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Vector potential versus color charge density in lowx evolution
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We reconsider the evolution equations for multigluon correlators derived by Jalilian-Marian, Kovner, and
Weigert. We show how to derive these equations directly in terms of vector poteotiaslor field strength
avoiding the introduction of the concept of color charge density in the intermediate steps. The two step
procedure of deriving the evolution of the charge density correlators followed by the solution of classical
equations for the vector potentials is shown to be consistent with direct derivation of evolution for vector
potentials. In the process we correct some computational errors of Jalilian-Marian, Kovner, and Weigert and
present the corrected evolution equations which have a somewhat simpler appearance.

PACS numbds): 12.38.Cy

[. INTRODUCTION different time scales. Decreasing; corresponds to increas-
ing the time resolution and therefore corresponds to probing
With the advent of the DES¥p collider HERA there has the hadron on shorter time scales. The change of the statis-
been a great increase in the scope of the theoretical effort tiical weight withxg; is governed by the evolution equation.
understand the physics of hadronic scattering at high energys long as the field intensity is large enough this evolution
This is a challenging subject especially as it might provide ashould be perturbative ing but essentially nonlinear in the
bridge between perturbative partonic physics of short disfield intensity itself.
tance processde.g., deep inelastic scatteriQlS) at mod- This evolution equation to first order i, was derived in
eratexg;] and soft physics of hadronic states which, presumRefs. [11,12. We will refer to it as the Jalilian-Marian—
ably, dominate the high energy asymptotics. The borderliné&Kovner—Leonidov—WeigertJKLW) equation in the follow-
between the two — the “semihard” physics — is interestinging. In Ref.[13] the double logarithmic limit of this evolu-
also in its own right. In essence it is the physics of partonicion was considered. It was shown that in this limit the
systems which are, on one hand, dense enough for new catvolution of the gluon density becomes unitary at large den-
lective phenomena to play important role but, on the othesity. Qualitatively, the evolution is very similar to that dis-
hand, are perturbative since the average momentum transfeassed in Ref[3], although the details are different. A de-
between the partons is high enough. In this semihard regimiiled numerical study of the doubly logarithmic limit of the
one expects to see perturbatively controllable nonlinear efJKLW evolution was recently performed in R¢lL4].
fects which depart from the standard linear evolution of Technically the derivation of Ref12] is fairly involved.
Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) [1] or  Several consistency checks were performed in Reffl and
Balitskil-Fadin-Kuraev-LipatoBFKL) [2] type and subse- [13] to make sure that the known results are recovered from
quently lead to unitarization of hadronic cross sections.  the general evolution equation in the weak field limit. This
An approach to this high partonic density regime from theincludes the BFKL equation, the doubly logarithmic approxi-
partonic side has been spearheaded by Levin and collaborazation to the DGLAP equation and the GLR equation. It is,
tors [3-5] based on earlier work by MuelldB] and is an however, desirable to have some additional independent
“all twist” generalization of the Gribov-Levin-Ryskin checks on the equation which do not involve the weak field
(GLR) recombination pictur¢6,7]. It led to the formulation limit. It is the aim of the present paper to provide one such
of a nonlinear evolution equation which exhibits a perturba-check.
tive mechanism of unitarization. Analysis of this equation In a nutshell the issue we address is the following. The
suggests that already at present HERA energies the nonlirvolution equation in Ref§11-13 was derived invoking a
earities in the gluon sector are considerable and linear evawo step procedure. Rather than considering directly the evo-
lution for gluons should break down. Better experimentallution of the correlators of the gluon field, one first considers
data on gluon distributions would be extremely valuable inthe evolution of the color charge density. In the second step,
order to verify or falsify this assessment. one reexpresses the evolution equation for the charge density
A complementary approach was pioneered some yearss the evolution equation for the vector potentigtiromo-
ago by McLerran and Venugopaldf]. It was later some- electric field. The evolution of the field correlators is in fact
what reshaped conceptually and considerably developedhat one is after, since it is the vector potential and not the
technically in a series of papefd0—13. Here the idea is charge density that couples directly to fermions and, there-
that, in the high density regime, rather than using partonidore, is more directly related to physical observables. Our
language, it is more appropriate to use the language of clagbservation in this paper is that one can avoid the introduc-
sical fields. The hadron then is considered as an ensemble tibn of the color charge density altogether and derive the
configurations of the gluon field. The statistical weight thatevolution equations directly for the field correlators. This
governs the contributions of different configurations to theprocedure has the advantage of being somewhat simpler both
ensemble averaging changes when one probes the hadron fgehnically and conceptually. Nevertheless, the final result
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for the evolution should be the same as in the two step prosults of Ref.[12] that we find do not affect either the weak
cedure of Refs[10—-13. The comparison of our results with field limit discussed in Reff11] or the doubly logarithmic
the earlier derived formulas provides us with a consistencyimit of Ref. [13]. They therefore have no bearing on the
check on the calculation. derivation of the BFKL equation in our approach and also do
We find, in fact, that the results presented in R&2] are  not help to reconcile the doubly logarithmic limit of the
not entirely correct. However, after correcting some alge-JKLW equation[13] with the nonlinear equation studied in
braic mistakes in Ref.12] we show explicitly that the two Ref.[3].
approaches yield identical results. We provide the corrected The plan of the paper is the following. In Sec. Il we
expressions for the “kernels” of the evolution equation, briefly recap the procedure of the derivation of the evolution
which are somewhat simpler than the expressions found iequation as described in Refd1-13 and reformulate it
Ref.[12]. We also clarify the issue of possible Gribov am- directly in terms of the gluon field correlators. In Sec. Il
biguity and show explicitly that the divergent Jacobians,using some of the results of R¢fl2], we calculate the real
which appeared in the intermediate steps of the derivations iand virtual parts of the evolution in terms of the field corr-
Ref.[13], cancel completely in the final expressions for theelators and provide the corrections to the results of ReX.
correlators of the chromoelectric field. Therefore, the GribovFinally, in Sec. IV we discuss our results.
ambiguity, although affecting the relation between the color
charge density and the chromoectric field, does not affect the
evolution of the field correlators, at least to ordey. Since
the procedure discussed in the present paper avoids the in- First, let us briefly recall the framework and the results of
troduction of the charge density entirely, the whole approactiRefs.[11-13. In this approach the averages of gluonic ob-
is free from the Gribov problem. servables in a hadron are calculated via the following path
Perhaps somewhat surprisingly the corrections to the rentegral:

Il. THE JKLW EVOLUTION

<O(A)>:f DpDA#O(A)eXP{‘f dZXLF[pa(XL)]_if d4x£trF“”FW

+ Nif d?x, dx~ 5(x)pa(xi)trTaWocyw[A](x,Xi)] , (1)

where the gluon field strength tensor is given by and the two-dimensional vector potential(x,) is “pure
gauge,” related to the color charge density by
Fev=olA—d"AL—gf EAL (2 S .
a a a g abcAb c El g_aja;_fabcahaézo,
andW is the Wilson line in the adjoint representation along -
thex™ axis Jdag=—pa- (6)

Integrating out the high longitudinal momentum modes of
the vector potential generates the renormalization group
equation, which has the form of the evolution equation for

= Pexp{ﬂgf dxT A, (X7, X7, x )T, (3)  the statistical weighZ [11]*

W 4o A7](X7,X,)

1 52

. d
The hadron is represented by an ensemble of color —Z=aq Em[zx(u,v)]—m[Za(u)] .

charges localized in the plane =0 with the (integrated d¢

across< ) color charge densitg(x, ). The statistical weight @)
of a configuratiorp(x, ) is In the compact notation used in E), bothu andv stand
for pairs of color index and transverse coordinates, with sum-
Z=exp—F[pl}. (4)  mation and integration over repeated occurrences implied.

The evolution in this equation is with respect to the rapidity
In the tree level approximatiotin the light cone gaugé™ ¢, related to the Feynmax by
=0) the chromoelectric field is determined by the color
charge density through the equations

1 1Al the functions in the rest of this paper depend only on the
FHi =—5(X_)ai(XL) (5) tra(]sver.se coordlnatgs. For simplicity of notation we drop the sub-
o] script L in the following.

014012-2



VECTOR POTENTIAL VERSUS COLOR CHARE. .. PHYSICAL REVIEW D 61 014012

{=In1/x. (8)  They are functionals of the external charge denpityThe

explicit expressions have been given in R&2] and it is our
Technically it arises as a variation @fwith the cutoff im-  aim in this paper to provide a check on these expressions.
posed on the longitudinal momentum of the fiel¥S. The Equation(7) can be written directly as an evolution equa-

quantitiesx[p] and o{p] have the meaning of the mean tjon for the correlators of the charge density. Multiplying Eq.
fluctuation and the average value of the extra charge densn(yy) by p(xy)- - - p(x,) and integrating ovep yields

induced by the high longitudinal momentum modesAdf.

d
az (P2 p(xn))

=ag > (P(X1) - p(Xm—1)Pp(Xm+1) - = - P(Xk=1) p(Xies1) - = = P(Xn) X (X » X))

0<m<k<n+1

+ 2 (p(xg)- - p(x_)p(X 1) - p(X) (X)) | (9)

o<l<n+1

This set of equations for the correlators of the color charge density completely specifies the evolution of the hadronic
ensemble as one moves to higher energiedower values ok).

The evolution equations for the correlators of the charge density can be rewritten as equations for the correlators of the
vector potentia[13]:

d . _
R el (x0)
—ad > (kX)) al oDl (i) el (X) o (%)
o<l<n+1 1 -1 1+1 n |

i i
+ al(Xy) - a™ (X
0<m<2k<n+1< al( ) amfl( m-1)

im+1 k-1 ik+1 i imik
X! (Xmea) - ag " (X ag'S () - e ((n) X (Xmo X)) |- (10

The quantitiey), ando?, have a very simple physical mean- The first piecesp, is orderg while the second piecép, is

ing. The high momentum modes of the vector field whichg 4er 2 The 55, is time dependent, and has zero average
have been integrated out in order to arrive at the evolution

equation induce extra color charge densify. The average value, while its mean fluctuation is ordgf. Th~e dp-, being
value of this induced density and its mean fluctuation appea®(g?) contributes only to the average valuedf and not to
in the evolution equations Eq9) as o, and x,,. The ap- the mean fluctuation. Assuming that the classical equations
pearance of the induced color charge density leads to thEg.(6) hold not only for the background field but also for the
change in the value of the chromoelectric field through theelevant part of the fluctuation field one can solve those
solution of Eq.(6) with p+ 8p on the right hand side. The €quations perturbatively. Writing
quantitiesoy, and x4, are the average value and the mean _ _ _
fluctuation of the induced field, respectively. Sa'=day+ dar, (12)

It is perhaps helpful to explain how) and y3, were
obtained in Ref[13]. As shown in Ref[12], the induced With da; beingO(g) and sa, beingO(g?) and keeping in
charge density can be decomposed into two pfeces the classical equations all terms to ordgrwe have

Sp=06p1+ 6ps. (11) D!, 6a},— DL dal,+ D, dab,— D! daby,
- 1Eabr:‘solilb&)‘jlc:O'

2The reason for the notatiop rather than simply will be ex- . Celi ~ ~
plained in the next section. 3Oyt d Sazy=—(6p1at Op2a)- (13
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We have defined for convenience following. Start with the equivalent of Ed1):3

aiab:fabcaic’

P i O(A))= | Da'DA*O(A)Z[ a;
Oh ot al » (O(A) = [ DaDAOMZLa X))
To orderg we find xexp[—if d4xitrFWFw

) 1
B 1
5a|1_ _ Dlﬁgl)l- (15 — N—J dZXJ_dX_ o(X™)

c

Therefore, to ordeg? o L
X' ag(X IUTW_ o [AT](X7 X)) (. (2D)

XY =T W xeUMIE(VY) (16
with Integrate out the high longitudinal momentum components
of a* as before, but instead of calculating the induced charge
i o1 densityo, and x,,, calculate directly the induced chromo-
i — i a Xab» >
Fan(x,Y) == (x|| D aDLbly>' (17 electric field o}, and x3,. Technically this calculation is

somewhat simpler, since there is no need to consider the
Here (x|O|y) denotes a configuration space matrix elemenpperatorsp, which is nonlinear in the fluctuation fielat.
in the usual sense. Instead, one directly calculates the distribution of the static
At order g? we have component ofa*. The resulting evolution equations should
coincide with Eq.(10).
P : ~ i i 1 With this formulation one circumvents completely the
Sa,=—D a—Dépz— € aD—aéalx Say. (18 need to introduce the color charge densityand to solve
classical equations fat' in terms ofp. While one may want

Here the cross product is defined as to introducep for reasons of convenience, our present under-
standing is that it is not necessary from the point of view of
AXB=f,, Al BL physics. The physics that our approach is meant to address is
apc a :

that of the evolution of the hadronic ensemble. The relation
betweena' andp on the other hand is supposed to hold at
every value of/, and therefore itself is unrelated to evolution
i i i in {. The concept op may be sometimes useful to formulate
0a(X) =T op(X, W) op(U) + Papd X, U, V) xpe(U,V) - (19 1 54els for the statistical weigBtat some particular value of
_ { as was the original motivation of Rd®]. This could then
with serve as an initial condition for the evolution. This, however,
is a separate question and we do not intend to address it here.

We thus have

i I I Before we proceed further, we wish to make one more
PapdX.y,2)=— 5| €' 5= [(XU) comment about the relation between the chromoelectric field
ad and the color charge density E@$5), (18). Both these equa-
X fdfeek'rlﬁb(u,y)rgc(u,z). (20)  tions contain the dangerous fact@i) . The operatopD

has zero, as well as negative eigenvalues and is very remi-

The procedure of deriving Eq(10) employed in Refs. niscent of the operators usually associated with the Gribov

[12,13 consists, therefore, of two steps. One first splits the2mbiguity in non-Abelian gauge theories. In fact, it is quite

gluon field into the classical background fiedet* and the clear that it has precisely the same origin. The second equa-

fluctuation fielda*. The modes of the fluctuation field with tion in Eq.(13) has the form of the Lorentz-like gauge fixing

longitudinal momenta in some rangeln(A/A'*) are as- condition on the fluctuation fielda. Since the calculation is

sumed to be small. One defines operatorialy the inducef€rformed in a nonvanishing background field, the Lorentz

charge densitysp in terms of the fluctuation fielda* and ~ 9auge indeed suffers from Gribov ambiguity precisely due to

the quantitiess and y are calculated by integrating out the nNegative eigenvalues of the operaiy.

fluctuation fields perturbatively. In the second step, one

solves classical equations of motion which include the in-

duced charge density and calculatésand x". 3We note that the statistical weigH{ «;] which appears in Eq.
Clearly, consistency requires that the two step procedurei) is not equal toZ of Eq. (4) since going from Eqs(1)—(21)

that leads from Eq(1) through Eqs(7), (9) to the evolution involves the change of variablep—«;. The two statistical

equations Egs(10), (16), (19) must be equivalent to the weights, therefore, differ by an appropriate Jacobian.
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Given this, one may worry that our perturbative calcula- 1 _ _
tion is plagued with the Gribov ambiguifyHowever, this is S=—{a,Kya, + 2a (¢*Da—2fa)+2¢"a'g"a'
not necessarily the case. The point is tidat itself is not 29

arbitrary. It is calculated through the fluctuation field and, at
the end of the day, is averaged over with some statistical
weight Z[ 6p]. It could well be that the statistical weight is Here we are using the notation
such that it only allows induced charge density of the form

+a[D?s'—D'D/]al} (23

Sp= DX with regularX. If that is the case, the dangerous [fala(x",x7,x, )= 8(x ) ahy(x, )ah(x",x",x,),
denominator cancels and the induced field is well defined o
and regular. In fact, in our present formulation where the Da=D'[ala'=[d' 6.+ 0(x ) ey lay, (24)

calculation is performed directly in terms of the field, it is
almost clear that this should indeed happen. In this setup orend as previously
calculates directlySa, and Egs.(15),(18) should be read i :
from right to left, as equations determining an auxilliary aap= fabcac - (25)
guantity 5p throughéda rather than the other way round. The
operatordD then appears in the numerator and all expres
sions are regular. In fact we will show in the next section by
exp!icit calgulation that_all “dangerous factors” indeed can- KXY =—| (67)28,+ aiaiab5(xf)i _ (26)
cel in the final expressions for, and o}, . -

Note that, if one insists on formulating the problem in
terms of the color charge density, the absence of the GriboMote that there is no ambiguity in the definition of the op-
ambiguity implies a nontrivial consistency condition on theerator 14~ in this expression. It is defined in the sense of
statistical weightZ[p]. Taking an arbitrary weigh# will principal value. This follows directly from the fact that the
render the calculation of chromoelectric field correlators illmatrix a,y, is antisymmetric and therefore the term involving
defined especially at strong fiel@itrong coupling Thiswas ~ 1/d™ in Eq. (23) vanishes for zero frequency fields.
indeed observed in the numerical calculatid®] where a This eigenfunctions of the quadratic fluctuation operator
simple Gaussian ip was used as the weight functidin the  have been found in Ref12] and we cite here the relevant
next section we will calculater, and x3, induced by high results. The calculation is performed in the lightcone gauge
longitudinal momentum modes. A" =0 with the residual gauge freedom fixed by the condi-

tion

The operatoK is

lll. THE INDUCED CHROMOELECTRIC FIELD JA(X~——%)=0, (27)
The main ingredients needed for the calculation of the
induced chromoelectric field are the eigenfunctions of thé
quadratic action for the small fluctuations in the static back-
ground o'. Solving the classical equations of motion that
follow from the action Eq(21) at fixed &' we find [in the
gauged' A'(x" — — ) =0] the classical solution

t is convenient to define an auxiliary field
a =a +K Yg9'Da-2fa). (28)
This field can be seen to decouple fr@an Its correlator is
. ) T-Z-\_p-1
AG=0, AL=al(x,)6(x). (22) (@ay) =Ky @9

The operatoiK Eq. (26) has zero modes. Defining the pro-

Defining the quantum fluctuation field“ by A*=Af jector matricesy and u by

+a* and expanding the action to second orderath we
have

A o1 1
Wapd @pe— =0, 70 e =Pac—, (30)
ab bc&_ ab' bca_ aca_

“In standard perturbation theory, the Gribov ambiguity does notgngd
show up in any finite order. This is due to the fact that one expands
the operatowD and its inverse in powers of the coupling constant. u+n=1, MZZM, 772= 7 (31
To leading order then the operator does not have any negative ei-
genvalues, which ensures that no problems arise in finite order pewe can write the normalizable zero modeskoin the form
turbative calculations. Our situation is, however, different. Since

our background field is not assumed to®¢g), the operator can- fa(X X7,p7 )= papf (X, ,p7). (32
not be expanded. Therefore, there is no guarantee that the problem
does not show up even in perturbation theory. The operatoK is therefore, strictly speaking, non invertible.

71 .
5This problem does not arise in the more recent numerical work?rhe operatolK ™" in Eq. (28) has tc,) be understood as the
[16] since in effect this work uses a different definition @ffor inverse ofK on the space of functions which does not in-

which the relations analogous to E4&5),(18) do not involve sin-  ¢lude the functions Eq32). Further, it is oNnIy the nonzero
gular factors. mode part ofa™ that enters the definition &~ in Eq. (28).
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For our calculation we will need the properly normalized action Eq.(23). The complete set of these solutions was
solutions of the equations of motion that follow from the found in Ref.[12]:

2

ai;r rzgeipiﬁf dzpl[ 6(_X_)9XF{ [ p_ix__ipLXL)Vi— (PL)
’ 2p '

2
B opT : o
+ 6(x )U(xL)exp<|?x —|pLxL)[UTv'+',](pl)+9(x )Yy r - (33
|
The frequency ™~ is a good quantum number since the back- ' [pi g1
ground field is static. Here is the degeneracy label, which V=20 52— [tk—kgvk (35
labels independent solutions with the frequemcy. In the d
free case it is conventionally chosen as the transverse mo- _ o
mentum {r}={p'}. The matrixU(x,) is the SUN) matrix where we have defined the projection operators
that parametrizes the two-dimensional “pure gauge” vector o o
potentiala'(x, ) . D'D! . D'D!
) i T=d-—F7, L'=Fpz
ai(XJ_):_U(XJ_)&iUT(XJ_)-
9 I N ¥
o th=¢o"— , = ) 36
The auxiliary functionsy', ,v', are all determined in terms 2 ra (36
of one vector function. Choosing this independent function _
asv' we have The proper normalization of the eigenfunctions requires
: T T to be chosen as complete set of eigenfunctions of the two-
Vi =T =LY = EvE (34 dimensional Hermitian operat®~*
|
[(t=1)O*t=DTds(x, Y1)
i 1 O J. 1 j
=(X|0dp=2}| ' 2= D' 52|S 7| 2~ gzD'| | lyw) (37)
ab
such that
2 i ‘] L o
d rJ_V—,r,a(XJ_)V—,r,b(yJ_):W[O Jap(XL, Y1) (38)
The rotational scalar operat&is
1 ¢ D'|d D
STzt 7 07| 7 2
1 1 1 1
D? 2?3QD2+2D2DQ’?. (39

For further use we also need the expression folath&€omponent of the fluctuation field. Using the explicit expression for the
operatorK from Ref.[12] we get from Eq.28)
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a (x",x,,p)=a — 0(X‘)J “dy Di(a'—v',)
X

o . . . 0 L
—0(—x") fo dy*D'(a'—y'+)+J’X_dy*a'a'

+2ip7{ﬁ—?}(t—l)”vj(xi). (40)

We note that this expression differs byxa-independent Using the explicit expressions foy', we find after some
constant from the one given in R¢lL2]. The reason is that trivial algebra

in Ref.[12] a constant has been subtracted framsuch that

JTZdx a (x7)=0. This corresponds to the symmetric i

definition of the integral in Eq(40). This is incorrect, since Xab(X1 Y1) =2{ X,
it violates the residual gauge fixinga'(x~— —«) at the

one o0p eVl e Ml e I SipLCy e i s S We now want 1o compare 145 with the conesponang
calculation gives the result E¢10) and this is the expression result of Ref.[12]. The induced charge densigp in Ref.

o', __,.D
pzlP"~ S gz

YL> . (44

ab

that will be used in the rest of this paper. [12]is

So far the formulas presented in this sectjemcept for _
the corrected expression far, Eq. (40)] are identical to op=0p1+t op2, (49
those that appear in Rdf12] with the only difference that with

the background charge densjiyhas been substituted by the
background field vip= —'a'. Now, however, we will take
a different route. Our aim is to calculate the order sp . (x,)= fabcaib(xﬂ
O(agInl/x) correction to the background chromoelectric

field Eq. (5) directly, rather than to the background charge 1
density. According to the discussion in the previous section — _fabc‘?iaib(XL)f dy*[o(y"—x")
(see also Ref.12]), we are therefore interested in the follow- 2

ing two quantities:

al(x =0)— f:dx’a*aic(x’)

_9(X+_y+)]ac7(y+1XL1X7:O) (46)

aslnllxxf,j{b(xL ,yi)=(aia(xl X~ —oo,xT) and

xah(y, ,y —=x"), (4D -
Opoa(X, )= fach dX_[r9+aIb(X)]aL(X)
agnlixal(x,)=(ak(x, ,x —=,x")). (42 1
- Ealallj(XL)f dy+a(:(y+lXL lXi:O)
It should be noted that, since the background is static, none
of the quantities defined above dependxon XJ dz*a; (z*x, X =0)

A. The real part—the mean fluctuation X[ facefbaef (2 —xT)O(xT—y™)

It is a straightforward matter to calculatd, . Recall that + fapef caef(X T —2") (2" —yT)]. (47)
we need this quantity to ordey®. The fluctuation fields*
are formally of ordeg themselves, and therefore to calculate only sp, contributes toy. Substituting the expressions for
the mean fluctuation we do not have to include loop correcyi gnda™ into Eq. (46) we find
tions. Examining the expression for the general solution Eq.

(33) we see that it contains oscillating pieces, which do not D J
contribute to the value of the field at infinity as well as the 6p1=—2(dD)| = — —z}(t—l)v . (48)
. . . s D 1%
v, piece, which does not vanish at infinity and, therefore,
determines the distribution of the vector potential there. .
Thus, we obviously have
Xab(X. ,yi)=4wf dp™ (¥ X0 PV, p(Y =P 7)), oL 4o
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(a) (b) (c)

FIG. 1. One loop tadpole diagrams contributingatb. The tadpole is calculated &t —c°.

This reproduces exactly E¢L5). Obviously the relation be- i o, o -
tween x,, and x.,,, Eq. (16) is also reproduced by this re- (= EJ dy d%y, Gly(x",y X, .y, .p =0)
sult.

We note that our result foy,;, is somewhat different than X D Fege€™GM Y Ty iYL LYY LY,
the one presented in Rf12]. As discussed before this is

due to an incorrect treatment of tke -independent compo- . o o -
nent ofa” in Ref.[12]. 1(b):—|f dy d%y, Gap(x,y X1,y ,p=0)
+
B. The virtual part—the average value of the field X fbcdf}g,—= Gy YTy YY),

We now proceed to calculate the virtual part of the evo- .
lution kernel. For this purpose we have to calculate the zero 1(c)= '_f dy~d2y, dy"dw"dz" s(y")
frequency part of th¢ij} and{i—} components of the fluc-
tuation propagator. The calculation of thig} at zero fre-

i i=ryt yt v— vy—
guency is straightforward. The result is X( (Y1) Gac (XY X7y X, Y1)
. “—(wT 7T v- v~ +_ gyt
lim GUy(x~,y 71Xy, .p7) XGye (WH,Z7,y 7,y Yy )0z —y7)
p—0 X0y —w)fpefear— Oy —z")0(z" —w")
= |7im0<ala(xiyxi:pi)ajb(yfyylypi» X fpeif detl. (52)
p —
o 1 The diagram Fig. (8 corresponds directly to the second
=—idlo(x"—y") 9(X)(XL|(W) ly.) term in Eq.(19). For this diagram we immediately find
ab
B 1 So __E ij _l f ki K (53
+6(—x7){(x,| = ly ). (50) Ta)¥)="5¢€' 52| (XY Toca€ Xcaly:Y)- )
ab ab

The diagrams Fig. (b) and Xc) correspond to the first

The {i—} component is then calculated immediately usmgterm in Eq.(19) and can be written as

this result, Eq(40) and the fact noted earlier that the field
decouples froma'. The result is [

| 80 2)(X)= = 52(p2). (54
lim Gop(X™,y i,y .P7)
p -0 ' with 8p, [see Eq(47)]:
= lim (a,(x~,x, ,p)a, (Y7,y, .p7))
“ B , ,
P Di <5P2>a:fabcf dx <[07+alb(x)]a:;(x)>
=i0(x"—y") 9(X)<XL (F) yL> 1 o
ab + E( facelbde™ Zfabefcde ﬁlalb(XL)
P
+0<—x><xl (;) yl> : (51) 0 1
ab -
XJ )\+iedp (p7)?
We are now ready to calculatfia. It is given by the one _ - _ _
loop tadpole diagrams of Fig. 1. The vertec)lcomes from X(ae (p.x, X" =0)ag (—p~.x, x"=0)).
the expansion of the Wilson line term in the action to third (55

order in the fluctuation. The separate contributions of the
diagrams can be written in terms of the fluctuation propagatsing the results for the equal time propagators ffa@] we
tor G*’=(a*a") in the following form: obtain
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o reason is the improved treatmentaf relative to Ref[12].
(Op2)a=—75 ( facefbde™ Zfabefcde) ' ap(x,) Now we are in the position to understand why the expression
for a- used in Ref[12] is inconsistent with the residual
1 1 1 wl 1 gauge fixing. In the previous section we have calculated the
X<XL Zroupzrn—2 paebD+ 50 induced vector potential far at infinity”—o. It is not much
more difficult to calculate it everywhere in space. Diagram-
. 1 matically it is given by the same diagrams as Fig. 1 except
XS D2 D“?J“E X the coordinate on the free end of the propagator is some
cd finite x~. The difference in the analytic expressions Es)
. o1 is that the surface charge densidy, is substituted by the
+ fabc< X, |[tT=1"=2a' ?} local charge density integrated up to the longitudinal coordi-
natex:
r-d3 B33 i
X| 0" =2l 2~ 52 Frii D' (x
o by e b —«%x*)FJ _dy (8iz(y"))
N )
X Tk'—Lk'—Z?aka' xl> +R¥(x,) (56) P
be o) [ dy (aiziy . (58)
with
&p. &%k This expression makes it explicit that the induced field van-
R3(x,)=f fdzy d2z PLA"K, ishes atx™ — —o. Therefore, our calculation clearly pre-
L/ Tabe L2 2m* serves the residual gauge conditigha'(x™ — —%)=0.

2 However, if we were to subtract the zero momentum piece
> Zpi eiPL (=) =ik (¢ =2,) from the fielda™ as done in Ref[12], the integration limits
p—k{ in Eq. (400 would become symmetrig;—3 ([ + /7).

4 Dl The effect of this would be thas' ~(x~,y~) would not van-
X <yi[tij_|ij]{5jk_2(_2__2) ish atx™— —. It is then obvious that we would have
9 D d'a'(x”— —x)#0. The expression obtained in the present
& DK paper does not suffer from this problem. It is consistent with
XS —— _2) }[tki_ﬂd] Z¢> —U(x,) the perturbativée prescription for regulating the i/ gauge
9 D pole used in the earlier workL7].
T g DI Another difference between our present result g is
><<yL‘ utTi— L'J][ 5”<—2( - —2) the appearance @? rather tharvD andD4 in the denomi-
o D nators in Eqs(53),(54). This deserves an explanation. This is
oK Dk _ ‘ also related to another point we want to address. Comparing
xSt i 52) }[T"'— LXu zL> U*(xl)] . Eq. (54) with Eq. (19) one could wonder whether the present
bc method of calculation of" is consistent with the two step

(57)  procedure of Refq.12,13. It may look like the relation be-
tween the induced field and the induced charge density we

Here the singularity in the integrand pf =k has to be obtained her§Eq. (54)] is different from Eq(19) which was
understood in the sense of the principal value used in the previous work. This, however, is not the case.

1 2_ )2 The reason is that th®(g?) induced charge densityp,
= ZpL S which appears in Eq(19) is not quite the same gs5p,) in

pr—KL (pL—ki)+e Eq. (54). The 8p, was defined as comple@(g?) contribu-

tion to the average of induced density. In other words

Our final result for the induced field is given by the sum of
Egs.(53) and(54) [supplemented by Eq$56),(57)]. 552:<5p1+ 5p5) (59)

IV. CONCLUSIONS with 8p, , defined in Eqs(46),(47). As we discussed above,
To summarize, the final results of this paper are E4). the fluctuating part of the operatép, is of O(g) and there-
and (54),(56). They supercede the corresponding results ofore indeedédp; can be identified withsp;. However, the
Refs.[12] and[13]. We now want to comment on this result. vacuum average ofp, is O(g?) and does contribute in Eq.
The first thing to observe is that the dangerous denominatdb9). It can be shown that
dD does not appear in these expressions. The Gribov prob- o
lem mentioned earlier therefore does not affect our calcula- (8p1a) = fabcan(ac(X" —)). (60)

tion, at least to ordety. . o D Dl
The result for the induced field differs from the corre- This extra contribution tumng' é«; into D' éa; in the second

sponding formulas in Ref§12] and[13] in two ways. One equation in Eq.(13) if we use 8p, rather thandp, on its
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right hand side. Taking account of this we see that the proproportional top are also negligible. Therefore, the real part
cedure described in Sec. Il is consistent with Eqgs(y') in these two limits is insensitive to the correction we
(44),(54),(56). found here. The virtual part{) does not contribute at all in
In Ref. [12] it was assumed thdtdp,)=0 and thus the the DLA limit. In the weak field limit the correction is neg-
extra contribution of Eq(60) was overlooked. This led to an |igible since(8p;)=0((a')?) and one only needép to or-
apparent noncancellation of spurious factorgDLivhich as  der o',
we see now, do indeed cancel in the final result.
Importantly, the corrections we find vanish in the limit of
weak field considered in Refl11] and also in the double
logarithmic limit, where the field is considered not necessar-
ily weak but slowly varying in the transverse pldrs]. This We are greatful to J. Jalilian-Marian, L. McLerran, and H.
can be seen in the following way. Comparing E40) to the ~ Weigert for useful discussions. The work of J.G.M. is sup-
appropriate expression in Rdfl2] we find that the differ- ported by Grant No. PRAXIS XXI/BD/11277/9{Subpro-
ence between the two is proportionaldgoIn the weak field grama Ciecia e Tecnologia do 2° Quadro Comunitade
limit one only needs to knowa ™~ to order 1 and therefore the Apoio — Portugal. The work of A.K. was supported by
correction is unimportant. For slowly varying fields all terms PPARC.

ACKNOWLEDGMENTS

[1] See, e.g., Yu. Dokshitzer, V. Khoze, A. Mueller, and S. [8] A. H. Mueller, Nucl. PhysB335 115 (1990.
Troyan, Basics of Perturbative QCDEditions Frontiers, Gif- [9] L. McLerran and R. Venugopalan, Phys. Rev.4D, 2233

sur-Yvette, France, 1991 (1994); 49, 3352(1994).
[2] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor [10] J. Jalilian-Marian, A. Kovner, L. McLerran, and H. Weigert,
Fiz. 72, 377(1977 [Sov. Phys. JETR5, 199(1977]; Ya. Ya. Phys. Rev. D65, 5414(1997.
Balitsky and L. N. Lipatov, Yad. Fiz28, 1597(1978 [Sov. J.  [11] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert,
Nucl. Phys.28, 822(1978]. Nucl. Phys.B504, 415(1997%; J. Jalilian-Marian, A. Kovner,
[3] A. L. Ayala, M. B. Gay Ducati, and E. M. Levin, , Nucl. Phys. A. Leonidov, and H. Weigert, Phys. Rev. B9, 014014
B511, 355(1998; E. Levin, Talk at Continuous Advances in (1999.

QCD, Minneapolis, 1998, hep-ph/9806434; see also E. Levin[12] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D
hep-ph/9706448; hep-ph/9709226; E. Gotsman, E. Levin, and 59, 014015(1999.

U. Maor, Phys. Lett. B425 369(1998. [13] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert,

[4] A. Mueller, Eur. Phys. J. AL, 19 (1998. Phys. Rev. D59, 034007(1999; 59, 099903E) (1999.

[5] E. Gotsman, E. M. Levin, and U. Maor, Nucl. Phi&193 354 [14] J. Jalilian-Marian and X-N. Wang, Phys. Rev.dD, 054016
(1999. (1999.

[6] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep00, [15] R. Gavai and R. Venugopalan, Phys. Revs4) 5795(1996.
1(198)). [16] A. Krasnitz and R. Venugopalan, hep-ph/9809433.

[7] A. H. Mueller and J. W. Qiu, Nucl. Phy8268 427 (1986. [17] Yu. Kovchegov, Phys. Rev. B5, 5445(1997).

014012-10



