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Radiative corrections to the Aharonov-Bohm scattering
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We consider the scattering of relativistic electrons from a thin magnetic flux tube and perturbatively calcu-
late the order radiative correction to the first order Born approximation. We show also that the second order
Born amplitude vanishes, and obtain a finite inclusive cross section for the one-body scattering which incor-
porates soft photon bremsstrahlung effects. Moreover, we determine the radiatively corrected Aharonov-Bohm
potential and, in particular, verify that an induced magnetic field is generated outside of the flux tube.

PACS numbdss): 03.65.Bz, 12.20.Ds

[. INTRODUCTION tial, showing a screening of the magnetic flux and the induc-
tion of a magnetic field outside of the original flux tube.

Much effort has been devoted in recent years to fully The paper is organized as follows. In Sec. Il we introduce
understanding the consequences as well as the mathematita¢ model, calculate the first order Born approximation in-
subtleties of the Aharonov-Boh#B) effect[1]. The moti-  cluding radiative corrections up to order, calculate the
vations range from different areas as low dimensional consecond order Born approximation, and the finite inclusive
densed matter physigg.g., in the study of anyoh$2] to  cross section including soft photon bremsstrahlung. In Sec.
cosmic string modelg3] and have both experimenfa] and  |ll we obtain, up to the same order, the radiatively corrected
theoretical overtones. The conceptual aspects are no less iAB potential, and the induced magnetic field outside the flux
teresting as we briefly illustrate. Basically, due to the use ofube. Some comments are made in Sec. V.
different boundary conditions to achieve accordance between
the exact and the perturbative caICL_JIations Iin the case of s_pin”. RADIATIVE CORRECTIONS TO THE SCATTERING
zero particles, it was necessary to include in the perturbative CROSS SECTION
method a contact deltalike interaction. Ir-2 dimensions,
within the Chern-Simong$5] field theory approach, it was Our starting point is the standard Feynman gauge QED
shown that the contact interaction may be simulated by &agrangian10]
quartic self-interaction of the matter field, with a coupling
tuned to eliminate divergences and restore the conformal in- —. ) ]
variance of the tree approximati¢6]. For the scattering of L=yliy*(d,+iea,TieA,)—mly— 71,
two spin up fermions it was verifief7] that an additional

frr

self-interaction was not needed since its role was provided 1 5

by Pauli's magnetic term. However, if the fermions had an- - 5(‘%""“) '

tiparallel spins the effect of the magnetic interaction canceled

and a divergence showed up. These problems were studied in f —9a—aa 1)
a relativistic quantum field theory approd@9]. Differently gy TRTYTEEse

from the nonrelativistic calculations previously mentioned,
without any additional hypothesis, the scattering amplitude
are finite for both parallel and antiparallel spin fermi¢@s

In this paper we extend these investigations by conside
ing the AB scattering of spin-1/2 particles by an external flux
tube, directly in 3+1 dimensions. We calculate the elastic R
cross section, in first order Born approximation in the A*(x)=[0Ai(x),0],
potential, including radiative corrections up to order The
second order Born approximation is also calculated and o d X .
found to vanish. Infrared divergences of the elastic cross A'(Xt)=—2—e”—2, p=|X|=Vx{+x5#0, (2
section, are eliminated from the observable scattering pro- T p
cess by considering the “inclusive” cross section, which be-
sides the elastic process, also incorporates soft photo\ﬁherecb is the magnetic flux.The AB potential satisfies the
bremsstrahlung contributions. The discussion of vacuum po-
larization effects allows us to correct the origieB poten-

wherea, (x) is the radiation field and ,(x) is the external
AB potential €= —|e] is the electron chargeThe magnetic
rf_qu tube is located at theaxis, and theAB potential can be
chosen asgthe indext stands for “transverse” to the axis)

We use natural unitsc=%=1), and diag,,=(+,—,—,—).
Repeated Greek indices sum from 0 to 3, while repeated Latin
*Email address: claudio@fma.if.usp.br indices from the beginning and from the middle of the alphabet sum
"Email address: mgomes@fma.if.usp.br from 1 to 3 and from 1 to 2, respectively. The antisymmetric tensor
*Email address: ajsilva@fma.if.usp.br €' is normalized such that'?>=1.
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is the photon propagator, with an infrared cutaffA ,(q) is

P____w___p' g the Fourier transform of the potentié?) whose nonvanish-
ing components are

a b c

Al(q)=(2m)28(q°) 8(a>)Al(qy),

. ;" j
P_’T’T._p ) "‘H‘H‘r Ai(at)=i¢6ij a . (6)
d e

22 2
ai+7
f

FIG. 1. Diagrams contributing t¢a) first order Born approxi- In Eqg. (6) we have introduced an infrared cutajfto be
mation, (b) vertex correction(c) vacuum polarization(d) second made zero after the calculations. Integrating okgand ks
order Born approximation, an@),(f) bremsstrahlung process. The in Eqg. (4), and using in the numerator & (k)
external field is represented by a cross.

Coulomb gauge conditior A;=0, and in cylindrical polar k+m=2m>, u(k,ryu(k,r), 7
coordinates it read8 ,(p) = P/2mp. T

Starting from the Lagrangiafil), there are in principle
two ways to proceed: one could try to construct the exact o optain
Feynman propagator in the background potental and
then evaluate the radiative corrections to the scattering am-
plitude, or one can resort to a perturbative calculation both in iT,=—i1872B2MA(py— Po) S(P5— Pa)
B=ed/27 and a=e?/4m. In the present paper we will re-
strict ourselves to the second approach. Specifically, we have

w(p’'s’;kryw(kr;ps
to calculate the first order Born amplitudenplus radiative XJdeZ (p Jr(kr:ps)

corrections up to ordetr, hereafter designated b, and pZ—K2+ie
add these contributions to the second order Born amplitude vt
in B, designated by, (see Fig. L =i(2m)28(p)—Po) S(ps—p3) T2, )
_|T: _iTl_iTz,
o wl(p's kN =U(p' )y — Py, (9)
—iTy=(=ie)u(p’,s){y,+T (@) +11,,(4%)G""(6?) 7.} ! S ekt
XAP(q)u(p.s), ()
with an analogous formula fap(kr;ps).
_ = d4k The helicity basis for positive energy solutions of the free
—ITy= —|e2u(p’,s’)J 2A(p" —K)Se(k) Dirac equation is
(27)
XA(k=p)u(p,s). 4 x(r)
) ) N E+m rk
Since the scattering process conserves the energy ard the u(k,r)y= m t x(r) | (10
component of the three-momentum we will consider the case M1 E+m

of incidence perpendicular to the solenoid. Then, in the
above expressions*= (E,p,,0),s andp'#=(E,p; ,0),s' are ) i
the four-momenta and helicities of the incident and outgoingvhere k#=(E,k;,0), k;=|k|, andr==. The Pauli spinor
electrons, respectively, Wiﬂh5|=|5'|=pt§ gq“=(p’—p)*  x(r) can be parametrized in spherical polar coordinates as
=(O,(it,0) is the momentum transfer from the flux tube. We _
choose a reference frame in Whichﬁtzpt(cos,blz, o 1 2 —e '
—singd2), p; =p(cosy2,siny/2), andq,=(0,2p,,Siny/2). xN=—>-1e¢lont>| 1 |Fc, @D
Thus ¢ is the scattering angle Qy¢=<2).

In Egs. (3) and (4) I' ,(q) is the renormalized one-loop

vertex function, to be defined latfsee Eq(15)], where¢ is the azimuthal angle &, . The normalizations are
. T ry — , o A . .. )
IL,(0) = ~i(0%g,,~ 0,0, 11(c?) g X X)) =0 andulkonulior')= o, . The helicity ba

sis foru(p,s) andu(p’,s’) are constructed in a similar way.

is the renormalized vacuum polarization tensgu(k) is the Using Eq. (10) and the similar formula fou(p’,s’),
fermion propagator, an@,,(q%)=—i9,,(q°—u’+ie) "t  w(p’'s’;kr) is given by
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1 1 a o
w(p's’;kr)= —_ Fi1(g%)=— (In5+1 (zcothz—1)

4m (p; —ky)?+ 7? m

20-is ((y-20a1gir| ¥~ 2% —2 cothz dggtanhf— —tan
X 2(ki+pp)e sin 7 Osiy hz‘
Fi(p—k)d(e Wy oISty 5, ] S
Pkt )0 Faa)= 27 sinhz’
(12)
@ 1 1
The result forw(kr;ps) can be obtained from E12) after (@)=-3-13+2| 1~ 5 smf?(zlz CO“’E
some replacements. A straightforward calculation leads to (17)
B is(l2) with g?=4m? sint(z/2) andp- p’ =m? coshz. We have also
To=iom om Oss'® 0 dé defined the matrix elements

Sin(y—2¢)/4]sin(y+2¢)/4] My(s.s")=u(p’.s') i—[yl,yz]u(p,s)
[SIrR[ (—2)14]+ v2][SiF[ (y+2 )/ 4]+ 1] 2

_ 0
(13 =s[1-2e7's ‘/”Zcosgsinzz Seg
where the integration oves; was performed via the theorem E
of residues, and'= »/2p;. The remaining angular integral — _Coslfsinggs o
can be done as a contour integration, after introducing the m- 2
variablex=¢'? (this is possible provided)—0 only at the
eng: ‘
9 N(s,s')=i¢€" (vﬂ u(p’,s")u(p,s)+Msj(s,s’)
> 2 . ai+ 7’
To=i %553,(945(!#/2) / siny - y ieis(v2)
si 2)[cosy—1—8v°—8 - 5.,
n(yl2)[ cosyr ve—8v7] S 972) Sss' s (18)
1
X —, where we have used the helicity basis previously defined.
V1417 Using Eq.(18), the AB elastic scattering cross section is
given by
T,(v—0)=0. (14) do m2 (1)
. . . (—) =5 |2:(_) 1+2[Fy(g®)—T1(g?)
Equation(14) agrees with the exact result for the scattering 'A%/ g 27P dy) s
amplitude without radiative corrections, which involves a
Zazgt[(;r] of singrB) and thus excludes a contribution of order + Fz(qz)sinzg O(a?), (19
To evaluateT,, we introduce form factor§(q?) and
F,(g?) for the vertex function as where
1 do|\® 77,82 1 o0
L= %,F1(@2) = 7=[7, nIaFoa?) (15 as) .~ 2p: stz (20

is the scattering cross-section in the first order Born approxi-
mation[3,11,17.
. 5w 0 3= As it should, the scattering cross-section up to the order
—iT=—iT,=—i(2m)%6(q") 8(q°) T, a, Eq. (19), displays helicity conservation. The first order
Born approximation agrees with the weak flux limit of the
~ B ) ) , exact quantum-mechanicAlB scattering cross section of a
T=—m {[1+Fy(a")~I1(q9)IN(s,s") spin-1/2 fermion given in Refd:3,11,13, in contrast with
the results obtained for spinless partic[&8].
+F2(9*)My(s,s")}, (16) Since the electrical form factdf, becomes infrared di-
vergent asu—0, it is necessary to include the inelastic
where[10] bremsstrahlung cross-sectimee Figs. (e) and 1f)] for soft

and after some standard manipulations one arrives at
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photon production in the€photor) energy rangew<AE, 0.05 . ' . Z = 0% My O
whereAE<E is the typical energy resolution of the detector. EoihMey &
The calculations go along the same lines as in the Coulomb 0.04 - o B o _
scattering casglQ]. Since we are only interested in the lead- o o
ing order terms INAE/E<1, whenever allowed we shall s |
take the limitE’ =E— w—E and|p’|—|p|. With these ap- ' o o
proximations the scattering cross section factorizes in the
form (v=p,/E) dn 002} i
o do\ 12 2AE 0.01 | e
g (AB) _(d ) {(zcothz 1)In— A S
¢ SB V™ K + +
or <& <& 7
1 | 1+v 1 . 1-v2 o o o ©
+—In—-— —
v '1-v - 299y sin(yr2) e,
—0.01 [ [ 3 57 3 T
0 n B ry 7’ FU Ny
1 1 ¥ (rad)
XJ' d§ 242 2
cos@l2)  (1—v2E2)\E2—coS(yl2) FIG. 2. 5g for m=0.5 MeV andAE=0.1E.
X|nl+V§ _ 21) Any external electromagnetic potentidl, is modified
1-vé due to vacuum polarization effects. If this is properly taken

into account the effectivdB potential (4,) becomes
The finite inclusiveAB cross section is defined by adding
Egs.(19) and(21):

I
e A,L(q)=(g,m—l—’;A ANQ)=[1-T1(g*)]A,(q).

=] (1-6p),
s8 (dw o (24)
(22)

(AE) (AE)

s[5,
dy dyl .,y

As the origin is a highly singular point in th&B potential
where 8y is the contribution due to virtual plus reédoft) (2), it is convenient to introduce a regularization which dis-
photon emission, given by tributes the magnetic flux on the surface of a thin cylindrical

shell surrounding the origin, similarly as done in REf1]

[Bs(a)=(2m)%8(q°) 8(q®)BI:

2a 2AE\ z
Sdg=—1 (1—zcothz)| 1+In——| — zcothzIn(1—v?)
™ m

2
1 2 1 Al(x)=— 36”X—jﬂ(p—R)zKi(q-)zifbe”q—jJO(Rq),
——+=|1- ( 1- —cothi) ) 2 p? . q?
9 3 2 sinff (2/2) 25
1 z 1 1 +v z
2 sinhzSinz Z 2v + tanhz—
Bs(Xj)= o >-ROP R)=B(q;)=®Jy(Ra), (26)
1-v? coshz (1 ae 1
2v. siN(il2) Jeosiz) ~ \[E2—coS(i2) whereR is the radius of the cylindrical shell. AB—0 we

recover theAB potential of Eq.(2).

In(1+v¢) In(1-vé) 23 From Eqs.(6), (24), and(25) the potential induced by the
1-v¢é 1+vé ' vacuum polarization reads
As shown in Fig. 2, we have plottetk for three values oE. da 1 22 1
In that graph, contributions neaf=0 have been omitted AP(x)) = — €9 j dz 2(1—§22>
since theAB amplitude is not well defined thefé4]. 4 o 1-z
Il. RADIATIVE CORRECTIONS TO THE xf d?q i 5 I Jo(Rap),
AHARONOV-BOHM POTENTIAL Am/(1-2z°) +q;

In this section we shall compute vacuum polarization ef- (27)
fects (up to the order) on the renormalized B potential.
In particular, we will show that, as a result of radiative cor-with A{P=A%=0. In Eq.(27) we used the integral represen-
rections, a magnetic field is induced outside the flux tube. tation[10]

016003-4



RADIATIVE CORRECTIONS TO THE AHARONOV-BOHM . ..

0.6 . . .
05k
04t
03F

G(mp)

0.2F

0.1

Figure 8

FIG. 3. The functionG(mp), plotted formp>1 andmR=1.
(g2 = afld G P
(9%)=— o 37

1-z
The integral oved?q can be done in polar coordinatiess),
with the result

2

2) g
am?/(1-22) —q?
(28

. ® x[2a
Ap(X)——Ef”p—[ G(mp)}

=d
G(mp)= mpf1 Z—:\/227+ 1143(2mR2K(2mpz).
(29)
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and it is found to vanish due to the asymptotic behavior of
G(mp) for large distances.

As R—0, it can be shown thaA{’(x;) has an exact so-
lution in terms of Meijer'sG function[15],

@
AP(x; )———6”—

m

4J—( p)°
0
—-1/2

30 2
3 (M) _ 40 _5/2) . (32

The asymptotic limits fomp<1 andmp>1 can be calcu-
lated from Eq.(32) (R=0):

2
¢<p>~¢[1—§ln<mp>} (mp<1), (33
B(p)~D| 1+ %e 2| (mp>1). (34

To calculate the induced magnetic field, we uBe
=V XA for p>R, and suppose that the general expression
for B=Bsz is
5P~ R +BF(p),

Bs(p)= (35

v 20« )
Bsp(P):q)Y(RW(P—R)—ﬁm F(mp), (36

F(mp)= Lx:—zz\/zz—l(Zzz-l— 1)1o(2mR2Ky(2mpz).

The first term on the right-hand side of E&5) is the origi-
nal magnetic field in the cylindrical shelBg), whereas the

The results may be translated in terms of an effective fluxacuum polarization paB}’ contains a highly concentrated

®(p). In cylindrical coordinates, we obtain from Eq29)
and(24) the result

Aglp)= ®(p),

2a
D(p)=> 0(p—R)+§G(mp) : (30

The integral inG(mp) converges fop>R+#0, and is loga-

rithmic divergent forp=R. A numerical solution is feasible,
with the result drawn in Fig. 3. The effective flux picture

contribution on the shell of the same relative signBas
together with an external contribution in the opposite direc-
tion. In a semiclassical picture, this profile is expected since
the lines of the induced magnetic field are closed. To deter-
mine the functiony(R) we use that the total induced flux is
zero. This givesy(R) = (a/37°R)G(mR). It is possible to
use Eq(32) to deduce the asymptotic limits f&2"(p) in the
caseR—0 andp#0 (at p=0 an additional divergent con-
tribution has to be taken into account

ba 1
B~ —

resembles that of effective charge in QED. Indeed, from the

figure we see that the vacuum fluctuations lead to a screening
of the flux, as a calculation of the induced magnetic field
shows more clearly. The total induced flux at large distance

is given by the limitp— o of the formula

AD(p)= jc(p)dgop ()= 2 SrG(mp),  (3)

372 2 (mp<1), (37
" ba e 2m
By'(p)~— 72— 2 (mp>1). (38)

IV. CONCLUSIONS

We have calculated the order radiative corrections, to
the scattering cross section of an electron by an extexgal
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potential, in first Born approximation. The second orderbe observed that our induced external magnetic field can al-
Born approximation was also calculated and found to vanishiernatively be obtained from the induced vacuum current of
in agreement with the weak flux limit of the exact quantumRef. [17], in the weak flux limit, through the use of the
mechanical calculatiofwithout radiative corrections The  Ampere law. It must also be observed that the soft photon
inclusive cross section, which in addition to the elastic scatbremsstrahlung cross section, that is part of our inclusive
tering, also includes the soft photon bremsstrahlung was catross section may be obtained from the bremsstrahlung cross
culated. The “semiclassical,” radiatively correctéd po-  section of Ref[16] in the weak flux and soft photon limits.
tential due vacuum polarization currents and using a finiteDur radiative corrections due to virtual photons instead,
radius flux tube model was also calculated up to the sameamely, the contributions of the graphs in Figgb)land
order. It was shown that an induced magnetic field oppositd(c), are new and not included in these previous papers. A
to the original flux tube is induced outside, which partially more complete calculation of th®B cross section, in which
screens the original field. We remark that our perturbativeadiative corrections are perturbatively considered as correc-
results are expected to hold fed/27|<1. tions to the exact treatment of theB scattering has yet to be
We would like to mention some literature which has con-done.
tact with our work. Using the solutions of Dirac equation in
the exte_rnaIAB potential, in Ref[16] the processes of pair ACKNOWLEDGMENTS
production and bremsstrahlung were analyzed. In Rif]
the induced vacuum current was obtained. In these works the L.C.A. would like to thank the Mathematical Physics De-
externalAB potential was treated in an exact way, but radia-partment for their kind hospitality. This work was partially
tive corrections due to virtual photons were not included. Insupported by Fundao de Amparo a Pesquisa do Estado de
our approach instead, th&B potential was perturbatively Sz Paulo(FAPESP and Conselho Nacional de Desenvolvi-
treated but radiative corrections were also included. It musmento Cienfiico e Tecnolgico (CNPQ.
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