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Vector potential versus color charge density in low-x evolution

Alex Kovner and J. Guilherme Milhano
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom

~Received 22 April 1999; published 10 December 1999!

We reconsider the evolution equations for multigluon correlators derived by Jalilian-Marian, Kovner, and
Weigert. We show how to derive these equations directly in terms of vector potentials~or color field strength!
avoiding the introduction of the concept of color charge density in the intermediate steps. The two step
procedure of deriving the evolution of the charge density correlators followed by the solution of classical
equations for the vector potentials is shown to be consistent with direct derivation of evolution for vector
potentials. In the process we correct some computational errors of Jalilian-Marian, Kovner, and Weigert and
present the corrected evolution equations which have a somewhat simpler appearance.

PACS number~s!: 12.38.Cy
rt
rg
e
is

m
lin
ng
ni
c

he
s
im
e
o

-

he
o

a
on
nl
v
ta
in

ea

p

n
la
le
a
he
on

-
ing
atis-
.

on

e
en-
-
-
e

om
is

xi-
is,
ent

eld
ch

he

vo-
rs

tep,
nsity

t
the
re-
ur

uc-
the
is
both
sult
I. INTRODUCTION

With the advent of the DESYep collider HERA there has
been a great increase in the scope of the theoretical effo
understand the physics of hadronic scattering at high ene
This is a challenging subject especially as it might provid
bridge between perturbative partonic physics of short d
tance processes@e.g., deep inelastic scattering~DIS! at mod-
eratexB j# and soft physics of hadronic states which, presu
ably, dominate the high energy asymptotics. The border
between the two — the ‘‘semihard’’ physics — is interesti
also in its own right. In essence it is the physics of parto
systems which are, on one hand, dense enough for new
lective phenomena to play important role but, on the ot
hand, are perturbative since the average momentum tran
between the partons is high enough. In this semihard reg
one expects to see perturbatively controllable nonlinear
fects which depart from the standard linear evolution
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! @1# or
Balitskiı̆-Fadin-Kuraev-Lipatov~BFKL! @2# type and subse
quently lead to unitarization of hadronic cross sections.

An approach to this high partonic density regime from t
partonic side has been spearheaded by Levin and collab
tors @3–5# based on earlier work by Mueller@8# and is an
‘‘all twist’’ generalization of the Gribov-Levin-Ryskin
~GLR! recombination picture@6,7#. It led to the formulation
of a nonlinear evolution equation which exhibits a perturb
tive mechanism of unitarization. Analysis of this equati
suggests that already at present HERA energies the no
earities in the gluon sector are considerable and linear e
lution for gluons should break down. Better experimen
data on gluon distributions would be extremely valuable
order to verify or falsify this assessment.

A complementary approach was pioneered some y
ago by McLerran and Venugopalan@9#. It was later some-
what reshaped conceptually and considerably develo
technically in a series of papers@10–13#. Here the idea is
that, in the high density regime, rather than using parto
language, it is more appropriate to use the language of c
sical fields. The hadron then is considered as an ensemb
configurations of the gluon field. The statistical weight th
governs the contributions of different configurations to t
ensemble averaging changes when one probes the hadr
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different time scales. DecreasingxB j corresponds to increas
ing the time resolution and therefore corresponds to prob
the hadron on shorter time scales. The change of the st
tical weight withxB j is governed by the evolution equation
As long as the field intensity is large enough this evoluti
should be perturbative inas but essentially nonlinear in the
field intensity itself.

This evolution equation to first order inas was derived in
Refs. @11,12#. We will refer to it as the Jalilian-Marian–
Kovner–Leonidov–Weigert~JKLW! equation in the follow-
ing. In Ref. @13# the double logarithmic limit of this evolu-
tion was considered. It was shown that in this limit th
evolution of the gluon density becomes unitary at large d
sity. Qualitatively, the evolution is very similar to that dis
cussed in Ref.@3#, although the details are different. A de
tailed numerical study of the doubly logarithmic limit of th
JKLW evolution was recently performed in Ref.@14#.

Technically the derivation of Ref.@12# is fairly involved.
Several consistency checks were performed in Ref.@11# and
@13# to make sure that the known results are recovered fr
the general evolution equation in the weak field limit. Th
includes the BFKL equation, the doubly logarithmic appro
mation to the DGLAP equation and the GLR equation. It
however, desirable to have some additional independ
checks on the equation which do not involve the weak fi
limit. It is the aim of the present paper to provide one su
check.

In a nutshell the issue we address is the following. T
evolution equation in Refs.@11–13# was derived invoking a
two step procedure. Rather than considering directly the e
lution of the correlators of the gluon field, one first conside
the evolution of the color charge density. In the second s
one reexpresses the evolution equation for the charge de
as the evolution equation for the vector potential~chromo-
electric field!. The evolution of the field correlators is in fac
what one is after, since it is the vector potential and not
charge density that couples directly to fermions and, the
fore, is more directly related to physical observables. O
observation in this paper is that one can avoid the introd
tion of the color charge density altogether and derive
evolution equations directly for the field correlators. Th
procedure has the advantage of being somewhat simpler
technically and conceptually. Nevertheless, the final re
©1999 The American Physical Society12-1
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for the evolution should be the same as in the two step p
cedure of Refs.@10–13#. The comparison of our results wit
the earlier derived formulas provides us with a consiste
check on the calculation.

We find, in fact, that the results presented in Ref.@12# are
not entirely correct. However, after correcting some al
braic mistakes in Ref.@12# we show explicitly that the two
approaches yield identical results. We provide the correc
expressions for the ‘‘kernels’’ of the evolution equatio
which are somewhat simpler than the expressions foun
Ref. @12#. We also clarify the issue of possible Gribov am
biguity and show explicitly that the divergent Jacobian
which appeared in the intermediate steps of the derivation
Ref. @13#, cancel completely in the final expressions for t
correlators of the chromoelectric field. Therefore, the Grib
ambiguity, although affecting the relation between the co
charge density and the chromoectric field, does not affect
evolution of the field correlators, at least to orderas . Since
the procedure discussed in the present paper avoids th
troduction of the charge density entirely, the whole appro
is free from the Gribov problem.

Perhaps somewhat surprisingly the corrections to the
ng
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sults of Ref.@12# that we find do not affect either the wea
field limit discussed in Ref.@11# or the doubly logarithmic
limit of Ref. @13#. They therefore have no bearing on th
derivation of the BFKL equation in our approach and also
not help to reconcile the doubly logarithmic limit of th
JKLW equation@13# with the nonlinear equation studied i
Ref. @3#.

The plan of the paper is the following. In Sec. II w
briefly recap the procedure of the derivation of the evolut
equation as described in Refs.@11–13# and reformulate it
directly in terms of the gluon field correlators. In Sec. I
using some of the results of Ref.@12#, we calculate the rea
and virtual parts of the evolution in terms of the field co
elators and provide the corrections to the results of Ref.@12#.
Finally, in Sec. IV we discuss our results.

II. THE JKLW EVOLUTION

First, let us briefly recall the framework and the results
Refs.@11–13#. In this approach the averages of gluonic o
servables in a hadron are calculated via the following p
integral:
^O~A!&5E DrDAmO~A!expH 2E d2x'F@ra~x'!#2 i E d4x
1

4
trFmnFmn

1
1

Nc
E d2x'dx2d~x2!ra~x'!trTaW2`,`@A2#~x2,x'!J , ~1!
of
oup
for

m-
ied.
ity

he
ub-
where the gluon field strength tensor is given by

Fa
mn5]mAa

n2]nAa
m2g fabcAb

mAc
n ~2!

andW is the Wilson line in the adjoint representation alo
the x1 axis

W2`,1`@A2#~x2,x'!

5PexpF1 igE dx1Aa
2~x1,x2,x'!TaG . ~3!

The hadron is represented by an ensemble of c
charges localized in the planex250 with the ~integrated
acrossx2) color charge densityr(x'). The statistical weight
of a configurationr(x') is

Z5exp$2F@r#%. ~4!

In the tree level approximation~in the light cone gaugeA1

50) the chromoelectric field is determined by the co
charge density through the equations

F1 i5
1

g
d~x2!a i~x'! ~5!
r

r

and the two-dimensional vector potentiala i(x') is ‘‘pure
gauge,’’ related to the color charge density by

] iaa
j 2] jaa

i 2 f abcab
i ac

j 50,

] iaa
i 52ra . ~6!

Integrating out the high longitudinal momentum modes
the vector potential generates the renormalization gr
equation, which has the form of the evolution equation
the statistical weightZ @11#1

d

dz
Z5asH 1

2

d2

dr~u!dr~v !
@Zx~u,v !#2

d

dr~u!
@Zs~u!#J .

~7!

In the compact notation used in Eq.~7!, both u andv stand
for pairs of color index and transverse coordinates, with su
mation and integration over repeated occurrences impl
The evolution in this equation is with respect to the rapid
z, related to the Feynmanx by

1All the functions in the rest of this paper depend only on t
transverse coordinates. For simplicity of notation we drop the s
script' in the following.
2-2
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z5 ln1/x. ~8!

Technically it arises as a variation ofZ with the cutoff im-
posed on the longitudinal momentum of the fieldsAm. The
quantitiesx@r# and s@r# have the meaning of the mea
fluctuation and the average value of the extra charge den
induced by the high longitudinal momentum modes ofAm.
-
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They are functionals of the external charge densityr. The
explicit expressions have been given in Ref.@12# and it is our
aim in this paper to provide a check on these expression

Equation~7! can be written directly as an evolution equ
tion for the correlators of the charge density. Multiplying E
~7! by r(x1)•••r(xn) and integrating overr yields
adronic

rs of the
d

dz
^r~x1!•••r~xn!&

5asF (
0,m,k,n11

^r~x1!•••r~xm21!r~xm11!•••r~xk21!r~xk11!•••r~xn!x~xm ,xk!&

1 (
0, l ,n11

^r~x1!•••r~xl 21!r~xl 11!•••r~xn!s~xl !&G . ~9!

This set of equations for the correlators of the color charge density completely specifies the evolution of the h
ensemble as one moves to higher energies~or lower values ofx).

The evolution equations for the correlators of the charge density can be rewritten as equations for the correlato
vector potential@13#:

d

dz
^aa1

i 1 ~x1!•••aan

i n ~xn!&

5asF (
0, l ,n11

^aa1

i 1 ~x1!•••aal 21

i l 21 ~xl 21!aal 11

i l 11 ~xl 11!•••aan

i n ~xn!sal

i l ~xl !&

1 (
0,m,k,n11

^aa1

i 1 ~x1!•••aam21

i m21 ~xm21!

3aam11

i m11 ~xm11!•••aak21

i k21 ~xk21!aak11

i k11 ~xk11!•••aan

i n ~xn!xamak

i mi k ~xm ,xk!&G . ~10!
ge

ons
e
se
The quantitiesxab
i j andsa

i have a very simple physical mean
ing. The high momentum modes of the vector field whi
have been integrated out in order to arrive at the evolu
equation induce extra color charge densitydr. The average
value of this induced density and its mean fluctuation app
in the evolution equations Eq.~9! as sa and xab . The ap-
pearance of the induced color charge density leads to
change in the value of the chromoelectric field through
solution of Eq.~6! with r1dr on the right hand side. The
quantitiessa

i and xab
i j are the average value and the me

fluctuation of the induced field, respectively.
It is perhaps helpful to explain howsa

i and xab
i j were

obtained in Ref.@13#. As shown in Ref.@12#, the induced
charge density can be decomposed into two pieces2

dr5dr̃11dr̃2 . ~11!

2The reason for the notationr̃ rather than simplyr will be ex-
plained in the next section.
n

ar

he
e

The first piecedr̃1 is orderg while the second piecedr̃2 is
order g2. The dr̃1 is time dependent, and has zero avera
value, while its mean fluctuation is orderg2. Thedr̃2 being
O(g2) contributes only to the average value ofdr̃ and not to
the mean fluctuation. Assuming that the classical equati
Eq. ~6! hold not only for the background field but also for th
relevant part of the fluctuation field one can solve tho
equations perturbatively. Writing

da i5da1
i 1da2

i ~12!

with da1 beingO(g) andda2 beingO(g2) and keeping in
the classical equations all terms to orderg2 we have

Dab
i da1b

j 2Dab
j da1b

i 1Dab
i da2b

j 2Dab
j da2b

i

2 f abcda1b
i da1c

j 50,

] ida1a
i 1] ida2a

i 52~dr̃1a1dr̃2a!. ~13!
2-3
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We have defined for convenience

aab
i 5 f abcac

i ,

Dab
i 5] idab1aab

i . ~14!

To orderg we find

da1
i 52Di

1

]D
dr̃1 . ~15!

Therefore, to orderg2

xab
i j ~x,y!5r ac

i ~x,u!xcd~u,v !r db
† j ~v,y! ~16!

with

r ab
i ~x,y!52^xuFDi

1

]DG
ab

uy&. ~17!

Here ^xuOuy& denotes a configuration space matrix elem
in the usual sense.

At order g2 we have

da2
i 52Di

1

]D
dr̃22

1

2
e i j ] j

1

D]
da13da1 . ~18!

Here the cross product is defined as

A3B5 f abce
i j Aa

i Bb
j .

We thus have

sa
i ~x!5r ab

i ~x,u!sb~u!1pabc
i ~x,u,v !xbc~u,v ! ~19!

with

pabc
i ~x,y,z!52

1

2 S e i j ] jF 1

D]G
ad

D ~x,u!

3 f d f ee
klr f b

k ~u,y!r ec
l ~u,z!. ~20!

The procedure of deriving Eq.~10! employed in Refs.
@12,13# consists, therefore, of two steps. One first splits
gluon field into the classical background fieldam and the
fluctuation fieldam. The modes of the fluctuation field wit
longitudinal momenta in some rangeasln(L1/L81) are as-
sumed to be small. One defines operatorialy the indu
charge densitydr in terms of the fluctuation fieldsam and
the quantitiess andx are calculated by integrating out th
fluctuation fields perturbatively. In the second step, o
solves classical equations of motion which include the
duced charge density and calculatess i andx i j .

Clearly, consistency requires that the two step proced
that leads from Eq.~1! through Eqs.~7!, ~9! to the evolution
equations Eqs.~10!, ~16!, ~19! must be equivalent to the
01401
t

e

d

e
-

re

following. Start with the equivalent of Eq.~1!:3

^O~A!&5E Da iDAmO~A!Z@a i~x'!#

3expH 2 i E d4x
1

4
trFmnFmn

2
1

Nc
E d2x'dx2d~x2!

3] iaa
i ~x'!trTaW2`,`@A2#~x2,x'!J . ~21!

Integrate out the high longitudinal momentum compone
of am as before, but instead of calculating the induced cha
densitysa andxab , calculate directly the induced chromo
electric field sa

i and xab
i j . Technically this calculation is

somewhat simpler, since there is no need to consider
operatordr, which is nonlinear in the fluctuation fieldam.
Instead, one directly calculates the distribution of the sta
component ofam. The resulting evolution equations shou
coincide with Eq.~10!.

With this formulation one circumvents completely th
need to introduce the color charge densityr and to solve
classical equations fora i in terms ofr. While one may want
to introducer for reasons of convenience, our present und
standing is that it is not necessary from the point of view
physics. The physics that our approach is meant to addre
that of the evolution of the hadronic ensemble. The relat
betweena i and r on the other hand is supposed to hold
every value ofz, and therefore itself is unrelated to evolutio
in z. The concept ofr may be sometimes useful to formula
models for the statistical weightZ at some particular value o
z as was the original motivation of Ref.@9#. This could then
serve as an initial condition for the evolution. This, howev
is a separate question and we do not intend to address it h

Before we proceed further, we wish to make one mo
comment about the relation between the chromoelectric fi
and the color charge density Eqs.~15!, ~18!. Both these equa-
tions contain the dangerous factor (]D)21. The operator]D
has zero, as well as negative eigenvalues and is very re
niscent of the operators usually associated with the Gri
ambiguity in non-Abelian gauge theories. In fact, it is qu
clear that it has precisely the same origin. The second eq
tion in Eq.~13! has the form of the Lorentz-like gauge fixin
condition on the fluctuation fieldda. Since the calculation is
performed in a nonvanishing background field, the Lore
gauge indeed suffers from Gribov ambiguity precisely due
negative eigenvalues of the operator]D.

3We note that the statistical weightZ@a i # which appears in Eq.
~21! is not equal toZ of Eq. ~4! since going from Eqs.~1!–~21!
involves the change of variablesr→a i . The two statistical
weights, therefore, differ by an appropriate Jacobian.
2-4
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VECTOR POTENTIAL VERSUS COLOR CHARGE . . . PHYSICAL REVIEW D 61 014012
Given this, one may worry that our perturbative calcu
tion is plagued with the Gribov ambiguity.4 However, this is
not necessarily the case. The point is thatdr itself is not
arbitrary. It is calculated through the fluctuation field and,
the end of the day, is averaged over with some statist
weight Z@dr#. It could well be that the statistical weight i
such that it only allows induced charge density of the fo
dr5]DX with regularX. If that is the case, the dangerou
denominator cancels and the induced field is well defin
and regular. In fact, in our present formulation where
calculation is performed directly in terms of the field, it
almost clear that this should indeed happen. In this setup
calculates directlyda, and Eqs.~15!,~18! should be read
from right to left, as equations determining an auxillia
quantitydr throughda rather than the other way round. Th
operator]D then appears in the numerator and all expr
sions are regular. In fact we will show in the next section
explicit calculation that all ‘‘dangerous factors’’ indeed ca
cel in the final expressions forxab

i j andsa
i .

Note that, if one insists on formulating the problem
terms of the color charge density, the absence of the Gri
ambiguity implies a nontrivial consistency condition on t
statistical weightZ@r#. Taking an arbitrary weightZ will
render the calculation of chromoelectric field correlators
defined especially at strong fields~strong coupling!. This was
indeed observed in the numerical calculation@15# where a
simple Gaussian inr was used as the weight function.5 In the
next section we will calculatesa

i and xab
i j induced by high

longitudinal momentum modes.

III. THE INDUCED CHROMOELECTRIC FIELD

The main ingredients needed for the calculation of
induced chromoelectric field are the eigenfunctions of
quadratic action for the small fluctuations in the static ba
ground a i . Solving the classical equations of motion th
follow from the action Eq.~21! at fixed a i we find @in the
gauge] iAi(x1→2`)50# the classical solution

Acl
250, Acl

i 5a i~x'!u~x2!. ~22!

Defining the quantum fluctuation fieldam by Am5Acl
m

1am and expanding the action to second order inam we
have

4In standard perturbation theory, the Gribov ambiguity does
show up in any finite order. This is due to the fact that one expa
the operator]D and its inverse in powers of the coupling consta
To leading order then the operator does not have any negativ
genvalues, which ensures that no problems arise in finite order
turbative calculations. Our situation is, however, different. Sin
our background field is not assumed to beO(g), the operator can-
not be expanded. Therefore, there is no guarantee that the pro
does not show up even in perturbation theory.

5This problem does not arise in the more recent numerical w
@16# since in effect this work uses a different definition ofr for
which the relations analogous to Eqs.~15!,~18! do not involve sin-
gular factors.
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S5
1

2g2
$ax

2Kxyay
212a2~]1Da22 f a!12]1ai]2ai

1ai@D2d i j 2DiD j #aj% ~23!

Here we are using the notation

@ f a#a~x1,x2,x'!5d~x2!aab
i ~x'!ab

i ~x1,x2,x'!,

Da5Di@a#ai5@] idab1u~x2!aab
i #ab

i ~24!

and as previously

aab
i 5 f abcac

i . ~25!

The operatorK is

Kab
xy52F ~]1!2dab1] iaab

i d~x2!
1

]2G . ~26!

Note that there is no ambiguity in the definition of the o
erator 1/]2 in this expression. It is defined in the sense
principal value. This follows directly from the fact that th
matrix aab

i is antisymmetric and therefore the term involvin
1/]2 in Eq. ~23! vanishes for zero frequency fields.

This eigenfunctions of the quadratic fluctuation opera
have been found in Ref.@12# and we cite here the relevan
results. The calculation is performed in the lightcone gau
A150 with the residual gauge freedom fixed by the con
tion

] iAi~x2→2`!50. ~27!

It is convenient to define an auxiliary field

ã25a21K21~]1Da22 f a!. ~28!

This field can be seen to decouple fromai . Its correlator is

^ãx
2ãy

2&5Kx,y
21 . ~29!

The operatorK Eq. ~26! has zero modes. Defining the pro
jector matricesh andm by

mab]
iabc

i 1

]2
50, hab]

iabc
i 1

]2
5rac

1

]2
, ~30!

and

m1h51, m25m, h25h ~31!

we can write the normalizable zero modes ofK in the form

f a~x' ,x2,p2!5mabf ~x' ,p2!. ~32!

The operatorK is therefore, strictly speaking, non invertible
The operatorK21 in Eq. ~28! has to be understood as th
inverse ofK on the space of functions which does not i
clude the functions Eq.~32!. Further, it is only the nonzero
mode part ofa2 that enters the definition ofã2 in Eq. ~28!.
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For our calculation we will need the properly normaliz
solutions of the equations of motion that follow from th
k
h

m

to

s
io

01401
action Eq. ~23!. The complete set of these solutions w
found in Ref.@12#:
ap2,r
i

5geip2x1E d2p'F u~2x2!expS i
p'

2

2p2
x22 ip'x'D v2,r

i ~p'!

1u~x2!U~x'!expS i
p'

2

2p2
x22 ip'x'D @U†v1,r

i #~p'!1u~x2!g1,r
i G . ~33!
wo-
The frequencyp2 is a good quantum number since the bac
ground field is static. Herer is the degeneracy label, whic
labels independent solutions with the frequencyp2. In the
free case it is conventionally chosen as the transverse
mentum,$r %5$pi%. The matrixU(x') is the SU(N) matrix
that parametrizes the two-dimensional ‘‘pure gauge’’ vec
potentiala i(x')

a i~x'!5
i

g
U~x'!] iU†~x'!.

The auxiliary functionsg1
i ,v6

i are all determined in term
of one vector function. Choosing this independent funct
asv2

i we have

v1,r
i 5@Ti j 2Li j #@ t jk2 l jk#v2,r

k , ~34!
-

o-

r

n

g1,r
i 52DiF D j

D2 2
] j

]2G @ t jk2 l jk#v2,r
k , ~35!

where we have defined the projection operators

Ti j [d i j 2
DiD j

D2 , Li j [
DiD j

D2 ,

t i j [d i j 2
] i] j

]2 , l i j [
] i] j

]2 . ~36!

The proper normalization of the eigenfunctions requiresv2
i

to be chosen as complete set of eigenfunctions of the t
dimensional Hermitian operatorO21
the
@~ t2 l !O21~ t2 l !#ab
i j ~x' ,y'!

5^x'udab
i j 22H F] i

1

]2 2Di
1

D2GS21F 1

]2 ] j2
1

D2 D j G J
ab

uy'& ~37!

such that

E d2r'v2,r ,a
i ~x'!v2,r ,b* j ~y'!5

1

4pup2u @O21#ab
i j ~x' ,y'!. ~38!

The rotational scalar operatorS is

S5
1

D2 12F ] i

]2 2
Di

D2GF ] i

]2 2
Di

D2G
5

1

D2 22
1

]2]a
1

D2 12
1

D2 Da
1

]2 . ~39!

For further use we also need the expression for thea2 component of the fluctuation field. Using the explicit expression for
operatorK from Ref. @12# we get from Eq.~28!
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a2~x2,x' ,p2!5ã22u~x2!E
x2

`

dy2Di~ai2g1
i !

2u~2x2!F E
0

`

dy2Di~ai2g1
i !1E

x2

0

dy2] iai G
12ip2hF Di

D2 2
] i

]2G~ t2 l ! i j v2
j ~x'!. ~40!
t

ic

c-
u

n

e

e
ric
ge
io
-

on

te
ec
Eq
no
he
re

ng

r

We note that this expression differs by ax2-independent
constant from the one given in Ref.@12#. The reason is tha
in Ref. @12# a constant has been subtracted froma2 such that
*2`

1`dx2a2(x2)50. This corresponds to the symmetr
definition of the integral in Eq.~40!. This is incorrect, since
it violates the residual gauge fixing] iai(x2→2`) at the
one loop level. We will see this explicitly later in this se
tion. At any rate, straightforward albeit somewhat tedio
calculation gives the result Eq.~40! and this is the expressio
that will be used in the rest of this paper.

So far the formulas presented in this section@except for
the corrected expression fora2, Eq. ~40!# are identical to
those that appear in Ref.@12# with the only difference that
the background charge densityr has been substituted by th
background field viar52] ia i . Now, however, we will take
a different route. Our aim is to calculate the ord
O(asln1/x) correction to the background chromoelect
field Eq. ~5! directly, rather than to the background char
density. According to the discussion in the previous sect
~see also Ref.@12#!, we are therefore interested in the follow
ing two quantities:

asln1/xxab
i j ~x' ,y'!5^aa

i ~x' ,x2→`,x1!

3ab
j ~y' ,y2→`,x1!&, ~41!

asln1/xsa
i ~x'!5^aa

i ~x' ,x2→`,x1!&. ~42!

It should be noted that, since the background is static, n
of the quantities defined above depend onx1.

A. The real part—the mean fluctuation

It is a straightforward matter to calculatexab
i j . Recall that

we need this quantity to orderg2. The fluctuation fieldsam

are formally of orderg themselves, and therefore to calcula
the mean fluctuation we do not have to include loop corr
tions. Examining the expression for the general solution
~33! we see that it contains oscillating pieces, which do
contribute to the value of the field at infinity as well as t
g1 piece, which does not vanish at infinity and, therefo
determines the distribution of the vector potential there.

xab
i j ~x' ,y'!54pE dp2^g1,a

i ~x' ,p2!g1,b
j ~y' ,2p2!&.

~43!
01401
s

r

n

e

-
.
t

,

Using the explicit expressions forg1
i we find after some

trivial algebra

xab
i j ~x' ,y'!52K x'U H Di

D2 @D22S21#
D j

D2J
ab
Uy'L . ~44!

We now want to compare this with the correspondi
result of Ref.@12#. The induced charge densitydr in Ref.
@12# is

dr5dr11dr2 , ~45!

with

dr1a~x'!5 f abcab
i ~x'!Fac

i ~x250!2E
0

`

dx2]1ac
i ~x2!G

2
1

2
f abc]

iab
i ~x'!E dy1@u~y12x1!

2u~x12y1!#ac
2~y1,x' ,x250! ~46!

and

dr2a~x'!5 f abcE dx2@]1ab
i ~x!#ac

i ~x!

2
1

2
] iab

i ~x'!E dy1ac
2~y1,x' ,x250!

3E dz1ad
2~z1,x' ,x250!

3@ f acef bdeu~z12x1!u~x12y1!

1 f abef cdeu~x12z1!u~z12y1!#. ~47!

Only dr1 contributes tox. Substituting the expressions fo
ai anda2 into Eq. ~46! we find

dr1522~]D !F D

D2 2
]

]2G~ t2 l !v2 . ~48!

Thus, we obviously have

g1
i 52Di

1

]D
dr1 . ~49!
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FIG. 1. One loop tadpole diagrams contributing tosa
i . The tadpole is calculated atx2→`.
-
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This reproduces exactly Eq.~15!. Obviously the relation be-
tweenxab and xab

i j , Eq. ~16! is also reproduced by this re
sult.

We note that our result forxab is somewhat different than
the one presented in Ref.@12#. As discussed before this i
due to an incorrect treatment of thex2-independent compo
nent ofa2 in Ref. @12#.

B. The virtual part—the average value of the field

We now proceed to calculate the virtual part of the ev
lution kernel. For this purpose we have to calculate the z
frequency part of the$ i j % and$ i 2% components of the fluc
tuation propagator. The calculation of the$ i j % at zero fre-
quency is straightforward. The result is

lim
p2→0

Gab
i j ~x2,y2;x' ,y' ,p2!

[ lim
p2→0

^aa
i ~x2,x' ,p2!ab

j ~y2,y' ,p2!&

52 id i j d~x22y2!Fu~x2!^x'uS 1

D2D
ab

uy'&

1u~2x2!^x'uS 1

]2D
ab

uy'&G . ~50!

The $ i 2% component is then calculated immediately usi
this result, Eq.~40! and the fact noted earlier that the fieldã
decouples fromai . The result is

lim
p2→0

Gab
i 2~x2,y2;x' ,y' ,p2!

[ lim
p2→0

^aa
i ~x2,x' ,p2!ab

2~y2,y' ,p2!&

5 iu~x22y2!Fu~x2!K x'US Di

D2D
ab
Uy'L

1u~2x2!K x'US ] i

]2D
ab
Uy'L G . ~51!

We are now ready to calculatesa
i . It is given by the one

loop tadpole diagrams of Fig. 1. The vertex 1~c! comes from
the expansion of the Wilson line term in the action to th
order in the fluctuation. The separate contributions of
diagrams can be written in terms of the fluctuation propa
tor Gmn[^aman& in the following form:
01401
-
ro

e
-

1~a!5
i

2E dy2d2y'Gab
i j ~x2,y2,x' ,y' ,p250!

3e jkDbc
k f cdee

mnGde
mn~y2,y2;y' ,y' ,y1,y1!,

1~b!52 i E dy2d2y'Gab
i 2~x2,y2,x' ,y' ,p250!

3 f bcd] ỹ25y2
1

Gcd
j j ~y2,ỹ2;y' ,y' ,y1,y1!,

1~c!5
i

Nc
E dy2d2y'dy1dw1dz1d~y2!

3~] iab
i ~y'!!Gac

i 2~x1,y1,x2,y2,x' ,y'!

3Gde
22~w1,z1,y2,y2,y' ,y'!@u~z12y1!

3u~y12w1! f be ff cd f2u~y12z1!u~z12w1!

3 f bc ff de f#. ~52!

The diagram Fig. 1~a! corresponds directly to the secon
term in Eq.~19!. For this diagram we immediately find

dsa(1)
i ~x!52

1

2
e i j F D j

D2G
ab

~x,y! f bcde
klxcd

kl ~y,y!. ~53!

The diagrams Fig. 1~b! and 1~c! correspond to the firs
term in Eq.~19! and can be written as

dsa(2)
i ~x!52

Di

D2 ^dr2&. ~54!

with dr2 @see Eq.~47!#:

^dr2&a5 f abcE dx2^@]1ab
i ~x!#ac

i ~x!&

1
1

2 S f acef bde2
1

4
f abef cdeD ] iab

i ~x'!

3E dl

l1 i e
dp2

1

~p2!2

3^ac
2~p2,x' ,x250!ad

2~2p2,x' ,x250!&.

~55!

Using the results for the equal time propagators from@12# we
obtain
2-8
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^dr2&a52
1

2 S f acef bde2
1

4
f abef cdeD ] iab

i ~x'!

3 K x'U 1

]2 1
1

2
m

1

D2 m22F 1

]2 aD1
m

2 G 1

D2

3S21
1

D2FDa
1

]21
m

2 GUx'L
cd

1 f abcK x'UF t i j 2 l i j 22a i] j
1

]2G
3Fd jk22S ] j

]22
D j

D2DS21S ]k

]22
Dk

D2D G
3FTki2Lki22

1

]2 ]ka i GUx'L
bc

1Ra~x'! ~56!

with

Ra~x'!5 f abcE d2y'd2z'

d2p'd2k'

~2p!4

3
p'

2

p'
2 2k'

2 eip'(x'2y')2 ik'(x'2z')

3H K y'U@ t i j 2 l i j #Fd jk22S ] j

]2 2
D j

D2D
3S21S ]k

]2 2
Dk

D2D G@ tki2 l ki#Uz'L 2U~x'!

3K y'UU†@Ti j 2Li j #Fd jk22S ] j

]2 2
D j

D2D
3S21S ]k

]2 2
Dk

D2D G@Tki2Lki#UUz'L U†~x'!J
bc

.

~57!

Here the singularity in the integrand atp'
2 5k'

2 has to be
understood in the sense of the principal value

1

p'
2 2k'

2 5
p'

2 2k'
2

~p'
2 2k'

2 !21e2 .

Our final result for the induced field is given by the sum
Eqs.~53! and ~54! @supplemented by Eqs.~56!,~57!#.

IV. CONCLUSIONS

To summarize, the final results of this paper are Eqs.~44!
and ~54!,~56!. They supercede the corresponding results
Refs.@12# and@13#. We now want to comment on this resu
The first thing to observe is that the dangerous denomin
]D does not appear in these expressions. The Gribov p
lem mentioned earlier therefore does not affect our calc
tion, at least to orderas .

The result for the induced field differs from the corr
sponding formulas in Refs.@12# and @13# in two ways. One
01401
f

f

or
b-
a-

reason is the improved treatment ofa2 relative to Ref.@12#.
Now we are in the position to understand why the express
for a2 used in Ref.@12# is inconsistent with the residua
gauge fixing. In the previous section we have calculated
induced vector potential far at infinityx2→`. It is not much
more difficult to calculate it everywhere in space. Diagra
matically it is given by the same diagrams as Fig. 1 exc
the coordinate on the free end of the propagator is so
finite x2. The difference in the analytic expressions Eq.~54!
is that the surface charge densitydr2 is substituted by the
local charge density integrated up to the longitudinal coor
natex2:

2u~x2!
Di

D2E
2`

x2

dy2^d j 2
1~y2!&

2u(2x2)
] i

]2E
2`

x2

dy2^d j 2
1~y2!&. ~58!

This expression makes it explicit that the induced field va
ishes atx2→2`. Therefore, our calculation clearly pre
serves the residual gauge condition] iai(x2→2`)50.
However, if we were to subtract the zero momentum pie
from the fielda2 as done in Ref.@12#, the integration limits
in Eq. ~40! would become symmetric*x

`→ 1
2 (*x

`1*x
2`).

The effect of this would be thatGi 2(x2,y2) would not van-
ish at x2→2`. It is then obvious that we would hav
] iai(x2→2`)Þ0. The expression obtained in the prese
paper does not suffer from this problem. It is consistent w
the perturbativei e prescription for regulating the 1/p1 gauge
pole used in the earlier work@17#.

Another difference between our present result and@12# is
the appearance ofD2 rather than]D andD] in the denomi-
nators in Eqs.~53!,~54!. This deserves an explanation. This
also related to another point we want to address. Compa
Eq. ~54! with Eq. ~19! one could wonder whether the prese
method of calculation ofx i j is consistent with the two step
procedure of Refs.@12,13#. It may look like the relation be-
tween the induced field and the induced charge density
obtained here@Eq. ~54!# is different from Eq.~19! which was
used in the previous work. This, however, is not the ca
The reason is that theO(g2) induced charge densitydr̃2
which appears in Eq.~19! is not quite the same as^dr2& in
Eq. ~54!. Thedr̃2 was defined as completeO(g2) contribu-
tion to the average of induced density. In other words

dr̃25^dr11dr2& ~59!

with dr1,2 defined in Eqs.~46!,~47!. As we discussed above
the fluctuating part of the operatordr1 is of O(g) and there-
fore indeeddr̃1 can be identified withdr1. However, the
vacuum average ofdr1 is O(g2) and does contribute in Eq
~59!. It can be shown that

^dr1a&5 f abcab
i ^ac

i ~x1→`!&. ~60!

This extra contribution turns] ida2
i into Dida2

i in the second

equation in Eq.~13! if we use dr2 rather thandr̃2 on its
2-9
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right hand side. Taking account of this we see that the p
cedure described in Sec. II is consistent with E
~44!,~54!,~56!.

In Ref. @12# it was assumed that̂dr1&50 and thus the
extra contribution of Eq.~60! was overlooked. This led to a
apparent noncancellation of spurious factors 1/]D which as
we see now, do indeed cancel in the final result.

Importantly, the corrections we find vanish in the limit
weak field considered in Ref.@11# and also in the double
logarithmic limit, where the field is considered not necess
ily weak but slowly varying in the transverse plane@13#. This
can be seen in the following way. Comparing Eq.~40! to the
appropriate expression in Ref.@12# we find that the differ-
ence between the two is proportional tor. In the weak field
limit one only needs to knowa2 to order 1 and therefore th
correction is unimportant. For slowly varying fields all term
S.

or

.
n
vin
an

01401
-
.

r-

proportional tor are also negligible. Therefore, the real pa
(x i j ) in these two limits is insensitive to the correction w
found here. The virtual part (s i) does not contribute at all in
the DLA limit. In the weak field limit the correction is neg
ligible since^dr1&5O((a i)2) and one only needsdr to or-
der a i .
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