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Radiative corrections to the Aharonov-Bohm scattering

L. C. de Albuquerque,* M. Gomes,† and A. J. da Silva‡

Instituto de Fı´sica, Universidad de Sao Paulo, C.P. 66318 - 05389-970, Sa˜o Paulo - SP, Brazil
~Received 17 December 1998; published 7 December 1999!

We consider the scattering of relativistic electrons from a thin magnetic flux tube and perturbatively calcu-
late the ordera radiative correction to the first order Born approximation. We show also that the second order
Born amplitude vanishes, and obtain a finite inclusive cross section for the one-body scattering which incor-
porates soft photon bremsstrahlung effects. Moreover, we determine the radiatively corrected Aharonov-Bohm
potential and, in particular, verify that an induced magnetic field is generated outside of the flux tube.

PACS number~s!: 03.65.Bz, 12.20.Ds
lly
at

on

s
o

e
sp
tiv

y
g

l i

de
n
le

ed

d
de

e
ux
tic

an
os
r
e

ot
p

uc-

ce
in-

ive
ec.

ted
ux

ED

atin
um
sor
I. INTRODUCTION

Much effort has been devoted in recent years to fu
understanding the consequences as well as the mathem
subtleties of the Aharonov-Bohm~AB! effect @1#. The moti-
vations range from different areas as low dimensional c
densed matter physics~e.g., in the study of anyons! @2# to
cosmic string models@3# and have both experimental@4# and
theoretical overtones. The conceptual aspects are no les
teresting as we briefly illustrate. Basically, due to the use
different boundary conditions to achieve accordance betw
the exact and the perturbative calculations in the case of
zero particles, it was necessary to include in the perturba
method a contact deltalike interaction. In 211 dimensions,
within the Chern-Simons@5# field theory approach, it was
shown that the contact interaction may be simulated b
quartic self-interaction of the matter field, with a couplin
tuned to eliminate divergences and restore the conforma
variance of the tree approximation@6#. For the scattering of
two spin up fermions it was verified@7# that an additional
self-interaction was not needed since its role was provi
by Pauli’s magnetic term. However, if the fermions had a
tiparallel spins the effect of the magnetic interaction cance
and a divergence showed up. These problems were studi
a relativistic quantum field theory approach@8,9#. Differently
from the nonrelativistic calculations previously mentione
without any additional hypothesis, the scattering amplitu
are finite for both parallel and antiparallel spin fermions@9#.

In this paper we extend these investigations by consid
ing theAB scattering of spin-1/2 particles by an external fl
tube, directly in 311 dimensions. We calculate the elas
cross section, in first order Born approximation in theAB
potential, including radiative corrections up to ordera. The
second order Born approximation is also calculated
found to vanish. Infrared divergences of the elastic cr
section, are eliminated from the observable scattering p
cess by considering the ‘‘inclusive’’ cross section, which b
sides the elastic process, also incorporates soft ph
bremsstrahlung contributions. The discussion of vacuum
larization effects allows us to correct the originalAB poten-
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tial, showing a screening of the magnetic flux and the ind
tion of a magnetic field outside of the original flux tube.

The paper is organized as follows. In Sec. II we introdu
the model, calculate the first order Born approximation
cluding radiative corrections up to ordera, calculate the
second order Born approximation, and the finite inclus
cross section including soft photon bremsstrahlung. In S
III we obtain, up to the same order, the radiatively correc
AB potential, and the induced magnetic field outside the fl
tube. Some comments are made in Sec. IV.

II. RADIATIVE CORRECTIONS TO THE SCATTERING
CROSS SECTION

Our starting point is the standard Feynman gauge Q
Lagrangian@10#

L5c̄@ igm~]m1 ieam1 ieAm!2m#c2
1

4
f mn f mn

2
1

2
~]mam!2,

f mn5]man2]nam , ~1!

wheream(x) is the radiation field andAm(x) is the external
AB potential (e52ueu is the electron charge!. The magnetic
flux tube is located at thez axis, and theAB potential can be
chosen as~the indext stands for ‘‘transverse’’ to thez axis!

Am~x!5@0,AW t~xW t!,0#,

Ai~xW t!52
F

2p
e i j

xj

r2
, r5uxW tu5Ax1

21x2
2Þ0, ~2!

whereF is the magnetic flux.1 TheAB potential satisfies the

1We use natural units (c5\51), and diaggmn5(1,2,2,2).
Repeated Greek indices sum from 0 to 3, while repeated L
indices from the beginning and from the middle of the alphabet s
from 1 to 3 and from 1 to 2, respectively. The antisymmetric ten
e i j is normalized such thate1251.
©1999 The American Physical Society03-1
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Coulomb gauge condition,] iAi50, and in cylindrical polar
coordinates it readsAw(r)5F/2pr.

Starting from the Lagrangian~1!, there are in principle
two ways to proceed: one could try to construct the ex
Feynman propagator in the background potential~2!, and
then evaluate the radiative corrections to the scattering
plitude, or one can resort to a perturbative calculation bot
b5eF/2p anda5e2/4p. In the present paper we will re
strict ourselves to the second approach. Specifically, we h
to calculate the first order Born amplitude inb plus radiative
corrections up to ordera, hereafter designated byT1 and
add these contributions to the second order Born amplit
in b, designated byT2 ~see Fig. 1!:

2 iT52 iT12 iT2 ,

2 iT15~2 ie!ū~p8,s8!$gr1Gr~q!1Prn~q2!Gns~q2!gs%

3Ar~q!u~p,s!, ~3!

2 iT252 ie2ū~p8,s8!E d4k

~2p!4
A” ~p82k!SF~k!

3A” ~k2p!u~p,s!. ~4!

Since the scattering process conserves the energy andz
component of the three-momentum we will consider the c
of incidence perpendicular to the solenoid. Then, in
above expressionspm5(E,pW t,0),s andp8m5(E,pW t8,0),s8 are
the four-momenta and helicities of the incident and outgo
electrons, respectively, withupW u5upW 8u5pt ; qm5(p82p)m

5(0,qW t,0) is the momentum transfer from the flux tube. W
choose a reference frame in whichpW t5pt(cosc/2,
2sinc/2), pW t85pt(cosc/2,sinc/2), and qW t5(0,2pt ,sinc/2).
Thusc is the scattering angle (0,c<2p).

In Eqs. ~3! and ~4! Gr(q) is the renormalized one-loo
vertex function, to be defined later@see Eq.~15!#,

Prn~q!52 i ~q2grn2qrqn!P~q2! ~5!

is the renormalized vacuum polarization tensor,SF(k) is the
fermion propagator, andGns(q2)52 igns(q22m21 i e)21

FIG. 1. Diagrams contributing to~a! first order Born approxi-
mation, ~b! vertex correction,~c! vacuum polarization,~d! second
order Born approximation, and~e!,~f! bremsstrahlung process. Th
external field is represented by a cross.
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t

-
in

ve

e

e
e

e

g

is the photon propagator, with an infrared cutoffm. Am(q) is
the Fourier transform of the potential~2! whose nonvanish-
ing components are

Ai~q!5~2p!2d~q0!d~q3!Ãi~qW t!,

Ãi~qW t!5 iFe i j
qj

qW t
21h2

. ~6!

In Eq. ~6! we have introduced an infrared cutoffh to be
made zero after the calculations. Integrating overk0 andk3
in Eq. ~4!, and using in the numerator ofSF(k)

k”1m52m(
r

u~k,r !ū~k,r !, ~7!

we obtain

iT252 i8p2b2md~p082p0!d~p382p3!

3E d2k

(
r

v~p8s8;kr !v~kr;ps!

pW t
22kW t

21 i e

[ i ~2p!2d~p082p0!d~p382p3!T̃2 , ~8!

v~p8s8;kr !5ū~p8,s8!e i j g i

~p82k! j

~pW t82kW t!
21h2

u~k,r !, ~9!

with an analogous formula forv(kr;ps).
The helicity basis for positive energy solutions of the fr

Dirac equation is

u~kW ,r !5AE1m

2m S x~r !

rkt

E1m
x~r !D , ~10!

where km5(E,kW t,0), kt5ukW u, and r 56. The Pauli spinor
x(r ) can be parametrized in spherical polar coordinates

x~r !5
A2

2 S 1

eifD d r (1)1
A2

2 S 2e2 if

1 D d r (2) , ~11!

wheref is the azimuthal angle ofkW t . The normalizations are
x†(r )x(r 8)5d rr 8 andū(kW ,r )u(kW ,r 8)5d rr 8 . The helicity ba-
sis foru(pW ,s) andu(pW 8,s8) are constructed in a similar way

Using Eq. ~10! and the similar formula foru(pW 8,s8),
v(p8s8;kr) is given by
3-2
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v~p8s8;kr !5
1

4m

1

~pW t82kW t!
21h2

3H 2~kt1pt!
2e2 is8[(c22f)/4]sinS c22f

4 D ds8r

1 i ~pt2kt!
2~e2 is8(c/2)1e2 is8f!ds8(2r )J .

~12!

The result forv(kr;ps) can be obtained from Eq.~12! after
some replacements. A straightforward calculation leads

T̃25 i
pb2

2m
dss8e

2 is(c/2)E
0

2p

df

3
sin@~c22f!/4#sin@~c12f!/4#

@sin2@~c22f!/4#1n2#@sin2@~c12f!/4#1n2#
,

~13!

where the integration overkt was performed via the theorem
of residues, andn5h/2pt . The remaining angular integra
can be done as a contour integration, after introducing
variablex5eif ~this is possible providedh→0 only at the
end!:

T̃25 i
p2b2

2m
dss8e

2 is(c/2)
sinc

sin~c/2!@cosc2128n228n4#

3
1

A111/n2
,

T̃2~n→0!50. ~14!

Equation~14! agrees with the exact result for the scatteri
amplitude without radiative corrections, which involves
factor of sin(pb) and thus excludes a contribution of ord
b2 @1#.

To evaluateT1, we introduce form factorsF1(q2) and
F2(q2) for the vertex function as

Gr~q!5grF1~q2!2
1

4m
@gr ,gn#qnF2~q2! ~15!

and after some standard manipulations one arrives at

2 iT52 iT152 i ~2p!2d~q0!d~q3!T̃,

T̃52p
b

m
$@11F1~q2!2P~q2!#N~s,s8!

1F2~q2!M3~s,s8!%, ~16!

where@10#
01600
e

F1~q2!5
a

p F S ln
m

m
11D ~z cothz21!

22 cothzE
0

z/2

dj j tanhj2
z

4
tanh

z

2G ,
F2~q2!5

a

2p

z

sinhz
,

P~q2!52
a

3p F1

3
12S 12

1

2 sinh2~z/2!
D S z

2
coth

z

2
21D G ,

~17!

with qW t
254m2 sinh2(z/2) andp•p85m2 coshz. We have also

defined the matrix elements

M3~s,s8!5ū~p8,s8!
i

2
@g1 ,g2#u~p,s!

5sS 122e2 is c/2cos
c

2
sin2

u

2D dss8

2
E

m
cos

c

2
sinuds,2s8 ,

N~s,s8!5 i e i j
~p81p! iqj

qW t
21h2

ū~p8,s8!u~p,s!1M3~s,s8!

5
ie2 is(c/2)

sin~c/2!
ds,s8 , ~18!

where we have used the helicity basis previously defined
Using Eq.~18!, the AB elastic scattering cross section

given by

S ds

dc D
AB

5
m2

2pp
uT̃u25S ds

dc D
AB

(1)H 112FF1~q2!2P~q2!

1F2~q2!sin2
c

2G J 1O~a2!, ~19!

where

S ds

dc D
AB

(1)

5
pb2

2pt

1

sin2~c/2!
dss8 ~20!

is the scattering cross-section in the first order Born appro
mation @3,11,12#.

As it should, the scattering cross-section up to the or
a, Eq. ~19!, displays helicity conservation. The first ord
Born approximation agrees with the weak flux limit of th
exact quantum-mechanicalAB scattering cross section of
spin-1/2 fermion given in Refs.@3,11,12#, in contrast with
the results obtained for spinless particles@13#.

Since the electrical form factorF1 becomes infrared di-
vergent asm→0, it is necessary to include the inelast
bremsstrahlung cross-section@see Figs. 1~e! and 1~f!# for soft
3-3
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photon production in the~photon! energy rangev<DE,
whereDE!E is the typical energy resolution of the detecto
The calculations go along the same lines as in the Coulo
scattering case@10#. Since we are only interested in the lea
ing order terms inDE/E!1, whenever allowed we sha
take the limitE85E2v→E and upW 8u→upW u. With these ap-
proximations the scattering cross section factorizes in
form (v5pt /E)

Fds

dc
~DE!G

SB

5S ds

dc D
AB

(1)2a

p H ~z cothz21!ln
2DE

m

1
1

2v
ln

11v
12v

2
1

2
coshz

12v2

v sin~c/2!

3E
cos(c/2)

1

dj
1

~12v2j2!Aj22cos2~c/2!

3 ln
11vj

12vjJ . ~21!

The finite inclusiveAB cross section is defined by addin
Eqs.~19! and ~21!:

Fds

dc
~DE!G5S ds

dc D
AB

1Fds

dc
~DE!G

SB

5S ds

dc D
AB

(1)

~12dR!,

~22!

wheredR is the contribution due to virtual plus real~soft!
photon emission, given by

dR5
2a

p H ~12z cothz!S 11 ln
2DE

m D2
z

2
cothz ln~12v2!

2
1

9
1

2

3 S 12
1

2 sinh2 ~z/2!
D S 12

z

2
coth

z

2D
2

1

2

z

sinhz
sin2

c

2
2

1

2v
ln

11v
12v

1
z

4
tanh

z

2

1
12v2

2v
coshz

sin~c/2!
E

cos(c/2)

1

dj
1

Aj22cos2~c/2!

3F ln~11vj!

12vj
2

ln~12vj!

11vj G J . ~23!

As shown in Fig. 2, we have plotteddR for three values ofE.
In that graph, contributions nearc50 have been omitted
since theAB amplitude is not well defined there@14#.

III. RADIATIVE CORRECTIONS TO THE
AHARONOV-BOHM POTENTIAL

In this section we shall compute vacuum polarization
fects ~up to the ordera) on the renormalizedAB potential.
In particular, we will show that, as a result of radiative co
rections, a magnetic field is induced outside the flux tube
01600
.
b

e
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Any external electromagnetic potentialAm is modified
due to vacuum polarization effects. If this is properly tak
into account the effectiveAB potential (Am) becomes

Am~q!5S gml2 i
Pml

q2 D Al~q!5@12P~q2!#Am~q!.

~24!

As the origin is a highly singular point in theAB potential
~2!, it is convenient to introduce a regularization which d
tributes the magnetic flux on the surface of a thin cylindric
shell surrounding the origin, similarly as done in Ref.@11#

@B3(q)5(2p)2d(q0)d(q3)B̃#:

Ai~xj !52
F

2p
e i j

xj

r2
u~r2R!⇒Ãi~qj !5 iFe i j

qj

qt
2

J0~Rqt!,

~25!

B3~xj !5
F

2pR
d~r2R!⇒B̃~qj !5FJ0~Rqt!, ~26!

whereR is the radius of the cylindrical shell. AsR→0 we
recover theAB potential of Eq.~2!.

From Eqs.~6!, ~24!, and~25! the potential induced by the
vacuum polarization reads

Ai
vp~xj !5S Fa

4p3
e i j ] j D E

0

1

dz
z2

12z2 S 12
1

3
z2D

3E d2q eiqW t•xW t
1

4m2/~12z2!1qt
2

J0~Rqt!,

~27!

with A0
vp5A3

vp50. In Eq.~27! we used the integral represen
tation @10#

FIG. 2. dR for m50.5 MeV andDE50.1E.
3-4
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P~q2!5
a

pE0

1

dz
z2

12z2 S 12
1

3
z2D q2

4m2/~12z2!2q2
.

~28!

The integral overd2q can be done in polar coordinates@15#,
with the result

Ai
vp~xj !52

F

2p
e i j

xj

r2 F2a

3p
G~mr!G ,

G~mr!5mrE
1

`dz

z3
A2z211I 0~2mRz!K1~2mrz!.

~29!

The results may be translated in terms of an effective fl
F(r). In cylindrical coordinates, we obtain from Eqs.~29!
and ~24! the result

Aw~r!5
1

2pr
F~r!,

F~r!5FFu~r2R!1
2a

3p
G~mr!G . ~30!

The integral inG(mr) converges forr.RÞ0, and is loga-
rithmic divergent forr5R. A numerical solution is feasible
with the result drawn in Fig. 3. The effective flux pictu
resembles that of effective charge in QED. Indeed, from
figure we see that the vacuum fluctuations lead to a scree
of the flux, as a calculation of the induced magnetic fie
shows more clearly. The total induced flux at large dista
is given by the limitr→` of the formula

DF~r!5E
C(r)

dw rAw
vp~r!5

2

3

Fa

p
G~mr!, ~31!

FIG. 3. The functionG(mr), plotted formr.1 andmR51.
01600
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and it is found to vanish due to the asymptotic behavior
G(mr) for large distances.

As R→0, it can be shown thatAi
vp(xj ) has an exact so

lution in terms of Meijer’sG function @15#,

Ai
vp~xj !52

F

2p
e i j

xj

r2 F a

4Ap
~mr!5

3G13
30S ~mr!2U 0

21/2 21/2 25/2D G . ~32!

The asymptotic limits formr!1 andmr@1 can be calcu-
lated from Eq.~32! (R50):

F~r!'FF12
2a

3p
ln~mr!G ~mr!1!, ~33!

F~r!'FF11
a

4mr
e22mrG ~mr@1!. ~34!

To calculate the induced magnetic field, we useBW
5¹3AW for r.R, and suppose that the general express
for BW 5B3ẑ is

B3~r!5
F

2pR
d~r2R!1B3

vp~r!, ~35!

B3
vp~r!5Fg~R!d~r2R!2

2Fa

3p2
m2F~mr!, ~36!

F~mr!5E
1

`dz

z2
Az221~2z211!I 0~2mRz!K0~2mrz!.

The first term on the right-hand side of Eq.~35! is the origi-
nal magnetic field in the cylindrical shell (B3), whereas the
vacuum polarization partB3

vp contains a highly concentrate
contribution on the shell of the same relative sign asB3,
together with an external contribution in the opposite dire
tion. In a semiclassical picture, this profile is expected sin
the lines of the induced magnetic field are closed. To de
mine the functiong(R) we use that the total induced flux i
zero. This givesg(R)5(a/3p2R)G(mR). It is possible to
use Eq.~32! to deduce the asymptotic limits forB3

vp(r) in the
caseR→0 andrÞ0 ~at r50 an additional divergent con
tribution has to be taken into account!

B3
vp~r!'2

Fa

3p2

1

r2
~mr!1!, ~37!

B3
vp~r!'2

Fa

4p

e22mr

r2
~mr@1!. ~38!

IV. CONCLUSIONS

We have calculated the ordera radiative corrections, to
the scattering cross section of an electron by an externalAB
3-5
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potential, in first Born approximation. The second ord
Born approximation was also calculated and found to van
in agreement with the weak flux limit of the exact quantu
mechanical calculation~without radiative corrections!. The
inclusive cross section, which in addition to the elastic sc
tering, also includes the soft photon bremsstrahlung was
culated. The ‘‘semiclassical,’’ radiatively correctedAB po-
tential due vacuum polarization currents and using a fin
radius flux tube model was also calculated up to the sa
order. It was shown that an induced magnetic field oppo
to the original flux tube is induced outside, which partia
screens the original field. We remark that our perturbat
results are expected to hold forueF/2pu!1.

We would like to mention some literature which has co
tact with our work. Using the solutions of Dirac equation
the externalAB potential, in Ref.@16# the processes of pai
production and bremsstrahlung were analyzed. In Ref.@17#
the induced vacuum current was obtained. In these works
externalAB potential was treated in an exact way, but rad
tive corrections due to virtual photons were not included.
our approach instead, theAB potential was perturbatively
treated but radiative corrections were also included. It m
cl.

ys

. D
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be observed that our induced external magnetic field can
ternatively be obtained from the induced vacuum curren
Ref. @17#, in the weak flux limit, through the use of th
Ampere law. It must also be observed that the soft pho
bremsstrahlung cross section, that is part of our inclus
cross section may be obtained from the bremsstrahlung c
section of Ref.@16# in the weak flux and soft photon limits
Our radiative corrections due to virtual photons inste
namely, the contributions of the graphs in Figs. 1~b! and
1~c!, are new and not included in these previous papers
more complete calculation of theAB cross section, in which
radiative corrections are perturbatively considered as cor
tions to the exact treatment of theAB scattering has yet to be
done.
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