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Creation of scalar particles in the presence of a constant electric field in an anisotropic
cosmological universe
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In the present article we analyze the phenomenon of particle creation in a cosmological anisotropic universe
when a constant electric field is present. We compute, via the Bogoliubov transformations, the density number
of scalar particles createf50556-282199)00724-9

PACS numbd(s): 04.60—m

Quantum field theory in curved space-time is perhaps onadiabatic approacf4] cannot be applied in order to define
of the most interesting and puzzling problems in contempoyparticle states. With the help of the Hamiltonian diagonaliza-
rary theoretical physics. After the publication of the pioneertion method[8—10], Bukhbinder{11] has been able to com-
article by Hawking[1] about pair production in the vicinity pute the rate of scalar particles produced in the space with
of a Schwarzschild black hole, a great body of papers hathe metric(1), obtaining as result a Bose-Einstein distribu-
been published, mainly trying to understand the mechanisrtion. Bukhbinder and Odintsd2] have extended this result
that gives origin to the thermal particle distribution and itsincluding a time dependent electric field associated with the
relation to thermodynamics. It is noteworthy that Hawking's potential A ,=(0,0,0¢c/t). More recently{13], a quasiclas-
result was preceded by a series of articles where the questiaical approach has been applied to compute the rate of scalar
was to discuss particle production in cosmological universeas well as Dirac particles in the metrit).
[2,3]. Almost all of the articles published in this area deal The introduction of an external electric field permits one
with isotropic and homogeneous gravitational backgroundsto consider an additional source of quantum processes. The
mainly in de Sitter and Robertson-Walker models, and only alensity of particles created by an intense electric field was
few try to discuss quantum processes in anisotropic unifirst calculated by Schwingdr4], different authorq8,15|
verses. have discussed this problem. Pair creation of scalar particles

The study of quantum effects in gravitational back-by a constant electric field in a2l de Sitter cosmological
grounds with initial singularities presents an additional diffi- universe has been analyzed by Garfit)g]. Quantum effects
culty. The techniqgues commonly applied in order to defineassociated with scalar and spinor particles in a quasi-
particle states are based on the existence of a timelike Killingcuclidean cosmological model with a constant electric field
vector or an asymptotically static metfié]. A different ap- are discussed by Bukhbinder and Odintddv]. It is the
proach is needed to circumvent the problem related to thpurpose of the present article to compute, via the quasiclas-
initial singularity. In this direction, the Feynman path- sical approach18-20, the density of scalar particles created
integral method has been applied to the quantization of & the background fieldl) when a constant electric field is
scalar field moving in the the Chitre-Hartle univei€g6]. present. The idea behind the method is the following: First,
This model has a curvature singularity &0, and it is  we solve the relativistic Hamilton-Jacobi equation and, look-
perhaps the best known example where a time singulariting at its solutions, we identify positive and negative fre-
appears and consequently any adiabatic prescription in ordguency modes. Second, we solve the Klein-Gordon equation
to define particle states fails. A spin-1/2 extension has beeand, after comparing with the results obtained for the quasi-
considered by Sahn[7] classical limit, we identify the positive and negative fre-

A different approach to the problem of classifying single quency states. This technique has already been successfully
particle states on curved spaces is based on the idea of dipplied in different scenarid4d.8-20.
agonalizing the Hamiltonian. This technique permits one to The relativistic Hamilton-Jacobi equation can be written
compute the mean number of particles produced by a singwas
lar cosmological model, and in particular by the Chitre-
Hartle universg5]. IS JS

An interesting scenario for discussing particle creation g*? Ae|| 5~ €A
processes is the anisotropic universe associated with the met- %
ric

+m?=0, (2)

Ix*

where here and elsewhere we adopt the convertioh and

ds?=—d?+t3(dx?+dy?) +d 2. @ A=l _
The vector potentiah,

The line element(1) presents a spacelike singularity at
=0. The scalar curvature R=2/t?, and consequently, the A,=(0,0,0—-EY), )

corresponds to a constant electric fi&#f. The correspond-
*Email address: villalba@ivic.ivic.ve ing invariants F*'F = — 2E? and F#» F.,=0 indicate
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that there is no magnetic field. Since the megjg associ-
ated with the line elemertil) only depends o the function
Scan be separated as

S=F(t) +kx+kyy+k,z. (4)
Substituting Eq(4) into Eq. (2) we obtain
] k2 2
F2=%+(kz+eEt)2+m2. (5)

The solution of Eq.(5) presents the following asymptotic
behavior:

1 m?
limF= iit\/ezEzti— mziﬁlog(eEH JePEZ2— mz),
t—ow
(6)
(I):eiS_>Cet(i/2)eEt2(eEt)I(im2/2eE) (7)

ast—o, and

ImF==*
t—0

(IO logt,d=eS—Ct= itk (g)

ast—0, that is, in the initial singularity. Notice that the time
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reduces Eq(10) to the ordinary second order differential
equation.

d2A

1
e t—z(k§+ K2+ 2£) +t2e?E?+ 2tk E+kZ+m? | A=0,

(12

whose solution, fork,=0, can be expressed in terms of
Whittaker functionsM, ,(z) andW, ,(z) [21,22
A=z"Y{CiM, ,(2)+C,W, ,(2)], (13

wherek, u andz are given by the expressions

2

. . [
z=ieEf, k=-—i M=Z\/4(2§+k§+kf)—1.

(14)

4eE’
Looking at the asymptotic behavior ™, ,(z) andW, ,(2)
as|z| -

Wy . (2)~e~ 7%, (15)
and asz—0

Mk’M(Z)~e—Z/221/2+M' (16)

dependence of the relativistic wave function is obtained via

the exponential operatioh — exp(S). Here it is worth men-

we obtain that the solutioil3) having the asymptotic be-

tioning that the behavior of positive and negative frequency?@vior given by Eqs(6) and(7) is

states is selected depending on the sign of the opeirétor

AZ=Clz YW, (2), AZ=Crz Y™W_, (-2),

17

Positive frequency modes will have positive eigenvalues and
for negative frequency states we will have the opposite. Then
in Egs.(6) and(8), (7) upper signs are associated with nega- N N o
tive frequency values and the lower signs correspond to posivhereC.. andC.. are normalization constants _
tive frequency states. After making this identification we can_Analogously, we have that in the vicinity of the singular-
analyze the solutions of the Klein-Gordon equation in thelty, 100king at the quasiclassical solutions t&t0 (8) the
background field1). corre_spondlng negative " and positive “+” frequency

The covariant generalization of the Klein-Gordon equa-Solutions take the form
tion takes the form

Ag=Coz ¥ (2), A§=Cgz "My _,(2),

gA(V,—ieA)(Va—ieAyd—(m*+ER) D=0, (9) (18
whereV , is the covariant derivativeR is the scalar curva- whereCg andCg are normalization constants, and the func-
ture, and¢ is a dimensionless coupling constant which takegion M, ,(z) can be expressed in terms of the Kummer hy-
the valueé=1/6 in the conformal case, ang=0 when a pergeometric functioM (a,b,z) as follows:
minimal coupling is considered. Substituting Ef)) into Eq.
(9) we obtain

1

My . (2)=e %22 M stu—kl+t2uz]. (19

Pb D L A I

e F_ZeEtE_e Bt - 2\ a2 ay? The Whittaker functiorM, ,(z) can be expressed in terms

of W ,(z) as[24]
2, 26
+ m+t—2 d=0. (10 M ~ T(2u+1) Cimkyy
D= kv Woku(—2)
Since Eq.(10) commutes with the linear momenturﬁ r2u+1)

=(—idy,—id,—id,), we have that the substitution e Tl rT1AW, (2).

T arkr12)

D =t"1A(t)e kextky k) (11 (20)
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Using the above expressid@20) we have that the negative
frequency solutiom, can be written in terms oA and

(A,) as follows:

T (2u+1)

4 r(2u+1
_ e iTkA 4 (2pn+1)
[(u—k+1/2) r

Ao (1/2+ p+Kk)
X ( _ 1)71/4e7i77,u(k7,u,71/2)(A;)* , (21)

where we have made use of the propemy., ,(—2)
=[Wiu(2)]*.
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m2

eE

2
n~ %zex;{ - gtank(g\/4(2§+ kg + kf)—l)
o

—;\/4(2g+ K2+ ki)—l} 27)

showing that the density of particles created by the cosmo-
logical background and the electric fiel@7) is a Bose-
Einsten distribution with a chemical potential proportional to
m?/eE. Integrating the particle density(27) on momentum

Since we have been able to obtain single particle states fage obtain the total number of particles created per unit vol-

in the vicinity oft=0 as well as in the asymptote-o, we

ume:

can compute the density of particles created by the gravita-

tional field. With the help of the Bogoliubov coefficients

[4,8]. From Eq.(21) and the fact that\g = A + B(A)*
we obtain

@ZEZW|F(1/2+M—|<)|2

. 22
|a|? T (1/2+ w+k)|? @

Substituting into Eq(22) the values forw andk we obtain

B2 cosh mIANA(2E+ K+ kD) — 1— mmP/4eE]
> cosh(m/4)\4(2&+K2+K2)— 1+ mm?/4eE]

Xe—(w/z)\/4(2g+k§+k§)—1 23)

where we have used the relatififi]

2 T

- coshmry’ (24

§+Iy

r

The computation of the density of particles created is
straightforward from Eq(23) and the normalization condi-

tion [23] of the wave function

|?=1BI7=1, (25

e

then

n=|p|*=

It should be noticed that, thanks to the normalization condi
tion, we did not have to compute the normalization constants
C appearing in the definition of the single mode solutions

(17),(19). Let us analyze the asymptotic behavior of E28)

1 1
NZ—J ndkdkdk=—J nk, dk, dk,. (28
\V; X Ry U Rz t2(277)2 L L Z ( )

In order to carry out the integration we have to notice that
does not depend ok, and consequently integration én is
equivalent to the substitutid8,15] [dk,—eET, whereT is
the time of interaction of the external field. In the strong field
limit we can approximate the density numberf27) by the
expression

m? o

n~ex;{ - gtam(%/sg— 1) GE E\/4(2§+ K+ k) — 1}
(29)

Substituting Eq(29) into Eq. (28) , we obtain that the total
numberN of particles per unit volume takes the form

N~ (h+2 b2 T o 2
~8774T( +2)exp(—b/2)ex —Etan 2l
(30)

whereb=78&—1. Result(30) resembles the number of
particles created by a constant electric field in a Minkowski
space[8,15]. It is worth mentioning that the numbét of
particles per unit volume is inversely proportional To'*
and vanishes a§—o. The volume expansion of the aniso-
tropic universe( 1) is faster than the particle creation pro-
cess, therefor®l becomes negligible for large values Bf

The resultg23), (27), and(30) show that the anisotropic
cosmological backgroundl), as well the constant electric
field, contribute to the creation of scalar particles. The qua-

when the electric field vanishes. Taking into account thaficlassical method gives a recipe for obtaining the positive

coshg)~d4/2 asz— o, we readily obtain

2
n~ %zexq— TAQ2E+KI+K)—1],  (26)
o

which is the result obtained in Ref13]. Expression(26)

corresponds to a two-dimensional Bose-Einstein thermal di
tribution with an effective mass which differs from the value

and negative frequency modes even when spacetime is not
static and an external source is present. The presence of the
anisotropy with a constant electric field gives place to a par-
ticle distribution that is thermal only in the asymptotic field
regime. The method and results presented in this paper could
be of help to discuss quantum effects in more realistic aniso-
tropic cosmological scenarios.
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