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Lorentz- and CPT-violating Chern-Simons term in the functional integral formalism
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Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
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We show that in the functional integral formalism, with the weaker condition of gauge invariance alone, one
cannot determine the~finite! coefficient of the induced, Lorentz- andCPT-violating Chern-Simons term,
arising from the Lorentz- andCPT-violating fermion sector.@S0556-2821~99!03220-8#

PACS number~s!: 11.30.Cp, 11.30.Er, 12.20.Ds
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In recent work@1#, the following question has been pose
is a Lorentz- andCPT-violating Chern-Simons term induce
by the Lorentz- andCPT-violating term c̄b”g5c (bm is a
constant four-vector! in the conventional Lagrangian o
QED. In the paper by Jackiw and Kostelecky´ @2#, this prob-
lem has been discussed. Their results depend on whethe
uses a nonperturbative formalism or a perturbative form
ism. In a nonperturbative formalism, radiative correctio
arising from the axial vector term in the fermion sector
duce a definite and nonzero Chern-Simons term, while w
a perturbative formalism is used, radiative corrections
finite but undetermined.

The purpose of this paper is to view this undeterminici1

of the finite radiative corrections in the functional integr
formalism.

Let us consider the following functional integral

Z~A!5E dc̄dc exp@ i I ~A!#, ~1!

where

I ~A!5E d4x@ i c̄D” c2mc̄c2bm j 5
m#,

with j 5
m(x)5c̄(x)gmg5c(x)2@~possibly finite! local coun-

terterms#. The gauge fieldA in the covariant derivativeD” is
external. By changing the field variables

c~x!→exp@ ia~x!g5#c~x!,

c̄~x!→c̄~x!exp@ ia~x!g5#,

we see that the integration measure of Eq.~1! changes by

dc̄dc→dc̄dc expF2 i E a~x!

8p2 * Fmn~x!Fmn~x!G ,
where this form for the anomaly is obtained whenc̄D” c is
defined in a gauge-invariant manner. The action changes

*Electronic address: chung@ctpa03.mit.edu
1See also Refs.@3,4#.
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I ~A!→E d4x@ i c̄D” c2~]ma!c̄gmg5c2mc̄e2ia(x)g5c

2bm j 5
m#, ~2!

where the second term@(]ma)c̄gmg5c# in the integrand of
Eq. ~2! comes from transformation of the gauge invaria
kinetic term, hence the axial vector currentc̄gmg5c is gauge
invariant, and does not necessarily equal toj 5

m , which need
not be gauge invariant. However, we must insist that*d4x j5

m

is gauge invariant, i.e., the density need not be gauge inv
ant but its space-time integral—the action—is gauge inv
ant. Since the Chern-Simons term12 emabgFabAg5* FmnAn

behaves precisely in this same way under gauge transfo
tion, we may use it to represent gauge noninvariant port
of j 5

m . Thus we write

j 5
m~x!5c̄~x!gmg5c~x!2c* FmnAn ,

where c is an unknown constant. By choosinga(x)
52xmbm , the gauge invariant currentc̄gmg5c cancels and
we arrive at

Z~A!5expS 2 i E d4x

4p2 bm* FmnAnD
3expS i cE d4xbm* FmnAn D E dc̄dc

3expS i E d4x@ i c̄D” c2mc̄e2ig5xmbmc# D .

Now let us calculate the vacuum polarization for t
theory governed by the action in the functional integral. T
propagatorG(x,y) satisfies the following equation:

~ i ]” x2me2ig5x•b!G~x,y!5 id~x2y!

and its formal solution can be expressed as

G~x,y!5
i

i ]” x2me2ig5x•b
d~x2y!,

which to first order inb becomes
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i ]” x2m22img5xaba

d~x2y!

'S~x2y!2 i E S~x2z!2img5zabaS~z2y!d4z

[S~x2y!1DG~x,y!,

whereS(x2y) is the free propagator

i

i ]” x2m
d~x2y!.
o

12790
This decomposition of the propagator splits the vacuum
raization tensor into three parts:

Pmn5P0
mn1Pb

mn1Pbb
mn .

The first termP0
mn is the usual lowest-order vacuum pola

ization tensor of QED, and the last termPbb
mn is at least

quadratic inb. Our main concern here is to calculate th
middle termPb

mn , which is linear inb. It is expressed as
Pb
mn~x,y!5tr@gmS~x2y!gnDG~y,x!#1tr@gmDG~x,y!gnS~y2x!#[Pb1

mn~x,y!1Pb2
mn~x,y!.

The Fourier transform ofPb1
mn(x,y) is readily obtained as

Pb1
mn~p,q!5E d4xd4ye2 ipxeiqyPb1

mn~x,y!5E d4xd4yd4ze2 ipxeiqy tr@gmS~x2y!gn~2 i !S~y2z!2img5zabaS~z2x!#

522imba trF E d4xd4yd4z
d4l

~2p!4

d4r

~2p!4

d4k

~2p!4 ei (2p2 l 1k)xei ( l 2r 1q)yei (r 2k)zgm
1

ł 2m
gn

1

r”2m
g5za

1

k”2m
G .

After carrying outx, y, z, r, andk integrations, we are left with a simple momentum integration:

Pb1
mn~p,q!522imba trF E d4l

~2p!4]q
ad~q2p!gm

1

ł 2m
gn

1

ł 1q”2m
g5

1

ł 1p”2m
G

52imbad~q2p!trF E d4l

~2p!4gm
1

ł 2m
gn]q

a 1

ł 1q”2m
g5

1

ł 1p”2m
G .

Note that in spite of the explicitx dependence in the action, the vacuum polarization is translation invariant@proportional to
d(p2q) in momentum space#.

Using the identity

]q
a 1

ł 1q”2m
52

1

ł 1q”2m
ga

1

ł 1q”2m
,

we have

Pb1
mn~p,q!522imbad~q2p!trF E d4l

~2p!4gm
1

ł 2m
gn

1

ł 1q”2m
ga

1

ł 1q”2m
g5

1

ł 1p”2m
G ,

which can be written as

Pb1
mn~p,q!52imbad~q2p!trF E d4l

~2p!4gm
1

ł 2m
gn

1

ł 1p”2m
gag5

1

~ l 1p!22m2G[d~p2q!baP̃b1
mna~p!.
If we observe thatPb2
mn(x,y)5Pb1

nm(y,x), then we readily
obtain that the momentum conserving Fourier transform
Pb2

mn(x,y) is given by

P̃b2
mna~p!5P̃b1

nma~2p!.
f
The calculation of the integral determiningP̃b1

mna(p) can be
found in Ref.@2#:

P̃b1
mna~p!5

2 i emnabpb

4p2

u

sinu
,
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whereu[2sin21(Ap2/2m) and p2,4m2. Therefore we ob-
tain the induced, parity violating, nonlocal action, whic
agrees with@2#,

1

4p2E d4p

~2p!4 bm * Fmn~p!F u

sinu
2114p2cGAn~2p!.

Since (u/sinu)p25051, we obtain the Chern-Simons ter
with an undetermined strengthc. This completes our argu
ment.

We have shown in the functional integral formalism th
the ~finite! coefficient of the induced, Lorentz- an
CPT-violating Chern-Simons term arising from the Lorent
12790
t

andCPT-violating fermion sector is undetermined. Our r
sult is basically a consequence of the weaker condition
gauge invariance: sincec̄gmg5c does not couple to any
other field, physical gauge invariance is maintained provid
c̄gmg5c is gauge invariant at zero four-momentum@2#.
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