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Lorentz- and CPT-violating Chern-Simons term in the functional integral formalism
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We show that in the functional integral formalism, with the weaker condition of gauge invariance alone, one
cannot determine théfinite) coefficient of the induced, Lorentz- ardP T-violating Chern-Simons term,
arising from the Lorentz- an@ P T-violating fermion sector[ S0556-282(199)03220-§

PACS numbs(s): 11.30.Cp, 11.30.Er, 12.20.Ds

In recent worl{ 1], the following question has been posed: v _ — .
is a Lorentz- andC P T-violating Chern-Simons term induced |(A)HJ d*x[i YD = (9 ,@) Yy* ysip— myre? “X)7sy,
by the Lorentz- andCPT-violating term yBysys (b, is a »
constant four-vectgrin the conventional Lagrangian of —b,js], 2
QED. In the paper by Jackiw and Kostelédld], this prob-

lem has been discussed. Their results depend on whether ogere the second terfi(d,, @) ¥y*ysi] in the integrand of
uses a nonperturbative formalism or a perturbative formaIEq_ (2) comes from trangformation of the gauge invariant

ism. In a nonperturbative formalism, radiative correctionskine,[iC term. hence the axial vector curre?hp“ ¥ is gauge
arising from the axial vector term in the fermion sector in-. ' Y5 gaug

duce a definite and nonzero Chern-Simons term, while Whewvarlant, and.does. not necessarily equa)j ét,_o V,Vh'Ch ngid

a perturbative formalism is used, radiative corrections ar&0t b€ gauge invariant. However, we must insist LS

finite but undetermined. is gauge invariant, i.e., the density need not be gauge invari-
The purpose of this paper is to view this undeterminicity ant but its space-time integral—the action—is gauge invari-

of the finite radiative corrections in the functional integral @t Since the Chern-Simons terha “P7F A, =*FHVA,
formalism. behaves precisely in this same way under gauge transforma-

Let us consider the following functional integral tion, we may use it to represent gauge noninvariant portion
of j&. Thus we write

2%~ | o extit ) W £00= (X7 ys(X) ~ c*FHIA,
where where ¢ is an unknown constant. By choosing(x)
=—x"b,, the gauge invariant curregity” ys¢ cancels and
|(A):f d4X[|E|D{//_ mal//_ b,uJ g]' we arrive at
— H d4X * 14
with j£(X) = (x) y“ysi(x) — [(possibly finitg local coun- Z(A)=exp —i f 120 FEA,
tertermg. The gauge fieldA in the covariant derivativ® is
external. By changing the field variables Xexp{i Cf d4be*F“VAV> f dgdy

P(x)—exdia(X)ys]p(x),

X exr{ [ J d*X[i D p— mype? 75X Pyy]

P(X)— gp(x)explia(x) ys], Now let us calculate the vacuum polarization for the
theory governed by the action in the functional integral. The
we see that the integration measure of Eg.changes by propagatoiG(x,y) satisfies the following equation:

a(

— — ih o iysx-b — _
dz//dw—>dz,l/dz//ex;{—if8 (16— me ") G(x,y) =i 8(x~y)

X)
7 FHYOF 4(X) |,

a
and its formal solution can be expressed as

where this form for the anomaly is obtained wheB ¢ is
defined in a gauge-invariant manner. The action changes into

|
Y= e Jm T

o(x—y),
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ISee also Refd3,4]. which to first order inb becomes
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This decomposition of the propagator splits the vacuum po-
S(X—Y) raization tensor into three parts:

id—m—2imysx“b,
~S(X—y)—i J S(x—2)2imysz°b,,S(z—y)d*z A7=TI4"+ {7+ T1EY .

=S(x—y)+AG(X,y),
The first termI15” is the usual lowest-order vacuum polar-

whereS(x—y) is the free propagator ization tensor of QED, and the last terhbf; is at least
i quadratic inb. Our main concern here is to calculate the
7 _m5(x—y). middle termII{”, which is linear inb. It is expressed as
X

HE"(x,y) =t y*S(x=y) y" AG(y, X) |+ tr[ y*AG(X,y) y"S(y = x) =I5 (X,y) + 155 (X, Y).

The Fourier transform ofl{7(X,y) is readily obtained as

11K (p.o) = [ dixafye POy = [ dixaydize PE by S(x-y)y*(—1) Sy~ 2)2imysz7,S(z-x)]

4 4 4
d |4 d r4 d k4ei(_p—|+k)xei(|—r+q)yei(r_k)z'y'”‘ ! v’ ! ¥s2* : :
2m? 2m* (2m) M em e ke

=—2imb, tr

f d*xd*yd*z

After carrying outx, y, z r, andk integrations, we are left with a simple momentum integration:

Jd“l «s L1 1
Wﬁq Q=P v i—

I147(p,q)=—2imb, tr
b1(P.qQ) Y rd—m Ptep—m

=2imb,6(q—p)tr

f a1 o 1 1
m =m” g m  p-m
Note that in spite of the explicik dependence in the action, the vacuum polarization is translation inv@pieortional to
8(p—q) in momentum spade
Using the identity
1 1 1
(93 =— v¥ ,
t+g—m t+g—m  t+¢-—m

we have

II47(p,q)=—2imb,8(q—p)tr

fd“l L1l L1 1
Co F=mY g m” bt g-m Ctip-m

which can be written as

=8(p—q)b, {4 “(p).

47 (p,q)=2imb,8(q—p)tr

jd“l L1, . 1
Cm™ t=m” yrp—m” P HpZ-m?

If we observe thall{;(x,y) =I17(y,x), then we readily The calculation of the integral determinidéf;*(p) can be
obtain that the momentum conserving Fourier transform ofound in Ref.[2]:

I1£5(x,y) is given by
ﬁ,u,vuz _ B I Eﬂyaﬁpﬁ 0
figre(p) =T12ee(— p). b1 (P =% Ging’
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where 6=2sin }(y/p?/2m) and p?<4m?. Therefore we ob- and CP T-violating fermion sector is undetermined. Our re-
tain the induced, parity violating, nonlocal action, which sult is basically a consequence of the weaker condition for

agrees witH 2], gauge invariance: sincayﬂyw does not couple to any
1 d*p P other field, physical gauge invariance is maintained provided
| T *Ewr _— 2 — % is gauge invariant at zero four-momentygj.
4774 (277)4bM Fi(p)| gng ~1H47c|A(—P). Yy, ys¥ is gaug 4
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