PHYSICAL REVIEW D, VOLUME 60, 126002

(F, D5) bound state, SL(2,Z) invariance and the descendant states
in type IIB and type IIA string theory

J. X, Lu*
Center for Theoretical Physics, Texas A&M University, College Station, Texas 77843

Shibaji Roy
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064, India
(Received 8 June 1999; published 15 November 1999

Recently the space-time configurations of a set of nonthreshold bound states, calléd ) (bound
states, have been constructed explicitly for eyemyith 2<p=<7 in both type IlA (for p even and type IIB
(for p odd) string theories by the present authors. By making use of the Sl)(@mmetry of type 1B theory
we construct a more general SLE@), invariant bound state of the tygéF, D1), (NS5, D5) in this theory
from the (F, D5) bound state. There are actually an infinite numbernofn( strings forming bound states
with (m’,n’) 5-branes, where strings lie along one of the spatial directions of the 5-branes. By applying
duality along one of the transverse directions we also construct the bound(8§tate2), (KK, D6)) in type
IIA string theory. Then we give a list of possible bound states which can be obtained from these newly
constructed bound states by applyihdualities along the longitudinal directions as well@gualities to those
in type 1B theory.[S0556-282(99)01522-7

PACS numbeps): 11.25.Sq

[. INTRODUCTION invariance, there must exist more general bound states than
(F, Dp) in this theory. By making use of this observation,
This is a sequel to our series on the study of a new kind ofve have constructed the more general nonthreshold bound
bound state that exists in both type IIA and type 1IB stringstate of the typd(F, D1), D3) and some of itsT-dual de-
theories. In[1], we provided arguments from the worldvol- scendants in Ref8].
ume point of view that there exist Bogomol'nyi-Prasad- In this paper, we make an SL(2) transformation on the
Sommerfield BPS bound states of p-branes carrying cer- nonthreshold bound stat& ( D5) in type IIB theory to con-
tain units of quantized constant electric fields, called thestruct ((F, D1), (NS5, D5) bound state. The space-time
(F, Dp) bound states, for everywith 1<p=<8 in type IIA  configuration consisting of the metric, the dilaton, the axion
(for p even and type IIB (for p odd string theory. The and the other nonvanishing gauge fields for this bound state
space-time configurations of these bound states have beeane constructed explicitly. The initiaF, D5) configuration
constructed explicitly for 2 p<7 in Ref.[2].) Each of these consists of an infinite number of Neveu-SchwaiiS)
bound states preserves one-half of the space-time supersystrings (each NS string is actuallg F-strings distributed
metries. In the worldvolume picture thein (F, Dp) repre-  uniformly overs D5-branes and lying along one of the spa-
sents the uniform and constant electric field lines flowingtial directions of D5-brane, wherg and s are relatively
along, say, thex! axis of the Op-brane due to the uniform prime integers as discussed[R]. We here consider a genu-
and homogeneous charge distribution on the rest of the (ine initial (F, D5) bound state, i.e., bottj and s are non-
—1) plane placed ax'= —«, originating from an infinite zero. In general, we expect that in the bound state
number of open strings ending on this surface. On the othef(F, D1), (NS5, D5), there are an infinite number of
hand, the space-time configuration allows us to identify thesém,n) strings lying along one of the spatial directions of
field lines with the infinitely long fundamental strings or (m’,n’) 5-branes. Although for the degenerate case when
F-strings in the bulk. To make this identification more con-either the strings or the 5-branésut not both are present
crete, we have calculated the charges carried=strings  the integers ifi,n) and (m’,n’) are individually relatively
and Dp-branes, as well as the mass per ymiirane volume, prime, for the general nondegenerate case this is not neces-
and have shown that they match precisely with what we exsarily so. For the generaf(F, D1), (NS5, D5) bound
pect from the worldvolume study. We have notedif that  state, i.e., when the integemgn andm’,n’ are nonzero, we
since type IIB theory is conjectured to possess an SZ)2, find that a consistent quantization of the charges associated
with the NS-NS and Ramond-Ramoi@R) gauge fields of
both the strings and the 5-branes relates the charges of the
*Email address: jxlu@rainbow.physics.tamu.edu strings with those of the 5-branes. As a result, the integers
TEmail address: roy@tnp.saha.ernet.in (m,n) corresponding to the electric charges of the strings
The configurations fop=3,4,6 were also given previously in and the integersni’,n") corresponding to the magnetic
[3-5], respectively. Similar nonthreshold bound states in M theorycharges of the 5-branes get related am,n)=k(a,b),
or type llA or IIB theory for ap’-brane within anothep-brane with  (m’,n")=k’(—b,a), where @,b) and k,k’) are relatively
p’ <p were studied if3-7]. prime integers. This fact in turn tells us that when biotk’
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are nonzero, the existence of bound states betwekmda-  ((F, D1), (NS5, D5) from the explicit solution E, D5)

mental strings aneh D-strings may imply the existence of given in [2]. We will follow the procedure outlined in

bound states betweem’ NS5-branes and’ D5-branes, [ 10,1]. Let us begin with E, D5) solution[2] given by
where the integersng,n) and (m’,n’) are related to each the metric,

other as given before. Thus we find that in general the

SL(2,2) inyariant bounq statg(F, D1),.(N85, DS) of type d=H'YHY HL(— (dx%)2+ (dx})?)

[IB theory is characterized by two pairs of relatively prime

integers @,b) and (k,k’). We can obtain the other bound +H" Y (dx?)%+ (dx3)%+ (dx*)%+ (dx®)?)
states, namely,K, D5) and (D1, NS5 from this general -

solution by settinga=1, b=0 anda=0, b=1, respec- +dy'dy'], (2.9

tively. Also note that the degeneratéS5, D5 and (F, D1) o )

cases can be obtained from the generawith i=1,2,3,4; the dilaton,

((F, D1), (NS5, D5) bound state by setting) k=0, k’ b Ly—112

=1 and(ii) k'=0, k=1. For the former case we get the e’=H""% (2.2
SL(2,Z) 5-branes discussed i8], whereas for the latter o o

case we get SL(Z) strings obtained ifi6] with four addi- ~and the remaining nonvanishing fields,

tional isometries. But because the charges of the strings and ) P 0 N

the 5-branes are related as mentioned above, we cannot have Hgz’=—0A g gdH™ */Adx*/Adx,

bound states of the formF(, NS5) and(D1, D5 consistent
with the fact that these bound states preserve 1/4 rather than 2k Qs
1/2 of the space-time supersymmetries. We have also ob- ng):s 00
tained the expression for the tension of SLZPinvariant Qs
nonthreshold bound stat€F, D1), (NS5, D5) and have

shown how it reduces to the tensions for the corresponding Hs=0sA yH' "2dHADCADCADX A DX,

special case bound states.

The descendants of this bound state could be obtained Hyote that in writing this solution we have set the scalars
applying T duality along various transverse and longitudinal ¢go= xgo=0, as they have nothing to do with the dilaton
directions. We give an explicit construction of the boundand the axion in the theor2]. Also in the aboveH(31) and
states((F, D2), (KK, D6)) in type IIA theory by applying H{?) are the NS-NS and RR 3-form field strengthi, is the
T duality in one of the transverse directions. We also discusself-dual 5-form field-strength withis=*Hs, where * de-

how the bound stated=( D6) and(D2, KK) as well as the notes the Hodge duaH is a harmonic function given by
degenerate case$ (D2) and (KK, D6) can be obtained

€3, (23)

from this general bound state as special cases. The tension o)
expression for the bound stat@-, D2), (KK, D6)) is also H=1+ —25 (2.9
given. We point out the problem of taking furth€dualities r

along the transverse directions. Finally, we give a list of o

possible other descendant bound states which can be owhere r?=y'y' and Qs=A{/%)\2xoQ3/(2Q3), H' is an-
tained from these by dualities in various longitudinal di- other harmonic function defined as

rections as well a§ dualities to those in type IIB theory.

This paper is organized as follows. In Sec. Il, we use the q°+s’H SZQS/A(q 9
SL(2,2) invariance of type IIB theory to construct the non- H'=— = I (2.9
threshold((F, D1), (NS5, D5) bound state starting from (@s) r

the (F, D5) one. We show thatH, D5), (D1, NS5, ) o ) .
(F, D1), and(NS5, D5 bound states can be obtained from with A(q,9=0q°+s°. Hereq ands are two relatively prime
this bound state as special cases. In Sec. Ill, we apply integers denoting, respectively, the quantized NS string

7 4 12
duality on ((F, D1), (NS5, D5) bound state along one of charge or the number dF-strings per (2r)"a’" of four-
the transverse directions to constr§¢E, D2), (KK, D6)) dimensional area perpend!cular to the stringskn D5) and
bound state and discuss the special cases as in Sec. II. Sirf P5-brane charge as discusseddh €, denotes the vol-
we have shown how to implemeStand T dualities in gen-  UMe form on am-sphere whereag,, is the volume of a unit
eral, we here list all the possible bound states that can b&SPhere and is given as
obtained from the above-mentioned bound states by the ap-

+1)/2
plication of T dualities in various longitudinal directions and :(277)(n : (2.6)
S dualities to those belonging to type 1IB theory. We con- . n+1 '
clude this paper in Sec. IV. 2

Il. SL(2,Z) INVARIANCE AND NONTHRESHOLD

((F. DI), (NS5, D3) BOUND STATE Also, \2ko=(27)"?a’? and the unit charge for afPbrane

is Q(F))E(27T)(7—2p)/2a/(3—p)/2_
In this section, we will use the SL(Z) symmetry of type The electric charge of th&-strings in ¢, D5) bound
IIB theory to construct the nonthreshold bound statestate can be calculated as
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1 L (2m)*a’ e
(V= f —px g1 @) 277 =
e (e””*HY'+HY'AB,). (2.7 Q . (2.12
V2K RExS? $oEe V2K0A,

But as mentioned ifi2], this expression is in fact infinite as The quantized magnetic charges of the NS5-brane and D5-
there are an infinite number &*strings in &, D5). How-  brane can be obtained as
ever, we can still define a quantized charge from @d7) in

the form as given beloy2] pi=gh=

f HY . (2.13
53

2K0

(1)

e

N =qTs, (2.8 Note that the electric charge in E(@.11) or Eq.(2.12 is a
KoPa Noether charge and follows from the equation of motion,

with T,=1/(2ma') as the fundamental string tension. Here Whereas the magnetic charge is topological and follows from
As=[dx2dx3dx*dx® is the coordinate area  of Bianchi identity. It is clear from Eq(2.10 that the electric

x2x3x*x5-plane. The charg®™® represents the number of charges of E, D1) strings and the magnetic charges of
F-strings per (2r)*a’'? area ovex®Ax“*x3-plane measured (NS5, D3 branes would transform as

Q(1)=(27T)4a/2

in some units(note that theF-strings lie along the! axis). 1) p()
,;\Lso the quantized magnetic charge of the D5-brane is given (Q(2)> =0-AO: P(Z)) =P (A HTP. (214
Now in order to obtain the global $2, R) transformation
P@=g@= 5 JSSH(32)=SQ8- (2.9  matrix Ay, we start with the zero asymptotic values of the
Ko

dilaton and the axion, i.eM ("8 =], wherel is the iden-

It is well known that type I1B supergravity possesses a clastiy matrix, and demand that, will transform it into a fixed
sical Cremmer-Juli12] symmetry group SE2, R.. A dis-  Put arbitrary value as

crete subgroup SL(Z) is now believed 13] to survive in Mo=AglA], (2.15
the full quantum type IIB string theory. Under a global(8L

R) symmetry the Einstein metrig,,, is a singlet, the two where

3-form field strength$4{ andH{? transform as a doublet,

and the 5-form field strength is also a singlet. So the trans- Moy=e?o
formations of the various fields along with the two scalars,

er ?Agtggsg) sa(gd ItQ?/eSg)((lz())rlj)gf::j I-;SR scalarparametriz- with ¢q and xo denoting the arbitrary but given asymptotic
ng ’ : values of the scalars. Equati@®.15 will fix the SL(2, R)
Y2+e 2% X) matrix Ay in terms of ¢y, and y, and an undetermined

xo+e 2% xo

Xo 1

M=ge? SQ(2) anglew as

1

e %ocosa+ yosinae  —e %osina
are Ag=e?0?
H gl) —1\T
3

Sina CcoSa

(2.1

9ur—Gup M= AMAT,
The anglea will be given shortly.

Note that once we apply $2, R) transformation on the
Hs—Hs, (210 jnitial quantized charge&.8) and (2.9 of (F, D5) by Eq.
whereA is a global SI2, R) transformation matrix and T (2.14), the charge_s will no longer remain qu_antized._ln order

to get around this problem, one needs either to introduce

denotes the transpose of a matrix. : ;
Let us next look at how the charges would transform un_compensatmg factors in place of both the chamgesids or

der the global SL(2, Riransformation. Since a general@|. 0 replaceg ands by arbitrary classical charges agy,, and

Z) invariant configuration will have bothH, D1) strings A /), respectively, wherd's are the arbitrary numbers
(infinite numbers of themliving on (NS5, DY branes, the and will be determined in the process of charge quantization
charge expression in E.7) will be modified to give elec- [14]. By imposing that the transformed charges are integjers,
tric charges of bothr-string and D-string as

el =

J (M= Hg)+ el Hg)/\B4), (2.11) 2When we consider eithen{,n) strings[15] or (m’,n’) 5-branes
RYxs3 [9], the integers if,n) or (m’,n’) need to be relatively prime in

N order for the strings or 5-branes to form nonthreshold bound states.
wherei,j=1,2 ande' is the SI(2, R) invariant totally anti-  For the present nonthreshold bound state consisting of an infinite
symmetric tensor withe!?>=1. As before,el”) is not well  number of fn,n) strings and a f’,n’) 5-brane, (n,n) and
defined and we can define the quantized charges as (m’,n’) are not necessarily relatively prime, as we will see later.

V2xg
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namely, (n,n) for strings and ’,n’) for the 5-branes we
have, from(2.14),

m 31/2
el
for the strings and
(m,> 5\ —1\T 0
=AD" 2 (2.18
n A(m,’n,)

for the 5-branesA§ and AJ are the transformation matrices
for strings and 5-branes. Equatiofs17) and (2.18 deter-
mine the form of A§ and AJ in terms of the asymptotic
values of the dilatorp, and the axiony as follows:

L 1 (m —ne¢0+X0(m—X0n)e¢’0)
© A2, \n (m—xon)e® ’
(2.19
and
1 N me %+ y,(n’+ yom’)e?o
AB— Xo Xo
ARy (n'+xom’)e’e

(2.20

Note that in the process of obtaining E¢2.19 and(2.20),
the S@2) angle got fixed as

e *=[(m— xon)e?o?+ine” %2]A 12

PHYSICAL REVIEW D60 126002

(m,n)=Kk(a,b),
(2.23
(m’,n")=k’'(—h,a).

Here @,b) and ,k') are two pairs of relatively prime in-
tegers, which can be seen either from the general tension
expression described later in E.31) or when we consider

the special case bound states. We, therefore, note that for the
general ((F, D1), (NS5, D5) configuration, i.e., when
none of the integers are zeran(n) and (Mm’,n’) are not
relatively prime in contrast with the case when we consider
either the SL(22) strings[6] or the SL(2,2) 5-braned9]. It

can be easily checked that, ,=k*A .y and Agy
=k'2A(_pay=k'?A(ap) are SL(22) invariant. Now once

we find the SL(2, Rtransformation matrix\, given either

by Eq. (2.19 or by Eg.(2.20, we can obtain the general
((F, D1), (NS5, D5) configuration by applying the 3P,

R) transformation given in Eq2.10 on the initial , D5)
configuration. As mentioned earlier, the initidt,( D5) con-
figuration as given in Eq4$2.1)—(2.6) should be modified by

the appropriateA factors or, more preciselyg should be
replaced byA{Z  ands by K(lr’f,’n,). Keeping this in mind,
the final ((F, D1), (NS5, D5) nonthreshold bound state is
given by the following metric:

d82= H71/2Hl/4[H71(_(dXO)2+(dX1)2)
+H' ()2 + (dx3)?+ (dxh) 2+ (dx®)?) +dy'dy'],

(2.29
=[(n"+ xom')e®2—im’e %A~ 12 = (2.21)
L= xom') 1. with i =1,2,3,4; the dilaton,
From the above equation we find that thefactors associ-
ated with the strings and the 5-branes are given as eb=e%oH 124", (2.25
A (. =€%(m— xon)?+ e~ %on? :
(m.n) Xo ’ the axion
_ (2.22 ’
A ny=€%(n" + xom’)2+ e Pom’2, ~
X0+(H_1)abei¢0/A(a’b)
Since the strings and 5-branes are transformed simulta- X= p , (2.2
neously by the same $2, R) matrix, it is clear from Eqgs. H
(2.19 and (2.20 that the corresponding charges must be
related as and the rest of the nonvanishing fields,
~ k'by2k0Q5
M " R-U2.¢oin_ -1 0 1_ -~ VZTOx0
H3 k2+k’2A(a’b)e (a. Xob)dH Adx°/Adx Qs €3,
kK - k'ay2koQ3
P=———R P e?oxo(a— xob) —e %ob]dH AdXNAdX + —5—— €3,
3 \/W (a,b)[ Xo(a8— xob) ] Q, 3
(2.27

!

e

H' ~2dHAd XA DA XA dXC.
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In the above the harmonic functidti=1+ Qs /r?, where

s V2KoQ5

Q5: \/k2+ k,ZZ(a‘b) (228)
204
H’ is another harmonic function where
k'2Qcs/(k?+k'2

roga KIQIIEHKD

r2

and we have introduced a new harmonic function

b%e~ %0Qg/A
N Qs (@)

H'=1 -

(2.30

r

We note that the metric in Eq2.24) retains its form after
SL(2, R) transformation except for the introduction of the
appropriateA factors, as expected. The 5-form field strength
Hs=*Hj5 in Eq.(2.27) is SL(2, R) invariant. Also, from Egs.
(2.25 and (2.26 we find that asr—», e?—e® and y

— xo, the corresponding asymptotic values as it should b
Let us now discuss how thé=( D5), (D1, NS5 as well as
the degenerate cas€dS5, D5 and (F, D1) bound states

can be obtained from this general configuration as special

cases.
From the above solution given by Ed2.24—(2.30), we
can obtain F, D5) bound state by setting=1 andb=0.
Note that the charges associated with Erstrings and the
D5-branes aré, k', respectively. As shown if2], (F, D5)
will form nonthreshold bound states only whkmndk’' are

relatively prime integers. Similarly, the other bound state

(D1, NS5 can be obtained by settirg=0 andb=1 (also
xo=0). Here the charges associated with the D-strings an
NS5-branes ard and —k’, respectively. However, since
string charges are related to the 5-brane charges as given
Eq. (2.23), we can get neither{, NS5) nor(D1, D5 bound
states. This is consistent with the fact that these configur
tions break 1/4 of the space-time supersymmetries as can
inferred from that of the bound state @0, D4) discussed in
[16,17. It should be pointed out that for boky k'’ nonzero,
the existence ofrf,n) string bound states seems to imply the
existence of fn’,n’) 5-brane bound states. This is nice since
the existence of 5-brane bound states is not easy to establi
considering the unrenormalizability of six-dimensional SYM

%gd k=1, k' =0, respectivelyalso ygo=0).

PHYSICAL REVIEW D 60 126002

TABLE I. The T Duality rules for various BPS solutions along
both longitudinal and transverse directions in type IIA or type IIB
theories.

Parallel Transverse
Dp D(p—1) D(p+1)
F w F
W F W
NS5 NS5 KK
KK KK NS5

The expression for the string-frame tension of the general
SL(2,2Z) bound statd(F, D1), (NS5, D5) can be obtained
by calculating the mass per unit 5-brane volume. We can do
so by following the steps given i2] and by generalizing the
ADM mass formula given if19]. For a complete string-
frame tension, we need to restore thg, and ygo, Which are
set to zero from the outset for our above configuration. In
particular, we need to sebgy= ¢ SO that the string-frame
metric approaches the Minkowski one asymptotically, as dis-
cussed in[2]. With all these considerations, the complete
string-frame tension for this bound state takes the form

Ts(k,k';a,b)

TS
=5 Ik xeok g7+ K7l (a= xob)*+b%g 7],

(2.3)
where TS=1/[(2m)Pa’P*172] is the p-brane tension unit
andg=e®o is the string coupling constant. This expression
also clearly indicates that both pairs of integeisk() and
(a,b), would have to be relatively prime if the SL(2)
invariant state((F, D1), (NS5, D5) has to form a non-
ereshold bound state. Now it can be easily checked that the
above formula correctly reproduces the tensionskaf D5)
zlarrlld (D1, NSH bound states foa=1, b=0 anda=0, b
=1 respectively(also yo=0). Similarly, the tensions for
(NS5, D and (F, D1)® can be obtained fok=0, k'=1

Ill. THE DESCENDANTS OF ((F, D1), (NS5, D5) BOUND
STATE

The T duality rules for various BPS solutions along both
#hngitudinal and transverse directions in type IIA or type 11B
theories can be described by Tablédr KK monopole, the

theory and our poor understanding of the solitonic 5-branegransverse direction is taken to be the nut diregtion
However, an interesting scenario for the existence of 5-brane In Table I W, F, NS5, and KK denote waves, fundamental

bound states has been suggested in [H&]. The degenerate
(NS5, D5 and (F, D1) nonthreshold bound state configura-
tions can also be obtained fro(F, D1), (NS5, D5) con-
figuration given in Egs(2.24—(2.30 by simply settingk
=0, k'=1 andk=1, k’=0, respectively. In the former
case, we get the SL(Z) multiplet of 5-brane$9] (NS5, D5
with magnetic charges<b,a) and in the latter case, we get
SL(2,2) strings[6] with electric chargesd,b) having addi-
tional isometries ink?, x3, x*, x° directions. Here &,b) are
arbitrary co-prime integers as can be shown for the string
[15] and 5-brane$§9] to form nonthreshold bound states.

strings, NS five-branes, and KK monopoles, respectively,
and they are associated with NS-NS fieldgp D—1=<p
<8)*are the so-called D-branes and they are associated with
RR fields.

SFor (F, D1) case we have to multiply the expression by
(27)%a’? of four-dimensional area perpendicular to the strings
since there are an infinite number @f,(D1) strings in the general
Bound stat¢1,2].

“We do not consider D9 or the space-time filling braf2@).
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Using Table I, we will give in this section, as a further is now independent of this coordinate. This process in turn
example, the explicit space-time configuration of reduces the dimensionality of the theoryRe=9, known as
((F, D2), (KK, D6)) bound state in type IIA theory by per- the vertical dimensional reduction. Once we have this solu-
forming T duality on the((F, D1), (NS5, D5) bound state tion, we perform theT-duality transformation on various
along one of its transverse directions and then give the list ofields to write them from IIA(IIB) basis to IIB(II1A) basis.
other possible bound states towards the end. The generghen, by the so-called double-dimensional oxidation, we can
method of performindl duality has already been described sjmply read off theD=10 (p+1)-brane solution from the
at length in[2]. Here we briefly outline the method for com- p — g 5gution. One can also apply duality along the lon-

]E)Ietenéasbs.'l' r?uality aroEg the trli:mdsvers_e ?i:jgction .is pler- gitudinal directions of thep-brane and obtain new bound
ormed by the use of the so-called vertical dimensional rég;qq by the method of diagonal reduction and vertical oxi-
duction and the diagonal or double-dimensional oxidatio

n . . . .
. X L dation, just opposite to the previous case.
method. Let us start with pbran€lin our case it is the more J iy P

. Lo ((F, D2), (KK, D6)) bound stateHere we assume that
complicated((F, D1), (NS5, D5) brang solution in type . -
[IA (1IB) theory. We then use the “no-force” condition of the (NS5, D3 in the original ((F, D1), (NS5, D5) bound

the BPS states to construct a multicenter solution from th&tate is aligned annglé X%, %%, x*, andx direction and we
single center one with an infinite periodic arraymbranes ~aPPly T duality a|0fng_ direction[assuming £, D1) to be
placed along the transverse direction. Then we take a corfligned along thex” direction]. Then following the proce-
tinuum limit to obtain thep-brane solution with one isometry dure just outlined2], we find that this bound state in type
along the would-be compactified direction where the solutiorl!A theory is given by the following Einstein metric:

d52=e¢0/8Hl/4H r5/8Hrrl/ETH71(_(dX0)2+(dX1)2)+Hrfl{(dXZ)Z_i_ L. +(dX5)2

+e”%0H" 1 (dx®+ k' b(2k0Q5/Q,)(1—cosh)de)?} +dy'dy'], (3.9

whered and¢ are the angular coordinatesy¥, y?, andy®  whereQg= K>+ K"2A{20)\2K0Q8/ Q5.
andi=1,2,3; the dilaton, As discussed in the previous section, we can obtain the
2y =1y bound statesK, D6), (D2, KK) as well as the degenerate
e =e30oliy 12 A3, (32 ases(F, D2), (KK, D6) from this general bound state as
special cases by simply settimy=1, b=0;°> a=0, b=1;
k=1, k'=0 andk=0, k' =1, respectively, in Eqs3.1)—
(3.4). Note that for the case df, D2) we have additional
V2k0Q$ isometries inx?, x3, x*, andx® directions. Again as before,
€2, we cannot get the bound statds, (KK) and (D2, D6) from
the general bound state because of the charge relation Eq.
(2.23. This is consistent with the fact that these states pre-
_ X124 _ 0 1 serve 1/4 space-time supersymmetries. Note that in order for
Fa=— WA(a,b)e o(a— xob)dH™ " AdXAdX, the above metric Eq3.1) to be free from conical singularity,
x8 should have a period of #k’b(\/2x,Q8/Q5).

and the rest of the nonvanishing fields,

FZZ(XO_ E)dH,,_l/\dXG_k,a
b 2

(3.3 A complete string-frame tension formula similar to Eq.
) kk' . \/EKOQS - (2.3) can also be written for the general bound state
Fi= A H™tdx°Adx N\ e, ((F, D2), (KK, D6)) in the form
y Te(k,k';a,b)
+ ———A_¥2be %o(HH") " *dH/A\dx°\dx*
\/W ) Tg I\2~2 12 2 2n—2
. = VI(k—xeok)’g+k’Il(a— xob)*+b%g 71, (35
Adx°. g
Here the harmonic functiond, H’, andH” are given as with TS as defined before. This expression reproduces the
tensions for the special case bound statés 6), (D2,
Qs . k'2Qg/(k?>+k'?) KK), (F, D2), (KK, D6) by settinga=1, b=0; a=0, b

H=1+T, H'=1

b2e~%0Qq /A
and H"=1+ M

(3.4) SIt can be easily checked from E@.26) that whenb=0, the first
' term of F, in Eq. (3.3) will not contribute.
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=1 (also x¢=0); k=1, k=0 andk=0, k'=1 (also ygg TABLE Il. Possible bound states obtained Byduality.

=0). As in the previous case, in order to get the correct :

tension expression forF, D2), we need to multiply the Bound states No. common dir.
H 12

above expression by the arearf#a’?. ((F, D(p+1)), (NS5, D(5-p))) 1

At the level of supergravity solution as discussed 21
we may expect that we can make a furtflerduality on
((F, D2), (KK, D6)) along one of the transverse directions
of the D6 brane$.It is obvious from the metric Eq3.1) that
we have an isometry/d¢. But T duality along this direction

would result in a complicated metric which depends on the ) _
angle 6.” We do not have a clear interpretation for the re- +4))l, with 1<p<2 (for p=1 we have NS5 state and for

sulting configuration. We therefore do not consider this D%Z vvle have KK statk; along Iongitudinal directions of the
duality here. Apart from this possibi& duality, it is not ~°fginal (NS5, D3-branes to obtain new bound states. But

obvious to us if we can have any other simfleluality as ~ SINCe Strings are along'" directions, we will get different

described above along a transverse direction. bound states depending on whetherTvéualize 1" direc-
Now we give the list of all possible descendants oftion first or not.T—duaI|2|ng along “1” we obtain, for ex-

((F1,D1), (NS5,D5) and ((F, D2), (KK, D6)) by ap- ample, the following bound state:

plying T dualities along various longitudinal directions of

each of these two bound states. We will follow the notation ~ ((F, D1),(NS5, D5)(T;:~)((W, DO0),(NS5, D4).

of Ref.[8]. For example, (T:~) will denoteT duality along (3.6

ith direction. We assume that the bound state

((F, D1), (NS5, D5) is alongx!, x2, x3, x4, andx® direc- We can also applyl duality along longitudinal directions

tions, and F, D1) strings are along® direction. Then ac- other than “1” first and then appl¥ duality along “1.” For

cording to the table given in the beginning of this section, weexample, if weT-dualize along “5” first and then along “1”

can T-dualize each of the aboJdF, Dp), (NS5/KK, D(p  we obtain,

((F, D(p+2)), (KK, D(6 —p))) 2
((W, Dp), (NS5, D(4-p))) 0
(W, D(p+1)), (KK, D(5-p))) 1

((F, D1),(NS5, D5)(T5:—)((F, D2),(NS5, D4)(T,:—)((W, D1),(NS5, D3), 3.7

where the D2 and D4 if(F, D2), (NS5, D4) share only b=1. The degenerat&Z, V) and (X, Y) configurations can
one common direction, while the D1 and D3 (W, D1), be obtained by setting=0, k'=1 andk=1, k' =0, respec-
(NS5, D3) share no common directions. Repeating thetively. These degenerate bound states have also been dis-
above process witli(F, D2), (NS5, D4) along “4" first cussed, for example, if8,5]. But we cannot get the bound
then along “1,” we end up with((F, D3), (NS5, D3) and  states(X, Z) and(Y, V) because of the charge relatidisee
((w, D1), (NS5, D3). Continuing this, we have in general Eq.(2.23].
((W,Dp), (NS5, D(4-p)) and ((F, D(p+1)), Now some of the states above belong to type IIB theory
(NS5, D(5-p))) for O<p<4. Applying the similar pro- and so, we can appl8 duality to those states to obtain new
cess to((F, D2), (KK, D6)), we have in general(W, D(p bound states. For example, froffF, D3), (NS5, D3) we
+1)), (KK, D(5-p))) and ((F, D(2+p)), (KK, D(6 can have(((F, D1), D3), ((NS5, D5, D3)) as a new bound
—p))) for O=p=4. state. Similarly from other states we can also generate new
This exhausts all the possibilities. In summary, Table Ilbound states by duality of type IIB theory. We can again
lists all of the possible bound states which can be obtainedpply T duality on these newly constructed bound states to
by T duality along one transverse and various longitudinalobtain more bound states, th&duality again to those be-
directions on((F, D1), (NS5, D5). longing to type 1IB theory. By continuing this process we
The second column indicates the number of common dican obtain all possible nonthreshold bound stateS agd T
rections shared by the respective D-branes in the boundualities simply from the originalK, D1) strings. This pro-
states. Also in the abovesOp<4. If we write the above cess obviously will end after a finite number of steps and
bound states in the forni(X, Y), (Z, V)), then from the thus we have finitely many bound states in both type IIA and
properties of((F, D1), (NS5, D5) discussed, we can get type IIB theorie€ Although at this stage we are unable to
(X, V) by settinga=1, b=0, and(Y, Z) by settinga=0, count the exact number of bound states, since there are fi-
nitely many we believe that they may be related to the num-

51f we T-dualize along the nut direction, we are back to
((F, D1), (NS5, D5). 8Even if we count possible bound states by applyihdualities
"We would like to thank Chris Pope for pointing this out to us. along the transverse directions of D6({F, D2), (KK, D6)).
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ber of generators of the largest finite U-duality group of typeexpression for the gener&lF, D1), (NS5, D5) nonthresh-

Il theory, i.e., Byg. We speculate as ifi8] that these old bound state, which reduces to the correct expressions for
bound states would form multiplets ofE g) U-duality sym-  the tensions of the individual special case bound states by the
metry in the yet unknown M or U theory. We will come back proper choice of the integers k’;a,b).

to provide more evidence for this in the near future. The descendants of this bound state could be obtained by
applying T dualities along various transverse and longitudi-
IV. CONCLUSION nal directions as well a$ duality of type IIB theory. We

: . have given explicit space-time configuration @F, D2),

To summarize, by making use of SL(2, symmetry of (KK, D6)) in type IIA theory by applyindl duality in one of
type IIB string theory in this paper, we have constructed 8he transverse directions @F, D1), (NS5, D5). How the
more general bound state o_f the t_y(){E, D1), (NS5, DS) various bound states can be obtained as special cases is also
from the known £, D5) configuration. There are an infinite jjicated. As in the previous case, we have given a similar
number of (n,n) strings forming bound state withr(’,n")  tgngjon expression for this bound state. Then we have given

5-branes. if,n) and (m’,n’) are, respectively, the integers o jist of all possible bound states which can be obtained
corresponding to the charges associated with the NS-NS anfhm ((F, D1), (NS5, D§) and ((F, D2), (KK, D6)) by T

RR gauge fields of the strings and 5-branes. We have show »jiies. As we have mentioned, this is not the end of the
that a consistent quantiza’gion of charges of the strings an ory. We can form new bound s';ates by applySiduality
5-b’rar)es rlelates these mteglers as,n) =k(a,b) aqd to theseT-dual bound states belonging to type IIB theofFy.
(m’,n")=k’(—b,a), where k') and (a,b) are two pairs  4,5jity can again be applied to these new sets of bound states
of relatively prime integers. Thus the bound stq(, Dl?’ to generate another new set. THaduality on those in type
(NS5, D) is characterized by two pairs of integedsK') 11 theory will produce even more bound states. Thus, by
and (@,b). This seems to indicate that the existence of string;ontinuing this process, we can generate all possible bound
bound states |mplles the existence _of 5—l:_)rane bound statesiates, which will be finitely many, in both type 1A and type
From the explicit space-time configuration &F, D1), ||g theories. All these states preserve one-half of the space-
(NS5, D3), we have shown how various bound states appeajime supersymmetries. We conjecture that these bound states
as special cases. Thus we obtaify 05) and(D1, NS5 as  \ould form multiplets of the largest finite U-duality group
well as the degenerate casés (D1) and(NS5, D§ bound Eg(+8) Of yet unknown M or U theory.

states from here, but because of the charge relation between

strings and 5-branes we cannot get (NS5) and(D1, D5) ACKNOWLEDGMENTS

bound states. This result is consistent with the fact that

(F, NS5) and(D1, D5 preserve 1/4 rather than half of the ~ We would like to thank Chris Pope for discussions. J.X.L.
space-time supersymmetries. We have also given the tensi@tknowledges the support of NSF Grant PHY-9722090.
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