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Inflationary solutions are constructed in a specific five-dimensional model with boundaries motivated by
heterotic M theory. We concentrate on the case where the vacuum energy is provided by potentials on those
boundaries. It is pointed out that the presence of such potentials necessarily excites bulk fields. We distinguish
a linear and a non-linear regime for those modes. In the linear regime, inflation can be discussed in an effective
four-dimensional theory in the conventional way. This effective action is derived by integrating out the bulk
modes. Therefore, these modes do not give rise to excited Kaluza-Klein modes from a four-dimensional
perspective. We lift a four-dimensional inflating solution up to five dimensions where it represents an inflating
domain wall pair. This shows explicitly the inhomogeneity in the fifth dimension. We also demonstrate the
existence of inflating solutions with unconventional properties in the non-linear regime. Specifically, we find
solutions with and without an horizon between the two boundaries. These solutions have certain problems
associated with the stability of the additional dimension and the persistence of initial excitations of the
Kaluza-Klein modes.

PACS number~s!: 98.80.Cq, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

Two important theoretical developments, the advent of
theory and the discovery of branes have recently stimula
new ideas in early universe cosmology. There has been
siderable activity on various cosmological aspects of
theory over the past two years@1–24#. The cosmology of
Hořava-Witten theory@25–28#, which describes M theory on
the orbifoldS1/Z2, however, is much less studied so far@29–
33#. This theory describes the strong coupling dual of
E83E8 heterotic string and is, therefore, of great importan
for M-theory particle phenomenology. Clearly, this prope
makes it a very interesting starting point for cosmology
well.

Various aspects of branes might be important in ea
universe cosmology, such as their ability to smooth out s
gularities @5,6,11,21,22# and their thermodynamical prope
ties @10,12,34,35#. Most obviously, however, they play a rol
in the cosmology of particle physics models that have bra
in their vacuum structure and, more specifically, that lead
low-energy theories arising from the world volumes
branes. Such models appear in the context of brane b
@36,37#, type-I string theory@38–41# and M theory onS1/Z2
@42–45#. A characteristic feature of many of those models
the possibility of one or more compact dimensions be
large compared to the fundamental length scale of the the
Such a situation can be described by a Kaluza-Klein the
with gravity and possibly other fields in the bulk coupled
a four-dimensional ‘‘brane-like’’ object with the standa
model fields on its world volume. A wide spectrum of sca
has been proposed for such models. These range from
0556-2821/99/61~2!/023506~18!/$15.00 61 0235
d
n-

e
e

s

y
-

s
o

es

s
g
ry.
ry

s
n-

damental scales around the grand unified theory~GUT! scale
with the energy scale associated with the additional dim
sions being an order of magnitude or so smaller, to mod
with a fundamental scale of order a TeV with macrosco
additional dimensions@46#. It is clearly interesting to explore
the cosmology of these models and, recently, some wor
this direction@47,21,31,33,48# has been done.

In this paper, we would like to study the important iss
of how inflation relates to these new theoretical ideas.
recent related work on inflation see@20,49,50,23,24,51#.
Rather than presenting a general scenario, we will conc
trate on a specific model which incorporates the M theory
well as the brane aspects. This model can be interpreted
part of the five-dimensional effective action of M theory o
S1/Z2 @42,52,43,53# obtained by reducing the 11
dimensional theory on a Calabi-Yau threefold. The fiv
dimensional space of this theory has the structureM5
5S1/Z23M4 and contains two four-dimensional orbifol
fixed planes~or boundaries! M 4

(1) andM 4
(2). It consists of

gaugedN51 supergravity plus vector and hypermultiple
in the bulk coupled toN51 theories with gauge and chira
multiplets on the orbifold fixed planes. The vacuum soluti
of this theory@42# is a BPS double three-brane~domain wall!
with the three-brane world volumes identified with the orb
fold planes. Upon reduction to four dimensions on th
vacuum solution, one arrives at anN51 supergravity theory
which is a candidate for a realistic particle physics mo
from M theory. The hidden and observable fields in th
model arise from the ‘‘three-brane orbifold planes.’’ Th
theory, therefore, allows us to study cosmology in a pot
tially realistic particle physics environment and provides
©1999 The American Physical Society06-1
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concrete realization of the general idea of ‘‘getting the st
dard model from a brane.’’ Simple cosmological solutions
this theory have been found in Refs.@31,33#. In Refs.@44,45#
non-perturbative vacua of heterotic M theory containing fi
branes have been constructed. In the five-dimensional e
tive theory, these five branes appear as three branes whic
addition to the two orbifold planes, are coupled to the bulk
would clearly be interesting to study cosmological solutio
of these more general theories with additional three bra
In this paper, however, we restrict ourselves to the sim
setting of two orbifold planes.

For the application to cosmology, we have~consistently!
truncated this theory to a minimal field content suitable
inflationary models. Specifically, in the bulk we have ke
gravity and a scalar fieldf ~the volume modulus of the
internal Calabi-Yau space! with a potential V of non-
perturbative origin. In addition, on each orbifold plane w
have also kept a scalar fieldf i with a potentialV4i . The
theory is characterized by three scales, namely the fun
mental scaleM5 of the five-dimensional theory, the separ
tion R of the orbifold planes and a scalev that sets the heigh
of certain explicit potentials for the bulk fieldf. These po-
tentials are responsible for the existence of the domain w
solution.

Hence, we have a very simple setting with one additio
dimension and one ‘‘candidate inflaton’’ with potential
each part of the space. In addition to the M-theory relati
we, clearly, also have a simple starting point to study in
tion in the general context of models with large addition
dimensions.

The goal of this paper is not to construct explicit infl
tionary models by choosing specific potentials for the sca
fields in the theory. Rather, we are interested in how
specific structure of the theory, that is, the coupling of
five-dimensional bulk to four-dimensional boundary the
ries, effects inflation. We distinguish two different types
inflation, which we call bulk~or moduli! and boundary~or
matter field! inflation. For bulk inflation the vacuum energ
is predominantly provided by the bulk potentialV, whereas
for boundary inflation the boundary potentialsV4i dominate.
In this paper, we concentrate on the second case of boun
inflation. This option is particularly interesting in that it d
rectly relates to the presence of the characteristic boun
theories. Moreover, inflation from matter fields seems to
in better accord with current directions in four-dimension
inflationary model building@54# than modular inflation.

Let us summarize our main results. One of the m
themes of this paper is that energy density on the orbif
planes provides source terms localized on the fixed point
the additional dimension and, hence, excites bulk fields
particular, this applies to vacuum energy on these plane
needed for boundary inflation. Our first conclusion is th
boundary inflation is necessarily inhomogeneous in the a
tional dimension, or, in other words, excites Kaluza-Kle
modes. The magnitude of those excitations is controlled
the dimensionless parametere i5V4iR/M5

3. For ue i u!1 the
excitations can be described by linearized gravity. This
proximation breaks down ifue i u@1. One then has to use th
full non-linear theory. Using the Cosmic Background E
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plorer ~COBE! normalization and the typical magnitude o
heterotic M-theory scales, we argue that inflation in th
theory may take place in both regimes. Interestingly, if t
orbifold and Calabi-Yau scales during inflation are at th
physical values@28#, the theory becomes linear forV4i

1/4!6
31016 GeV, right below the COBE scale.

The proportionality ofe i to the sizeR of the additional
dimension can be understood from the linear behavior of
one-dimensional Green’s function. For more than one ad
tional dimension, the Green’s function is logarithmic or fo
lows an inverse power law. As a consequence, in those ca
the theory is always in the linear regime. The case of h
erotic M theory with one large dimension is, therefore, t
only one where inflation may take place in the non-line
regime.

In the linear regime, we can compute a sensible fo
dimensional effective theory by integrating out the Kaluz
Klein modes induced by the boundary sources. We sh
explicitly how this leads to corrections in the fou
dimensional theory. Since the bulk modes have been i
grated out to obtain this effective action, they do not app
as excitations of the Kaluza-Klein modes from a fou
dimensional perspective but rather as corrections to the
mode effective action. In other words, the Kaluza-Kle
modes in the four-dimensional effective action are defin
using a mode expansion around the inhomogeneous
dimensional background. Hence, at the linear level, they
source free as seen from four dimensions. As a conseque
the five-dimensional inhomogeneities do not lead to unus
cosmological effects other than those encoded in the cor
tions to the zero mode action. In particular, these inhomo
neities do not cause non-trivial four-dimensional Kaluz
Klein modes which would contribute to the energy density
the universe. This does not preclude, however, that th
four-dimensional modes are excited due to other phys
mechanisms. Examples of such mechanisms have been
sented in Ref.@47#. Our basic statement is that, in the line
regime, inflation can essentially be treated in the effect
four-dimensionalN51 supergravity theory. Nevertheless,
get a physical picture, we find it useful to lift a generic fou
dimensional inflating solution up to a five-dimensional on
This five-dimensional solution represents a pair of inflati
domain wall three branes and it has inhomogeneities in
additional dimension caused by the boundary potentials.
the other hand, initial inhomogeneities not induced
boundary sources are damped away in the linear regime
to the inflationary expansion and should not play any ro
As a consequence, from the perspective of the fo
dimensional effective action, the excitation of Kaluza-Kle
modes is negligible at the end of inflation.

The situation is quite different in the non-linear regim
e i@1, where one has to solve the full five-dimension
theory. To do so, we assume that the bulk scalar fieldf has
been stabilized by its potential and the boundary potent
allow for slow roll behavior of the boundary scalars. Und
these assumptions we find, in a first attempt, a simple s
tion by separation of variables that exhibits inflation. Th
solution represents the heterotic M-theory version of an
four-dimensional domain wall solution@55,56#, recently ad-
6-2
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BOUNDARY INFLATION PHYSICAL REVIEW D 61 023506
vocated@50# in a somewhat different approach to brane
flation. Both boundaries expand in a de Sitter-like man
with the Hubble parametersHi related to the potentials in a
unconventional way,Hi;uV4i uM5

23. The physical sizeRphys

of the additional dimension is constant in time and fixed
terms of the boundary potentials. ForH1 andH2 of the same
order,H1;H2;H, one hasRphys;1/H. The Hubble param-
eter, therefore, equals the orbifold energy scale during in
tion. We find solutions with and without a horizon at som
point on the orbifold. The solutions without horizon requi
potentials with opposite sign satisfyingV411V42,0. Signals
travel from one boundary to the other in a finite time a
every signal emitted somewhere in the bulk will eventua
reach one of the boundaries. For the solutions with a hori
one needs both potentials to be positive,V4i.0. In this case,
the two boundaries are causally decoupled. A signal emi
on one boundary will never reach the other one.

In a second approach, we then find the general solutio
the model without assuming the separation of variables. T
is done exploiting the similarity of our equations to those
two-dimensional dilaton gravity@57#. We recover the previ-
ous inflating solution as a special case if a certain continu
parameter in the general solution is set to zero. For all o
values of this parameter, however, the solution is n
inflating and has a collapsing orbifold. This indicates an
stability of the solution which might be cured by stabilizin
the modulus of the additional dimension. The construction
a viable inflationary background in the non-linear regime
therefore, tied to the question on how precisely such a st
lization is realized. We discuss various options and their c
sequences in our context. Another problem with the inflat
solution which is made visible by its generalization is t
appearance of an arbitrary periodic function in the soluti
This function encodes the initial inhomogeneities in the
ditional dimension. Unlike in the linear case, here these
homogeneities are not damped away. This seems to b
contradiction with the inflationary paradigm that all initi
information should be wiped out. On the other hand, if s
ficiently small, these inhomogeneities may lead to interes
predictions. Given those problems, we point out that conv
tional inflation in the linear regime remains a perfectly viab
option for heterotic M theory. For models with more tha
one large dimension it is the only possibility.

Based on the results of this paper, we would like to p
pose three scenarios for inflation in heterotic M-theory.

The orbifold and the Calabi-Yau scales during inflati
are at the specific values that at low-energy lead to coup
unification. In this case, the theory becomes linear for bou
ary potentials satisfyingV4i

1/4!Vlin
1/4.631016 GeV. At the

unification point the Calabi-Yau scale and the fundamen
11-dimensional Planck scale are also of the order 1016 GeV.
This theory undergoes a transition from a pure M-theory
gime at energies above 1016 GeV ~where no description in
terms of 11-dimensional supergravity applies! directly to the
linear regime. Inflation can then take place in the conv
tional way, presented in this paper. In this scenario, the
ergy density at the beginning of inflation is directly linked
the fundamental scales of the theory and is, in this se
explained. It fits the COBE normalizationV4

1/4.«1/46.7
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31016 GeV if the slow-roll parameter« is not too small, or,
in other words, if the inflaton potential is not too flat.

An alternative possibility is that the orbifold and Calab
Yau scales are not be at the coupling unification values d
ing inflation. Rather, they are such that the linear regi
starts significantly below 1016 GeV, Vlin

1/4!1016 GeV. In
this case, there are two options.

Inflation takes place in the non-linear regime and is ba
on the corresponding solutions given in this paper. This
tion is somewhat speculative as it depends on the succe
stabilization of the orbifold modulus. It would have ver
unconventional properties. These include a linear relation
tween the Hubble parameter and the potential and inho
geneities in the orbifold direction. Since space-time in t
context is genuinely five-dimensional, analyzing dens
fluctuations requires some care and the standard equa
may not apply.

Non-linear inflation does not take place. This might ha
pen for a number of reasons. For example, the poten
might not have the required properties, the initial conditio
may not be appropriate or, simply, non-linear inflation mig
not work at all. Inflation could then start when the ener
density drops belowVlin and the linear regime is reache
This could be consistent with the COBE normalization fo
very small slow-roll parameter«, that is, a very flat inflaton
potential.

II. THE ACTION

In this section, we would like to present the five
dimensional action that we are going to use in this pa
along with its most important properties. This includes a d
cussion of its origin and interpretation, its ‘‘vacuum’’ solu
tion and the related four-dimensional effective low-ener
theory that is obtained as a reduction on this vacuum s
tion. Making contact with the four-dimensional theory is pa
ticularly useful, in our context, whenever the relation
‘‘conventional’’ four-dimensional inflation is analyzed.

Our starting point is the five-dimensional action1

S552
1

2k5
2 H EM5

A2gFR1
1

2
]af]af1U~f!G

1(
i 51

2 E
M 4

( i )
A2gF1

2
]mf i]

mf i1Ui~f i ,f!G J ,

~2.1!

where the potentials are given by

U~f!5
1

3
v2e22f1V~f!, ~2.2!

1We have changed somewhat the notation with respect to
@42# to be in better accord with conventions in cosmology. T
scalar fieldf is related to the fieldV of Ref. @42# by V5ef. The
constantv was calleda0 there.
6-3
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Ui~f i ,f!572A2ve2f1Vi~f i ,f!.
~2.3!

Here k5 is the five-dimensional Newton constant. Coord
natesxa with indices a,b,g, . . . 50, . . .,3,5 are used for
the five-dimensional spaceM5. We consider a space-tim
with structureM55S1/Z23M4 whereS1/Z2 is an orbifold
andM4 a smooth four-manifold. The coordinatesxm on M4
are labeled by indicesm,n,r, . . . 50, . . . ,3 while the re-
maining coordinatey[x5 parametrizes the orbifold. It is
chosen in the rangeyP@2R,R# with the endpoints identi-
fied, whereR5pr andr is the radius of the orbicircle. The
Z2 symmetry acts asy→2y and leaves two four-
dimensional planes, characterized byy150 and y25R,
fixed. These planes, separated by a distanceR, are denoted
by M 4

( i ) , where i 51,2. The action~2.1! describes five-
dimensional gravity plus a scalar fieldf with potentialU in
the bulk coupled to four-dimensional theories on the orbif
fixed planes each carrying a scalar fieldf i with potentialUi .
The bulk fields have to be truncated in accordance with
Z2 symmetry. Specifically, one should require

f~2y!5f~y!,

gmn~2y!5gmn~y!,

gm5~2y!52gm5~y!, ~2.4!

g55~2y!5g55~y!.

Hence,f, gmn , g55 are even under theZ2 symmetry, while
gm5 is odd. Also note that they derivative of an even field is
odd and vice versa. Whereas even fields are continu
across the orbifold planes, an odd field jumps from a cer
value on one side to its negative on the other side. An al
native and equivalent way to think about the fiv
dimensional space, in contrast with the orbifold pictu
which we have used so far, is the boundary picture. In
picture, the coordinatey is restricted to one half of the circle
yPI 5@0,R# and five-dimensional space time is written
M55I 3M4. The orbifold fixed planes then turn into th
boundaries of this five-dimensional space. We will som
times find it more convenient to work in this boundary p
ture.

The potentials~2.2! and~2.3! have been split into explicit
exponential potentials forf with a height set by the constan
v and potentialsV andVi which, at this point, are arbitrary
The 2 sign in Eq.~2.3! refers to the planei 51, the1 sign
to the planei 52. The reason for writing the potentials in th
form will be explained shortly. It is useful to collect the ma
dimensions of the various objects that we have introduced
five dimensions, the Newton constantk5

22 has dimension
three and we write

k5
225M5

3 . ~2.5!

HereM5 is the ‘‘fundamental’’ scale of the five-dimension
theory. In order to make subsequent equations simpler,
have pulled the Newton constant in front of the compl
02350
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action. Hence, the bulk potentialsU, V have dimension two
whereas the boundary potentialsUi , Vi and the constantv
have dimension one.

Let us now discuss the interpretation of the action~2.1!–
~2.3! in terms of M theory. More specifically, we will con
sider Hořava-Witten theory; that is, 11-dimensional supe
gravity on the spaceS1/Z23M10 whereM10 is a smooth
ten-dimensional manifold. The two 10-dimensional orbifo
fixed planes of this theory carry additional degrees of fr
dom that couple to the bulk supergravity, namely twoE8
gauge multiplets, one on each plane. Now consider redu
this theory on a Calabi-Yau threefold assuming that the
dius of the Calabi-Yau space is smaller than the orbif
radius. For the present values of these radii, such a relatio
suggested by coupling constant unification@28#. We then ar-
rive at a sensible five-dimensional theory on the space t
M55S1/Z23M4, where the two four-dimensional fixe
planes of the orbifold result from the original 10-dimension
planes. For the standard embedding of the spin connec
into one of theE8 gauge groups, this effective action ha
been computed in Refs.@42,52,43#. The generalization to
non-standard embedding has been described in Ref.@58#. It
turns out that the bulk theory is a five-dimensionalN51
gauged supergravity coupled to vector- and hypermultipl
This bulk theory is coupled to two four-dimensionalN51
theories that reside on the now four-dimensional orbifo
planes. More specifically, these boundary theories con
gauge multiplets as well as chiral~gauge matter! multiplets.
Upon appropriate reduction on the orbifold to four dime
sions~in a way to be specified below!, one obtains a candi
date for a ‘‘realistic’’ N51 supergravity theory with the
observable sector coming from one plane and the hid
sector from the other.

The action~2.1! is a ‘‘universal’’ version of this five-
dimensional effective theory truncated to the field cont
that seems essential to discuss cosmology. Let us try to m
this statement more precise by explaining the meaning of
various objects in Eqs.~2.1!–~2.3! in terms of the underlying
11-dimensional theory. In terms of the 11-dimensional Ne
ton constantk and the Calabi-Yau volumevCY the five-
dimensional Newton constant is given by

k5
25

k2

vCY
. ~2.6!

The bulk fieldf is simply the modulus associated with th
Calabi-Yau volume such that the ‘‘physical’’ volume
given byefvCY . Clearly, the Calabi-Yau space has, in ge
eral, many more moduli associated with its shape and c
plex structure. For simplicity, we have kept the volum
modulus only, since it is the geometrical modulus comm
to all Calabi-Yau spaces. It is in this sense that we are re
ring to the action as universal. Also, for simplicity, we ha
dropped a number of other bulk fields such as the axi
associated withf and the vector fields in the vector multip
lets. All these fields can be consistently set to zero in the
equations of motion. Therefore, our solutions will be so
tions of the complete action of heterotic M theory as we
We have, however, kept a feature of the action that ar
6-4
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BOUNDARY INFLATION PHYSICAL REVIEW D 61 023506
from the gauging of the bulk supergravity and is essentia
discuss cosmology; namely, the explicit bulk potential forf
in Eq. ~2.2!. The constantv in this potential is given by

v52
p

A2
S k

4p D 2/3 n

vCY
2/3

, ~2.7!

wheren is an instanton number related to the tangent sp
and gauge instantons in the internal Calabi-Yau space.
have added another potentialV(f) in the bulk which one
expects to arise from non-perturbative effects like interna
wrapped membranes. The explicit computation of this pot
tial for M-theory is not very well understood at present~see,
however,@59,60#!. It is, however, clear that such a potenti
is eventually needed to stabilize the moduli. Given the la
of theoretical knowledge, we will not assume any spec
origin for V but, rather, try to specify what properties
should be required to have from a cosmological viewpoin

Let us now move on to the four-dimensional theories
the orbifold planes and their M theory origin. As alrea
mentioned, these planes arise directly from the
dimensional planes of Horˇava-Witten theory upon reductio
on the Calabi-Yau space. On each of these planes, we
introduced a scalar fieldf i with potentialUi that represents
the scalar partners of the matter fields. In fact, for no
standard embedding such matter fields generally arise
both planes. Of course, restricting to one scalar field on e
plane is a tremendous simplification from the particle ph
ics point of view. Cosmologically, however, it seems reas
able to choose such a model with one ‘‘candidate inflato
on each orbifold plane, especially in a first study of inflati
in such models. Although the potentialsVi in Eq. ~2.3! are
known in principle for a given Calabi-Yau compactificatio
here we will not attempt to be more specific about their for
Instead of going into such detailed questions of model bu
ing, we will assume that they have the cosmologically d
sired properties. There is another, explicit part of the bou
ary potential in Eq.~2.3! which depends on the projection o
the bulk fieldf onto the orbifold planes. These potentia
originate directly from Horˇava-Witten theory and are relate
to the explicit bulk potential forf. Note that, in particular,
the height is set by the same constantv, defined in Eq.~2.7!.
As we will see, they support a three-brane domain wall
lution of the five-dimensional theory. In the following, we
therefore, refer to them as domain wall potentials. Of cou
there will be gauge multiplets on the orbifold planes as w
which we have not written in Eq.~2.1!. They could play a
role in cosmology via gaugino condensation. However,
will not consider this explicitly in the present paper. To su
marize, the action~2.1!–~2.3! can be viewed as part of th
five-dimensional effective theory of heterotic M theory and
contains the basic cosmologically relevant ingredients of
theory.

The M-theory context is not obligatory here. Instead,
action ~2.1! could be viewed in the general context of the
ries with large additional dimensions where the stand
model arises from a brane world volume. In fact, in th
context, our action is about the simplest appropriate to st
inflationary cosmology. We have one ‘‘large’’ dimensio
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~the orbifold! and two four-dimensional branelike theorie
corresponding to an observable and a hidden sector. In a
tion to bulk gravity, we have a bulk scalar field with pote
tial and a scalar field with potential on each plane; in oth
words, a minimal setting for inflation. The explicit potentia
in Eqs.~2.2!, ~2.3! that originate from M theory can alway
be switched off by settingv50, if desired. Our results are
therefore, not limited by their presence. What does limit o
results is the presence of only one additional dimensi
something that is appropriate for heterotic M theory but n
necessarily otherwise. We will comment on the modificati
of our results in the case of two or more large dimensions
we proceed.

For later reference, let us collect the equations of mot
derived from the action~2.1!. We have the Einstein equatio

Rab2
1

2
gabR5Tab1(

i 51

2

Tab
( i ) d~y2yi ! ~2.8!

with the bulk and boundary energy momentum tensors

Tab52
1

2 S ]af]bf2
1

2
gab~]f!2D1

1

2
gabU, ~2.9!

Tmn
( i ) 52

1

2
g55

21/2S ]mf i]nf i2
1

2
gmn~]f i !

22gmnUi D ,

~2.10!

Tm5
( i ) 50, T55

( i )50. ~2.11!

For the scalar fields we find

h5f2]fU2g55
21/2(

i 51

2

]fUid~y2yi !50, ~2.12!

h4f i2]f i
Vi50, ~2.13!

where h5 and h4 are the Laplacians associated with t
five-dimensional metricgab and its four-dimensional par
gmn projected onto one of the orbifold planes.

Which types of solutions to these equations are we in
ested in? For a cosmological solution, one would like to ha
a three-dimensional maximally symmetric subspace wh
for simplicity, we take to be flat. Studying open and clos
universes would be clearly interesting as well. Later, we w
distinguish between a linear and a non-linear case. While
generalization to include spatial curvature is straightforw
in the linear case, the non-linear case is significantly m
complicated. Still, we do not expect our main conclusions
depend on the choice of spatial curvature. Clearly, the m
mally symmetric subspace cannot contain the orbifo
Hence, the solutions are independent ofx5(x1,x2,x3). They
can, however, depend on the timet5x0 as well as on the
orbifold coordinatey. As we will see in a moment, the pres
ence of fields and potentials on the boundaries in fact for
us to consider orbifold dependence. Therefore, we start w
the ansatz

ds5
252e2ndt21e2adx21e2bdy2, ~2.14!
6-5
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n5n~t,y!, ~2.15!

a5a~t,y!, ~2.16!

b5b~t,y!, ~2.17!

f5f~t,y!, ~2.18!

f i5f i~t!. ~2.19!

Herea is the scale factor of the three-dimensional unive
andb is an additional scale factor that measures the orbif
size. In some cases, we will choose the conformal gaugn
5b in the above metric. Note that we can choose this ga
in the (t,y) subspace in such a way that the boundaries
mapped to hypersurfacesy5const. Usually, then, we ca
shift the boundaries back toy50,R so that our conventions
for the coordinate system remain intact. A special case
curs if a boundary has been ‘‘mapped to infinity’’ due to
singularity in the reparametrization. To be able to deal w
this case, we keepn arbitrary in the subsequent formulas.

The equations of motion for the above ansatz are given

3e22n~ ȧ21ȧḃ !23e22b~a92a8b812a82!

5
1

4
e22nḟ21

1

4
e22bf821

1

2
U1

1

2
e2b

3(
i 51

2 F1

2
e22nḟ i

21Ui Gd~y2yi !, ~2.20!

e22n@2ä1b̈1~3ȧ12ḃ22ṅ !ȧ1~ ḃ2 ṅ !ḃ#

2e22b@2a91n91~3a822b812n8!a81~n82b8!n8#

52
1

4
e22nḟ21

1

4
e22bf821

1

2
U2

1

2
e2b

3(
i 51

2 F1

2
e22nḟ i

22Ui Gd~y2yi !, ~2.21!

3e22n~ ä2 ṅȧ12ȧ2!23e22b~a821n8a8!

52
1

4
e22nḟ22

1

4
e22bf821

1

2
U, ~2.22!

3~ ȧ81ȧa82ȧn82ḃa8!52
1

2
ḟf8, ~2.23!

e22n@f̈1~3ȧ1ḃ2 ṅ !ḟ#2e22b@f91~3a82b81n8!f8#

52]fU2e2b(
i 51

2

]fUid~y2yi !, ~2.24!

f̈ i1~3ȧ2 ṅ !ḟ i1e2n]f i
Vi50, ~2.25!

where the dot and the prime denote the derivatives with
spect tot andy. Alternatively, one can formulate these equ
tions in the boundary picture. Then alld function terms in
02350
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the above equations have to be dropped and are replace
the following boundary conditions:

e2ba8uy5yi
57

1

12F1

2
e22nḟ i

21Ui G
y5yi

, ~2.26!

e2bn8uy5yi
57

1

12F2
5

2
e22nḟ i

21Ui G
y5yi

, ~2.27!

e2bf8uy5yi
56

1

2
@]fUi #y5yi

. ~2.28!

Here the upper~lower! sign applies to the first boundary a
y5y1 ~the second boundary aty5y2). Thed-function terms,
or equivalently the right-hand sides of the boundary con
tions, are non-vanishing if there is any kinetic or potent
energy on the boundaries. Hence, in this most interes
case, the solution is necessarily inhomogeneous in the o
fold coordinatey.

For the application to cosmology, one is also interested
the four-dimensional effective action of Eq.~2.1! that is,
roughly speaking, valid when all energy scales are sma
than the orbifold scale 1/R. Normally, this action could be
derived by a simple truncation where all the bulk fields a
taken to be independent of the orbifold coordinate. While
our case, this gives the correct answer to lowest orde
neglects higher-order corrections that can be relevant. Th
corrections appear because, strictly, we are not allowed
take the bulk fields independent of the orbifold coordina
thereby neglecting all contributions from bulk modes. I
stead, as we have just seen, every non-vanishing term in
boundary actions produce an orbifold dependence that n
to be integrated out and, typically, leads to corrections to
effective action. Hence, from a four-dimensional perspecti
the five-dimensional inhomogeneities are not seen as ex
tions of Kaluza-Klein modes but rather as corrections to
zero mode action. The four-dimensional Kaluza-Kle
modes, on the other hand, are defined using a mode ex
sion on the inhomogeneous five-dimensional backgrou
Hence, they are not excited due to the inhomogeneities in
fifth dimension. However, they could be excited by oth
mechanisms such as those discussed in Ref.@47#. Let us
explain how the derivation of the zero mode effective act
works in our case, taking into account corrections up to
first non-trivial ~linear! order. For a more detailed accou
see@61#. First, we split the bulk fields as

gab5ḡab1g̃ab , ~2.29!

f5f̄1f̃, ~2.30!

into their orbifold average plus an orbifold-dependent var
tion. Specifically, we have defined

ḡab5^gab&5 , f̄5^f&5 , ~2.31!

where ^ &5 denotes the average in the orbifold directio
Hence, the average of the variations vanishes; that is,
6-6
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^g̃ab&550, ^f̃&550. ~2.32!

The averaged fields are in one to one correspondence
the low energy moduli fields. Aside from the modulusf̄, we
have the orbifold modulusb̄ and the four-dimensiona
Einstein-frame metricg4mn . The latter two quantities are
related to the averaged metric by

e2b̄5ḡ55, ~2.33!

g4mn5eb̄ḡmn . ~2.34!

Note that we have no graviphoton zero mode sincegm5 is
odd underZ2 and, hence,ḡm550. After expanding to linear
order in the variations, the equations of motion can be
composed into an averaged part and a part for the variati
The latter equations have the following solutions in t
boundary picture2

g̃ab5e2b̄R@P1~z!S̄ab
(1)1P2~z!S̄ab

(2)#, ~2.35!

f̃5
1

2
eb̄R@P1~z!]fU11P2~z!]fU2#, ~2.36!

where

Sab
( i ) 5Tab

( i ) 2
1

3
gabggdTgd

( i ) ~2.37!

is the modified boundary stress energy. The bar indicates
the corresponding expressions are understood with the
fields replaced by their zero modes. Furthermore, we h
defined the polynomials3

P1~z!52
1

2
z21z2

1

3
, P2~z!52

1

2
z21

1

6
,

~2.38!

which depend on the normalized orbifold coordinate

z5
y

R
P@0,1#. ~2.39!

This solution shows that each energy source on the boun
leads to a certain, generally quadratic,z-dependent variation
of the bulk fields across the orbifold. This corresponds
coherent excitations of the Kaluzu-Klein modes in the or
fold direction. Let us consider an explicit example. W
would like to determine thez dependence of the bulk field

2This solution applies to the part of the boundary stress ene
which is homogeneous and constant in time on scales of the o
R. Slowly varying potential energy, the most important case for t
paper, typically satisfies this requirement. For boundary proce
on scales smaller thanR the associated bulk fields are suppress
and decay exponentially away from the boundary@62#.

3These polynomials are characterized by the properties^P1(z)&5

5^P2(z)&550, P18(0)51, P18(1)50, P28(0)50 andP28(1)521.
02350
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that arises from the explicit boundary potentials in Eq.~2.3!
proportional tov. Inserting the corresponding part of th
boundary stress energy into Eqs.~2.35! and ~2.36! we find

ds5
25~ ḡab1g̃ab!dxadxb

5S 11
1

3
f̃ De2b̄g4mndxmdxn1S 11

4

3
f̃ De2b̄dy2,

~2.40!

f5f̄1f̃, ~2.41!

f̃522eb̄2f̄eDWS z2
1

2D , ~2.42!

where

eDW52
vR

A2
. ~2.43!

Note that the explicit potentials have the same height
opposite sign on the two boundaries. Therefore,
z-dependent part of the solution is proportional to the diff
ence (P12P2)(z) of the polynomials~2.38! and, hence, is
linear in z. This is to be contrasted with the general case
unrelated boundary potentials which leads to a quadr
variation. For constant modulig4mn , b̄ andf̄, Eqs.~2.40!–
~2.43! represent the linearized version of an exact BPS
main wall ~three-brane! solution of heterotic M theory4 in
five dimensions that was found in Ref.@42#. More precisely,
the solution represents a pair of domain walls stretch
across the orbifold planes and it can be viewed as
‘‘vacuum’’ solution of the theory. At the same time, it is th
five-dimensional version of Witten’s 11-dimensional linea
ized background@28#. In this way, the four-dimensional or
bifold planes are identified with three-brane world volum
which carry the observable~and hidden! low energy fields as
their zero modes. In this sense, our picture offers a conc
realization of the general idea that the world arises from
world volume of a brane. Observe that the size of the c
rection~2.40! is set by the dimensionless quantityeDW in Eq.
~2.43!, which is just the product of the boundary potent
~measured in units ofk5

225M5
3) times the size of the orbi-

fold dimension. Therefore, the linearized approximation t
led us to the solutions~2.35!, ~2.36! is only sensible as long
as ueDWu!1. We will discuss this in more detail in the nex
section.

By inserting the solutions~2.29!–~2.36! into the action
~2.1! and promoting the modulig4mn , b̄, and f̄ to four-

y
er
s
es
d

4The exact solution of Ref. @42# has the form ds5
2

5a0
2Hhmndxmdxn1b0

2H4dy2, ef5b0H3 where H5c02
2
3 eDW(z

2
1
2 ) anda0 , b0, andc0 are constants. In fact, it also constitutes

exact solution of the action~2.1!. Upon linearizing ineDW , setting
g4mn;hmn in Eq. ~2.40!, and appropriately matching the modu
this coincides with Eqs.~2.40!–~2.42!.
6-7
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dimensional fields, we can now compute the first order c
rected action of the zero modes. We introduce the fields

S5ef̄, T5eb̄, ~2.44!

which are just the real parts of the ordinarySandT moduli.5

Note thatS measures the volume of the internal Calabi-Y
space in units ofvCY whereasT measures the size of th
orbifold in units of R. We also introduce the four
dimensional Newton constant

GN5
k5

2

16pR
5

1

16pRM5
3

, ~2.45!

and the rescaled boundary fields

Ci5AM5
3

3
f i . ~2.46!

Then the four-dimensional effective action is given by

S452
1

16pGN
E

M4

A2g4FR41
3

2
T22]mT]mT

1
1

2
S22]mS]mSG2E

M4

A2g4F1

2 (
i 51

2

Ki]mCi]
mCi

1V4G ~2.47!

with the ‘‘Kähler metrics’’

Ki5
3

2T
6

eDW

2S
~2.48!

and the four-dimensional potential

V45
1

2T2 (
i 51

2

V4i1
eDW

2ST (
i 51

2 S 6
2

3
V4i6]f̄V4i D1

1

T
RM5

3V,

~2.49!

where the boundary potentialsV4i normalized to four mass
dimensions are defined by

V4i5M5
3Vi . ~2.50!

Note that the Ka¨hler metrics and the potential have corre
tions linear ineDW that originate from the domain wall. Ha
we performed a simple truncation of the five-dimensio
theory by taking the bulk fields independent of the orbifo
we would have missed these corrections. What happene
the explicit potentials proportional tov in the five-
dimensional action, Eqs.~2.2! and ~2.3!? These potentials
were actually responsible for the existence of the dom

5The imaginary parts are absent because we have omitted
corresponding fields in the five-dimensional action~2.1! for sim-
plicity. The complete reduction can be found in Ref.@43#.
02350
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wall solution in the first place. Performing a reduction on th
solution, they are canceled so that there is no remnant po
tial for the S and T moduli in four dimensions. Given the
form of our five-dimensional action~2.1!–~2.3!, the bulk po-
tential V only depends onS but not on T. The four-
dimensional effective potential~2.49! shows that, in this
case, the modulusT cannot be stabilized. For the solution
based on the four-dimensional effective action we, therefo
have to slightly generalize our setup and assume thatV is a
function of the orbifold modulusT as well.

An alternative way to deal with the orbifold dependen
of bulk fields in a reduction to four dimensions is to keep
the Kaluza-Klein modes instead of integrating them out. R
cently, this has systematically been carried out in Ref.@63#.
In such a four-dimensional action, the zero mode part d
not have the above corrections. Instead, there exist term
the action which couple Kaluza-Klein modes linearly to ze
mode fields. Hence the Kaluza-Klein modes cannot be se
zero consistently. In fact, solving for these Kaluza-Kle
modes would lead to the Fourier decomposition of o
orbifold-dependent corrections~2.35!, ~2.36!.

Besides being useful to calculate the four-dimensional
tion, the method described above can also be used to
approximate solutions of the five-dimensional theory. This
actually the main reason why we have presented it her
some detail. Concretely, suppose one has found a solutio
the four-dimensional theory with action~2.47!. Then, by in-
serting this solution into Eqs.~2.29!–~2.36!, we can simply
‘‘lift it up’’ to obtain a solution of the five-dimensional
theory. Of course, for this solution to be sensible, the line
ized approximation that led us to Eqs.~2.35!, ~2.36! should
be valid. The condition for that to be true will be discussed
the next section in some detail.

III. TYPES OF INFLATION AND SCALES

Which type of inflation for the action~2.1! do we want to
consider? First of all, in this paper we are interested in ‘‘co
ventional’’ potential-driven inflation rather than in a pre-bi
bang-type scenario@64#. Some solutions of five-dimensiona
heterotic M theory that might provide a basis for a pre-b
bang scenario have been found in Refs.@31–33#. Given that
we want to focus on potential energy, there are two obvio
options.

Bulk potential energy: The potential energy is provid
by the bulk potentialV and the fieldf is the inflaton. This
can also be called ‘‘modular inflation.’’

Boundary potential energy: The potential energy is due
the boundary potentialsVi ~one of them or both! and the
fields f i are the inflatons. This can be called the ‘‘matt
field inflation.’’

Clearly, in general, one could also have a mixture of b
types. In this paper, we concentrate on the second optio
boundary potential energy, which appears to be more in
esting for a number of reasons. Most importantly, the pr
ence of the boundaries is the truely new ingredient in
action~2.1!. Inflation from the boundary also seems to be
accord with the current mainstream in four-dimensional
flationary model-building@54#. On the other hand, modula

he
6-8
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BOUNDARY INFLATION PHYSICAL REVIEW D 61 023506
inflation faces a number of problems associated with
steepness of typical non-perturbative moduli potent
@65,66#. From the viewpoint of the recently proposed mod
@46# with a very low ‘‘fundamental’’ scaleM5;TeV, bulk
inflation might not be desirable because reheating from
bulk field might leave the additional dimension too inhom
geneous to be consistent with standard cosmology@47#.
None of these arguments, of course, disproves bulk infla
and it might still be an interesting option. This will be di
cussed elsewhere.

Let us, from now on, concentrate on the case of poten
energy on the boundary. Our assumption is, hence, tha
bulk potentialV(f) is zero or negligible for all field values
f relevant during inflation~which does not mean, howeve
that V is identical to zero!. The potential energy is the
dominated by the boundary potentialsVi and the four-
dimensional effective potential is given by

V4.
1

2T2 (
i 51

2

V4i1O~eDW!, V4i5M5
3Vi . ~3.1!

In the previous section, we have given a method to ob
approximate five-dimensional solutions from solutions of
four-dimensional effective action. Therefore, if we can find
four-dimensional inflationary solution~which we can ifV4
satisfies the usual slow roll conditions!, we can lift it up to a
solution of theD55 action. When is this effective four
dimensional approach sensible? In the domain wall exam
of the previous section we have seen that the condition

ueDWu5
uvuR

A2
!1, ~3.2!

which involves the heightv of the domain wall potentials
should be satisfied in order for the linearized solution to
valid. In the context of heterotic M theory, the relation~3.2!
is required anyway since the formulation of the theory is
well known beyond the linear level ineDW . In any case, Eq.
~3.2! should be satisfied for the effective four-dimension
action ~2.47! to be sensible.

Inspection of the general linearized solutions~2.35!,
~2.36! shows that we should have a similar condition for t
boundary potentialsVi ; namely, for

e i[ViR5
V4iR

M5
3

, ~3.3!

we should have

ue i u!1. ~3.4!

What is the interpretation of these conditions? We have g
erally seen that boundary potentials~and any other form of
boundary energy! lead to inhomogeneities in the addition
dimension or, in other words, excite bulk modes associa
with this dimension. Ifue i u!1 this can be described in
linearized approximation, either by integrating out t
Kaluza-Klein modes at the linear level as we have done
arrive at our four-dimensional action for the zero modes,
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by keeping the linearized Kaluza-Klein modes in the fou
dimensional action as in Ref.@63#. If, on the other hand,
ue i u@1 this linearized approximation breaks down. Then t
simplest possibility is probably to work with the full five
dimensional action. Hence, we distinguish two cases.

ue i u!1, the linear regime: We can solve the fou
dimensional effective action~2.47! for the zero modes and
lift up the solutions to five dimensions using the results
the previous section. We will discuss this case in the follo
ing section.

ue i u@1, the non-linear regime: We should solve the fu
five-dimensional theory~2.1!. This case will be considered in
Secs. V and VI.

What seems surprising about this criterion, at first, is t
the quantitiese i are linear in the sizeR of the additional
dimension. The larger the additional dimension, the ear
the system enters the non-linear regime. This can be un
stood as follows. Consider the one-dimensional space a
ciated with the additional dimension. The orbifold plan
appear as points sources in this space. On the linear leve
fields generated by these point sources are roughly descr
by the one-dimensional Green’s function which is simply t
linear functionuyu. The proportionality ofe i to the orbifold
size R simply reflects this linear increase iny of the one-
dimensional Green’s function. This picture also sugge
how the above criterion should be modified for more th
one additional dimension. For example, for two addition
dimensions the Green’s function is a logarithm and, hen
roughly a constant. Therefore,e i should be independent o
the size of the additional dimensions. Generally, ford addi-
tional dimensions, one expects the corresponding param
ed ~suppressing the indexi ) to be given by

ed5
V4

M41d
21dRd22

~3.5!

where M41d is the fundamental scale of th
41d-dimensional theory. Since one would generally requ
that V4!M41d

4 and R21!M41d to have a field-theoretica
description, it follows thatuedu!1 as long asd.1. We see,
therefore, that the case of one additional dimension, whic
the relevant one for heterotic M theory, is special in that it
the only case where inflation might take place in the no
linear regime.

We would like to be somewhat more explicit about sca
in order to get a feeling for when the above linearity criteri
might be satisfied. In the Horˇava-Witten context, one refer
ence point is the ‘‘physical point’’ at which the gauge an
gravitational couplings are matched@28#. At this point, one
finds to lowest order

k22/9.x431016 GeV

vCY
21/6.x231016 GeV ~3.6!

R21.x3231015 GeV

for the energy scales associated with the 11-dimensio
theory, the Calabi-Yau space and the orbifold. Herex is a
6-9
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quantity of order one which depends on the shape of
Calabi-Yau space and parametrizes our ignorance of the
cise relation between the Calabi-Yau volume and the un
cation scale. Using Eqs.~2.5! and~2.6!, we find for the mass
scale of the five-dimensional theory

M5.x231017 GeV. ~3.7!

The linearity criterion~3.4! then translates into

V4i
1/4!x3/2631016 GeV. ~3.8!

Hence, if during inflation the Calabi-Yau volume and t
orbifold radius are at the values that lead to coupling c
stant unification, the Kaluza-Klein modes behave linearly
long as the boundary potentials satisfy the bound~3.8!. This
has to be compared with the COBE normalization wh
implies for the~four-dimensional! inflationary potential that

V4
1/4.«1/46.731016 GeV, ~3.9!

where

«5
~V48!2

2GNV4
2

~3.10!

is the usual slow roll parameter. The prime denotes the
rivative with respect to the inflaton. Comparison of Eq
~3.9! and ~3.8! shows an interesting coincidence of sca
suggesting that inflation might start just when the the
leaves the non-linear regime. The bound~3.8! is, however,
very close to the physical orbifold and Calabi-Yau scales
Eq. ~3.6!. Beyond energies ofvCY

21/6 the effective five-
dimensional theory breaks down. Also, beyond energies
k22/9 the description via 11-dimensional supergravity is
longer viable. Clearly, beyond those scales our analysis d
not apply and there is no reason to discuss a non-linea
gime as defined above. Most likely, therefore, the the
undergoes a transition from an M-theory regime directly in
the linear regime. Of course, the ‘‘coincidence’’ of scales
due to the fact that the fundamental scales of our theory
much closer to the scale suggested by COBE than, for
ample, the Planck scale. To make this observation re
meaningful one has to more closely analyze the transitio
the linear regime, something that is beyond the scope of
paper. In any case, all these statements relate to the ‘‘ph
cal point’’ associated with the present values of the Cala
Yau volume and the orbifold radius. Clearly, those valu
could have been different in the early universe, so that
really do not know in which regime inflation took plac
Consequently, in the context of Horˇava-Witten theory, as
well as in a wider context, we should investigate both
linear and the non-linear possibility.

Finally, we would like to discuss which part of the spa
should be allowed to inflate from a ‘‘phenomenologica
point of view. There are two options. First, while the usu
three-dimensional space inflates the additional dimensio
basically fixed. Second, both the three-dimensional sp
and the additional dimension inflate. While there is ob
ously no problem with the first option, inflating the full spa
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might lead to an additional dimension that is too large.
particular, inflating it for the full 55 or so e-folds leaves on
with a radiusR that would typically be some 24 orders o
magnitude larger than the fundamental length scaleM5

21 of
the theory. This is clearly unacceptable. It might be acce
able to inflate the additional dimension for a short peri
~depending on the precise value of the scales! and then sta-
bilize it to its low-energy value. This stabilization of an in
flating modulus might, however, be hard to achieve theor
cally. In this paper, we therefore favor the first option of
non-inflating additional dimension.

IV. LINEAR CASE: THE INFLATING DOMAIN WALL

In this section, we would like to construct inflationar
solutions in the linear case

ue i u!1. ~4.1!

Following the general method presented in Sec. II, we sho
first find an inflating solution of the four-dimensional effe
tive theory~2.47!. The existence of such a solution depen
of course, crucially on the properties of this theory and
potential in particular. Rather than going into model buil
ing, we will simply assume suitable properties. Since we
interested in boundary inflation, we assume that the moduS
andT have been stabilized by the four-dimensional effect
bulk potential ~2.49!. As discussed earlier, this requires
non-perturbative bulk potentialV that depends onS and T.
To simplify formulas, we choose the coordinate Calabi-Y
volume vCY and the coordinate orbifold radiusR such that
this stable point is at

f̄5 ln S50, b̄5 ln T50. ~4.2!

Furthermore, since we would like the vacuum energy to
dominated by the boundary potentials, we assume that
bulk potential vanishes at this point; that is

V~f̄50,b̄50!50. ~4.3!

Finally, we need our candidate inflatons, the boundary fie
Ci , to be slowly rolling. This requires the inequalities

~]Ci
V4!2

GNV4
2

!1,
]Ci

]Cj
V4

GNV4
!1 ~4.4!

to be satisfied for alli , j 51,2. Then, starting with the usua
four-dimensional metric

ds4
25g4mndxmdxn52dt21e2a4dx2 ~4.5!

for a spatially flat Robertson-Walker universe with scale fa
tor a4, the four-dimensional equations of motion from th
action ~2.47! reduce to

H2[ȧ4
25

8pGN

3
V4 , ~4.6!
6-10
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Ċi52
1

V4
]Ci

V4 . ~4.7!

The usual inflating solution is then

a45H~t2t0! ~4.8!

with an arbitrary integration constantt0. The slow roll mo-
tion Ci(t) of the inflatons can be obtained from Eq.~4.7!
once an explicit potential has been specified. Note that w
the conventional relation~4.6! between the potential and th
Hubble parameter and using Eq.~2.45!, the quantitiese i can
be written ase i;H2R2. The conditione i!1 then corre-
sponds to the ‘‘intuitive’’ criterion that the Hubble paramet
H should be smaller than the massR21 of the first Kaluza-
Klein excitation. In Ref.@49# this criterion has been used t
constrain the Hubble parameter during inflation for Te
scale gravity models.

We can now lift this solution up to five dimensions usin
the formulas of Sec. II, in particular Eqs.~2.29!–~2.36!. We
find6

ds5
252e2ndt21e2adx21e2bdy2, ~4.9!

a5H~t2t0!1ã, ~4.10!

n5ã, ~4.11!

b54ã, ~4.12!

f5f̃, ~4.13!

where the orbifold dependent correctionsã andf̃ are given
by

ã52
eDW

3 S z2
1

2D2
R

12M5
3 (

i 51

2

Pi~z!V4i@f̄50,Ci~t!#,

~4.14!

f̃522eDWS z2
1

2D1
R

2M5
3 (

i 51

2

Pi~z!]fV4i@f̄50,Ci~t!#.

~4.15!

6A subtle point has to be taken into account if one wants to
plicitly verify that this solution satisfies the five-dimensional equ
tions of motion~2.20!–~2.25! to linear order. For the underlying
four-dimensional solution, we have explicitly assumed that the

bifold modulusT5eb̄ has been stabilized atT51. The effective
four-dimensional potential~2.49! shows that this requires aT de-
pendence of the bulk potentialV. Since]TV4(T51)50 andV(T
51)50, one concludes from Eq.~2.49! that ]b̄V(T51)
5R21( i 51

2 Vi1O(eDW). Moreover, in the five-dimensional equa
tions of motion we have not considered ab dependence of the bulk
potentialV. To incorporate such a case, the potentialU in Eq. ~2.22!
has to be replaced byU1]bV. Using this modification and the
above expression for]bV one can indeed verify that the five
dimensional equations of motions are satisfied.
02350
th
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Recall thatPi(z) are quadratic polynomials in the norma
ized orbifold coordinatez5y/RP@0,1# that have been de
fined in Eq.~2.38!. In the metric~4.9! we should, of course
only consider terms linear inã and f̃, in accordance with
our approximation.

Let us discuss the form of this solution. First we note th
neglecting the very mild time dependence introduced by
slow roll of the inflatons for the moment, the solution sep
rates into a time-dependent and an orbifold-dependent p
The time-dependent part just corresponds to the inflation
expansion of the three-dimensional universe. This expan
does not occur just on one boundary, as one might naiv
expect, but uniformly across the whole orbifold. To discu
the corrections, let us concentrate on the scale factora. Al-
though it expands at the same Hubble rateH everywhere
across the orbifold, its actual value depends on the orbif
point as specified in Eq.~4.14!. The first term in this equa-
tion is the familiar linear contribution from the domain wa
proportional toeDW . The second term arises from the boun
ary potentials and is proportional toe i , as expected. It has
mild time-dependence through the slow-roll change of
potentials.

The bottom line of this section is, that the problem
finding inflationary backgrounds in the linear regime can
adequately approached in the four-dimensional effective
tion obtained by integrating out the Kaluza-Klein modes. F
our simple model, this action is given in Eq.~2.47!. More
realistic four-dimensional effective actions from Horˇava-
Witten theory can be found in@67,62,68,58,69,70#. The full
five-dimensional solution is then obtained by lifting the fou
dimensional solution up, using the correspondence es
lished in Sec. II. This leads to the corrections~4.14! and
~4.15! corresponding to bulk modes that are coherently
cited by the non-vanishing sources on the orbifold plan
One might also worry about other excitations of the Kaluz
Klein modes unrelated to the orbifold sources, such as r
nants from an initial state. This could be described by add
the tower of Kaluza-Klein modes to the four-dimension
effective action~2.47!. Since we have integrated out the o
bifold sources, those modes would be free source-less
ticles with massesn/R, wheren is an integer. Note, that, a
explained above, those modes are not excited by the in
mogeneity in the fifth dimension. However, they can be e
cited due to other effects. During inflation, such excitatio
are simply damped away by the expansion. The condition
this to happen efficiently coincides with our linearity crit
rion ue i u!1 and is, hence, satisfied. In the linear regime,
only relevant excitations of bulk modes after a short per
of inflation are, therefore, the ones caused by the orbif
sources computed above. As we will see, this changes in
non-linear regime whereue i u@1.

We would briefly like to mention some generalizations.
is clear that the above method can be applied to other ty
of four-dimensional cosmological solutions, for example,
a preheating solution with the energy density dominated
coherent oscillations or to a radiation-dominated soluti
straightforwardly. Basically, all one has to do is to repla
the potentials in Eq.~4.14! by the appropriate energy densit
What about the case of more than one large dimension

-
-

r-
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ANDRÉ LUKAS, BURT A. OVRUT, AND DANIEL WALDRAM PHYSICAL REVIEW D 61 023506
such a case, the variation across the orbifold would not
crease as a polynomial any more, as we have seen ea
Instead, for two additional dimensions we expect a logar
mic behavior and for more than two dimensions a power
fall-off. Common to all these cases is, however, that ene
density on the four-dimensional plane coherently excites
bulk modes.

V. NONLINEAR CASE: A SOLUTION BY SEPARATION
OF VARIABLES

We would now like to study the non-linear case; that
we assume

ue i u@1. ~5.1!

In this case, we should solve the full five-dimensional eq
tions of motion given in Eqs.~2.20!–~2.28!. We will use the
boundary picture to do this. In general, we have two types
potentials on the boundaries, namely the domain wall po
tials and the potentialsVi , corresponding to the two terms i
Eq. ~2.3!. We have already stated thateDW , the dimension-
less quantity that measures the strength of the domain
corrections, should be smaller than one in order for
M-theory description via supergravity to be valid. The co
dition ~5.1!, therefore, states that the potentialsVi will be
dominating over the domain wall. To simplify our problem
we will, therefore, neglect the domain wall potentials. C
tainly, there will be an intermediate region between the n
linear and linear regime where both potentials are signific
It will, however, be very difficult to find explicit solutions in
this regime. We, therefore, concentrate on the case~5.1!. As
a further simplification, let us assume that the Calabi-Y
volume modulusf has been stabilized by the bulk potent
V; that is

f5const. ~5.2!

Of course, we have to be careful that this assumption
consistent with the boundary condition onf, Eq. ~2.28!. We
have already neglected the first term in this condition wh
originates from the domain wall. The second term is rela
to the boundary potentialsVi and vanishes if those are take
to be independent off. We will assume this in the follow-
ing. In accordance with our general assumption of bound
inflation, the potential energy from the bulk potential shou
be negligible,

V~f!.0. ~5.3!

Finally, we assume that the boundary potentialsVi(f i) are
suitable slow-roll potentials so that the boundary fieldsf i act
as the inflatons. Practically, this means that we treatVi sim-
ply as constants. We recall from Sec. II that the metric
the form

ds5
252e2ndt21e2adx21e2bdy2, ~5.4!
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wherea andb are the scale factors of the three-dimensio
universe and the orbifold, respectively. We also remark th
from Eqs. ~2.26!, ~2.27!, the boundary conditions take th
form

e2ba8uy5yi
5e2bn8uy5yi

57
1

12
Vi . ~5.5!

Even though the equations of motion~2.20!–~2.28! have
now considerably simplified, they are still not easily solub
The reason is, of course, that we are dealing with par
differential equations as opposed to the ordinary ones
one usually encounters in cosmology. The simplest strat
to solving partial differential equations is separation of va
ables and this is what we are going to do next. The gen
solution will be given in the following section.

To simplify the problem we first choose the conform
gaugen5b. We will assume for the time being that th
coordinate transformation that led to conformal gauge lea
the boundaries at finite values of the coordinatey. In this
case, we can restore the conventions for our coordinate
tem by shifting the boundaries back toy50,R. We are, then,
looking for all solutions of Eqs.~2.20!–~2.28! ~subject to the
above assumptions! consistent with the separation ansatz

a5a0~t!1a5~y!, ~5.6!

b5b0~t!1b5~y!. ~5.7!

The general solution to the equations of motion~2.20!–
~2.23! in the boundary picture is

a5K~y6t!1A, ~5.8!

b5K@~12K̃ !y6K̃t#1B, ~5.9!

whereK, K̃, A andB are integration constants. We still hav
to apply the boundary conditions~5.5!. This leads to

K5
1

R
lnS 2

V1

V2
D , K̃50, B5 lnS 2

12K

V1
D ,

~5.10!

while A remains arbitrary. For the arguments of the log
rithms to be positive, we have to further demand thatV1 and
V2 have opposite signs such thatV11V2,0. It is not yet
clear, whether these restrictions onVi are general or whethe
they are related to our choice of the coordinate system.
have assumed that in the conformal gauge the boundarie
at finite values. This need not be the case if the coordin
transformation that led to the conformal gauge had a sin
larity. To cover such a case, we introduce a general orbif
coordinateỹ by

y5
1

K
ln„Kg~ ỹ!…2B, ~5.11!
6-12
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FIG. 1. Parts of Minkowski space corresponding to the solution in case 1~left figure! and case 2~right figure!.
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whereg( ỹ) is a monotonic, continuously differentiable fun
tion for ỹP@y1 ,y2#. Rewriting the solutions~5.8!, ~5.9! in
terms of this new coordinate and applying the boundary c
ditions ~5.5! leads to

ds5
252K2g~ ỹ!2dt21K2g~ ỹ!2e62K(t2t0)dx21g8~ ỹ!2dỹ2,

~5.12!

whereg should satisfy at the boundaries

g~y1!57
12

V1
, g~y2!56

12

V2
. ~5.13!

The upper~lower! sign applies to an increasing~decreasing!
function g. HereK andt0 are arbitrary constants.7

Let us discuss some properties of this solution. As is w
known @55,56#, the metric~5.12! is flat everywhere in the
bulk. What makes the metric nevertheless non-trivial is
presence of the boundaries. While those boundaries are
persurfaces withy5const in our coordinate frame, the
would be mapped to de Sitter hypersurfaces in coordin
where the metric~5.12! takes, the Minkowski form. Indeed
if we define comoving timest i on each boundary by settin
dti

25K2g(yi)
2dt2, the four-dimensional boundary metric

take the form

ds4,i
2 52dti

21K2g~yi !
2e2Hi (t i2t i0)dx2 ~5.14!

with the Hubble parametersHi given by

Hi56
Vi

12
56

V4i

12M5
3

. ~5.15!

7Choosingg( ỹ)51/K2 ỹ, we obtain a form similar to the four
dimensional domain wall solution of@55,56# and its five-
dimensional counterpart in@50#.
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The above linear relation between the Hubble parameters
the potentials is quite unconventional. Usually the square
the Hubble parameter is proportional to the potential, as
our linear case, Eq.~4.6!. We should distinguish two case
for the functiong.

g( ỹ)Þ0 for all ỹP@0,R#: In this case, the metric~5.12! is
regular everywhere on the orbifold, as in our original for
~5.8!, ~5.9! of the solution in conformal gauge. Sinceg is
continuous,g(y1) and g(y2) have to have the same sign
From Eq.~5.13! it then follows that

V1V2,0, V11V2,0. ~5.16!

This are indeed the relations we found in conformal gau
above.

g(y0)50 for somey0P@0,R#: In this case, the metric
~5.12! has a horizon aty5y0. Now g(y1) has to be negative
andg(y2) positive~or vice versa! and we conclude from Eq
~5.13! that

V1.0, V2.0. ~5.17!

This case could not be obtained from the solution in conf
mal gauge.

In Fig. 1 two-dimensional Minkowski space correspon
ing to the (t,y) plane is depicted. We have indicated th
portions of this space that correspond to the above two ty
of solutions. As explained earlier, if the metric~5.12! is writ-
ten in Minkowsi form by applying an appropriate coordina
transformation they5const orbifold planes are mapped in
de Sitter hypersurfaces. In the two-dimensional pictures t
appear as hyperbolas. The space between those hyperbo
Fig. 1 represents the orbifold and the lines indicate the lo
tions of constant time,t5const. In case 1~left Fig. 1!, both
bondaries are on the same side of the light cone. Signals
travel in the bulk will always reach the boundary after
finite time. In particular, a signal sent from one plane w
always reach the other one in a finite time. These cau
properties are somewhat counterintuitive in that one wo
6-13
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ANDRÉ LUKAS, BURT A. OVRUT, AND DANIEL WALDRAM PHYSICAL REVIEW D 61 023506
expect the existence of signals that travel exclusively in
bulk without ever hitting a boundary. The figure shows th
in fact, such signals do not exist. On the other hand, in c
2 ~right Fig. 1!, a signal emitted from one of the boundari
will never reach the other one. In this sense the two bou
aries are causally decoupled. Again, this property is so
what unexpected intuitively.

The physical length of the orbifold~obtained by integrat-
ing Ag55 over the coordinate interval@0,R#, as usual! is static
and in both cases given by

Rphys512S 1

V1
1

1

V2
D . ~5.18!

This is positive due to the conditions~5.16! and~5.17!, as it
should. In view of Eq.~5.15!, this leads to

Hi;
1

Rphys
~5.19!

for potentialsVi of the same order of magnitude. This rel
tion is quite promising, since it directly relates the Hubb
parameters to the size of the additional dimension. We wo
like to point out that, unlike in the linear case, we did n
assume the non-perturbative bulk potentialV to depend on
the orbifold modulus. Nevertheless, the orbifold sizeRphys
turns out to be time independent. Moreover, it is fixed by E
~5.18! in terms of the boundary potentials.

We have already mentioned that the above solution is
only separating solution compatible with our initial assum
tions of a stabilized modulusf and slow roll of the boundary
fieldsf i . There is yet another sense in which this solution
unique. Suppose one is interested in solutions where the
moduli fieldsb andf are constant in time or slowly movin
~with a negligible contribution from the bulk potentialV to
the vacuum energy!, the boundary fields are slowly rolling in
their potentialsVi and the Hubble parameterH[ȧ changes
only slowly in time. Practically, one can then neglect ter

containingḃ,ḟ,ḟ i , andḢ in the equations of motion. Heu
ristically, these properties are what one expects from an
flating solution in five dimensions, in analogy with the fou
dimensional case. Then, one can show that all solutions
these properties are approximated~in the sense that slow-rol
corrections have been neglected! by Eqs.~5.8!–~5.10!. To do
this, one does not need the technical assumption of sep
bility that we have used so far. In this sense, we have fo
the unique solution with boundary inflation in five dime
sions.

Can this solution, then, be used as the basis for an in
tionary model in five dimensions? We have to keep in m
that we have not solved the equations of motion in gen
yet, but rather found a specific solution by imposing sepa
bility or, equivalently, ‘‘reasonable’’ physical conditions o
what an inflationary solution should look like. Therefore, o
solution might be very special in the sense that it, perha
can only be obtained from a set of initial conditions wi
measure zero. In other words, the solution could be unst
against small perturbations. We will analyze this question
the following section.
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VI. NONLINEAR CASE: GENERAL SOLUTION

In this section, we present the general solution. We s
with the same setup as in the beginning of Sec. V. Since
are in the non-linear regime

ue i u@1, ~6.1!

we can neglect the domain wall potentials. Furthermore,
assume thatf has been stabilized by the bulk potentialV at
a point with vanishing potential energyV(f)50 ~also, as a
technical assumption, we have to require the boundary
tentials to be independent onf). Furthermore, the boundar
potentialsVi should lead to slow roll of the fieldsf i . We
will, however, not assume separability or slow time evo
tion of any other field.

It is useful to introduce light-cone coordinates

x65t6y ~6.2!

and rewrite the equations of motion~2.20!–~2.23! in terms of
these coordinates choosing conformal gaugen5b. Using the
simplifications that follow from the above setup, one find

]1
2 a22]1a]1b1]1a250, ~6.3!

]2
2 a22]2a]2b1]2a250, ~6.4!

]1]2a13]1a]2a50, ~6.5!

2]1]2a1]1]2b13]1a]2a50. ~6.6!

The boundary conditions~2.26! and ~2.27! specialize to

e2ba8uy5yi
5e2bb8uy5yi

57
Vi

12
, ~6.7!

where the upper~lower! sign applies to the boundary aty
5y1 (y5y2). The equations of motion~6.3!–~6.6! are quite
similar ~although not identical! to those of two-dimensiona
dilaton gravity@57# with vanishing cosmological constant. I
fact, Eqs. ~6.3!–~6.6! can be obtained from the two
dimensional action

S252E A2g2e3a@R2224]aa]aa# ~6.8!

with the two-dimensional metric in conformal gauge giv
by gab5e2bhab . Here we have used indicesa,b, . . . 50,5
for the space (t,y). Using the methods of Ref.@57#, we can
find the following general solution of Eqs.~6.3!–~6.6!;

a5 1
3 ln u, b5w2 1

3 ln u,

u5u1~x1!1u2~x2!, w5w1~x1!1w2~x2!,
~6.9!

whereu and w are free fields, as indicated. The ‘‘left an
right movers’’ u6(x6) and w6(x6) are not completely in-
dependent but, rather, subject to certain relations that o
nate from the constraint equations~6.3! and ~6.4!. Three
cases can be distinguished
6-14
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BOUNDARY INFLATION PHYSICAL REVIEW D 61 023506
Case 1: If]1u1Þ0 and]2u2Þ0 then

w65
1

2
ln~]6u6!1C6 . ~6.10!

Case 2: If]1u1Þ0 and]2u250 then

w15
1

2
ln~]1u1!1C1 . ~6.11!

andw2 is arbitrary.
Case 3: If]1u150 and]2u2Þ0 then

w25
1

2
ln~]2u2!1C2 . ~6.12!

andw1 is arbitrary.
HereC6 are arbitrary integration constants. In each of t

three cases, we still have two arbitrary functions at our d
posal. While this constitutes the most general solution of
equations of motion~6.3!–~6.6!, we have not yet taken into
account the boundary conditions~6.7!. As we will see, this
determines one of the functions and imposes a periodi
constraint on the other one. Before we come to that,
observe that in case 1 we have the relation

b52a1
1

2
ln~9]1a]2a!1C11C2 ~6.13!

between the scale factorsa and b. Suppose that we hav
found a solution with an inflating three-dimensional unive
in this case. Neglectingy dependence, the scale factora is
then roughly given bya;Ht whereH is the Hubble param-
eter. In this case, the second term on the right-hand sid
Eq. ~6.13! is approximately constant since]6a should be
related to the Hubble parameter. Hence, up to an ove
normalization we haveb;2a. This shows that, without as
suming any initial fine-tuning, at the end of inflation, th
orbifold has expanded twice as much as the thr
dimensional universe. For the reasons discussed at the e
Sec. III we, therefore, disregard this possibility. We rema
that solving the boundary condition~6.7! for case 1 leads to
periodicity constraints in terms of elliptic functions.

Let us now turn to cases 2 and 3. Fortunately, the bou
ary conditions can be explicitly solved in these cases.
find thata andb can be expressed in terms of a single r
function f as

a5
1

3
ln f ~x6! , ~6.14!

b5 lnF 4„f 8~x6!…1/2
„f 8~x7!…1/2

~7V1!„f ~x7!…2/3
„f ~x6!…1/3G , ~6.15!

where f 8 denotes the derivative off and, as usual,x65t
6y. The functionf should have the periodicity property

f ~x12R!5@e72RK
„f ~x!…21/31 k̃#23 ~6.16!
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for all x, where

K5
1

R
lnS 2

V1

V2
D ~6.17!

and k̃ is a constant. The condition~6.16! can be solved in
terms of a periodic functionp(x) satisfying

p~x12R!5p~x! ~6.18!

for all x. One finds

f ~x!5@p~x!e7Kx1k#23 for KÞ0, ~6.19!

f ~x!5@kx1p~x!#23 for K50, ~6.20!

where k is another constant. The upper sign in the abo
solutions always corresponds to case 2, the lower one to
3. The definition ofK, Eq. ~6.17!, shows that the boundar
potentials need to have the opposite sign for the solution
exist. We are, therefore, in the first case~5.16! of the previ-
ous section which is as expected since we have used co
mal gauge. We will stick to this case, for simplicity, in th
following. The analog of the second case~5.17! can again be
obtained by employing a more general coordinate syst
Our main conclusions apply to this case as well. Furth
more, the periodic functionp(x) and the constantk have to
be chosen such that the logarithms in Eqs.~6.14! and ~6.15!
are well defined. Apart from those restrictions,p(x) and k
are arbitrary. Equations~6.14!–~6.20! are the most genera
solution of the system~6.3!–~6.7! for cases 2 and 3 which, a
we have seen, are the interesting ones in the present con
Since we can more or less freely choose one periodic fu
tion we have, in fact, found a very large class of solution

Depending on the value ofK we have two different pos-
sible forms of the functionf, given in Eqs.~6.19! and~6.20!.
The second option,K50, is realized for a vanishing ‘‘tota
potential energy,’’V11V250. Not surprisingly, in this case
the scale factora does not inflate but~roughly! shows a
power law behavior, as can be seen by inserting Eq.~6.20!
into Eq. ~6.14!. Consequently, this second option is only
limited interest to us and we will concentrate on the first o
KÞ0. This case should contain our simple separating so
tion ~5.8!–~5.10! of the previous section. Indeed, if w
choose

p~x!5const, k50 ~6.21!

in Eq. ~6.19! we recover this solution. What happens f
other choices? Let us consider the casekÞ0 andp(x) peri-
odic but otherwise arbitrary. If the argument of the expone
tial in Eq. ~6.19! is negative~the case that would lead to a
inflationary expansion ifk were zero! then, after a very shor
time f will be approximately constant, unlessk is exponen-
tially small. Inserting such an approximately constantf into
the expressions~6.14!, ~6.15! for the scale factorsa and b
shows that the three-dimensional universe becomes s
while the orbifold collapses. In the opposite case, where
6-15
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ANDRÉ LUKAS, BURT A. OVRUT, AND DANIEL WALDRAM PHYSICAL REVIEW D 61 023506
argument of the exponential is positive,f falls exponentially
and, hence, from Eq.~6.14!, the three-dimensional univers
collapses. Either way, to have a stable configuration,
should choosek50. In this case, the scale factors read e
plicitly

a56Kx62 ln p~x6!, ~6.22!

b5Ky1 lnF S 712

V1
D S 6K2

p8

p
~x6! D 1/2

3S 6K2
p8

p
~x7! D 1/2

„p~x7!…1/2

„p~x6!…1/2G . ~6.23!

We still have the freedom to choose the periodic functionp.
In the above expressions this function always depends
x65t6y. It, therefore, leads to an oscillation in time with
period 2R. If we do not want the scale factora to be sig-
nificantly effected by this, we should choose the maxim
amplitude ofp to be sufficiently small, so thatp(x).const.
This basically brings us back to our separating solution
the previous section. In essence, this solution is the only
with the desired properties within our setup.

The discussion of this section has revealed two seri
problems with the separating solution. First of all,
corresponds to a very specific choice of initial conditio
satisfying either k50 or k being exponentially small
All other values ofk lead to a collapsing solution. This im
plies that the casek50, as it stands, corresponds to an u
stable situation. A small perturbation that leads to a n
vanishingk will cause a collapse of the universe. The oth
problem is related to the presence of the periodic functionp.
This function, in fact, encodes the information about the i
tial inhomogeneity in the orbifold direction and this inhom
geneity survives the whole period of inflation. Of course, t
is related to the fact that we are not inflating the orbifold
well which would dilute those inhomogeneities. In the effe
tive four-dimensional linear case of Sec. IV, oscillations
Kaluza-Klein modes were damped away quickly due to
inflationary expansion. Apparently this is no longer true
the non-linear five-dimensional regime. Although tho
modes do not affect the homogeneity of the thre
dimensional universe directly, they could potentially
harmful. For example, Eq.~6.22! shows that the ‘‘Hubble
parameter’’ ȧ contains the periodic functionp(t6y) and
consequently oscillates in times. Hence, the modes co
have some influence on density fluctuations. Also, th
eventual decay into gravitons could leave unwanted relics
any case, the presence of the functionp contradicts some-
what the philosophy of inflation which is supposed to wi
out any initial information.

Is there a possible cure for the stability problem? So
we did not attempt to stabilize the orbifold in any way. It
clear that this fact is related to the instability that we enco
ter. While stabilizing the orbifold modulus in a four
dimensional effective theory by simply inventing a potent
is relatively straightforward~although understanding the or
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gin of this potential is not!, this is not the case in five dimen
sions. The orbifold size in five dimensions is basically me
sured by the componentg55 of the metric. A bulk potential
for this component would break general five-dimensional
variance in a very strong way. Also, sinceg55 typically var-
ies across the orbifold it could not be everywhere in a mi
mum of that potential. Alternatively, one could postulate
bulk potential that only depends on the zero mode ofg55;
that is, the length of the orbifold. This would break gene
covariance not more seriously than it already is broken
the presence of the orbifold. Suppose such a potential h
minimum for a certain orbifold lengthR0. Could an orbifold
modulus stabilized at this minimum be made consistent w
our solution? The apparent problem is that the orbifold s
is already fixed by Eq.~5.18! in terms of the boundary po
tentials Vi . There is no obvious reason whyR0 and Rphys

should,a priori, coincide. If we assume they do, for som
reason, at a certain time, this situation could only be ma
tained if the boundary inflatons slow roll in a very speci
way so as to leave

R0512S 1

V1~f1!
1

1

V2~f2! D ~6.24!

unchanged. This would correspond to a strong correlation
the motion of the two inflatons. Without a detailed analy
of the dynamics, which probably has to be carried out n
merically, it is hard to tell whether this would actually ha
pen or whether, instead, the orbifold modulus would star
strongly oscillate around its minimum thereby destroying
flation.

Another way to stabilize the orbifold which avoids the
problems is to have a potential forg55 on the boundary.
Although such a potential cannot appear directly in t
boundary actions in Eq.~2.1!, it may appear in one of the
Bianchi identities of heterotic M theory in five dimension
@27,71,68# which contain sources located on the orbifo
plane. Particularly, a potential from gaugino condensat
would manifest itself in the Bianchi identity. Genericall
however, it seems to be difficult to stabilize moduli wi
potentials from gaugino condensation, in particular in t
context of cosmology@65# ~see, however,@72#!. In Ref. @73#
stabilization of the orbifold was achieved by a combinati
of gaugino condensation and other nonperturbative effe
resulting from internally wrapped membranes. Althou
worth investigating in our context, all those options go b
yond our simple toy model and will not be explicitly consid
ered here.

To summarize, while there seem to be interesting so
tions with boundary inflation in the nonlinear, five
dimensional regime, a closer investigation shows that t
have problems related to the stabilization of the orbifold a
to inhomogeneities in the orbifold direction that are not
luted. The stabilization problem is, of course, very gene
and we should not be surprised to encounter it in our cos
6-16
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logical context. It is conceivable that whatever eventua
stabilizes the orbifold, also saves our nonlinear cosmolog
solution. While the persistence of the orbifold inhomogen
ities appears to be in contradiction with the inflationary pa
digm they might, under certain conditions, be acceptable
give rise to interesting predictions. It certainly needs m
work to finally decide these questions. Probably one also
to go beyond the simple model we have used in this pap
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