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Multibaryons as symmetric multi-Skyrmions
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We study the rotational corrections to multibaryon systems within the bound state approach to the SU~3!
Skyrme model. We use approximateAnsätze for the static background fields based on rational maps which
have the same symmetries of the exact solutions. To determine the explicit form of the collective Hamiltonians
and wave functions we only make use of these symmetries. Thus, the expressions obtained are also valid in the
exact case. On the other hand, the inertia parameters and hyperfine splitting constants we calculate do depend
on the detailed form of theAnsätzeand are, therefore, approximate. Using these values we compute the low
lying spectra of multibaryons withB<9 and strangeness 0,21, and2B. Finally, we show that the rotational
corrections do not affect the stability of the tetralambda and heptalambda found in a previous work.

PACS number~s!: 12.39.Dc, 21.80.1a
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I. INTRODUCTION

In the last few years there have been several impor
developments in the determination of the lowest ene
Skyrmion configurations@1–3#. These types of solutions ar
essential for the understanding of multibaryons and, perh
nuclei in the framework of the topological chiral solito
models. So far, these models have proven to be useful fo
description of quantities such as the masses, strong and
tromagnetic properties of the octet and decuplet baryo
baryon-baryon interactions, etc.~see, e.g., Refs.@4,5# and
references therein!. The knowledge of the properties of th
multi-Skyrmion configurations opens the possibility
studying more complex baryonic objects. In fact, several
vestigations concerning non-strange multi-Skyrmion syste
have been reported in the literature~see, e.g., Refs.@6–10#!.
Of particular interest are, however, the strange multibaryo
Perhaps the most celebrated example is theH dibaryon pre-
dicted in the context of the MIT bag model more than twen
years ago@11#. This exotic has been studied in various oth
models, including the Skyrme model@12–15#, but its exis-
tence remains controversial both theoretically and exp
mentally. It has also been speculated that strange m
could be stable@16#. This has lead to numerous investig
tions of the properties of strange matter in bulk and in fin
lumps~for a recent review see Ref.@17#!. Moreover, with the
new heavy ion colliders there is now the possibility of pr
ducing strange multibaryons in the laboratory@18#. In this
situation the study of multibaryon systems within the SU~3!
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Skyrme model appears to be quite interesting. A first step
this direction has been reported in Ref.@19# where the ratio-
nal map approximation@20# to the multi-Skymion fields was
used to describe the multibaryon configurations within
bound state approach@21# to the SU~3! Skyrme model.
Within this approach strange~multi!baryons appear as sys
tems of kaons bound to a background Skyrmion configu
tion. To find the kaon binding energy one has to solve
corresponding eigenvalue problem. For a general ba
ground, this is a very hard numerical task since one ha
deal with several coupled, partial, differential equation
However, this problem is greatly simplified if one introduc
the ~approximate! rational mapsAnsätze for the multi-
Skyrmion configurations. The construction of theseAnsätze
is based on the analogy between monopoles and Skyrm
and requires that the approximate solutions have the s
symmetries as the exact numerical solutions. In fact, it
now known that up toB59 these configurations are ver
symmetric. Namely, forB52 the solution corresponds to a
axially symmetry torus while configurations withB53 – 9
possess the symmetries of the platonic polyhedra. In con
with the exact solution, however, the rational map appro
mation assumes that the modulus of the static pionic fiel
radially symmetric while its direction depends only on t
polar coordinates. It was shown in Ref.@20# that this repre-
sents a very good approximation. Once the rational maps
introduced, the kaon eigenvalue problem reduces for e
baryon number to one radial eigenvalue equation. The co
sponding results have been given in Ref.@19#. In such refer-
ence, however, rotational effects were neglected. These
fects appear when one performs the collective quantiza
of the system. It should be stressed that it is only at this st
when the spin and isospin quantum numbers are well defi
and that splitting between the corresponding states appe
©1999 The American Physical Society01-1
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GARRAHAN, SCHVELLINGER, AND SCOCCOLA PHYSICAL REVIEW D61 014001
The purpose of the present work is to carry out the collec
quantization of the bound multisoliton-kaon systems. T
requires paying special attention to their symmetries, wh
imposes severe constraints on the possible quantum num
and wave functions.

This paper is organized as follows. In Sec. II we provi
a brief description of the model with special emphasis on
effect of the rotational corrections. In Sec. III we describe
detail how to obtain the collective Hamiltonian for the d
ferent baryon numbers, while in Sec. IV we focus on t
corresponding wave functions. It should be noticed that si
the discussions in these two sections rely only on the s
metries of multi-Skyrmion configuration, the correspondi
results also hold true for the exact solutions. In Sec. V
present the numerical results and in Sec. VI our conclusio
Finally, in the Appendix we give the explicit form of th
rational maps used in the present work.

II. THE MODEL

We start with the effective action of the SU~3! Skyrme
model supplemented with an appropriate symmetry break
term @5#. Expressed in terms of the SU~3!-valued chiral field
U(x) it reads

G5E d4xH f p
2

4
Tr@]mU]mU†#

1
1

32e2 Tr@@U†]mU,U†]nU#2#J 1GWZ1GSB, ~1!

wheref p is the pion decay constant (593 MeV empirically!
ande is the so-called Skyrme parameter. In Eq.~1!, the sym-
metry breaking termGSB accounts for the different masse
and decay constants of the pion and kaon fields whileGWZ is
the usual Wess-Zumino action. Their explicit forms are

GSB5E d4xH f p
2 mp

2 12 f K
2 mK

2

12
Tr@U1U†22#

1
f p

2 mp
2 2 f K

2 mK
2

6
Tr@A3l8~U1U†!#1

f K
2 2 f p

2

12

3Tr@~12A3l8!~U]mU†]mU1U†]mU]mU†!#J ,

~2!

GWZ52 i
Nc

240p2E d5x«mnabg Tr~LmLnLaLbLg!, ~3!

wherel8 is the eighth Gell-Mann matrix andmp and mK
represent the pion and kaon masses, respectively, andf K is
the kaon decay constant.

We proceed by introducing the Callan-KlebanovAnsatz
for the chiral field@21#

U5AUpUKAUp. ~4!
01400
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In this Ansatz, UK is the field that carries the strangeness.
form is

UK5expF i
A2

f K
S 0 K

K† 0 D G , ~5!

where K is the usual kaon isodoubletK5(K0
K1

). The other
componentUp is the soliton background field. It is a direc
extension to SU~3! of the SU~2! field: i.e.,

Up5S expF i

f p
tW•p̂G 0

0 1
D . ~6!

Replacing theAnsatzEq. ~4! in the effective action Eq.~1!
and expanding up to second order in the kaon fields we
tain the Lagrangian density for the kaon-soliton system.
the spirit of the bound state approach this coupled system
solved by finding first the soliton background configuratio
For this purpose we introduce the rational mapAnsätze@20#

pW 5 f pn̂F, ~7!

with

n̂5
1

11uRu2 @2R~R! ı̂12I~R! ̂1~12uRu2!k̂#, ~8!

where we have assumed thatF5F(r ), andR5R(z) is the
rational map corresponding to winding numberB5n. Here,
r is the usual spherical radial coordinate whereas the c
plex variablez is related to the other two spherical coord
nates (u,f) via stereographic projection, namely,z
5tan(u/2)exp(if). The resulting expression for the solito
mass per unit baryon is~in what follows s5sinF; c
5cosF)

Msol5
f p

2

2nE drr 2FF8212n
s2

r 2 S 11
F82

e2f p
2 D

1
I

e2f p
2

s4

r 2 18pmp
2 ~12c!G . ~9!

The profile functionF(r ) is obtained by minimizingMsol
subject to the boundary conditionsF(0)5p and F(`)50.
In using these boundary conditions we are assuming tha
the extra winding number is obtained from the angular
pendence ofp̂. The angular integralI is

I5
r 4

16pE dV~] i n̂•] i n̂!2

5
1

4pE 2idzdz̄

~11uzu2!2 S 11uzu2

11uRu2 UdR

dzU D
4

. ~10!

In order to find the lowest soliton-kaon bound state
write the kaon field as@14,15#
1-2
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MULTIBARYONS AS SYMMETRIC MULTI-SKYRMIONS PHYSICAL REVIEW D 61 014001
KTz
~rW,t !5k~r ,t !tW•n̂xTz

, ~11!

wherex is a two-component spinor.
The diagonalization of the corresponding kaon Ham

tonian leads to the eigenvalue equation

F2
1

r 2 ] r~r 2hn] r !1mK
2 1Vn

e f f2 f nen
222lnenGk~r !50.

~12!

Details on how to obtain this equation as well as the expl
expression of the radial functionsf n , hn , ln , andVn can be
found in Ref.@19#.

To obtain the hyperfine corrections to the multibaryo
masses we proceed with the semiclassical collective coo
nates quantization method, where the isospin and spatia
tations are treated as the zero modes. Then, we introduc
time-dependent spatial rotationsR and the isospin rotationsA
such that

up→RAupA21, ~13!

K→RAK. ~14!

The angular velocities with respect to the body fixed fra
are given by

~R21Ṙ!ab5eabcVc , ~15!

A21Ȧ5
i

2
tW•vW . ~16!

Replacing in the effective action we get the collective L
grangian

Lcoll52Msol1
1

2
@Qab

J VaVb1Qab
I vavb12Qab

M Vavb#

2~cab
J Va1cab

I va!Tb , ~17!

wherea,b51,2,3 andTb5(x†tbx)/2 is the kaon spin.
The moments of inertiaQab and hyperfine splitting con

stantscab appearing in Eq.~17! are given by

Qab
J 5m1Cab1

m2

2
C̄ab , ~18!

Qab
I 5m1~dab2Aab!12m2~ndab2Āab!, ~19!

Qab
M 5m1Bab1

m2

2
B̄ab , ~20!

cab
I 5dab23F ~dab2Aab!d11

1

2
~Āab12nAab!d2G ,

~21!

cab
J 523@Babd11~B̄ab2nBab!d2#, ~22!

where the radial integralsm1 , m2 , d1 , andd2 are
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m154p f p
2 E drr 2s2S 11

F82

e2f p
2 D , ~23!

m254p f p
2 E dr

s4

e2f p
2 , ~24!

d152«nE
0

`

drk* kF1

3
r 2f ~11c!2

1

e2FK
2

d

dr
~r 2F8s!G ,

~25!

d25
2«n

e2FK
2E0

`

drk* k
2

3
~11c!s2, ~26!

and the angular integrals

Aab5E dV

4p
nanb, ~27!

Āab5r 2E dV

4p
] i n̂•] i n̂nanb, ~28!

Bab5E dV

4p
]bna, ~29!

B̄ab5r 2E dV

4p
] i n̂•] i n̂]bna, ~30!

Cab5E dV

4p
]an̂•]bn̂, ~31!

C̄ab5r 2E dV

4p
] i n̂•] i n̂]an̂•]bn̂.

~32!

The numerical values of these angular integrals dep
only on the particular form of theAnsatzfor n̂ and not on the
detailed form of the effective action and its parameters.
the rational maps listed in the Appendix all the matrices E
~27!–~32! are diagonal. As we shall see in the next secti
this is a direct consequence of the symmetries of theseAn-
sätze.

Given Lcoll , the canonical momenta are then defined
the usual way

Ja5
]Lcoll

]Va
5Qa

JVa1Qa
Mva2ca

JTa , ~33!

I a5
]Lcoll

]va
5Qa

MVa1Qa
I va2ca

I Ta , ~34!

where we have used that for the cases we are intereste
all the inertia and hyperfine splitting constants are diago
and thus denoted with a subindexa51,2,3, the correspond
ing diagonal elements. Depending on whetherDa[Qa

JQa
I

2(Qa
M)2 vanishes or not, we have to follow a somewh

different procedure to obtain the collective Hamiltonian. W
1-3
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GARRAHAN, SCHVELLINGER, AND SCOCCOLA PHYSICAL REVIEW D61 014001
consider first the case in whichDaÞ0 for all values ofa. In
this case the relations Eq.~33! can be inverted and the co
lective Hamiltonian results in

Hcoll5(
a

Ha
coll , ~35!

where

Ha
coll5~Ka

JJa
21Ka

I I a
222Ka

MJaI a!

12~Ka
Jc̄a

JJa1Ka
I c̄a

I I a!Ta1
Ka

I Ka
J

Ka
I Ka

J2~Ka
M !2

3@Ka
J~ c̄a

J!21Ka
I ~ c̄a

I !212Ka
Mc̄a

I c̄a
J#Ta

2 ~36!

and

Ka
J5

1

2

Qa
I

Da
, Ka

I 5
1

2

Qa
J

Da
, Ka

M5
1

2

Qa
M

Da
,

c̄a
J5ca

J2ca
I
Qa

M

Qa
I

, c̄a
I 5ca

I 2ca
J
Qa

M

Qa
J

. ~37!

If there exist, however, some valuesi for which D i50
there appears a relation betweenI i , Ji , andTi . It reads

Ji5
Q i

M

Q i
I

I i2S ci
J2ci

I
Q i

M

Q i
I D Ti . ~38!

Using this relation it is not difficult to show that the colle
tive Hamiltonian becomes

Hcoll5(
aÞ i

Ha
coll1(

i

~ I i1ci
ITi !

2

2Q i
I

~39!

and the total multibaryon mass results

M5nMsol1uSuen1Erot , ~40!

whereS is the multibaryon strangeness andErot the expec-
tation value ofHrot in the corresponding wave function.

In the next section we will determine the precise form
the collective Hamiltonians for each baryon number.

III. COLLECTIVE HAMILTONIANS

The minimum energy multi-Skyrmion configurations a
symmetric under certain groups of transformations@3#. With
the exception of theB51 andB52 cases, where these sym
metry groups are continuous@O(3) andD`h , respectively#,
these transformation groups have a finite number of
ments. In this section we will see how the symmetries of
multi-Skyrmion configurations impose severe constraints
the detailed form of the collective Hamiltonian. For theB
<4 cases this has already been discussed in the litera
using various arguments. Here, we will extend such anal
within a unified framework. It is important to notice that a
the discussions and results that follow are based only on
01400
f

-
e
n

re
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he

symmetries of the multi-Skyrmions. Therefore, they w
hold not only for the approximate configurations based
the rational maps but also for the exact ones obtained f
numerical minimization.

The task here is to determine the precise structure of
inertia and hyperfine splitting tensors, namely, which e
ments of those tensors vanish and how many of the rem
ing non-zero elements are independent for each baryon n
ber. First, we note that each operation of the abstract grouG
is represented by a pair of operations$g,Dg% which act in
spin and isospin spaces, respectively. The pion field in
~8! is invariant under these combined operations,

tW•pW ~ r̂ !5DgtW•pW ~g21r̂ !~Dg!†. ~41!

Given the form used for the kaon field,1 Eq. ~7!, this invari-
ance implies that the action of the group element on the k
field is also represented byDg . In fact,

DgKTz
~rW,t !5KTz

~grW,t !, ~42!

which means that the symmetry operation acting on the k
field is just given by the representation of the isospin ope
tion Dg in theT-space. Thus, theIW andTW operators transform
in the same way under elements ofG. This shows that it is
enough to perform the explicit analysis only for the iner
tensors. Once this is done, the results for the hyperfine s
ting constants can be easily obtained, noting that in Eq.~36!,
cab

J plays a role similar to that ofKab
M , while cab

I to that of
Kab

I .
The inertia tensors can be diagonalized by an appropr

choice of the spatial and internal reference frames, and th
in fact what happens for the rational mapAnsätze given in
the Appendix. Consider first the case for the spin. The s
generatorsJa transform underG in some~possibly reducible!
representation. The number of independent diagonal com
nents of the inertia tensor~moments of inertia! will be equal
to the number of irreducible representations2 ~irreps! of G
into which this representation breaks, since the combina
Kab

J JaJb must be a scalar underG. The spin generators be
long to the 11 irrep of O(3) which, for the cases we wil
consider below, breaks into either a 3-dim irrep or the sum
1- and 2-dim irreps ofG. In the first case there is only on
moment of inertia and the spin Hamiltonian is proportion
to (aJaJa , while in the second case there are two momen
and the Hamiltonian contains the termsJ1

21J1
2 andJ3

2. The
same argument holds for the other collective operators.

An important remark is the following. While there is
one-to-one correspondence betweeng and the elements ofG,
this is not necessarily the case for the operationsDg . In
other words, it could happen that the sameDg is associated
with two ~or more! different elements in spin space. In th

1This Ansatzcan be easily generalized if the exact numerical so
ton configuration is used instead of the approximation based
rational maps.

2
The character tables containing the list of irreps of the gro

we are interested in can be found, e.g., in Refs.@22# and @23#. We
follow the conventions of Ref.@22#.
1-4
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MULTIBARYONS AS SYMMETRIC MULTI-SKYRMIONS PHYSICAL REVIEW D 61 014001
case, the operationsDg do not span the full groupG but a
subgroup of it. As a consequence, the generatorsJa and I a
(Ta) could transform in different representations ofG. This
would imply that the corresponding mixing inertia wou
vanish. Below we see that this happens for some values oB.

Let us consider now the multi-Skyrmion configuratio
case by case. TheB51 Skyrmion is spherically symmetri
@4#. Thus, the relevant symmetry groupG is O(3). In this
case,g5Dg and bothJW and IW are in the 3-dim irrep 11.
Using the arguments given above we have

Qa
J5QJ, Qa

I 5Q I , Qa
M5QM, ca

J5cJ, ca
I 5cI .

~43!

Since in this case we are dealing with a continuous gro
the equality between the representation of the group
ments in spin and isospin spaces can be written in term
corresponding generators of the algebra. Namely, we ob
the relationJa52(I a1Ta) . From Eq.~33! this implies

QJ5Q I52QM, cI512cJ, ~44!

which leads toDa50 for all values ofa. Then, the collective
Hamiltonian takes the well-known form

HB51
coll 5

1

2Q
~ I 21c2T212cTW • IW !. ~45!

As already mentioned, theB52 lowest energy Skyrmion
configuration has the symmetry of a torus@1#, which implies
G5D`h . Choosing the symmetry axis along the z-directi
we obtain that the third components of the momenta are
the 1-dim Sg

2 while the other two components are in th
2-dim irrepPg . Since rotations along the z-axis form a co
tinuous subgroup ofD`h , for the terms containing third
components of the momenta we obtain a result similar to
of B51,

Q3
J54Q3

I 522Q3
M , c3

I 512c3/2
J , ~46!

which leads toD350. For the other componentsD1,2Þ0,
since theC2 along those axes only form finite subgroups
G. Consequently, the corresponding component of the dif
ent type of inertia and splitting constants need not be eq
and theB52 collective Hamiltonian reads
01400
p,
e-
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HB52
coll 5K1

J~J22J3
2!1K1

I ~ I 22I 3
2!1K1

I ~ c̄1
I !2~T22T3

2!

1K1
I c̄1

I ~ I 1T21I 2T1!1
~ I 31c3

I T3!2

2Q3
I

. ~47!

For the rest of the baryon numbers under considerat
B53 – 9, the symmetry groupG is finite @2,3#. Therefore,Da
never vanishes for all those baryon numbers and the co
tive Hamiltonian will have the general form Eq.~35!. There
can be, however, some further simplifications depending
the way in which the symmetry is realized in spin and iso
pin spaces.

The symmetry group of theB53 solution isG5Td . In
this case, we have thatg5Dg for all the elements ofG @7#.
Thus, the componentsJa , I a , andTa are in the 3-dim irrep
F2 . The collective Hamiltonian reads

HB53
coll 5KJJ21KII 222KMIW•JW12KJc̄JJW•TW 12KIc̄I IW•TW

1
KIKJ

KIKJ2~KM !2
@KJ~ c̄J!21KI~ c̄I !212KMc̄I c̄J#T2.

~48!

In the case ofB54 the relevant symmetry group isOh .
As discussed in Ref.@2#, for the minimum energy configu
ration this symmetry is realized in such a way that the e
mentsDg cover four times theD3d subgroup. As a result,I 1
(T1) and I 2 (T2) are in the 2-dim irrepEg , I 3 (T3) in the
A2g irrep and the components ofJW lie in the 3-dim irrepT1g .
We see then that the mixing inertia and spin splitting tens
vanish. The resulting form of the corresponding collecti
Hamiltonian is

HB54
coll 5KJJ21K1

I ~ IW1 c̄1
I TW !21~K3

I 2K1
I !I 3

212~K3
I c̄3

I

2K1
I c̄1

I !I 3T31@K3
I ~ c̄3

I !22K1
I ~ c̄1

I !2#T3
2 . ~49!

The lowest energy multi-Skyrmion withB55 hasD2d
symmetry. In this case, there is a one-to-one correspond
between the realization of the group in spin and isos
spaces. It is easy to check that the third components of
momenta are in theA2 irrep while the other two component
in the 2-dim oneE. The resulting collective Hamiltonian is
are
HB55
coll 5K1

J~J22J3
2!1K1

I ~ I 22I 3
2!22K1

M~ IW•JW2I 3J3!12K1
Jc̄1

J~JW•TW 2J3T3!12K1
I c̄1

I ~ IW•TW 2I 3T3!

1K3
JJ3

21K3
I I 3

222K3
MI 3J312K3

Jc̄3
JJ3T312K3

2c̄3
I I 3T3

1
K1

I K1
J

K1
I K1

J2~K1
M !2

@K1
J~ c̄1

J!21K1
I ~ c̄1

I !212K1
Mc̄1

I c̄1
J#~T22T3

2!

1
K3

I K3
J

K3
I K3

J2~K3
M !2

@K3
J~ c̄3

J!21K3
I ~ c̄3

I !212K3
Mc̄3

I c̄3
J#T3

2 . ~50!

As found in Ref.@3#, for B56 the symmetry group isD4d . Because of the way in which the generators of the group
1-5
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realized as pairs of spin-isospin operations it is possible to show that while the spin operations cover the fullD4d group, the
isospin ones cover twice theD2d subgroup. From the corresponding compatibility tables together with the compatibility
of the full rotational group, we find thatJ3 ,I 3 , andT3 transform as theA2 irrep, J1 andJ2 as theE3 irrep and the rest asE2
irrep. Therefore,

HB56
coll 5K1

JJ21K1
I ~ IW1 c̄1

I TW !21~K3
J2K1

J!J3
21~K3

I 2K1
I !I 3

222K3
MI 3J312K3

Jc̄3
JJ3T312~K3

I c̄3
I 2K1

I c̄1
I !I 3T3

1F K3
I K3

J

K3
I K3

J2~K3
M !2

@K3
J~ c̄3

J!21K3
I ~ c̄3

I !212K3
Mc̄3

I c̄3
J#2K1

I ~ c̄1
I !2GT3

2. ~51!
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TheB57 configuration has icosahedral symmetryI h with
the symmetry realized in such a way that the component
the spin operators transform like theF1g irrep while those of
the isospin operators transform asF2g irrep. Thus, the col-
lective Hamiltonian takes the simple form

HB57
coll 5KJJ21KI~ IW1 c̄ITW !2. ~52!

For B58 we have to deal with theD6d group. As in the
case of lower even baryon numbers, the isospin operat
do not span the full group but twice a subgroup,D3d in this
case. We find thatJ3 ,I 3 , andT3 transform as theA2 irrep,
J1 and J2 as E5 irrep and the rest as theE4 irrep. This
implies that the collective Hamiltonian forB58 has the
same form as theB56 one given in Eq.~51!. Finally, the
B59 multi-Skyrmion has the same symmetry as theB53
one, Td . Consequently, we obtain a similar form for th
corresponding collective Hamiltonian, Eq.~48!.

IV. COLLECTIVE WAVE FUNCTIONS

Having determined the explicit form of the collectiv
Hamiltonian, we have to find the corresponding wave fu
tions. These wave functions have to satisfy some constra
imposed by the symmetries of the background mu
Skyrmion. For nonstrange multi-Skyrmions this problem h
been discussed by several authors@6–10#. Here, we will ex-
tend such studies for kaon-soliton bound systems.

The quantization of a single Skyrmion as a fermion i
plies that under certain symmetry operations of the class
multisoliton background the corresponding wave functio
can pick up a nontrivial phase. These are known
Finkelstein-Rubinstein~FR! constraints@24#. We can generi-
cally write the constraints on the ground state as

gDgug.s.&5ggug.s.&, ~53!

where gg561 is determined according to the FR co
straints. Using continuity arguments it turns out that the
phases can be nontrivial only for those operations co
sponding to rotations, so for our cases of interest only
proper subgroup ofG needs to be considered. For the isosp
transformations we have to take into account the fact that
symmetry operation also acts on the kaon field. From
~42!, however, we notice that this operation coincides w
the one acting on the soliton isospin space. Thus, defin
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NW 5 IW1TW , the problem basically reduces to that of no
strange baryons just replacing the collective isospin byNW .
The ~proper! group generators and their corresponding
phases for the configurations considered in this work w
determined in Refs.@7,10#. They are listed in Table I.

It is clear from Eq.~53! that due to the FR phases, th
soliton ground state might transform in a one-dimensio
nontrivial irrep ofG. Using the FR phases listed in Table
and the group character tables, the relevant 1-dim irrepG can
be determined. We obtain that, with the exception of theB
55 andB56 cases, all the wave functions should transfo
as the trivial irrep of the corresponding symmetry grou
For B55, G is theA2 irrep of D2d while for B56 the wave
functions should transform as theA2 irrep of D4d .

We now need to determine the collective wave functio
The general procedure for arbitrary soliton backgrounds w
discussed in@25#. First we consider the problem withou
strangeness. In this case we need to determine the func

uJJz ,II z&5(
J3I 3

aJ3I 3

JI DJzJ3

J DI zI 3

I , ~54!

which transform under theright action ofG in the irrepG of
the soliton. This can be done following standard group t
oretical methods@26#. The product representationJ3I of
SU~2! is in general a reducible representation ofG. The pro-
jector operator into the irrepG is

TABLE I. Symmetry groupG, generators of the proper sub
group, their corresponding FR phases, and the parity operation
B53 – 9. The directions of the 3-fold axes inB57 are defined by
the spherical angles (fa ,ua)5„p/5, arccos@A(512A5)/15#… and
(fb ,ub)5„3p/5, arccos@1/A1516A5#….

Generators of proper subgroup and FR phases

B G $g1 ,Dg1
% gg1

$g2 ,Dg2
% gg2

Parity
operation

3 Td $C3
xyz,C3

xyz% 1 $C2
z ,C2

z% 1 $C4
z ,C4

z%
4 Oh $C3

xyz,C3
z% 1 $C4

z ,C2
x% 1 $E,C2

z%
5 D2d $C2

z ,C2
z% 1 $C2

x ,C2
x% 21 $C4

z ,C4
z%

6 D4d $C2
x ,C2

x% 21 $C2
xy ,C2

y% 21 $C8
z ,C̄4

z%
7 I h $C5

z ,(C5
z)3% 1 $C3

a ,(C3
b)2% 1 $E,E%

8 D6d $C2
x ,C2

x% 1 $C6
z ,C̄3

z% 1 $C12
z ,C̄6

z%
9 Td $C3

xyz,C3
xyz% 1 $C2

z ,C2
z% 1 $C4

z ,C4
z%
1-6
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PG5
1

uGu (
gPG

xG* ~g! r~g!, ~55!

where uGu is the rank of the group,xG(g) the character of
operationg, andr(g) the representation ofg in J3I @cf. Eq.
~41!#

r~g!5DJ~g!3DI~Dg!. ~56!

The eigenvalues ofPG can either vanish or be equal to on
The eigenvectors corresponding to each nonvanishing ei
value provide precisely the coefficientsaJ3I 3

JI of Eq. ~54!, and

there are as many wave functions as nonzero eigenvalue
all eigenvalues vanish there is no collective state with
givenJ,I . If there is only one, the wave function is an eige
function of the collective Hamiltonian, and if there are mo
than one, the Hamiltonian has to be diagonalized in the s
space spanned by them.

Let us proceed now to the case withSÞ0. We need to
find the functions3

uJJz ,II z ,S&5 (
J3I 3T3

bJ3I 3T3

JIT DJzJ3

J DI zI 3

I KT3

T , ~57!

which transform in irrepG under G. However, as noted
above, the action ofG in isospin andT-spaces is the same, s
it is possible to couple them toNW 5 IW1TW . Our problem then
reduces to that of the case without strangeness: for givI
andSwe have several possible values ofN. For each of these
we determine the linear combinations@see Eq.~54!# with I
replaced byN, and finally we uncoupleI andT. We obtain

uJJz ,II z ,S&5 (
J3N3I 3T3

aJ3N3

JN ^II 3TT3uNN3&

3DJzJ3

J DI zI 3

I KT3

T , ~58!

where^II 3TT3uNN3& are the SU~2! Clebsch-Gordan coeffi
cients.

There is a further restriction of the possible collecti
states. Given a certain value of the baryon numberB and the
strangenessS, not all the values of isospinI are allowed. As
discussed in Appendix B of Ref.@15#, physical states should
have hypercharge and isospin given by

Y5B1S/35
p12q

3
; I 5

p

2
, ~59!

wherep andq should be non-negative integer numbers. T
allowed values of isospinI for states withS50,21 and
2B are given in Table II, together with the correspondi
values ofT. Such values are obtained by requiring that t
kaon wave function has to be completely symmetric un
individual kaon exchange.

It should also be noted that in the construction of t
projector Eq.~55! all the operations ofG have to be taken

3Note thatT5uSu/2. See below.
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into account~i.e., not only those of the proper subgroup!. For
this purpose the representations of the parity operation
also needed. For each baryon number they are given in T
I. Another important comment is that for odd baryon num
bers theJ and N quantum numbers are half-integers. F
those cases one has to deal with the double group ofG.

V. NUMERICAL RESULTS

In our numerical calculations we will use two standa
sets of values for the Skyrme model parametersf p , e and
mp . Set A corresponds tof p564.5 MeV, e55.45,mp50,
while Set B tof p554 MeV, e54.84,mp5138 MeV@27#. In
both cases we set the ratiof K / f p to its empirical ratio
f K / f p51.22. With these values we can calculateMsol , the
kaon eigenenergiesen , and the radial integralsm1 , m2 , d1,
and d2 , which appear in the expression of the moments
inertia and hyperfine splitting constants. Using these val
together with those for the angular integrals, all the para
eters appearing in the collective Hamiltonians can be ev
ated. ForB51 we find thatQ51.01 fm andc50.50 for Set
A and Q51.0 1fm andc50.39 for Set B, which provide a
quite accurate description of the octet and decuplet bar
spectra@21,28#. The numerical values of the parameters
the B52 collective Hamiltonian Eq.~47! are given in Table
III. It is interesting to compare the values of the inertia p
rameters with those obtained using the numerically obtai
exact axially symmetricB52 Skyrmion @1#. For example,
the corresponding values for Set B are

K1
J530 MeV, K1

I 548 MeV, Q3
I 51.45 fm. ~60!

TABLE II. Allowed values of I andT for states with different
strangeness forB53 – 9.

B S I T

3 0 1/2, 3/2, . . . ,9/2 0
21 0, 1, . . . ,4 1/2
23 0, 1, . . . ,3 3/2

4 0 0, 1, . . . ,6 0
21 1/2, 3/2, . . . ,11/2 1/2
24 0, 1, . . . ,4 2

5 0 1/2,3/2, . . . ,15/2 0
21 0, 1, . . . ,7 1/2
25 0, 1, . . . ,5 5/2

6 0 0, 1, . . . ,9 0
21 1/2, 3/2, . . . ,17/2 1/2
26 0, 1, . . . ,6 3

7 0 1/2, 3/2, . . . ,21/2 0
21 0, 1, . . . ,10 1/2
27 0, 1, . . . ,7 7/2

8 0 0, 1, . . . ,12 0
21 1/2, 3/2, . . . ,23/2 1/2
28 0, 1, . . . ,8 4

9 0 1/2, 3/2, . . . ,27/2 0
21 0, 1, . . . ,13 1/2
29 0, 1, . . . ,9 9/2
1-7
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As we demonstrate, the differences with the values listed
Table III are of only a few percent. On the other hand, so
there does not exist any calculation of hyperfine splitt
constants using the exact numericalB52 Skyrmion. Never-
theless, we can compare our results with those from a ca
lation based on an improved variationalAnsatz@15# which
are, for Set B,

c̄1
I 50.334, c3

I 50.554. ~61!

These values are also very similar to ours. This is also
for Set A. Taking into account that the corresponding ine
parameters are also very close to those given in Table II
follows that our predicted dibaryon spectra coincide ba
cally with the ones described in Ref.@15#.

Results for theB5329 inertia parameters and hyperfin
splitting constants are listed in Tables IV and V, resp
tively. As expected, the inertia parameters decrease with
creasing baryon number. However, the decrease of the
inertia appears to be much faster than that of the isospin
This can be understood in the following way. Since we
interested in the overall behavior of inertias as a function
B, we define, for both spin and isospin, the average va
K51/3(aKaa . While m1 is roughly proportional to the
baryon number,m2 is basically independent ofB. Therefore,
assumingK'1/Q and using Eqs.~18! and ~19!, we have

TABLE III. Parameters forB52.

Set K1
J ~MeV! K1

I ~MeV! Q3
I ~fm! c̄1

I c3
I

A 33.42 53.68 1.15 0.409 0.63
B 27.63 45.20 1.40 0.306 0.56

TABLE IV. Inertia parameters forB53 – 9.

Set A Set B

B
KJ

~MeV!
KI

~MeV!
KM

~MeV!
KJ

~MeV!
KI

~MeV! KM ~MeV!

3 15.23 50.77 9.55 12.11 41.03 7.80
4 8.66 39.70 0 6.72 30.98 0

39.70 30.98
32.88 25.89

5 5.20 28.29 21.17 4.03 22.30 20.96
5.20 28.29 21.17 4.03 22.30 20.96
5.88 33.91 20.89 4.57 26.47 20.73

6 3.67 26.12 0 2.84 20.45 0
3.67 26.12 0 2.84 20.45 0
4.25 24.48 1.23 3.31 19.28 1.04

7 3.09 23.06 0 2.38 17.90 0
8 2.39 19.48 0 1.85 15.28 0

2.39 19.48 0 1.85 15.28 0
2.11 21.08 20.61 1.63 16.50 20.52

9 1.78 17.75 20.43 1.39 14.02 20.36
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1/KJ'an Tr C1b Tr C̄, 1/KI'an Tr A1b Tr Ā,
~62!

wherea and b are constants roughly independent ofn. On
the other hand, it is not difficult to prove that the traces of t
angular integrals appearing in these relations are given b

Tr A51, Tr Ā52n,Tr C52n, Tr C̄54I. ~63!

As shown in Ref.@20#, I<n2. In fact,I is basically propor-
tional to n2. Therefore, replacing Eq.~63! in Eq. ~62! we
obtain thatKJ should decrease asn2 while KI goes only like
1/n. This behavior of the inertia parameters has import
consequences in the multibaryon spectra. Namely, as
baryon number increases, low lying nonstrange states
expected to have the lowest possible value of isospin.
strange multibaryons this is not necessarily the case du
the coupling of the isospin to the kaonic spinT.

The rotational energies for the nonstrange multibaryo
are given in Table VI while those forS521 states are given
in Table VII and those corresponding to zero-hypercha
states in Table VIII. In all the cases, we have included in
tables the lowest lying state and the first two excited sta
for each channel. Some general observations can be m
Due to the overall decrease of the inertia parameters,
energy splittings become smaller asB increases. We also
note that the ordering of theS50 states is the same for bot
sets of parameters. For theS521 states there is, howeve
one exception which corresponds to the second exc
multibaryon with (B,S)5(6,21). For Set A the second ex
cited state is a 31 while for Set B it is a 21. It should be
noted, however, that the third excited states~not listed in
Table VII! are precisely a 21 for Set A and 31 for Set B and

TABLE V. Hyperfine splitting constants forB53 – 9.

Set A Set B

B c̄J c̄I c̄J c̄I

3 20.62 0.55 20.64 0.48
4 0 0.55 0 0.48

0.55 0.48
0.46 0.37

5 0.22 0.48 0.23 0.41
0.22 0.48 0.23 0.41
0.15 0.57 0.16 0.51

6 0 0.53 0 0.46
0 0.53 0 0.46

20.28 0.49 20.30 0.43
7 0 0.53 0 0.46
8 0 0.51 0 0.45

0 0.51 0 0.45
0.28 0.55 0.31 0.49

9 0.23 0.52 0.25 0.46
1-8
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that the energy difference with the second excited stat
1 MeV in both cases. For theY50 states the situation be
comes more complicated asB increases. This is due to th
rather small energy splittings between the different states
a general trend we also note that the rotational energies
slightly smaller for Set B. This can be traced back to the f
that the moments of inertia are smaller for that set of para
eters.

As discussed above, the lowest lying states for nonstra
baryons always have the lowest possible value of isos
The corresponding spins are then given by the lowest va
allowed by the symmetry constraints. As remarked in R
@10#, these values turn out to be consistent with those kno
for light nuclei with the exception of the odd valuesB
55,7,9. It should be stressed that at this point there is
obvious way to identify these rather compact mu
Skyrmion configurations with normal nuclei. Indeed, ev
for the B52 case it is not clear to what extent the deuter
wave function in the Skyrme model is represented by
torus configuration. Some analysis in terms of classical p
odic orbits indicates that the two Skyrmions spend mos
their time at large separation and only a short time near
torus @29#. As the strangeness increases~in absolute value!
the quantum numbers of the low-lying states become
obvious. This is a consequence of the interplay between
different terms in the corresponding collective Hamiltoni
for nonzero values ofT. In fact, the quantum numbers of th

TABLE VI. Quantum numbers and rotational energies forS
50 states.

Set A Set B

B JP I N
Erot

@MeV# JP I N
Erot

@MeV#

3 1/21 1/2 1/2 64 1/21 1/2 1/2 52
5/22 1/2 1/2 147 5/22 1/2 1/2 117
3/22 3/2 3/2 205 3/22 3/2 3/2 164

4 01 0 0 0 01 0 0 0
41 0 0 173 41 0 0 134
01 2 2 238 01 2 2 186

5 1/21 1/2 1/2 28 1/21 1/2 1/2 22
3/21 1/2 1/2 40 3/21 1/2 1/2 31
3/22 1/2 1/2 44 3/22 1/2 1/2 34

6 11 0 0 7 11 0 0 6
31 0 0 44 31 0 0 34
01 1 1 52 01 1 1 41

7 7/21 1/2 1/2 66 7/21 1/2 1/2 51
3/21 3/2 3/2 98 3/21 3/2 3/2 76
9/21 3/2 3/2 163 9/21 3/2 3/2 126

8 01 0 0 0 01 0 0 0
21 0 0 14 21 0 0 11
11 1 1 44 11 1 1 34

9 1/21 1/2 1/2 14 1/21 1/2 1/2 11
5/22 1/2 1/2 30 5/22 1/2 1/2 24
7/22 1/2 1/2 39 7/22 1/2 1/2 31
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Y50 states listed in Table VIII could be determined on
after the calculation of the energies of a rather large se
allowed states.

Now we discuss the issue of the stability of theY5I 50
states that we generically call multilambda states. The p
sible stability of a tetralambda state was first suggested
Ref. @30#. A similar conclusion was reached in Ref.@19#
where the existence of a stable heptalambda was also
posed. As already mentioned in the Introduction, the ro
tional corrections were neglected in that work. We are n
in a position to check whether these effects do or do
affect the stability of these states. From Table VIII we o
serve that for Set B the g.s.Y50 tetrabaryon is indeed a
tetralambda state. This differs from the situation for Set
where the tetralambda is the first excited state. In any c
this does not affect the rotational contribution to the 4L
22L mass difference. Using the energies given in Ta
VIII together with the values given in Table III for the pa
rameters ofHB52

coll @see Eq.~47!#, we find that the rotationa
corrections decrease the binding by 36 MeV for Set A and
26 MeV for Set B. These values are significantly smal
than the binding energy'176 MeV obtained for both sets o
parameters in the adiabatic approximation@19#. Thus, al-
though the rotational corrections tend to decrease the b
ing, the tetralambda still turns out to be bound within t
present approach. For the heptalambda we consider firs
stability with respect to the decay into 3L14L. The value
of the corresponding binding energy is2177 MeV @19#. It

TABLE VII. Quantum numbers and rotational energies forS
521 states.

Set A Set B

B JP I N
Erot

@MeV# JP I N
Erot

@MeV#

3 1/21 0 1/2 38 1/21 0 1/2 29
1/21 1 1/2 84 1/21 1 1/2 72
5/22 0 1/2 122 5/22 0 3/2 95

4 01 1/2 1/2 6 01 1/2 1/2 7
41 1/2 1/2 180 41 1/2 1/2 141
01 3/2 3/2 191 01 3/2 3/2 144

5 1/21 0 1/2 11 1/21 0 1/2 7
3/21 0 1/2 23 3/21 0 1/2 17
3/22 0 1/2 28 3/22 0 1/2 21

6 11 1/2 0 12 11 1/2 0 10
01 1/2 1 32 01 1/2 1 23
31 1/2 0 49 21 1/2 1 37

7 7/21 0 1/2 54 7/21 0 1/2 40
3/21 1 1/2 74 3/21 1 1/2 56
7/21 1 1/2 75 7/21 1 1/2 60

8 01 1/2 0 3 01 1/2 0 3
21 1/2 0 18 21 1/2 0 14
11 1/2 1 28 11 1/2 1 21

9 1/21 0 1/2 4 1/21 0 1/2 3
5/22 0 1/2 20 5/22 0 1/2 15
1/21 1 1/2 21 1/21 1 1/2 18
1-9
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should be noticed that the rotational energy of the ze
isospin (B,S)5(7,27) state does not appear in Table VII
In fact, the lowest lying of such states hasErot5104 MeV
for Set A andErot561 MeV for Set B. That is, it shows up
as an excited state with higher energy. Nevertheless, ta
into account the rather large rotational energies of theY5I
50 states withB53 and 4 it happens that the binding e
ergy of the heptalambda is increased by 45 MeV for both s
of parameters. For the case of the heptalambda ioniza
energy, one can verify that the values given in Ref.@19#
remain basically unaffected by the rotational corrections.
this purpose one has to use the values of the rotational e
gies of the lowestY5I 50 with B56. Such values~which
are not listed in Table VIII! are 87 MeV for Set A and
52 MeV for Set B.

VI. CONCLUSIONS

In this work we have studied the rotational corrections
the masses of the multibaryons within the bound state
proach to the SU~3! Skyrme model. To describe the mult
Skyrmion backgrounds we have usedAnsätze based on ra-
tional maps. Such configurations are known to provide
good approximation to the exact numerical ones, and lea
a great simplification in the solution of the kaon eigenva
equation. An important property of these approximate c
figurations is that they have the same symmetries as the
act ones. Consequently, the collective Hamiltonians

TABLE VIII. Quantum numbers and rotational energies forY
50 states.

Set A Set B

B JP I N
Erot

@MeV# JP I N
Erot

@MeV#

3 1/21 1 1/2 50 1/21 1 1/2 45
3/22 0 3/2 77 3/22 0 3/2 52
3/22 1 3/2 123 5/21 0 3/2 89

4 01 2 2 51 01 0 2 43
01 0 0 72 01 2 0 54
01 1 1 109 01 1 2 77

5 1/21 1 3/2 29 1/21 1 3/2 21
1/22 1 3/2 32 1/22 1 3/2 23
1/21 2 1/2 39 3/21 1 3/2 30

6 01 2 1 24 02 1 2 16
02 1 2 26 12 1 2 22
12 1 2 33 11 1 2 23

7 3/21 2 7/2 32 3/21 2 7/2 28
5/21 1 7/2 65 5/21 1 7/2 42
7/21 1 7/2 87 7/21 1 7/2 59

8 01 2 2 19 01 2 2 16
21 2 2 31 21 2 2 24
21 2 2 33 21 2 2 27

9 1/22 2 5/2 25 1/22 2 5/2 18
3/22 2 5/2 29 3/22 2 5/2 21
3/21 3 3/2 31 3/21 2 5/2 24
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wave functions determined in this work are also valid in th
case. They have been obtained by making extensive us
the properties of the corresponding symmetry groups. In p
ticular, we have shown how the Finkelstein-Rubinste
phases fix, in a unique way, the one dimensional irreduc
representations in which each wave function should tra
form.

Using two standard sets of parameters for the effec
SU~3! Skyrme action we have calculated all the inertia p
rameters and hyperfine splitting constants forB<9. We have
found that, as a general trend, the isospin moments of ine
increase asn2 while the spin ones asn, whereB5n. Thus,
the low lying nonstrange multibaryons have the lowest p
sible value of isospin. The situation is more complicated
the case of strange particles, for which there is a quite d
cate interplay between the different terms contributing to
rotational energies.

We have also estimated the rotational corrections to
tetralambda and heptalambda binding energies given in
@19#. We found that these corrections are relatively small a
do not affect the stability of these particles. This statem
can be certainly extended to the recent studies on the st
ity of heavier flavored multi-Skyrmions@31#.

We finish with a comment on the Casimir corrections
the multibaryon masses. Although these corrections are
expected to affect the rotational energies obtained in
present work, in any significant way, they might play som
role in the determination of the multibaryon binding ene
gies. Within the SU~2! Skyrme model it has been shown@32#
that they are responsible for the reduction of the otherw
largeB51 soliton mass to a reasonable value when the e
pirical value of f p is used. Here, we have avoided theB
51 large mass problem by using the customary method
fitting f p to reproduce the nucleon mass@27#. A more con-
sistent approach should certainly use the empiricalf p and
include the Casimir corrections. In this respect, there h
recently been some efforts@33# to evaluate the corrections t
the B51 mass in the SU~3! Skyrme model. Unfortunately
even in the SU~2! sector, almost nothing is known forB
.1. This is, of course, a very difficult task. Already in th
SU~2! model, it requires the knowledge of the pion excit
tion spectrum around the nontrivial multi-Skyrmion up
rather large values of angular momentum. Nevertheless
cent studies of the SU~2! multi-Skyrmion low-lying vibra-
tional spectra@34# could be considered to be the first steps
this direction.
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APPENDIX

In this Appendix we present the explicit expression of the rational maps used in this work. They are

R15z, ~A1!

R25z2, ~A2!

R35
iA3z221

z~z22 iA3!
, ~A3!

R45
112iA3z21z4

122iA3z21z4 , ~A4!

R55
z~z42 ib5z22a5!

a5z41 ib5z221
, ~A5!

R65
z41 ia6

z2~ ia6z411!
, ~A6!

R75
z52a7

z2~a7z511!
, ~A7!

R85
z62 ia8

z2~ ia8z621!
, ~A8!

R95
z3~2z613iA3z419z215iA3!1a9z~2 iA3z62z41 iA3z211!

5iA3z619z413iA3z2211a9z2~z61 iA3z42z22 iA3!
. ~A9!

The numerical values of the real constantsai ,bi appearing in these expressions are

a553.07, a650.158, a750.143, a850.137, a951.98, b553.94. ~A10!

The reader can check that in most cases our maps agree with those given in Ref.@20#. There are a few exceptions, howeve
For B57 we have chosen a different orientation in the spin and isospin spaces in such a way that one of the 5-fo
coincides with the z-direction. In the case ofB59 we have selected the map for which theTd group operations are realize
in exactly the same way in both spin and isospin spaces~namely,g5Dg). This is not the case for theB59 map given in Ref.
@20#.
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