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„F , D5… bound state, SL„2, Z… invariance and the descendant states
in type IIB and type IIA string theory
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Recently the space-time configurations of a set of nonthreshold bound states, called the (F, Dp) bound
states, have been constructed explicitly for everyp with 2<p<7 in both type IIA ~for p even! and type IIB
~for p odd! string theories by the present authors. By making use of the SL(2,Z) symmetry of type IIB theory
we construct a more general SL(2,Z) invariant bound state of the type„(F, D1), ~NS5, D5!… in this theory
from the (F, D5) bound state. There are actually an infinite number of (m,n) strings forming bound states
with (m8,n8) 5-branes, where strings lie along one of the spatial directions of the 5-branes. By applyingT
duality along one of the transverse directions we also construct the bound state„(F, D2), (KK, D6)… in type
IIA string theory. Then we give a list of possible bound states which can be obtained from these newly
constructed bound states by applyingT dualities along the longitudinal directions as well asSdualities to those
in type IIB theory.@S0556-2821~99!01522-2#
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I. INTRODUCTION

This is a sequel to our series on the study of a new kind
bound state that exists in both type IIA and type IIB stri
theories. In@1#, we provided arguments from the worldvo
ume point of view that there exist Bogomol’nyi-Prasa
Sommerfield~BPS! bound states of Dp-branes carrying cer
tain units of quantized constant electric fields, called
(F, Dp) bound states, for everyp with 1<p<8 in type IIA
~for p even! and type IIB ~for p odd! string theory. The
space-time configurations of these bound states have
constructed explicitly for 2<p<7 in Ref.@2#.1 Each of these
bound states preserves one-half of the space-time super
metries. In the worldvolume picture theF in (F, Dp) repre-
sents the uniform and constant electric field lines flow
along, say, thex1 axis of the Dp-brane due to the uniform
and homogeneous charge distribution on the rest of thep
21) plane placed atx152`, originating from an infinite
number of open strings ending on this surface. On the o
hand, the space-time configuration allows us to identify th
field lines with the infinitely long fundamental strings o
F-strings in the bulk. To make this identification more co
crete, we have calculated the charges carried byF-strings
and Dp-branes, as well as the mass per unitp-brane volume,
and have shown that they match precisely with what we
pect from the worldvolume study. We have noted in@1#, that
since type IIB theory is conjectured to possess an SL(2Z)

*Email address: jxlu@rainbow.physics.tamu.edu
†Email address: roy@tnp.saha.ernet.in
1The configurations forp53,4,6 were also given previously i

@3–5#, respectively. Similar nonthreshold bound states in M the
or type IIA or IIB theory for ap8-brane within anotherp-brane with
p8,p were studied in@3–7#.
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invariance, there must exist more general bound states
(F, Dp) in this theory. By making use of this observatio
we have constructed the more general nonthreshold bo
state of the type„(F, D1), D3… and some of itsT-dual de-
scendants in Ref.@8#.

In this paper, we make an SL(2,Z) transformation on the
nonthreshold bound state (F, D5) in type IIB theory to con-
struct „(F, D1), (NS5, D5)… bound state. The space-tim
configuration consisting of the metric, the dilaton, the axi
and the other nonvanishing gauge fields for this bound s
are constructed explicitly. The initial (F, D5) configuration
consists of an infinite number of Neveu-Schwarz~NS!
strings ~each NS string is actuallyq F-strings! distributed
uniformly overs D5-branes and lying along one of the sp
tial directions of D5-brane, whereq and s are relatively
prime integers as discussed in@2#. We here consider a genu
ine initial (F, D5) bound state, i.e., bothq and s are non-
zero. In general, we expect that in the bound st
„(F, D1), (NS5, D5)…, there are an infinite number o
(m,n) strings lying along one of the spatial directions
(m8,n8) 5-branes. Although for the degenerate case wh
either the strings or the 5-branes~but not both! are present
the integers (m,n) and (m8,n8) are individually relatively
prime, for the general nondegenerate case this is not ne
sarily so. For the general„(F, D1), (NS5, D5)… bound
state, i.e., when the integersm,n andm8,n8 are nonzero, we
find that a consistent quantization of the charges associ
with the NS-NS and Ramond-Ramond~RR! gauge fields of
both the strings and the 5-branes relates the charges o
strings with those of the 5-branes. As a result, the integ
(m,n) corresponding to the electric charges of the strin
and the integers (m8,n8) corresponding to the magneti
charges of the 5-branes get related as (m,n)5k(a,b),
(m8,n8)5k8(2b,a), where (a,b) and (k,k8) are relatively
prime integers. This fact in turn tells us that when bothk, k8

y
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are nonzero, the existence of bound states betweenm funda-
mental strings andn D-strings may imply the existence o
bound states betweenm8 NS5-branes andn8 D5-branes,
where the integers (m,n) and (m8,n8) are related to each
other as given before. Thus we find that in general
SL(2,Z) invariant bound state„(F, D1), (NS5, D5)… of type
IIB theory is characterized by two pairs of relatively prim
integers (a,b) and (k,k8). We can obtain the other boun
states, namely, (F, D5) and ~D1, NS5! from this general
solution by settinga51, b50 and a50, b51, respec-
tively. Also note that the degenerate~NS5, D5! and (F, D1)
cases can be obtained from the gene
„(F, D1), (NS5, D5)… bound state by setting~i! k50, k8
51 and ~ii ! k850, k51. For the former case we get th
SL(2,Z) 5-branes discussed in@9#, whereas for the latte
case we get SL(2,Z) strings obtained in@6# with four addi-
tional isometries. But because the charges of the strings
the 5-branes are related as mentioned above, we cannot
bound states of the form (F, NS5) and~D1, D5! consistent
with the fact that these bound states preserve 1/4 rather
1/2 of the space-time supersymmetries. We have also
tained the expression for the tension of SL(2,Z) invariant
nonthreshold bound state„(F, D1), (NS5, D5)… and have
shown how it reduces to the tensions for the correspond
special case bound states.

The descendants of this bound state could be obtaine
applyingT duality along various transverse and longitudin
directions. We give an explicit construction of the bou
states„(F, D2), (KK, D6)… in type IIA theory by applying
T duality in one of the transverse directions. We also disc
how the bound states (F, D6) and~D2, KK! as well as the
degenerate cases (F, D2) and ~KK, D6! can be obtained
from this general bound state as special cases. The ten
expression for the bound state„(F, D2), (KK, D6)… is also
given. We point out the problem of taking furtherT dualities
along the transverse directions. Finally, we give a list
possible other descendant bound states which can be
tained from these byT dualities in various longitudinal di-
rections as well asS dualities to those in type IIB theory.

This paper is organized as follows. In Sec. II, we use
SL(2,Z) invariance of type IIB theory to construct the no
threshold„(F, D1), (NS5, D5)… bound state starting from
the (F, D5) one. We show that (F, D5), ~D1, NS5!,
(F, D1), and~NS5, D5! bound states can be obtained fro
this bound state as special cases. In Sec. III, we appT
duality on „(F, D1), (NS5, D5)… bound state along one o
the transverse directions to construct„(F, D2), (KK, D6)…
bound state and discuss the special cases as in Sec. II.
we have shown how to implementS andT dualities in gen-
eral, we here list all the possible bound states that can
obtained from the above-mentioned bound states by the
plication ofT dualities in various longitudinal directions an
S dualities to those belonging to type IIB theory. We co
clude this paper in Sec. IV.

II. SL „2, Z… INVARIANCE AND NONTHRESHOLD
„„F , D1…, „NS5, D5…… BOUND STATE

In this section, we will use the SL(2,Z) symmetry of type
IIB theory to construct the nonthreshold bound st
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„(F, D1), (NS5, D5)… from the explicit solution (F, D5)
given in @2#. We will follow the procedure outlined in
@6,10,11#. Let us begin with (F, D5) solution@2# given by
the metric,

ds25H81/2H1/4@H21
„2~dx0!21~dx1!2

…

1H821
„~dx2!21~dx3!21~dx4!21~dx5!2

…

1dyidyi #, ~2.1!

with i 51,2,3,4; the dilaton,

ef5H21/2, ~2.2!

and the remaining nonvanishing fields,

H3
(1)52qD (q,s)

21/2dH21`dx0`dx1,

H3
(2)5s

A2k0Q0
5

V3
e3 , ~2.3!

H55qsD (q,s)
21 H822dH`dx2`dx3`dx4`dx5.

Note that in writing this solution we have set the scala
fB05xB050, as they have nothing to do with the dilato
and the axion in the theory@2#. Also in the aboveH3

(1) and
H3

(2) are the NS-NS and RR 3-form field strengths.H5 is the
self-dual 5-form field-strength withH55* H5, where * de-
notes the Hodge dual.H is a harmonic function given by

H511
Q5

r 2
, ~2.4!

where r 25yiyi and Q55D (q,s)
1/2 A2k0Q0

5/(2V3), H8 is an-
other harmonic function defined as

H85
q21s2H

D (q,s)
511

s2Q5/D (q,s)

r 2
, ~2.5!

with D (q,s)5q21s2. Hereq and s are two relatively prime
integers denoting, respectively, the quantized NS str
charge or the number ofF-strings per (2p)4a82 of four-
dimensional area perpendicular to the strings in (F, D5) and
the D5-brane charge as discussed in@2#. en denotes the vol-
ume form on ann-sphere whereasVn is the volume of a unit
n-sphere and is given as

Vn5
~2p!(n11)/2

GS n11

2 D . ~2.6!

Also, A2k05(2p)7/2a82 and the unit charge for a Dp-brane
is Q0

p[(2p)(722p)/2a8(32p)/2.
The electric charge of theF-strings in (F, D5) bound

state can be calculated as
2-2
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e(1)5
1

A2k0
E

R43S3
~e2f* H3

(1)1H3
(2)`B4!. ~2.7!

But as mentioned in@2#, this expression is in fact infinite a
there are an infinite number ofF-strings in (F, D5). How-
ever, we can still define a quantized charge from Eq.~2.7! in
the form as given below@2#

Q(1)5~2p!4a82
e(1)

A2k0A4

5qTf , ~2.8!

with Tf51/(2pa8) as the fundamental string tension. He
A45*dx2dx3dx4dx5 is the coordinate area o
x2x3x4x5-plane. The chargeQ(1) represents the number o
F-strings per (2p)4a82 area overx2x3x4x5-plane measured
in some units~note that theF-strings lie along thex1 axis!.
Also the quantized magnetic charge of the D5-brane is gi
as

P(2)5g(2)5
1

A2k0
E

S3
H3

(2)5sQ0
5 . ~2.9!

It is well known that type IIB supergravity possesses a cl
sical Cremmer-Julia@12# symmetry group SL~2, R!. A dis-
crete subgroup SL(2,Z) is now believed@13# to survive in
the full quantum type IIB string theory. Under a global SL~2,
R! symmetry the Einstein metricgmn is a singlet, the two
3-form field strengthsH3

(1) andH3
(2) transform as a doublet

and the 5-form field strength is also a singlet. So the tra
formations of the various fields along with the two scala
the dilaton (f) and the axion (x, the RR scalar! parametriz-
ing the coset SL~2, R!/SO~2! defined as

M5efS x21e22f x

x 1D
are

gmn→gmn ,M→LMLT,S H3
(1)

H3
(2)D[H→~L21!TH

H5→H5 , ~2.10!

whereL is a global SL~2, R! transformation matrix and ‘‘T’’
denotes the transpose of a matrix.

Let us next look at how the charges would transform u
der the global SL(2, R! transformation. Since a general SL~2,
Z! invariant configuration will have both (F, D1) strings
~infinite numbers of them! living on ~NS5, D5! branes, the
charge expression in Eq.~2.7! will be modified to give elec-
tric charges of bothF-string and D-string as

e( i )5
1

A2k0
E

R43S3
~M i j * H3

( j )1e i j H3
( j )`B4!, ~2.11!

wherei , j 51,2 ande i j is the SL~2, R! invariant totally anti-
symmetric tensor withe1251. As before,e( i ) is not well
defined and we can define the quantized charges as
12600
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Q( i )5
~2p!4a82e( i )

A2k0A4

. ~2.12!

The quantized magnetic charges of the NS5-brane and
brane can be obtained as

P( i )5g( i )5
1

A2k0
E

S3
H3

( i ) . ~2.13!

Note that the electric charge in Eq.~2.11! or Eq. ~2.12! is a
Noether charge and follows from the equation of motio
whereas the magnetic charge is topological and follows fr
Bianchi identity. It is clear from Eq.~2.10! that the electric
charges of (F, D1) strings and the magnetic charges
~NS5, D5! branes would transform as

S Q(1)

Q(2)D[Q→LQ;S P(1)

P(2)D[P→~L21!TP. ~2.14!

Now in order to obtain the global SL~2, R! transformation
matrix L0, we start with the zero asymptotic values of th
dilaton and the axion, i.e.,M 0

( init ial )5I , whereI is the iden-
tity matrix, and demand thatL0 will transform it into a fixed
but arbitrary value as

M05L0IL0
T , ~2.15!

where

M05ef0S x0
21e22f0 x0

x0 1
D ,

with f0 andx0 denoting the arbitrary but given asymptot
values of the scalars. Equation~2.15! will fix the SL~2, R!
matrix L0 in terms of f0, and x0 and an undetermined
SO~2! anglea as

L05ef0/2S e2f0cosa1x0sina 2e2f0sina

sina cosa D .

~2.16!

The anglea will be given shortly.
Note that once we apply SL~2, R! transformation on the

initial quantized charges~2.8! and ~2.9! of (F, D5) by Eq.
~2.14!, the charges will no longer remain quantized. In ord
to get around this problem, one needs either to introd
compensating factors in place of both the chargesq ands or
to replaceq ands by arbitrary classical charges asD̃ (m,n)

1/2 and

D̄ (m8,n8)
1/2 , respectively, whereD ’s are the arbitrary number

and will be determined in the process of charge quantiza
@14#. By imposing that the transformed charges are intege2

2When we consider either (m,n) strings@15# or (m8,n8) 5-branes
@9#, the integers (m,n) or (m8,n8) need to be relatively prime in
order for the strings or 5-branes to form nonthreshold bound sta
For the present nonthreshold bound state consisting of an infi
number of (m,n) strings and a (m8,n8) 5-brane, (m,n) and
(m8,n8) are not necessarily relatively prime, as we will see late
2-3
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namely, (m,n) for strings and (m8,n8) for the 5-branes we
have, from~2.14!,

S m

n D 5L0
1S D̃ (m,n)

1/2

0
D ~2.17!

for the strings and

S m8

n8
D 5„~L0

5!21
…

TS 0

D̄ (m8,n8)
1/2 D ~2.18!

for the 5-branes.L0
1 andL0

5 are the transformation matrice
for strings and 5-branes. Equations~2.17! and ~2.18! deter-
mine the form ofL0

1 and L0
5 in terms of the asymptotic

values of the dilatonf0 and the axionx0 as follows:

L0
15

1

D̃ (m,n)
1/2 S m 2ne2f01x0~m2x0n!ef0

n ~m2x0n!ef0
D ,

~2.19!

and

L0
55

1

D̄ (m8,n8)
1/2 S n8 m8e2f01x0~n81x0m8!ef0

2m8 ~n81x0m8!ef0
D .

~2.20!

Note that in the process of obtaining Eqs.~2.19! and ~2.20!,
the SO~2! angle got fixed as

eia5@~m2x0n!ef0/21 ine2f0/2#D̃ (m,n)
21/2

5@~n81x0m8!ef0/22 im8e2f0/2#D̄ (m8,n8)
21/2 . ~2.21!

From the above equation we find that theD factors associ-
ated with the strings and the 5-branes are given as

D̃ (m,n)5ef0~m2x0n!21e2f0n2,
~2.22!

D̄ (m8,n8)5ef0~n81x0m8!21e2f0m82.

Since the strings and 5-branes are transformed simu
neously by the same SL~2, R! matrix, it is clear from Eqs.
~2.19! and ~2.20! that the corresponding charges must
related as
12600
a-

~m,n!5k~a,b!,
~2.23!

~m8,n8!5k8~2b,a!.

Here (a,b) and (k,k8) are two pairs of relatively prime in-
tegers, which can be seen either from the general ten
expression described later in Eq.~2.31! or when we consider
the special case bound states. We, therefore, note that fo
general „(F, D1), (NS5, D5)… configuration, i.e., when
none of the integers are zero, (m,n) and (m8,n8) are not
relatively prime in contrast with the case when we consi
either the SL(2,Z) strings@6# or the SL(2,Z) 5-branes@9#. It
can be easily checked thatD̃ (m,n)5k2D̃ (a,b) and D̄ (m8,n8)

5k82D̄ (2b,a)5k82D̃ (a,b) are SL(2,Z) invariant. Now once
we find the SL(2, R! transformation matrixL0 given either
by Eq. ~2.19! or by Eq. ~2.20!, we can obtain the genera
„(F, D1), (NS5, D5)… configuration by applying the SL~2,
R! transformation given in Eq.~2.10! on the initial (F, D5)
configuration. As mentioned earlier, the initial (F, D5) con-
figuration as given in Eqs.~2.1!–~2.6! should be modified by
the appropriateD factors or, more precisely,q should be
replaced byD̃ (m,n)

1/2 ands by D̄ (m8,n8)
1/2 . Keeping this in mind,

the final „(F, D1), (NS5, D5)… nonthreshold bound state i
given by the following metric:

ds25H81/2H1/4@H21
„2~dx0!21~dx1!2

…

1H821
„~dx2!21~dx3!21~dx4!21~dx5!2

…1dyidyi #,

~2.24!

with i 51,2,3,4; the dilaton,

ef5ef0H21/2H9, ~2.25!

the axion,

x5
x01~H21!abe2f0/D̃ (a,b)

H9
, ~2.26!

and the rest of the nonvanishing fields,
H3
(1)52

k

Ak21k82
D̃ (a,b)

21/2ef0~a2x0b!dH21`dx0`dx12
k8bA2k0Q0

5

V3
e3 ,

H3
(2)5

k

Ak21k82
D̃ (a,b)

21/2@ef0x0~a2x0b!2e2f0b#dH21`dx0`dx11
k8aA2k0Q0

5

V3
e3 ,

~2.27!

H55
kk8

k21k82
H822dH`dx2`dx3`dx4`dx5.
2-4
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In the above the harmonic functionH511Q5 /r 2, where

Q55Ak21k82D̃ (a,b)
1/2

A2k0Q0
5

2V3
. ~2.28!

H8 is another harmonic function where

H8511
k82Q5 /~k21k82!

r 2
, ~2.29!

and we have introduced a new harmonic function

H9511
b2e2f0Q5 /D̃ (a,b)

r 2
. ~2.30!

We note that the metric in Eq.~2.24! retains its form after
SL~2, R! transformation except for the introduction of th
appropriateD factors, as expected. The 5-form field streng
H55* H5 in Eq. ~2.27! is SL~2, R! invariant. Also, from Eqs.
~2.25! and ~2.26! we find that asr→`, ef→ef0 and x
→x0, the corresponding asymptotic values as it should
Let us now discuss how the (F, D5), ~D1, NS5! as well as
the degenerate cases~NS5, D5! and (F, D1) bound states
can be obtained from this general configuration as spe
cases.

From the above solution given by Eqs.~2.24!–~2.30!, we
can obtain (F, D5) bound state by settinga51 andb50.
Note that the charges associated with theF-strings and the
D5-branes arek, k8, respectively. As shown in@2#, (F, D5)
will form nonthreshold bound states only whenk andk8 are
relatively prime integers. Similarly, the other bound sta
~D1, NS5! can be obtained by settinga50 andb51 ~also
x050). Here the charges associated with the D-strings
NS5-branes arek and 2k8, respectively. However, sinc
string charges are related to the 5-brane charges as giv
Eq. ~2.23!, we can get neither (F, NS5) nor~D1, D5! bound
states. This is consistent with the fact that these config
tions break 1/4 of the space-time supersymmetries as ca
inferred from that of the bound state of~D0, D4! discussed in
@16,17#. It should be pointed out that for bothk, k8 nonzero,
the existence of (m,n) string bound states seems to imply t
existence of (m8,n8) 5-brane bound states. This is nice sin
the existence of 5-brane bound states is not easy to esta
considering the unrenormalizability of six-dimensional SY
theory and our poor understanding of the solitonic 5-bran
However, an interesting scenario for the existence of 5-br
bound states has been suggested in Ref.@18#. The degenerate
~NS5, D5! and (F, D1) nonthreshold bound state configur
tions can also be obtained from„(F, D1), (NS5, D5)… con-
figuration given in Eqs.~2.24!–~2.30! by simply settingk
50, k851 and k51, k850, respectively. In the forme
case, we get the SL(2,Z) multiplet of 5-branes@9# ~NS5, D5!
with magnetic charges (2b,a) and in the latter case, we ge
SL(2,Z) strings@6# with electric charges (a,b) having addi-
tional isometries inx2, x3, x4, x5 directions. Here (a,b) are
arbitrary co-prime integers as can be shown for the stri
@15# and 5-branes@9# to form nonthreshold bound states.
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The expression for the string-frame tension of the gene
SL(2,Z) bound state„(F, D1), (NS5, D5)… can be obtained
by calculating the mass per unit 5-brane volume. We can
so by following the steps given in@2# and by generalizing the
ADM mass formula given in@19#. For a complete string-
frame tension, we need to restore thefB0 andxB0, which are
set to zero from the outset for our above configuration.
particular, we need to setfB05f0 so that the string-frame
metric approaches the Minkowski one asymptotically, as d
cussed in@2#. With all these considerations, the comple
string-frame tension for this bound state takes the form

T5~k,k8;a,b!

5
T0

5

g
A@~k2xB0k8!2g21k82#@~a2x0b!21b2g22#,

~2.31!

where T0
p51/@(2p)pa8(p11)/2# is the p-brane tension unit

and g5ef0 is the string coupling constant. This expressi
also clearly indicates that both pairs of integers, (k,k8) and
(a,b), would have to be relatively prime if the SL(2,Z)
invariant state„(F, D1), (NS5, D5)… has to form a non-
threshold bound state. Now it can be easily checked that
above formula correctly reproduces the tensions of (F, D5)
and ~D1, NS5! bound states fora51, b50 and a50, b
51 respectively~also x050). Similarly, the tensions for
~NS5, D5! and (F, D1)3 can be obtained fork50, k851
andk51, k850, respectively~alsoxB050).

III. THE DESCENDANTS OF „„F , D1…, „NS5, D5…… BOUND
STATE

The T duality rules for various BPS solutions along bo
longitudinal and transverse directions in type IIA or type I
theories can be described by Table I~for KK monopole, the
transverse direction is taken to be the nut direction!.

In Table I W, F, NS5, and KK denote waves, fundamen
strings, NS five-branes, and KK monopoles, respective
and they are associated with NS-NS fields. Dp (21<p
<8)4 are the so-called D-branes and they are associated
RR fields.

3For (F, D1) case we have to multiply the expression
(2p)4a82 of four-dimensional area perpendicular to the strin
since there are an infinite number of (F, D1) strings in the genera
bound state@1,2#.

4We do not consider D9 or the space-time filling branes@20#.

TABLE I. The T Duality rules for various BPS solutions alon
both longitudinal and transverse directions in type IIA or type I
theories.

Parallel Transverse

Dp D(p21) D(p11)
F W F
W F W
NS5 NS5 KK
KK KK NS5
2-5
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Using Table I, we will give in this section, as a furth
example, the explicit space-time configuration
„(F, D2), (KK, D6)… bound state in type IIA theory by per
forming T duality on the„(F, D1), (NS5, D5)… bound state
along one of its transverse directions and then give the lis
other possible bound states towards the end. The gen
method of performingT duality has already been describe
at length in@2#. Here we briefly outline the method for com
pleteness.T duality along the transverse direction is pe
formed by the use of the so-called vertical dimensional
duction and the diagonal or double-dimensional oxidat
method. Let us start with ap-brane@in our case it is the more
complicated„(F, D1), (NS5, D5)… brane# solution in type
IIA ~IIB ! theory. We then use the ‘‘no-force’’ condition o
the BPS states to construct a multicenter solution from
single center one with an infinite periodic array ofp-branes
placed along the transverse direction. Then we take a c
tinuum limit to obtain thep-brane solution with one isometr
along the would-be compactified direction where the solut
12600
f

of
ral

-
n

e

n-

n

is now independent of this coordinate. This process in t
reduces the dimensionality of the theory toD59, known as
the vertical dimensional reduction. Once we have this so
tion, we perform theT-duality transformation on various
fields to write them from IIA~IIB ! basis to IIB~IIA ! basis.
Then, by the so-called double-dimensional oxidation, we
simply read off theD510 (p11)-brane solution from the
D59 solution. One can also applyT duality along the lon-
gitudinal directions of thep-brane and obtain new boun
states by the method of diagonal reduction and vertical o
dation, just opposite to the previous case.

„(F, D2), (KK, D6)… bound state. Here we assume tha
the ~NS5, D5! in the original„(F, D1), (NS5, D5)… bound
state is aligned alongx1, x2, x3, x4, andx5 direction and we
apply T duality alongx6 direction @assuming (F, D1) to be
aligned along thex1 direction#. Then following the proce-
dure just outlined@2#, we find that this bound state in typ
IIA theory is given by the following Einstein metric:
ds25ef0/8H1/4H85/8H91/8@H21
„2~dx0!21~dx1!2

…1H821$~dx2!21•••1~dx5!2

1e2f0H921
„dx61k8b~A2k0Q0

6/V2!~12cosu!dw…2%1dyidyi #, ~3.1!
the
e
s

,

Eq.
re-

r for
,

q.
te

the
whereu andw are the angular coordinates ofy1, y2, andy3

and i 51,2,3; the dilaton,

ef5e3f0/4H21/2H821/4H93/4, ~3.2!

and the rest of the nonvanishing fields,

F25S x02
a

bDdH921`dx62k8a
A2k0Q0

6

V2
e2 ,

F352
k

Ak21k82
D̃ (a,b)

21/2ef0~a2x0b!dH21`dx0`dx1,

~3.3!

F485
kk8

Ak21k82
D̃ (a,b)

1/2
A2k0Q0

6

V2
H21dx0`dx1`e2

1
k

Ak21k82
D̃ (a,b)

21/2be2f0~HH9!21dH`dx0`dx1

`dx6.

Here the harmonic functionsH, H8, andH9 are given as

H511
Q6

r
, H8511

k82Q6 /~k21k82!

r
,

and H9511
b2e2f0Q6 /D̃ (a,b)

r
, ~3.4!
whereQ65Ak21k82D̃ (a,b)
1/2 A2k0Q0

6/V2.
As discussed in the previous section, we can obtain

bound states (F, D6), ~D2, KK! as well as the degenerat
cases~F, D2!, ~KK, D6! from this general bound state a
special cases by simply settinga51, b50;5 a50, b51;
k51, k850 andk50, k851, respectively, in Eqs.~3.1!–
~3.4!. Note that for the case of~F, D2! we have additional
isometries inx2, x3, x4, andx5 directions. Again as before
we cannot get the bound states (F, KK) and ~D2, D6! from
the general bound state because of the charge relation
~2.23!. This is consistent with the fact that these states p
serve 1/4 space-time supersymmetries. Note that in orde
the above metric Eq.~3.1! to be free from conical singularity
x6 should have a period of 4pk8b(A2k0Q0

6/V2).
A complete string-frame tension formula similar to E

~2.31! can also be written for the general bound sta
„(F, D2), (KK, D6)… in the form

T6~k,k8;a,b!

5
T0

6

g
A@~k2xB0k8!2g21k82#@~a2x0b!21b2g22#, ~3.5!

with T0
6 as defined before. This expression reproduces

tensions for the special case bound states (F, D6), ~D2,
KK !, (F, D2), ~KK, D6! by settinga51, b50; a50, b

5It can be easily checked from Eq.~2.26! that whenb50, the first
term of F2 in Eq. ~3.3! will not contribute.
2-6
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51 ~also x050); k51, k850 andk50, k851 ~also xB0
50). As in the previous case, in order to get the corr
tension expression for (F, D2), we need to multiply the
above expression by the area (2p)4a82.

At the level of supergravity solution as discussed in@2#,
we may expect that we can make a furtherT duality on
„(F, D2), (KK, D6)… along one of the transverse directio
of the D6 branes.6 It is obvious from the metric Eq.~3.1! that
we have an isometry]/]w. But T duality along this direction
would result in a complicated metric which depends on
angleu.7 We do not have a clear interpretation for the r
sulting configuration. We therefore do not consider thisT
duality here. Apart from this possibleT duality, it is not
obvious to us if we can have any other simpleT duality as
described above along a transverse direction.

Now we give the list of all possible descendants
„(F1, D1), (NS5, D5)… and „(F, D2), (KK, D6)… by ap-
plying T dualities along various longitudinal directions
each of these two bound states. We will follow the notat
of Ref. @8#. For example, (Ti :°) will denoteT duality along
i th direction. We assume that the bound st
„(F, D1), (NS5, D5)… is alongx1, x2, x3, x4, andx5 direc-
tions, and (F, D1) strings are alongx1 direction. Then ac-
cording to the table given in the beginning of this section,
can T-dualize each of the above@(F, Dp), „NS5/KK, D(p
h

l

I
ne
na

d
un

t

to

.

12600
t

e
-

f

n

e

e

14)…], with 1<p<2 ~for p51 we have NS5 state and fo
p52 we have KK state!, along longitudinal directions of the
original ~NS5, D5!-branes to obtain new bound states. B
since strings are alongx1 directions, we will get different
bound states depending on whether weT-dualize ‘‘1’’ direc-
tion first or not.T-dualizing along ‘‘1’’ we obtain, for ex-
ample, the following bound state:

„~F, D1!,~NS5, D5!…~T1:° !„~W, D0!,~NS5, D4!….
~3.6!

We can also applyT duality along longitudinal directions
other than ‘‘1’’ first and then applyT duality along ‘‘1.’’ For
example, if weT-dualize along ‘‘5’’ first and then along ‘‘1’’
we obtain,

TABLE II. Possible bound states obtained byT duality.

Bound states No. common dir.

„(F, D(p11)), ~NS5, D(52p))… 1
„(F, D(p12)), ~KK, D(62p))… 2
„(W, Dp), ~NS5, D(42p))… 0
„~W, D(p11)), ~KK, D(52p))… 1
„~F, D1!,~NS5, D5!…~T5:° !„~F, D2!,~NS5, D4!…~T1:° !„~W, D1!,~NS5, D3!…, ~3.7!
dis-
d

ory
w

new

to
-
e

nd
nd
to
e fi-
m-
where the D2 and D4 in„(F, D2), (NS5, D4)… share only
one common direction, while the D1 and D3 in„~W, D1!,
~NS5, D3!… share no common directions. Repeating t
above process with„(F, D2), ~NS5, D4!… along ‘‘4’’ first
then along ‘‘1,’’ we end up with„(F, D3), ~NS5, D3!… and
„~W, D1!, ~NS5, D3!…. Continuing this, we have in genera
„(W,Dp), ~NS5, D(42p)… and „(F, D(p11)),
(NS5, D(52p))… for 0<p<4. Applying the similar pro-
cess to„(F, D2), ~KK, D6!…, we have in general„(W, D(p
11)), ~KK, D(52p))… and „(F, D(21p)), (KK, D(6
2p))… for 0<p<4.

This exhausts all the possibilities. In summary, Table
lists all of the possible bound states which can be obtai
by T duality along one transverse and various longitudi
directions on„(F, D1), ~NS5, D5!….

The second column indicates the number of common
rections shared by the respective D-branes in the bo
states. Also in the above 0<p<4. If we write the above
bound states in the form„~X, Y!, ~Z, V!…, then from the
properties of„(F, D1), ~NS5, D5!… discussed, we can ge
~X, V! by settinga51, b50, and~Y, Z! by settinga50,

6If we T-dualize along the nut direction, we are back
„(F, D1), (NS5 , D5)….

7We would like to thank Chris Pope for pointing this out to us
e

I
d
l

i-
d

b51. The degenerate~Z, V! and ~X, Y! configurations can
be obtained by settingk50, k851 andk51, k850, respec-
tively. These degenerate bound states have also been
cussed, for example, in@3,5#. But we cannot get the boun
states~X, Z! and~Y, V! because of the charge relations@see
Eq. ~2.23!#.

Now some of the states above belong to type IIB the
and so, we can applyS duality to those states to obtain ne
bound states. For example, from„(F, D3), ~NS5, D3!… we
can have„((F, D1), D3!, ~~NS5, D5!, D3!… as a new bound
state. Similarly from other states we can also generate
bound states byS duality of type IIB theory. We can again
apply T duality on these newly constructed bound states
obtain more bound states, thenS duality again to those be
longing to type IIB theory. By continuing this process w
can obtain all possible nonthreshold bound states bySandT
dualities simply from the original (F, D1) strings. This pro-
cess obviously will end after a finite number of steps a
thus we have finitely many bound states in both type IIA a
type IIB theories.8 Although at this stage we are unable
count the exact number of bound states, since there ar
nitely many we believe that they may be related to the nu

8Even if we count possible bound states by applyingT dualities
along the transverse directions of D6 in„(F, D2), ~KK, D6!….
2-7
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ber of generators of the largest finite U-duality group of ty
II theory, i.e., E8(18) . We speculate as in@8# that these
bound states would form multiplets of E8(18) U-duality sym-
metry in the yet unknown M or U theory. We will come bac
to provide more evidence for this in the near future.

IV. CONCLUSION

To summarize, by making use of SL(2,Z) symmetry of
type IIB string theory in this paper, we have constructed
more general bound state of the type„(F, D1), ~NS5, D5!…
from the known (F, D5) configuration. There are an infinit
number of (m,n) strings forming bound state with (m8,n8)
5-branes. (m,n) and (m8,n8) are, respectively, the integer
corresponding to the charges associated with the NS-NS
RR gauge fields of the strings and 5-branes. We have sh
that a consistent quantization of charges of the strings
5-branes relates these integers as (m,n)5k(a,b) and
(m8,n8)5k8(2b,a), where (k,k8) and (a,b) are two pairs
of relatively prime integers. Thus the bound state„(F, D1),
~NS5, D5!… is characterized by two pairs of integers (k,k8)
and (a,b). This seems to indicate that the existence of str
bound states implies the existence of 5-brane bound st
From the explicit space-time configuration of„(F, D1),
~NS5, D5!…, we have shown how various bound states app
as special cases. Thus we obtain (F, D5) and~D1, NS5! as
well as the degenerate cases (F, D1) and~NS5, D5! bound
states from here, but because of the charge relation betw
strings and 5-branes we cannot get (F, NS5) and~D1, D5!
bound states. This result is consistent with the fact t
(F, NS5) and~D1, D5! preserve 1/4 rather than half of th
space-time supersymmetries. We have also given the ten
K

,

s
,

12600
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expression for the general„(F, D1), ~NS5, D5!… nonthresh-
old bound state, which reduces to the correct expressions
the tensions of the individual special case bound states by
proper choice of the integers (k,k8;a,b).

The descendants of this bound state could be obtaine
applyingT dualities along various transverse and longitu
nal directions as well asS duality of type IIB theory. We
have given explicit space-time configuration of„(F, D2),
~KK, D6!… in type IIA theory by applyingT duality in one of
the transverse directions on„(F, D1), ~NS5, D5!…. How the
various bound states can be obtained as special cases is
indicated. As in the previous case, we have given a sim
tension expression for this bound state. Then we have g
the list of all possible bound states which can be obtain
from „(F, D1), ~NS5, D5!… and „(F, D2), ~KK, D6!… by T
dualities. As we have mentioned, this is not the end of
story. We can form new bound states by applyingS duality
to theseT-dual bound states belonging to type IIB theory.T
duality can again be applied to these new sets of bound s
to generate another new set. ThenS duality on those in type
IIB theory will produce even more bound states. Thus,
continuing this process, we can generate all possible bo
states, which will be finitely many, in both type IIA and typ
IIB theories. All these states preserve one-half of the spa
time supersymmetries. We conjecture that these bound s
would form multiplets of the largest finite U-duality grou
E8(18) of yet unknown M or U theory.
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