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Dijet rapidity gaps in photoproduction from perturbative QCD

Gianluca Oderda
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840

~Received 3 March 1999; published 29 November 1999!

By defining dijet rapidity gap events according to interjet energy flow, we treat the photoproduction cross
section of two high transverse momentum jets with a large intermediate rapidity region as a factorizable
quantity in perturbative QCD. We show that logarithms of soft gluon energy in the interjet region can be
resummed to all orders in perturbation theory. The resummed cross section depends on the eigenvalues of a set
of soft anomalous dimension matrices, specific to each underlying partonic process, and on the decomposition
of the scattering according to the possible patterns of hard color flow. We present a detailed discussion of both.
Finally, we evaluate numerically the gap cross section and gap fraction and compare the results with ZEUS
data. In the limit of low gap energy, reasonable agreement with experiment is obtained.

PACS number~s!: 12.38.Aw, 12.38.Cy, 13.85.2t, 13.87.2a
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I. INTRODUCTION

In a recent paper@1# we have presented an explanatio
from perturbative QCD, of the dijet rapidity gap events e

perimentally observed inpp̄ scattering at the Fermilab Teva
tron @2#. These events consist of a pair of jets produced
very large momentum transfer, and separated by a w
empty region, where barely any particle multiplicity is me
sured. They were originally predicted from the exchange
at least two gluons in a color singlet configuration, whi
avoids color recombination between the jets and associ
interjet hadronization@3#. A quantitative formalism to de-
scribe gap events, however, has been lacking in the litera

In Ref. @1# we have discussed the dependence of the d
cross section on the energy flow into the central regi
clearly related to the observed particle multiplicity. We ha
shown how to factorize the partonic cross section into a h
scattering function, accounting for the dynamics of t
highly virtual quanta exchanged in the scattering, and a
function, describing the soft radiation emitted into the int
jet region. Both functions are defined as matrices in the sp
of the possible color flows at the hard scattering, formaliz
the idea, already expressed by other authors, that the c
structure of the short-distance partonic scattering is
uniquely defined@4,5#. The soft function contains, at eac
order in perturbation theory, logarithms of the interjet rad
tion energy, which can be resummed, to give the depende
of the dijet cross section on the interjet energy flow. T
resummation is driven by the eigenvalues and eigenvec
of a soft anomalous dimension matrix, defined in the sp
of color flows. In Ref.@1#, we have performed the analysis
this matrix forqq̄→qq̄ scattering, which is the relevant pa
tonic process in a valence quark approximation forpp̄ colli-
sions. The result indicates that, in the limit of a very lar
interjet region~corresponding to a very large parton center
mass energy, compared to the momentum transfer!, the color
singlet component dominates, thus merging our picture
this asymptotic configuration, with approaches to the pr
lem based on the Regge limit of QCD@6# and on the idea of
color singlet dominance@3,7#. We have already pointed ou
0556-2821/99/61~1!/014004~20!/$15.00 61 0140
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that a full treatment of the Tevatron dijet gap cross sect
requires us to include the contribution of processes involv
gluons, which we postpone, for that specific problem,
forthcoming work@8#.

In this paper, we will apply our method to analyze th
photoproduction of two high transverse momentum jets w
a large intermediate rapidity gap. Events of this kind ha
been reported ine1p collisions at the DESYep collider
HERA @9#. Here, the quantity of interest is the gap fractio
the ratio of the number of dijet events with a large inter
gap to the total number of dijet events. The ZEUS expe
ment shows that, binning the gap events according to
width of the interjet empty region, the gap fraction, after
initial decay, reaches an asymptotic plateau. It has b
shown in Refs.@3,6# that the fraction of gap events from th
exchange of a color octet, Reggeized gluon falls off exp
nentially with increasing gap width. The leftover asympto
excess has been interpreted as the fraction of the color sin
exchange of a hard Balitskıˇ-Fadin-Kuraev-Lipatov~BFKL!
Pomeron@6#. We emphasize here that the BFKL approach
complementary to ours, because it deals with the resum
tion of gluonic radiation, which, in our language, would b
described as hard~see Sec. VI below!.

Applying the methods of Ref.@1# to this problem is espe
cially interesting, because, while the data for the Tevat
gaps show the dependence of the cross section on the in
energy at a fixed gap width, here we will explore the opp
site dependence, a variable gap width at fixed energy.
will show that the factorization and resummation of the s
gluonic energy emitted into the gap leads approximately
the behavior of the gap fraction observed by the experim
In addition, photoproduction is an ideal process in which
analyze the contribution of gluons to gap cross sections. T
oretical studies of jet photoproduction have been purs
since the early 1980s@10–16# and are a very active area o
research. The dominant partonic mechanisms in photo
duction are the direct and resolved scatterings: in the for
case the photon from the incoming lepton interacts direc
with the quark or gluon from the proton, and in the latter
fluctuates first into a hadronic state of low virtuality, actin
as a source of partons, which then scatter off partons fr
©1999 The American Physical Society04-1
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
the proton. The precise experimental determination of
partonic content of the photon is still an open problem, pa
because it requires isolating the resolved component of
scattering@10,15,17#. However, existing data indicate tha
especially at low values of partonicx, the dominant compo-
nent of the photon is gluonic@12#. Correspondingly, we will
see that for the resolved contribution, the scattering o
gluon from the photon with a quark from the proton is dom
nant in the kinematical region of interest. Also the contrib
tion from the resolved reactiong1g→g1g has to be taken
into account, although it turns out to be much less import
in this case, because of the high transverse energy cuts
perimentally imposed on the jets.

One last important remark has to be made, about the is
of survival @3,18#. In dijet gap events, the survival probab
ity is limited by the probability of no radiation inside the ga
from the interaction of spectator partons. Such a probab
is estimated to be of the order of 10% inpp̄ scattering, if we
require a truly empty interjet region@3,18#. Presumably, for
ep reactions the number of spectator quarks and gluon
reduced with respect topp̄ scattering, because of the part
leptonic nature of the initial state. Therefore our resumm
formula, which accounts for the amount of perturbative s
vival from soft gluon dynamics, should be less sensitive
these effects.

Throughout the paper, we will work in close correspo
dence with the ZEUS experimental configuration describ
in Ref. @9#. In Sec. II, we will discuss the kinematics of th
problem, define the dijet gap cross section, and review
factorization properties. In Sec. III, we will introduce the g
fraction, as the ratio of the dijet gap cross section to
overall dijet cross section. We will also identify the parton
reactions giving the largest contributions to both the gap
the overall cross section. For each of these reactions, in
IV, we will present the explicit decomposition into hard an
soft parts. In Sec. V, we will present the process-depend
soft anomalous dimension matrices and their eigenvalues
eigenvectors, which govern the soft dynamics of the scat
ing. Finally, in Sec. VI, we will give numerical results for th
overall dijet cross section, the dijet gap cross section and
gap fraction. We will draw a comparison with the expe
mental results of Ref.@9#, and present our conclusions.

II. DIJET GAP CROSS SECTIONS
IN PHOTOPRODUCTION

A. Definitions

In this section we will introduce dijet gap cross sections
photoproduction. We first recall the definition of partic
pseudorapidity,

h5 lnFcotS u

2D G , ~2.1!

whereu is the angle of a particle momentum with respect
a fixed direction, typically the beam direction. We will co
sider positron-proton scattering
01400
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e1~pA!1p~pB!→e1~pA8 !1J1~p1!1J2~p2!1Xgap,
~2.2!

for the production of two jets at fixed pseudorapidity diffe
ence,Dh5h12h2. We sum inclusively over final states
while measuring the~soft! energy flow into the intermediate
region between the jets. The boost-invariant pseudorapi
differenceDh fixes the partonic scattering angleû through
the formula

Dh

2
5 lnFcotS û

2
D G . ~2.3!

Following Ref. @9#, the jets are defined by cones of radi
R51.0 in the h-f plane mapping the ZEUS calorimete
detector. This constrains the interjet region to have a~pseu-
do!rapidity width

Dy5Dh22R. ~2.4!

The low-virtuality photons exchanged at the electromagn
vertex of the interaction can be thought of as real particles
energy Eg5yEe , whose spectrum is given by th
Weiszäcker-Williams formula@19,20#

Fg/e~y!5
aem

2p H 11~12y!2

y
lnS Qmax

2 ~12y!

me
2y2 D

12me
2yF 1

Qmax
2

2
~12y!

me
2y2 G J . ~2.5!

Hereaem is the electromagnetic coupling,me is the electron
mass, andQmax

2 is the maximum photon virtuality, deter
mined from the~anti!tagging conditions of the experimen
From Ref.@9# we take the valueQmax

2 54 GeV2. The generic
differential cross section for electron-proton scattering c
then be viewed as a convolution of the photon distribution
the electron and the photon-proton cross section:

dsep~S!5E
ymin

ymax
dyFg/e~y!dsgp~Sgp!, ~2.6!

whereS is the center of mass energy squared of the electr
proton system, and whereSgp5yS is its analogue for the
photon-proton system. We use forymin and ymax the values
given in Ref.@9#, ymin50.2 andymax50.8.

B. Factorized cross section

For our specific case the inclusive cross section for d
events with transverse energy greater thanET , rapidity dif-
ferenceDh, and energy flow less thanQc in the intermediate
region, of rapidity widthDy, can be written as follows@10–
15#:
4-2
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dsep

dDh
~Qc ,S,ET ,Dy!

5E
ymin

ymax
dyFg/e~y!Fdsgp

dir

dDh
~Qc ,Sgp ,ET ,Dy!

1
dsgp

res

dDh
~Qc ,Sgp ,ET ,Dy!G . ~2.7!

Here dsgp
dir /dDh and dsgp

res/dDh, are the direct and re
solved contributions to the cross section respectively. In
former case the low-virtuality photon interacts directly wi
the parton from the proton, whereas in the latter, as m
tioned above, it acts itself as a source of quarks and glu
which then scatter off the partons from the proton. The t
cross sections can be written in factorized form as@10–15#

dsgp
dir

dDh
~Qc ,Sgp ,ET ,Dy!

5 (
f p , f 1 , f 2

E
Rxp

dxpf f p /p~xp ,2 t̂ !

3
dŝ (gf)

dDh
„Qc , t̂ ,ŝ,hJJ ,Dy,as~ t̂ !…, ~2.8!

and

dsgp
res

dDh
~Qc ,Sgp ,ET ,Dy!

5 (
f g , f p , f 1 , f 2

E
Rxg

dxgE
Rxp

dxpf f g /g~xg ,2 t̂ !

3f f p /p~xp ,2 t̂ !
dŝ (f)

dDh
„Qc , t̂ ,ŝ,hJJ ,Dy,as~ t̂ !….

~2.9!

In these formulasf f g /g andf f p /p are parton distributions in
the photon and proton respectively, evaluated at the sc
2 t̂ , the dijet momentum transfer, which is related to t
partonic center of mass energy squared,ŝ, and the dijet ra-
pidity difference, Dh, according to the formula t̂

5(2 ŝ/2)@12tanh(Dh/2)#. The integration regions for the
partonic fractionsxp and xg are denoted byRxp

and Rxg

respectively.dŝ (g f) /dDh anddŝ (f) /dDh are hard scattering
functions, starting from the lowest order Born cross secti
The index f(gf) denotes the partonic processf g1 f p→ f 1
1 f 2(g1 f p→ f 11 f 2). The detector geometry constrains t
phase space for the dijet total pseudorapidity,hJJ5(hJ1

1hJ2
)/2, with uhJJu,0.75 @9#. Similarly, the lower bound

on the transverse energy of the jets,ET , and the dijet pseu-
dorapidity determine the phase space for the partonic ce
of mass energy squaredŝ, with 4ET

2 cosh2(Dh/2), ŝ
,Sgpexp(2hJJ)yEe/Ep .
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C. Refactorization of the partonic scattering

In this section we will review some of the arguments
ready presented in Refs.@1,21–23#, to show how it is pos-
sible to perform a further factorization on the partonic sc
tering functions,dŝ (gf) /dDh and dŝ (f) /dDh, of Eqs. ~2.8!
and ~2.9!. The underlying argument is that in the parton
scattering the soft gluon emission decouples from the
namics of the hard scattering, and can be approximated b
effective cross section, in which each of the partons is trea
as a recoilless source of gluonic radiation. Formally, this
equivalent to replacing each parton with a path-ordered
ponential of the gluon field~eikonal or Wilson line! in the
proper representation ofSU(3), thefundamental representa
tion 3(3* ) for quarks~antiquarks!, and the adjoint represen
tation for gluons. In this way the hard amplitude is replac
by a sum of eikonal operators,wI(x) $ck% , depending on color

tensorscI , which account for the color flow at the har
scattering, times short-distance coefficient functions. The
fective dimensionless eikonal cross section~f in the follow-
ing will refer to both direct and resolved processes! can be
written as

ŝLI
(f,eik)S Qc

m
,DyD5(

j
u„Qc2Ec~j!…^0uT̄@„wL~0!…$bi %

† #uj&

3^juT@wI~0!$bi %
#u0&, ~2.10!

where we sum over all the final states subject to the c
straint of having energy less thanQc in the interjet region of
rapidity Dy, while cutting off all the remaining integrals a
the ultraviolet scalem. This makes the eikonal cross sectio
free from potential collinear singularities associated w
gluon emission from the Wilson lines. The Latin indexesI
andL refer to the color structures of the amplitude and of
complex conjugate. At the tree level, with no soft gluons, t
above formula reduces to the square of eikonal vertices, w
matrix elements given by traces of the color tensors in
amplitudes.

In these terms, the partonic scattering function can now
factorized into the product, in the space of color tensors, o
hard scattering matrix,1 HIL

(f) , accounting for the quanta o
high virtuality exchanged in the scattering, and a soft mat
SLI

(f) ,

dŝgp
(f)

dDh
„Qc , t̂ ,ŝ,hJJ ,Dy,as~ t̂ !…

5
p

2ŝF 2 cosh2S Dh

2 D G21

3HIL
(f)
„
A2 t̂ ,Aŝ,m,as~m2!…SLI

(f) S Dy,
Qc

m D , ~2.11!

1The normalization of the dimensionless hard scattering mat
HIL

(f) , can be found in Eq.~A1! below. It differs slightly from the
one used in Ref.@1#.
4-3
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
where we follow the convention of the sum over repea
indices. This factorization holds to leading power inL/Qc ,
with L the QCD scale parameter. We can identify a ha

scale,A2 t̂ , a soft scale,Qc , and a new factorization scale
m. The soft matrix,SLI , precisely coincides with the gaug
invariant eikonal cross section of Eq.~2.10!,

SLI
(f) S Qc

m
,DyD5ŝLI

(f,eik)S Qc

m
,DyD . ~2.12!

In general, corrections to the factorized expression in
~2.11! are expected from three-jet final states, but since
cost of adding an extra jet to the final state is at least
power ofas(2 t̂ ), they will be suppressed.

D. Evolution of the soft matrix in color space

The left-hand side of the factorized expression, Eq.~2.11!,
is independent ofm. This means that them dependence o
the two matrices,HIL

(f) andSLI
(f) , must cancel in the produc

We thus derive forSLI
(f) the evolution equation@1#

S m
]

]m
1b~g!

]

]gDSLI
(f)52~GS

(f) !LB
† SBI

(f)2SLA
(f) ~GS

(f) !AI ,

~2.13!

where GS
(f) (as) is a process-dependent soft anomalous

mension matrix. Solving this equation will enable us to
sum all the leading logarithms of the soft scaleQc . It is
convenient to treat Eq.~2.13! in a basis which diagonalize
GS

(f) (as). Following Ref.@23#, we denote by Greek indexe
the basis of the eigenvectors ofGS

(f) (as), $ueb
(f)&%, corre-

sponding to the eigenvalueslb
(f) . We then transform Eq

~2.11! to this basis and solve the evolution equation~2.13!
for S(f) , by integrating with respect tom between the soft

scaleQc and the hard scaleA2 t̂ , to get

dŝgp
(f)

dDh
„Qc ,ŝ, t̂ ,hJJ ,Dy,as~ t̂ !…

5
p

2ŝ
F2 cosh2S Dh

2 D G21

3(
a,b

Hba
(f,1)

„Dy,Aŝ,A2 t̂ ,as~ t̂ !…Sab
(f,0)~Dy!

3F lnS Qc

L D GEab
(f) F lnSA2 t̂

L
D G2Eab

(f)

. ~2.14!

The double differential cross section of Ref.@1#,
d2ŝgp

(f) /dDhdQc , giving the distribution of dijet events as
function of interjet radiation and rapidity interval, can no
be obtained by differentiation of this identity with respect
Qc . In the above formula the kinematical cuts on the j

require the minimum value ofA2 t̂ to be exactlyET (ET
55 GeV in Ref.@9#!, still much larger thanL. The expo-
nentsEab

(f) are given by
01400
d

d

.
e
e

i-
-

s

Eab
(f) ~Dh,Dy!5

2p

b1
@ l̂a

(f)* ~Dh,Dy!1l̂b
(f)~Dh,Dy!#,

~2.15!

whereb1 is the first coefficient in the expansion of the QC
b function, b15 11

3 Nc2 2
3 nf , and where we definel̂b

(f) by

lb
(f)5asl̂b

(f)1•••. Observe that we have explicitly man
tained a distinction between the dependence onDh andDy,
in spite of the fact that for this specific problem they a
related through the identity in Eq.~2.4!. In fact Dh can be
seen as a parameter of the hard scattering~related to the
scattering angle!, whereasDy, at fixedDh, is a measure of
the width of the interjet region and, as such, has a geom
cal interpretation. The matrixSab

(f,0) in Eq. ~2.14! is obtained
by transforming to the new basis the zeroth orderSLI

(f,0) of Eq.
~2.11!, which, as mentioned above, is just a set of co
traces. The change of basis goes through the ma
„(R(f) )21

…Kb[(eb
(f) )K , according to the formula@23#

Sab
(f,0)[@„~R(f) !21

…

†#aMSMN
(f,0)

„~R(f) !21
…Nb . ~2.16!

Analogously, we take for theHIL
(f,1)’s the squares of the Born

level amplitudes, represented in the original color basis
the diagonal basis, each hard matrixHIL

(f,1) becomesHba
(f,1) ,

defined by

Hba
(f,1)5~R(f) !bLHLK

(f,1)~R(f)†!Ka . ~2.17!

Observe thatS(f,0) andH (f,1) both acquire aDy dependence
through the change of basis.

The relevantDh dependence on the right hand side of E
~2.14! is contained in the exponentsEab

(f) , Eq. ~2.15!. We
will see below that, for all the partonic processes, the r
parts of the eigenvalues ofGS

(f) (as) in the exponents are

positive definite functions, with boundary value Re(l̂b
(f) )

50 at Dh52(Dy50). Then, sinceQc,A2 t̂ , the last line
in Eq. ~2.14! acts as a suppression factor. Specifically,
eigenvalue with the biggest real part will drive the strong
suppression for the component of the scattering orien
along the direction of the corresponding eigenvector. As
shall see, most of the relevant information about theDh
behavior of the cross section is derived from the propertie
the soft anomalous dimension matrixGS

(f) (as), which we
will study in detail in Sec. V.

III. THE GAP FRACTION

We will be interested in the evaluation of the gap fractio
defined as the ratio of the number of dijet events with
specified rapidity gap to the total number of dijet events.
gap event is usually identified experimentally by the lack
particle multiplicity in the interjet region@2,9#. The multi-
plicity is determined from the number of calorimeter ce
which measure energy deposition above a threshold,
MeV in the case of Ref.@9#. Therefore, the condition for a
gap event is the absence of such cells~or clusters of cells! in
the rapidity region between the jets. Our formulation of t
problem, Eq.~2.7!, is in terms of the total interjet flow,Qc ,
4-4



le
n

e

he

d

q

k

n

s

l

c

pa
e

ric

ree-

lso,
ec-
ns

t to

t
ct
s,

-
ch
in
ific
tion
of
l-
ma-

the
ave

the

ex-

DIJET RAPIDITY GAPS IN PHOTOPRODUCTION FROM . . . PHYSICAL REVIEW D61 014004
of hadronic radiation, which is clearly related to partic
multiplicity. In analogy with experiment, we introduce a
energy threshold,Q0, which is different in principle from the
experimental calorimeter threshold, and identify a gap ev
from the condition of interjet radiation less thanQ0. From
Eqs. ~2.7!, ~2.8!, ~2.9! we see that the dependence on t
interjet radiation is all in the partonic scattering, Eq.~2.14!.
Then, in order to get a dijet gap cross section, we just nee
evaluate Eq.~2.14! at the threshold valueQ0 of the interjet
energy flowQc :

dŝgp
(f),gap

dDh
„Q0 ,ŝ, t̂ ,hJJ ,Dy,as~ t̂ !…

5
p

2ŝ
F2 cosh2S Dh

2 D G21

3(
a,b

Hba
(f,1)

„Dy,Aŝ,A2 t̂ ,as~ t̂ !…Sab
(f,0)~Dy!

3F lnS Q0

L D GEab
(f) F lnSA2 t̂

L
D G2Eab

(f)

. ~3.1!

The denominator of the fraction is also obtained from E
~2.14!, this time evaluated at the maximum value ofQc , the

hard scaleA2 t̂ . Values ofQc above this scale would brea
the premise underlying the factorization in Eq.~2.11!, since
the emission into the interjet region would not be soft a

more. By performing the substitutionQc5A2 t̂ in Eq. ~2.14!
we find the full leading order partonic dijet cross section

dŝgp
(f)

dDh
„ŝ, t̂ ,hJJ ,Dy,as~ t̂ !…

5
p

2ŝ
F2 cosh2S Dh

2 D G21

3Hba
(f,1)

„Dy,Aŝ,A2 t̂ ,as~ t̂ !…Sab
(f,0)~Dy!, ~3.2!

where, from Eqs.~2.16! and~2.17!, for each partonic proces
the trace identityHba

(f,1)Sab
(f,0)5HIL

(f,1)SLI
(f,0) holds, which is pro-

portional to the leading order partonic cross section~see also
Sec. IV and the Appendix!. After summing the gap and tota
cross sections over partonic subprocesses, as in Eqs.~2.8!
and ~2.9!, the gap fraction has the form

f gap5

dsep
gap

dDh
~Q0 ,S,ET ,Dy!

dsep

dDh
~S,ET ,Dy!

. ~3.3!

In the numerical evaluation of the denominator of this fra
tion, we use, for each partonic reaction f in Eq.~3.2!, the
invariant S-matrix elements squared, and corresponding
ton luminosities,L (f) , summarized for completeness in th
Appendix. We have used four quark flavors,nf54, and have
assumed flavor symmetry for the sea quarks. The nume
01400
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result we have found, shown in Fig. 1, is in reasonable ag
ment with the data points from Ref.@9#. Here it should be
emphasized that, for the overall dijet cross section and a
as we will see in Sec. VI, for the gap cross section, corr
tions are expected from next-to-leading order contributio
to the hard matrix@10–12,14,15#. However, the gap fraction
should not be too sensitive to them.

In Fig. 2 we show the partonic reactions most relevan
the overall cross section, evaluated on the fullDh range. For
theDh range of Ref.@9#, Dh.2.0, Fig. 3 clearly shows tha
it is sufficient to consider the contributions from the dire
process,g1g→q1q̄, the resolved gluon-initiated reaction
q1g→q1g and g1g→g1g, and the quark processes,q

1q̄→q1q̄ andq1q→q1q. These will also be the domi
nant contributions to the numerator of the fraction, whi
differs from the denominator only by the last two factors
Eq. ~3.1!, depending on the soft dynamics of each spec
partonic reaction. The determination of the gap cross sec
will require an analysis of the partonic scattering in terms
color flow, to be found in the next section, and the know
edge of the spectrum of the process-dependent soft ano
lous dimension matrices, to be discussed in Sec. V.

IV. LOWEST ORDER HARD AND SOFT MATRICES
IN COLOR SPACE

In this section, we present the color decomposition of
hard scattering for the resolved partonic processes that h
been shown above to give the dominant contribution to
dijet cross section in theDh region of interest. For each
case, we will define a basis of color tensors,$uc(f)

I&%, and

FIG. 1. The overall dijet cross section compared with the
perimental data of Ref.@9#.
4-5
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
give, in this basis, the Born level hard matrix,HIL
(f,1) , whose

elements come from the squares of the color-decompo
tree amplitudes. We will also give the zeroth order soft m
trix, SLI

(f,0) , defined by the set of tracesSLI
(f,0)

5Tr@(cL
(f) )†cI

(f) #. The knowledge of these matrices is n
only crucial for the evaluation of Eqs.~3.1! and ~3.2!, but
will be important for threshold resummation in jet produ
tion as well@24#.

For the color tensors, following Ref.@23#, we will find it
convenient to uset-channel bases. In terms of momentu
and color, we label the partonic process f according
f g( l A ,r A)1 f p( l B ,r B)→ f 1(p1 ,r 1)1 f 2(p2 ,r 2), where
$ l A ,r A%, $ l B ,r B%($p1 ,r 1%,$p2 ,r 2%) are, respectively, the mo
menta and colors of the incoming~outgoing! partons. The
hard matrix will be expressed in terms of the partonic Ma
delstam invariants

ŝ5~ l A1 l B!2

t̂5~ l A2p1!2

û5~ l A2p2!2. ~4.1!

FIG. 2. The contribution of the different partonic reactions
the dijet cross section. AtDh50 we can identify, from top to
bottom, the overall result~solid line!; the contributions ofg1g

→q1q̄ ~dotted line!, q1g→q1g ~dashed line!, q1g→g1q ~dot

dashed line!, g1g→g1g ~double dot dashed line!, g1q(q̄)→g

1q(q̄) ~short dashed line!, q1q→q1q ~short dotted line!, q1q̄

→q1q̄ ~short dot dashed line!. Here the two reactionsq1g→q
1g andq1g→g1q differ from each other by the exchange of th

Mandelstam invariantst̂ and û @see Eqs.~A2! and ~A3! in the
Appendix#.
01400
ed
-

o

-

It will also depend on the QCD running coupling evaluat
at the hard scale, (2 t̂ )1/2, according to the formula

as~ t̂ !5
2p

b1ln@~2 t̂ !1/2/L#
. ~4.2!

For each process, it is straightforward to check that the co
trace over the product of hard and soft matrices gives,
expected, the tree level invariant matrix element squared
the Appendix@25#.

A. Hard and soft matrices for qg˜qg

For the partonic processq1g→q1g we define the basis
of color tensors@23#

c15d r A ,r 1
d r B ,r 2

c25dr Br 2c~TF
c !r 1r A

c35 i f r Br 2c~TF
c !r 1r A

, ~4.3!

wherec1 is the t-channel singlet tensor, andc2 and c3 the
symmetric and antisymmetric octet respectively. Here a
below, we suppress color indices on thecI ’s. In this basis the
Born level hard scattering can be described in color space
the matrix

FIG. 3. The dijet cross section~solid line! and the result ob-
tained by dropping from Fig. 2 the contributions of the direct pr

cessg1q(q̄)→g1q(q̄), and of the resolved reactionq1g→g
1q ~dotted line!.
4-6
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DIJET RAPIDITY GAPS IN PHOTOPRODUCTION FROM . . . PHYSICAL REVIEW D61 014004
H (1)
„
A2 t̂ ,Aŝ,as~ t̂ !…5

1

48
as

2~ t̂ !S 1
9 x1

1
3 x1

2
3 x2

1
3 x1 x1 2x2

2
3 x2 2x2 x3

D ,

~4.4!

with x1 ,x2 and x3 functions of the partonic Mandelstam
invariants:

x1522
t̂2

ŝû

x2512
ŝ

t̂
2

û2

ŝt̂
2

1

2

t̂2

ŝû

x35628
ŝû

t̂2
2

t̂2

ŝû
. ~4.5!

It is easy to see that, in the limit of forward scattering (Dh
→`), the component of the hard matrix in the color dire
tion of the antisymmetric octet becomes dominant, since
O( t̂22).

The zeroth order soft matrix, on the other hand, is giv
by

S(0)5S Nc~Nc
221! 0 0

0
~Nc

224!~Nc
221!

2Nc

0

0 0
Nc

2
~Nc

221!
D ,

~4.6!

whereNc53 is the number of colors.

B. Hard and soft matrices for gg˜gg

For this process, a suitablet-channel basis of color tensor
has been defined in Ref.@23# to be

c15
i

4
@ f r Ar Bldr 1r 2l2dr Ar Bl f r 1r 2l #,

c25
i

4
@ f r Ar Bldr 1r 2l1dr Ar Bl f r 1r 2l #,

c35
i

4
@ f r Ar 1ldr Br 2l1dr Ar 1l f r Br 2l #,

c45P1~r A ,r B ;r 1 ,r 2!5
1

8
d r Ar 1

d r Br 2
,

c55P8S
~r A ,r B ;r 1 ,r 2!5

3

5
dr Ar 1cdr Br 2c ,
01400
-
is

n

c65P8A
~r A ,r B ;r 1 ,r 2!5

1

3
f r Ar 1cf r Br 2c ,

c75P10110̄~r A ,r B ;r 1 ,r 2!

5
1

2
~d r Ar B

d r 1r 2
2d r Ar 2

d r Br 1
!2

1

3
f r Ar 1cf r Br 2c ,

c85P27~r A ,r B ;r 1 ,r 2!

5
1

2
~d r Ar B

d r 1r 2
1d r Ar 2

d r Br 1
!2

1

8
d r Ar 1

d r Br 2

2
3

5
dr Ar 1cdr Br 2c . ~4.7!

The last five elements of the basis are thet-channelSU(3)
projectors for the decomposition into irreducible represen
tions of the direct product 8̂8, which corresponds to the
color content of a set of two gluons.

In this basis, the hard matrix has the block-diagonal str
ture

H (1)
„
A2 t̂ ,Aŝ,as~ t̂ !…5S 0333 0335

0533 H535
(1) D , ~4.8!

where the 535 submatrixH535
(1) is given by

H535
(1)

„
A2 t̂ ,Aŝ,as~ t̂ !…

5
1

16
as

2~ t̂ !S 9x1
9
2 x1

9
2 x2 0 23x1

9
2 x1

9
4 x1

9
4 x2 0 2 3

2 x1

9
2 x2

9
4 x2 x3 0 2 3

2 x2

0 0 0 0 0

23x1 2 3
2 x1 2 3

2 x2 0 x1

D ,

~4.9!

with x1 ,x2 andx3 defined by

x1512
t̂ û

ŝ2
2

ŝt̂

û2
1

t̂2

ŝû

x25
ŝt̂

û2
2

t̂ û

ŝ2
1

û2

ŝt̂
2

ŝ2

t̂ û

x35
27

4
29S ŝû

t̂2
1

1

4

t̂ û

ŝ2
1

1

4

ŝt̂

û2D
1

9

2 S û2

ŝt̂
1

ŝ2

t̂ û
2

1

2

t̂2

ŝû
D . ~4.10!

Once again, it can be noticed that the component of the h
scattering in the color direction corresponding to the an
symmetric octet dominates in the forward limit.
4-7
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
For the zeroth order soft matrix, straightforward col
traces withNc53 colors give

S(0)51
25 0 0 0 0 0 0 0

0 25 0 0 0 0 0 0

0 0 25 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 8 0 0 0

0 0 0 0 0 8 0 0

0 0 0 0 0 0 20 0

0 0 0 0 0 0 0 27

2 .

~4.11!

We notice that the first three color tensors of the basis,
~4.7!, have negative eigenvalues, while the eigenvalues
the projectors count the number of color states belongin
each irreducible representation. In fact,c1 ,c2 andc3 of Eq.
~4.7! decouple from the physical cross section. Equat
~4.8! supports this interpretation, since the components of
Born level hard scattering along these color directions van
identically, reducing the dimensionality of the problem,
color space, from 838 to 535. In principle, from Eqs.
~2.16! and ~2.17!, the original dimensionality could be re
stored after the change from the color basis to the basis o
eigenvectors of the soft anomalous dimension matrix,GS .
We will show below that the structure of the specificGS for
g1g→g1g prevents this from happening.

C. Hard and soft matrices for qq̄˜qq̄ and qq˜qq

Both processes can be conveniently treated in
t-channel singlet-octet basis@23#

c15d r A ,r 1
d r B ,r 2

c252
1

2Nc
d r A ,r 1

d r B ,r 2
1

1

2
d r A ,r B

d r 1 ,r 2
.

~4.12!

In color space, the hard matrix has the form

H (1)
„
A2 t̂ ,Aŝ,as~ t̂ !…5

1

9
as

2~ t̂ !S 32
81 x1

1
9 x2

1
9 x2 x3

D ,

~4.13!

where, in the case ofqq̄→qq̄, x1 , x2 andx3 are defined by

x15
t̂21û2

ŝ2

x258
û2

ŝt̂
2

8

3

t̂21û2

ŝ2

x352
ŝ21û2

t̂2
1

2

9

t̂21û2

ŝ2
2

4

3

û2

ŝt̂
, ~4.14!
01400
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while in the case ofqq→qq, related toqq̄→qq̄ by the
crossing transformationŝ↔û, they are given by

x15
t̂21 ŝ2

û2

x258
ŝ2

t̂ û
2

8

3

ŝ21 t̂2

û2

x352
ŝ21û2

t̂2
1

2

9

ŝ21 t̂2

û2
2

4

3

ŝ2

t̂ û
. ~4.15!

In both cases, for forward scattering, the component of
hard matrix along the color octet direction becomes do
nant.

For the lowest order soft matrix, after color tracing, w
find the common simple form@1#

S(0)5S Nc
2 0

0 1
4 ~Nc

221!
D . ~4.16!

V. SOFT ANOMALOUS DIMENSION MATRIX

In this section we shall describe how to compute t
process-dependent soft anomalous dimension matrix,GS

(f)

@8#. The m independence of the left hand side of Eq.~2.11!
implies that the matricesHIL

(f) andSLI
(f) renormalize multipli-

catively,

H (f)
IL
(B)5~ZS

(f) 21! ICHCD
(f) @~ZS

(f) †!21#DL

S(f)
LI
(B)5~ZS

(f) †!LBSBA
(f) ZS,AI

(f) , ~5.1!

where the superscript~B! identifies the bare quantities, an
ZS,CD

(f) is a matrix of renormalization constants, describing t
renormalization of the soft function, i.e. the eikonal scatt
ing, Eq. ~2.12!. The one-loop anomalous dimensionGS

(f) is
obtained from the residue of the UV pole contained in t
matrix ZS

(f) ,

~GS
(f) !LI~g!52

g

2

]

]g
Rese→0~ZS

(f) !LI~g,e!. ~5.2!

From Eq. ~2.10! we see that the potential sources of U
divergences are the virtual vertex corrections to the eiko
color-dependent operatorswI(x) $ck% , and also the real cor
rections, when gluons are emitted into the forward region
the scattering, because the eikonal cross section, Eq.~2.10!,
is completely inclusive with respect to the amount of forwa
radiation.

The Feynman rules for the evaluation of eikonal diagra
have been presented in Ref.@23#. The necessary one-loo
calculations are illustrated in Figs. 4 and 5: given the t
color verticescI and cL , corresponding to the hard ampl
tude and to its complex conjugate, we build the eikonal cr
section from the product of the color-dependent eikonal
erators,wI(x) $ck% and„wL(x) $ck%…

†, Eq. ~2.10!, and we com-
4-8
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DIJET RAPIDITY GAPS IN PHOTOPRODUCTION FROM . . . PHYSICAL REVIEW D61 014004
pute the diagrams obtained by adding one extra real or
tual gluon, shown respectively in Figs. 4 and 5. Working
Feynman gauge, the self-energy diagrams do not contrib
because they are proportional to the invariant mass of e
lightlike eikonal line.

From the loop integration, it is easy to see that the U
divergences from the gluon emission diagrams and from
virtual diagrams, with the gluon emitted and reabsorbed
tween an incoming and an outgoing eikonal line, are real.
the other hand, the coefficient of the UV pole from virtu
diagrams, with the gluon emitted and reabsorbed betw
two incoming or two outgoing eikonal lines, also ha
imaginary parts. Since the imaginary part of the soft anom
lous dimension matrix comes only from virtual eikonal di
grams, it can be extracted directly from Ref.@23#, where
contributions toGS are computed, for most partonic pro
cesses, from the virtual corrections to the eikonal opera
wI(x) $ck% . The real parts of the UV divergences comin
respectively, from virtual and real emission diagrams p
tially cancel in the sum, leaving a remainder which is a fun
tion of Dy, the width of the interjet rapidity region, wher
the gluon radiation is measured, and of the scatteri
dependent parameterDh.

We will now present, for each of the partonic process
relevant to the dijet cross section, the result forGS

(f) , and the
analysis of its eigenvalues and eigenvectors, which we

FIG. 4. Real corrections to the eikonal scattering, Eq.~2.10!. For
brevity, we only show half of the contributing cut diagrams. T
remaining ones can be obtained by Hermitian conjugation of e
of the above graphs, i.e. by reflection with respect to the final s
cut.
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relate to the behavior of the cross section, Eq.~2.14!. For the
direct reactiong1g→q1q̄, which has only color octet con
tent,GS

(f) will reduce to a function, related by crossing to th
soft anomalous dimension computed in Ref.@26# for direct
photon production.

We will see below, for all the resolved reactions, that t
eigenvectors ofGS are mixed color states, and that their col
composition is a function of the gap width only, through t
‘‘geometrical’’ parameterDy. We have already pointed ou
in Eq. ~2.4! that, in the experimental configuration of Re
@9#, Dh fixes Dy, leaving us with only one independent p
rameter. We should emphasize, however, that for the cas
the Tevatron rapidity gaps@1,8#, where the gap is taken fixe
in the calorimeter detector, and is independent of the dyn
ics of the scattering, the eigenvectors have the same form
for this problem. Below, we will find it convenient to refer t
the eigenvectors as ‘‘quasi-color’’ states~quasi-octet, quasi-
singlet, and so on!, identified by their behavior in the limit of
asymptotically large gap regions, where they reduce to p
color states. We will discover that the eigenvalue with t
smallest real part always corresponds to the quasi-single
genvector, and we will show, from the discussion in S
II C, that the related component of the hard scattering is
only one to survive for large values ofDy.

h
te

FIG. 5. Virtual corrections to the eikonal scattering, Eq.~2.10!.
For brevity, we only show half of the contributing cut diagram
The remaining ones can be obtained by Hermitian conjugation
each of the above graphs, i.e. by reflection with respect to the fi
state cut.
4-9
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
A. Soft anomalous dimension forqg˜qg

In the basis of Eq.~4.3!, the one-loop soft anomalou
dimension matrix is

GS~Dh,Dy!5
as

2p S r11j1 0 2ip

0 r1 Ncip

4ip
Nc

224

Nc
ip r1

D ,

~5.3!

where the functionsr1 andj1 are defined as follows:

j1~Dy!5Nc~ ip22Dy!,

r1~Dh,Dy!52NclnS tanh~Dh/2!1tanh~Dy/2!

tanh~Dh/2!2tanh~Dy/2! D
1 ip

2Nc
221

Nc
2

Nc
211

2Nc

3F lnS tanh~Dh/2!1tanh~Dy/2!

tanh~Dh/2!2tanh~Dy/2! D
1 lnS 12tanh~Dy/2!

11tanh~Dy/2! D G . ~5.4!

While the first function depends only on the rapidity width
the interjet region, the second also depends on the hard
tering throughDh.

The eigenvalues of the above matrix are given by

l1~Dh,Dy!5
as

2p F2r11j1

3
1e2ip/3~s11s2!G

l2~Dh,Dy!5
as

2p F2r11j1

3
1~e4ip/3s11s2!G

l3~Dh,Dy!5
as

2p F2r11j1

3
1~s11e4ip/3s2!G ,

~5.5!

wheres1 ands2, in theDy range of Ref.@9#,2 Dy,2, are the
functions

s1~Dy![Fj1
3

27
1

p2

3
~Nc

228!j11S p2

27
~Nc

224!j1
4

1
2p4

27
j1

2~Nc
4228Nc

2188!1
p6

27
~Nc

214!3D 1/2G1/3

~5.6!

2The definitions ofs1 ands2 given in Eqs.~5.6! and~5.7! are valid
for Dy,4pA10/15, the branch point of the square root on the rig
hand side of Eqs.~5.6! and ~5.7!. For larger values ofDy, the
square root picks the second branch definition. Consequentlys1

ands2 are switched.
01400
at-

and

s2~Dy![Fj1
3

27
1

p2

3
~Nc

228!j12S p2

27
~Nc

224!j1
4

1
2p4

27
j1

2~Nc
4228Nc

2188!1
p6

27
~Nc

214!3D 1/2G1/3

.

~5.7!

The eigenvectors corresponding to the eigenvalues of
~5.5! can be written in unnormalized form as

e15S 2ip

4Dy22ip1e2ip/3~s11s2!

3ip

22Dy1 ip1e2ip/3~s11s2!

1

D ,

e25S 2ip

4Dy22ip1~e4ip/3s11s2!

3ip

22Dy1 ip1~e4ip/3s11s2!

1

D ,t

FIG. 6. Plot of the real~top! and imaginary~bottom! parts of the

eigenvalues (l̂i5l i /as) of the soft anomalous dimension matr
for q1g→q1g scattering. The solid line identifies the quas

singlet eigenvalue,l̂1, the dashed and short dashed lines the t

quasi-octets,l̂2 and l̂3.
4-10



-
Eq
,

o
th
po

, b

in
o-

DIJET RAPIDITY GAPS IN PHOTOPRODUCTION FROM . . . PHYSICAL REVIEW D61 014004
e35S 2ip

4Dy22ip1~s11e4ip/3s2!

3ip

22Dy1 ip1~s11e4ip3s2!

1

D . ~5.8!

They depend only on the geometrical parameterDy. It can
be easily checked that in the limitDy→` they become pure
color states,e1 a singlet,e2 ande3 antisymmetric and sym
metric combinations of the two color octets in the basis,
~4.3!. However, for the values ofDy we are interested in
they are color-mixed states. Following Ref.@1#, we will refer
to e1 as the quasi-singlet, and toe2 ande3 as the two quasi-
octets. Numerical values of the real and imaginary parts
the eigenvalues are represented in Fig. 6. According to
discussion at the end of Sec. II D, the quasi-octet com
nents of the hard scattering, for large values ofDy, will have
strong suppression factors, compared to the quasi-singlet
01400
.

f
e
-

e-

cause their real parts grow much faster. In fact, we will see
Sec. VI that, in this situation, only the quasi-singlet comp
nent of the scattering survives.

B. Soft anomalous dimension forgg˜gg

We work in the basis of Eq.~4.7!. The structure of the
soft anomalous dimension matrix is block diagonal:

GS~Dh,Dy!5S G333 0335

0533 G535
D , ~5.9!

with the matrixG333 given by

G3335
as

2p S 3r223ip 0 0

0 23~j22r2! 0

0 0 3r213ip
D ,

~5.10!

and the matrixG535 given by
G5355
as

2p S 3j21r212ip 0 212ip 0 0

0 3r2 23ip 26ip 0

2 3
2 ip 23ip 3r2 0 2 9

2 ip

0 2 12
5 ip 0 23~j22r2! 2 18

5 ip

0 0 2 4
3 ip 2 8

3 ip 3r225j2

D . ~5.11!
n-
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The functionsj2 andr2 are very similar toj1 andr1 of Eq.
~5.4!,

j2~Dy!5 ip22Dy,

r2~Dh,Dy!52 lnS tanh~Dh/2!1tanh~Dy/2!

tanh~Dh/2!2tanh~Dy/2! D13ip.

~5.12!

The eigenvalues of the matrix are

l15l553
as

2p
~r22 ip!

l25l453
as

2p
~r22j2!

l35l653
as

2p
~r21 ip!

l75
as

2p
~3r22j224h2!

l85
as

2p
~3r22j214h2!, ~5.13!
where we have introduced the following function of the i
terjet rapidity:

h25h2~Dy!52ADy22 ipDy2p2. ~5.14!

Because of the block structure of the soft anomalous dim
sion matrix, the eigenvectors corresponding to the first th
eigenvalues coincide withc1 ,c2 and c3 of Eq. ~4.7!, while
the remaining eigenvectors have zero components a
these color directions. Correspondingly, the structure of
matrix R(f) 21, and consequentlyR(f) , of Eqs. ~2.16! and
~2.17!, is block diagonal,

R(f) 215S 1333 0335

0533 R(f)
535
21 D . ~5.15!

Referring to the discussion below Eq.~4.11!, and to Eqs.
~2.16! and~2.17!, we see that the dimensionality of the ha
scattering remains 535 after the change from the origina
basis to the basis of the eigenvectors ofGS , because the sof
dynamics of the physical and unphysical color modes
completely decoupled. Here, once again, the eigenvec
depend only on the gap widthDy. Explicitly, we find
4-11
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
ei5S d i1

d i2

d i3

0(5)

D , i 51,2,3,

ei5S 0(3)

ei
(5)D , i 54, . . . ,8. ~5.16!

For e4
(5) ,e5

(5) ande6
(5) we have the simple results

e4
(5)5S 0

2
3

2

0

2
3

4
2

3iDy

2p

1

D , e5
(5)5S 215

15i

4p S 2ip

5
22DyD

15i

4p
~2ip22Dy!

3

1

D ,

e6
(5)5S 215

61
15i

2p
Dy

2
15i

2p
Dy

23

1

D . ~5.17!

It is easy to see that for large interjet regions (Dy→`)e4
(5) is

oriented along the 10310 color component, whilee5
(5) and

e6
(5) are respectively symmetric and antisymmetric combi

tions of the 8S and 8A color components. The last two eige
vectors have a more complicated analytic form

e7
(5)5e1

(5)

e8
(5)5e2

(5) ~5.18!

with

~e6
(5)!15

27

N 6p2
@32Dy4216iDy3~4p6 ih2!

24pDy2~19p66ih2!

14p2iDy~11p65ih2!1p3~13p66ih2!#

~e6
(5)!25

27

N6
@24Dy222Dy~22ip6h2!

1p~3p6 ih2!#

~e6
(5)!35

9

N6p
@24iDy3112Dy2~3p6 ih2!

12pDy~66h2217ip!2p2~11p67ih2!#
01400
-

~e6
(5)!45

29p

N6
~2iDy1p62ih2!

~e6
(5)!551. ~5.19!

In the denominators, the normalizationN6 is given by

N65228Dy214iDy~7p6 ih2!1p~31p62ih2!.
~5.20!

It is easily checked thate7
(5) , in the limit of a very wide

interjet region, reduces to a pure color singlet state, wh
e8

(5) points to the 27 color direction. Again, for typical value
of Dy, these eigenvectors are not pure color states, but ra
reflect mixing between the different color components of
hard scattering. From the eigenvalues of Eq.~5.13!, plotted
in Fig. 7, we can see, as already forq1g→q1g, that the
quasi-singlet component of the scattering,e7

(5) , dominates
the others in the limit of large gaps.

FIG. 7. Plot of the real~top! and imaginary~bottom! parts of the

eigenvalues (l̂i5l i /as) of the soft anomalous dimension matr
for g1g→g1g scattering. In both plots the solid line identifies th

quasi-singlet eigenvalue,l̂7, and the dotted line the quasi-27,l̂8. In
the plot of the real parts the dashed line identifies the two dege

ate quasi-octets,l̂5 and l̂6, and the short dashed line the quasi

110̄. In the plot of the imaginary parts the dashed line correspo

to both the quasi-octetl̂5 and the quasi 10110̄, whereas the dot

dashed line identifies the other quasi-octet,l̂6.
4-12
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C. Soft anomalous dimension forqq̄˜qq̄

In the basis of Eq.~4.12!, the soft anomalous dimensio
matrix is

GS~Dh,Dy!5
as

4p S r01j0 24
CF

Nc
ip

28ip r02j0

D , ~5.21!

where the functionsj0 and r0 are the analogs of those i
Eqs.~5.4! and ~5.12!,

j0~Dy!522NcDy12ip
Nc

222

Nc
,

r0~Dh,Dy!5
2

Nc
Dy22ip

Nc
222

Nc

12
Nc

221

Nc
lnS tanh~Dh/2!1tanh~Dy/2!

tanh~Dh/2!2tanh~Dy/2! D .

~5.22!

In particular,r0, which depends on the scattering angle, d
fers slightly from the corresponding function computed
Ref. @1# for the Tevatron gaps, because of the different u
derlying kinematics. On the other handj0, depending only
on the geometry, throughDy, is identical. The two eigenval
ues are

l1~Dh,Dy!5
as

2p F1

2
r02

1

2ANc

ANcj0
2232CFp2G

l2~Dh,Dy!5
as

2p F1

2
r01

1

2ANc

ANcj0
2232CFp2G ,

~5.23!

corresponding to the eigenvectors

e15S 1

8p

i S j02
1

ANc

ANc@j0~Dy!#2232CFp2D 21D
e25S i

8p S j01
1

ANc

ANc@j0~Dy!#2232CFp2D
1

D ,

~5.24!

which coincide precisely with the ones given in Ref.@1#,
since they depend only on the geometric parameterDy. In
the limit of an asymptotically large gap,e1 becomes a pure
color singlet state, whilee2 orients itself along the octet di
rection. Referring toe1 and e2 as quasi-singlet and quas
octet, and looking at the behavior of the real parts of
eigenvalues, Fig. 8, we can predict that, also for this parto
process, the quasi-singlet component of the scattering in
~2.14! will dominate the quasi-octet in the large gap limit.
01400
-

-

e
ic
q.

D. Soft anomalous dimension forqq˜qq

In the basis of Eq.~4.12!, the soft anomalous dimensio
matrix is

GS~Dh,Dy!5
as

4p S r081j082
4ip

Nc
4

CF

Nc
ip

8ip r082j082
4ip

Nc

D ,

~5.25!

where the functionsr08 andj08 are

j08~Dy!5
4ip

Nc
22NcDy,

r08~Dh,Dy!5
2

Nc
Dy12

Nc
221

Nc

3F lnS tanh~Dh/2!1tanh~Dy/2!

tanh~Dh/2!2tanh~Dy/2! D12ipG .
~5.26!

The two eigenvalues are

FIG. 8. Plot of the real~top! and imaginary~bottom! parts of the

eigenvalues (l̂i5l i /as) of the soft anomalous dimension matr

for q1q̄→q1q̄ scattering. The solid line identifies the quas

singlet eigenvalue,l̂1, the short dashed line the quasi-octet,l̂2.
4-13
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l1~Dh,Dy!5
as

2p F1

2
r082

1

2ANc

ANcj08
2232p2CF2

2ip

Nc
G

l2~Dh,Dy!5
as

2p F1

2
r081

1

2ANc

ANcj08
2232p2CF2

2ip

Nc
G ,

~5.27!

which correspond to the eigenvectors

e15S 4pCF

iNc
S j081

1

ANc

Aj08
2232p2CFD 21

1
D

e25S 1

iNc

4pCF
S j082

1

ANc

Aj08
2232p2CFD D .

~5.28!

Notice the similarity with the processqq̄→qq̄. We can
again identify ine1 the quasi-singlet and ine2 the quasi-
octet. For large gaps, the quasi-octet component of the s
tering will be strongly suppressed with respect to the qu
singlet, because the real part of the corresponding eigenv
grows much faster withDh, as graphically shown in Fig. 9

E. Soft anomalous dimension forgg˜qq̄

For the direct processgg→qq̄, which, from Fig. 2, gives
the second largest contribution to the denominator of
fraction, after the partonic reactionqg→qg, there is only
one possible color flow at the hard scattering. Thus, the
anomalous dimension reduces to a function, given by

GS~Dh,Dy!5
as

2p FCF lnS tanh~Dh/2!1tanh~Dy/2!

tanh~Dh/2!2tanh~Dy/2! D
12ipCAG , ~5.29!

whose real and imaginary3 parts are plotted in Fig. 10. W
see that the real part ofGS grows faster withDh than the real
parts of the quasi-singlet eigenvalues for all the resolved p
cesses, apart fromgg→gg, Figs. 6–9. In fact, we will see in
the next section that the corresponding contribution to
gap cross section will have a fast decay rate.

3The imaginary part of Eq.~5.29! can be extracted directly from
Ref. @26#.
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VI. NUMERICAL RESULTS AND DISCUSSION

From the previous two sections, we have all the to
necessary for the evaluation of the partonic gap cross sec
Eq. ~3.1!, which we convolute with the parton distribution
and with the photon distribution in the electron, according
Eq. ~2.7!, to get the full gap cross section. The necess
numerical integrals have been performed with the rout
VEGAS. We have used the CTEQ4L parton distribution s
@27# for the proton, and the Glu¨ck-Reya-Vogt~GRV! leading
order~LO! set G@28# for the photon. For the interjet energ
thresholdQ0, which in our approach defines the gap eve
~see Sec. III!, we have considered several different valu
from Q05350 MeV up to Q051050 MeV, and we have
evaluated the related gap cross section as a function of
pseudorapidity difference between the jets,Dh. Figures
11~a,b! show our results for the gap cross section and
corresponding gap fraction. Both quantities increase with
creasingQ0, simply because a stronger limitation on interj
radiation leads to a stronger suppression of the result. Fo
most forward configuration of the dijet analyzed in Ref.@9#,
Dh53.75, the gap fraction, Fig. 11~b!, varies from about
10% at Q05350 MeV to about 25% atQ051050 MeV.
One may ask, for both the gap cross section and the
fraction, whether any of the plots in Figs. 11a,b fits the e
perimental data of Ref.@9#, for which, as discussed in Sec

FIG. 9. Plot of the real~top! and imaginary~bottom! parts of the

eigenvalues (l̂ i5l i /as) of the soft anomalous dimension matr
for q1q→q1q scattering. The solid line identifies the quas

singlet eigenvalue,l̂1, the short dashed line the quasi-octet,l̂2.
4-14
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III, the gap event is identified in a related, but different wa
With the choiceQ05350 MeV for the interjet energy, we
obtain reasonable agreement,4 as shown in Figs. 12a,b. Ob
serve that, in this situation,Q0 is not much larger thanL,5 in
Eq. ~3.1!. Results in this region, at the boundary with no
perturbative QCD, can be considered as smooth extrap
tions of perturbative QCD resummation.

In Fig. 13, the analogue of Fig. 3d of Ref.@9#, we show
again our gap fraction atQ05350 MeV, from Eqs.~3.1! and
~3.2!, and compare it with the result of a two parameter fit
the expression

f fit~a,b,Dh!5C~a,b!eaDh1b ~6.1!

4Figures 12~a,b! suggest that better agreement between theory
experiment is obtained for the gap cross section than for the co
sponding fraction. This is a consequence of the discrepancy
tween theory and experiment in the overall dijet cross section
Fig. 1, which appears in the denominator of the gap fraction,
~3.3!, and is obtained from the leading order approximation to
full partonic dijet cross section, Eq.~3.2!.

5For the QCD scale parameter we have used the valueL
5200 MeV, which coincides with the value ofL associated to the
CTEQ4L parton distribution set for the proton, and is not sign
cantly different from the value ofL associated to the GRV-G LO
set,L5235 MeV.

FIG. 10. Plot of the real~top! and imaginary~bottom! parts of

the soft anomalous dimension forg1g→q1q̄ scattering.
01400
.

la-

as done in Ref.@9#. We finda522.1 andb58.3%, not too
different from the values of Ref.@9#: a522.760.3 andb
5(762)%. Here, in analogy with Ref.@9#, we have im-
posed the constraintf fit51 at Dh52, meaning that the gap
cross section has to reduce to the full dijet cross section
the absence of a gap. Notice that this information is
encoded in Eq.~3.1!, because the last two factors on the rig
hand side do not reduce exactly to unity forDh52. This can
be seen from Eq.~2.15! and from the eigenvalues of the so
anomalous dimension matrices, Figs. 6–10. In the limitDh
→2, the real parts of the eigenvalues vanish, but the ima
nary parts do not, causing a slight suppression in the mi
terms (bÞg), of the hard scattering matrix in Eq.~3.1!. The
validity of our formula for the gap cross section, Eq.~3.1!, is
restricted to interjet rapidity widthsDy neither too small nor
too large. We will limit ourselves to theDh range 2.6
,Dh,4.0.

The reasons for these restrictions are as follows. Our
pression in Eq.~3.1! is the result of the resummation of loga

rithms of the soft interjet energy,as
n(2 t̂ )lnn(Q0 /A2 t̂ ),

which are assumed to be the only large, perturbatively d
gerous quantities in the problem. WhenDy→0, the gap
closes and the cross section becomes inclusive. More spe

cally, logarithms ofA2 t̂ would be suppressed by powers

d
e-
e-
f
.

e

FIG. 11. The gap cross section~a! and fraction~b! at different
values of the energy thresholdQ0 identifying the gap@see Eq.
~3.1!#.
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GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004
Dy. Analogously, whenDy→` ~i.e. Dh→`), terms of the

form as
n(2 t̂ )(Dy)n, coming from the eigenvalues of th

GS
(f) ’s, are large at each order in perturbation theory, and

need further resummations. We should also emphasize
the limit Dh→` corresponds to the Regge region of t
scattering, whenŝ becomes large at fixed momentum tran
fer, t̂ . Resummation in the Regge limit organizes logarith
of the form as

n lnn@ŝ/(2t̂)#, coming from the BFKL ladders

of gluons @6#. For double logarithmic terms likeas
n lnn@ŝ/

(2t̂)#lnn(Q0 /A2 t̂ ), which occur in Reggeized color octe
exchange, both BFKL resummation and our method give
same result.

Note that the suppression we find here is not double lo
rithmic in Q0 @29#. Rather, it comes from the exponentiatio
of single ‘‘soft’’ logarithms only, as shown in Eq.~2.13!.
The underlying physical reason is that a soft gluon emit
into the interjet region can never become collinear to eit
of the forward partons from which the jets originate.

Finally, in Figs. 14–17 we show the contributions to t
gap cross section, Eq.~3.1! at Q05350 MeV, from the dif-
ferent partonic processes studied in Sec. V. In each cas
give the full result and its decomposition into quasi-co

FIG. 12. The gap cross section~a! and fraction~b!, for the gap
identified by the energy thresholdQ05350 MeV, compared with
the data of Ref.@9#.
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components. We see that, as anticipated in Sec. V, the qu
singlet components, in all cases, give almost the whole
cross section at large values ofDh. It then becomes clea
that the parameterb58.3%, extracted from the fit, Eq.~6.1!,
can be associated with the asymptotic quasi-singlet fract
From Figs. 6–9 we see that at highDh the real parts of the
quasi-singlet eigenvalues are ordered, from the lowest va
of qq̄→qq̄ scattering, through the intermediate values
processesqg→qg and qq→qq, up to the largest value o
gg→gg scattering. In Figs. 14–17, the decay slopes of
quasi-singlet components of the corresponding contributi
to the gap cross section reflect the same ordering propert
a consequence of Eq.~2.14!. This observation indicates tha
gaps tend to be more easily formed with scattered quarks
antiquarks than with gluons@5#.

VII. CONCLUSIONS

In this paper, we have shown that it is possible to anal
the dijet rapidity gap events from photoproduction, observ
at HERA, by introducing an energy-dependent definition
the gap, as already done in Ref.@1# for the Tevatron events
The result we have found is perturbative, as the ordering
the different scales in Eq.~2.14! shows, with L,Qc

,A2 t̂ . The experimental behavior of the gap fraction
approximately reproduced by fixing the threshold of inter
energy, which defines the gap, atQ05350 MeV. Our result
also predicts how gap fractions increase withQ0. We con-
jecture that in photoproduction non-perturbative ‘‘surviva
effects from the interactions of spectator partons, which

FIG. 13. Analogue of Fig. 3d of Ref.@9#. The gap fraction of
Fig. 12~solid line! is redisplayed and compared with the result o
fit to an exponential plus a constant.
4-16
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DIJET RAPIDITY GAPS IN PHOTOPRODUCTION FROM . . . PHYSICAL REVIEW D61 014004
give rise to interjet multiplicity@18#, should be reduced with
respect to the case ofpp̄ scattering, because there is only o
incoming hadron. The experimental determination of
double differential cross sectiond2sep /dDhdQc , ~and re-
lated fraction!, Eq. ~3.1!, for different values of the interje
energy flow identifying the gap, as in Fig. 11, would offer
significant test of the perturbative dynamics of QCD rad
tion.
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APPENDIX: THE DENOMINATOR OF THE
GAP FRACTION—PARTONIC CROSS SECTIONS

AND PARTON LUMINOSITIES

In this appendix we will summarize for completeness
Born cross sections and corresponding parton luminosi
L (f) , for all the partonic processes contributing to the d
nominator of the gap fraction, Eq.~3.2!. We will consider for
the quarks four active flavors,nf54, and assume flavo

FIG. 14. Overall contribution to the gap cross section fromqg
→qg scattering~solid line!. Contribution from the quasi-single
component~dashed line! and from the two quasi-octet componen
~dotted and dot dashed lines!.
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symmetry. Correspondingly, the quark luminosities will
expressed as functions of the proton valence distributio
fu/p andfd/p , and of the sea distributions for both the pr
ton and the photon, respectivelyfsea/p andfsea/g . The ana-
lytic cross sections will always be of the form

dŝ (f)

dDh
5F2 cosh2S Dh

2 D G21

as
2~ t̂ !S p

2ŝ
D uM (f)~ ŝ, t̂ ,û!u2

5
p

2ŝ
F2 cosh2S Dh

2 D G21

3HIL
(f)
„
A2 t̂ ,Aŝ,m,as~m2!…SLI

(f) S Dy,
Qc

m D , ~A1!

where, in both equalities, the first factor is the Jacob

@d cos(û)/dDh#, and the rest is the partonic cross secti
dŝ (f) /d cos(û). The second equality defines the normaliz
tion of the hard scattering matrix in Eq.~2.11!. In the list
below, we will specify the invariant matrix elemen
squared,uM (f) ( ŝ, t̂ ,û)u2 @14,25#.

Processesq(q̄)g→q(q̄)g,gq(q̄)→gq(q̄):

L (f)5fg/g~fu/p1fd/p16fsea/p!18fsea/gfg/p

uM (f)~ ŝ, t̂ ,û!u25
û21 ŝ2

t̂2
2

4

9

ŝ21û2

ŝû
. ~A2!

FIG. 15. Overall contribution to the gap cross section fromgg
→gg scattering~solid line!. Contribution from the quasi-single
component~dashed line! and from the two quasi-octet componen
~dotted and dot dashed lines!. The contributions of the quasi 10

310̄ and of the quasi-27 component are not exhibited, because
are too small.
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Processesq(q̄)g→gq(q̄),gq(q̄)→q(q̄)g @observe that
they differ from the processes of Eq.~A2! by the exchange o
particles 1 and 2 in Eq.~4.1! and, correspondingly, of the
Mandelstam invariantst̂ and û#:

L (f)5fg/g~fu/p1fd/p16fsea/p!18fsea/gfg/p

uM (f)~ ŝ, t̂ ,û!u25
t̂21 ŝ2

û2
2

4

9

ŝ21 t̂2

ŝt̂
. ~A3!

Processgg→gg:

L (f)5fg/gfg/p

uM (f)~ ŝ, t̂ ,û!u25
9

2 S 32
ŝû

t̂2
1

t̂ û

ŝ2
1

ŝt̂

û2D .

~A4!

Processqq→qq:

L (f)5fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21û2

t̂2
1

4

9

ŝ21 t̂2

û2
2

8

27

ŝ2

t̂ û
.

~A5!

Processqq8→qq8:

L (f)53fsea/g~fu/p1fd/p16fsea/p!

FIG. 16. Overall contribution to the gap cross section fromqq̄

→qq̄ scattering~solid line!. Contribution from the quasi-single
component~dashed line! and from the quasi-octet component~dot-
ted lines!.
01400
uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21û2

t̂2
. ~A6!

Processqq8→q8q:

L (f)53fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21 t̂2

û2
. ~A7!

Processesqq̄→qq̄,q̄q→q̄q:

L (f)5fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21û2

t̂2
1

4

9

t̂21û2

ŝ2
2

8

27

û2

ŝt̂
.

~A8!

Processesqq̄8→qq̄8,q̄q8→q̄q8:

L (f)53fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21û2

t̂2
. ~A9!

Processesqq̄→q8q̄8,q̄q→q̄8q8:

FIG. 17. Overall contribution to the gap cross section fromqq
→qq scattering~solid line!. Contribution from the quasi-single
component~dashed line! and from the quasi-octet component~dot-
ted line!. Negative interference terms@1#, corresponding tobÞg in
Eq. ~3.1!, are not exhibited separately.
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L (f)53fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

t̂21û2

ŝ2
. ~A10!

Processesqq̄→q̄q,q̄q→qq̄:

L (f)5fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21 t̂2

û2
1

4

9

t̂21û2

ŝ2
2

8

27

t̂2

ŝû
.

~A11!

Processesqq̄8→q̄8q,q̄q8→q8q̄:

L (f)53fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

ŝ21 t̂2

û2
. ~A12!

Processesqq̄→q̄8q8,q̄q→q8q̄8:

L (f)53fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u25
4

9

t̂21û2

ŝ2
. ~A13!

Processesqq̄→gg,q̄q→gg
01400
L (f)5fsea/g~fu/p1fd/p16fsea/p!

uM (f)~ ŝ, t̂ ,û!u252
8

3

t̂21û2

ŝ2
1

32

27

t̂21û2

t̂ û
.

~A14!

Processesgg→qq̄,gg→q̄q

L (f)5fg/gfg/p

uM (f)~ ŝ, t̂ ,û!u252
3

8

t̂21û2

ŝ2
1

1

6

t̂21û2

t̂ û
.

~A15!

Processesgg→qq̄,gg→q̄q

L (f)52fg/p

uM (f)~ ŝ, t̂ ,û!u25
10

9

aem

as
S û

t̂
1

t̂

û
D .

~A16!

Processgq(q̄)→q(q̄)g,

L (f)5
4

9
fu/p1

1

9
fd/p1

15

9
fsea/p

uM (f)~ ŝ, t̂ ,û!u25
aem

as
S 2û

ŝ
1

ŝ

2û
D . ~A17!
s.
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