
Hence, they are not excited due to the inhomogeneities in the
fifth dimension. However, they could be excited by other
mechanisms such as those discussed in R#fl. Let us
explain how the derivation of the zero mode effective action
works in our case, taking into account corrections up to the
first non-trivial (linearn order. For a more detailed account
see[61]. First, we split the bulk fields as

ga,B:EaB—i_aaBi (229)

b=d+d, (2.30

into their orbifold average plus an orbifold-dependent varia-
tion. Specifically, we have defined

Eaﬁ:<gaﬁ>51 d=(d)s, (2.3

where the dot and the prime denote the derivatives with re-
spect tor andy. Alternatively, one can formulate these equa-where ( )5 denotes the average in the orbifold direction.

tions in the boundary picture. Then aflfunction terms in

Hence, the average of the variations vanishes; that is,
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<~éaﬂ>5:0, ($)s=0. (2.32 that ari;es from the exp_licit boundary poten.tials in E3
proportional tov. Inserting the corresponding part of the
The averaged fields are in one to one correspondence withoundary stress energy into E¢8.35 and(2.36 we find
the low energy moduli fields. Aside from the modukaswe — -
have the orbifold modulus3 and the four-dimensional dé:(g“ﬁ+gal3)dxadxﬁ

Einstein-frame metriag,,,. The latter two quantities are 1.\ — 4.\ —
related to the averaged metric by =|1+ 3¢ e Py, dxtdx+| 1+ §¢>)e25dyz,
e*=gss, (233 (2.40
g4,u,V:eB5,uV' (234) ¢:$+’($1 (241)
Note that we have no graviphoton zero mode sigge is - 1
odd undeiZ, and, henceg,s=0. After expanding to linear b= —Zeﬁ_"’eDW( z— E)’ (2.42
order in the variations, the equations of motion can be de-
composed into an averaged part and a part for the variation%here
The latter equations have the following solutions in the
boundary picturé
VR (2.43
~ — GDW: - —=. .
Jap=€""RIP1(2)S )+ Po(2)S], (2.39 2
~ 1 a7 - Note that the explicit potentials have the same height but
b= §e R[P1(2)d4U1+P2(2)d4U>], (2.36 opposite sign on the two boundaries. Therefore, the
z-dependent part of the solution is proportional to the differ-
where ence P,—P,)(z) of the polynomials(2.38 and, hence, is

linear inz This is to be contrasted with the general case of
unrelated boundary potentials which leads to a quadratic

variation. For constant moduj,,,, 8 and ¢, Egs.(2.40—
(2.43 represent the linearized version of an exact BPS do-
is the modified boundary stress energy. The bar indicates thgfain wall (three-brang solution of heterotic M theofyin
the corresponding expressions are understood with the bulik/e dimensions that was found in Réf2]. More precisely,
fields replaced by their zero modes. Furthermore, we havghe solution represents a pair of domain walls stretched

) ) 1 )
S =Toh 39.697°T%) (2.3

defined the polynomials across the orbifold planes and it can be viewed as the
1 1 1 1 “vacuum” solution of the theory. At the same time, it is the
—_ 24y, S five-dimensional version of Witten’s 11-dimensional linear-
P1(2) °+z- 7, Py(2) z°+ =, . . : :
2 3 2 6 ized background?28]. In this way, the four-dimensional or-

(2.38 bifold planes are identified with three-brane world volumes
which carry the observabland hiddeinlow energy fields as
their zero modes. In this sense, our picture offers a concrete
y realization of the general idea that the world arises from the
=7 e[0,1]. (2.39  world volume of a brane. Observe that the size of the cor-
rection(2.40 is set by the dimensionless quantiy, in Eq.

This solution shows that each energy source on the boundafg-43: Which is just the product of the boundary potential
leads to a certain, generally quadraigjependent variation (Mmeasured in units oks “=M) times the size of the orbi-

of the bulk fields across the orbifold. This corresponds tofold dimension. Therefore, the linearized approximation that
coherent excitations of the Kaluzu-Klein modes in the orbi-1ed us to the solutiong2.39, (2.36 is only sensible as long

fold direction. Let us consider an explicit example. We as|epw|<1. We will discuss this in more detail in the next

would like to determine the dependence of the bulk fields Section. _ _ _
By inserting the solution2.29—(2.36) into the action

(2.1) and promoting the modulg,,,, 8, and ¢ to four-

which depend on the normalized orbifold coordinate

°This solution applies to the part of the boundary stress energy
which is homogeneous and constant in time on scales of the order
R. Slowly varying potential energy, the most important case for this “The exact solution of Ref.[42] has the form ds?
paper, typically satisfies this requirement. For boundary processes azH 7, dXHdX"+ bzH*dy?, e?=boH® where H=c,— Zepw(z
on scales smaller thaR the associated bulk fields are suppressed—3) anda,, by, andc, are constants. In fact, it also constitutes an
and decay exponentially away from the boundegg]. exact solution of the actiof®.1). Upon linearizing inepyy, setting
3These polynomials are characterized by the propetfa$z))s Q4™ My N EQ. (2.40, and appropriately matching the moduli,
=(P»(2))s=0, P1(0)=1, P{(1)=0, P5(0)=0 andP5(1)=—1. this coincides with Eqs(2.40—(2.42).
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dimensional fields, we can now compute the first order corwall solution in the first place. Performing a reduction on this
rected action of the zero modes. We introduce the fields solution, they are canceled so that there is no remnant poten-
_ _ tial for the Sand T moduli in four dimensions. Given the
S=e? T=¢é", (2.44  form of our five-dimensional actiof2.1)—(2.3), the bulk po-

. ) ) . tential V only depends onS but not on T. The four-
which are just the real parts of the ordind@gnd T moduli> dimensional effective potential2.49 shows that, in this
Note thatS measures the volume of the internal Calabi-Yaucase, the modulu$ cannot be stabilized. For the solutions
space in units ofvcy whereasT measures the size of the pased on the four-dimensional effective action we, therefore,
orbifold in units of R We also introduce the four- payve to slightly generalize our setup and assume \thata

dimensional Newton constant function of the orbifold modulug as well.
5 An alternative way to deal with the orbifold dependence
Gyn= Ks _ 1 (2.45 of bulk fields in a reduction to four dimensions is to keep all
167R  164#R Mg' ' the Kaluza-Klein modes instead of integrating them out. Re-
cently, this has systematically been carried out in R&3).
and the rescaled boundary fields In such a four-dimensional action, the zero mode part does
3 not have the above corrections. Instead, there exist terms in
_ M5 the action which couple Kaluza-Klein modes linearly to zero
Ci= ?¢i ' (2.46 mode fields. Hence the Kaluza-Klein modes cannot be set to
zero consistently. In fact, solving for these Kaluza-Klein
Then the four-dimensional effective action is given by modes would lead to the Fourier decomposition of our
1 3 orbifold-dependent correctioni&.35), (2.36).
__ o s ) “ Besides being useful to calculate the four-dimensional ac-
Sa 16WGNJM4 Ge| Rt o T 20uTIT tion, the method described above can also be used to find

L L2 approximate solutions of the five-dimensional theory. This is
_ — actually the main reason why we have presented it here in
+ ES %0, S0S| ~ fM _94{5 21 Kid,Cid"Ci some detail. Concretely, suppose one has found a solution of
! the four-dimensional theory with actiq®2.47). Then, by in-

serting this solution into Eq$2.29—(2.36), we can simply
(2.47 “lift it up” to obtain a solution of the five-dimensional

theory. Of course, for this solution to be sensible, the linear-
with the “Kahler metrics” ized approximation that led us to E¢.39, (2.36 should

be valid. The condition for that to be true will be discussed in

3  epw the next section in some detail.
Ki=gzt—o (2.48
2T 2S

+V,

and the four-dimensional potential lll. TYPES OF INFLATION AND SCALES

Which type of inflation for the actiof2.1) do we want to
consider? First of all, in this paper we are interested in “con-
ventional” potential-driven inflation rather than in a pre-big-

(2.49  bang-type scenari64]. Some solutions of five-dimensional
heterotic M theory that might provide a basis for a pre-big-
where the boundary potentials,; normalized to four mass bang scenario have been found in R¢&L—33. Given that

1 2 € 2 2 1
DwW 3
=— i+ o +—V,* i+ =
Ve 2T2i21v4| 25Ti=1( 3 V4 ’95\/4') TRMsV,

dimensions are defined by we want to focus on potential energy, there are two obvious
options.
Vyi=M3V;. (2.50 Bulk potential energy: The potential energy is provided

. ) , by the bulk potentiaV and the field¢ is the inflaton. This
Note that the Khler metrics and the potential have correc- .3n also be called “modular inflation.”

tions linear inepyy that originate from the domain wall. Had Boundary potential energy: The potential energy is due to
we performed a simple truncation of the five-dimensionaly,o boundary potential¥; (one of them or bothand the
theory by taking the bulk fields independent of the orbifold g4 4: are the inflatons. This can be called the “matter
we would have missed these corrections. What happened .4 inflation.”

the explicit potentials proportional to/ in the five- Clearly, in general, one could also have a mixture of both
dimensional action, Eqs2.2) and (2.3)? These potentials e |n this paper, we concentrate on the second option of
were actually responsible for the existence of the doma”boundary potential energy, which appears to be more inter-
esting for a number of reasons. Most importantly, the pres-
ence of the boundaries is the truely new ingredient in the
5The imaginary parts are absent because we have omitted tt&ction(2.1). Inflation from the boundary also seems to be in
corresponding fields in the five-dimensional acti@) for sim-  accord with the current mainstream in four-dimensional in-
plicity. The complete reduction can be found in Ref3]. flationary model-buildind54]. On the other hand, modular
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inflation faces a number of problems associated with thdy keeping the linearized Kaluza-Klein modes in the four-
steepness of typical non-perturbative moduli potentialdimensional action as in Ref63]. If, on the other hand,
[65,66. From the viewpoint of the recently proposed models|;|>1 this linearized approximation breaks down. Then the
[46] with a very low “fundamental” scaleMs~TeV, bulk  simplest possibility is probably to work with the full five-
inflation might not be desirable because reheating from a@imensional action. Hence, we distinguish two cases.

bulk field might leave the additional dimension too inhomo- |e|<1, the linear regime: We can solve the four-
geneous to be consistent with standard cosmolpgi. dimensional effective actio(2.47) for the zero modes and
None of these arguments, of course, disproves bulk inflatiofift up the solutions to five dimensions using the results of
and it might still be an interesting option. This will be dis- the previous section. We will discuss this case in the follow-
cussed elsewhere. ing section.

Let us, from now on, concentrate on the case of potential |¢]|>1, the non-linear regime: We should solve the full
energy on the boundary. Our assumption is, hence, that thidgre-dimensional theory2.1). This case will be considered in
bulk potentialV(¢) is zero or negligible for all field values Secs. V and VI.
¢ relevant during inflatioriwhich does not mean, however, = What seems surprising about this criterion, at first, is that
that V is identical to zerp The potential energy is then the quantitiese; are linear in the sizeR of the additional
dominated by the boundary potential§ and the four- dimension. The larger the additional dimension, the earlier
dimensional effective potential is given by the system enters the non-linear regime. This can be under-
stood as follows. Consider the one-dimensional space asso-
ciated with the additional dimension. The orbifold planes
appear as points sources in this space. On the linear level, the
fields generated by these point sources are roughly described
In the previous section, we have given a method to obtai®y the one-dimensional Green’s function which is simply the
approximate five-dimensional solutions from solutions of thelinear function|y|. The proportionality ofe; to the orbifold
four-dimensional effective action. Therefore, if we can find asize R simply reflects this linear increase inof the one-

four-dimensional inflationary solutiofwhich we can ifv,  dimensional Green's function. This picture also suggests
satisfies the usual slow roll conditionsve can lift it up to a how the above criterion should be modified for more than

solution of theD =5 action. When is this effective four- ©one additional dimension. For example, for two additional
dimensional approach sensible? In the domain wall exampl@imensions the Green’s function is a logarithm and, hence,

of the previous section we have seen that the condition ~ roughly a constant. Therefore; should be independent of
the size of the additional dimensions. Generally, daddi-

2

1 3
V42 ﬁ Igl V4i+O(EDW)’ V4i: M5V| . (31)

lv|R tional dimensions, one expects the corresponding parameter
lepwl = 2 <1, (3.2 ¢, (suppressing the indey to be given by
which involves the height of the domain wall potentials Vs 3
€d 2+d (3.9

should be satisfied in order for the linearized solution to be
valid. In the context of heterotic M theory, the relati®12)
is required anyway since the formulation of the theory is notwhere M,.4 is the fundamental scale of the
well known beyond the linear level iayy, . In any case, Eq. 4+ d-dimensional theory. Since one would generally require
(3.2 should be satisfied for the effective four-dimensionalthat V4<Mj+d andR™ 1<M,, 4 to have a field-theoretical
action(2.47 to be sensible. description, it follows thatey| <1 as long asi>1. We see,
Inspection of the general linearized solutioli®.35), therefore, that the case of one additional dimension, which is
(2.36 shows that we should have a similar condition for thethe relevant one for heterotic M theory, is special in that it is

MERI?

boundary potential¥; ; namely, for the only case where inflation might take place in the non-
linear regime.
- V4R We would like to be somewhat more explicit about scales
&=ViR= M_ (3.3 in order to get a feeling for when the above linearity criterion
° might be satisfied. In the Hava-Witten context, one refer-
we should have ence point is the “physical point” at which the gauge and
gravitational couplings are match¢a8]. At this point, one
|| <1. (3.4  finds to lowest order
What is the interpretation of these conditions? We have gen- k= P=x4x 10" GeV
erally seen that boundary potentidend any other form of
boundary energylead to inhomogeneities in the additional Vor5=x2Xx 10 GeV (3.6
dimension or, in other words, excite bulk modes associated
with this dimension. If|¢]|<1 this can be described in a R 1=x32x10"% GeV

linearized approximation, either by integrating out the
Kaluza-Klein modes at the linear level as we have done tdor the energy scales associated with the 11-dimensional
arrive at our four-dimensional action for the zero modes, otheory, the Calabi-Yau space and the orbifold. Hers a
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guantity of order one which depends on the shape of thenight lead to an additional dimension that is too large. In
Calabi-Yau space and parametrizes our ignorance of the prearticular, inflating it for the full 55 or so e-folds leaves one
cise relation between the Calabi-Yau volume and the unifiwith a radiusR that would typically be some 24 orders of
cation scale. Using Eq$2.5) and(2.6), we find for the mass magnitude larger than the fundamental length stale' of
scale of the five-dimensional theory the theory. This is clearly unacceptable. It might be accept-
able to inflate the additional dimension for a short period
(depending on the precise value of the scatesl then sta-
bilize it to its low-energy value. This stabilization of an in-
flating modulus might, however, be hard to achieve theoreti-
Vi{4 <x32%5% 106 GeV. (3.9 caIIy: In t_his paper, we therefo_re favor the first option of a
non-inflating additional dimension.

Hence, if during inflation the Calabi-Yau volume and the

orbifold radius are at the values that lead to coupling con- |v. LINEAR CASE: THE INFLATING DOMAIN WALL

stant unification, the Kaluza-Klein modes behave linearly as ] ] . ) .

long as the boundary potentials satisfy the bo(®8). This In this section, we would like to construct inflationary
has to be compared with the COBE normalization whichSolutions in the linear case

implies for the(four-dimensional inflationary potential that

Ms=x2Xx 10 GeV. (3.7

The linearity criterion(3.4) then translates into

|| <1. 4.1
V=14 7x 10'° GeV, (3.9
Following the general method presented in Sec. Il, we should
where first find an inflating solution of the four-dimensional effec-
tive theory(2.47). The existence of such a solution depends,
(Vg)? of course, crucially on the properties of this theory and its
€= 2 (3.10 otential in particular. Rather than going into model build-
2GyV2 P np : han going Into m
ing, we will simply assume suitable properties. Since we are
is the usual slow roll parameter. The prime denotes the ddhterested in boundary inflation, we assume that the magiuli
rivative with respect to the inflaton. Comparison of Eqs.andT have been stab|I|zed_ by the four—d_lmens_lonal ef_fectlve
(3.9 and (3.9 shows an interesting coincidence of scalesbulk potential (2.49. As discussed earlier, this requires a
suggesting that inflation might start just when the theorylon-perturbative bulk potential that depends of$ and T.
leaves the non-linear regime. The boui@8) is, however, 10 simplify formulas, we Choose thg coordlnate Calabi-Yau
very close to the physical orbifold and Calabi-Yau scales involumevcy and the coordinate orbifold radiu® such that
Eq. (3.6. Beyond energies ofiol® the effective five- this stable pointis at
dimensional theory breaks down. Also, beyond energies of _ _
«~ 2 the description via 11-dimensional supergravity is no $=InS=0, B=InT=0. (4.2
longer viable. Clearly, beyond those scales our analysis does
not apply and there is no reason to discuss a non-linear ré=urthermore, since we would like the vacuum energy to be
gime as defined above. Most likely, therefore, the theorydominated by the boundary potentials, we assume that the
undergoes a transition from an M-theory regime directly intoPulk potential vanishes at this point; that is
the linear regime. Of course, the “coincidence” of scales is o
due to the fact that the fundamental scales of our theory are V(¢=0,8=0)=0. (4.3
much closer to the scale suggested by COBE than, for ex-
ample, the Planck scale. To make this observation reallfrinally, we need our candidate inflatons, the boundary fields
meaningful one has to more closely analyze the transition t€&€;, to be slowly rolling. This requires the inequalities
the linear regime, something that is beyond the scope of this

paper. In any case, all these statements relate to the “physi- (&ciV4)2 aciachA
cal point” associated with the present values of the Calabi- —— <1 <, (4.9
Yau volume and the orbifold radius. Clearly, those values GnVa N4

could have been different in the early universe, so that we - _ _ _

really do not know in which regime inflation took place. {0 Pe satisfied for all,j=1,2. Then, starting with the usual

Consequently, in the context of Hora-Witten theory, as four-dimensional metric

well as in a wider context, we should investigate both the , a2

linear and the non-linear possibility. dS; =0y, dxdx’= —d7?+e?*dx (4.5
Finally, we would like to discuss which part of the space ) ) )

should be allowed to inflate from a “phenomenological” for a spatially flat .Rober.tson—WaIkelr universe Wlth scale fac-

point of view. There are two options. First, while the usualfor @4, the four-dimensional equations of motion from the

three-dimensional space inflates the additional dimension i&ction(2.47) reduce to

basically fixed. Second, both the three-dimensional space

and the additional dimension inflate. While there is obvi- szdzZSWGNV (4.6)

ously no problem with the first option, inflating the full space 4 3 4 '

023506-10



BOUNDARY INFLATION PHYSICAL REVIEW D 61 023506

. 1 Recall thatP;(z) are quadratic polynomials in the normal-
Ci=—y 9cVa (4.7 ized orbifold coordinate=y/Re[0,1] that have been de-
4 fined in Eq.(2.38. In the metric(4.9) we should, of course,
The usual inflating solution is then only consider terms linear i@ and ¢, in accordance with
our approximation.
ag=H(7— 1) (4.9 Let us discuss the form of this solution. First we note that,

with an arbitrary intearation constamt. The slow roll mo- neglecting the very mild time dependence introduced by the
tion C,(7) of th)elz inflgtons can be oél;).tained from E@.7) slow roll of the inflatons for the moment, the solution sepa-
i d. rates into a time-dependent and an orbifold-dependent part.

?hnecioellwn :ﬁ?gﬁgﬁg}g?ga 2;’:1 Zé)sgésﬁﬁgm%?érll\lt%ﬁeat:;ttmgﬂ:\'he time-dependent part just corresponds to the inflationary
vent Iotx. P ! expansion of the three-dimensional universe. This expansion

Eubblt_attparame%rl_'%ryz us_l,_lﬁg Hq":’fi.' the iular;::tlem can  goes not occur just on one boundary, as one might naively
e wrtten ase;~H Kk~ 1he condilione; en CoIre-  aypect, but uniformly across the whole orbifold. To discuss
sponds to the “intuitive” criterion that the Hubble parameter . ..o tions. let Us concentrate on the scale fagtokl-
H should be smaller than the maRs? of the first Kaluza- though it expa,nds at the same Hubble retesverywhere
Klein e’.‘c'ta“on- In Ref[49)] this crltengn h_as bgen used to across the orbifold, its actual value depends on the orbifold
constrain yhe Hubble parameter during inflation for TeV—point as specified in Eq4.14. The first term in this equa-
sca\L/I\(/e gravity mol'?tetlz: luti o five di . . tion is the familiar linear contribution from the domain wall
h fe car|1 nov¥S| 'ISI’ solu 'Otr.] ulp OE '\g ngigsé%nsv\l/Jsmg proportional toepy, . The second term arises from the bound-
f_ne:jeormu as of sec. 1l, In particufar Eqee.259)—=(2.59. We ary potentials and is proportional &, as expected. It has a

: mild time-dependence through the slow-roll change of the

ds2= — e?"d 72+ e2%dx2+ e2Ady2, 4.9 potentials. _ _ o
é T y “9 The bottom line of this section is, that the problem of

finding inflationary backgrounds in the linear regime can be

a=H(r=7)+a, (4.10 adequately approached in the four-dimensional effective ac-
~ tion obtained by integrating out the Kaluza-Klein modes. For
r=a, (41D our simple model, this action is given in E(.47). More
_ realistic four-dimensional effective actions from ldoa-
B=4a, (4.12  Witten theory can be found if67,62,68,58,69,70 The full
five-dimensional solution is then obtained by lifting the four-
b=, (4.13 dimensional solution up, using the correspondence estab-

B 5 lished in Sec. Il. This leads to the correctio®14 and
where the orbifold dependent correctiomsand ¢ are given  (4.15 corresponding to bulk modes that are coherently ex-

by cited by the non-vanishing sources on the orbifold planes.
One might also worry about other excitations of the Kaluza-

- €pw 1 R — Klein modes unrelated to the orbifold sources, such as rem-
a=— T( - E) - 12M3 241 Pi(2)V4i[¢=0Ci(7)], nants from an initial state. This could be described by adding

(4.14 the tower of Kaluza-Klein modes to the four-dimensional
) effective action(2.47). Since we have integrated out the or-
2 bifold sources, those modes would be free source-less par-
+ 13 > Pi(2)d4Val 6=0Ci(D)]. ticles with masses/R, wheren is an integer. Note, that, as
M: i=1 explained above, those modes are not excited by the inho-
(4.15 mogeneity in the fifth dimension. However, they can be ex-
cited due to other effects. During inflation, such excitations
are simply damped away by the expansion. The condition for

®A subtle point has to be taken into account if one wants to ex-thls to happen efficiently coincides with our linearity crite-

plicitly verify that this solution satisfies the five-dimensional equa- rion || <1 and IS, hence’ satisfied. In the linear regime, Fhe
tions of motion(2.20—(2.25 to linear order. For the underlying only relevant excitations of bulk modes after a short period

four-dimensional solution, we have explicitly assumed that the or-Of inflation are, therefore, the one_s caused' by the Orb,ifOId
bifold modulusT=e® has been stabilized di=1. The effective  SOUrces computed above. As we will see, this changes in the

four-dimensional potential2.49 shows that this requires & de- non-linear regime Wherbfi|>1' . L
pendence of the bulk potentigl SincedV,(T=1)=0 andV(T _ We would briefly like to mention some ggnerahzatlons. It
=1)=0, one concludes from Eq(2.49 that gzV(T=1) is clear that the above method can be applied to other types

=R IS2 V;+O(epy). Moreover, in the five-dimensional equa- ©Of four-dimensional cosmological solutions, for example, to

tions of motion we have not considere@alependence of the bulk @ Preheating solution with the energy density dominated by
potentialV. To incorporate such a case, the poteritiah Eq. (2.22) coherent oscillations or to a radiation-dominated solution,
has to be replaced by+3,4V. Using this modification and the ~straightforwardly. Basically, all one has to do is to replace
above expression fo#zV one can indeed verify that the five- the potentials in Eqi4.14) by the appropriate energy density.
dimensional equations of motions are satisfied. What about the case of more than one large dimension? In

- 1
¢=—2epw| 2— 2
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such a case, the variation across the orbifold would not inwherea andB are the scale factors of the three-dimensional
crease as a polynomial any more, as we have seen earliemiverse and the orbifold, respectively. We also remark that,
Instead, for two additional dimensions we expect a logarithfrom Egs. (2.26), (2.27), the boundary conditions take the
mic behavior and for more than two dimensions a power lawform

fall-off. Common to all these cases is, however, that energy

density on the four-dimensional plane coherently excites the - ~ 1
bulk modes. e fa'l,_,=e BV’|y:yi=+1—2Vi- (5.5
V. NONLINEAR CASE: A SOLUTION BY SEPARATION Even though the equations of motigqR2.20—-(2.28 have
OF VARIABLES now considerably simplified, they are still not easily soluble.

The reason is, of course, that we are dealing with partial
'differential equations as opposed to the ordinary ones that
one usually encounters in cosmology. The simplest strategy
to solving partial differential equations is separation of vari-
l&>1. (5.9 ables and this is what we are going to do next. The general
solution will be given in the following section.
In this case, we should solve the full five-dimensional equa- To simplify the problem we first choose the conformal
tions of motion given in Eq92.20—(2.29. We will use the gaugev= 8. We will assume for the time being that the
boundary picture to do this. In general, we have two types ofoordinate transformation that led to conformal gauge leaves
potentials on the boundaries, namely the domain wall potenthe boundaries at finite values of the coordingtdn this
tials and the potential®;, corresponding to the two terms in case, we can restore the conventions for our coordinate sys-
Eq. (2.3. We have already stated thag,,, the dimension- tem by shifting the boundaries backye-0,R. We are, then,
less quantity that measures the strength of the domain walboking for all solutions of Eqs(2.20—(2.28 (subject to the
corrections, should be smaller than one in order for theabove assumptiopgonsistent with the separation ansatz
M-theory description via supergravity to be valid. The con-

We would now like to study the non-linear case; that is
we assume

dition (5.1), therefore, states that the potentiais will be a=ag(1)+ as(y), (5.6
dominating over the domain wall. To simplify our problem,
we will, therefore, neglect the domain wall potentials. Cer- B=Bo(7)+ Bs(Y). (5.7)

tainly, there will be an intermediate region between the non-
linear and linear regime where both potentials are significan
It will, however, be very difficult to find explicit solutions in
this regime. We, therefore, concentrate on the ¢ask. As

a further simplification, let us assume that the Calabi-Yau
volume modulusp has been stabilized by the bulk potential
V; that is

tI'he general solution to the equations of moti¢h20—
(2.23 in the boundary picture is

a=K(yx7)+A, (5.8

B=K[(1-K)y=Kr]+B, (5.9
¢=const. (5.2
whereK, K, A andB are integration constants. We still have

Of course, we have to be careful that this assumption iso apply the boundary condition5.5). This leads to
consistent with the boundary condition @n Eq. (2.28. We

have already neglected the first term in this condition which 1 v, - 12K
originates from the domain wall. The second term is related K=35In| — |, K=0, B=In| ———|,

. . ) R V, V,
to the boundary potential$; and vanishes if those are taken (5.10

to be independent op. We will assume this in the follow-
ing. In accordance with our general assumption of boundar
inflation, the potential energy from the bulk potential should
be negligible,

While A remains arbitrary. For the arguments of the loga-

rithms to be positive, we have to further demand t¥atnd

V, have opposite signs such thef+V,<0. It is not yet

clear, whether these restrictions @nare general or whether
V($)=0. (5.3 they are related to our choice of the coordinate system. We

have assumed that in the conformal gauge the boundaries are
Finally, we assume that the boundary potentMl6p;) are  at finite values. This need not be the case if the coordinate
suitable slow-roll potentials so that the boundary fielgsict ~ transformation that led to the conformal gauge had a singu-

as the inflatons. Practically, this means that we tkgagim-  larity. To cover such a case, we introduce a general orbifold
ply as constants. We recall from Sec. Il that the metric hagoordinatey by
the form
1 ~
d§=—eZVd72+e2“dX2+ez'de2, (54) y= RIn(Kg(y))—B, (511)
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T = const

FIG. 1. Parts of Minkowski space corresponding to the solution in ca$eftifigure) and case Zright figure.

Whereg(y) is a monotonicl Continuous|y differentiable func- The above linear relation between the Hubble parametel’s and

the potentials is quite unconventional. Usually the square of

the Hubble parameter is proportional to the potential, as in

our linear case, Eq4.6). We should distinguish two cases

for the functiong.

ds2=—K2g(y)2d 2+ K2g(y)2e* 2K~ )dx2+ g’ (y)2dy?, g(y)#0 forallye[OR]: In this case, the metri(_S._lZ) is
(5.12 regular everywhere on the orbifold, as in our original form

(5.8), (5.9 of the solution in conformal gauge. Sincgis

whereg should satisfy at the boundaries continuous,g(y;) and g(y,) have to have the same sign.
From Eq.(5.13 it then follows that

tion for ye[y,,y»]. Rewriting the solutiong5.8), (5.9 in
terms of this new coordinate and applying the boundary con
ditions (5.5) leads to

12 12
g(y1)=1v—1, g(y2)=iv—2- (5.13 V,V,<0, V,+V,<O0. (5.1

The upper(lowen) sign applies to an increasirigecreasing This are indeed the relations we found in conformal gauge

function g. HereK and 7, are arbitrary constants. above.

: : : . . =0 for someyye[0,R]: In this case, the metric
Let us discuss some properties of this solution. As is well 9(Yo) . 0 X
known [55,56), the metric(5.12 is flat everywhere in the (5.19 has a horizon & =y,. Now g(y,) has to be negative

bulk. What makes the metric nevertheless non-trivial is theamig)(}[/ﬁ) tposmve(or vice versaand we conclude from Eq.
presence of the boundaries. While those boundaries are h&s' a

persurfaces withy=const in our coordinate frame, they V.>0 V,>0 51
would be mapped to de Sitter hypersurfaces in coordinates e e (.19
where the metri¢5.12 takes, the Minkowski form. Indeed, Thjs case could not be obtained from the solution in confor-
if we define comoving timeg on each boundary by setting 4 gauge.
dt?=K?g(y;)?d7?, the four-dimensional boundary metrics  |n Fig. 1 two-dimensional Minkowski space correspond-
take the form ing to the (r,y) plane is depicted. We have indicated the
L portions of this space that correspond to the above two types
ds; = —dt?+K2g(y;)%e?i(titiodx? (5.14  of solutions. As explained earlier, if the mettt.12) is writ-
ten in Minkowsi form by applying an appropriate coordinate

with the Hubble parametets; given by transformation thg/= const orbifold planes are mapped into
de Sitter hypersurfaces. In the two-dimensional pictures they
H. — +ﬁ . 2 51 appear as hyperbolas. The space between those hyperbolas in
12 T omd (5.19 Fig. 1 represents the orbifold and the lines indicate the loca-

tions of constant timer=const. In case Ueft Fig. 1), both
bondaries are on the same side of the light cone. Signals that
travel in the bulk will always reach the boundary after a
"Choosingg(y) =1/K -y, we obtain a form similar to the four- finite time. In particular, a signal sent from one plane will
dimensional domain wall solution of55,56 and its five- always reach the other one in a finite time. These causal
dimensional counterpart i50]. properties are somewhat counterintuitive in that one would
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expect the existence of signals that travel exclusively in the VI. NONLINEAR CASE: GENERAL SOLUTION
bulk without ever hitting a boundary. The figure shows that,

in fact, such signals do not exist. On the other hand, in casg, itlhn t:]helsszt;:r:::c;ré,tafveagrﬁ]s?hrg Lhee %i?ﬁraéfsggu:o\? ' ;’Yﬁcgt\?vré
2 (right Fig. 1, a signal emitted from one of the boundaries P 9 9 o

. . re in the non-linear regim
will never reach the other one. In this sense the two bound"-’1 e In the no ear regime

aries are causally decoupled. Again, this property is some- le]|>1, (6.2)
what unexpected intuitively.

The physical length of the orbifoltbbtained by integrat- we can neglect the domain wall potentials. Furthermore, we
ing \/gss over the coordinate intervfiD,R], as usudlis static  assume tha# has been stabilized by the bulk potentiaht
and in both cases given by a point with vanishing potential energ¥( #)=0 (also, as a
technical assumption, we have to require the boundary po-
tentials to be independent e#). Furthermore, the boundary
potentialsV; should lead to slow roll of the fieldg;. We

will, however, not assume separability or slow time evolu-
This is positive due to the conditiorts.16) and(5.17), as it tjon of any other field.

1 1
Rphys: 12 V—1+ V_2 . (51&

should. In view of Eq(5.19), this leads to It is useful to introduce light-cone coordinates
1 t=rt 6.2
Hi~ o (5.19 oy ©2
phys

and rewrite the equations of moti¢2.20—(2.23 in terms of
for potentialsV; of the same order of magnitude. This rela- these coordinates choosing conformal gauges. Using the
tion is quite promising, since it directly relates the Hubblesimplifications that follow from the above setup, one finds
parameters to the size of the additional dimension. We would

2 2_
like to point out that, unlike in the linear case, we did not dya=20,a9,p+9.a"=0, 6.3
assume the non-perturbative bulk potentfato depend on 5 5
the orbifold modulus. Nevertheless, the orbifold SRg,s 9~a—20_ad_p+i_a"=0, 6.4
turns out to be time independent. Moreover, it is fixed by Eq. .
(5.18 in terms of the boundary potentials. d4d-at3d, ad_a=0, 6.9
We have already mentioned that the above solution is the 20,0 a+d,d B+3d,ad_a=0. 6.6

only separating solution compatible with our initial assump-
tions of a stabilized modulug and slow roll of the boundary The boundary condition€.26) and(2.27) specialize to
fields ¢; . There is yet another sense in which this solution is

unique. Suppose one is interested in solutions where the bulk B s B vV

moduli fieldsg and ¢ are constant in time or slowly moving € a |y:yi:e B |y:yi ~ 1 (6.7)
(with a negligible contribution from the bulk potentisl to

the vacuum energythe boundary fields are slowly rolling in where the uppetlower) sign applies to the boundary st
their potentialsV; and the Hubble parametet=a changes =Y1 (Y=Y2). The equations of motiof6.3—(6.6) are quite
only slowly in time. Practically, one can then neglect termssimilar (although not identicalto those of two-dimensional

containingB,ib,é;‘)i, andH in the equations of motion. Heu- dilaton gravity[57] with vanishing cosmological constant. In

ristically, these properties are what one expects from an inf-aCt’ Egs. (6.3—(6.6) can be obtained from the two-

flating solution in five dimensions, in analogy with the four- dimensional action

dimensional case. Then, one can show that all solutions with

these properties are approximat@dthe sense that slow-roll S,=— f V=0, R,—240,a%a] (6.8
corrections have been neglectéy Egs.(5.8—(5.10. To do

this, one does not need the technical assumption of separgjth the two-dimensional metric in conformal gauge given
bility that we have used so far. In this sense, we have foungy o — 2, . Here we have used indicesb, . ..=0,5
the unique solution with boundary inflation in five dimen- for the space #,y). Using the methods of Ref57], we can
slons. find the following general solution of Eq$6.3—(6.6);

Can this solution, then, be used as the basis for an infla-
tionary model in five dimensions? We have to keep in mind a=1tlInu, B=w-tinu,
that we have not solved the equations of motion in general
yet, but rather found a specific solution by imposing separa- u=u, (xH)Hu_(x7), w=w.(x")+w_(x),
bility or, equivalently, “reasonable” physical conditions of (6.9

what an inflationary solution should look like. Therefore, our

solution might be very special in the sense that it, perhapsyhereu andw are free fields, as indicated. The “left and
can only be obtained from a set of initial conditions with right movers” u..(x*) andw..(x*) are not completely in-
measure zero. In other words, the solution could be unstabléependent but, rather, subject to certain relations that origi-
against small perturbations. We will analyze this question imate from the constraint equatiori6.3) and (6.4). Three

the following section. cases can be distinguished
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Case 1: Ifg,u,#0 andd_u_+#0 then for all x, where

1 1 Vv,
W.==In(d-u.)+C. . 6.1 =Znl = =
. =5I(7.u.)+C. 610 <=z -] 6.17

Case 2: l[fd,.u,#0 andd_u_=0 then andk is a constant. The conditiof6.16 can be solved in

terms of a periodic functiop(x) satisfying

1

W+:§In(§+u+)+c+. (6.12

p(x+2R)=p(x) (6.18
andw_ is arbitrary. ,
Case 3: Ifo,u,=0 andd_u_+0 then for all x. One finds

1 f(x)=[p(x)e"**+k]™3 for K#0, (6.19

W,=§In(§,u,)+c,. (6.12
f(x)=[kx+p(x)]~3 for K=0, (6.20

andw, is arbitrary.

HereC. are arbitrary integration constants. In each of thewherek is another constant. The upper sign in the above
three cases, we still have two arbitrary functions at our dissolutions always corresponds to case 2, the lower one to case
posal. While this constitutes the most general solution of the. The definition ofK, Eq. (6.17), shows that the boundary
equations of motior{6.3—(6.6), we have not yet taken into potentials need to have the opposite sign for the solution to
account the boundary conditiori6.7). As we will see, this exist. We are, therefore, in the first ca$el6) of the previ-
determines one of the functions and imposes a periodicitPus section which is as expected since we have used confor-
constraint on the other one. Before we come to that, wénal gauge. We will stick to this case, for simplicity, in the
observe that in case 1 we have the relation following. The analog of the second Cd@l?) can again be

obtained by employing a more general coordinate system.

1 Our main conclusions apply to this case as well. Further-
B=2a+35In(99,ad_a)+C,+C_ (6.13  more, the periodic functiop(x) and the constark have to
be chosen such that the logarithms in E@s14) and(6.195

between the scale factors and 8. Suppose that we have are well defined. Apart from those restrictionsx) andk
found a solution with an inflating three-dimensional universeare arbitrary. Equationg5.14—(6.20 are the most general
in this case. Neglecting dependence, the scale facteris ~ Solution of the systent6.3—(6.7) for cases 2 and 3 which, as
then roughly given byr~H r whereH is the Hubble param- We have seen, are the interesting ones in the presgnt. context.
eter. In this case, the second term on the right-hand side ¢jince we can more or less freely choose one periodic func-
Eq. (6.13 is approximately constant since.« should be tion we haye, in fact, found a very large class of solutions.
related to the Hubble parameter. Hence, up to an overall Depending on the value df we have two different pos-
normalization we havg~2a. This shows that, without as- SiPle forms of the functiof, given in Eqs(6.19 and(6.20.
suming any initial fine-tuning, at the end of inflation, the The second optionK=0, is realized for a vanishing “total
orbifold has expanded twice as much as the threePotential energy,"V;+V,=0. Not surprisingly, in this case,
dimensional universe. For the reasons discussed at the end!§ scale factora does not inflate butroughly) shows a
Sec. Il we, therefore, disregard this possibility. We remarkPower law behavior, as can be seen by inserting (B0
that solving the boundary conditic.7) for case 1 leads to into Eq. (6.14. Consequently, this second option is only of
periodicity constraints in terms of elliptic functions. limited interest to us and we will concentrate on the first one,
Let us now turn to cases 2 and 3. Fortunately, the bound #0. This case should contain our simple separating solu-
ary conditions can be explicitly solved in these cases. wdion (5.8—(5.10 of the previous section. Indeed, if we
find thata and 8 can be expressed in terms of a single realchoose

functionf as
p(x)=const, k=0 (6.2

“:§|”f(xf)’ (6.14  in Eq. (6.19 we recover this solution. What happens for
other choices? Let us consider the case0 andp(x) peri-
ACF7 (X)) VR(F (xT))Y2 odic but otherwise arbitrary. If the argument of the exponen-
~ , (6.15 tialin Eq. (6.19 is negative(the case that would lead to an
(F V) (F(XT)B3(F (xT))3 inflationary expansion ik were zerg then, after a very short
time f will be approximately constant, unleksis exponen-
where f’ denotes the derivative dfand, as usualk™=7 tially small. Inserting such an approximately constaiito
*y. The functionf should have the periodicity property  the expression$s.14, (6.15 for the scale factors: and 8
shows that the three-dimensional universe becomes static
f(x+2R)=[e"2RK(f(x)) P+k] 3 (6.16  while the orbifold collapses. In the opposite case, where the

B=In
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argument of the exponential is positiiefalls exponentially  gin of this potential is nof this is not the case in five dimen-
and, hence, from E(6.14), the three-dimensional universe sions. The orbifold size in five dimensions is basically mea-
collapses. Either way, to have a stable configuration, weured by the componeniss of the metric. A bulk potential
should choosé&=0. In this case, the scale factors read ex-for this component would break general five-dimensional co-
plicitly variance in a very strong way. Also, singes typically var-
ies across the orbifold it could not be everywhere in a mini-
a=*Kx"—Inp(x*), (6.22 mum of that potential. Alternatively, one could postulate a
bulk potential that only depends on the zero modey&f;
that is, the length of the orbifold. This would break general
covariance not more seriously than it already is broken by
the presence of the orbifold. Suppose such a potential had a
minimum for a certain orbifold lengtR,. Could an orbifold
modulus stabilized at this minimum be made consistent with
W : (6.23 our solution? The apparent problem is that the orbifold size
is already fixed by Eq(5.18 in terms of the boundary po-

We still have the freedom to choose the periodic funcion €NntialsV;. There is no obvious reason Wi, and Rpnys

In the above expressions this function always depends offtould,a priori, coincide. If we assume they do, for some

x* = r=y. It, therefore, leads to an oscillation in time with a "€ason, at a certain time, this situation could only be main-
period R. If we do not want the scale factar to be sig- tained if the boundary inflatons slow roll in a very specific

nificantly effected by this, we should choose the maximumWway so as to leave

amplitude ofp to be sufficiently small, so thagi(x)=const.

This basically brings us back to our separating solution of

B=Ky+In

+12 Pt .
(v—l)(—K‘E“ )

X

’ 1/2 F\\1/2
iK_%(m) (p(<)

the previous section. In essence, this solution is the only one 1 1
with the desired properties within our setup. Ro=12 + (6.29
The discussion of this section has revealed two serious Vi(é1)  Va(é2)

problems with the separating solution. First of all, it
corresponds to a very specific choice of initial conditions
satisfying eitherk=0 or k being exponentially small. unchanged. This would correspond to a strong correlation of
All other values ofk lead to a collapsing solution. This im- the motion of the two inflatons. Without a detailed analysis
plies that the cask=0, as it stands, corresponds to an un-of the dynamics, which probably has to be carried out nu-
stable situation. A small perturbation that leads to a nonmerically, it is hard to tell whether this would actually hap-
vanishingk will cause a collapse of the universe. The otherpen or whether, instead, the orbifold modulus would start to
problem is related to the presence of the periodic fungion strongly oscillate around its minimum thereby destroying in-
This function, in fact, encodes the information about the ini-flation.
tial inhomogeneity in the orbifold direction and this inhomo-  Another way to stabilize the orbifold which avoids these
geneity survives the whole period of inflation. Of course, thisproblems is to have a potential f@ss on the boundary.
is related to the fact that we are not inflating the orbifold asalthough such a potential cannot appear directly in the
well which would dilute those inhomogeneities. In the EffeC-boundary actions in qul)’ it may appear in one of the
tive four-dimensional linear case of Sec. IV, oscillations of Bjanchi identities of heterotic M theory in five dimensions
Kaluza-Klein modes were damped away quickly due to thg27,71,6§ which contain sources located on the orbifold
inflationary expansion. Apparently this is no longer true inpjane. Particularly, a potential from gaugino condensation
the non-linear five-dimensional regime. Although thosewould manifest itself in the Bianchi identity. Generically,
modes do not affect the homogeneity of the threetowever, it seems to be difficult to stabilize moduli with
dimensional universe directly, they could potentially bepotentials from gaugino condensation, in particular in the
harmful. For example, Eq(6.22 shows that the “Hubble  context of cosmology65] (see, however,72)). In Ref.[73]
parameter” @ contains the periodic functiop(7+y) and stabilization of the orbifold was achieved by a combination
consequently oscillates in times. Hence, the modes couldf gaugino condensation and other nonperturbative effects
have some influence on density fluctuations. Also, theiresulting from internally wrapped membranes. Although
eventual decay into gravitons could leave unwanted relics. Imvorth investigating in our context, all those options go be-
any case, the presence of the functpmrontradicts some- yond our simple toy model and will not be explicitly consid-
what the philosophy of inflation which is supposed to wipeered here.
out any initial information. To summarize, while there seem to be interesting solu-
Is there a possible cure for the stability problem? So fartions with boundary inflation in the nonlinear, five-
we did not attempt to stabilize the orbifold in any way. It is dimensional regime, a closer investigation shows that they
clear that this fact is related to the instability that we encounhave problems related to the stabilization of the orbifold and
ter. While stabilizing the orbifold modulus in a four- to inhomogeneities in the orbifold direction that are not di-
dimensional effective theory by simply inventing a potentialluted. The stabilization problem is, of course, very general
is relatively straightforwardalthough understanding the ori- and we should not be surprised to encounter it in our cosmo-
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logical context. It is conceivable that whatever eventually ACKNOWLEDGMENTS
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