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Semi-inclusive hadron production at DESY HERA: The effect of QCD gluon resummation
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We present a formalism that improves the applicability of perturbative QCD in the current region of
semi-inclusive deep inelastic scatteri(@IS). The formalism is based on all-order resummation of large
logarithms arising in the perturbative treatment of hadron multiplicities and energy flows in this region. It is
shown that the current region of semi-inclusive DIS is similar to the region of small transverse momenta in
vector boson production at hadron colliders. We use this resummation formalism to describe transverse energy
flows and charged particle multiplicity measured at the DESY electron-proton collider HERA. We find good
agreement between our theoretical results and experimental data for the transverse energy flows.

PACS numbd(s): 13.85.Ni

[. INTRODUCTION PQCD. Traditionally, the experimental study of the fully in-
clusive DIS processe+A—e+X where A is usually a
It is well known that perturbative quantum chromody- nucleon, andX is any final state, is used to obtain informa-
namics(PQCD is a very powerful but not omnipotent theory tion about the parton distribution functiof®DF’s) of the
of the strong interactions of elementary particles. It can bewcleon. These functions describe the long-range dynamics
successfully applied to the calculation of various physicalof hadron interactions, and are required by many PQCD cal-
observables whenever the kinematics of the particle interacsulations.
tion process implies the existence of a large sclwith During the 1990s, significant attention has also been paid
dimensionality of momentum. For such a kinematic regimefo various aspects of semi-inclusive deep inelastic scattering
the cross section of the hadronic process can be representegmi-inclusive DI$, for instance, the semi-inclusive pro-
as a convolution of the perturbatively calculable hard partduction of hadrons and jete+ A—e+B+X ande+A—e
describing the energetic short-range interactions of hadronig-jets+ X. In particular, the H1 and ZEUS Collaborations at
constituentgpartons, and several process-independent nonthe DESY ep collider HERA, and the E665 experiment at
perturbative functions, relevant to the complicated strong dyFermilab performed extensive experimental studies of the
namics at large distances. charged particle multiplicityyf12—14 and hadronic trans-
The factorization of the hard and soft parts has proven toerse energy flow$15] at large momentum transfed. It
be a powerful method for the calculation of hadronic scatterwas found that some aspects of the data, e.g., the Feyrman
ing cross sections. Unfortunately, near the boundaries of thdistributions, can be successfully explained in the framework
kinematic phase space the convergence of the perturbative perturbative QCD analysigl6]. On the other hand, the
solution can be spoiled by the presence of large logarithmapplicability of PQCD for the description of other features of
logr, wherer is some dimensionless function of the kine- the process is limited. For example, the perturbative calcula-
matic parameters of the system. For instanmceight be a tion in lowest orders fails to describe the pseudorapidity or
small ratio of two momentum scalé®; and P, of the sys- transverse momentum distributions of the final hadrons. Un-
tem,r=P,/P,. der certain kinematic conditions the whole perturbative ex-
To handle this situation, techniques for the all-order re-pansion as a series in the QCD coupling may fail due to the
summation of the logarithmically divergent terms have beerarge logarithms mentioned earlier.
developed[1-6]. These techniques have been successfully To be more specific, consider semi-inclusive DIS produc-
used to improve the applicability of perturbative QCD in tion of hadrons of a typ8. At large energies, we can neglect
several processésalculation of energy correlations @ e~ the masses of the participating particles. In semi-inclusive
annihilation[4], transverse momentum distributions in vector DIS at given energies of the beams, any event can be char-
boson[5,7—9, di-photon[10], and Higgs bosofl1] produc-  acterized by two energy scales: the virtuality of the ex-
tion at hadron collideps changed photo® and the scale; related to the transverse
In this paper, we will consider another process, the promomentum of the final hadroB. The exact definition ofjt
duction of hadrons in deep-inelastic lepton-hadron scatteringill be given in the main part of the paper. One may try to
(DIS). As will be discussed below, some features of thisuse PQCD in any of three regions, whe&peqy, or bothQ
process are similar to the" e~ hadroproduction and vector and gy are large. The renormalization and factorization
boson production, so that in certain kinematic regions thescales should be chosen to be of the order of the large physi-
description of this process requires all-order resummation o€al scale of the process. In the lin@<q (photoproduction
the large logarithms which would otherwise spoil the conver+egion PQCD may fail due to the large terms (1Qgo)" as
gence of the perturbative calculation. Q—0, which should be resummed into the parton distribu-
Deep-inelastic lepton-hadron scatterifiyS) at large mo-  tion function of the virtual photoifil7]. The limit Q>qy is
mentum transfeQ is one of the cornerstone processes to tessimilar to the limit of a small transverse momentum in vector
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boson production where logarithms of the type (dpéQ)"
should be resummed in order to get a finite cross section of
the procesg$5]. Finally, in the regiongr=~Q one may en-
counter another type of large logarithms corresponding to
events with large rapidity gapAy. Such large logarithms
can be resummed with the help of the Balitskadin-
Kuraev-Lipatov(BFKL) formalism[6].

The purpose of this paper is to discuss the resummation of
large logarithms in semi-inclusive DIS hadroproduction
e+A—e+B+X in the limit gr<<Q. These are large loga-
rithms arising from the emission of soft and collinear par-
tons, which we resum using the formalism of Collins, Soper,
and Stermar(CS9 [5]. Our calculations are based on the
works of Meng, Olness, and Sodd8,19, who analyzed the
resummation technique for a particular energy distribution FIG. 1. Semi-inclusive deep inelastic scattering.
function of the semi-inclusive DIS process. This energy dis-
tribution function receives contributions from all possible fi-
nal state hadrons, and does not depend on the specifics of We follow notations which are similar to the ones used in
fragmentation in the final state. [18,19. In this section we summarize them. We limit the

In this paper we present a more general formalism thamliscussion to the case of semi-inclusive DIS at épecol-
the one developed 18,19, which will also account for the lider HERA. We consider the process
final state fragmentation of the partons. This formalism re-
quires the knowledge of the fragmentation functi¢R&’s) etA—et+B+X, @

describing nonperturbative fragmentation of final partons . . . .
9 b 9 b here e is an electron or positronA is a proton,B is a

Ln;;)s(i)g):re;vvev? dzsglrggss'ofcorrlressigglngégzlxl’atgllessf?rrgscl;isnm Czrbadron observed in the final state, adepresents any other
phy 9p particles in the final state in the sense of inclusive scattering

ticle multiplicities. Our calculations will be done in the next- 7 _. L i
to-leading order of perturbative QCD. As an example of a(F'g' 1). We denote the momenta fandB by pj andpg,

practical application of our formalism, we compare our cal-2nd the momenta of the lepton in the initial and final states

Iz p ®oj
culation with the H1 data on the pseudorapidity distributionsﬁééroﬁgiétem:l?i #q_ | ',i thFeormr?]g];n;fr?hgag;;eerr t%;gle

of the transverse energy floM5] in the y* p center-of-mass . ) . Lo .
frame. We also present predictions for charged particle muIJEr;e dlicussm_nlof charged particle multiplicity, we will ne-
tiplicity. Another goal of this study is to find in which re- glect the partlce;]masse_s_._ T d hadron i |
gions of kinematic parameters the CSS resummation formal-h We rz]assu_melt ar:t N |n|t|ah eptonTz?‘n fareror m';\eracrt] only
ism is sufficient to describe the existing data, and in whicht rough a single photon exchange. Thereforealso has the

regions significant contributions from other hadroproductionme""nlng of the four momentum of the exchanged virtual

II. KINEMATIC VARIABLES

mechanisms, such as the BFKL interactio8l higher order ~ Pnotony*.

corrections including multijet production witf17] or with-

out [20] resolved photon contributions, or photoproduction A. Lorentz scalars

showering21], cannot be ignored. For further discussion, we define five Lorentz scalars rel-

The outline of the paper is as follows. In Sec. Il we defineevant to the procesdl). The first is the center-of-mass en-

the kinematic variables for the semi-inclusive DIS processygy of the initial hadron and leptogiS, , where
and specify the coordinate frames which will be used

throughout the following discussion. In Sec. Il we derive the Sepa=(pat+1)2=2p,-1. 2
resummed cross-section formulas. In Sec. IV we extend the

results of Sec. Ill to obtain the resummed energy flows. InWe will also use the conventional DIS variablesand Q?
Sec. V we describe the matching between the resummed anghich are defined from the momentum transiér by
perturbative cross sections. We also discuss kinematic cor-

. . . 2__ 2_ ’
rections, which should be applied to the resummed cross Q°=-g°=2I-1", )
section to account for fast contraction of the phase space of
. . 2
the perturbative cross section @t~ Q. In Sec. VI we de- - Q @)
scribe the results of Monte Carlo calculations for the re- 2pa-q°

summed cross sections and energy flows. We present the

comparison of our calculation with the existing transverseln principle, x and Q2 can be completely determined in an
energy flow data from HERA. We also suggest how one carexperimental event by measuring the momentum of the out-
reanalyze the existing HERA and Fermilab-E665 data orgoing lepton.

charged particle production in order to adapt it for unam- Next we define a scalarrelated to the momentum of the
biguous extraction of the non-perturbative Sudakov factorsfinal hadron statd® by
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S Pe-Pa _ 2Xpg pA. )
a-Pa Q7 e
The variablez plays an important role in the description of
fragmentation in the final state. In particular, in the quark-
parton model(or in the leading order perturbative calcula-
tion) it is equal to the fraction of the fragmenting parton’s
momentum carried away by the observed hadron.

The next relativistic invariamﬁ is the square of the com-
ponent of the virtual photon’s four momentugt that is
transverse to the four momenta of the initial and final had-
rons:

95=— 'O, (6)

where

d-Ps —pk q-pPa
Pa- P Bpa-ps’

at'=9*—pa (7)

FIG. 2. Geometry of the particle momenta in the hadron frame.
The orthogonality ofg{* to both py and pg, that isq;- pa
=q;-pg=0, follows immediately from its definitiot7). zQ q: 2qr 0>
The variablegr plays the same role in the semi-inclusive Per="7 |1 o F,O,E— 1]. (10
DIS resummation as the transverse momentum of a vector

boson in resummation of vector boson production at hadrof,q incoming and outgoing lepton momenta in the hadron

colliders. In particular, the theoretical cross section calcUsame are defined in terms of variablgsand ¢ as follows
lated in a fixed order of PQCD is divergent in the limit [22]:

gt—0, so that all-order resummation is needed to make the
predictions of the theory finite in this limit. Q _ ) )

In the analysis of kinematics, we will use two reference Ik == (coshy,sinhy cosé,sinhysing, —1),  (11)
frames. The first is the center-of-magsm) frame of the
initial hadron and the virtual photon. The second is a special Q
type of Breit frame which we will call, depending on IhF= i(costh,sinthcos@sinh(psinq&,+1). (12
whether the initial state is a hadron or a parton,itadronor
partonframe. As was shown ifil8,19, by using the hadron . . = >,
frame one can organize the resummation formalism for semi'-\lo.te that_¢ 's the azimuthal angle df, or Ih_around thez
inclusive DIS in a way that is similar to the case of vector &XIS- ¢ is a parameter of a bpost wh|ch rela'_[es the
boson production. On the other hand, many experimentah1adr0n frame to a lepton Breit framg in  which?
results are presented in th& p c.m. frame. We will use a =(Q/2,0,0.-Q/2). By Egs.(2) and(11) we find that
subscripth andcm to denote kinematic variables in the had- XS,
ron or c.m. frame. coshy= A1="-1, (13)

B. Hadron frame . . . .
where the conventional DIS variabjeis defined as

Following Menget al.[18,19 the hadron frame is defined

by two conditions:(a) the four momentum of the virtual B Q? 14
photon is purely space-like, ari@h) the momentum of the y= XSen’ (14
outgoing hadrorB lies in the xz plane. The directions of
particle momenta in this frame are shown in Fig. 2. The allowed range of the variabjein deep-inelastic scatter-
In this frame the protorA moves in the+z direction, ing is O<y=<1; thereforey=0.
while the momentum transfef is in the — z direction, and The transverse part of the virtual photon momentagfn
q° is O: has a simple form in the hadron frame; it can be shown that
2 2
q“:(0,0,0,— Q)v (8) ar ar
" qt,h: - 61 _quoi_ 6 . (15)
Q
pg’h=§(1,o,o,1). 9 In other words,gy is the magnitude of the transverse com-
ponent ofﬁt,h. The transverse momentupy. of the final
The momentum of the final-state hadrBris state hadrorB in this frame is simply related tq;, by
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v*p c.m. frame consists dB) a boost in the direction of the
virtual photon andb) inversion of the direction of the axis,
which is needed to make the definition of the c.m. frame
consistent with the one adopted in HERA experimental pub-
lications. In the c.m. frame the momentum gf is

WZ_QZ W2+Q2

~—
cm 2W 1050; 2W Il (19)
whereW is the c.m. energy of the* p collisions,
W?=(pat+a)?. (20

The momenta of the initial and final hadroAsand B are
given by

poe| WL o W 21
Phom=| 2w 00" ow ) @D
PE cm=(Eg.PB.cmSiN 5™ ,0,0g cmCOSHE™). (22

FIG. 3. Particle momenta in thg* p c.m. frame.

Since the hadron and c.m. frames are related by a boost
Pr=2qr. (160 along thez direction, the expression for the transverse mo-
mentum of the final hadroB in the c.m. frame is the same as

Also, the pseudorapidity d8 in the hadron frame is the one in the hadron frame,

7
7h=—log tan%’h) = Iog%. 17 PT=2Z0r. (23)

Also, similar to the case of the hadron frame, the relationship

The resummed cross section will be derived using .th_ebetweean and the pseudorapidity @& in the c.m. frame is
hadron frame. To transform the result to other frames, it 'SSimpIe

useful to express the basis vectors of the hadron frame
(TH,X* YH* ZH) in terms of the particle momen{d8]. For gr=We 7em, (24)
an arbitrary coordinate frame

The limit of smallgy, which is most relevant for our resum-

TM_Q’“F 2X P mation calculation, corresponds to the region of large pseu-

- Q dorapidities in the hadronic c.m. frame. Since in this case the

final parton is produced in the direction of the momentum of

1 [ pk 92 the virtual photon, the region of large®™ is also called the
X"za — B— 1+§ XPhi |, current region
yH= e“”"”ZVTpXU, D. Parton kinematics

The kinematic variables and momenta discussed so far are

g~ all laboratory variables. Next, we relate these to parton vari-

Zh=— Q- (18 aples.

Let a denote the parton i that participates in the hard

If these relations are evaluated in the hadron frame, the basstattering, with momentumpl = ¢,p4 . Let b denote the par-
vectors T# X#,Y#Z* are (1,0,0,9,(0,1,0,0,(0,0,1,0), ton of whichB is a fragment, with momenturpf = p4/&, .

(0,0,0,1), respectively. The momentum fraction&, and¢, range from 0 to 1. At the
The relationships between the hadron-frame variables a”ﬁ’arton level, we introduce the Lorentz scalars,d; analo-

the HERA lab-frame momenta are presented in Appendix Agous to the ones at the hadron level:

C. Photon-hadron center-of-mass frame A Q2 X o5
The center-of-mass frame of the protdmmnd virtual pho- X 2parq &' (9
ton y* is defined by the conditiops ¢+ dem=0. The re-
lationship between particle momenta in this frame is illus- 7= Pb'Pa _ i, (26)
trated in Fig. 3. As in the hadron frame, the momeﬁgg, 9-Pa &b
andﬁAlcm in the c.m. frame are directed along thaxis. The ~o aun
coordinate transformation from the hadron frame into the 7= ~Gc Q- (27)
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Here &# is the component ofi* which is orthogonal to the r

parton four momenta4 andpf,
ﬁh- pa=&t- Pp=0.
Therefore, q

q-Pp o q-Pa
Pa-Pb = °PaPp

q/=g"—p¥ (28)

In the case of massless initial and final hadrons the hadronic
and partoniay{’s coincide,

/é\

a) b)
yi\
gr=dr-. (29 a )

Ill. THE RESUMMED NLO CROSS SECTION

The knowledge of five Lorentz scalaB,Q,qt,%,z and vy !
the lepton azimuthal anglk in the hadron frame is sufficient ~+
to specify unambiguously the kinematics of the semi- 9 by 9 g q
inclusive scattering everg+A—e+B+X. In the follow- e) f)

ing, we will discuss the hadron cross sectimg 5, which is

related to the parton cross Sectidt:rba by FIG. 4. Feynman diagrams for semi-inclusive D(&: LO; (b)—

(d) NLO virtual diagramsje)—(f) NLO real emission diagrams.

S o b= do ‘
dxdzdGd@dg &b Jo & o o0P = 3 V(X,2,Q% 0D AL ).
Qdgzde 2 FERCRTRI R 2 VE(x2.Q%aD A 9)
(32)
1dé¢ da, At the energy of HERA, hadroproduction via parity-
XJ' 2 Fan(ar i) —— 2a > violating Z-boson exchanges can be neglected, and only four
x a dxdzdQ-dqgrd¢ out of the nine angular functions listed 48] contribute to
(30) the cross section@1),(32). They are
HereF ya( €., ) denotes the distribution functiqg?DPF of A= 1+ coslty,
the parton of a typa in the hadronA, andDg;,(&,,1p) iS A—_>D
the fragmentation functioFF) for parton typeb and final R
hadronB. The parameterg and up are the factorization __ .
scales for the PDF’s and FF’s. In the following discussion As cosé sinh i,
and calculations, we assume that these factorization scales Ay=c0S 26 Sint. 33)

and the renormalization scale; are the same,

S We will assume that the anglé is not monitored in the
HFE=HUDT HR= M- experiment, so that it will be integrated out in the following
) . , . discussion. Correspondingly, our numerical result for
The analysis of semi-inclusive DIS can be convenlentlyd /(dxdzdddq%) will not depend on terms in Egs
organized by separating the dependence of the parton araéyl) (32) proportional to the angular functions, and A,
hadron cross-sections on the leptonic angland the boost Whi(’:h integrate to zero ’
parameten) from the other kinematic variables  Q and Out of the four structure functions, only(}) receives
gt [22]. Following [18], we express the hadrdwor partor] ibut ; both leadi q ' béll i q
cross section as a sum over products of functions of thesg2ntributions from bot A(?;"‘ Ing and next-to-leading order
lepton angles in the hadron franfe,(i, ¢), and structure diagrams. Also, only th&/; structure function diverges in

functions V@(x,z,02.g2) [or V{¥(x,2,02.g%), respec- the limitqr—0.
stz Qhan) | ba (%,2,Q" d7) P The leading orderLO) parton process i®+a—e+b

tivelyl: where the initial partora is a quark from the proton and the
do 4 final quarkb (which is the same aa) fragments into the
— 22 = vE(x,2.Q%0) A4, d), hadronB. The Feynman diagram for this process is shown in
dxdzdddq$d¢ a=1 ¢ Fig. 4@). There is no LO contribution to semi-inclusive DIS

(31 from gluons.
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The next-to-leading orddNLO) corrections are shown in virtual pieces, and by absorption of the collinear singularities
Figs. 4b)—4(f). At this order, we need to account for the into the parton distribution and fragmentation functions.
virtual corrections to the LO subprocessy —>q [Figs. Nonetheless, this cancellation does not guarantee rapid con-
4(b)— 4(d)] as weII as for the diagrams describing the sub-vergence of the perturbative calculation, which will typically
processesq;/ _>qg and gy* —qq, with the subsequent contain large logarithms logr/Q countering the smallness
fragmentation of the final-state quark, antiquark or gluonof the strong coupling.

[Figs. 4e) and 4f)]. The slow convergence of the perturbative series at

Conservation of total four momentum in the real emissiondr— 0 can be corrected by resummation of the most singular
subprocessésigs. 4e) and 4f)] allows us to write the mo- logarithmic terms. It is done in the following way. First, we

mentum of the unobserved final state pariery., the gluon  extract the terms in the squared amplitudes of the real emis-
in Fig. 4e)] as sion diagrams Figs.(d) and 4f) that are most singular in the

limit gr—0; we refer to these terms as thgymptotic piece
These terms are proportional toqi/and, as it was men-

Pg=a“+ps—pf - (34 tioned above, they appear only in thgY) structure function.

e (l) .
When there is no gluon radiatiopf=0) the momentum of Thus, the structure functiov; is represented as

b is pf=pL+0g*, and, according to Eq28), qT — 0 Oy NN N NN

—0. Thus, a non-zerq; in the event is an effect of gluon  V64(X.2,Q%,07) =[V{(X,2,Q,0%) Jasymt Y5:(X,2,Q%.07),
radiation. In the regiom— 0, either softness or collinearity (35

of the unobserved partons will create infrared singularities,

which make the perturbative result unreliable. The sum ofvhere (\/b ))asym is O(l/qT) and Y(l) is finite in the limit
the real and virtual diagrams is made finite by order-by-ordeg;—0. The asymptotic piece of the NLO hadron cross-
cancellation of the soft singularities arising from the real andsection(30) is

( doga ) _ooFias 1 Ay, ¢)

dxdzd@deidg) Sea ™ 202 27

Dg/j(Z, u){(Pgo®fja) (X, 1) + (Pgg® fgra) (X, ) }

x> e
]

+{(Dg/j®Pqq)(Z,1) + (Dgig®Pyg) (Z, ) } /X, 12)

Q* 3
+2DB/j(Z,M)fj/A(X,M){CF|09? 5Cr +o| = ,qT (36)
T
|

Hereeg is the electric charge of the participating quark or 1 dé
antiquark of flavorj. The parametew, collects various con- (f®g)(x,,u)=f f(X/§,M)9(§,M)?- (39
stant factors coming from the hadronic side of the matrix X
element:

The functionsP;j(x) entering the convolution integrals in
Eq. (36) are the familiar splitting kernels:

_ QZ e2 3 ,
7=, 2|2 ) (37) _[1+x
T Se pX Pqq(X)=Ckg Tx| ° (40)
+
The factorF,, that comes from the leptonic side, is defined 1
by Pag(X) =5 (1= 2x+ 2x?), (41)
e 1
Fl=——. 38 1+(1-x)?
T2 2 39 Pgq(0)=Cp————. (42)

The color factoICg= (Nﬁ— 1)/(2N;) =4/3. The convolution  The finite piecé{(l) of the hadron cross section and the other
in Eq. (36) is defined as structure functlons\/(') for i=2,3,4 can be derived in a
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k

straightforward way from the expression for the cross section o * ay(w)
of the real emission subprocesses, which is presented in Ap- Blas(1),C1,Cs]= >, B(C1,Cp)| — (48)
pendix B. k=1

Next, we use the perturbative asymptotic pi¢8é) to _ o _
derive theO(as) expression for the resummed cross sectionThe integration in Eq(46) is performed between two scales
[dU/(dXdZd(de$d¢)]resum- In the Collins-Soper-Sterman ©f order 1b andQ. The constant€; andC, determining the

resummation formalisri5], the cross section is written as a €xact integration range agepriori unknown, and their varia-
Fourier integral over a variable conjugate tajr=Gy . tion allows us to test the scale invariance of the resummed

cross section. There are convenient choice€of C, for
doga which some logarithms iV, ,(b,x,z,Q) cancel.
2 The functionsC™(x,b, 1) andC°U{(z,b, ) contain con-
dxdzdQddrde tributions from partons radiated collinearily to the initial and
final hadrons. These functions can also be expanded in series

ooF) Ay(,¢) ((d"?D - - fal
= et bW (b, X,z, of ag/m, as
Sn 2 ) amr? sa(bx,2,Q)
*© k
AN . ~ a
+VYga- (43 c:p(x,b,M)=l(ZOc:}“"’(x,nb)<%ﬂ)> . (49
The term containing the integral #g5(b), which we name
the CSS pieceabsorbs the asymptotic contributions from all o L
orders. The second term, which is tfieite piece has the Ci‘}”‘(i,b,,u)z > Ci‘}”t(k)(i,,ub)( st ) . (50
form k=0 T
4
o The renormalization scale in thigfunctions is
Yea=YEA+ 2 VERAL(,¢). (44

pn=2e YIb=hgy/b,

The Fourier transform is performed in the spacenef4
— e dimensions, in which the asymptotic piece of the rea'whereyz 0.5772F . .
emission subprocesses generates terms which are propor-

tional to 1/§ and d?vergent as—0. Upon summation of Fhe C functions can be obtained by comparing the expansion of
real and virtual diagrams, some of these terms, spemflcall)WBA(b x,2,Q) as a series inv/m with the b-space expres-
those corresponding to soft singularities, cancel. The remainsio“tor the perturbative cro;s section. Using our NLO re-
ing 1/e poles correspond to collinear singularities. They aregits. we find
later absorbed into the redefined NLO PDF or FF, rendering '

a final expression that is nonsingular &s-0.

. is theEuler constant.
The explicit expressions fok,(C,), Bx(C.,C,) and the

According to[5], the form of the resummed structure A1=Ce, (52)
function Wga(b,x,z,Q) at small values ob is "
B,=2Clog ) : (52
Wea(bx,2.Q)= 2 €f(Den® ) (2.b4) boC2

X(C}Q@Fa,A)(x,b,M)e*SBA(b'Q). To the same order, our expressions for thiinctions are

“9 CROX, ub) = 8 B(1-X), (53
In the limit of smallb and largeQ, the Sudakov function
Sga(b,Q) does not depend on the types of the external had- C?k“t(o)(i,ub)z 5“(5(1_2), (54)
rons and looks like
— in(0) _ 0)_n-
cirdp? (= . C3Q? Clp =g =0; (55
Son0.Q)= | S| ALas(e), CiTIn
Ci/b® u o C /J,b
B CROR,ub)= 5 (1-%) - qu(xnog(b—o) —Crd(1-%)
+Blag(p),C1,Co] |, (46)
x| 2241 2(63%1” (56
_ 0 ,
with 16" 09| TbyC,
- ag(p)|" 1 pb
Alas(u),C1]= 2 AdC)| = =], (47 Cig(x pub) = SX(1-%) = PqG(X)|Og(b—O)- (57)
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ub Sea(b,x,2,Q)=S"(b, ,x,2,Q)+S§A(b,X,2,Q). (62

b o . .
0 From the renormalization properties of the theory, it can be
e3’401” concluded that theQ dependence of the nonperturbative

- C - s Z
C?kUt(l)(Z./Lb): 7':(1—2)—qu(2)|09( )—CF5(1—Z)

l_6+Ing(W (58)  sudakov term should be separated from the dependence on
02 the other kinematic variables, i.e.,

~ CFA ~ /.Lb
C&‘”‘”(Z'“b):7Z‘PGQ<Z>'°9(b—O- (59 ”K(b.x,z,Q)=gS&(b,x,zHgg&(b)Iog%. 63

Q

In these formulas, the indicgsandk correspond to quarks with Q,~1GeV. The theory does not predict the functional
and antiquarks, ang'to gluons. Due to the crossing relations forms of gi4(b,x,z) and gZ(b), so these must be deter-
between parton-level semi-inclusive DIS, vector boson promined by fitting experimental data. Als NP can depend on
duction, ande”e” hadroproduction, the€™ functions are  the types of the hadrons andB. On the other hand, due to
essentially the same in semi-inclusive DIS and the Drell-Yanne crossing symmetry between semi-inclusive DIS, the
process; and th€°“! functions are essentially the same in pre|l-Yan process aneé* e~ hadroproduction, one may ex-

only difference stems from the fact that the momentum transmdependenf19], but satisfy

fer g2 is spacelike in DIS and timelike in the other two
processes. The virtual diagrams Fig&)4-4(d) differ by 2 1
for spacelike and timelikej?. CorrespondinglyCji) and gg/i(b)lsDISZE[gﬂ(b)lDY“LggB)(b)ltE*E’]' (64)
c'™ for semi-inclusive DIS do not contain the term o _ o
(7213)8(1—X) [or (w3)8(1—2)], which is present in the If the relationship(64) is true, then the funcUogng)(b) in
¢ function for the Drell-Yan procesfor in the C 3% semi-inclusive DIS is completely known once the parametri-
L . . J i i (2) i -
function for e e~ hadroproduction, respectivdly On the zz(azt;ons_ for+ the functionsgxa(b) in the Drell-Yan and
other hand, the NLO expression for the Sudakov fac46y gBB(t_)) in e"e” hadroproduction processes are available. I_n
is the same for semi-inclusive DIS, the Drell-Yan processpractice, the Drell-Yan n_onperFurbatlve_ Sud_akov factor is
and e*e” hadroproduction, which also results from the known only when the incoming particle is a nucleon
crossing symmetry. [7-9,23, while the nonperturbative Sudakov factor for
Up to now, we have been discussing the behavior of th& €~ hadroproduction is available only for energy correla-
resummed cross section at short distances. The representns [24]. An additional complication comes from the fact
tion (45) should be modified at large values of the variable that the known parametrizations of the nonPeIturbat|ve Suda-
to account for nonperturbative long-distance dynamics. Th&oV factors for the Drell-Yari7-9,23 ande™e™ hadropro-

modified ansatz foWg, valid at all values ob is duction[24] processes correspond to slightly different scale
choices,

Wan(b,x2.Q)=3) ef(Dan@ ) 2y ) Ci=by, Cp=1 (65
) and
X(CiR®Fa) (X, ,u)e” %A, (60)
Ci=by, Cy=e ¥4 (66)

Here the variable
respectively. Therefore, the known functiog’|y(b) and

b g@|e+o-(b) are not 100% compatible, and in principle
by=——— (61)  should not be combined to obtai$?)(b) for semi-inclusive
VI+ (/b0 DIS.

Despite this minor incompatibility, we will use E4) to
serves to turn off the perturbative dynamics twebmax,  constructg®(b) for our numerical calculation of energy
with bya~=1 GeV '. Furthermore, the Sudakov factor is flows and, with less justification, particle multiplicities. We
modified, being written as the sum of the perturbatively cal-have found that the numerical results for the energy flows are
culable partSP(b, ,Q) given by Eq.(46), and a nonpertur- only slightly dependent on the choice between the two sets
bative part which is only partially constrained by the theory:(65),(66) of the constant€,,C, (see Sec. VJl Also, detailed

information about the functional form of th@-dependent
part of the nonperturbative Sudakov factor can be obtained
'With two minor exceptions, our expressions for the functigns NIy by studying the dependence of the resummed cross sec-
are equivalent to the ones published previously by Mengl.[19].  tions on Q. Since the HERA data discussed in this paper

The %3 terms are incorrectly included in Eq@t3) and (45) of ~ covers only a small range @ (3.62<Q<5.71 GeV), it is
[19] for the semi-inclusive DIS functions!i™ andC%'“». Also, ~ hard to distinguish between the uncertainties in the

our Eq.(59) contains 28/16=23/12 instead of 29/12 in E45) Q-dependent and constant parts of the nonperturbative Suda-
of [19], which is apparently due to a typo ji9]. kov factor. Of course, more definite conclusions ab@@i
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will be possible once more detailed semi-inclusive DIS datec.m. frame via Eq(24), and the transverse energy of a nearly
from HERA and Fermilab-E665, covering a wider range ofmassless particle in this frame is given by
Q, are available.

IV. HADRONIC MULTIPLICITIES AND ENERGY FLOWS Er~pr=2zar, (71)

Knowing the hadron cross-section, it is possible to calcu-
late the multiplicity of the process, which is defined as thethe experimental information odS,/(dx d@ dg?) can be
ratio of this cross section, and the total inclusive DIS crosslerived from they* p c.m. frame pseudorapidityr(,,) dis-
section for the given leptonic cuts: tributions of (E+) in bins of x and Q2. If mass effects are
neglected, we have

do
Multiplicity = . (67
doo/dxd@ dxdzdFdo? dED 3,
—_—= ) 72
Both the cross section and the multiplicity depend on the d7cm quQT (72

properties of the final-state fragmentation. The analysis can
be simplified by considering energy flows which do not have ) o o
such dependence. A traditional variable used in the experi- 1N€ asymptotic contribution to theflow distribution is

mental literature is a transverse energy fl(&4) in one of
the coordinate frames, defined as dz;
dxd@dgide

1 do(etA—e+B+X) asym
<ET>(I>B:0__ E f d(I)B ET do .
tot B g B ooFias 1 Ay, ¢) S 2
= — s 2 €

(69) - .
eA T 207 2

{(Pgq®fa) (X, 1)

This definition involves an integration over the available
phase spac®; and a summation over all possible species of T (Pag® fg/a) (%, 1)} + 2Fj/a(X, 1)
the final hadron®8. Since the integration ovebg includes

Cel i 3C}
FIOg— — 5Lk
ar 2

integration over the longitudinal component of the momen- a2
tum of B, the dependence ¢E+) on the fragmentation func- +0 —) q%) . (73
tions drops out due to the normalization condition ™
The resummed-flow distribution is
% f z Dgjp(2)dz=1. (69) ~
dxdQPdgid¢
Instead of(E_T>, we analyze the flow of the variable ooF| Ay(d) [ d™ % - o
This flow is defined as = 9T PW,(b,x,Q) +Y,,
Sen 2 (2m)"2
(74)
ax, fl _do(e+A—e+B+X) _
dxdQ@Pd@ T Jan  dxdzd@dg? with

(70 s out
M@%@=$q@%%w)

We prefer to use, rather thar{E;) because Ey) is not in —S(bx,
Lorentz invariant, which comprl‘i<cat(>as its us:ée i>n the theo- X (Ca®F yn)(X,by ,pu)e” %X (75)
retical analysi€.Also, the analysis in terms af; andz flow In Eq. (75), the NLO functionC (b, 12) is

makes the analogy between resummation in the current re- ' z \Dhit
gion of semi-inclusive DIS and in the small transverse mo-

mentum region of the Drell-Yan process more obvious. C‘Z’“t(b,u)=

65 4 bu e‘3’4C1”
Sinceqy is simply related to the pseudorapidity in th&p

s [_22070 gt
l+7-rCF< 48+3Iogb—0 log C,bg

N as Ce|1 8I bu
— —| 5 —zlog—|.
m 213 3 “by
°The zflow 3., is related to the energy distribution functidh
calculated in[19] as3,=(2xE,/Q?) 3. HereE, is the energy of Similar to Eq.(62), thezflow Sudakov factofS, is a sum
the initial hadron in the HERA lab frame. of perturbative and nonperturbative parts,
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1

S,(b,x,Q)=SP(b, ,x,Q)+S)"(b,x,Q). (76) al
— Ovmnlogm(q$/Q2), n=1,...°. (81

The NLO perturbative Sudakov fact@” is given by the qF m=

universalx-independent expressiqd6). By the same argu- . . . ) .
ment as in the case of semi-inclusive DIS multiplicities, we TheY piece is the difference of the fixed-order perturbative

assume that the non-perturbative partSfcan be param- and asymptotic cross sections,
etrized as

S)P(b,x,Q)=gM(b,x)

YN = Ué’i)rt_ Ug;;l))/m' (82
In the smallgt region, we expect cancellation up to terms
1 0 2 Q of order O(al™!/wN*1) between the perturbative and
+5(g9(b)oy+g (b)|e+e*)|09Q_0- asymptotic pieces in Eq82), so that the CSS piece domi-
nates the resummed cross sect{80). On the other hand,
(7D the expression for the asymptotic piece coincides with the
H H N/ __N
In the numerical calculation, we use the functighi®(b)|py ~ SXPansion of the CSS piece up to the ordefas/7").
from [7] and g@(b)|o+o- from [24], despite the fact that Therefore, at largegy, we expect better cancellation be-
g@(b)|py was fitted to Drell-Yan data using a differe@, ~ \Ween the CSS and asympotic pieces, and at lapgéene
value thang®(b)| e+ o-. resummed cross sectidd3) should be equal to the pertur-

We also parametrize the functional form gx‘fl)(b,x) in bative cross section up to corrections of order

O(Q{N+1/77N+1)
terms ofb andx as s : i
In principle, due to the cancellation between the perturba-
h, tive and asymptotic pieces at smajt, and between the
g®(b,x)=| h;+—=]|b?, (79 resummed and asymptotic piece at lacge the resummed
Vx formula o m IS at least as good an approximation of the

physical cross section as the perturbative cross seotjgn
of the same order. However, in the NLO calculation at large
gt it is safer to use the fixed order cross sectid@) instead
the resummed expressidhld). At the NLO order ofag, the
difference between the CSS and the asymptotic pieces at
large qr may still be non-negligible. Therefore, the re-
summed cross sectiot,.g,m may differ significantly from
1 the NLO perturbative cross sectian,.;. This difference

e S — N J’ zdze Sealb:xz.Q) does not mean that the resummed cross section agrees with

Co%(by ,u) B the data better than the fixed-order one.git=Q, the NLO
cross section is no longer dominated by the logarithms that
are resummed i1t43). In other words, the resummed cross
_section(43) does not include some terms in the NLO cross

In practice, the efficient usage of this relationship to con X ) N X
strain the Sudakov factors is only possible if the fragmentaSEction that become important g¢~Q. For this reason, at
the resummed cross section may show unphysical

tion functions and the hadronic contents of the final state arér9e dr

accurately known. We do not use the relationgfi®) in our behavior; for example, it can become negative or oscillate.
calculations As the order of the perturbative calculation increases, we

expect the agreement between the resummed and the fixed-
order perturbative cross sections to improve. Indeed, such
improvement was shown in the case of vector boson produc-
tion [9], where one observes a smoother transition from the
resummed to the fixed-order perturbative cross section if the
In the numerical calculations, some care is needed to trea@lculation is done at the next-to-next-to-leading order. Also,

the uncertainties in the definitions of the asymptotic and reat the NNLO the switching occurs at larger values of the
summed cross section@6) and (43), although formally transverse momentum of the vector boson than in the case of

where the constants;, h, must be determined by fitting the
experimental data.

In principle, thez-flow Sudakov factorS,(b,x,Q) is re-
lated to the Sudakov facto; 4(b,X,z,Q) of the contribut-
ing hadroproduction processes- A—e+ B+ X through the
relationship

X (Dgp®Cp§)(z,by ,u0). (79

V. RELATIONSHIP BETWEEN THE PERTURBATIVE
AND RESUMMED CROSS SECTIONS: UNCERTAINTIES
OF THE CALCULATION

these uncertainties are of ordé((as/m)%,g7%). the NLO.
The switching from the resummed to the fixed-order per-
A. Matching turbative cross section should occurggt~Q. Nonetheless,

i there is no unique prescription for the exact point at which it
The generic structure of the resummed cross se¢48)  should happen. In our program we switch from the re-

calculated up to the orded((as/m)"), is summed cross section to the perturbative result at the first
minimum of the difference
b= Tcsst Y. (80)
. . o do do
In Eqg. (80), the CSS piece receives all-order contributions da 9o ,
from large logarithmic terms A1/ resum A/ pert
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FIG. 5. Choice of the matching between the resummed and per-

turbative cross section.
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q7
(fa—X)(fb_Z)—XZ& ,

(83

=X2ZJ

[ —1

which comes from the parton-level cross secti&1). De-
pending on the values ocf,z,QZ,qi, the contour of the in-
tegration overé¢, and ¢, determined by Eq(83) can have
one of three shapes shown in Fig&)6-6(c). Forg;<<Q the
integration proceeds along the contour in Figg)sand the
integral in Eq.(30) can be written in either of two alternative
forms

da—BA

—:fl dfaM (§§§(2Q2q2¢)
dxdzd@dgidg J¢ sa(€a,6:%,2,Q%,05,

fa)minga_x

lying at gt above the main maximum of the resummed cross

section(Fig. 5. This prescription is satisfactory for two dif-
ferent possible situations, in which the resummed cross sec-
tion crosses$Fig. 5(@] or does not crosi-ig. 5b)] the per-

turbative cross-section.

B. Kinematic corrections at qr=~Q

In this subsection we will discuss the differences between
the kinematics implemented in the definitions of the
asymptotic and resummed cross secti@® and (43), and
the kinematics of the perturbative piece at non-zero values of

ar

Consider the perturbative hadronic cross sect8M. The

integrand of Eq(30) contains the delta-function

& &
P L SORU S
T i ’RMQ
[ \r IS S
Ey [ 1- 454 —p :
z | L i e e T :
e !
x (&), 1 x ) 1! &
a) b)
& &
T R :___,,,,,1{1:“_,
\R
) R
@l . 1
o freeeeees - e
x 1 x 1 Ea

c)

FIG. 6. The contours of the integration ov&r, &, for (a,b,0
the perturbative cross sectiof30); (d) the asymptotic and re-

d)

summed cross sectiori36) and (43).

1 d “ A
= J'( iMBA(Saigb;Xazaniq?ﬁgﬁ)! (84)

gb)mingb_ z
where

Mga(£a,ép:%,2,Q%,02, )

0'0F| [£279N

2
T e 2 N eD =
A7S, Q% ™ dbj sib(ép)Faraléa)

4
x 2 {2 QM DAL ). (85

The lower bounds of the integrals are

2

W
(fa)min:E‘FXa (86)
2
(gb)min:m+zi (87)
with
w= % XZ. (89

Alternatively, the cross section can be written in a form
symmetric with respect t& andz,

doga fl dé,
X

_ L
IxdzdGadg  Jeruba—x M o o2 QT 0)

1 d A
+fz £ M(£&a,ép:%,2,Q%,0%,9),

+W§b_z

(89

where the integrals are calculated along the branBfeand
RQ in Fig. 6(a), respectively. Agyjt—0,

(EDdmin—X, (€p)min—2Z,
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and the contouP RQ approaches the contour of integration

of the asymptotic cross secti@@6) shown in Fig. &d). The NLO CTEQaM
horizontal (or vertica) branch contributes to the convolu- I i X = 0.0049
tions with splitting functions in Eq(36) arising from the 025 - : Q = 5.7 GeV

initial (or final) state collinear singularities, while the soft
singularities of Eq.(36) are located at the poinf, =X,
&p=1.

On the other hand, as; increases up to values arou@xl
the difference between the contours of integration of the per- [
turbative and asymptotic cross sections may become signifi 015 -
cant. First, as can be seen from E89), in the perturbative [
piece&, and &, are always higher thax+w or z+w, while [
in the asymptotic piece they vary betweeior z and unity. 0.1
At small x (or small z) the difference between the phase I
spaces of the perturbative and asymptotic pieces may be K
come important due to the steep rise of the PDF's and FF's 0.5
in this region. Indeed, for illustration consider a semi-
inclusive DIS experiment at smalk. Let q;/Q=0.5,

resummed

..

z=0.1, andx=10 % thenx+w=1.6x10 3>x=10*. In R e e e B e T
combination with the fast rise of the PDF’s at smgllthis ar, GeV

will enhance the difference between the perturbative and . .

asymptotic cross sections. FIG. 7. Comparison of the NLO perturbativ@6) and re-

it could happen that summed(74) expressions for the-flow distribution with the exist-
ing experimental data from HERALS]. The presented data is for
(x)=0.0049,(Q%=32.6 Ge\l.

Second, forx or z near unity,
x+w=1 or z+w=1, which would lead to the disappear-
ance of one or two branches of the integration of the pertur
bative piecdFigs. 6b) and Gc)]. In this situation the phase
space for nearly collinear radiation along the direction of the 1 d>,
initial or fi_nal parton is suppressed. Again, this may degrad_e doo;/(dxdQP) dxdQ@dagr
the consistency between the perturbative and asymptotic
piece, since the latter includes contributions from bothgng
branches of the collinear radiation. Fortunately, thez
asymmetry of the phase space in semi-inclusive DIS is not 1 dgchad
important in the analysis of the existing data from HERA, .
since it covers the sma¥i-region and is less sensitive to the doo/(dxdQP) dxdzdQdar

contributions from the large-region, where the rate of the .
S . . . Our calculations use the parameters of the HERA electron-
hadroproduction is small. However, in the numerical analysis . '
roton collider. The energies of the proton and electron

we found it necessary to correct for the contraction of they . .~ " o0 i0 pe equal to 820 and 27.5 GeV, respec-

perturbative phase space described in the previous paragraqlv.ely
We incorporate this correction by substituting foandz in '
Egs.(36) and (43) the rescaled variables
A. Energy flows
- Q%+ q% As a first application of the resummation formalism, we
X= 2 X consider the c.m. pseudorapidity distributions of the trans-
Q verse energy flows in the current region, data for which has
s 2 been published ifil5]. We discuss the data in seven bins of
E=Q +qu 90 X and Q, four of them covering the region *0Q?
Q2 = <20 Ge\, 3.7X10 4<x=2.3x10 3, and the other three

the region 28:Q?<50 Ge\?, 9.3x10 4<x=<4.9x10 3.

These substitutions simulate the phase space contraction of In our calculation, we use the CTEQ4M parton distribu-
the perturbative piece. At smalk, the rescaling reproduces tion functions[25]. The factorization and renormalization
the exact asymptotic and resummed pie@& and(43), but  scales of the perturbative and asymptotic pieces are all set
at largerqgy it excludes the unphysical integration regions ofequal tox=Q. As was mentioned in Sec. 1V, the data on
E~x andép~z. transverse energy flow can be easily transformed int@the
distributions of thez flow. In Fig. 7, we present the compari-
son of the existing data in one of the bins ®&fand
Q? ({x)=0.0049,(Q?)=32.6Ge\#) with the NLO pertur-

In this section, we present the results of Monte Carlobative and resummed flows given in Eqgs.(B6) and (74),
simulations for thez flow and the differential multiplicity of  respectively. In Fig. 8 we present the comparison of the re-
charged particle production, summedz flow with the data in the other bins ¢15].

VI. NUMERICAL RESULTS
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FIG. 8. Comparison of the resummed E@4) z-flow distribution with the HERA data frori15] in seven bins ofx) and(Q). The
resummed flows were calculated using the parametrizati®h) for the non-perturbative part of the Sudakov factor.

Figure 7 demonstrates two important aspects of the NLO The excess of the data over the NLO calculation can be
gr distribution, namely, that the NLO exceeds the data ainterpreted as a signature of other intensive hadroproduction
smallgr and is below the data gt= Q. In fact, we find that mechanisms at c.m. pseudorapiditig¥"<2. A discussion
the deficit of the NLO prediction of perturbative theory in of the cross sections in this pseudorapidity region is beyond
comparison with the data at medium and Izargﬁ the scope of our paper. However, we would like to point out
(qr=5GeV) is present in the entire regionoandQ” that that there exist several possible explanations of the data in

we have studied. his region, for instance, the enhancement of the cross sec-
As we discussed in Sec. V, one can trust the resummeb gion, ’

calculation only for reasonably small values @f/Q. For tion due to BFKL showering6] or resolved photon contri-

large values ofj7, the fixed-order perturbative result is more Putions[17,21]. From the point of view of our study, itis
reliable. This means that the NLO resummation formalismtlear that better agreement between the data and the combi-
will not give an accurate description of the data fge=Q,  hation of the perturbative calculation and the CSS resumma-
due to the small magnitude of the NLO perturbathflow in  tion, in a wider range of;°™, will be achieved when next-
this region. to-next-to-leading order contributions, like the ones
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FIG. 9. Th92 comparison of the-flow distributions for (x) FIG. 10. The dependence of the resummdidw on the pertur-
=0.0049 andQ*)=32.6 GeVt, calculated with(solid) and with-  pative scaleu and the constant§,,C,. The figure corresponds to
out (dashedl the kinematic correctiok90). (x)=0.0049, (Q%=32.6 Ge\t. The curves correspond td,

=2e7 7, C,=e ¥ u=Q (solid); C;=2e77, C,=e ¥ u=2Q
contributing to (2+1) jet production[20], are taken into (dasheyt C,=2e~7, C,=e ¥ 4, =0.5Q (dotted; C,=2e"?,
account. C,=1, u=Q (dot-dashed
On the other hand, Figs. 7 and 8 illustrate that the resum-
mation formalism accuratgly describes the data in the regiowe should emphasize that we do not know the exact behav-
gr=<10GeV. Th|s calculat|qn of the resqmmedlows (79 ior of g (b,x) for x=10"2, where currently there is no
was dong using the following parametrization for the NON-4ata available. On the other hand, the tagfA(b,x) in the
perturbative Sudakov factd7?) parametrization (93) becomes negative fox=5x10 2
which makes the numerical value of the resummdtbw
NP G (2) (74) unphysical. Thus, the parametrizati(®8) must be used
Sz (b,X,Q)—g (b,X)+g (va)l (91) Only atX$10_2.
where theQ-dependent pag®(b,Q) is completely defined . The t_heoretica_l results in Fig. 8 were obtained using the
by the symmetry between semi-inclusive DIS, Drell-Yan and<ineématic correction to the asymptotic and resummed cross-
e*e~ hadroproduction processéSec. I, sections at non-zergr, Whlch was dlscussed in Sec. V. As
can be seen from Fig. 9, without this correction the agree-
1 Q ment between the resummation calculation and the data is
g(z)(b,Q)=§b2[O.48 Io%z—) still good in the regiom;<2 GeV<Q, where the resum-
Qo mation calculation is truly applicable. The kinematic correc-
C,Q tion improves the agreement between the resumpeaibaly
.0 ” (920 and the data in the regiogy=2 GeV. In this region, the
10 theoretical prediction without the kinematic correction sig-
The parametrizations of th@-dependent parts of the non- nificantly exceeds the data. As explained in Sec. V, this can
perturbative Sudakov factors in the Drell-Yan ate™ ha-

be attributed to differences between the phase space of the
droproduction processes are taken frigthand[24], respec-

b
+5.3$Flog(b—) log
*

perturbative and resummed pieces. In the case of the re-
tively. In Eq. (92, the constants areC,=2e ?, summed cross seqtion the phase space may.expand to much
C,=e 34 Q,=1GeV. The variableb, is given by Eq. Ipwerx andz than is allowed for the'perturbatlve Cross sec-
(61), with b, =1GeV L. tion. Consequently, the I_arge magmtud_e of PDF’'s and FF's
The x-dependent functiom(x,Q) was determined by at smallx and z may sppll the cancellation b.etw_een the re-
fitting the HERA data of{15]. We found that good agree- summed and asymptotic piece at lange. Th_|s difference
ment with the data is obtained whai(b,x) is param- can be corrected by redeflnltlciﬁ'O) o'f the variablex andz
etrized by a linear function af 95 in the resummed and asymptotic pieces. _ _
' One of the advantages of the resummed cross sections is
058 that_, by their construc_tion_, they are Ies; d_ependent on the
g(b,x)= bZ( —2.58+'—) , for x<102 (93  choice of the renormalization and factorization scales of the
WX problem, and on the end points /b andC,Q in the integral
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summation formalism is valid, corresponds to large pseudo-
rapidities. In this region, the agreement between our calcula-
tion and the data is good. At smaller pseudorapidiiesyer

gt), one sees the above-mentioned excess of the data over
the perturbative NLO calculation. In thg+) vs 7.y, plot,

this excess is magnified because of the faqﬁo'm the trans-
formation (72).

B. Multiplicity of charged particle production

The H1 and ZEUS collaborations recently published the
pseudorapidity distributions of charged particle multiplicity
at small values ok and Q? [12]. The data presented was
organized in the same bins ®fand Q? as those used in the
H1 analysis of the transverse energy flphb]. Also, the
experiment E665 at Fermilab has provided extensive data on
charged particle multiplicity covering the region of larger
[14]. However, a comparison of these data with our calcula-
tion, analogous to the one described in the previous subsec-
tion, is complicated by several obstacles.

In comparison to energy flows, charged particle multiplic-
ity depends on the additional varialtewhich controls the
fragmentation of a final-state parton into the observed had-
Z2Gev-! (dotted: Qp=0.5GeV, b, —1GeV ! (thin solid): (rjons. Therefore, the PQCD hadroprO(_:iuction cross—;ections
Qu=2 GeV, b,.—1 GeV ' (dot-dashedl The graph corre- epend on parton fragmentat|on_funct|dh$_§b,,u), which
sponds ta(x)=0.0049,(Q%)=32.6 Ge\’. Fl2t6[])resent are known well only in the region €.§,<0.8

The non-perturbative Sudakov fact¢r7) for particle
) ) multiplicity can depend omz. Furthermore, in principle, the
of the perturbative Sudakov fact¢46). The reason is that non-perturbative Sudakov factor can be different for differ-
the scale variations in the perturbative part of Etd) are  ent types of initial and final statdsee the discussion of
compensated by the variation of the tegi?(b,Q) in the  Eq. (64) abovd. As a first approximation, in the analysis
nonperturbative Sudakov fact1). below we will ignore this difference.

In Fig. 10 we show the resummedflow for different On the other hand, in the existing data on charged particle
choices of perturbative renormalization and factorizationpseudorapidity or transverse momentum distributidi14
scaleu, varying between 0B and 2Q, and for a different the dependence on the final-state fragmentation variable is
choice of the constants; andC, (the “canonical choice” not separated from the other variables. Therefore, more com-
C,=2e 7, C,=1). As expected, the resummed cross secplicated fitting of the data is necessary to disentanglegthe
tion shows little variation with the changes af C,, C,. andz dependences. _

We have also checked the stability of the resummed More importantly, our calculation was made under the

zflow under variation of the momentum transfer so@lgin gssumption that all the participating particles, including thg
the logarithm ofg®(b,Q), and under variation of the pa- final-state hadrons, are massless. Because of this assumption,

rameterb,, ., Separating the perturbative and nonperturbativ he produgtion of so_ft final-stgte hadrons, widt 0 .iS al-
dynamics in Eq(74). Figure 11 shows the-flows for varia- owed. This contradicts the situation of the experiments at

tions of Qg andb.,.... by factors of 1/2 and 2. As can be seen HERA and Fermilab, in which there is a non-zero minimal
in Fi 1loth v “;ia"ti{] f the resummedi v'vi mall. Th value of z determined by the finite mass of the observed

9. 11, Ihe variation ot the resu owis small. Th€ L adron. It follows from the definitio®) of zand the formu-
stability of the resummed-flow under the variation of

L . las (21),(22) for the initial and final hadron momenta in the
bmax:Qo,C1,C, indicates that the choice of these param-

3 v*p c.m. frame, that
eters has less influence on the shape of the resummed cross

section than the free parametersgft)(b,x). It also illus- Pet _ Mg
trates the fact that the existing HERA data is relatively in- =W W (94)
sensitive to the parametrization of tR@edependent function
g®(b,Q), which can be studied in a more detailed fashion
once the data in a larger range @fbecome available. where
Finally, in Fig. 12 we replot the results of our calculation
presented in Fig. 8 as the c.m. pseudorapidity distributions of
the transverse energy flo{i+). This quantity is obtained by cm _ Eemy pem oo szQz(l _ 1)
the transformatior{72). The smallg; region, where the re- Pe+=%8 T P, X '

FIG. 11. Dependence of the resummnefiow on Qy andby,ay-
The curves correspond @,=1GeV, b,,,,=1GeV ! (thick solid);
Qo=1GeV, Db,=0.5GeV'! (dasheit Qy=1GeV, b
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FIG. 12. They*p c.m. pseudorapidity distributions of the transverse energy flow in the current region. The data af&5fom

Using Eq.(94), one can show that the multiplicity distri- from the study of the energy flows. We also assume that the
butions presented ifl2] receive contributions from charged charged particle production rate is dominated by fragmenta-
pions withz~10"2 or lower. This means that for the experi- tion of partons into charged pions, kaons and protons, and
mental cuts used in the H1 analysis, the multiplicity receiveghat the non-perturbative Sudakov factors for these types of
significant contribution from the regiom<0.1 where the particles are the same. In spite of many assumptions that go
fragmentation functions are poorly known, and mass effect@to this calculation, it will be interesting to compare it with
are important. the experimental data.

In Fig. 13 we present the resummed multiplicity in the
regionz=0.1, where the uncertainties in our knowledge of
the fragmentation functions and the mass effects are mini-
mal. The results in Fig. 13 are given far=0.0044, In this paper, we have presented a formalism for all-order
Q?=35 Ge\? and various bins of. In the calculation, we resummation of large logarithms arising in hadroproduction
used the CTEQ4M PDF'E25] and the fragmentation func- in the current region of deep-inelastic scattering, i.e., for
tions from [26]. We show the prediction using the large pseudorapidity of the final-state hadrons in the photon-
z-independent non-perturbative Sudakov fa¢g® obtained proton c.m. frame. We found that the formalism describes

VII. CONCLUSIONS
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FIG. 13. The charged particle multiplicity &x)=0.0044,(Q?)=35 Ge\~.
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(A) moves in the+z direction, with energyE,, and the

(A) me ; th energyt Q cof(6g/2) af
incoming lepton moves in the z direction with energyE. CoSp= ———|1l-y——F—+—|, (A10)
The momenta of the incident particles are 2V1-yar B Q

PA=(Ea,0,0EA), (A1)

2
|#=(E,0,0-E). (A2) coshy= y—l. (A11)
The outgoing lepton has ener§y/ and scattering anglé

relative to the—z direction. We define thex axis of the
HERA frame such that the outgoing lepton is in #eplane: APPENDIX B: THE PERTURBATIVE CROSS SECTION

that is, AND z-FLOW DISTRIBUTION

In this appendix, we collect the formulas for the NLO
parton level cross sectiomkry,/(dxdzdQ*dg2d ).

. According to Eq.(30), the hadron level cross section
The observed hadra(8) has energy¥g and scattering angle 2 .
fg with respect to the+z direction, and azimuthal angle dog/(dxdzdGdardg) is related to the parton cross-

ég; thus its momentum is sectionsdo,,/(dxdzdQ?dgid¢) as

|/#=(E',—E'sing,0—E' cosf). (A3)

pgi=(Eg,EgSin 6gc0s¢p ,EgSin Ogsin ¢pg ,EgC0SHR).

(R VS < s P,
dxdzdQ@dgidg @b Jz &b

The scalar andQ? are completely determined by mea- A
suring the energy and the scattering angle of the outgoing 1dé, dopa

X —F — =5
lepton, x &a a’A(gf")dxddequid(b

Q?=2EE’(1-cos#), (A5) _ _ _
At non-zerogy, the parton cross section receives the contri-
bution from the real emission diagraifisigs. 4e) and 4f)];

EE’(1—cosé) it can be expressed as

X= . (AB)
EA[2E—E’(1+cos0)]
, _ dopa
The scalarsz and g7 depend on the outgoing hadron andﬁ
lepton as dxdzdQ-dgsde¢
2
Eg(1—cosé ook as |07 (1 1
- Frell_C0S%e), (A7) =—2—55—z‘(7‘1)<7_1)
Q 4mSQ° ™ [ Q X z
4
2_2Q2[l—(y—l),82][si a0, X2 ef 2 MR 2.Q% gAY ), (BD)
T B%(1—cosbg) 2
+ sin Bgsin g*siﬁ%}, (A8)  Wwith the same notations as in Sec. Ill. In this formula,
4
where 3 10 2.Q% DAL )
Q? 2xE 0
Y= e B—TA, coty =BV1-y.  (A9) (1] q*
A =254 Cexz | | 5 T (Q*—a])? | +6Q%|A;
Or \ Xz
The angle¢ and the boost parameteér, which are used ) .
for the angular decomposition of the cross sections in the +2Q (2A2+A4)+2q—(Q +a7PAs (B2
hadron Breit frame, can be found as T
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4
0;1 f9(x,2,Q%, a4 AL, )

S 4 2
=X(1—X)[ q—-zr(@—z‘f'Z)
1 1
+2Q2% 5— = — = | |A;+4Q?(2A,+A,)
X VA
2
+2g 2(Q2+q$)—% Ag]; (B3)
ar XZ
4
2, f6)(x2.Q%aDAL(Y¢)

—2Cx(1-2) |2 LHQZ—E}Z)2 +6Q%|A;
3\ x3(1-2)2 !
+2Q2(2A2+A4)+2~2(Q2+a-2r)A3 . (B4)

ar

In Eq. (B4),

PHYSICAL REVIEW 61 014003

I

ar= 1 (BS)

The indicesj andk correspond to a quartantiquark of a
typej or k, the indexg corresponds to a gluon.

From Eq.(30), it is possible to derive the perturbative

z-flow distribution,

dE’Z 1 d(TBA
—ZEEJ dz—— =
dXszqudgﬁ B Jzyin dXddequdq{)
O-OF| g 2 1 dga
47TSeAQ2 T ab j ! xga_x

4
XFan(€2% 2, 117(x,2,Q%00)

XA(4,9). (B6)

It depends on the same functiohg,(X,z,Q%,q2), with the
parton variable determined by theS-function in Eq.(B1),
. 1-x
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