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Lattice QCD calculation of B̄˜Dl n̄ decay form factors at zero recoil
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A lattice QCD calculation of theB̄→Dl n̄ decay form factors is presented. We obtain the value of the form
factor h1(w) at the zero-recoil limitw51 with high precision by considering a ratio of correlation functions
in which the bulk of the uncertainties cancels. The other form factorh2(w) is calculated, for small recoil
momenta, from a similar ratio. In both cases, the heavy quark mass dependence is observed through direct
calculations with several combinations of initial and final heavy quark masses. Our results areh1(1)
51.007(6)(2)(3) andh2(1)520.107(28)(04)(30

10). For both the first error is statistical; the second stems
from the uncertainty in adjusting the heavy quark masses and the last from omitted radiative corrections.
Combining these results, we obtain a precise determination of the physical combinationFB→D(1)
51.058(17

20), where the mentioned systematic errors are added in quadrature. The dependence on lattice spacing
and the effect of quenching are not yet included, but with our method they should be a fraction of
FB→D21.

PACS number~s!: 12.38.Gc, 12.39.Hg, 13.20.2v, 13.25.Hw
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I. INTRODUCTION

The precise determination of the Cabibbo-Kobayas
Maskawa~CKM! matrix elementVcb is a crucial step forB
physics to pursue phenomena beyond the standard mod
particular, the precision achieved in determining the apex
the unitarity triangle may be limited byuVcbu, even with
future high-statistics experiments. The current determina
of uVcbu @1# is made through inclusive@2,3# and exclusive
@4,5# B decays.

The heavy quark expansion offers a method to evalu
the hadronic transition amplitude in a systematic way.
particular, at the kinematic end point the exclusiveB̄→D*
matrix element is normalized in the infinite heavy qua
mass limit, and the correction of order 1/mQ vanishes as a
consequence of Luke’s theorem@6#. It is thus possible to
achieve an accuracy onuVcbu of a few percent. Calculation
of the 1/mQ

2 ~and higher order! deviations from the heavy
quark limit have previously been attempted with the no
relativistic quark model and with QCD sum rules.

Lattice QCD has the potential to calculate exclusive tr
sition matrix elements from first principles. The shapes
the B̄→D (* )l n̄ decay form factors have already been calc
lated successfully with propagating@7–9#, static @10–13#,
and non-relativistic@14# heavy quarks. On the other hand,
precise determination of the absolute normalization of
form factors has not been achieved. This paper fills that
for the decayB̄→Dl n̄.

Previous lattice calculations were unable to obtain
normalization of the form factors for various reasons. Fi
the statistical precision of the three point function^DVmB†&,
which is calculated by Monte Carlo integration, has not be
enough. Second, perturbative matching between the la
and the continuum currents has been a large source of un
tainty. Since the local vector current defined on the lattice
not a conserved current at finite lattice spacinga, the match-
ing factor is not normalized even in the limit of degenera
0556-2821/99/61~1!/014502~13!/$15.00 61 0145
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quarks. Although one-loop perturbation theory works sign
cantly better with tadpole improvement@15#, the two-loop
contribution remains significant (as

2;5%). Last, the sys-
tematic error associated with the large heavy quark m
must be understood. Previous work with Wilson quar
@7–9#, for which the discretization error was as large
O(amQ), could not address the 1/mQ dependence in a sys
tematic way whenmQ*1/a.

In this paper we present a lattice QCD calculation of t
B̄→Dl n̄ decay form factor. For the heavy quark we use
improved action@16# for Wilson fermions, reinterpreted in a
way mindful of heavy-quark symmetry@17#. Discretization
errors proportional to powers ofamQ do not exist in this
approach. Instead, discretization errors proportional to p
ers ofaLQCD remain, although they are intertwined with th
1/mQ expansion. The first extensive application of this a
proach to heavy-light systems was the calculation@18,19# of
the heavy-light decay constants, such asf B and f D . There
the lattice spacing dependence was studied from direct
culations at several lattice spacings, and a very smalla de-
pendence was observed. The third difficulty mention
above is, thus, no longer a problem.

To obtain better precision on the semi-leptonic form fa
tors, we introduce ratios of three-point correlation functio
The bulk of statistical fluctuations from the Monte Car
integration cancels between numerator and denomina
Furthermore, the ratios are, by construction, identically o
in both the degenerate-mass limit and the heavy-qua
symmetry limit. Consequently, statistical and all systema
errors, as well as the signal, are proportional to the devia
from 1. The first and second difficulties given above a
thus, also essentially cured.

The ratio of correlation functions for the calculation
h1(1) corresponds to the ratio of matrix elements,

^Duc̄g0buB̄&^B̄ub̄g0cuD&

^Duc̄g0cuD&^B̄ub̄g0buB̄&
5uh1~1!u2, ~1!
©1999 The American Physical Society02-1
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in which all external states are at rest. The denominator m
be considered as a normalization condition of the heavy
heavy vector current, since the vector currentq̄gmq with
degenerate quark masses is conserved in the continuum
and its matrix element is, therefore, normalized. As a re
the perturbative matching between the lattice and continu
currents gives only a small correction touh1(1)u.

For the calculation ofh2(w) we define another ratio, cor
responding to matrix elements

^Duc̄g ibuB̄&

^Duc̄g0buB̄&

^Duc̄g0cuD&

^Duc̄g icuD&
512

h2~w!

h1~w!
, ~2!

where equality holds when the final-stateD meson has smal
spatial momentum. By construction, the ratio produce
value of h2 that vanishes when theb quark has the sam
mass as thec quark, as required by current conservation.

This method does not work as it stands for theB̄

→D* l n̄ decay form factors. The axial vector current me
ates this decay, and it is neither conserved nor normali
We will deal separately with this case in another paper.

This paper is organized as follows. Section II contain
general discussion of form factors for the exclusive de
B̄→Dl n̄. Sections III and IV discuss heavy quark effecti
theory and the 1/mQ expansion in the continuum and wit
the lattice action used here. Section V contains details of
numerical calculations. Sections VI–IX present our resu
Sections VI and VII discuss the form factorh1 and its mass
dependence. Sections VIII and IX do likewise forh2 . We
compare the results from the fits of the mass dependenc
corresponding results from QCD sum rules in Sec. X. T
values ofh1(1) andh2(1) at the physical quark masses a
combined in Sec. XI into a result for the form facto
FB→D(1), which with experimental data determinesuVcbu.
We give our conclusions in Sec. XII.

II. B̄˜Dl n̄ FORM FACTORS

The decay amplitude forB̄→Dl n̄ is parametrized with
two form factorsh1(w) andh2(w) as

^D~p8!uVmuB̄~p!&5AmBmD@h1
B→D~w!~v1v8!m

1h2
B→D~w!~v2v8!m#, ~3!

wherev and v8 are the velocities of theB and D mesons,
respectively, andw5v•v8. The square of the momentum
transferred to the leptons is thenq25mB

21mD
2 22mBmDw.

We denote by the symbolVm the physical vector current, to
distinguish it from currents in heavy quark effective theo
~HQET! and in lattice QCD.

The differential decay rate reads

dG~B̄→Dl n̄ !

dw
5

GF
2

48p3
~mB1mD!2mD

3

3~w221!3/2uVcbu2uFB→D~w!u2, ~4!
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FB→D~w!5h1
B→D~w!2

mB2mD

mB1mD
h2

B→D~w!. ~5!

At zero recoil (v85v, sow51) one expectsFB→D(1) to be
close to 1, because of heavy quark symmetry. From Eq.~4! a
determination ofuVcbu consists of the following three steps
measureuVcbuuFB→D(w)u in an experiment, extrapolate it t
the zero-recoil limit assuming some functional form, and u
the theoretical input ofFB→D(1).

In this paper we report on a new calculation ofFB→D(1)
with lattice QCD, which is model independent, at least
principle.1 The present calculation includes the leading c
rections to the heavy-quark limit: radiative corrections to t
static limit of h1

B→D(1), the 1/mQ contribution ofh2
B→D(1),

and the 1/mQ
2 contributions ofh6

B→D(1). Radiative correc-
tions of orderas to h2(1) are not yet available, but thes
and further corrections, of orderas

2 , as /mQ , etc., could be
included in future applications of our numerical techniqu
once the needed perturbative results become available.

An obvious disadvantage in using theB̄→Dl n̄ decay
mode is that the branching fraction is much smaller than
B̄→D* l n̄ mode. Another, but not less important, shortco
ing is that the phase-space suppression factor (w221)3/2

makes the extrapolation of the experimental data tow51
more difficult than forB̄→D* l n̄, where the corresponding
factor is (w221)1/2. Nevertheless, the experimental result
the CLEO Collaboration@20# shows that the above metho
certainly works, even with current statistics. That means t
future improvement of the statistics will allow a much bett
determination ofuVcbu, providing an important cross chec
against other methods.

III. HQET AND THE 1/ mQ EXPANSION

Many important theoretical results have been obtained
the form factors with HQET. The Lagrangian of HQET us
fields of infinitely heavy quarks, so that heavy quark symm
tries are manifest. The effects of finite quark mass are
cluded through the 1/mQ expansion and through radiativ
corrections. For example, at zero recoil the form factorh1 is
given by

h1~1!5hVF12c1
(2)S 1

mc
2

1

mb
D 2

1O~mQ
23!G , ~6!

where hV represents a matching factor relating the vec
current in Eq.~3! to the current in HQET@21#. The absence
of the O(1/mQ) term in Eq. ~6! is a result of a symmetry
under an interchange of initial and final states in Eq.~3!, and
it is known as a part of Luke’s theorem@6#. The same sym-
metry also restricts the form of theO(1/mQ

2 ) terms.

1Our calculations are done in the quenched approximation,
example, but this is a removable uncertainty and not a perma
limitation of the method.
2-2
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The matching factor, defined so that the identityV0

5hVV0
HQET holds for matrix elements, is an ultraviolet- an

infrared-finite function ofmc /mb . Through one-loop pertur
bation theory

hVcb5113CF

as

4p S mb1mc

mb2mc
ln

mb

mc
22D . ~7!

The two-loop coefficient is also available@22#.
The vector current defined with lattice fermion fields h

properties similar toV0
HQET. There is a normalization facto

ZV0
defined so thatV05ZV0

V0
lat holds for matrix elements

The factorZV0
depends strongly on the~lattice! quark masses

amc andamb @17#, and its one-loop corrections are large.
the past, such uncertainties in the normalization prevente
calculation ofh1

B→D(1) with the sought-after accuracy. On
can, however, capture most of the normalization nonper
batively by writing, with explicit flavor indices,

ZV
0
cb5AZV

0
ccZV

0
bbrV

0
cb. ~8!

In our ratio ~1! the flavor-diagonal factors cancel, so o
method avoids the major normalization uncertainties.

The remaining radiative correctionrV
0
cb depends on the

ratio of quark masses and the lattice spacing. In the c
tinuum limit, amc→0 andamb→0 with mc /mb fixed,

rV0
→1, ~9!

by construction. In the static limit,amc→` and amb→`
with a andmc /mb fixed,

rV0
→hV , ~10!

because the lattice theory strictly obeys heavy-quark sym
tries. In numerical work one is somewhere in between,
the limits imply thatrV0

is never far from unity. Two of us

have computedrV0
at one loop in perturbation theory@23#,

verifying explicitly that the radiative correction is small.
Similarly, the ratio~2! is described by the expansion

12
h2~1!

h1~1!
512bV1c2

(1)S 1

mc
2

1

mb
D2c2

(2)S 1

mc
2

2
1

mb
2D

1O~mQ
23!, ~11!

wherebV is a coefficient from matching the currents in E
~2! to HQET. LikehV , it is an ultraviolet- and infrared-finite
function of mc /mb , and

bVcb52CF

as

4p S 2mbmc

~mb2mc!
2

ln
mb

mc
2

mb1mc

mb2mc
D ~12!

at leading order.
The ratio~2! again captures nonperturbatively most of t

renormalization of the lattice currents, apart from a fac
rV

i
cb to compensate for the difference between the radia

corrections with a fixed lattice cutoff and with no ultraviol
01450
a

r-

n-

e-
t

r
e

cutoff. In the continuum limitrVi
→1, and in the static limit

rVi
→12bV . Again, explicit calculation verifies that the on

loop contribution remains small between the limits.
In the rest of this paper, we do not write the matchi

factorsrVm
when there is no risk of confusion. In the fina

result, on the other hand, they are included.

IV. LATTICE QCD AND HEAVY QUARK SYMMETRY

In Ref. @17#, it was shown that the usual action for ligh
quarks @16# can be analyzed in terms of the operators
HQET. Therefore, it can be used as the basis of a system
treatment of heavy quarks on the lattice, even when
quark mass in lattice units,amQ , is not especially small. The
key is to adjust the couplings in the lattice action so th
operators are normalized as they are in HQET. WhenamQ
,1, as is the case for charmed quarks at the smaller la
spacings in common use, this is essentially automatic,
cause the higher order terms of the heavy quark expan
come from the Dirac term of the lattice action, as in co
tinuum QCD. WhenamQ.1, as is the case for bottom
quarks, one can apply the formalism of HQET to the latt
theory to obtain the normalization conditions, as sketch
below. In either case, the kinetic energy is normalized n
perturbatively by tuning the quark mass according to so
physical condition. Other operators are often normalized p
turbatively as an initial approximation but ultimately may b
normalized nonperturbatively.

In the numerical calculations presented here, we use
action introduced by Sheikholeslami and Wohlert@16#,

S5(
x, f

c̄x
f cx

f 2 (
x,y, f

k f c̄x
f Mxycy

f 1
i

2
cSW(

x, f
k f c̄x

f smnFmncx
f ,

~13!

where the indexf runs over heavy and light flavors. Th
hopping parameterk f is related to the bare quark mass,

am0 f5
1

2k f
2

1

2kcrit
, ~14!

wherekcrit is the value ofk needed to make a quark mas
less. The flavor-independent matrixMxy vanishes excep
when y5x6m̂a, for some spacetime directionm. The ki-
netic energy arises from this term. The gluons’ field stren
Fmn is defined on a set of paths shaped liked a four-l
clover, soS is often called the ‘‘clover’’ action. WithcSW
50 one has the Wilson action.

For the light quark the clover couplingcSW can be chosen
so that there are lattice artifacts of ordera2LQCD

2 . In our
numerical work we take an approximation to the optim
value, leaving an artifact of orderasaLQCD.

For heavy quarks, the clover action~13! has the same
heavy-quark spin and flavor symmetries as continuum QC
even at nonzero lattice spacing. Consequently, we can
the machinery of HQET to characterize the lattice theo
The same operators as in continuum QCD appear, but
2-3
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coefficients can differ. Through first order in 1/mQ there are
three operators in the heavy quark effective Hamiltonian

H5m1h̄h2
h̄D2h

2m2
2 i

h̄S•Bh

2mB
1•••, ~15!

where h is a heavy quark field, and the coefficientsm1 ,
1/m2, and 1/mB depend on the bare mass and the ga
coupling. Because the lattice breaks relativistic invarian
the three ‘‘masses’’ are not necessarily equal, except
am0→0.

At the tree level, the rest massam15 log(11am0), and the
~inverse! kinetic mass

1

am2
5

2

am0~21am0!
1

1

11am0
. ~16!

The first term can be traced to the Dirac term of the latt
action, and the second to the Wilson term. The one-lo
corrections toam1 and am2 are also available@24#. The
chromomagnetic massmB is considered below.

In the heavy quark effective theory, the rest mass te
m1h̄h commutes with the rest of the Hamiltonian and, th
decouples from the dynamics. As with decay constants@25#,
one can derive the expansions like Eqs.~6! and ~11! within
the lattice theory, and the rest mass disappears from phy
amplitudes@26#. On the other hand, adjusting the bare qua
mass so thatm25mQ is the way to normalize the kineti
operator h̄D2h/2m2 correctly. This normalization can b
implemented nonperturbatively by demanding that the
ergy of a hadron have the correct momentum dependenc
our numerical work we use theB and D mesons for this
purpose. Furthermore, one can correctly normalize the c
momagnetic operatorh̄S•Bh/2mB by adjusting the clover
coupling cSW, as a function of the gauge coupling, so th
mB5m2. For example, at the tree level the desired adju
ment iscSW51. In our numerical work, we choosecSW in a
way that sums up tadpole diagrams, which dominate per
bation theory. This amounts to normalizing the chromom
netic operator perturbatively.

In summary, we adjust the bare massam0 and clover
couplingcSW so that the leading effects of the heavy-qua
expansion are correctly accounted for@17#. Previous work in
the literature chose instead to adjust the bare mass untim1
5mQ , which introduces an unnecessarily large error,2 pro-
portional to 12m1(m0)/m2(m0).

Under renormalization the heavy quark kinetic energy c
mix with the rest mass term in a power divergent way. B
cause the lattice action used here contains both, the rest
fully absorbs the power divergence. A related problem is
ambiguity owing to renormalons@27#, which appears in
some quantities in HQET or nonrelativistic QCD~NRQCD!.

2To mitigate this error, these calculations are often carried ou
artificially small quark masses. Ensuing extrapolations to lar
masses contaminate lower orders in the~physical! 1/mQ expansion
with higher orders.
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It is irrelevant to our work, because we calculate physi
quantities, namely the masses of theB and D mesons and
decay amplitude forB̄→Dl n̄.

To complete the correspondence of the lattice theory
HQET we must consider the vector current. At order 1/mQ of
HQET,

Vm
cb5S h̄c1Dh̄c

•

g

2m3c
DgmS 12

g•D

2m3b
Dhb1•••, ~17!

where the coefficient 1/m3 depends on the current employe
The heavy-heavy current on the lattice is constructed by
fining a rotated field@17,25#,

C f5A2k f@11ad1
f ~am0 f ,g0

2!g–D#c f , ~18!

wherec is the quark field in the hopping parameter form
the action~13!. Then the lattice vector current

Vm
cb5C̄cgmCb ~19!

andV m
cb5ZV

m
cbVm

cb . Both ZV
m
f g and d1

f depend on the gaug

coupling, the masses, and~at higher orders! on the Dirac
matrix in Eq.~17!. They are adjusted so that the normaliz
tion and momentum dependence of matrix elements matc
the continuum, respectively. In particular, at the tree le
the coefficient in Eq.~17! is

1

am3
5

2~11am0!

am0~21am0!
22d1 , ~20!

and the conditionm35m2 prescribes a condition ond1
@17,25#.

From the properties of the operators under heavy-qu
symmetry, it follows that the 1/m2 and 1/mB terms in Eq.
~15! could give a contribution toh1(1), but not toh2(1)
@6#. On the one hand, these contributions toh1(1) must be
symmetric under interchange of the initial and final stat
but, on the other hand, they must vanish when the initial a
final quark masses are the same. Consequently, there ca
no contributions linear in either 1/m2 or 1/mB . Our defini-
tion of h1(1) enjoys this property, by construction, becau
Eq. ~1! manifestly respects the interchange symmetry.

Similarly, the 1/m3 terms in Eq.~17! give a contribution
only to h2(1). It must be anti-symmetric under interchan
of the initial and final states and must vanish when the ini
and final quark masses are the same. Our definition
h2(1), again by construction, ensures that only the com
nation 1/m3c21/m3b appears. This feature is taken into a
count in Sec. IX.

In Eqs.~6! and~11! we seek contributions of order 1/mQ
2 .

These come from double insertions of the 1/mQ terms in Eqs.
~15! and ~17!, and from 1/mQ

2 terms implied by the ellipses
Remarkably, the latter cancel whenh1(1) and h2(1) are
defined by the double ratios~1! and~2! @26#. This is easy to
understand if one starts with the matrix elements. The 1mb

2

and 1/mc
2 corrections to the action arise from the initial o

final state only. To this order, one can factorize them. Th
drop out of the double ratios, because the numerator

at
r

2-4
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LATTICE QCD CALCULATION OF B̄→Dl n̄ DECAY FORM . . . PHYSICAL REVIEW D 61 014502
denominator of Eq.~1! or ~2! contain the same number ofB
and D factors. The same applies to 1/mb

2 and 1/mc
2 correc-

tions to the current. There may be a nonfactorizable cor
tion to the current with coefficientC(mc ,mb)/mcmb , where
the functionC is unknown, except that in perturbation theo
it starts at one loop and thatC(m,m)50.

In the long run, one would like to pick up terms of ord
1/mQ

3 and higher. Because the bottom quark is so hea
these are dominated by the 1/mc

n terms. With the normaliza-
tion conditions outlined here@17#, these come automaticall
from the Dirac term, as in continuum QCD. In future wor
at smaller lattice spacings, the Dirac term will domina
generating contributions to all orders in 1/mc .

V. LATTICE DETAILS

Our numerical data are obtained in the quenched appr
mation on a 123324 lattice with the plaquette gluon action
b56/g0

255.7. We take a mean-field-improved@15# value of
the clover coupling, which on this lattice iscSW51.57. Out
of 300 configurations generated for our previous work@18#,
we use 200 configurations. We usually define the inve
lattice spacing through the charmonium 1S-1P splitting,
finding a21(1S-1P)51.1623

13 GeV. For comparison, with
the kaon decay constanta21( f K)51.0121

12 GeV, and the
difference is thought to be part of the error of quenchin
Because the form factors are dimensionless, the lattice s
ing affects them only indirectly, through the adjustment
the quark masses.

To investigate the heavy quark mass dependence of
form factors we takekh50.062, 0.089, 0.100, 0.110, 0.11
and 0.125, and consider several combinations for the he
quarks in the initial and final states. The mass of the spe
tor light quark is usually taken to be close to that of t
strange quark, for whichk l50.1405. We examine the effec
of chiral extrapolation using fourk l values, 0.1405, 0.1410
0.1415, and 0.1419, for various combinations of the ini

FIG. 1. RB→D(t) as a function oft. The heavy quark hopping
parameters for the initial and final mesons are (kb ,kc)
5(0.089,0.110)~diamonds! and (0.089,0.119)~circles!. The light
quark corresponds to the strange quark,k l50.1405. The solid lines
represent a constant fit with 4<t<8.
01450
c-

y,

,

i-

e

.
c-

f

he

vy
a-

l

and final heavy quark masseskh50.089, 0.110, and 0.119
The critical hopping parameter iskcrit50.1432723

15.
For the computation of the matrix elemen3

^D(p8)uVmuB(p)& we calculate the three point correlatio
function

CDVmB~ t,p8,p!

5(
y,x

e2 i (p2p8)•ye2 ip•x^D~0,0!Vm~ t,y!B†~T/2,x!& ~21!

with Vm from Eq.~19! andp50. The light quark propagato
is solved with a source at time slice 0, and we place
interpolating field forB at T/2, where we use the sourc
method. The interpolating fieldsB and D are constructed
with the 1S state smeared source as in Ref.@18#. The spatial
momentump8 carried by the final state is taken to be~0,0,0!,
~1,0,0!, ~1,1,0!, ~1,1,1! and~2,0,0! in units of 2p/L, whereL
is the physical size of the box; in our case,L512a.

The numerical results presented below are obtained f
uncorrelated fits to ratios of these three-point functions. T
statistical errors are estimated with the jackknife method.
a subset of the data we have repeated the analysis with
related fits and the bootstrap method. We find no statistic
significant difference.

In much of the numerical work presented in this paper,
set the coefficientsd1 of the rotation~18! to zero. From the
discussion following Eq.~17! the dependence ond1 enters
directly through 1/m3, and indirectly by changingrVm

. On

the scattering matrix elements of the spatial currentVi , this
should make a small (&10% or so! effect. On the tempora
currentV0, the effect should be tiny. Both expectations a

3For simplicity we use ‘‘B’’ instead of ‘‘B̄’’ to indicate the (bq̄)
meson, and we use ‘‘B’’ or ‘‘ D ’’ for any values of the heavy quark
masses.

FIG. 2. Check of the plateau inRB→D(t) by varying the time
slice tB of theB meson interpolating field. Open diamonds, cross
and solid diamonds correspond to the results withtB512, 10, and
8, respectively. The heavy quark hopping parameters are (kb ,kc)
5(0.089,0.110), andk l50.1405.
2-5
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TABLE I. Numerical data forRB→D, which corresponds touh1(1)u2, atk l50.1405. Rows~columns! are
labeled by the value ofkh in the initial ~final! state. Combinations without data have not been calculate
this work. The diagonal elements are 1 by construction.

kh 0.062 0.089 0.100 0.110 0.119 0.125

0.062 1 0.989~07! 0.979~12! 0.947~24!

0.089 0.989~07! 1 0.998~01! 0.993~02! 0.986~05! 0.983~07!

0.100 0.979~12! 0.998~01! 1 0.992~04!

0.110 0.993~02! 1 0.999~01!

0.119 0.986~05! 0.999~01! 1
0.125 0.947~24! 0.983~07! 0.992~04! 1
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checked at representative choices of the heavy quark ma
and the uncertainty introduced into the spatial current
propagated to the final result.

VI. CALCULATION OF zh1„1…z

The form factoruh1(w)u at zero recoil is obtained directl
from the three-point correlation functions~21!, setting all
three momentum to be zero. We define a ratio4

RB→D~ t ![
CDV0B~ t,0,0!CBV0D~ t,0,0!

CDV0D~ t,0,0!CBV0B~ t,0,0!
, ~22!

in which the exponential dependence ont associated with the
ground state masses cancels between the numerator an
nominator. When the current and two interpolating fields
separated far enough from each other, the contribution of
ground state dominates and

RB→D~ t !→^D~0!uV0uB~0!&^B~0!uV0uD~0!&

^D~0!uV0uD~0!&^B~0!uV0uB~0!&

5
uh1

B→D~1!h1
D→B~1!u

uh1
D→D~1!h1

B→B~1!u
5uh1

B→D~1!u2, ~23!

suppressing radiative corrections. Here we use the defin
~3! and the unit normalization ofuh1(1)u in the equal mass
case. Thus, we expectRB→D to be constant as a function o
t, and its value represents the form factor squared.

In Fig. 1 we plot the ratioRB→D(t) for two representative
combinations of mass parameters. We observe a nice pla
extending over about five time slices, and our fit over
interval 4<t<8 is shown by the solid line.

To see if the plateau is stable under the change of
position of the interpolating field, we repeat the calculati
changing the timetB of the B-meson interpolating field. The
results withtB510 and 8 are shown in Fig. 2 together wi
the one withtB5T/2512. We observe that the plateau
very stable and conclude that the extraction of the gro

4Mandula and Ogilvie@10# used a similar ratio, with nonzero ve
locity transfer, to study thew dependence of the Isgur-Wise fun
tion, which is the infinite mass limit ofh1(w).
01450
es,
s

de-
e
e

n

au
e

e

d

state is reliable. In the following analysis we use the res
with tB5T/2, and the numerical data for eachkh are given
in Table I.

We examine the chiral limit by computing with four va
ues of the light quark mass~14!, roughly in the rangems/2
<mq<ms . Figure 3 shows that theamq dependence of
uh1(1)u2, for two combinations of (kb ,kc), is very slight. A
linear fit in amq gives a slope consistent with zero, and t
value in the chiral limit is still consistent with that at th
finite light quark mass. With our present statistics, we can
study the dependence on the light and heavy quark ma
simultaneously. Instead we take from Fig. 3 two lessons:
dependence on the light quark mass is insignificant, but
~statistical! uncertainty increases, by a factor of 2, in th
chiral limit.

A small, but non-analytic, dependence onmp is expected
from chiral perturbation theory@28,29#. Such effects may be
different in the quenched approximation. If so, the differen
should be counted as part of the error of the quenched
proximation.

VII. HEAVY QUARK MASS DEPENDENCE OF zh1„1…z

In the heavy quark limit of QCD, the heavy quark ma
dependence ofuh1(1)u can be described with a 1/mQ expan-
sion. Using a symmetry of its definition~3! under the ex-

FIG. 3. Chiral extrapolation ofuh1(1)u2. The heavy quark hop-
ping parameters for the initial and final mesons are (kb ,kc)
5(0.089,0.110)~diamonds! and (0.089,0.119)~circles!.
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LATTICE QCD CALCULATION OF B̄→Dl n̄ DECAY FORM . . . PHYSICAL REVIEW D 61 014502
change of the initial and final states and the normalization
the limit of degenerate heavy quark mass, the form of
1/mb and 1/mc expansion is restricted to be

uh1~1!u512c1
(2)S 1

mc
2

1

mb
D 2

1c1
(3)S 1

mc
1

1

mb
D S 1

mc
2

1

mb
D 2

1O~1/mQ
4 !, ~24!

suppressing the radiative correctionhV . The termO(1/mQ
4 )

denotes all possible combinations of 1/mc and 1/mb with
total mass dimension24. The absence of terms of orde
1/mQ is implied by Luke’s theorem@6#, but in this particular
case it can be understood as a result of the symm
1/mc↔1/mb .

If we take the radiative corrections into account, the d
presented in the last section correspond touh1(1)u/rV0

. To
use the right-hand side of Eq.~24!, on the other hand, we
must multiply them byrV0

/hV to obtain uh1(1)u/hV . At

b55.7 and our choices of quark masses we find, at one lo
thatrV0

/hV is very nearly 1, so that we do not need to ca
out this conversion.5

In the lattice theory, the masses entering Eq.~24! arem2 ,
mB , and m3, as explained in Sec. V. In particular, if on
follows Refs.@30,31# to see how higher-dimension tree-lev
operators affect the matrix elements, one sees that themc

2

and 1/mb
2 corrections to the action and current do not affe

RB→D @26#.
We study the relation~24! with several combinations o

the initial and final heavy quark masses. We require a r
tion between the hopping parameters, which are inputs to
numerical calculation, and the quark masses. To simplify
analysis, we setm35mB5m2 and estimate the kinetic quar
mass by applying tadpole improvement@15# to include the
dominant tadpole contribution to the perturbation series. T
tadpole-improved kinetic mass is given by substitutingam̃0
5am0 /u0 for am0 on the right-hand side of Eq.~16!, with
the mean link variableu051/8kcrit . We do not bother with
the one-loop correction tom2 @24#, because it is smaller tha
the uncertainty froma. This way of parametrizing the quar
masses is for interpolating only; when reconstituting
physical result, the hopping parameterskc andkb are chosen
nonperturbatively from the masses of theD andB mesons.

Figure 4 shows the 1/amc dependence ofuh1(1)u. The
initial heavy quark mass is set to be 1/amb50.475 (kb
50.089), and we vary 1/amc between 0.2 and 2.0.~Here we
misuse the meaning of subscriptb or c to indicate the initial
or final state heavy quark, respectively.! At 1/amc51/amb
the form factor becomes exactly 1 by construction, and
deviation from unity increases as 1/amc moves away from
1/amb . The statistical error grows as the difference of hea
quark masses increases. When one approaches the static
the signal becomes much noisier, as in many other Mo

5This is an accident at our choice of lattice spacing. For sma
lattice spacings, this would not be so. See Ref.@23# for details.
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Carlo calculations with heavy-light mesons. In our case,
statistical error of the point with heaviestamc is very large.

To see the mass dependence more clearly, we rewrite
relation ~24! as

12uh1~1!u

D2
5c1

(2)2c1
(3)S 1

amc
1

1

amb
D , ~25!

where D51/amc21/amb . The left-hand side is plotted in
Fig. 5. The data exhibit a very good linear dependence onD,
except in the heavy mass regime, where the error grows
idly. Fitting all data linearly, we obtainc1

(2)50.029(11) and
c1

(3)50.011(4). In physical units, and absorbing factors ofa
into the coefficients, these coefficients have a size typica
the QCD scale: c1

(2)5@0.20(4) GeV#2 and c1
(3)

5@0.26(3) GeV#3.
The dotted line marking the physical value of 1/amc

11/amb shows that we are, in effect, using Eq.~25! as an
ansatz for interpolation. Although the coefficients are int

r

FIG. 4. 1/amc dependence ofuh1(1)u. The initial heavy quark
mass is fixed atkb50.089, which corresponds to 1/amb50.475.
The light quark corresponds to the strange quark,k l50.1405.

FIG. 5. @12uh1(1)u#/D2 vs 1/amc11/amb . The dotted vertical
line indicates the physical value of 1/amc11/amb . The light quark
corresponds to the strange quark,k l50.1405.
2-7
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SHOJI HASHIMOTOet al. PHYSICAL REVIEW D 61 014502
esting in their own right, we caution the reader that the v
ues extracted from the fit are highly correlated, and we h
not made a full analysis of the errors on them. Below
prefer to giveh1(1), evaluated at physical values of th
masses, as the principal result of this section.

We have checked the influence of the rotation by repe
ing the calculations withd1 set to

d̃15
1

21am̃0

2
1

2~11am̃0!
~26!

at several of the heavy-quark mass combinations. This is
correctly tuned value at the~mean-field improved! tree level
@17#. The primary effect of varyingd1 is through the combi-
nation (1/m3c21/m3b)2 @26#. A secondary effect is to
modify the radiative corrections factorrV0

. After interpolat-

ing the masses to the physical point, the change onh1(1) is
10.00013, which is much smaller than several other unc
tainties. Owing to this, our central value forh1(1) can come
safely from data withd150, the only value ofd1 for which
rV0

is already available.

VIII. CALCULATION OF h2„1…

To obtainh2(w), it is necessary to consider nonzero r
coil momentum. From the definition of the form factors~3!,
the matrix elements of the spatial and temporal vector c
rent for the nonzero recoil final stateD(p8) read

^D~p8!uVi uB~0!&5AmBmD@h1
B→D~w!2h2

B→D~w!#v i8 ,
~27!

^D~p8!uV0uB~0!&5AmBmD@h1
B→D~w!~11w!

1h2
B→D~w!~12w!#, ~28!

wherew5v•v85A11v82, andv85p8/mD .
On the lattice we start by computing the ratio of corre

tion functions

RVi /V0

B→D ~ t,p8![
CDViB~ t,p8,0!

CDV0B~ t,p8,0!
. ~29!

In the limit of well-separated currents, the time depende
flattens,

RVi /V0

B→D ~ t,p8!→ ^D~p8!uVi uB~0!&

^D~p8!uV0uB~0!&
5

v i8

2 F12
h2

B→D~w!

h1
B→D~w!

G
3F12

1

2 S 12
h2

B→D~w!

h1
B→D~w!

D ~w21!G . ~30!

The last step holds for smallv82 and suppresses radiativ
corrections. Because the velocity inherits statistical unc
tainties from theD ’s kinetic mass, it is further useful to
define a double ratio

RVi /V0

(B→D)/(D→D)~ t,p8![RVi /V0

B→D ~ t,p8!/RVi /V0

D→D~ t,p8!. ~31!
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Then, for large time separations,

RVi /V0

(B→D)/(D→D)~ t,p8!

→ ^D~p8!uVi uB~0!&

^D~p8!uV0uB~0!&

^D~p8!uV0uD~0!&

^D~p8!uVi uD~0!&

5F12
h2

B→D~w!

h1
B→D~w!

GF11
h2

B→D~w!

2h1
B→D~w!

~w21!G . ~32!

The final expression is simplified using the prope
h2

D→D(w)50. Provided thatuh1
B→D(w)u is obtained suffi-

ciently precisely in the previous sections, the relation~32!
can be used to extracth2

B→D(w). The part proportional to
w21 gives only a small contribution, since the coefficie
h2(w)/h1(w) is itself a small quantity of order (mB
2mD)/(mB1mD).

Figure 6 shows the t dependence of the ratio
RVi /V0

(B→D)/(D→D)(t,p8) for final state momentaLp8/2p

5(1,0,0) ~circles! and (2,0,0)~squares!. Solid symbols rep-
resent theb→c transition, while open symbols correspond
the reversec→b transition. The plateau is reached arou
t54, so that we can fit in the interval 4<t<8, as with
uh1(1)u2. The fit results for the momentum (1,0,0) are giv
by the solid lines.

Up to the small contribution of orderw21, this ratio
gives the combination 12h2

B→D(w)/h1
B→D(w), in which

h1
B→D(w) is almost equal to 1. Looking at the solid symbo

in Fig. 6, h2
B→D(w) is roughly20.1 and is almost indepen

dent of the final state momentum. Sinceh2(w) changes its
sign under the exchange of initial and final states, it is c
sistent that the open symbols, which correspond to the t
sition D→B, appear below 1.

FIG. 6. RVi /V0

(B→D)/(D→D)(t) for the final state momentum (1,0,0
~circles! and (2,0,0)~squares!. The heavy quark hopping param
eters for the initial and final mesons are (kb ,kc)5(0.089,0.119)
~solid symbols! and (0.119,0.089)~open symbols!. The light quark
corresponds to the strange quark,k l50.1405. The solid lines rep
resent a constant fit for the momentum (1,0,0) with 4<t<8.
2-8



of

f

th
pe
t
er

o
D
n

e

in-

rec-

ote

re
y
e

n

o are

LATTICE QCD CALCULATION OF B̄→Dl n̄ DECAY FORM . . . PHYSICAL REVIEW D 61 014502
To obtain the value ofh2
B→D(w)/h1

B→D(w) at the zero-
recoil limit, we extrapolate the plateau values
RVi /V0

(B→D)/(D→D) for p82→0. The small piece of orderw21

vanishes in this limit as well as the possiblew dependence o
form factors, so we obtainh2

B→D(1)/h1
B→D(1) without fur-

ther approximation. Figure 7 shows the extrapolation for
same mass values as in Fig. 6. There is no significant de
dence on (ap8)2. Thus, we simply apply a linear form to fi
the data, shown in the figure. The numerical data in the z
recoil limit are given in Table II.

The chiral extrapolation of 12h2(1)/h1(1) is shown in
Fig. 8, for the combinations (kb ,kc)5(0.089,0.119) and
(0.119,0.089). As in the case ofuh1(1)u2, the dependence
on amq is insignificant, but the~statistical! uncertainty in-
creases, by a factor of 2.

IX. HEAVY QUARK MASS DEPENDENCE OF h2„1…

As with h1(1), the heavy quark mass dependence
h2(1) can be described, in the heavy quark limit of QC
with a 1/mQ expansion. The form of the heavy quark expa

FIG. 7. Extrapolation ofRVi /V0

(B→D)/(D→D) to the zero-recoil limit.
The heavy quark hopping parameters for the initial and final mes
are (kb ,kc)5(0.089,0.119)~solid circles! and (0.119,0.089)~open
circles!. The light quark corresponds to the strange quark,k l

50.1405. Note that the lattice spacinga is held fixed here.
01450
e
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f
,
-

sion ofh2
B→D(1) is restricted by its anti-symmetry under th

exchange of the initial and final states,

h2~1!52S 1

mc
2

1

mb
D

3
Fc2

(1)2c2
(2)S 1

mc
1

1

mb
D

2
G1O~1/mQ

3 !.

~33!

The meaning of the subscripts on the combinations of
verse masses is given below. The ratioh2(1)/h1(1) obeys
the same expansion up to the given order, since the cor
tion to theh1(1) starts at order 1/mQ

2 .
To take radiative corrections into account, we should n

that the ~lattice! ratio RVi /V0

(B→D)/(D→D) corresponds to@1

2h2 /h1#/rVi
. The right-hand side of Eq.~33!, on the other

hand, is justified in HQET when radiative corrections a
ignored. Thus, we should multiply the data of Table II b
rVi

/(12bV). We shall not do this for two reasons. First, th

one-loop contribution torVi
is not yet available, although a

calculation is in progress@23#. Second, there is an indicatio
from an analysis of renormalons that the series forbV con-

ns

FIG. 8. Chiral extrapolation of 12h2(1)/h1(1). The heavy
quark hopping parameters for the initial and final mesons
(kb ,kc)5(0.089,0.119) ~solid circles! and (0.119,0.089)~open
circles!.
y con-
TABLE II. Numerical data in the zero-recoil limit forRVi /V0

(B→D)/(D→D) , which corresponds to 1
2h2(1)/h1(1), at k l50.1405. Rows~columns! are labeled by the value ofkh in the initial ~final! state.
Combinations without data have not been calculated in this work. The diagonal elements are one b
struction.

kh 0.062 0.089 0.100 0.110 0.119 0.125

0.062 1 1.067~12! 1.093~14! 1.181~21!

0.089 0.892~20! 1 1.033~04! 1.063~08! 1.095~11! 1.121~15!

0.100 0.836~27! 0.963~05! 1 1.092~11!

0.110 0.923~10! 1 1.034~04!

0.119 0.878~15! 0.964~04! 1
0.125 0.636~47! 0.837~20! 0.889~13! 1
2-9
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SHOJI HASHIMOTOet al. PHYSICAL REVIEW D 61 014502
verges poorly@32#. With these points in mind, we omit ra
diative corrections and employ~33! as an Ansatz for inter-
polation.

The subscripts on the parentheses in Eq.~33! mean that
the enclosed masses should be taken to bem3 or m2, intro-
duced in Sec. III. The reasoning is as follows. The contrib
tion to h2(1) of first order in 1/mQ comes solely from the
current@6#, namely the 1/m3 terms in Eq.~17!. The second-
order contribution comes mainly from the first-order cont
bution iterated with the 1/mQ corrections to the Hamiltonian
@30,26#, namely the 1/m2 and 1/mB terms in Eq.~15!. We
can takemB5m2 because, with the clover action, the diffe
ence affects the interpolation negligibly. Tracing the 1/mQ
expansion in this way, and making use of the anti-symme
under the exchange of initial and final states, leads to
heavy-quark expansion for the lattice data of the form giv
in Eq. ~33!.

In Fig. 9 we plot the 1/amc dependence ofh2(1)/h1(1).
The solid circles are obtained by fixing the initial-state qua
mass to be 1/amb50.475 and varying the final-state mas
The open circles are obtained by fixing the final-state m
and varying the initial-state mass. We can clearly observe
mass dependence, which makes it possible to extract
value of the form factor for physical masses.

To extract the coefficientsc2
(1) and c2

(2) we plot, in Fig.
10,

RVi /V0

(B→D)/(D→D)21

D3
52

h2~1!/h1~1!

D3

5c2
(1)2c2

(2)S 1

amc
1

1

amb
D

2

, ~34!

where nowD351/am3c21/am3b . Here the solid symbols
represent the results from the ‘‘heavier-to-lighter’’ tran
tions and the open symbols from ‘‘lighter-to-heavier’’ tra

FIG. 9. 1/amc dependence ofh2(1)/h1(1). The initial heavy
quark mass is fixed atkb50.089~solid circles!, which corresponds
to 1/amb50.475. The open circles are obtained by exchanging
initial and final states. The light quark corresponds to the stra
quark,k l50.1405.
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sitions. The two sets of data are consistent with each ot
except three points appearing well above the other poi
These data involve the heaviest quark mass in our calc
tion, where the statistical noise is very large, and reliable
become difficult. The data are well described by the line
form ~34!, and our results for its coefficients extracted wi
the ‘‘heavier-to-lighter’’ data arec2

(1)50.212(31) andc2
(2)

50.054(11). In physical units, these coefficients arec2
(1)

50.246(37) GeV andc2
(2)5@0.27(3) GeV#2.

The data presented in the figures and in Table II are
tained with the rotation parameterd150. One expectsh2 to
be sensitive tod1, becaused1 is the coefficient of an opera
tor of order v, and h2 parametrizes a matrix element o
orderv. From the discussion in Sec. IV, however, one se
that d1 influences matrix elements through the massm3.
Thus, our method of fitting compensates for the omitted
tation, provided we reconstitute the physical value ofh2(1)
using the physical values of the quark masses throughou
bonus of this method is that the radiative correction fac
rVi

will be easier to compute whend150.
We have checked the influence of the rotation by repe

ing the calculations withd15d̃1; cf. Eq. ~26!. The primary
effect of varyingd1 is through 1/m3 and, from Eqs.~20! and
~33!, is proportional to the differenced1

c2d1
b . A secondary

effect is to modify the radiative corrections of the lattic
currents.

With hopping parameters (kb ,kc)5(0.089,0.119), the
differenced̃1

c2d̃1
b nearly vanishes. Nevertheless, we find

RVi /V0

(B→D)/(D→D)~ d̃1!2RVi /V0

(B→D)/(D→D)~0!50.008960.0012,

~35!

where we use the bootstrap method to obtain a statis
uncertainty that takes correlations into account. This diff

e
e

FIG. 10. 2@h2(1)/h1(1)#/D3 vs 1/amc11/amb . Solid ~open!
symbols represent the ‘‘heavier-to-lighter’’~‘‘lighter-to-heavier’’!
decay results. The solid and dashed lines are fitted results to
solid and open data points, respectively. The dotted vertical
indicates the physical value of 1/amc11/amb . The light quark cor-
responds to the strange quark,k l50.1405.
2-10
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LATTICE QCD CALCULATION OF B̄→Dl n̄ DECAY FORM . . . PHYSICAL REVIEW D 61 014502
ence must stem almost entirely from a change in the ra
tive corrections, because the change in the heavy quark
pansion is, fortuitously, negligible. Thus, it provides
estimate of the uncertainty from omitting the radiative c
rections.

Another check on the magnitude of the radiative corr
tions comes from comparing the heavier-to-lighter transit
with the lighter-to-heavier. Because the physical form fac
h2 is anti-symmetric under interchange of the initial a
final states, the incomplete anti-symmetry ofRVi /V0

(B→D)/(D→D)

21, seen in Table II, can come only from radiative corre
tions. Near the physical region, these discrepancies are
20 % of h2(1). With these considerations to guide an es
mate, we take the uncertainty inh2(1) owing to unknown
radiative corrections to range from10.010 to20.030.

X. COMPARISON WITH THE QCD SUM RULES

In the past, the form factorsh1(1) andh2(1) have been
studied with QCD sum rules or the non-relativistic qua
model. Here we make a comparison of our results forc1

(2)

andc2
(1) with estimates obtained with those techniques.

From the zero-recoil sum rule, Shifmanet al. obtain @5#

FB→D
2 1(

X
FX

2512
mp

2 2mG
2

4 S 1

mc
2

1

mb
D 2

, ~36!

where FB→D corresponds toh1(1) and theFX represent
contributions of higher excited states. The hadronic para
etersmp

2 and mG
2 are estimated with other sum rules, a

recent results aremp
2 50.5(1) GeV2 and mG

2 50.36 GeV2

@3#. The relation~36! gives an upper bound forh1(1),

h1~1!,12
mp

2 2mG
2

2 S 1

mc
2

1

mb
D 2

, ~37!

provided that the contributionsFX
2 of higher excited states

are strictly positive. This can be translated as a lower bo
for the coefficientc1

(2) :

c1
(2).

1

2
~mp

2 2mG
2 !5~0.2620.12

10.09 GeV!2. ~38!

Our resultc1
(2)5@0.20(4) GeV#2 is lower than the centra

value but still consistent within errors.
In @4,30# the authors used the non-relativistic quark mo

to estimate the coefficientc1
(2) . Their results scatter in a

range (0.2–0.4 GeV2), strongly depending on the assum
shape of the quark-antiquark wave function and the value
the valence light quark mass.

The form factorh2(1) has been studied with QCD su
rules @34,35#. Applying their analysis to the heavy quar
expansion~33! one finds

c2
(1)5

L̄

2
@11d122~11d2!h~1!#, ~39!
01450
a-
x-

-

-
n
r

-
0–
-

-

d

l

of

where L̄5mB2mb , the d i are radiative corrections, an
h(1) represents a ratio of HQET form factors, at zero rec
Neglecting radiative corrections, Neubert@34# finds h(1)
51/3 from a QCD sum rule. TakingL̄50.560.1 GeV and
d15d250, this impliesc2

(1)50.08(2) GeV. With radiative
corrections in the sum rule, Ligetiet al. find h(1)50.6
60.2 @35#. Taking now d150.11 andd250.09 @36#, this
implies c2

(1)520.05(10) GeV. Our result is significantl
larger than both, but it is difficult to make a direct compa
son. Our lattice calculation contains some of the radiat
corrections automatically, and the remainder has not yet b
calculated. When the lattice one-loop calculation is availab
it should be possible to make a direct comparison. As
mentioned above, it is conceivable that these effects co
changec2

(1) significantly, without a great effect on the valu
we extract forh2(1).

XI. RESULT FOR FB˜D„1…

In the previous sections we have investigated the he
quark mass dependence ofh1(1) andh2(1) and obtained
the coefficients in the 1/mQ expansions~24! and ~33!. To
extract the value ofFB→D(1) we input the physical values o
mc and mb , which we adjust to give the physical meso
masses. Atb55.7 these parameters areamc51.0(1) and
amb53.9(5). Thecentral value is fixed with theD and B
meson masses with the lattice spacinga21(1S-1P), and the
error range reflects the uncertainty in the lattice spacing.

The values of physicalh1(1) and h2(1) ~without the
matching factors! are given in Table III for three possibl
combinations ofamb and amc . Since the systematic error
in amb and in amc are correlated, we consider the centr
and two limiting combinations only. The statistical errors
h1(1) andh2(1) are estimated with the jackknife metho
so that the resulting precision is better than that obtained
adding in quadrature the errors on coefficientsc6

(n) . In the
physical amplitudeFB→D(1), which is the linear combina-
tion of h1(1) andh2(1) given in Eq.~5!, the uncertainty
from adjusting the quark masses largely cancels, and
value ofFB→D(1) is very stable.

To obtain the physical result, we must now fold in th
radiative correctionrV0

, relating the lattice current to the
continuum. Two of us recently have calculated this factor
one loop @23#, and at amb53.9 and amc51.0 they find
rV0

5110.096as . The Lepage-Mackenzie scaleq* for the

coupling as(q* ) @15# has also been calculated, and at t

TABLE III. Tree level estimate of the form factors at zero r
coil, with statistical errors only. The light quark corresponds to
strange quark,k l50.1405. The entries for the form factors do n
reflect radiative corrections.

amb amc h1(1) h2(1) FB→D(1)

4.4 1.1 0.992~3! 20.103~13! 1.041~8!

3.9 1.0 0.991~3! 20.107~14! 1.042~8!

3.4 0.9 0.990~4! 20.112~14! 1.043~8!
2-11
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same quark masses the result isq* 54.4/a. At b55.7,
aV(4.4/a)50.168 and the correction toh1(1) is
10.016(3), taking the error of omitting higher orders to b
20% of the one-loop correction.

A similar one-loop calculation forrVi
, which modifies

h2(1), is not yetavailable. We allow, therefore, a system
atic uncertainty for this effect.

Our results for the form factors are

h1~1!511.00760.00660.00260.003, ~40!

h2~1!520.10760.02860.00420.030
10.010, ~41!

where the error estimates are as follows. The first e
comes from statistics, after the chiral extrapolation; the s
ond from adjusting the heavy quark masses; and the t
error from unknown radiative corrections, two loops a
higher for h1 and one loop and higher forh2 . The chiral
extrapolations, which are shown in Figs. 3 and 8, double
statistical errors of Table III, without changing the cent
values.

Our main result is the value of the form factor enteri
the decay rate, at zero recoil. Inserting the physical value
theB andD meson masses and the results~40! and~41! into
Eq. ~5!,

FB→D~1!51.05860.01660.00320.005
10.014, ~42!

where errors are from statistics, heavy quark masses,
omitted radiative corrections. The last of these could be
duced substantially by calculating the radiative correct
factor rVi

to one loop.
Two sources of uncertainty have yet to be investiga

carefully. They are the dependence on the lattice spacing
the effects of the quenched approximation. From our exp
ence withf B @18,19#, we might suppose that these effects a
a few percent and;15%, respectively. The ratios have be
constructed so that all sources of error, including these, v
ish for equal heavy quark masses. It is, therefore, our exp
tation that these percentages apply not toF(1) but to
by
ec

rt.

D

01450
r
c-
rd

e
l

of

nd
-

n

d
nd
i-

e

n-
c-

F(1)21. That means that these two sources of error sho
be under good control, just as we have found with the ot
sources of uncertainty.

XII. CONCLUSIONS

In this paper we have shown that precise lattice calcu
tions of the zero-recoil form factorsh1(1) andh2(1) are
possible. The principal technical advance is to consider ra
of matrix elements, in which a large cancellation of statis
cal and systematic errors takes place. The numerical data
interpreted in a way mindful of heavy quark symmetry@17#.
We find, therefore, that the dependence of the form fac
on the heavy quark mass is well described by 1/mQ expan-
sions, and we obtain the coefficients in the expansions.

Our control over the heavy quark mass dependence all
us to determine the individual form factorsh1(1) and
h2(1), aswell as the physical combinationFB→D(1). The
main results~40!–~42! account for most uncertainties, bu
not the dependence on the lattice spacing or the effect of
quenched approximation. Since our method is designed
yield the deviation ofFB→D(1) from 1, we do not expec
these qualitatively to spoil the quoted precision. With t
proof of principle provided by this work, it should be po
sible, in the short term, to obtainFB→D(1) with control over
all sources of uncertainty and an error bar that is sm
enough to be relevant to the determination ofuVcbu.
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