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One-loop flavor changing electromagnetic transitions
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We discuss the effects of the external fermion masses in the flavor-changing radiative transitions of a heavy
fermion ~quark or lepton! to a lighter fermion at the one-loop level, and point out an often overlooked crucial
difference in the sign of the charge factor between transitions of the down types→dg and the up typec
→ug. We give formulas for theF→ f g effective vertex in various approximations and the exact formula for
t→cg andt→mg.

PACS number~s!: 12.15.Lk, 13.40.Ks
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I. INTRODUCTION

Flavor-changing radiative transitionsF→ f g are pro-
cesses in which a fermion~quark or lepton! undergoes a
flavor change accompanied by the emission of a real or
tual photon. They are the result of an interplay between
weak and electromagnetic interactions at the loop level, o
enhanced by QCD effects. As such, they have consider
theoretical and experimental interest, not only because
provide an excellent test of the standard model but also
cause they hold the promise of being sensitive to new ph
ics. They are operating in many different situations, for e
ample in radiative weak decays of hyperons, such asS1

→pg andJ0→Lg, in rareB meson decays (B→Xsg), and
in rareD meson decays (D→Vg). They may also occur in
rare processes involving leptons, such asK→pe1e2, t
→mg, andn1→n2e1e2.

At the quark or lepton level, all flavor-changing electr
magnetic transitions may be divided into two categories:
involving the upper components of weak isospin doubl
and the other their lower components, as shown in Table
one loop processes, the initial fermionF creates an interme
diate state of a boson and a fermionf l which, after emitting
a photon, returns to a fermionic statef as depicted in Figs. 1
and 2 for an example of quark transition.

The amplitudes of these penguin processes were ev
ated many years ago@1,2#. In particular, a simple analytic
formula obtained by Inami and Lim@1# has often served a
the starting point for several more advanced calculations
QCD corrections@3–5# or properties of detailed particl
models @5,6#. The interested reader is referred to a rec
review @7# for further discussion. Unfortunately several a
thors have overlooked the fact that this formula applies o
to amplitudes of the typesdg, which were the primary objec
of interest to Inami and Lim@1#, and have used it unchange
to study processes of the typecug. As we shall see, this
oversight will cause an error in sign and magnitude~by a
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factor of 5! in the amplitudes of the up-type transition
Moreover, in theb→sg transition the intermediate state
dominated by the contribution of the top quark and theref
it is well justified to neglect the effects of the external fe
mion masses as it was done before@1#, but it is doubtful that
such an approximation will hold in other cases, especially
c→ug and t→mg, not to mentiont→cg, in which the
mass of the initial particle is comparable or larger than a
internal ~boson or quark! mass.

In this paper, we will correct the abovementioned sho
comings and proceed on to examine the effect of the exte
fermionic masses in flavor-changing radiative transitio
After writing down the rules and conventions of calculatio
in Sec. II, we will evaluate in Sec. III the effective vertex fo
F→ f g assuming first small but nonvanishing external ferm
onic masses. Although the methods we follow are applica
to both quarks and leptons, we refer specifically to quarks
convenience. We calculate the inclusive rates forqi→qjg
and examine the effects of the external masses on the d
rates in some detail; we also give an estimate of the QC
corrected branching ratio ofc→ug. In Sec. IV, we derive an
exact formula, withmc50 but nonvanishingmt , for the ef-
fective t→cg vertex and demonstrate the importance of t
initial quark mass. We conclude with Sec. V.

II. FEYNMAN RULES IN THE
’T HOOFT –FEYNMAN GAUGE

The standard electroweak model formulated in any ren
malizable gaugeRj contains, in addition to the usual phys

TABLE I. Elementary flavor-changing radiative processes.

F f f l

n1 n2 e2,m2,t2

c u d,s,b
t c(u) d,s,b
t2 m2(e2) n j , j 51,2,3
s d u,c,t
b s(d) u,c,t
©1999 The American Physical Society08-1
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FIG. 1. Contributions toqi→qfg vertex:
emission from bosons.
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cal particles~the photonAm , bosons Wm
6 , and quarksqi),

the unphysical would-be Goldstone scalar bosonsw6,w0

coming from the spontaneous symmetry breaking~as well as
the Faddeev–Popov ghosts which, however, do not con
ute to processes considered here because the externa
ticles are fermions!. In writing down the following Feynman
rules we use the convention that definesingoing momenta
for particles entering the vertex andoutgoingmomenta for
particles leaving the vertex. Quark flavors will be denoted
i or j, and the left and right projection operators byL5(1
2g5)/2 andR5(11g5)/2.

The rules for the elementary vertices are

qi→qiAm :2 ieQigm with Qi5
2

3
~u!,2

1

3
~d!,

Wl
6~p!→Wn

6~p8!Am :1 ieQW@~p1p8!mgln

1~p822p!nglm1~p22p8!lgmn#

with QW561~W6!,

w6~p!→w6~p8!Am:2 ieQS~p1p8!m

with QS561~w6!,

Wn
6→w6Am :1 ieMWgmn ,

qi→qjWm
6 :

2 ig

A2
gmLU ji

(I i ) ,

qi→qjw
6:

2 ig

A2MW

I i~mjL2miR!U ji
(I i ) .

The symbolI i which appears in the last two rules is r
lated to the weak isospin of the initial quark. ForI i
511 (u type quark! the Cabibbo-Kobayashi-Maskaw
~CKM! matrix element isU ji

(1)5Vi j* , and for I i521 (d
type quark! U ji

(2)5Vji . Note thatI i5QW ~or QS) and thus,
with the exception of thewAW andqqW vertices, all other
vertices depend on the sign of the charge of the quark
boson involved. Finally,e is the positive unit of the electric
charge,e.0.

The relevant boson propagators in the ’t Hooft–Feynm
(j51) gauge are

i

p22MW
2 ~scalar!,
01300
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2 igmn

p22MW
2 ~W boson!.

III. CONTRIBUTIONS TO THE EFFECTIVE VERTEX

In the lowest order, i.e., at the one-loop level, the p
cesses in which a quark undergoes a flavor change acco
nied by the emission of a real or virtual photon are rep
sented by the diagrams in Figs. 1~a!–1~d! and Figs. 2~a!,2~b!.
In the first group, the photon is emitted by a scalar o
vector boson in the intermediate state, whereas in the sec
it arises from an internal fermion. As we are eventually
terested in real, transversally polarized photon emission,
transition should take place in a magnetic mode charac
ized by the operatorismnqn, and we need not concern ou
selves with diagrams in Fig. 3 since they are all proportio
to gm .

We perform our calculations inn dimensions and letn
5422v. For convenience we also introduce an arbitra
scale parameter with the dimension of massm so that the
coupling constantg remains dimensionless even in arbitra
n dimensions. The kinematic variables to be used are defi
in Fig. 4. In particular, the initial quark has momentumP and
massM; the final quark has momentump and massm. The
internal quark, with massml , may have flavorsu,c, or t for
an initial quark of thed type, ands,d, or b for an initial
quark of theu type. It is understood that the various partial
total vertex operators obtained in the following forqi
→qfg are to be inserted between the initial stateui(P) and
the final stateūf(p)«m* (q), whereui anduf are the fermion
spinors, and«m(q) is the photon polarization vector with
momentumq5P2p. A summation over all allowed quark
flavors l and an integration over the loopn-dimensionalk
momentum are both implicit.

From the rules given above, the expression correspond
to Fig. 1~a! is

iT1~a!
m 5m2vS 2 ig

A2
D 2

l lg
rL

i

k”2ml

gsL

3
~2 i !2~ ieQWXm

rs!

@~p2k!22MW
2 #@~P2k!22MW

2 #
, ~1!

FIG. 2. Contributions toqi→qfg vertex: emission from interna
quark.
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where the following shorthand notations have been used

Xmrs5~P1p22k!mgrs1~P1k22p!sgrm

1~p1k22P!rgms ~2!

and

i 5u type: QW511,l l5Vf lVil* ,

i 5d type: QW521,l l5Vl f* Vli . ~3!

It is convenient to put Eq.~1! in the form

iT1(a)
m 5

2g2e

2
m2vQWl l

N1~a!
m

D1
~4!

with the following expressions for the numerator and d
nominator:

N1(a)
m 5grL~k”1ml !g

sLXm
rs ,

D15~k22ml
2!@~p2k!22MW

2 #@~P2k!22MW
2 #. ~5!

Corresponding to Fig. 1~b! is the transition operator

iT1(b)
m 5m2vl lF igQS

A2MW

~mL2mlR!G i

k”2ml
F2 igQS

A2MW

3~mlL2MR!G i 2~2 ieQS!~P1p22k!m

@~p2k!22MW
2 #@~P2k!22MW

2 #

5
2g2e

2
m2vQSl l

N1~b!
m

D1
. ~6!

If the initial quark flavorqi is of theu type, QS511; oth-
erwiseQS521. The expression for the denominatorD1 re-
mains the same as defined above, whereas in the nume
one has

N1(b)
m 5

1

MW
2 ~mL2mlR!~k”1ml !~mlL2MR!~P1p22k!m.

~7!

For Fig. 1~c!, the Feynman rules yield

iT1(c)
m 5m2vl lS 2 ig

A2
gmL D i

k”2ml
F2 igQS

A2MW

~mlL

2MR!G ~ ieMW!~2 i !~ i !

@~p2k!22MW
2 #@~P2k!22MW

2 #

5
2g2e

2
m2vQSl l

N1(c)
m

D1
, ~8!

with the numerator given by

N1(c)
m 5gmL~k”1ml !~MR2mlL !. ~9!
01300
-
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The diagram in Fig. 1~d! is similar to that in Fig. 1~c!,
with the scalar and vector bosons exchanging roles in
intermediate state. The corresponding vertex operator is

iT1(d)
m 5m2vl lF1 igQS

A2MW

~mL2mlR!G i

k”2ml
S 2 ig

A2
gmL D

3
~ ieMW!~ i !~2 i !

@~p2k!22MW
2 #@~P2k!22MW

2 #

5
2g2e

2
m2vQSl l

N1(d)
m

D1
, ~10!

with the following expression in the numerator:

N1(d)
m 5~mL2mlR!~k”1ml !g

mL. ~11!

The photon may be emitted also from the intermedi
quark as shown in Figs. 2~a!,2~b!. The diagram in Fig. 2~a!
represents the transition operator

iT2(a)
m 5m2vl lS 2 ig

A2
grL D i

p”2k”2ml

~2 ieQlg
m!

3
i

P” 2k”2ml
S 2 ig

A2
grL D 2 i

k22MW
2

5
2g2e

2
m2vQll l

N2(a)
m

D2
, ~12!

whereN2~a!
m andD2 stand for

N2(a)
m 5gr~p”2k”1ml !g

m~P” 2k”1ml !grL,

D25~k22MW
2 !@~p2k!22ml

2#@~P2k!22ml
2#.
~13!

Similarly for Fig. 2~b!, we have

iT2(b)
m 5m2vl lF1 igQS

A2MW

~mL2mlR!G i

p”2k”2ml

3~2 ieQlg
m!

i

P” 2k”2ml

3F2 igQS

A2MW

~mlL2MR!G i

k22MW
2

5
2g2e

2
m2vQll l

N2(b)
m

D2
, ~14!

together with the expression for the numerator:

N2(b)
m 5

1

MW
2 ~mL2mlR!~p”2k”1ml !

3gm~P” 2k”1ml !~mlL2MR!. ~15!
8-3
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FIG. 3. Emission from initial or final quark.
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Thus, all partial contributions to the effective radiativ
vertex may be written in the form

iTpa
m 5

2g2e

2
m2vQpl l

Npa
m

Dp
~p51,2;a5a,b, . . . !

~16!

with the charge factor

Q15QB~QW or QS!, Q25Ql . ~17!

After Feynman parameterization of the denominators,
integration overn-dimensional momentum space is pe
formed in the standard way. Consider for exampleT1~a!

m . The
terms independent of the integrated momentumk are evalu-
ated as follows:

m2vE dnk

~2p!n

1

D1
5m2vE dnk

~2p!nE0

1

dxE
0

12x

dy

3
2

@a~12x2y!1bx1cy#3

5
2 i

~4p!2E0

1

dxE
0

12x

dy
1

MW
2 L1

3S 4pm2

2MW
2 L1

D v

G~11v!

for a5(p2k)22MW
2 , b5k22ml

2 , c5(P2k)22MW
2 , and

MW
2 L15MW

2 ~12x!1ml
2x2P2xy2p2xz2q2yz,

z512x2y.

Terms with explicitk-dependent integrands are handled in
similar way. With the summation over the internal quar
now explicit, thek integration therefore carries Eq.~1! into

iT1(a)
m 5

2g2e

2
QWm2v(

l
l lE dnk

~2p!n

N1~a!
m

D1

5
ig2e

32p2MW
2

QW(
l

l lE
0

1

dxE
0

12x

dy
1

L1

3R$@24xPm12~122z!qm#@~12x!P” 2zq” #

1~12x!~q”gmP” 2P” gmq” !1~2xP” 2zq” !@~12x!P”

2zq” #gm1gm@~12x!P” 2zq” #@2xP” 1~12z!q” #

14~12n!gmF1%. ~18!

Here F1 comes from the singular part of the quadratick-
dependent integrand. This result will considerably simpl
01300
e

when the external particles go on shell, which is all we ne
When the initial and final quarks are on the mass shell,
may use the Dirac equationsP” ui(P)5Mui(P) and ūf(p)p”

5mūf(p) to express the operatorT1~a!m in terms of the four-
vectorsPm , qm , andgm or, alternatively,ismnqn, qm , and
gm , the two bases being related by

2PmR5R~ ismnqn1qm1Mgm!1Lmgm, ~19!

2PmL5L~ ismnqn1qm1Mgm!1Rmgm.

These relations are understood as being sandwiched bet
ū(p) and u(P). The induced completeqiqfg vertex will
then assume the general form

Tm;R~q2gm2qmq” !F1 ismnqn~RMG1LmH!, ~20!

whereF, G, andH are appropriate form factors. For an o
shell photon,q250, we may setqm«m(q)50, and the coef-
ficient of F should vanish. The singular terms, such asF1,
from all diagrams likewise completely cancel out@8#. Hence,
with real photon radiative processes in mind, we may d
all such terms in the individual contributions. When th
above simplifications are applied,T1(a)

m reduces on the mas
shell to

T1(a)
m 5

eGF

4A2p2
QW (

l
l lE

0

1

dxE
0

12x

dy
1

L1~r l !

3$RM@12x1y~122x!#

1Lm@12x1z~122x!#% ismnqn , ~21!

whereGF /A25g2/(8MW
2 ) and

L1~r l !512x1r lx2r ixy2r fxz ~22!

with r l5ml
2/MW

2 , r i5M2/MW
2 , and r f5m2/MW

2 . The con-
tributions from all the other diagrams may be reduced to t
standard form.

Let us sum up the partial contributions in each groupp
51,2) of diagrams to get the transition operators

FIG. 4. Kinematic variables in one-loop diagrams.
8-4
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Tp
m5

eGF

4A2p2
Qp(

l
l l@RMGp~r l !1LmHp~r l !# is

mnqn ,

~23!

where we have usedQp defined in Eq.~17!, and introduced
the functions

Gp~r !5E
0

1

dxE
0

12x

dy
1

Lp
gp~r ,x,y!,

Hp~r !5E
0

1

dxE
0

12x

dy
1

Lp
hp~r ,x,y!

~p51,2!, ~24!

wherel1(r ) is given in ~22! and

l2~r !5x1r ~12x!2r ixy2r fxz,

g1~r ,x,y!512x1z1y~122x!1rx~12y!2r fxz,

h1~r ,x,y!512x1y1z~122x!1rx~12z!2r ixy,

g2~r ,x,y!522x~12y!1r ~211x1xy!1r fxz,

h2~r ,x,y!522x~12z!1r ~211x1xz!1r ixy.
~25!

These expressions display a symmetry betweengp and hp ,
for a givenp , under simultaneous interchange ofy, r i andz,
r f . They reduce to

g1~r ,x,y!521~r 22!x2~r 12!xy2r fxz,

h1~r ,x,y!5224x1~r 12!x21~r 122r i !xy,

g2~r ,x,y!52r 1~r 22!x1~r 12!xy1r fxz,

h2~r ,x,y!52r 12rx2~r 12!x22~r 122r i !xy.
~26!

An obstacle to a simple analytic expression for the eff
tive vertex is thex integration in Eq.~24!. However, if both
initial and final quark masses are small compared with
gauge boson masss, i.e., ifr i ,r f!1, one may consider mak
ing a linear approximation inr i and r f :

1

Lp~r !
'

1

Lp
(0)~r !

1
1

„Lp
(0)~r !…2

x~r iy1r fz! ~p51,2!

for L1
(0)~r !512x1r lx, L2

(0)~r !5x1r ~12x!.
~27!

In this approximations ofLp , the functionsGp andHp may
be written as

Gp~r !5Fp~r !1r fKp~r !1r iLp~r ! ,

Hp~r !5Fp~r !1r iKp~r !1r fLp~r ! ~p51,2!,
~28!
01300
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with a symmetry reflecting that betweengp and hp . Here
Fp , Kp , and Lp are functions ofr only. Writing gp5gp

(0)

1r fgp
(1) and hp5hp

(0)1r ihp
(1) , we see thatFp comes from

thexy integral*gp
(0)/Lp

(0) ~or its equal*hp
(0)/Lp

(0)), while Kp

andLp arise from various terms linear inr i or r f in gp , hp ,
or Lp . Together the functionsFp , Kp , andLp determineGp
andHp for p51,2 to first order inr i ,r f . They are given by
(d5r 21)

F1~r !5
r

4d3
~125r 22r 2!1

3r 3

2d4
ln r ,

K1~r !5
r

72d5
~13211r 2195r 2117r 324r 4!

1
r 2

6d6
~23113r 15r 2! ln r ,

L1~r !5
r

36d5
~7265r 2141r 2123r 324r 4!

1
r 3

3d6
~1312r ! ln r ,

F2~r !5
r

4d3
~2225r 1r 2!1

3r 2

2d4
ln r ,

K2~r !5
r

72d5
~412237r 139r 2229r 316r 4!

1
r

6d6
~2218r 19r 2! ln r ,

L2~r !5
r

18d5
~252105r 133r 2216r 313r 4!

1
r

6d6
~21122r 19r 2! ln r . ~29!

We have omitted in the above expressions terms that
numerical constants. Such terms independent ofr l will give
vanishing contributions as long asFp , Kp , andLp are used
under the sums carried out over all allowedl, as in Eq.~23!,
for ( ll l50 by the unitarity of the CKM matrix.

It is understood that fors→d and b→s, we haveQ15
21, Q252/3 and l 51,2,3 correspond, respectively, t
u,c,t; whereas for c→u and t→c, we take Q1
511, Q2521/3, andl 5d,s,b.

Inami and Lim @1# have entirely neglected the extern
masses in their calculations, so thatGp5Hp5Fp . For the
stated purpose of their work, they have given the expl
expression for2F11(2/3)F2 valid for the down-type tran-
sitions, such ass→dg or b→sg; namely,
8-5
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2F11
2

3
F25

r

12~r 21!4
@~12r !~725r 28r 2!

16r ~223r !ln r # →
r→0 7

12
r . ~30!

But for the up-type transitions such asc→ug, one should
use instead the expression

F12
1

3
F25

2r

12~r 21!4
@~12r !~5210r 27r 2!

16r ~123r !ln r # →
r→025

12
r , ~31!

and not the following combination@5,6# or its limiting value
@4#

2F12
1

3
F25

r

12~r 21!4
@~12r !~1220r 25r 2!

26r ~113r !ln r # →
r→0 1

12
r . ~32!

As for the leptonic transitions listed in Table I, the corr
sponding amplitude for the heavy neutrino decay@8,9# n1
→n2g(Q151,Q2521) is

F12F25
3r

4d3
~12r 212r ln r !, ~33!

whereas fort2→m2g(Q1521,Q250) it is simply 2F1.
To examine the relative importance of the extern

masses, we calculate the decay rates ofqi→qfg, using the
linear approximations inr i ,r f , as defined in Eqs.~23!–~29!.
For this purpose, it is convenient to define the amplitude

Sp~r !5
1

2
@Gp~r !1Ar f /r iHp~r !#,

Pp~r !5
1

2
@Gp~r !2Ar f /r iHp~r !#, ~34!

so that Eq.~23!, when summed over both groups of di
grams, may be rewritten as

Tm5
eGFMWAr i

4A2p2
~A1Bg5!ismnqn, ~35!

where

A5(
l 51

3

l l (
p51

2

QpSp~r l !5(
l 51

2

l l (
p51

2

Qp@Sp~r l !2Sp~r 1!#,

~36!
01300
l

B5(
l 51

3

l l (
p51

2

QpPp~r l !5(
l 51

2

l l (
p51

2

Qp@Pp~r l !2Pp~r 1!#.

~37!

In the last step we have made use of the unitarity of
Cabibbo-Kobayashi-Maskawa~CKM! matrix to replacel1
with 2(l21l3). In terms of these amplitudes the decay ra
for qi→qfg is given by

G~qi→qfg!5
GF

2a

64p4
MW

5 ~Ar i !
5S 12

r f

r i
D 3

~ uAu21uBu2!.

~38!

The results of our calculations based on Eq.~38! are
shown in Table II together withG0, the corresponding value
of the width when the masses of the external quarks in
amplitudes are neglected. We have usedmu55 MeV, mc
51.5 GeV, mt5174 GeV, md511 MeV, ms5150 MeV,
and mb54.9 GeV for the quark masses,MW580 GeV for
theW boson mass, and the central values of the CKM ma
elements as given in the Review of Particle Physics@10#.

We see that, with one exception, generallyG'G0, i.e.,
apart from the kinematic factor (Ar i)

5, the external masse
can be safely neglected in calculating the width forqi
→qfg. The reason is that the mass correction functionsKp
andLp enter the amplitudesSp andPp , respectively, accom-
panied by the mass factorsAr i r f and @(Ar i)

3

1(Ar f)
3#/(Ar i1Ar f), which are much smaller than 1, th

coefficient of Fp @cf. Eqs. ~28! and ~34!#. The exceptional
case is thet→cg transition. Sincer t'4.73, neglecting the
mass of the initial quark is not justified, and even keep
just terms linear inr t as in Eqs.~27!,~28! is not enough and
misleading: the approximation has broken down. Howev
the fact thatG'100G0 for this transition clearly indicates th
importance of the effect of the external top mass. In Table
we list the contributions of the intermediate quarks (d,s, and
b) to the amplitudesS5S12(1/3)S2 and P5P12(1/3)P2
of the t→cg transition for bothmc50 andmc51.5 GeV.

TABLE II. Widths for qi→qfg transitions.

Mode G0 (GeV) G (GeV)

s→dg 7.48310229 7.53310229

b→sg 5.06310217 5.10310217

c→ug 1.50310228 1.50310228

t→cg 4.51310214 2.73310212

TABLE III. Contributions to t→c1g in the linear approxima-
tion in mc

2 andmt
2 .

Quark S5P(mc50) S(mcÞ0) P(mcÞ0)

d 6.1231028 6.2031028 6.0531028

s 8.1231026 9.0231026 8.8131026

b 5.9531023 6.0031023 5.9031023

G(GeV) 2.7269310212 2.7273310212
8-6
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These data show that the mass of the final quark is c
pletely negligible in this case as well, and the differen
betweenG and G0 for this transition can be entirely attrib
uted to the top mass.

Before leaving this section we will make estimates of t
branching fraction for thec→ug transition~i.e., its inclusive
rate scaled to that of the semileptonic decayc→ql1n). The
correct expressionF̄5F12(1/3)F2 which we use differs in
magnitude and sign from the wrong combinationF̄852F1
2(1/3)F2 for the relevant values of the argumentr l . The
QCD-uncorrected branching we have obtained,B(0)53.90
310216, is about 28 times larger than an estimate@5# based
on F̄8. To calculate the QCD corrections, one begins with
Wilson coefficients evaluated at theW mass scale; in particu
lar the coefficient

c7~MW!52
1

2 F ls

lb
F̄~r s!1F̄~r b!G ~39!

yields 2.06531023, to be compared with20.41431023

when it is calculated withF̄8. The Wilson coefficients are
then evolved down fromMW to the renormalization scal
m5mc to give the effective coefficientc7

eff(mc). The result-
ing QCD-corrected branching fraction obtained is reduced
1% from the estimate of Burdmanet al. @5#. The reason for
the smallness of this effect is thatc7(MW) makes a very
small contribution toc7

eff(mc) which is completely domi-
nated byc2(MW). Nevertheless, the point being made is th
the correct input functionsFp or, even better,Gp andHp are
crucial for a proper evaluation of the Wilson coefficients.

IV. MASS EFFECT IN THE TOP QUARK DECAY

Since mc!mt , and Gp and Hp must be comparable in
magnitude, the amplitude in Eq.~23! reduces toRMGp and
we need only to perform an accurate evaluation of the in
grals

Gp~r !5E
0

1

dxE
0

12x

dy
1

Lp
gp~r ,x,y!, ~40!

where L1512x1rx2r ixy and L25x1r (12x)2r ixy,
with r i5r t , r 5r l , and l 5d,s,b. After integration overy,
which yields logarithm functions, thex integration leads to

G1~r !5
~21r !

2r i
1

1

r i
2 @~r i21!~22r !1r 2#J~r !

1
1

r i
2 @2~12r i !1r #FL2~12r !2L2S 1

a D2L2S 1

b D G ,
~41!
01300
-
e

e

y

t

-

G2~r !52
~21r !

2r i
1

1

r i
2 @~r i21!~22r !1r 2#J~r !

1
1

r i
2 @r ~r i2r 22!#FL2S 12

1

r D2L2S 1

12a D
2L2S 1

12b D G . ~42!

The parametersa,b are defined by

a5
1

2r i
~11r i2r 2AD!, b5

1

2r i
~11r i2r 1AD!,

~43!

D5~11r i
21r 2!22~r i1r 1r i r !.

For the transition under discussion, they satisfy the con
tions 0,a,b,1. J(r) stands for

J~r !5211 ln r i1
r

12r
ln r 1a ln a1~12a!ln~12a!

1b ln b1~12b!ln~12b!1 ip
AD

r i
, ~44!

andL2 is the dilogarithm~Spence integral! @11# represented
by

L2~x!52E
0

xln~12t !

t
dt, ~45!

which admits the expansion seriesL2(x)5(k51
` xk/k2 for

uxu<1.
With a top mass larger than the mass of theW boson and

the internal quark,L1 and L2 may change signs over th
range of thex,y integrations, and hence the arguments of
various logarithm functions that appear in the course of
integrations may become negative, and imaginary parts
arise. Physically they signal the presence of the intermed
states on the mass shell. Thus, for each internal qual
5d,s,b, the imaginary parts ofGp(r l) correspond to the rea
emission processt→W11ql1g.

Values of G1(r l), G2(r l), and S(r l)5 1
2 @G1(r l)

2 1
3 G2(r l)# for relevantr l in t→cg are recorded in Table

IV. They depend weakly on the mass of the internal qua
being dominated by the large mass of the initial top qua

TABLE IV. Values of G1 andG2 for d,s, andb in t→c1g.

G1 G2 S

d 0.843752 i0.80176 20.198581 i0.82598 0.454972 i0.53855
s 0.843752 i0.80177 20.198601 i0.82600 0.454982 i0.53855
b 0.845412 i0.80377 20.208231 i0.83341 0.457422 i0.54079

G(GeV)58.45310213
8-7
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Thus, the Glashow-Iliopoulos-Maiani mechanism works
fectively to suppress the amplitude

A5B5
1

2 (
l 5d,s,b

l lFG1~r l !2
1

3
G2~r l !G . ~46!

In contrast, in the zeroth or first order approximation~in
r i ,r f) of the transition amplitudes, the functionsS(r l) and
P(r l) depend strongly on the internal quark mass, as sho
in Table III. The contribution of the intermediateb quark is
then overwhelmingly dominant and the GIM mechanis
hardly operative. However, this conclusion turns out to
erroneous, as is clear from the data presented in Table
Finally, the exactG1 and G2 scale asr t

21;1 @see Eqs.
~41!,~42!#, whereas their approximate values scale at bes
r tr b;r b;1022 @see Eqs.~28!,~29!#, which explains the
striking differences in magnitudes that we see in Tables
and IV.

With the amplitude given in Eq.~46!, we find the width
G(t→cg)'8.45310213 GeV, which falls between the val
ues presented in Table II based on the approximationr i
5r f50 and the linear approximation~38!. In brief, the ef-
fect of the initial fermionic mass int→cg and, by extension
t→mg is both subtle and substantial.
tt.

D

y

01300
-

n

e
V.

as

II

V. CONCLUSIONS

We have supplemented the Inami-Lim formula for thes
→dg effective vertex with an equally simple formula for th
c→ug vertex@Eq. ~31!# under the same assumptions that t
external fermionic masses are negligible. We then procee
on to reexamine the external mass effects and obtain
corresponding formulas@Eqs.~23!, ~28!,~29!# valid to linear
order inM2 andm2, the results of which are shown in Tab
II. Since this approximation breaks down~see Table III! in
the cases such ast→cg, in which the initial fermion mass is
much larger than any internal mass, we derive the exact o
loop formula for such transitions@Eqs.~41!–~45!# and evalu-
ate the corresponding rate of thet→cg transition in Table
IV. Given the importance of flavor-changing electromagne
transitions in testing the standard model and probing n
physics, it is essential to have reliable results for these p
cesses at the lowest, one-loop level since they are the
components in building up more sophisticated calculation
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