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We study the rotational corrections to multibaryon systems within the bound state approach ta3he SU
Skyrme model. We use approximadasdze for the static background fields based on rational maps which
have the same symmetries of the exact solutions. To determine the explicit form of the collective Hamiltonians
and wave functions we only make use of these symmetries. Thus, the expressions obtained are also valid in the
exact case. On the other hand, the inertia parameters and hyperfine splitting constants we calculate do depend
on the detailed form of th@nsdze and are, therefore, approximate. Using these values we compute the low
lying spectra of multibaryons witB<9 and strangeness 6,1, and— B. Finally, we show that the rotational
corrections do not affect the stability of the tetralambda and heptalambda found in a previous work.

PACS numbds): 12.39.Dc, 21.80ta

[. INTRODUCTION Skyrme model appears to be quite interesting. A first step in
this direction has been reported in RElf9] where the ratio-

In the last few years there have been several importarial map approximatiof20] to the multi-Skymion fields was
developments in the determination of the lowest energysed to describe the multibaryon configurations within the
Skyrmion configuration§1—3]. These types of solutions are bound state approacfl] to the SU3) Skyrme model.
essential for the understanding of multibaryons and, perhap8Yithin this approach strang@nulti)baryons appear as sys-
nuclei in the framework of the topological chiral soliton tems of kaons bound to a background Skyrmion configura-
models. So far, these models have proven to be useful for thion. To find the kaon binding energy one has to solve the
description of quantities such as the masses, strong and elemrresponding eigenvalue problem. For a general back-
tromagnetic properties of the octet and decuplet baryongyround, this is a very hard numerical task since one has to
baryon-baryon interactions, et¢see, e.g., Refd4,5] and deal with several coupled, partial, differential equations.
references thereinThe knowledge of the properties of the However, this problem is greatly simplified if one introduces
multi-Skyrmion configurations opens the possibility of the (approximatg rational mapsAnsdze for the multi-
studying more complex baryonic objects. In fact, several in-Skyrmion configurations. The construction of thesesadze
vestigations concerning non-strange multi-Skyrmion systems based on the analogy between monopoles and Skyrmions
have been reported in the literatusee, e.g., Ref$§6-10)). and requires that the approximate solutions have the same
Of particular interest are, however, the strange multibaryonssymmetries as the exact numerical solutions. In fact, it is
Perhaps the most celebrated example isHhdibaryon pre- now known that up tadB=9 these configurations are very
dicted in the context of the MIT bag model more than twentysymmetric. Namely, foB=2 the solution corresponds to an
years agd11]. This exotic has been studied in various otheraxially symmetry torus while configurations witB=3-9
models, including the Skyrme modgl2—-19, but its exis-  possess the symmetries of the platonic polyhedra. In contrast
tence remains controversial both theoretically and experiwith the exact solution, however, the rational map approxi-
mentally. It has also been speculated that strange mattenation assumes that the modulus of the static pionic field is
could be stablg16]. This has lead to numerous investiga- radially symmetric while its direction depends only on the
tions of the properties of strange matter in bulk and in finitepolar coordinates. It was shown in RE20] that this repre-
lumps(for a recent review see Réfl7]). Moreover, with the  sents a very good approximation. Once the rational maps are
new heavy ion colliders there is now the possibility of pro-introduced, the kaon eigenvalue problem reduces for each
ducing strange multibaryons in the laborat¢@8]. In this  baryon number to one radial eigenvalue equation. The corre-
situation the study of multibaryon systems within the(3)U  sponding results have been given in H&8]. In such refer-

ence, however, rotational effects were neglected. These ef-
fects appear when one performs the collective quantization
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The purpose of the present work is to carry out the collectivén this Ansatz Uy is the field that carries the strangeness. Its
guantization of the bound multisoliton-kaon systems. Thisform is

requires paying special attention to their symmetries, which

imposes severe constraints on the possible quantum numbers \/— 0 K

and wave functions. Uk=ex e ol (5)
effect of the rotational corrections. In Sec. IIl we describe in*/ whereK is the usual kaon isodoublét= (KO) The other
detail how to obtain the collective Hamiltonian for the dif- component . is the soliton bat_:kgr.o_und field. It is a direct
ferent baryon numbers, while in Sec. IV we focus on the®Xtension to S(B) of the SU?) field: i.e.,

This paper is organized as follows. In Sec. Il we provide
a brief description of the model with special emphasis on the
corresponding wave functions. It should be noticed that since

the discussions in these two sections rely only on the sym- ex;{l—;—- ~ 0
metries of multi-Skyrmion configuration, the corresponding Uu,= fa (6)
results also hold true for the exact solutions. In Sec. V we 0 1

present the numerical results and in Sec. VI our conclusions.
Finally, in the Appendix we give the explicit form of the Replacing theAnsatzEq. (4) in the effective action Eq(l)

rational maps used in the present work.

Il. THE MODEL

We start with the effective action of the &) Skyrme

and expanding up to second order in the kaon fields we ob-
tain the Lagrangian density for the kaon-soliton system. In
the spirit of the bound state approach this coupled system is
solved by finding first the soliton background configuration.
For this purpose we introduce the rational nfapsaze[20]

model supplemented with an appropriate symmetry breaking

term[5]. Expressed in terms of the $8)-valued chiral field

U(x) it reads

f2
— 4 T
—fdx‘—4

2 T[U'9,U, U9, U] + T+ Tsg, (1)

Trlg,Uo*UT]

328

wheref . is the pion decay constant=(93 MeV empirically
ande s the so-called Skyrme parameter. In EL), the sym-

metry breaking ternl’gg accounts for the different masses

and decay constants of the pion and kaon fields whjlg is
the usual Wess-Zumino action. Their explicit forms are

f2m2+2f2m2
Fss=f d&(%ﬁ[uw*—z]

2m2 — f2m2 f2 g2
s T U AU T+ ST

XTI (1—3\8)(Ua,uTg*U+UTg,Ua*u"]},

2

Fywy=—1i f d>xe# P Tr(L,L,L,LgL.), ®)

240m?

where\8 is the eighth Gell-Mann matrix anch, and my
represent the pion and kaon masses, respectivelyf ansl
the kaon decay constant.

We proceed by introducing the Callan-Klebandusatz
for the chiral field[21]

U=U,UxU,. (4)

m=f_nF, (7)
with

1 . . .
n=W[Z%(R)l+23(R)j+(1—|R|2)k], (8

where we have assumed tHatF(r), andR=R(z) is the
rational map corresponding to winding numliss=n. Here,

r is the usual spherical radial coordinate whereas the com-
plex variablez is related to the other two spherical coordi-
nates @,¢) via stereographic projection, namelyz
=tan(6/2)exp{¢). The resulting expression for the soliton
mass per unit baryon igin what follows s=sinF; ¢
=cosF)

f2 ' SZ F!Z
Mso= 7N J’drr F +2n—2 1+—f§

S4
+ —— —+8mmi(1—c)|.
erET r2 77( )

(C)

The profile functionF(r) is obtained by minimizingM g,
subject to the boundary conditiog0)= 7 and F(«)=0.
In using these boundary conditions we are assuming that all
the extra winding number is obtained from the angular de-

pendence ofr. The angular integral is

I,4
2
I= 167 jdﬂ(an an)

dR)"’
relR (10)

1+]|z|?
1+|R[?

1 [ 2idzdz
A ) (14477

In order to find the lowest soliton-kaon bound state we
write the kaon field a§14,15
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12

Kr(r )=k nxr, @) m1=4wfiJ drrs?{ 1+ _e_Zfz)’ (23
wherey is a two-component spinor. i
The diagonalization of the corresponding kaon Hamil- 5 s?
tonian leads to the eigenvalue equation m2:4ﬂ-frrf dr zz. (24)
—iza(rzh 3)+m2+Veff—f e2—2) e}k(r)=o » 1 d
p2or e T e d1=2snf drk*k| =r2f(1+c)— —(r2F's) |,
(12 0 3 e?F 2 dr
. N . . (25)
Details on how to obtain this equation as well as the explicit
expression of the radial functiorig, h,, \,,, andV, can be e [ 2
found in Ref.[19]. dp=— an drk*k§(1+c)sz, (26)
To obtain the hyperfine corrections to the multibaryons e“Fx“Jo
masses we proceed with the semiclassical collective coordi- dth lar int |
nates quantization method, where the isospin and spatial rGnad the anguiar integrals
tations are treated as the zero modes. Then, we introduce the do
time-dependent spatial rotatioRsaand the isospin rotations Aab:f—nanb, (27)
such that 4m
71 —_— ~
Ur= RALAT, (13 Agp=r?| —an-gnn®nP, (28)
K—RAK. (14)
d
The angular velocities with respect to the body fixed frame B.b 4—&bn , (29
are given by
a1 — ao . .
(R lR)ab: Gabcﬂm (15) Bab—r2 Eain'ainabn , (30)
A
ATlA= ST . (16) d A
Cab= j 4_07an' (an, (31)
Replacing in the effective action we get the collective La-
grangian — (A
Cap=r Eain-&inaanﬂbn.
(32)

1
Leon=—Mggrt E[(@ibﬂaﬁtﬁ OLpwawp+ 2030 0p]

17

wherea,b=1,2,3 andT,=(x"m,x)/2 is the kaon spin.
The moments of inerti® 5, and hyperfine splitting con-
stantsc,;, appearing in Eq(17) are given by

J |
—(CapQat Capwa) Ty,

J my—
ab: m;Capt+ 7Cab , (18
® =My (Sap—Aap) +2My(NSap—Agp), (19)
M my—
O2b=m1Bapt 5 Bap, (20)
| 1
Cab™ 5ab_ 3 (5ab_ Aab)d1+ E(Aab+ 2nAab)d2 y
(21)
Cap=—3[Bapd1 + (Bap—NBap)d,], (22)

where the radial integral®,, m,, d,, andd, are

The numerical values of these angular integrals depend

only on the particular form of th&nsatzfor n and not on the
detailed form of the effective action and its parameters. For
the rational maps listed in the Appendix all the matrices Egs.
(27)—(32) are diagonal. As we shall see in the next section,
this is a direct consequence of the symmetries of these
sdze

Given L.y, the canonical momenta are then defined in
the usual way

oL
Ja= —5 = 020,10l w,—cT,, (33
a
oL
la= ot =0 Qat Ohw,— LTy, (34)

a

where we have used that for the cases we are interested in,
all the inertia and hyperfine splitting constants are diagonal
and thus denoted with a subindex1,2,3, the correspond-

ing diagonal elements. Depending on whetle/=0.0]
—(@2)2 vanishes or not, we have to follow a somewhat
different procedure to obtain the collective Hamiltonian. We
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consider first the case in which,# 0 for all values ofa. In ~ Symmetries of the multi-Skyrmions. Therefore, they will
this case the relations E83) can be inverted and the col- held not only for the approximate configurations based on
lective Hamiltonian results in the rat_lonal maps bl_Jt also for the exact ones obtained from
numerical minimization.
The task here is to determine the precise structure of the
HCO”ZE HSOH, (35 inertia and hyperfine splitting tensors, namely, which ele-
a ments of those tensors vanish and how many of the remain-
ing non-zero elements are independent for each baryon num-

where ber. First, we note that each operation of the abstract gBoup
Heol = K232+ KL 12— 2KM3,1,) is represented by a pair of operatiofgs Dy} which act in
spin and isospin spaces, respectively. The pion field in Eq.
- - KK (8) is invariant under these combined operations,
+2(KlcJ KL )Ty ————— . ..
araTa mamEal A kI — (kM2 7-m(1)=Dgy7 (g~ ) (Dy)". (41)
X[K2(2)2+K! (cl)2+ 2k Ml e T2 (36)  Given the form used for the kaon fielEqg. (7), this invari-
ara ara araralia ance implies that the action of the group element on the kaon
and field is also represented Wy, . In fact,
Q1O 101, 16l Dok 2 =K 07, 2
* 24, * 24, 24, which means that the symmetry operation acting on the kaon
oM oM field is just given by the representation of the isospin opera-
cl= c;—cg—?, E;:cg—c;—i. (37  tion Dy in theT-space. Thus, theandT operators transform
CH a in the same way under elements®f This shows that it is

enough to perform the explicit analysis only for the inertia
tensors. Once this is done, the results for the hyperfine split-
ting constants can be easily obtained, noting that in(E@),
ca, plays a role similar to that ok}, while c},, to that of
T,. 39 Kb
The inertia tensors can be diagonalized by an appropriate

choice of the spatial and internal reference frames, and this is
Using this relation it is not difficult to show that the collec- jn fact what happens for the rational mmS'aze given in
tive Hamiltonian becomes the Appendix. Consider first the case for the spin. The spin
generatorg, transform unde6 in some(possibly reducible

If there exist, however, some valuegor which A;=0
there appears a relation betwden J;, andT, . It reads

oM oM
Ji:_llli_(Ci]_Cil_ll

Heoll =3 ool S (li+cT)? (39) representation. The number of independent diagonal compo-
&z 2 i z@i' nents of the inertia tensgmoments of inertiawill be equal
to the number of irreducible representatiorisreps of G
and the total multibaryon mass results into which this representation breaks, since the combination
K2, JaJ, must be a scalar und@. The spin generators be-
M=nMso+|S€n+ Eror, (40 long to the 1" irrep of O(3) which, for the cases we will

consider below, breaks into either a 3-dim irrep or the sum of
1- and 2-dim irreps of5. In the first case there is only one
moment of inertia and the spin Hamiltonian is proportional
to 2,J,J., While in the second case there are two moments,
and the Hamiltonian contains the terdis+ J2 and J3. The
same argument holds for the other collective operators.
An important remark is the following. While there is a
The minimum energy multi-Skyrmion configurations are One-to-one correspondence betwegemd the elements @,
symmetric under certain groups of transformatifdis With ~ this is not necessarily the case for the operatibps In
the exception of th&=1 andB=2 cases, where these sym- Other words, it could happen that the sagis associated
metry groups are continuoi©(3) andD..,,, respectively, ~ With two (or more different elements in spin space. In this
these transformation groups have a finite number of ele-
ments. In this section we will see how the symmetries of the
multi-Skyrmion configurations impose severe constraints on This Ansatzcan be easily generalized if the exact numerical soli-
the detailed form of the collective Hamiltonian. For tBe  ton configuration is used instead of the approximation based on
=<4 cases this has already been discussed in the literaturational maps.
using various arguments. Here, we will extend such analysis “The character tables containing the list of irreps of the groups
within a unified framework. It is important to notice that all we are interested in can be found, e.g., in REI®] and[23]. We
the discussions and results that follow are based only on thiellow the conventions of Ref22].

whereSis the multibaryon strangeness aBg,; the expec-
tation value ofH,; in the corresponding wave function.

In the next section we will determine the precise form of
the collective Hamiltonians for each baryon number.

Ill. COLLECTIVE HAMILTONIANS
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case, the operatior34 do not span the full grous but a H‘éc’zllzzKi(Jz_‘]g)+K'J_(|2_|:23)+K|1(ED2(T2_T§)
subgroup of it. As a consequence, the generaigrand | 5 —

(T.) could transform in different representations@f This KU (LT 41 T+ (I3+c3T3) @7
would imply that the corresponding mixing inertia would i+ i =0 -0t 20,

vanish. Below we see that this happens for some valugs of

Let us consider now the multi-Skyrmion configurations  For the rest of the baryon numbers under consideration,
case by case. ThB=1 Skyrmion is spherically symmetric B=3-9, the symmetry grou@ is finite[2,3]. Therefore A,
[4]. Thus, the relevant symmetry gro@is O(3). Inthis  never vanishes for all those baryon numbers and the collec-
case,g=Dg and bothJ and I are in the 3-dim irrep 1.  tive Hamiltonian will have the general form E¢B5). There

Using the arguments given above we have can be, however, some further simplifications depending on
the way in which the symmetry is realized in spin and isos-
0=0°, 0.=0' oM=e0M cl=c¢, c=c. pin spaces.
(43 The symmetry group of thB=23 solution isG=T. In

this case, we have thgt=D, for all the elements oG [7].

Since in this case we are dealing with a continuous 9rouPr s the com onent,, I,. andT, are in the 3-dim irre
the equality between the representation of the group ele= 'I:he collecE[)ive Ham,iltgr'lian regds P

ments in spin and isospin spaces can be written in terms of?’
corresponding generators of the algebra. Namely, we obtain, coll _ 312, 1112 o MP. 3 I3 e
the relationd,= —(1,+T,) . From Eq.(33) this implies =3 =K I+ KIT=2KT - J+2Ke'J- T+ 2K el - T
led
J_ ! — M I J — — _
0'=6'=-0% c=1-c, (44 A (KM)Z[KJ(CJ)2+K'(C')2+2KMC'CJ]T2.
which leads taA ;=0 for all values ofa. Then, the collective
Hamiltonian takes the well-known form (48

1 o In the case oB=4 the relevant symmetry group 3;,.
H%":”1=%(I2+ c2T2+2c¢T-1). (450 As discussed in Ref2], for the minimum energy configu-
ration this symmetry is realized in such a way that the ele-

As already mentioned, the=2 lowest energy Skyrmion MentsDy cover four times thds4 subgroup. As a result;
configuration has the symmetry of a tofud, which implies ~ (T1) andl; (T2) are in the 2-dim irrefE,, I35 (Ts) in the
G=D..;,. Choosing the symmetry axis along the z-directionA,q irrep and the components dflie in the 3-dim irrepT 4.
we obtain that the third components of the momenta are iWe see then that the mixing inertia and spin splitting tensors
the 1-dim 2; while the other two components are in the vanish. The resulting form of the corresponding collective
2-dim irreplIl,. Since rotations along the z-axis form a con- Hamiltonian is
tinuous subgroup oD.,, for the terms containing third . R
components of the momenta we obtain a result similar to that ~ HE24= K32+ K} (T+¢]T)2+ (K5 — K} 15+ 2(K)ch
et —Kie) 15T+ [Ky(c)?~Ky(c)?ITS. (49
03=405=-20%, ci=1-c3),, (46)

The lowest energy multi-Skyrmion witB=5 hasD 4
which leads toA;=0. For the other components; ,#0,  symmetry. In this case, there is a one-to-one correspondence
since theC, along those axes only form finite subgroups of between the realization of the group in spin and isospin
G. Consequently, the corresponding component of the differspaces. It is easy to check that the third components of the
ent type of inertia and splitting constants need not be equahomenta are in thé,, irrep while the other two components
and theB=2 collective Hamiltonian reads in the 2-dim oneE. The resulting collective Hamiltonian is

HEL =K3(3%2—32) + KL (12=13) = 2KM(T- 3= 1333) + 2KJc)(J- T—I5T3) + 2K el (- T—15Ty)
+ K32+ K51 2— 2K Y1305+ 2K 3305 To+ 2K 2chI 5T,

|
1

J
1
+ KlKJ—(KM)Z[Ki(?l)Z+ Ki(cy)?+ 2Ky 'cied)(T2-T5)
1™ 1

| J
33
+ = [K3(c3) 2+ Ky(ch) 2+ 2Ky che3] TS (50)
K5K3—(KY)

As found in Ref.[3], for B=6 the symmetry group iB,q. Because of the way in which the generators of the group are
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realized as pairs of spin-isospin operations it is possible to show that while the spin operations coverhg dotlup, the
isospin ones cover twice tH2,4 subgroup. From the corresponding compatibility tables together with the compatibility table
of the full rotational group, we find thak;,1;, andT5 transform as thé\, irrep, J; andJ, as theE; irrep and the rest a&,

irrep. Therefore,

HEYs=K192+ Ki(T+c )%+ (K3— K9 I3+ (Ky— K 15— 2K Y1535+ 2K3e335Ts + 2(Khch— Kich)I5Ts

| J

33
+| a5 [K3(ed)?+ Ki(cy)*+ 2K cied] - Ki (c))? | T5. (51)
K3K3_(K3)

TheB=7 configuration has icosahedral symmdtywith ~ N=1+T, the problem basically reduces to that of non-
the symmetry realized in such away t'hat the pomponents Qoftrange baryons just replacing the collective isospinNby
the spin qperators transform like tﬁqg- irrep while those of The (prope group generators and their corresponding FR
the isospin operators transform B irrep. Thus, the col-  hpases for the configurations considered in this work were

lective Hamiltonian takes the simple form determined in Refd.7,10]. They are listed in Table I.
coll F T S It is clear from Eq.(53) that due to the FR phases, the
Hg=7=KJ"+K'(I+c'T)". (52)  soliton ground state might transform in a one-dimensional

, i nontrivial irrep of G. Using the FR phases listed in Table |

ForB=8 we have to deal with thBgg group. As in the 54 the group character tables, the relevant 1-dim Frepn
case of lower even baryon numbers, the isospin operationg, getermined. We obtain that, with the exception of Bhe
do not span the full group but twice a subgrolipg in this  _g 5ndB=6 cases, all the wave functions should transform
case. We find thals, |3, and T transform as thé\; irrep, 45 the trivial irrep of the corresponding symmetry groups.
Jy and J, asEs irrep and the rest as thE, irrep. This  pqrg—5 T is theA, irrep of D,y while for B=6 the wave
implies that the collective Hamiltonian foB=8 has the {1 tions should transform as i irrep of D4y .
same form as th&=6 one given in Eq(51). Finally, the We now need to determine the collective wave functions.
B=9 multi-Skyrmion has the same symmetry as B'®3 g general procedure for arbitrary soliton backgrounds was
one, Tq. Consequently, we obtain a similar form for the giscussed inf25]. First we consider the problem without

corresponding collective Hamiltonian, EG8). strangeness. In this case we need to determine the functions
IV. COLLECTIVE WAVE FUNCTIONS _ Jl J |
|JJz'”z>—J§3 a3,1,03,0,D1,1, (54

Having determined the explicit form of the collective . ) ) , )
Hamiltonian, we have to find the corresponding wave funcWhich transform under theght action ofG in the irrepl” of

tions. These wave functions have to satisfy some constrain{§€ soliton. This can be done following standard group the-
imposed by the symmetries of the background mult-oretical methods[26]. The product representatiahx | of
Skyrmion. For nonstrange multi-Skyrmions this problem has>U(2) is in general a reducible representatiorGfThe pro-
been discussed by several authi@s10). Here, we will ex- Jector operator into the irrep’ is
tend such stu_d|e§ for kaon_-sollton bou_nd systems. o TABLE I. Symmetry groupG, generators of the proper sub-
~The quantization of a single Skyrmion as a fermion im- g, their corresponding FR phases, and the parity operations for
plies that under certain symmetry operations of the classica8—3_9. The directions of the 3-fold axes Br=7 are defined by
multisoliton background the corresponding wave functionsye spherical anglesd(, ,0,) = (w/5, arccoby(5+ 25)/15]) and

can pick up a nontrivial phase. These are known asg, - (34/5, arccobl/\/15+645]).
Finkelstein-RubinsteifFR) constraintg24]. We can generi- ) 5 )

cally write the constraints on the ground state as Generators of proper subgroup and FR phases
9Dgl9.5) = v¢l9-s), (53 Parity
B G  {0:.Dg} Yo, 192.Dg,} Yy, Operation

where yy==*1 is determined according to the FR con-

XyZ ~XY z ~Z z ~2z
straints. Using continuity arguments it turns out that the F Ta  {C3".C3"% 1 {C3.C3} Lo {CLCy

phases can be nontrivial only for those operations corre? O {szyz'czé} ! {Cé’cé} 1 {EZ’CEZ}
sponding to rotations, so for our cases of interest only the Pz {C3.C3} L {C2,C3} -1 {C“’E“}
proper subgroup oB needs to be considered. For the isos:pin6 Du {C2.C3} -1 {c?.cy -1 {cicl
transformations we have to take into account the fact thatthé 1n  {C:.(C))% 1  {C5,(C5H? 1 {EE}

symmetry operation also acts on the kaon field. From Eg8 Dey  {C}.Cj} 1 {cz,c3 1 {ci,cy
(42), however, we notice that this operation coincides withg T, {c¥?cy3 1 {C3,C3} 1 {Ci.ch

the one acting on the soliton isospin space. Thus, defining
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1 TABLE II. Allowed values ofl and T for states with different
PF:@gEG X1 (9) p(9), (65  strangeness faB=3-9.
€

where|G]| is the rank of the groupyr(g) the character of

operationg, andp(g) the representation afin JX| [cf. Eq. 3 0 1/2,3/2...,92 0
(41)] -1 0,1,...,4 1/2
-3 0,1,...,3 3/2
—nJ | v !

p(g)=D"(g)xD (Dg)- (56) 4 0 0,1,....6 0

The eigenvalues oP can either vanish or be equal to one. -1 1/2,3/2....11/2 12
The eigenvectors corresponding to each nonvanishing eigen- —4 0,1,....4 2
value provide precisely the coefficient!, of Eq.(54),and ~ ® 0 123/2. .. ,15/2 0
-1 0,1,...,7 1/2

there are as many wave functions as nonzero eigenvalues. If

all eigenvalues vanish there is no collective state with the —S 0,1,....5 5/2
givenJ,l. If there is only one, the wave function is an eigen- 0 0,1....9 0
function of the collective Hamiltonian, and if there are more -1 1/2,3/2...,17/2 112
than one, the Hamiltonian has to be diagonalized in the sub- —6 01,..., 6 3
space spanned by them. 7 0 1/2,312...,21/12 0
Let us proceed now to the case wii¥ 0. We need to -1 0,1,...,10 12
find the function$ -7 0,1,....7 712
8 0 0,1,...,12 0
_ JIT J | T -1 1/2, 312 ...,23/2 1/2
|JJZ,IIZ,S>—J?%T3 3,03, Dl KT, (B7) 3 o1 ,
9 0 1/2, 3/2...,27/2 0
which transform in irrepI" under G. However, as noted -1 0,1,...,13 1/2
above, the action dB in isospin andrl-spaces is the same, so -9 0,1,..., 9 9/2

it is possible to couple them td=1+T. Our problem then
reduces to that of the case without strangeness: for diven
andSwe have several possible valueshbfFor each of these into accounti.e., not only those of the proper subgrouigor

we determine the linear combinatiofsee Eq.(54)] with | this purpose the representations of the parity operation are

replaced byN, and finally we uncouplé andT. We obtain  also needed. For each baryon number they are given in Table
I. Another important comment is that for odd baryon num-

bers theJ and N quantum numbers are half-integers. For

— JN
|‘J‘JZ'”Z’S>_J3,\§3T3 aJ3N3<”3TT3|NN3> those cases one has to deal with the double group. of
xDJ, D!, KT (58
I3 Tl 3 Ty V. NUMERICAL RESULTS
where (11 3TT3|NN;) are the S2) Clebsch-Gordan coeffi- In our numerical calculations we will use two standard
cients. sets of values for the Skyrme model parameters e and

There is a further restriction of the possible collectivem,.. Set A corresponds tb,=64.5MeV, e=5.45,m_ =0,
states. Given a certain value of the baryon nuniband the  while Set B tof ,=54 MeV, e=4.84,m =138 MeV[27]. In
strangeness, not all the values of isospihare allowed. As both cases we set the ratig /f, to its empirical ratio
discussed in Appendix B of Reff15], physical states should fy/f_=1.22. With these values we can calculMg,,, the

have hypercharge and isospin given by kaon eigenenergies,, and the radial integrals,, m,, dy,
andd,, which appear in the expression of the moments of
Y=B4S/3= p+2q |— p (59 inertia and hyperfine splitting constants. Using these values
3 7 2’ together with those for the angular integrals, all the param-

eters appearing in the collective Hamiltonians can be evalu-
wherep andq should be non-negative integer numbers. Thegted. ForB=1 we find that® = 1.01 fm andc= 0.50 for Set
allowed values of isospint for states withS=0,—1 and A and ® =1.0 1fm andc=0.39 for Set B, which provide a
—B are given in Table I, together with the correspondingquite accurate description of the octet and decuplet baryon
values ofT. Such values are obtained by requiring that thespectra[Zl,Z@. The numerical values of the parameters in
kaon wave function has to be completely symmetric undeghe B=2 collective Hamiltonian Eq(47) are given in Table
individual kaon exchange. _ _ ll. It is interesting to compare the values of the inertia pa-

It should also be noted that in the construction of therameters with those obtained using the numerically obtained

projector Eq.(55) all the operations oz have to be taken ayxgct axially symmetri®=2 Skyrmion[1]. For example,

the corresponding values for Set B are

3Note thatT=|S|/2. See below. Ki=30MeV, Kj=48MeV, ©3=145fm. (60)
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TABLE V. Hyperfine splitting constants fd8=3-9.

Set  KJMev) Kl (Mev) @}(fm) ol ch Set A Set B
A 33.42 53.68 1.15 0.409 0631 B c’ ! c’ !
B 27.63 45.20 1.40 0.306 0.562
3 —0.62 0.55 —-0.64 0.48
4 0 0.55 0 0.48
As we demonstrate, the differences with the values listed in 0.55 0.48
Table Il are of only a few percent. On the other hand, so far, 0.46 0.37
there does not exist any calculation of hyperfine splitting® 0.22 0.48 0.23 0.41
constants using the exact numerigat 2 Skyrmion. Never- 0.22 0.48 0.23 0.41
theless, we can compare our results with those from a calcu- 0.15 0.57 0.16 0.51
lation based on an improved variation&hsatz[15] which 6 0 0.53 0 0.46
are, for Set B, 0 0.53 0 0.46
—-0.28 0.49 -0.30 0.43
7 0 0.53 0 0.46
- L 8 0 0.51 0 0.45
c;=0.334, c3;=0.554. (61) 0 051 0 0.45
0.28 0.55 0.31 0.49
These values are also very similar to ours. This is also trug 0.23 0.52 0.25 0.46

for Set A. Taking into account that the corresponding inertia

parameters are also very close to those given in Table Ill, it
follows that our predicted dibaryon spectra coincide basi-
cally with the ones described in R¢f5].

Results for theB=3—9 inertia parameters and hyperfine
splitting constants are listed in Tables IV and V, respec-

1K ’~anTrC+bTrC,

1K' ~anTrA+Db TrA,
(62)

tively._ As expected, the inertia parameters decrease with imherea andb are constants roughly independentrofOn
creasing baryon number. However, the decrease of the spifie other hand, it is not difficult to prove that the traces of the
inertia appears to be much faster than that of the isospin onangular integrals appearing in these relations are given by

This can be understood in the following way. Since we are
interested in the overall behavior of inertias as a function of
B, we define, for both spin and isospin, the average value
K=1/32,K,5s- While m; is roughly proportional to the
baryon numbenn, is basically independent &. Therefore,

TrA=1, TrA=2n,Tr

C=2n, TrC=4Z. (63

assumingK~1/0 and using Eqs(18) and(19), we have

TABLE IV. Inertia parameters foB=3-9.

Set A Set B
K’ K' KM K’ K'
B (MeV) (MeV) (MeV) (MeV) (MeV) KM (MeV)
3 15.23 50.77 9.55 12.11 41.03 7.80
4 8.66 39.70 0 6.72 30.98 0
39.70 30.98
32.88 25.89
5 5.20 28.29 -—-1.17 4.03 22.30 —-0.96
5.20 28.29 -—1.17 4.03 22.30 —-0.96
5.88 3391 -0.89 4.57 26.47 —-0.73
6 3.67 26.12 0 2.84 20.45 0
3.67 26.12 0 2.84 20.45 0
4.25 24.48 1.23 3.31 19.28 1.04
7 3.09 23.06 0 2.38 17.90 0
8 2.39 19.48 0 1.85 15.28 0
2.39 19.48 0 1.85 15.28 0
2.11 21.08 -0.61 1.63 16.50 —-0.52
9 1.78 17.75 -0.43 1.39 14.02 —0.36

As shown in Ref[20], Z<n2. In fact, Z is basically propor-
tional to n?. Therefore, replacing Eq63) in Eq. (62) we
obtain that<’ should decrease &€ while K' goes only like
1/n. This behavior of the inertia parameters has important
consequences in the multibaryon spectra. Namely, as the
baryon number increases, low lying nonstrange states are
expected to have the lowest possible value of isospin. For
strange multibaryons this is not necessarily the case due to
the coupling of the isospin to the kaonic sgin

The rotational energies for the nonstrange multibaryons
are given in Table VI while those f@= — 1 states are given
in Table VII and those corresponding to zero-hypercharge
states in Table VIII. In all the cases, we have included in the
tables the lowest lying state and the first two excited states
for each channel. Some general observations can be made.
Due to the overall decrease of the inertia parameters, the
energy splittings become smaller Bsincreases. We also
note that the ordering of the=0 states is the same for both
sets of parameters. For ti&= —1 states there is, however,
one exception which corresponds to the second excited
multibaryon with B,S)=(6,—1). For Set A the second ex-
cited state is a 8 while for Set B it is a 2. It should be
noted, however, that the third excited stafest listed in
Table VII) are precisely a 2 for Set A and 3 for Set B and
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TABLE VI. Quantum numbers and rotational energies fr TABLE VII. Quantum numbers and rotational energies fr
=0 states. =—1 states.
Set A SetB Set A Set B
Erot Erot EI'Ot EI'Ot
B JP I N [Mev] J°P I N  [MeV] B JP [ N [Mev] J° [ N  [MeV]
3 12t 12 1R 64 U2 12 12 52 3 1/2 0 12 38 12 0o 12 29
5/27= 1/2 1/2 147 512 12 12 117 1/2* 1 1/2 84 12 1 1/2 72
327 32 32 205 32 312 32 164 512~ 0 12 122 5/2 0 32 95
4 0* 0 0 0 ot 0 0 0 4 o* 12 172 6 0 12 172 7
4* 0 0 173 4 0 0 134 4* 12 1/2 180 4 1/2 172 141
0* 2 2 238 o 2 2 186 0" 32 32 191 o 32 32 144
5 120 12 12 28 Uz 12 12 22 5 1/2 0 12 11 12 0 12 7
320 12 12 40 32 12 112 31 3/12* 0o 12 23 3/12 0o 12 17
320 12 12 44 32 12 12 34 3127 0 12 28 3/2 0o 12 21
6 1* 0 0 7 1" 0 0 6 6 1* 12 0 12 1 12 0 10
3* 0 0 44 3 0 0 34 0* 172 1 32 0 172 1 23
o* 1 1 52 o 1 1 41 3" 12 0 49 2 172 1 37
7 7127 12 12 66 712 12 112 51 7 712 0 12 54 712 0 12 40
327 312 312 98 32 32 312 76 3/2* 1 1/2 74 312 1 1/2 56
9/2t  3/2 32 163 9/2 32 32 126 7/12* 1 1/2 75 712 1 1/2 60
8 0" 0 0 0 ot 0 0 0 8 0" 12 0 3 0 12 0 3
2" 0 0 14 2 0 0 11 2" 12 0 18 2 12 0 14
1" 1 1 44 1 1 1 34 1" 12 1 28 1 12 1 21
9 12t 12 1R 14 Uz 12 12 11 9 1/2 0o 12 4 12 0 12 3
520 12 1/2 30 52 12 1/2 24 512~ 0 12 20 5/2 0 12 15
720 12 12 39 72 12 172 31 1/2* 1 1/2 21 12 1 1/2 18

that the energy difference with the second excited state i¥=0 states listed in Table VIII could be determined only

1 MeV in both cases. For th€=0 states the situation be- after the calculation of the energies of a rather large set of

comes more complicated &increases. This is due to the allowed states.

rather small energy splittings between the different states. As Now we discuss the issue of the stability of tfie=1=0

a general trend we also note that the rotational energies aféates that we generically call multilambda states. The pos-

slightly smaller for Set B. This can be traced back to the facgible stability of a tetralambda state was first suggested in

that the moments of inertia are smaller for that set of paramRef. [30]. A similar conclusion was reached in R¢fL9]

eters. where the existence of a stable heptalambda was also pro-
As discussed above, the lowest lying states for nonstrang@osed' As already mentioned in the Introduction, the rota-

baryons always have the lowest possible value of iSOS|O".HonaI corrections were neglected in that work. We are now

: . : a position to check whether these effects do or do not
The corresponding spins are then_ given by the Iowe_st Valug]ffect the stability of these states. From Table VIII we ob-
allowed by the symmetry constraints. As remarked in Ref.

. . serve that for Set B the g.%.=0 tetrabaryon is indeed a
[10], these values tumn out to be consistent with those knOW[?etralambda state. This di%fers from the s)i/tuation for Set A

for light nuclei with the exception of the odd valuds o0 the tetralambda is the first excited state. In any case,
=5,7,9. It should be stressed that at this point there is Nnis goes not affect the rotational contribution to tha 4
obvious way to identify these rather compact multi- _5\ mass difference. Using the energies given in Table
Skyrmion configurations with normal nuclei. Indeed, eveny, together with the values given in Table Il for the pa-
for theB=2 case it is not clear to what extent the deuteron,gmeters oHS', [see Eq(47)], we find that the rotational
wave function in the Skyrme model is represented by th&qrections decrease the binding by 36 MeV for Set A and by
torus configuration. Some analysis in terms of classical perisg MeV for Set B. These values are significantly smaller
odic orbits indicates that the two Skyrmions spend most othan the binding energy 176 MeV obtained for both sets of
their time at large separation and only a short time near th@arameters in the adiabatic approximatid®]. Thus, al-
torus[29]. As the strangeness increag@s absolute value  though the rotational corrections tend to decrease the bind-
the quantum numbers of the low-lying states become lesfg, the tetralambda still turns out to be bound within the
obvious. This is a consequence of the interplay between thgresent approach. For the heptalambda we consider first its
different terms in the corresponding collective Hamiltonianstability with respect to the decay intoA3+4A. The value

for nonzero values of. In fact, the quantum numbers of the of the corresponding binding energy 5177 MeV [19]. It
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TABLE VIII. Quantum numbers and rotational energies for  wave functions determined in this work are also valid in that
=0 states. case. They have been obtained by making extensive use of
the properties of the corresponding symmetry groups. In par-

SetA SetB ticular, we have shown how the Finkelstein-Rubinstein
Eror E,of phases fix, in a unique way, the one dimensional irreducible

B JP I N [Mev] JP Il N [MeV] representations in which each wave function should trans-

form.

s vzt 1 12 50 yzoo1o1p2 45 Using two standard sets of parameters for the effective
3/2: 0 32 7 820 32 52 SU(3) Skyrme action we have calculated all the inertia pa-
3/2+ 182 123 520 302 89 rameters and hyperfine splitting constantsBez9. We have

4 0+ 2 2 51 of 0 2 43 found that, as a general trend, the isospin moments of inertia
o+ 0 0 2 o 2 0 o4 increase a®? while the spin ones as, whereB=n. Thus,

0 L L 109 o 1 2 I the low lying nonstrange multibaryons have the lowest pos-
> 1/2i Lose 29 Yz 1 32 21 sible value of isospin. The situation is more complicated in
1/2+ Lo3e 32 vz 1 32 23 the case of strange particles, for which there is a quite deli-
1/2+ 2 12 39 3z 1 32 30 cate interplay between the different terms contributing to the

6 O_ 2 L 24 c{ 1 2 16 rotational energies.

2_ 1 2 ;g ; i 2 ;g We have also estimated the .rotgtional co_rrect?ons to the
tetralambda and heptalambda binding energies given in Ref.

! 3/21 2. 32 32 2 72 28 [19]. We found that these corrections are relatively small and
5/2+ L2 65 521 712 42 do not affect the stability of these particles. This statement
7/3 Loe 87 72172 59 can be certainly extended to the recent studies on the stabil-

8 0+ 2 2 19 o2 2 16 ity of heavier flavored multi-Skyrmionfs31].

; ; ; gi g ; ; ;‘71 We finish with a comment on the Casimir corrections to
the multibaryon masses. Although these corrections are not

o 1/2_ 2 52 25 vz.2 52 18 expected to affect the rotational energies obtained in the
822 52 29 8z 2 52 21 present work, in any significant way, they might play some
32" 3 312 31 312 2 52 24

role in the determination of the multibaryon binding ener-
gies. Within the S(2) Skyrme model it has been sho\32]

that they are responsible for the reduction of the otherwise
JargeB=1 soliton mass to a reasonable value when the em-
pirical value off . is used. Here, we have avoided tBe
=1 large mass problem by using the customary method of
r1fitting f . to reproduce the nucleon masx7]. A more con-
3stent approach should certainly use the empirfcaland

should be noticed that the rotational energy of the zero
isospin B,S)=(7,—7) state does not appear in Table VIII.
In fact, the lowest lying of such states hig,;=104 MeV

for Set A andE, ;=61 MeV for Set B. That is, it shows up
as an excited state with higher energy. Nevertheless, taki

into account the rather large rotational energies of thel include the Casimir corrections. In this respect, there have

=0 states withB=3 and.4 It happens that the binding en- recently been some efforf83] to evaluate the corrections to
ergy of the heptalambda is increased by 45 MeV for both setﬁqe B=1 mass in the S8 Skyrme model. Unfortunately

of parameters. For the case of the heptalambda ionization . T
energy, one can verify that the values given in Ré®] even in the S(R) sector, almost nothing is known fd@

remain basically unaffected by the rotational corrections. F0>L}(.2;-rr]1l1$<')<ljseil Oift ?guzsi’fésatr\]’grzn‘z;vf{,'ggt éacs;][(.tr,]ﬂgre%dg/ ézctirt]:-
this purpose one has to use the values of the rotational enet - ' d 9 P

gies of the lowes=1=0 with B=6. Such valuegwhich ion spectrum around the nontrivial multi-Skyrmion up to
are not listed in Table VI) are 87 MeV for Set A and rather Iarge values of angula.r momeptum. Neyerthgless, re-
52 MeV for Set B qent studies of the SQ) multl-$kyrm|on Iow-Iym_g vibra- _

' tional spectrd34] could be considered to be the first steps in
this direction.

VI. CONCLUSIONS
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APPENDIX

In this Appendix we present the explicit expression of the rational maps used in this work. They are

R1=2, (A1)
RZ_sz (Az)
iV3z22—1
Ry= ———, A3
3 Z(Zz—i \/§) ( )
o 1+2i\322+7* Ad)
4120322+
2(Z*—ibsz’—a
A ik 5)’ (A5)
asz*+ibsz?—1
R, — Z4+ia6 (A6)
* Z(iagt+1)
R,= Zay (A7)
T 2a,5+1)
o %—iag (A8)
¥ 2(iagt-1)’
. 23(— 28+ 3i 324+ 922+ 5i \/3) + agz( —i /32— 2*+i 322 +1) A9)
° 5i\32%+92%+ 3i /322~ 1+ agz4(28+i 34— 22— i/3)
The numerical values of the real constaatsh; appearing in these expressions are
3.5:3.07, 3.6:0.158, a.7:0.143, a8:O.137, a9:1.98, b5:394 (AlO)

The reader can check that in most cases our maps agree with those given[i2ORefFhere are a few exceptions, however.

For B=7 we have chosen a different orientation in the spin and isospin spaces in such a way that one of the 5-fold axes
coincides with the z-direction. In the case®#9 we have selected the map for which thggroup operations are realized

in exactly the same way in both spin and isospin spacasely,g=D,). This is not the case for tig@=9 map given in Ref.
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