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Creation of scalar particles in the presence of a constant electric field in an anisotropic
cosmological universe

Vı́ctor M. Villalba*
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In the present article we analyze the phenomenon of particle creation in a cosmological anisotropic universe
when a constant electric field is present. We compute, via the Bogoliubov transformations, the density number
of scalar particles created.@S0556-2821~99!00724-9#

PACS number~s!: 04.60.2m
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Quantum field theory in curved space-time is perhaps
of the most interesting and puzzling problems in contem
rary theoretical physics. After the publication of the pione
article by Hawking@1# about pair production in the vicinity
of a Schwarzschild black hole, a great body of papers
been published, mainly trying to understand the mechan
that gives origin to the thermal particle distribution and
relation to thermodynamics. It is noteworthy that Hawking
result was preceded by a series of articles where the que
was to discuss particle production in cosmological univer
@2,3#. Almost all of the articles published in this area de
with isotropic and homogeneous gravitational backgroun
mainly in de Sitter and Robertson-Walker models, and on
few try to discuss quantum processes in anisotropic u
verses.

The study of quantum effects in gravitational bac
grounds with initial singularities presents an additional di
culty. The techniques commonly applied in order to defi
particle states are based on the existence of a timelike Kil
vector or an asymptotically static metric@4#. A different ap-
proach is needed to circumvent the problem related to
initial singularity. In this direction, the Feynman pat
integral method has been applied to the quantization o
scalar field moving in the the Chitre-Hartle universe@5,6#.
This model has a curvature singularity att50, and it is
perhaps the best known example where a time singula
appears and consequently any adiabatic prescription in o
to define particle states fails. A spin-1/2 extension has b
considered by Sahni.@7#

A different approach to the problem of classifying sing
particle states on curved spaces is based on the idea o
agonalizing the Hamiltonian. This technique permits one
compute the mean number of particles produced by a sin
lar cosmological model, and in particular by the Chitr
Hartle universe@5#.

An interesting scenario for discussing particle creat
processes is the anisotropic universe associated with the
ric

ds252dt21t2~dx21dy2!1dz2. ~1!

The line element~1! presents a spacelike singularity att
50. The scalar curvature isR52/t2, and consequently, th
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adiabatic approach@4# cannot be applied in order to defin
particle states. With the help of the Hamiltonian diagonaliz
tion method@8–10#, Bukhbinder@11# has been able to com
pute the rate of scalar particles produced in the space
the metric~1!, obtaining as result a Bose-Einstein distrib
tion. Bukhbinder and Odintsov@12# have extended this resu
including a time dependent electric field associated with
potentialAm5(0,0,0,c/t). More recently@13#, a quasiclas-
sical approach has been applied to compute the rate of s
as well as Dirac particles in the metric~1!.

The introduction of an external electric field permits o
to consider an additional source of quantum processes.
density of particles created by an intense electric field w
first calculated by Schwinger@14#, different authors@8,15#
have discussed this problem. Pair creation of scalar parti
by a constant electric field in a 211 de Sitter cosmologica
universe has been analyzed by Garriga@16#. Quantum effects
associated with scalar and spinor particles in a qu
Euclidean cosmological model with a constant electric fi
are discussed by Bukhbinder and Odintsov@17#. It is the
purpose of the present article to compute, via the quasic
sical approach@18–20#, the density of scalar particles create
in the background field~1! when a constant electric field i
present. The idea behind the method is the following: Fi
we solve the relativistic Hamilton-Jacobi equation and, loo
ing at its solutions, we identify positive and negative fr
quency modes. Second, we solve the Klein-Gordon equa
and, after comparing with the results obtained for the qua
classical limit, we identify the positive and negative fr
quency states. This technique has already been success
applied in different scenarios@18–20#.

The relativistic Hamilton-Jacobi equation can be writt
as

gabS ]S

]xa
2eAaD S ]S

]xb
2eAbD 1m250, ~2!

where here and elsewhere we adopt the conventionc51 and
\51.

The vector potentialAa

Aa5~0,0,02Et!, ~3!

corresponds to a constant electric fieldEk̂. The correspond-
ing invariants FmyFmn522E2 and Fmy* Fmn50 indicate
©1999 The American Physical Society01-1
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that there is no magnetic field. Since the metricgab associ-
ated with the line element~1! only depends ont, the function
S can be separated as

S5F~ t !1kxx1kyy1kzz. ~4!

Substituting Eq.~4! into Eq. ~2! we obtain

Ḟ25
kx

21ky
2

t2
1~kz1eEt!21m2. ~5!

The solution of Eq.~5! presents the following asymptoti
behavior:

lim
t→`

F56
1

2
tAe2E2t22m27

m2

2eE
log~eEt1Ae2E2t22m2!,

~6!

F5eiS→Ce6( i /2)eEt2~eEt!7( im2/2eE) ~7!

as t→`, and

lim
t→0

F56A~kx
21ky

2!log t,F5eiS→Ct6 iAkx
2
1ky

2
, ~8!

ast→0, that is, in the initial singularity. Notice that the tim
dependence of the relativistic wave function is obtained
the exponential operationF→exp(iS). Here it is worth men-
tioning that the behavior of positive and negative frequen
states is selected depending on the sign of the operatori ] t .
Positive frequency modes will have positive eigenvalues
for negative frequency states we will have the opposite. T
in Eqs.~6! and~8!, ~7! upper signs are associated with neg
tive frequency values and the lower signs correspond to p
tive frequency states. After making this identification we c
analyze the solutions of the Klein-Gordon equation in
background field~1!.

The covariant generalization of the Klein-Gordon equ
tion takes the form

gab~¹a2 ieAa!~¹b2 ieAb!F2~m21jR!F50, ~9!

where¹a is the covariant derivative,R is the scalar curva-
ture, andj is a dimensionless coupling constant which tak
the valuej51/6 in the conformal case, andj50 when a
minimal coupling is considered. Substituting Eq.~1! into Eq.
~9! we obtain

]2F

]t2
2

]2F

]z2
22eEt

]F

]t
2e2E2t2F2

1

t2 S ]2F

]x2
1

]2F

]y2 D
1S m21

2j

t2 D F50. ~10!

Since Eq. ~10! commutes with the linear momentumpW
5(2 i ]x ,2 i ]y2 i ]z), we have that the substitution

F5t21D~ t !ei (kxx1kyy1kzz), ~11!
12750
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reduces Eq.~10! to the ordinary second order differentia
equation.

d2D

dt2
1S 1

t2
~kx

21ky
212j!1t2e2E212tkzE1kz

21m2D D50,

~12!

whose solution, forkz50, can be expressed in terms
Whittaker functionsMk,m(z) andWk,m(z) @21,22#

D5z21/4@C1Mk,m~z!1C2Wk,m~z!#, ~13!

wherek,m andz are given by the expressions

z5 ieEt2, k52 i
m2

4eE
, m5

i

4
A4~2j1ky

21kx
2!21.

~14!

Looking at the asymptotic behavior ofMk,m(z) andWk,m(z)
as uzu→`

Wk,m~z!;e2z/2zk, ~15!

and asz→0

Mk,m~z!;e2z/2z1/21m, ~16!

we obtain that the solution~13! having the asymptotic be
havior given by Eqs.~6! and ~7! is

D`
15C`

1z21/4Wk,m~z!, D`
25C`

2z21/4W2k,m~2z!,
~17!

whereC`
1 andC`

2 are normalization constants
Analogously, we have that in the vicinity of the singula

ity, looking at the quasiclassical solutions att50 ~8! the
corresponding negative ‘‘2 ’’ and positive ‘‘1 ’’ frequency
solutions take the form

D0
25C0

2z21/4Mk,m~z!, D0
15C0

1z21/4Mk,2m~z!,
~18!

whereC0
2 andC0

1 are normalization constants, and the fun
tion Mk,m(z) can be expressed in terms of the Kummer h
pergeometric functionM (a,b,z) as follows:

Mk,m~z!5e2z/2z1/21mM S 1

2
1m2k,112m,zD . ~19!

The Whittaker functionMk,m(z) can be expressed in term
of Wk,m(z) as @24#

Mk,m~z!5
G~2m11!

G~m2k11/2!
e2 ipkW2k,m~2z!

1
G~2m11!

G~m1k11/2!
e2 ip(k2m21/2)Wk,m~z!.

~20!
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 60 127501
Using the above expression~20! we have that the negativ
frequency solutionD0

2 can be written in terms ofD`
1 and

(D`
2) as follows:

D0
25

G~2m11!

G~m2k11/2!
e2 ipkD`

21
G~2m11!

G~1/21m1k!

3~21!21/4e2 ipm(k2m21/2)~D`
2!* , ~21!

where we have made use of the propertyW2k,m(2z)
5@Wk,m(z)#* .

Since we have been able to obtain single particle states
in the vicinity of t50 as well as in the asymptotet→`, we
can compute the density of particles created by the grav
tional field. With the help of the Bogoliubov coefficien
@4,8#. From Eq.~21! and the fact thatD0

25aD`
21b(D`

2)*
we obtain

ubu2

uau2
5e2ipm

uG~1/21m2k!u2

uG~1/21m1k!u2
. ~22!

Substituting into Eq.~22! the values form andk we obtain

ubu2

uau2
5

cosh@p/4A4~2j1ky
21kx

2!212pm2/4eE#

cosh@~p/4!A4~2j1ky
21kx

2!211pm2/4eE#

3e2(p/2)A4(2j1ky
2
1kx

2)21 ~23!

where we have used the relation@21#

UGS 1

2
1 iy D U2

5
p

coshpy
. ~24!

The computation of the density of particles created
straightforward from Eq.~23! and the normalization condi
tion @23# of the wave function

uau22ubu251, ~25!

then

n5ubu25F S ubu2

uau2D 21

21G21

.

It should be noticed that, thanks to the normalization con
tion, we did not have to compute the normalization consta
C appearing in the definition of the single mode solutio
~17!,~18!. Let us analyze the asymptotic behavior of Eq.~23!
when the electric field vanishes. Taking into account t
cosh(z);euzu/2 asz→`, we readily obtain

n;
ubu2

uau2
5exp@2pA4~2j1ky

21kx
2!21#, ~26!

which is the result obtained in Ref.@13#. Expression~26!
corresponds to a two-dimensional Bose-Einstein thermal
tribution with an effective mass which differs from the valu
of m appearing in Eq.~9!. In the case of strong electric field
the density number of scalar particles created takes the f
12750
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n'
ubu2

uau2
5expF2

p

2
tanhS p

4
A4~2j1ky

21kx
2!21D m2

eE

2
p

2
A4~2j1ky

21kx
2!21G , ~27!

showing that the density of particles created by the cosm
logical background and the electric field~27! is a Bose-
Einsten distribution with a chemical potential proportional
m2/eE. Integrating the particle densityn ~27! on momentum
we obtain the total number of particles created per unit v
ume:

N5
1

VE ndkxdkydkz5
1

t2~2p!2E nk'dk'dkz . ~28!

In order to carry out the integration we have to notice than
does not depend onkz and consequently integration onkz is
equivalent to the substitution@8,15# *dkz→eET, whereT is
the time of interaction of the external field. In the strong fie
limit we can approximate the density numbern ~27! by the
expression

n'expF2
p

2
tanhS p

4
A8j21D m2

eE
2

p

2
A4~2j1ky

21kx
2!21G .

~29!

Substituting Eq.~29! into Eq. ~28! , we obtain that the tota
numberN of particles per unit volume takes the form

N'
eE

8p4T
~b12!exp~2b/2!expF2

m2p

2eE
tanhS b

4D G ,
~30!

where b5pA8j21. Result~30! resembles the number o
particles created by a constant electric field in a Minkow
space@8,15#. It is worth mentioning that the numberN of
particles per unit volume is inversely proportional toT21

and vanishes asT→`. The volume expansion of the aniso
tropic universe~ 1! is faster than the particle creation pro
cess, thereforeN becomes negligible for large values ofT.

The results~23!, ~27!, and~30! show that the anisotropic
cosmological background~1!, as well the constant electri
field, contribute to the creation of scalar particles. The q
siclassical method gives a recipe for obtaining the posit
and negative frequency modes even when spacetime is
static and an external source is present. The presence o
anisotropy with a constant electric field gives place to a p
ticle distribution that is thermal only in the asymptotic fie
regime. The method and results presented in this paper c
be of help to discuss quantum effects in more realistic an
tropic cosmological scenarios.

We thank Dr. Juan Rivero for helpful discussions. Th
work was supported by CONICIT under Project N
96000061.
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