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Dijet rapidity gaps in photoproduction from perturbative QCD

Gianluca Oderda
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840
(Received 3 March 1999; published 29 November 1999

By defining dijet rapidity gap events according to interjet energy flow, we treat the photoproduction cross
section of two high transverse momentum jets with a large intermediate rapidity region as a factorizable
quantity in perturbative QCD. We show that logarithms of soft gluon energy in the interjet region can be
resummed to all orders in perturbation theory. The resummed cross section depends on the eigenvalues of a set
of soft anomalous dimension matrices, specific to each underlying partonic process, and on the decomposition
of the scattering according to the possible patterns of hard color flow. We present a detailed discussion of both.
Finally, we evaluate numerically the gap cross section and gap fraction and compare the results with ZEUS
data. In the limit of low gap energy, reasonable agreement with experiment is obtained.

PACS numbgs): 12.38.Aw, 12.38.Cy, 13.85t1, 13.87—a

[. INTRODUCTION that a full treatment of the Tevatron dijet gap cross section

requires us to include the contribution of processes involving

In a recent papefl] we have presented an explanation, gluons, which we postpone, for that specific problem, to
from perturbative QCD, of the dijet rapidity gap events ex-forthcoming work[8].

perimentally observed ipp scattering at the Fermilab Teva- ~ In this paper, we will apply our method to analyze the
tron [2]. These events consist of a pair of jets produced aPhotoproduction of two high transverse momentum jets with
very large momentum transfer, and separated by a wid@ 'arge intermediate rapidity gap. Events of this kind have
empty region, where barely any particle multiplicity is mea-2€€n reported ire"p collisions at the DESYep collider
sured. They were originally predicted from the exchange of !ERA [9]- Here, the quantity of interest is the gap fraction,
at least two gluons in a color singlet configuration, whic:hthe ratio of the number of d”f’t events with a large interjet
avoids color recombination between the jets and associatedfP to the total ”””.‘be.r of dijet events. The ZEU.S expert-
interjet hadronizatior{3]. A quantitative formalism to de- ment shows that, binning the gap events according to the

: S . width of the interjet empty region, the gap fraction, after an
scribe gap events, however, has been lacking in the I'teraturﬁ‘iitial decay, reajlches gr{ asgymptotic gplgteau. It has been

In Ref. [1] we have discussed the dependence of the Olijeghown in Refs[3,6] that the fraction of gap events from the

clrossi secI:tltor:j tonﬂ:he gznerg):j rovx;_ |Into ﬂl]te I‘?e_{]trf\illv rer?'onexchange of a color octet, Reggeized gluon falls off expo-
clearly related 1o the observed particle multiplicity. Ve avenentially with increasing gap width. The leftover asymptotic

shown .hOW to faptonze the partonic cross section into a har%xcess has been interpreted as the fraction of the color singlet
sg:atterlr)g function, accounting .for the dy”?‘m'cs of the xchange of a hard BalitsHadin-Kuraev-LipatouBFKL)
highly virtual quanta exchanged in the scattering, and a so omeror{6]. We emphasize here that the BFKL approach is

function, describing the soft radiation emitted into the Inter'complementary to ours, because it deals with the resumma-
jet region. Both functions are defined as matrices in the SpaGe ., of gluonic radiation, which, in our language, would be

of the possible color flows at the hard scattering, formalizingd ;
. escribed as hartsee Sec. VI beloyw
the idea, already expressed by other authors, that the color Applying the methods of Refd] to this problem is espe-

structure of the short-distance partonic scattering is noEially interesting, because, while the data for the Tevatron

“”(;quf"y de{ingo[tz_l,S].ﬂ;l' he s<|)ft fuqﬁtion ﬁﬂtai_nts, frj‘tt eaé:_h gaps show the dependence of the cross section on the interjet
order in perturbation theory, loganthms ot the interjet ra Ia'energy at a fixed gap width, here we will explore the oppo-

tion energy, which can be resummed, to give the dependencse?te dependence, a variable gap width at fixed energy. We

of the dijet cross section on the interjet energy flow. Thewill show that the factorization and resummation of the soft

resummation is driven by the eigenvalues and elgenvectorguoniC energy emitted into the gap leads approximately to

of a soft anomalous dimension matrix, defined in the SPaCH 6 pehavior of the gap fraction observed by the experiment.
of color flows. In Ref{1], we have performed the analysis of |, yqition, photoproduction is an ideal process in which to
this matrix forqg— qq scattering, which is the relevant par- analyze the contribution of gluons to gap cross sections. The-
tonic process in a valence quark approximationggrcolli- oretical studies of jet photoproduction have been pursued
sions. The result indicates that, in the limit of a very largesince the early 1980510-16 and are a very active area of
interjet region(corresponding to a very large parton center ofresearch. The dominant partonic mechanisms in photopro-
mass energy, compared to the momentum trapdfez color  duction are the direct and resolved scatterings: in the former
singlet component dominates, thus merging our picture, irtase the photon from the incoming lepton interacts directly
this asymptotic configuration, with approaches to the probwith the quark or gluon from the proton, and in the latter it
lem based on the Regge limit of QdB] and on the idea of fluctuates first into a hadronic state of low virtuality, acting
color singlet dominancg3,7]. We have already pointed out as a source of partons, which then scatter off partons from
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the proton. The precise experimental determination of the e+(I0A)+D(DB)—>9+(D/&)+31(I01)+Jz(p2)+Xgap,
partonic content of the photon is still an open problem, partly (2.2)
because it requires isolating the resolved component of the

scattering[10,15,17. However, existing data indicate that

: . . ' for the production of two jets at fixed pseudorapidity differ-
especially at low values of partoni; the dominant compo-

i i . - ence,Anp=mn,—1n,. We sum inclusively over final states,
nent of the photon is gluonicL2]. Correspondingly, we will e measuring thésoft) energy flow into the intermediate

see that for the resolved contribution, the scattering of Fegion between the jets. The boost-invariant pseudorapidity
gluon from the photon with a quark from the proton is domi- . . . . -
nant in the kinematical region of interest. Also the contribu-différenced fixes the partonic scattering angiethrough
tion from the resolved reactiogp+ g—g+g has to be taken the formula
into account, although it turns out to be much less important
in this case, because of the high transverse energy cuts ex- [
perimentally imposed on the jets. — =Incot 5. 2.3

One last important remark has to be made, about the issue
of survival[3,18]. In dijet gap events, the survival probabil- ) _ i _
ity is limited by the probability of no radiation inside the gap Following Ref.[9], the jets are defined by cones of radius
from the interaction of spectator partons. Such a probabiligR=1:0 in the »-¢ plane mapping the ZEUS calorimeter
. . — N detector. This constrains the interjet region to havpseu-
is estimated to be of the order of 10%pip scattering, if we doyrapidity width
require a truly empty interjet regidr8,18]. Presumably, for
ep reactions the number of spectator quarks and gluons is
reduced with respect tpﬁscattering, because of the partly Ay=A7n—2R. 24
leptonic nature of the initial state. Therefore our resummed
formula, which accounts for the amount of perturbative sur-The low-virtuality photons exchanged at the electromagnetic
vival from soft gluon dynamics, should be less sensitive tovertex of the interaction can be thought of as real particles of
these effects. energy E,=yE., whose spectrum is given by the
Throughout the paper, we will work in close correspon-Weiszaker-Williams formula[19,20
dence with the ZEUS experimental configuration described

in Ref.[9]. In Sec. Il, we will discuss the kinematics of the N2 2 _

problem, define the dijet gap cross section, and review its Foe(y _ Hem 1+d-y) |n(me"*(1 y))
factorization properties. In Sec. Ill, we will introduce the gap 7 2m y mf}y2

fraction, as the ratio of the dijet gap cross section to the

overall dijet cross section. We will also identify the partonic 2 1 (1-y)

reactions giving the largest contributions to both the gap and +2mey @(_ m2y? 2.9

the overall cross section. For each of these reactions, in Sec.
IV, we will present the explicit decomposition into hard and ) ] ] )
soft parts. In Sec. V, we will present the process-depender#€re dem IS tr21e electromagnetic couplingy, is the electron
soft anomalous dimension matrices and their eigenvalues arfiass, andQp,, is the maximum photon virtuality, deter-
eigenvectors, which govern the soft dynamics of the scatterhined from the(antjtagging conditions of the experiment.
ing. Finally, in Sec. VI, we will give numerical results for the From Ref.[9] we take the valu®?,,=4 Ge\2. The generic
overall dijet cross section, the dijet gap cross section and theifferential cross section for electron-proton scattering can
gap fraction. We will draw a comparison with the experi- then be viewed as a convolution of the photon distribution in
mental results of Ref9], and present our conclusions. the electron and the photon-proton cross section:

Ymax
Il. DIJET GAP CROSS SECTIONS daep(S):j dyF,e(y)do,,(S,p), (2.6
IN PHOTOPRODUCTION Ymin

A. Definitions whereSis the center of mass energy squared of the electron-

In this section we will introduce dijet gap cross sections inproton system, and wherg,,=yS is its analogue for the
photoproduction. We first recall the definition of particle photon-proton system. We use fgg,, and y, the values
pseudorapidity, given in Ref.[9], Ymin=0.2 andy .= 0.8.

0
n=In Cot( E) }, (2.2 B. Factorized cross section

For our specific case the inclusive cross section for dijet
events with transverse energy greater tkan rapidity dif-
where# is the angle of a particle momentum with respect toferenceA », and energy flow less thad,. in the intermediate
a fixed direction, typically the beam direction. We will con- region, of rapidity widthAy, can be written as followgl0—
sider positron-proton scattering 15]:
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C. Refactorization of the partonic scattering

In this section we will review some of the arguments al-
dir ready presented in Reffl,21-23, to show how it is pos-
P sible to perform a further factorization on the partonic scat-
[_(Qc’syp!ETvAy) . . ~ ~
dAn tering functionsdo(""/dA » anddo("/dA %, of Egs. (2.9
and (2.9. The underlying argument is that in the partonic
2.7) scattering the soft gluon emission decouples from the dy-
namics of the hard scattering, and can be approximated by an
_ effective cross section, in which each of the partons is treated
Here da‘i‘,;/dAn and do’;;/dA 7, are the direct and re- as a recoilless source of gluonic radiation. Formally, this is
solved contributions to the cross section respectively. In thequivalent to replacing each parton with a path-ordered ex-
former case the low-virtuality photon interacts directly with ponential of the gluon fieldeikonal or Wilson ling in the
the parton from the proton, whereas in the latter, as menproper representation &U(3), thefundamental representa-
tioned above, it acts itself as a source of quarks and gluonsion 3(3*) for quarks(antiquark$, and the adjoint represen-
which then scatter off the partons from the proton. The twoatation for gluons. In this way the hard amplitude is replaced
cross sections can be written in factorized forn{ #3815 by a sum of eikonal operatons/,,(x){ck}, depending on color

tensorsc,, which account for the color flow at the hard
scattering, times short-distance coefficient functions. The ef-
fective dimensionless eikonal cross sectidm the follow-

ing will refer to both direct and resolved procegsean be

dep o SE, A
W(QC’ ,Er,Ay)

Ymax
= f dyF,.e(y)

Ymin
res

+K’;’;(QC 1S'yp1ET1Ay)

)
9% 0.5 E- Ay)
G5 (Qe:Syp.Er Ay

- fzf L dqubfp,p(xp,—f) written as
pr'1:t2 Xp Q
i c _
- ol ==,Ay | =2 6(Qc—Eo(£))O|T[ (W, (0))],,11€)
da-('yf) R " M z i
XW(QC1tisi 733 vAyaaS(t)): (28)
X(€|TIw(0)4p,1/0), (2.10
and where we sum over all the final states subject to the con-
res straint of having energy less th&)y, in the interjet region of
(Qe Syp ET,AY) rapidity Ay, while cutting off all the remaining integrals at
dAn the ultraviolet scalg.. This makes the eikonal cross section
free from potential collinear singularities associated with
= > f dx“/f dXy 1 /5(Xy, — 1) gluon emission from the Wilson lines. The Latin indexes
fyfp.frfa JR Ryy i andL refer to the color structures of the amplitude and of its

complex conjugate. At the tree level, with no soft gluons, the
above formula reduces to the square of eikonal vertices, with
matrix elements given by traces of the color tensors in the
amplitudes.

In these terms, the partonic scattering function can now be

e . factorized into the product, in the space of color tensors, of a
In these formula and are parton distributions in . . ' . '
1,1y anddr,jp are p hard scattering matrix,H{" , accounting for the quanta of

th? photor?. and proton respectively, eYa'“_ated at the SCalehigh virtuality exchanged in the scattering, and a soft matrix,
—t, the dijet momentum transfer, which is related to theg(l

partonic center of mass energy squargdand the dijet ra-

L do® .
X ¢fp/p(xp1_t)m(Qc 1., nJJlAyraS(t))'

(2.9

pidity difference, A», according to the formulat d&(y?) A a A A
=(—s/2)[1—tanh(A7/2)]. The integration regions for the W(Q“t’s’ 732:8,a5(1))
partonic fractionsx, and x,, are denoted b)Rxp and ny 1
respectivelydo”?/dA 5 anddo"/dA 7 are hard scattering _T s cosﬁ(ﬂ)
functions, starting from the lowest order Born cross section. 25 2

The index f(yf) denotes the partonic proceds+f,—f;

+fo(y+f,—f1+f,). The detector geometry constrains the - Q

phase space for the dijet total pseudorapidity,= (7., XHffL)(\/—t,\/;,M,as(Mz)) ‘?(Ay,f>, (211
+7,3,)/2, with | 7755/ <0.75[9]. Similarly, the lower bound

on the transverse energy of the jeifs;, and the dijet pseu-

dorapidity determine the phase space for the partonic Cer‘terlThe normalization of the dimensionless hard scattering matrix,

of mass energy squared, with 4Efcosf(A7/2)<s  H(, can be found in EqAL) below. It differs slightly from the
<S,pexXp(27;)YEe/Ep. one used in Ref.1].
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where we follow the convention of the sum over repeated 0 20 « () «
indices. This factorization holds to leading powerAnQ,, Eop(An,Ay)= B—[)\a *(Anp,Ay)+Ng (An,Ay)],
with A the QCD scale parameter. We can identify a hard ! (2.15

scale,\/ —t, a soft scaleQQ., and a new factorization scale, . . o . .
w. The soft matrix,S,,, precisely coincides with the gauge Wherep, is the first coefficient in the expansion ofAthe QCD
invariant eikonal cross section of E@.10), B function, B;=%N.—2n;, and where we definag) by

9 0 AND=adQ+.... Observe that we have explicitly man-
(f,)(—C,Ay> = o {hel —C,Ay), (2.1  tained a distinction between the dependencéenandAy,

e 2 in spite of the fact that for this specific problem they are
related through the identity in Eq2.4). In fact A% can be
seen as a parameter of the hard scattefie¢pted to the
%cattering angle whereasAy, at fixedA 7, is a measure of
fhe width of the interjet region and, as such, has a geometri-

In general, corrections to the factorized expression in Eq
(2.11) are expected from three-jet final states, but since th
cost of adding an extra jet to the final state is at least on

power ofag(—t), they will be suppressed. cal interpretation. The matrig([§ in Eq. (2.14) is obtained
_ o by transforming to the new basis the zeroth o€ of Eq.
D. Evolution of the soft matrix in color space (2.11), which, as mentioned above, is just a set of color

The left-hand side of the factorized expression, @dL1), trac((gs._lThe cr(lgmge of basis goes through the matrix
is independent ofz. This means that thg. dependence of ((R™) ™ Mkpg=(€y’)x . according to the formul23]
the two matricesH{{ andS), must cancel in the product. (0 r /o1t oftd) .
We thus derive foS” the evolution equatiofil] Sap =[(( RO™HNan SN (R?) g (2.16

P P Analogously, we take for thel{"Y's the squares of the Born-
(,uﬂjt,s(g)@) S =— T sh—sOTd),, level amplitudes, represented in the foriginal color tf)asis. In
(2.13  the diagonal basis, each hard matr;” becomesH (),
defined by

where F(Sf)(as) is a process-dependent soft anomalous di-
mension matrix. Solving this equation will enable us to re-
sum all the leading logarithms of the soft sc&k. It is
convenient to treat Eq2.13 in a basis which diagonalizes
I'd(ay). Following Ref.[23], we denote by Greek indexes
the basis of the eigenvectors 10 (), {|€)}, corre-
sponding to the eigenvalues . We then transform Eq.
(2.1 to this basis and solve the evolution equati@l3

for SO, by integrating with respect te. between the soft

scaleQ, and the hard scalg —t, to get

HED = (RO) 5 HED(ROT),,,. (2.17

Observe tha8"® andH"Y both acquire a\y dependence
through the change of basis.

The relevaniA » dependence on the right hand side of Eq.
(2.14 is contained in the exponen®&;, Eq. (2.15. We
will see below that, for all the partonic processes, the real
parts of the eigenvalues df{(a,) in the exponents are

positive definite functions, with boundary value Iﬁ%{)
=0 atAn=2(Ay=0). Then, sinc&d,<\ -1, the last line

doh in Eq. (2.14 acts as a suppression factor. Specifically, the
dAyp (Qc,st,735,AY, (1)) eigenvalue with the biggest real part will drive the strongest
n

suppression for the component of the scattering oriented
along the direction of the corresponding eigenvector. As we

-1
:l 2 cosﬁ(ﬂ” shall see, most of the relevant information about the
2s 2 behavior of the cross section is derived from the properties of
the soft anomalous dimension matd?(«,), which we
xS H‘,J;}’(Ay,\/§,~/—f.as(f))8§£)(Ay) will study in detail in Sec. V.
a,B
S0 lIl. THE GAP FRACTION
Q. VA [—3)\] Fer _ _ _ _ _
X1ln N In N . (2.19 We will be interested in the evaluation of the gap fraction,

defined as the ratio of the number of dijet events with a
The double differential cross section of Ref.l], specified “’?‘pid“y gap to th? total nu_mber of dijet events. A
27( . o . gap event is usually identified experimentally by the lack of
d“o,p/dA7dQc, giving the distribution of dijet events as a paicle multiplicity in the interjet regioi2,9]. The multi-
function of interjet radiation and rapidity interval, can now plicity is determined from the number of calorimeter cells
be obtained by differentiation of t{hIS |dgnt|ty with respect. t0\which measure energy deposition above a threshold, 300
Qc. In the above formula the kinematical cuts on the jetsy\jev in the case of Refl9]. Therefore, the condition for a
require the minimum value oi/——f to be exactlyEt (Et gap event is the absence of such cédisclusters of cellsin
=5 GeV in Ref.[9]), still much larger tham\. The expo- the rapidity region between the jets. Our formulation of the
nentsE(); are given by problem, Eq.(2.7), is in terms of the total interjet flonQ,.,
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of hadronic radiation, which is clearly related to particle 10*
multiplicity. In analogy with experiment, we introduce an ]
energy thresholdQ,, which is different in principle from the
experimental calorimeter threshold, and identify a gap event
from the condition of interjet radiation less th&y. From
Egs. (2.7), (2.9, (2.9 we see that the dependence on the
interjet radiation is all in the partonic scattering, Ef.14).
Then, in order to get a dijet gap cross section, we just need to
evaluate Eq(2.14 at the threshold valu®, of the interjet
energy flowQ,:

do/dAn (pb)

d(}(fg),gap L R
dzn (QO!SItanJIAyiaS(t))

—1
= iA 2 cosﬁ(ﬂ”

2s 2
x> HED Ay, V5,V —T,adD)SID(AY)
2 [ 3]
— In .

A A

—

0*

X (3.2 10* +——r———+r—r—rr— T

20 25 3.0 35 40
An

In

The denominator of the fraction is also obtained from Eq.
(2.14, this t'mF evaluated at the maximum valueQf, the FIG. 1. The overall dijet cross section compared with the ex-
hard scaley—t. Values ofQ, above this scale would break perimental data of Ref9].
the premise underlying the factorization in Eg.11), since
the emission into the interjet region would not be soft anyresult we have found, shown in Fig. 1, is in reasonable agree-
more. By performing the substitutiad, = \/— in Eq.(2.14  ment with the data points from Reff9]. Here it should be
we find the full leading order partonic dijet cross section ~€mphasized that, for the overall dijet cross section and also,
as we will see in Sec. VI, for the gap cross section, correc-
do®® ~ tions are expected from next-to-leading order contributions
Kyp(s,t, 733,4Y,a4(t)) to the hard matrix10-12,14,1% However, the gap fraction
n should not be too sensitive to them.
Ap\1t In Fig. 2 we show the partonic reactions most relevant to
2 cosﬁ(—” the overall cross section, evaluated on the A} range. For
2 the A » range of Ref[9], A »>2.0, Fig. 3 clearly shows that
it is sufficient to consider the contributions from the direct

(f.1) SA/—1 1)) sh0) -
X Hie (Ay,\/;, Lag(1)S,5"(AY), 32 process;y+g—q-+d, the resolved gluon-initiated reactions,

where, from Eqs(2.16 and(2.17), for each partonic process 7 9—0d+9 andg+g—g+g, and the quark processes,
the trace identityH §VS{2 =H{{S(,? holds, which is pro-  +d—q+q andq+qg—q+q. These will also be the domi-
portiona| to the |eading order partonic Ccross Sec(m also nant contributions to the numerator of the fraction, which
Sec. IV and the AppendjxAfter summing the gap and total differs from the denominator only by the last two factors in
cross sections over partonic subprocesses, as in (Bdg. Ed. (3.1), depending on the soft dynamics of each specific

o

2s

and(2.9), the gap fraction has the form partonic reaction. The determination of the gap cross section
will require an analysis of the partonic scattering in terms of
dag%” color flow, to be found in the next section, and the knowl-
dA 5 (Qo:SEr.Ay) edge of the spectrum of the process-dependent soft anoma-
f9P= d . (3.3 lous dimension matrices, to be discussed in Sec. V.
g
dAep(SrET vAy)
7 IV. LOWEST ORDER HARD AND SOFT MATRICES

. . . . IN COLOR SPACE
In the numerical evaluation of the denominator of this frac-

tion, we use, for each partonic reaction f in E§.2), the In this section, we present the color decomposition of the
invariant S-matrix elements squared, and corresponding pahard scattering for the resolved partonic processes that have
ton luminosities,L (", summarized for completeness in the been shown above to give the dominant contribution to the
Appendix. We have used four quark flavons=4, and have dijet cross section in thé » region of interest. For each
assumed flavor symmetry for the sea quarks. The numericalase, we will define a basis of color tensoitc(f),)}, and
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10* 5
10° 4 S
E N
3
S—
[
D 105 S SN =
(=] ~ N
~ \\ \\
g ..\‘\4 \\
B RN 10°
T 10! RN S ]
ﬁ.\,.
10°+ N
10-1 T T T T T T T T T
0 1 2 3 4
ATI 102 T — T v T T T T T
2.0 25 3.0 35 4.0
FIG. 2. The contribution of the different partonic reactions to A
the dijet cross section. AA =0 we can identify, from top to
bottom, the overall resulsolid ling); the contributions ofy+g FIG. 3. The dijet cross sectiofsolid line) and the result ob-

—>q+a(dotted ling, g+g—q+g (dashed ling q+g—g-+q (dot tained by dropping from Fig. 2 the contributions of the direct pro-
dashed ling g+g—g+g (double dot dashed liney+q(q)—g cessy+q(q)—g+q(q), and of the resolved reactiog+g—g
+q(q) (short dashed line g+q—q-+q (short dotted ling g+q  +9 (dotted ling.
—q+q (short dot dashed lineHere the two reactiong+g—q
+g andq+g— g+ q differ from each other by the exchange of the It will also depend on the QCD running coupling evaluated
Mandelstam invariantd and 0 [see Egs.(A2) and (A3) in the  at the hard scale,{t)"2 according to the formula
Appendix.

2

O I~ DYIA]

give, in this basis, the Born level hard matrkt{"?, whose (4.2

elements come from the squares of the color-decomposed

tree amgl(;)tudes. We will also give the zeroth order S(?I}) MAEor each process, it is straightforward to check that the color

trix, (f)' i defined by the set of trages | trace over the product of hard and soft matrices gives, as
=Trl(c(")'ci”’]. The knowledge of these matrices is ot gypected, the tree level invariant matrix element squared of
only crucial for the evaluation of Eq$3.1) and (3.2), but e Appendix[25].
will be important for threshold resummation in jet produc-
tion as well[24].

For the color tensors, following Reff23], we will find it
convenient to usé-channel bases. In terms of momentum  For the partonic process+ g— q+g we define the basis
and color, we label the partonic process f according toof color tensorg23]
f(0ara)+fp(le.re)—=fa(pa1,ra) +fa2(p2.ra), where
{Ia.ral, {lg.ret({pP1.r1}.{P2.r,}) are, respectively, the mo- C1=0r, 1,00y .1,
menta and colors of the incomin@utgoing partons. The
hard matrix will be expressed in terms of the partonic Man-
delstam invariants

A. Hard and soft matrices for qg—qg

_ c
Cz_drBrzc(TF)rer

—i c
§=(|A+|B)2 C3_|frBrzc(TF)rerv (4-3)

wherec; is thet-channel singlet tensor, arey andc; the
t=(l,—py)? symmetric and antisymmetric octet respectively. Here and
below, we suppress color indices on thés. In this basis the
. Born level hard scattering can be described in color space by
u=(lo—py)>. (4.1)  the matrix

014004-6



DIJET RAPIDITY GAPS IN PHOTOPRODUCTION FROM.. .. PHYSICAL REVIEW b1 014004

1 1 2
1 9X1 3X1 3X2 CGZPBA(rA'rB;rl'rZ):%frArlcfrBrzc-
H(l)(\/__f' \/g ag(t)= 4_8a§(f) ixt x1 2x2 |,
ix2 2x2 X3 C7=Pio1dTa B r1,12)
(4.9

:_(5r r é\r r _5r r 5r r )__fr r cfr r,co
with xq,x2 and y; functions of the partonic Mandelstam 2" a2 Az 3 AT e

invariants: Ca=PorT sl T 1u )
t2 1 1
X1= _g :§(5rAr35r1r2+5rAr25rBr1)_gﬁrArlérBrz
o N2 32 3
X 1—§_u__lt_ 5 rariclrgrge: .0
? t st 2su
The last five elements of the basis are trehannelSU(3)
T projectors for _the decomposition inFo irreducible representa-
X3=6-8= — — (4.5  tions of the direct product 88, which corresponds to the
t* su color content of a set of two gluons.

In this basis, the hard matrix has the block-diagonal struc-

It is easy to see that, in the limit of forward scatterinyy{  ture

—), the component of the hard matrix in the color direc-

tion of the antisymmetric octet becomes dominant, since it is = & o O3x3  Osxs
22 d H(l)(v—t,\/;,as(t))z g (1X) , (4.8
ot ?). Osx3 Hsys
The zeroth order soft matrix, on the other hand, is given
by where the 55 submatrixH{Y; is given by
No(N2—1) 0 0 HEs(V=1,V5,a4(D))
NZ—4)(NZ—1
0 M 0 Ix1 3 X1 3x2 0 —3x1
s0= 2N; ' 9 9 9 3
N, 1 2 X1 7 X1 ixz 0 —3xa
0 0 —(N2-1 _
2 (Ne 1) _Eag(t) IX2  iXxe Xxs 0 —3xz |
(4.6 0 0 o 0 o
whereN.= 3 is the number of colors. —3x1 —3x1 —sx2 0 x1
. 4.9
B. Hard and soft matrices for gg—gg
For this process, a suitabiehannel basis of color tensors With x1.x2 and x5 defined by
has been defined in Rdi23] to be an mnoa
tu st t2
X1— l— 7 - TZ + =
C1:Z[fr/_\rBIdrlrzl_drArBIfrlrzl]v S u su
st tu +02 s?
X2: ~, A5 A~ T A~
Co= Z[frArBIdrlrzl+drArB|fr1r2|], u? s?2 st tu
27 o su+1fa+1éf
C3= Z[frArlldrBrzl+drAr1IfrBr2I]- X3™ 4 12 45 42
L L9 a2+g2 1%2) 410
C4=P1(ra.Tg;ir1,ra)= §5rAr15rBr21 2\st tu 2su/ '
Once again, it can be noticed that the component of the hard
Ce=Pg (Fa,Fail1,fy)=—d d scattering in the color direction corresponding to the anti-
5T T8 ATB L2/ 5 AT gl oC symmetric octet dominates in the forward limit.

014004-7



GIANLUCA ODERDA PHYSICAL REVIEW D 61 014004

For the zeroth order soft matrix, straightforward color while in the case ofqg—qgq, related toqg—qq by the
traces withN.= 3 colors give crossing transformatios— U, they are given by

-5 0 0 000 0 O 22, 22
0 -5 0 000 0 O Y= e
0O 0 -5000 0 O
o | 0 0 0 1000 0 _8§2 8 s+1?
SZl'o 0o o0 080 0 o XT3 e
0O 0O O O0O0S8 0 O . . .
0O 0 0 00 O0 20 0 232+uz+2S2+t2 45 4.1
Xs=2 5ty T T3y (4.19
0O 0O 0 0O0O0 0 2

In both cases, for forward scattering, the component of the

(4.11
We notice that the first three color tensors of the basis, Ethard matrix along the color octet direction becomes domi-
0

(4.7, have negative eigenvalues, while the eigenvalues
the projectors count the number of color states belonging o
each irreducible representation. In fact,c, andc; of Eq.

For the lowest order soft matrix, after color tracing, we
d the common simple forr]

(4.7) decouple from the physical cross section. Equation N2 0
(4.8) supports this interpretation, since the components of the g0 = ( ) (4.16
Born level hard scattering along these color directions vanish 0 Z(Ng—1)

identically, reducing the dimensionality of the problem, in
color space, from &8 to 5x5. In principle, from Egs.

(2.16 and (2.17), the original dimensionality could be re-
stored after the change from the color basis to the basis of the In this section we shall describe how to compute the

V. SOFT ANOMALOUS DIMENSION MATRIX

eigenvectors of the soft anomalous dimension maifrix,
We will show below that the structure of the specifig for
g+g—g+g prevents this from happening.

C. Hard and soft matrices for qq—qq and qg—qq

process-dependent soft anomalous dimension maﬁ@,
[8]. The u independence of the left hand side of E2.11)
implies that the matricesl(? and S renormalize multipli-
catively,

HO =z 1), cHO (20 1)1,

Both processes can be conveniently treated in the

t-channel singlet-octet bagig3]

C1= 5rA,r15rB,r2
1 1
Co=— 2_N65rA,r15rB,r2+ §5rA,r85rl,r2-

(4.12

In color space, the hard matrix has the form
o 5 e L, Ea sxe
HOM =1, Vs, iD= g ad(D) ,
X2 X3
(4.13

where, in the case afg—qq, x1, x» and x3 are defined by

o X®

t2+0?
X1= —=5
S2

u? 8t2+u?

X2=8§—§ 2
2§2+02+2 t2+02 412 i1
Xs=e "9 2 3% (4.14

SO =(Z ") LeSEAZn1, (5.2)
where the superscrigB) identifies the bare quantities, and
Zg)CD is a matrix of renormalization constants, describing the
renormalization of the soft function, i.e. the eikonal scatter-
ing, Eq.(2.12. The one-loop anomalous dimensibty is
obtained from the residue of the UV pole contained in the
matrix ZJ ,

d

(T (g)=- g 79 Res .o(Z9).i(g,€).

(5.2
From Eq.(2.10 we see that the potential sources of UV
divergences are the virtual vertex corrections to the eikonal
color-dependent operatovs,(x){ck}, and also the real cor-

rections, when gluons are emitted into the forward region of
the scattering, because the eikonal cross section(ZEH0),

is completely inclusive with respect to the amount of forward
radiation.

The Feynman rules for the evaluation of eikonal diagrams
have been presented in R¢R3]. The necessary one-loop
calculations are illustrated in Figs. 4 and 5: given the two
color verticesc, andc,, corresponding to the hard ampli-
tude and to its complex conjugate, we build the eikonal cross
section from the product of the color-dependent eikonal op-
erators,w,(x){ck} and (WL(x){Ck})T, Eqg. (2.10, and we com-

014004-8
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FIG. 4. Real corrections to the eikonal scattering, qL0. For B 2 ) B B 2 ) B
brevity, we only show half of the contributing cut diagrams. The ] ] ) )
remaining ones can be obtained by Hermitian conjugation of each FIG. 5. Virtual corrections to the eikonal scattering, £2,10.

of the above graphs, i.e. by reflection with respect to the final stat&0r brevity, we only show half of the contributing cut diagrams.
cut. The remaining ones can be obtained by Hermitian conjugation of

each of the above graphs, i.e. by reflection with respect to the final
pute the diagrams obtained by adding one extra real or virstate cut.
tual gluon, shown respectively in Figs. 4 and 5. Working in
Feynman gauge, the self-energy diagrams do not contributeelate to the behavior of the cross section, €414). For the
because they are proportional to the invariant mass of eaQIj]rect reactiony+ g*)q-f-a which has 0n|y color octet con-
lightlike eikonal line. tent, 'Y will reduce to a function, related by crossing to the

. From the loop integration, it_ is_easy to see that the UVgpft anomalous dimension computed in R&6] for direct
divergences from the gluon emission diagrams and from th%hoton production.

virtual diagrams, with the gluon emitted and reabsorbed be- \ye will see below, for all the resolved reactions, that the
tween an incoming and an outgoing eikonal line, are real. ORjgenvectors of s are mixed color states, and that their color
the other ha_nd, the coeff|C|en_t of the UV pole from virtual composition is a function of the gap width only, through the
d|agr§1ms, ywth the gluon emltted _and rea}bsorbed betwee""geometrical” parametery. We have already pointed out
two incoming or two outgoing eikonal lines, also havein gq. (2.4) that, in the experimental configuration of Ref.
imaginary parts. Since the imaginary part of the soft anomarg) A , fixes Ay, leaving us with only one independent pa-
lous dimension matrix comes only from virtual eikonal dia- g meter. We should emphasize, however, that for the case of
grams, it can be extracted directly from R¢23], where e Tevatron rapidity gagd,8], where the gap is taken fixed
contributions tol's are computed, for most partonic pro- i, the calorimeter detector, and is independent of the dynam-
cesses, from the virtual corrections to the eikonal operatorg.g of the scattering, the eigenvectors have the same form as
W (X)(c,y- The real parts of the UV divergences coming, for this problem. Below, we will find it convenient to refer to
respectively, from virtual and real emission diagrams parthe eigenvectors as “quasi-color” statéguasi-octet, quasi-
tially cancel in the sum, leaving a remainder which is a func-singlet, and so onidentified by their behavior in the limit of
tion of Ay, the width of the interjet rapidity region, where asymptotically large gap regions, where they reduce to pure
the gluon radiation is measured, and of the scatteringeolor states. We will discover that the eigenvalue with the
dependent parametérs. smallest real part always corresponds to the quasi-singlet ei-

We will now present, for each of the partonic processesyenvector, and we will show, from the discussion in Sec.
relevant to the dijet cross section, the resultfd? , and the 11 C, that the related component of the hard scattering is the
analysis of its eigenvalues and eigenvectors, which we wilbnly one to survive for large values dfy.

014004-9
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A. Soft anomalous dimension forqg—qg

In the basis of Eq(4.3), the one-loop soft anomalous
dimension matrix is

a P1 Nci 7
Ts(AnAy)=5— NZ—4 :
4i ¢
™ Ng lm  P1

(5.3

where the functiong, and¢; are defined as follows:

§1(Ay)=N(i7—24y),

faniA i) +tanhay2)
p1(A7,4y)=2Ncln tani(A 7/2) —tani(Ay/2)
C2NZ-1 N2+l
+lm -
N¢ 2N
| tanH A 7/2) + tanH( Ay/2)
""" tank(& 7/2) —tant(Ay/2)

1—-taniAy/2)

"\ Trantay) °9

While the first function depends only on the rapidity width of

the interjet region, the second also depends on the hard scay;

tering throughA #.
The eigenvalues of the above matrix are given by

as[2p;+ & i -
M(A7AY)= | =+ (s, +5y)
as[2p1+ & i _
No(A7mAY)= o= =5 +(e" s, +5,)
ag[2p,+ ) ]
Na(B7Ay)= o B4 (syretnisy) |

(5.9

wheres; ands,, in theAy range of Ref[9],2 Ay<2, are the
functions

2

si1(Ay)= él +_(N —8)&;+ %(N§—4)§14

gl(N“ 28N2+88)+

1/2]1/3
(N +4)3 }

(5.9

2The definitions 0%, ands, given in Eqs(5.6) and(5.7) are valid
for Ay<4+/10/15, the branch point of the square root on the right
hand side of Egs(5.6) and (5.7). For larger values ofAy, the
square root picks the second branch definition. Consequestly,
ands, are switched.

PHYSICAL REVIEW D 61 014004

Re ()

An

FIG. 6. Plot of the realtop) and imaginarybottom parts of the
genvalues X;=\;/ag) of the soft anomalous dimension matrix
for q+g—q+g scattering. The solid line identifies the quasi-
singlet eigenvalue),, the dashed and short dashed lines the two
quasi-octetsk, and As.

and

2

gl 2
7(N°_

sy(Ay)= +—<N2 8)&— 4)¢,*
1/2}1/3

§1Z(N4 28NZ+88) + >3

(N2+ 4)3

(5.7)

The eigenvectors corresponding to the eigenvalues of Eq.
(5.5 can be written in unnormalized form as

2im
AAy—2im+e?™3(s,+s,)
3im
—2Ay+im+ed™(s,+s,)
1

2im
4Ay—2im+ (e85, +s,)
3iw
—2Ay+im+(ef™s,+s,)
1

€r,=

014004-10
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cause their real parts grow much faster. In fact, we will see in

2i
- il yr Sec. VI that, in this situation, only the quasi-singlet compo-
4Ay—2im+(s;+e"™sy) nent of the scattering survives.
€3= 3im (5.8
- B. Soft anomalous dimension fo
—2Ay+iﬂ+(%+EMﬁ%ﬁ - - 9g—ag
We work in the basis of Eq4.7). The structure of the
1 soft anomalous dimension matrix is block diagonal:
They depend only on the geometrical paramétgr It can Taxs Osxs
be easily checked that in the limkty — oo they become pure A %AY):( ) , (5.9
color statese; a singlet,e, ande; antisymmetric and sym- Osxs  I'sxs
metric combinations of the two color octets in the basis, Eq. ith th trixT" . b
(4.3). However, for the values oAy we are interested in, wi € matrixi 3x3 given by
they are color-mixed states. Following REE], we will refer o
A . 3p,—3im 0 0
to e; as the quasi-singlet, and & andes as the two quasi- as
octets. Numerical values of the real and imaginary parts of F3X3:E 0 —3(&2—p2) 0 :
the eigenvalues are represented in Fig. 6. According to the 0 0 3p,+3im
discussion at the end of Sec. Il D, the quasi-octet compo- (5.10
nents of the hard scattering, for large valuedgf will have
strong suppression factors, compared to the quasi-singlet, band the matrix's. 5 given by
|
3é+pot2im 0 —12i7 0 0
0 3p» -3im —6im 0
1"5><5:2a_; - %l’iT -3im 3p2 0 — %l’iT (511)
0 —%lﬁ 0 _3(52_[)2) —%l’ﬂ
0 0 —fim —%im  3p,~5&

The functionsé, andp, are very similar ta¢; andp, of Eq.
(5.4,

E2(Ay)=im—2Ay,
tanh A #/2) +tanhAy/2)

P2 A AY) =2 1N o) —taniAyiz) | TS T
(5.12
The eigenvalues of the matrix are
A= he=32 i
1=A5= 27T(P2 i)
as

7\2:)\4:3E(P2_§2)
N3=Ng=32 (ppti
3= A= Z(Pz i)

ag
)\725(3132_&_4772)

as
Aszz(3pz_§2+4ﬂ2)a (5.13

where we have introduced the following function of the in-
terjet rapidity:

7= n2(Ay)=2VAY*—imAy — 7. (5.14

Because of the block structure of the soft anomalous dimen-
sion matrix, the eigenvectors corresponding to the first three
eigenvalues coincide with;,c, andc; of Eq. (4.7), while

the remaining eigenvectors have zero components along
these color directions. Correspondingly, the structure of the
matrix R~ and consequenthR”, of Egs. (2.16 and
(2.17), is block diagonal,

13><3 03><5
R(f)lz( _ (5.15
Osx3 RO5%s

Referring to the discussion below EG.11), and to Egs.
(2.16 and(2.17), we see that the dimensionality of the hard
scattering remains 85 after the change from the original
basis to the basis of the eigenvectord'@f, because the soft
dynamics of the physical and unphysical color modes are
completely decoupled. Here, once again, the eigenvectors
depend only on the gap widthy. Explicitly, we find

014004-11
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i1
e=| 77|, i-123
R ECERD S
0®)
0®
ei:(efm), i=4,....8. (5.16
Fore{®,el> andef® we have the simple results
0 —15
3 15 [ 2i7
2 4\ 5 Y
(5) — 0 (5)— 15i
e , € _ :
4 , 5 —— (2im—2Ay)
3 3iAy 4w
4 27 3
1
—15
6+ 19 A
2 y
B)= 15 5.1
e :
By (5.1
2
-3
1

It is easy to see that for large interjet regioﬂw&oo)e&‘r’) is
oriented along the 2010 color component, while(55) and
e§35) are respectively symmetric and antisymmetric combina:
tions of the & and 8, color components. The last two eigen-

vectors have a more complicated analytic form
el®=g®
(5.18

e =e®

27

7T2[32Ay4— 16iAY3(47+in,)

— 47 Ay?(197* 6i 77,)
+ 472 Ay(11r £ 5i 9,) + (137 6i 7,) ]

5 27 ) )
(€2)2= [~ 4Ay?—2Ay(=2i 7~ 75)

+7(37xin,)]

9
(e(f))fm

+27AY(*+675,— 17 7)— w2(1lmr £ 7i5,)]

[24iAy3+12Ay%(3 7+ 7,)
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FIG. 7. Plot of the realtop) and imaginarybottom) parts of the
eigenvalues X;=\;/as) of the soft anomalous dimension matrix
for g+g—g+g scattering. In both plots the solid line identifies the
quasi-singlet eigenvaluﬁg, and the dotted line the quasi-jva. In
the plot of the real parts the dashed line identifies the two degener-

ate quasi-octetsys andAg, and the short dashed line the quasi 10

+10. In the plot of the imaginary parts the dashed line corresponds
to both the quasi-octefts and the quasi 1610, whereas the dot
dashed line identifies the other quasi-ociet,

—97 . ,
N (2iAy+ 7=*2in,)

(e(irS))4:

(e)s=1. (5.19

In the denominators, the normalizatid¥, is given by

N.o=—28Ay2+4iAy(Tm=in,)+ m(3lm=2i17,).
(5.20

It is easily checked thae®, in the limit of a very wide
interjet region, reduces to a pure color singlet state, while
egs) points to the 27 color direction. Again, for typical values
of Ay, these eigenvectors are not pure color states, but rather
reflect mixing between the different color components of the
hard scattering. From the eigenvalues of E%13), plotted

in Fig. 7, we can see, as already fp#-g—q+g, that the
quasi-singlet component of the scatteriru§5,), dominates

the others in the limit of large gaps.

014004-12
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C. Soft anomalous dimension forqE—»qa Re (A)
In the basis of Eq(4.12, the soft anomalous dimension 1.7s
matrix is o
1.5 e
Cr. 1.25 /'/
as | potéo —4—im : 7
Is(An,Ay)= ; Ne " |, (5.20 .
—8im  po—éo 0.75 ////
where the functiong, and py are the analogs of those in 0.5 ,
Egs.(5.4) and(5.12, o 25 //,,,
CON2-2 An
Eo(Ay)=—2NAy+2im——, 2.5 3 3-8 !
C
Im(X
2  NZ-2 0. 5( )
po(An,Ay)= Ay —2im—G
C c 0
+2|\|§—1 tanh( A 7/2) +tani Ay/2) 0.5
N, n tani( A /2) —tanh Ay/2) |

(5.22

In particular,pg, which depends on the scattering angle, dif-
fers slightly from the corresponding function computed in
Ref. [1] for the Tevatron gaps, because of the different un- -2.5

derlying kinematics. On the.ot'her ha@g, depending only , AR
on the geometry, throughy, is identical. The two eigenval- 2.5 3 3.5 4
ues are FIG. 8. Plot of the reaftop) and imaginarybotton) parts of the
elgenvalues )(, \ilag) of the soft anomalous dimension matrix
1(A7],Ay)— 2po — N ng_gchﬂ.Z f(?r q+q.—>q+q sE:atterlng. The solid I.|ne |dent|f|e§ thf: quasi-
2 \/— singlet eigenvalue),, the short dashed line the quasi-octet,
ag |l 1 D. Soft anomalous dimension forqg—qq
Na(A7,Ay)= 52| 5 pot ———=\Ne&5—32Ce 7, | _
2m(277 2N, In the basis of Eq(4.12, the soft anomalous dimension
(5.23 matrix is
corresponding to the eigenvectors ., A Cr
potéo T AN
1 . Ag c c
TAnAy)=~ i |
-1 8iT pr _ gr _ I
e 8w 1 0~ %o
— — N [&o(Ay)]2—32C, 72 Ne
i (EO \/N—C C[§0( y ] F (525)

where the functiong} and £ are

i( ! — N Ay)]>—32C )
o JN—C c[€o(AY)] FT

a
1 Eo(Ay) = —2NcAy,
(5.29 ¢
which coincide precisely with the ones given in REf], 2 NZ—
since they depend only on the geometric paramater In po(An,Ay)= NCAY+ 2
the limit of an asymptotically large gap; becomes a pure ¢ ¢
color singlet state, while, orients itself along the octet di- tanh A /2) +tanh(Ay/2) .
rection. Referring toe; and e, as quasi-singlet and quasi- [ n tanr(AnIZ)—tanr(AyIZ)) 2i }

octet, and looking at the behavior of the real parts of the
eigenvalues, Fig. 8, we can predict that, also for this partonic (5.26
process, the quasi-singlet component of the scattering in Eq.

(2.14 will dominate the quasi-octet in the large gap limit. The two eigenvalues are

014004-13
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as (1, 1 - — Re ()
N(An,Ay)=o— EPO—W\/Nc 0o —32m°Ce—
L c C ]

1.5 /’
1.25 /"/
nadmay = Lo L e - A '
20A7,Ay)=5—|5pot ——=VNc&o" —32m°Cr— :
2m| 277 2N, Ne | 0.75} 7
(5.27)
0.5[ ,,/’"
which correspond to the eigenvectors o a5 ’
47C 1 -1 2.5 3 3.5 4 AT)
F
——| &+ —V 62—32772CF)
e, = INe VN, Tm(X)
1 3.5¢
3_\
1 2.5
e2: INC , 1 7 > .
Gmce| & Vs 32m2C, o
k2% e
L5 e
Notice the similarity with the procesqg—qg. We can : , , an
2.5 3 3.5 4

again identify ine; the quasi-singlet and ie, the quasi-

octet. For large gaps, the quasi-octet component of the scat- £, 9. plot of the realtop) and imaginarybottom) parts of the

tering will be strongly suppressed with respect to the quaSiéigenvaIues)Zi=Ai /ag) of the soft anomalous dimension matrix

singlet, because the r_eal part of the (_:orresponding eigenvalqgr q+g—q+q scattering. The solid line identifies the quasi-
grows much faster witid , as graphically shown in Fig. 9. singlet eigenvaluel ;, the short dashed line the quasi-octe,

. . — VI. NUMERICAL RESULTS AND DISCUSSION
E. Soft anomalous dimension foryg—qq

From the previous two sections, we have all the tools
necessary for the evaluation of the partonic gap cross section,
g. (3.2), which we convolute with the parton distributions
fand with the photon distribution in the electron, according to
Itéq. (2.7), to get the full gap cross section. The necessary
numerical integrals have been performed with the routine
VEGAS. We have used the CTEQA4L parton distribution set
tanh(A #/2) +tanh(Ay/2) [27] for the proton, and the Gik-Reya-Vogt(GRV) leading
tani(A 7/2)— tanh(Ay/2) order(LO) set G[28] for the photon. For the interjet energy
thresholdQg,, which in our approach defines the gap event
(see Sec. I, we have considered several different values,
: (529 from Q,=350 MeV up toQ,=1050 MeV, and we have
evaluated the related gap cross section as a function of the
. . N pseudorapidity difference between the jetsy. Figures
whose real and imaginahyparts are plotted in Fig. 10. We 11(a,b show our results for the gap cross section and the

see that the real part ds grows faster withl  than the real . oshonding gap fraction. Both quantities increase with in-

parts of the quasi-singlet elgenvalues for all the re.solved- proéreasingQO, simply because a stronger limitation on interjet
cesses, apart frommg— gg, Figs. 6—9. In fact, we will see in

radiation leads to a stronger suppression of the result. For the

%nost forward configuration of the dijet analyzed in R},

A 7»=3.75, the gap fraction, Fig. 1d), varies from about
10% at Qy=350 MeV to about 25% af),=1050 MeV.
One may ask, for both the gap cross section and the gap
3The imaginary part of Eq(5.29 can be extracted directly from fraction, whether any of the plots in Figs. 11a,b fits the ex-

Ref.[26]. perimental data of Ref9], for which, as discussed in Sec.

For the direct procesgg— qq, which, from Fig. 2, gives
the second largest contribution to the denominator of th
fraction, after the partonic reactiomg— qg, there is only
one possible color flow at the hard scattering. Thus, the so
anomalous dimension reduces to a function, given by

as

I's(An,Ay)= E[CF In

gap cross section will have a fast decay rate.
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FIG. 10. Plot of the realtop) and imaginary(bottom) parts of (®)

i i i + ing. . . .
the soft anomalous dimension fgrt-g—q-+g scattering FIG. 11. The gap cross sectida) and fraction(b) at different

[, the gap event is identified in a related, but different Way.\(lslrﬁs of the energy threshold, identifying the gap[see Eg.
With the choiceQ,=350 MeV for the interjet energy, we 7~

obtain reasonable agreeméris shown in Figs. 12a,b. Ob- as done in Ref[9]. We finda= — 2.1 and@=8.3%, not too
serve that, in this situatio®, is not much larger than ,® in different from the values of Re[é]' = —27+03 andg
Eg. (3.1. Results in this region, at the boundary with non- —(7+2)%. Here, in analogy witH Ref[9] IV\;a have im-
perturbative QCD, can be considered as smooth extrapol?j-osed the constrairffit=1 atA =2, meaning that the gap

tions of perturbative QCD resummation. cross section has to reduce to the full dijet cross section in
|r_1 Fig. 13, the a_nalogue of Fig. 3d of R¢8], we show the absence of a gap. Notice that this information is not
again our.gap fractlpn @0:350 MeV, from Eqs(3.1) and_ encoded in Eq(3.1), because the last two factors on the right
(3.2, and compare it with the result of a two parameter fit t0hand side do not reduce exactly to unity fon=2. This can
the expression be seen from Eqg2.15 and from the eigenvalues of the soft
anomalous dimension matrices, Figs. 6—10. In the lifnit
—2, the real parts of the eigenvalues vanish, but the imagi-
nary parts do not, causing a slight suppression in the mixed
terms (8+ v), of the hard scattering matrix in E(.1). The
“Figures 12a,b suggest that better agreement between theory angalidity of our formula for the gap cross section, E8.1), is
experiment is obtained for the gap cross section than for the corrgestricted to interjet rapidity widthdy neither too small nor
sponding fraction. This is a consequence of the discrepancy bepo large. We will limit ourselves to the\ 5 range 2.6
tween theory and experiment in the overall dijet cross section °kA77<4.0.
Fig. 1, which appears in the denominator of the gap fraction, EQ.  The reasons for these restrictions are as follows. Our ex-
(3.3, and is obtained from the leading order approximation to thepression in Eq(3.1) is the result of the resummation of loga-

full partonic dijet cross section, E€3.2). . . . “ —=
SFor the QCD scale parameter we have used the value rithms of the soft interjet energyeg(—1t)In"(Qo/V—1),

=200 MeV, which coincides with the value df associated to the Which are assumed to be the only large, perturbatively dan-

CTEQAL parton distribution set for the proton, and is not signifi- 98T0US quantities in the problem. Whery—0, the gap
cantly different from the value ok associated to the GRV-G Lo closes and the cross section becomes inclusive. More specifi-

set,A =235 MeV. cally, logarithms ofy —t would be suppressed by powers of

f(a,B,An)=C(a,B)e** "+ B (6.2
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“Tl': I FIG. 13. Analogue of Fig. 3d of Ref9]. The gap fraction of
Fig. 12(solid line) is redisplayed and compared with the result of a
fit to an exponential plus a constant.

An components. We see that, as anticipated in Sec. V, the quasi-
® singlet components, in all cases, give almost the whole gap
cross section at large values afy. It then becomes clear
FIG. 12. The gap cross sectiga) and fraction(b), for the gap  that the parametgs=8.3%, extracted from the fit, E¢6.1),
identified by the energy threshol@d,=350 MeV, compared with can be associated with the asymptotic quasi-singlet fraction.
the data of Ref[9]. From Figs. 6—9 we see that at highy the real parts of the
quasi-singlet eigenvalues are ordered, from the lowest value

Ay. Analogously, whem\y— (i.e. A p—=), terms of the of qg—qq scattering, through the intermediate values of
form a”(—1)(Ay)", coming from the eigenvalues of the Processesig—qg andqg—qg, up to the largest value of

r{'s, are large at each order in perturbation theory, and w&9 99 scattering. In Figs. 14-17, the decay slopes of the

need further resummations. We should also emphasize th {Jasi-singlet compor)ents of the corresponding contributions
the limit A—o corresponds to the Regge region of the 0 the gap cross section reflect the same ordering property, as

) - i a consequence of E¢R.14). This observation indicates that
scattering, whers becomes large at fixed momentum trans-gans tend to be more easily formed with scattered quarks and
fer, t. Resummation in the Regge limit organizes logarithmsantiquarks than with gluons].

of the form a! IN/(—1)], coming from the BFKL ladders
of gluons[6]. For double logarithmic terms like! InTs/ VIl CONCLUSIONS

(—f)]ln“(QO/\/—f), which occur in Reggeized color octet ) o .
exchange, both BFKL resummation and our method give the N this paper, we have shown that it is possible to analyze
same result. the dijet rapidity gap events from photoproduction, observed

Note that the suppression we find here is not double loga@t HERA, by introducing an energy-dependent definition of
rithmic in Q, [29]. Rather, it comes from the exponentiation the gap, as already done in Rgf] for the Tevatron events.
of single “soft” logarithms only, as shown in Eq2.13. The rgsult we have fOl_Jnd is perturbative, as t_he ordering of
The underlying physical reason is that a soft gluon emittedhe different scales in Eq(2.14 shows, with A<Q.
into the interjet region can never become collinear to either \/—_t The experimental behavior of the gap fraction is
of the forward partons from which the jets originate. approximately reproduced by fixing the threshold of interjet
Finally, in Figs. 14—17 we show the contributions to the energy, which defines the gap,@=350 MeV. Our result
gap cross section, E¢3.1) at Q;=350 MeV, from the dif- also predicts how gap fractions increase w@p. We con-
ferent partonic processes studied in Sec. V. In each case wecture that in photoproduction non-perturbative “survival”
give the full result and its decomposition into quasi-coloreffects from the interactions of spectator partons, which can
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FIG. 14. Overall contribution to the gap cross section frgg FIG. 15. Overall contribution to the gap cross section frpg

—qg scattering(solid ling). Contribution from the quasi-singlet _gg scattering(solid ling). Contribution from the quasi-singlet
componentdashed lingand from the two quasi-octet components componenidashed lingand from the two quasi-octet components
(dotted and dot dashed lines (dotted and dot dashed linesThe contributions of the quasi 10

x 10 and of the quasi-27 component are not exhibited, because they
give rise to interjet multiplicity{ 18], should be reduced with  gre too small.
respect to the case pfp scattering, because there is only one
incoming hadron. The experimental determination of thesymmetry. Correspondingly, the quark luminosities will be
double differential cross sectiouhzoep/dA 7ndQ., (and re- expressed as functions of the proton valence distributions,
lated fraction, Eq. (3.1), for different values of the interjet ¢/, and ¢y, and of the sea distributions for both the pro-
energy flow identifying the gap, as in Fig. 11, would offer aton and the photon, respectiveic,p, and ¢seqy, - The ana-
significant test of the perturbative dynamics of QCD radia-lytic cross sections will always be of the form

tion.
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APPENDIX: THE DENOMINATOR OF THE below, we will specify the invariant matrix elements

GAP FRACTION—PARTONIC CROSS SECTIONS squared| M D (s,t,u)|? [14,25.
In this appendix we will summarize for completeness the L= I n i
Born cross sections and corresponding parton luminosities, Por( Pupt Parpt Obscap) + 8bscan Py
L™, for all the partonic processes contributing to the de- (2482 482402
nominator of the gap fraction, E¢8.2). We will consider for IMOEE0)2= s 4s Mu . (A2)
the quarks four active flavors);=4, and assume flavor t2 9 su
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—(qq scattering(solid line). Contribution from the quasi-singlet
componeni{dashed lingand from the quasi-octet componedbt-
ted ling. Negative interference ternj§], corresponding t@+ y in
Eq. (3.1), are not exhibited separately.

FIG. 16. Overall contribution to the gap cross section froa

—>qa scattering(solid line). Contribution from the quasi-singlet
componenidashed lingand from the quasi-octet componddbt-

ted lines.
Processes(q)g—ga(d),ga(d) —q(q)g [observe that 0n ey A4S
they differ from the processes of E@2) by the exchange of |IMU(s,t,u)] =9 (AB)
particles 1 and 2 in Eq4.1) and, correspondingly, of the t
Mandelstam invariants andu]: Process|q'—q'q:
LO= g/ bupT darpt 6 bseap) + Bbscand
oyt Pl e seab seahTalp L(f)zsﬁbsea/y((ﬁu/p"'¢d/p+6¢seap)
2t a2 t2+s2 4s2+12 o
MO LU == g~ (A3) 0,21 1o 48T
u st |M (S,t,U)| :§T (A?)
Procesgyg—gag:
Processes|q— 0q,qq— qd:
LO= by e §0—00,d9—dq
9 i = I—(f):¢sea/y(¢u/p+¢d/p+6¢seap)
|M(f)(§,f,ﬁ)|2=§<3—7+3+72 . R R R R R
t2 s?2 u MOGEE 2_452+u2+4t2+u2 8 u?
(A4) | (stul*=g 2 9 =
Processyq— qq: (A8)
L= d’sea/y( ¢u/p+ ¢d/p+ 6¢seab) PI‘OCGSSGS]E’ —>qa’ ,aq' —>aq’:
IMO(s 1 a)|2:f §2+a2+f gzﬁz_ig_z LO =3 bsean(bup t barpt 6 bseap)
P T et T
(A5) wan o AP0
|M<f>(s,t,u)|2:§ — (A9)
Procesxiq’' —qq': t
LO =3 sean( uipt baipT 6 bseap) Processesig—q’q’,qq—q’q’:
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LO= 3¢sealy( ¢u/p+ ¢d/p+ 6¢seap)

o~ A 4 12+ (2
U] 2 _
IMUO(s,t,u)] s @

(A10)

Processeqq—» qq,qq—>qa
LO= ¢sea/y( ¢u/p+ ¢d/p+ 6¢seap)

. 42+12 4t2+0% 8 12
IMO(stu)2=5 5

= + = — == =.
u 9 ¢ 27 50

(A11)
Processesiq’ —q’d,qq’ —q’q:
LO= 3¢sea/y( ¢u/p+ d’d/p"" 6¢seab)

. 4 2412
IM(f)(s,t,u)|2=§ 0z

(A12)

Processesiq—q’q’,qq—q'q’:
LO=3¢sear(bupt daipt 6 bseap)
. A 124 02

(f) 2 _
IMO(stu)] s 2

(A13)

Processesﬁ—» g gEq—» gg

PHYSICAL REVIEW b1 014004

LO= ¢seajy( ¢u/p+ ¢d/p+ 6¢seab)

8E2+a2+32f2+02
3 & 27 i

IMO(st,0)2=-

(A14)
Processegg—(0,gg—qq
LO= DgiyDyip
3t2+02 1t2+0?

MO(stu))P=—c——+ = —=
MOGLD=~ g+ 5

(A15)
Processeyg—qd, yg—qq

L= zd’g/p
10 @( u, i) _
9 aq u

IMD(st,u)|?= :
(A16)

Processyq(q)—q(a)g,
o 4 1 15

LD =3 bup™ g Papt 5 Pseas

o -u s

|M(0(S,t,u)|2:%q —_t+ =

S

+

- (A7)
s —u
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