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We investigate two-loop quantum corrections to non-minimally coupled Maxwell-Chern-Simons theory.
The non-minimal gauge interaction represents the magnetic moment interaction between the charged scalar and
the electromagnetic field. We show that one-loop renormalizability of the theory found in previous work does
not survive to the two-loop level. However, with an appropriate choice of the non-minimal coupling constant,
it is possible to renormalize the two-loop effective potential and hence render it potentially useful for a detailed
analysis of spontaneous symmetry breaking induced by radiative corred&i56-282199)05024-9

PACS numbgs): 11.30.Qc, 11.10.Kk, 11.15.Ex

I. INTRODUCTION [3,8]. To find such a solution exactly, the model must be

self-dual. A self-dual theory is one in which the classical

Maxwell-Chern-Simons electrodynamics has been studie@guations of motion can be reduced from second- to first-
extensively in recent years for a variety of reasons. Thérder differential equations. In the absence of a Maxwell
Chern-Simons term gives the photon a topological mas%ﬁrm* scalar QED with a Chern-Simons term is self-dual, and

- : 1 ) e topological and non-topological vortex solutions have
without spontan.eously breaking gauge Symmez nd a! been found with an appropriately chosen scalar potef8ial
lows for the existence of charged particles with fraCt'onalHowever if the Maxwell term is present, a self-dual
statistics[2]. Pure Chern-Simons scalar electrodynamics ady;4ywell-Chern-Simons theory can be achieved only if a

mits topological and non-topological self-dual solitons, for magnetic moment interaction between the scalar and the
which many exact solutions to the classical equations of mogauge field, i.e., the non-minimal Chern-Simons coupling, is
tion are availabl¢3]. Moreover, such theories may also haveintroduced[8,9].

physical significance. Relativistic three dimensional Chern- It is well known that Maxwell-Chern-Simons scalar QED
Simons theories provide a consistent description of the higlis renormalizable. Non-minimal gauge interactions are, how-
temperature limit of four dimensional gauge theoﬂe}and ever, notoriously non-renormalizable in four dimensions.
certain solid state systems with planar dynanjgs In ad- There i_s some hope that _the situa_tion might be different in
dition, the non-relativistic version of Maxwell-Chern-Simons thrée dimensions. Some time ago it was found by two of us

theory has been applied to the fractional Hall effect, anJhat the non-minimal Chern-Simons _coupling @+1)- .
. . dimensional scalar electrodynamics is actually renormaliz-
more recently to rotating superfluitHe-A [5].

: . .able at the one-loop levé¢l]. The renormalizability occurs
Recently a version of scalar electrodynamics in three dipyecause the non-minimal gauge interaction contains the

mensions has been studied in which a non-minimal Cherngree-dimensional antisymmetric tensor. An analy3isof
Simons type gauge interaction was introduced. The nonthe symmetry breaking by induced radiative corrections
minimal coupling in this model represents a magneticshows that at the one-loop level the non-minimal model be-
moment interaction between the charged scalar and the elehaves differently from the minimally coupled one. In the
tromagnetic field. It is of interest for several reasons. First, itusual Maxwell-Chern-Simons scalar QED, symmetry break-
is well known that one of the most important features ofing results from quantum corrections but depends on the
scalar quantum electrodynami@@ED) is the occurrence of choice of a renormalization scal&0], whereas in the non-
the Coleman-Weinberg mechanig@. In scalar QED with  minimal model the symmetry breaking is unambiguous and
non-minimal coupling, the Chern-Simons term is generatedhere is a finite temperature phase transition to the symmetry
through the Coleman-Weinberg mechanigm]. In this  restored state.
sense, the non-minimal model is the one in which the Chern- It is clearly of interest to discover whether the renormal-
Simons term arises naturally rather than being put in byizability of this model persists beyond the one-loop level and
hand. to compare the symmetry breaking phase transitions in the
Another reason that the non-minimal model is of interesiminimal and non-minimal models at higher orders. The two-
involves the study of vortex solutions. In recent years, thdoop behavior of the minimal model has recently been ana-
classical vortex solutions of2+1)-dimensional Chern- lyzed in detail[10] where it was shown that the Coleman-
Simons field theories have received considerable attentioweinberg mechanism occurs at two-loops. The purpose of
the present paper is to commence a detailed analysis of the
two-loop behavior of the non-minimally coupled Maxwell-
*Permanent address: Physics Department, University of AlbertaChern-Simons theory. We will show that the model, not sur-
Edmonton, Alberta T6G 2J1, Canada. prisingly, is not renormalizable at the two-loop level. How-
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ever, the two-loop effective potential can be madeof a possible Chern-Simons term equal to zero, even though
renormalizable providing certain conditions are satisfied bythese terms are allowed by the gauge symmetry. The corre-
the coupling constants of the model. Thus we will show thatsponding counterterms may appear, however, in the counter-
under certain circumstancése. when the lowest order in the term Lagrangian. The physical parameters can be obtained in
momentum expansion is sufficignthe model may yield the usual way, i.e. by choosing renormalization conditions
physically relevant predictions for spontaneous symmetnthat give zero renormalized parameters &t0. To avoid the
breaking by radiative corrections at the two-loop level. Ainfrared divergences we use the Landau-tigpegauge[12].
detailed analysis of the renormalized effective potential and’he gauge-fixing term is
the consequent symmetry breaking is deferred to a future
publication.

The paper is organized as follows. Section Il is a brief L
review, containing an introduction to the model, a discussion
of some tec_hmcal aspecl_ts O]]: d|menS|fonhaI regularization 'rpr to a total derivative term, the Lagrangian can be divided
2+1 d|menS|ons! and a list of some of the necessary Feyr\hto the kinetic part and ten interaction terms:
man rules. Section Ill demonstrates that the full effective
action is not renormalizable at the two loop-level. Section IV
is devoted to thésomewhat lengthycalculation of the two- r£O=_ E X
loop effective potential in the modified minimal subtraction 2
MS scheme. In contrast to the one-loop case, the renormal-

1
gt =" 2—§(%A"—§GV77)2, £=0. ()

)\ 1
2 4
(9+—!V) —-=7

A
P+ av“—fezvz) 7

izability of the two-loop effective potential requires a spe- + EAM (9%+ 92V2)9MV—(1— E) 4,9,
cific choice of the non-minimal coupling constant. Our con- 2 ¢
clusions are summarized in Sec. V, while some useful

formulas are collected in the Appendix. - yoevzewpap}AV,

Il. SCALAR QED WITH NON-MINIMAL CHERN-SIMONS
COUPLING 5(1)=_A< 1 1

6 4 2
. 61X T oxaix1X 7
A. Lagrangian

The Lagrangian for scalar QED in+21 dimensions with 1 2 4. 1 &
L : : T IL AR/
a non-minimal Chern-Simons coupling[ig] 5X41x2! 6! ’
L= 2(D, ) D= T F = L ypenmor @ Looo Y s, b 4
2. 40 8 " N R S T TR AR TR
A
X[¢*Dyud— (D) ¢ - 57 (6 $)3, 1) 1 1 1
! £ \\2 e Pt ————
2X4! 10x21x 2! 10X 4! '

where the complex scalar fieltl can be decomposed into the

real and imaginary partsp=x+in, F,,=d,A,—dA,,
D,¢=d,¢4+ieA, ¢, andy,, e and\ are the non-minimal L& =_
Chern-Simons coupling, the gauge coupling and the scalar 3!%3!
self-interaction coupling constants, respectively. The dimen-

sional assignments for the fields and coupling constants are£(5):eAu(aM7]X_(9MX,7),

as follows:

1

3.3_ 3 2
MNWIXTT Brxarx o N X

1
[AJ=[#]=[e]=M"2  [y]=M"*" [?\]=M0-(2) £‘6)=§706”V”‘9VA;)(X07M7—WMX).

The negative mass dimension gf indicates that the theory 1

is not renormalizable in general. LN=5eA A (x*+ 7P,
Following the standard technique to calculate the effec-

tive potential we first assume the existence of a non-

vanishing vacuum expectation value for the scalar f{e#l

=v with v real, and shift the real part of the scalar field,

—x+v [11]. We look for a non-vanishing value of by

determining the minimum of the effective potential gener-

ated by quantum corrections. Note that in the Lagrangian

we have put the bare mass of the scalar field, the quartic

scalar self-interaction coupling and the statistical parameter £ (19= — Yovee A, d,A, . 4

1
L ®)=— z ,yoee,U«VPA#O"pAV(XZ_’_ 772)1

L£LO=e?vA Aty,
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B. Regularization tion method is indeed compatible with the Slavnov-Taylor

A regularization scheme must be chosen to handle thj;(;.jentit_ies. The expl_icit definition for_the dimen_sional con-
ultraviolet divergences of the theory. In this paper we shalfinuation of the epsilon and the metric tensors is
use dimensional regularization. The use of dimensional regu-
larization in a theory that explicitly depends on epsilon ten- +1 if (uvp)=permutationof (0,1,2),
sors involves adopting a complicated form for the gauge field e*"P= [
propagator, as will be discussed below. In spite of this com-
plication, dimensional regularization is simpler than the
Pauli-Villars regularization adopted in a previous papar
since it allows us to preserve explicit gauge symmetry. U=
There are several problems involved with analytic con-
tinuation ton dimensions. The first of these is standard. The
mass dimensions of the fields and parameters become

0 otherwise,

+1 for wu=v=0,

-1 for u=v=12,...n-1,

+1 for wu=v=0,
(7)

[d)]:[A#]:[V]:M(”*Z)/Z, [e]l=M@ M2 -1 for w=v=12.

These definitions give rise to the following contractions:
[vo]=ME™M2  [\]=Mm2E"), ©)
vp N _JUNNVY NGV VAN _
and thus, in order to ensure that the parameters keep their e'’e,T=gg"—g""g"™,  g*'g, =g,
original mass dimensions, one must make the following re-
placements for the parameters in the regularized Lagrangian: ~ ~y o~
p¥=9""p,, P =p.p".

vopTIR, e BTN, g p BTNy, C. Feynman rules
aia The tree-level Feynman rules can be derived by standard
A—u?G7M\, (6)  functional integration techniques. The propagators for the
scalar fieldsy and » have the same form as in the four-
The second problem is more complicated. Dimensional regudimensional case,

larization in a theory with a three-dimensional antisymmetric

tensore,,,,, must be handled carefully. It has been explicitly i N

shown that naive dimensional regularization schemes cannot iS.(p)= . mi=—v4

make the theory well defined when they are applied to a X p?—m? X4
Chern-Simons type mod¢ll3]. Therefore, in carrying out

dimensional regularization we must adopt the three-

dimensional analogue of the consistent definition ey, ) i , N,

which was originally proposed by 't Hooft and Veltmpi#], iS,(p)= m m, =gV ®)

and later given a strict mathematical justification by Breiten- K

lohner and Maisor{15]. The explicit definition of this di-

mensional continuation for Chern-Simons-type theory was Following Ref.[10] we can obtain the dimensional regu-
explained in Ref[16] where it is shown that this regulariza- larized propagator for the gauge field,

(y0ev?)? 1

+ "o
(p?—ev?)[(p?—e*v?)?—p*(yoev?)?]  pA(p°—e’v?)

(p g,LLV_B/.LBV)

ID,uV(p):I{ _|:

’)/oeV2

1 ~ -~ ~
; 2 pe
(pZ_eZVZ)Z_pZ(YoeVZ)Z E,uyp|pp_ pz(pz_ezvz)[(p gp,v_ p,upv)_(p g,LLV_p;LpV)]

(7v0ev?)3(p?~p?) yoev?
2)2—%(yoev?)2][ (p?—e?v?)?— p?(ypev?)?]

(’E)Zé,uv_'a#‘bv)_eyvpippl] . (9)

[(pZ_GZV pZ_eZVZ

The above expression can be rewritten as
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iD . 1 1 1 1 1 1 1)~ ~ ~ 1 1 1 )
| p.v(p)_l - m1+m2 m_l pZ_m§+m_2rn"|§ _m_§E (p g/u/ p,u,pll) m +m2 pz m2 p2 mi E/,Lyp|p
1 1 1
_ _ 2 _ _(RZN _7" TR
m%( pg_mg pz)[(p g,uv p,u.pv) (p g/,LV p,upv)]
(70ev?)*(p*=Pp?) Yoev?

= 0%0,,,—PuPy) — €,0piP”
(P2 ooV DI a2 P yoen?)?] | pr— et P Omr ™ PuPu) ™ €uylP

AP)(P?Y,s—P,.P.) — B(P) €41pi PP+ C(P(P?T = P,P,) — (9%~ PLP,)]

(709V2)3(p2_52) 70eV2 (BZQ _'E) '[3 )_E ipp (10)
[d*=D?(y0ev?)I[d?— pP(yoev?)?] [ pP—e?v? — = T )
|
where we have defined To further simplify the notation we make the following defi-
nitions:
1
mlziev(\/(yov)2+4+ Yov), . .
S(p)__21 S(p): 2 2 i:112731
1 p pT—m;
m2=§ev(\/(y0v)2+4—y0v),
which allow us to write,
mi=e?v?, d=p2-e?? 11
and A(p)=m[mzsl+m152—(ml+m2)8],
1 1 1 1 1 11 1
AP = o e g2 My p2—m2) e p? B(p)= [S-S]. C(p)=———($-9)
172\ T p=my T2 p®—m;/  mzp my+m,-t ’ mym, '
(13
1 1
B(p)= my+m, | p2—m? B p2—m3)’ These expressions obey the following identities:
1 1 1 2e?v2(A—C)+ey,v’B=S,+S,+S;,
CPI=—| 5=~/ (12
m -m
3 p 3 p X % - n % y
xn xn ¥n xn a
b b c
2 X xm
xn /n
X X m M n M
x XM wx nix
X m
X X n n n
x
x x x x n n x n
FIG. 1. Interaction vertice¥,,V1p,V2a,Vaop,Voc - FIG. 2. Interaction vertice¥3,,Vap,Vac,Vaa,Vap -
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X A X/'n

FIG. 3. Interaction vertice¥s,Vg,V;,Vg,Vg,Vig-

e’v2(A—C)+ey,v’B

1
= —m[mlSl—l— My S;— (Mg +my) Sz,
2

my+
A-C=——[MS5+mS,—(Mmy+m ,
mlmZ(ml+m2)[ 21 182 ( 1 2)83]
1 1
e’A+ —eyB=—(5,+S,—29). (14)
2 2v?
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LO+LOSVg(nxA) +Ve(nxA)
=e(p— A +ivoe™ kP,
LN+ £ v, (x?A?) + Vg(x2A?)
=V7(9°A?) +Vg(7°A?)
=2ie’g,5—eYoVemp(P— Ay,
L+ LA,y (yA?)+ Vo xA?)
= —eyoVe (k=) +2ie’vg,,. (15

IIl. TWO-LOOP RENORMALIZABILITY

In this section we discuss the renormalizability of the
theory at the two-loop level. In order to show that the theory
is renormalizable we must show that contributions to the
two-loop quantum effective action from terms that do not
appear in the original Lagrangian are finite. The superficial
degree of divergencésSDD) of a diagram is given by

w=3L+> 8,v,~2l, (16)
\

wherelL is the number of loopd, is the number of internal

lines, , is the number of derivatives associated with each
vertex, andv, is the number of vertices of each type. The
sum is over all vertices in the diagram. We can rewrite this

These expressions are useful to simplify calculations. . : . S

. . . expression using the following relations:

There are several mass poles in the dimensional regular-
ized gauge field propagator. The first two terms in Ed)

show thatm; andm, are the photon masses in the original L=V,
three-dimensional space-time. The third term indicates that 1
m5 is the mass that photons acquire na-3 dimensional = > 2 iyVy
space-time. The last term is proportional to an evanescent v
quantity, p2—p?, and the power counting shows that this _
l,=i,te, (17)

term behaves as 7 for largep. In the two-loop calculation

the contribution of this term at the level of regularization is where V= EVVV is the number of Verticeé,v is the total

finite and hence vanishes in the linmit- 3. number of lines entering vertex, andi, ande, are respec-
The interaction vertices of the model were derived in Reftjvely the number of internal and external lines entering the

[7]. These vertices are shown in Figs. 1-3 with dotted linesjertex v. Furthermore, there exists a relation between the
denoting gauge bosons, while solid lines corresponding t@umber of vertices and lines:

either the field or they field, as labeled. For conciseness,
the vertices in the figures are labeled purely by their number,
so that for example I3 denotesV/,,, etc. The Feynman rules
for the vertices and the corresponding interaction

Lagrangians are as follows: Using Egs.(17) with L=2 this constraint can be written as

Vlb(X4772) :V1b()(27]4) =—i\/5,

> v, =2l +E. (18
\%

(n_, 6y— _i
£V =N S (1,-2)v,=2+E. (19
L@V, (x%) = —i\v, !

Consequently, we have the SDD
Voo(x*7%)=Vac(x7*) = —i\V/5,

1
LOVgy(xh = —inv?2, ©=3+2 o, 3E, (20

Vap(x?1°) = Vap( ") = —irv?/10, wherew, =8, + 31,— 3 is the degree of divergence for each
vertex, which can be read out from the interaction Lagrang-
ian (4),

LAV, (x3)=—iav36, Vy(xn?)=—irv3/30,
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~. n 6
N
.~ 6 6 L . n X L
~ .
~o K X .7 R -
R . NS .
N . X
PR AN e S
’4’ S L N
- ~ . ~
,/, \\ . ~
L.
% 6
a) b)

FIG. 4. Two loop contributions t&\* part of the effective ac-
tion.
FIG. 6. Two loop contributions té\* part of the effective ac-

0 1 . 3 1 tion.
wq—VU, Wor= "7, w3z=—1, Wp=—— =, W= — =, i .
! 2 v2 ) which becomes an external momentum whgnis an exter-
nal vertex. Similarly, the degree of divergence\4f is re-
e o1 w0 w3 duced towg=—1 instead ofwg=0 whenVj is an external
672 7 CoTeT e o0 1 o vertex (Vg is considered an external vertex if both photon

lines are external legsThese exceptions must be considered

Substituting in we get in looking for divergent diagrams.
1 1 3 1 From Eq.(21) all diagrams with 2/4's have SDD= 2, 1,
w=3—ZE+| — Zvo,—Vv3— =v,— =vs or 0. The diagrams with SDD equal to 0 and no exteknas
2 2 2 2 are shown in Figs. 4-10. It is straightforward to see that if
1 1 3 the SDD is 2, then the graph has two exterdgls. As dis-
+ ZVg—V7— =Vg— _V10>- (21)  cussed above, these graphs have fac'tors of the external pho-
2 27 2 ton momentum from the verticeds which can be factored

out, leaving a two-loop integral with SDBO0. The diagrams
are the same as those shown in Fig. 4, with the extérnal
replaced byyg's. If the SDD is 1, then the diagram has one
lassical L on. W ider the 1P| ¢ of the f _%xternal\/g. These _graphs also have a factor of externgl pho-
classical Lagrangian. vve consider the part of In€ ToUr,n momentum which can be factored out to leave an integral

. . . 4_ .
point function - of gauge f|e|ds_A =<A#AVA.*AP>' It 'S of SDD=0. The diagrams are the same as those shown in
straightforward to determine which combinations of vertices

. " shown in Figs. 5—7 with the externsl,’s replaced byyg's.
satisfy the two condition$19) and (21). One must then se- The samg thing happens for diagramspwith Mg?/'lqhe
lect those combinations from which it is possible to obtain a5pp is either 1 or 0. The diaarams with SDD equal to 0 and
diagram with four external photon lines. We categorize thes?10 externaN.'s are .shown ingFigs 11 12 If thg SDD is 1
diagrams in three groups: diagrams with two interidgls, then the diagsram has an externg Whiéh reduces the SDD,
one internalVg and no internaVg.

. . to 0, with a prefactor that contains an external photon mo-
Not_e that yvhen calculating the .SDD of al d|agrar_n, the mentum. These diagrams are the same as those shown in Fig.
following points must be taken into account. g is an

i . X 11 with th ternal/;’ laced byg's. For the di
external vertex, then its degree of divergencevjs=—1/2 w e external/y's replaced by/'s. For the diagrams

instead ofwg=1/2. This change occurs because of the facWIth no Vs, all Vg's contribute one photon line which is

thatV tactor of um f the photon i 1internal and one which is external, and thus contribute the
atV carrys one factor ot momentum from the pnotoniine, ., 5;,,e valuewg=0 to the counting of the diagram’s SDD. All

divergent diagrams have SBED and are shown in Figs.

To explicitly verify the renormalizability, we need to look
at the one-particle-irreducibl@ Pl) parts of the Green func-
tions that have positive SDD but no correspondence in th

’,

, . . 13-15.
\\ x ’ \\ ’/ A ) ,
o X8 n, Note that all of the diagrams with externa’s have part-
\ 2 n " 5 b ner diagrams with all possible combinations and permuta-
a 6 6
% . .
X ,/ \\ x X L, ~ N ,,'
,' \\ /, \\\ \\7,'
' @)
6 %6 . o 6 N
a n,- 6 ! X AN
5 94 9
<) X n 4 / u\\ 6
X x 6 ’ * B !
'/l \\ II \\\X
/l \\ ’, \\ a) b)
FIG. 5. Two loop contributions té\* part of the effective ac- FIG. 7. Two loop contributions té\* part of the effective ac-
tion. tion.
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<)

FIG. 8. Two loop contributions té\* part of the effective ac-
tion.

tions of Vg's replaced byg's. These partner diagrams will
have the same SDB0 as the original diagrams, but they ©)
will contain additjonal factors of external photon momenta, /5 19 Two loop contributions ta\* part of the effective
since they contain externalg's. action.
The above analysis shows that all the two-loop divergent
diagrams forA* have SDD=0. For the purpose of studying
renormalizability, we need to extract only the divergent parts S(g+p,m)—S(q)=1/g°. (23
and see whether they cancel. There are several simplifica-
gogizg:gfnocv?tﬁa;)n;gewgesq;)t(ttr)?lcggg;izzglg\geiﬂznstcp;:rofo avoid the IR divergence induced by this_; procedure, it is
propagator. When a scalar propagai@y contains an exter- necessary to keep the mass term at Iez_ast in one propagator,
nal momentum it has the form i.e., replaceS(q+p,m) by S(q,m). We will keep all three.
Similar simplifications are possible for the gauge propa-
gator (10). First, the evanescent parts of the gauge field
S(q+p,m)= 1 propagator will give vanishing contribution to the UV diver-
' (q+p)2—m? gent part of the integral in the limih— 3 since they have
good UV behavior. Second, the UV degree of divergence of

wherep is an external momentum amgiis an internal mon-  the parity odd term in the gauge field propagator is one less
entum that will be integrated over. To study the UV behaviorthan that of the parity even part of the propagator. Thus,
of this propagator we can emp|oy fo||owing decomposition:there are no contributions to the UV divergent part of the
integral from terms in the propagator that are proportional to
the epsilon tensor. Last, as explained above for the scalar

1 1 2p-q+p?>-m?
S(g+pm=———=—-— . propagator, factors of external momentum can be dropped.
(g+p)2-m? o®> q(g+p)*-m?] In addition, the calculation is simplified because of the
2 fact that there are no UV divergences at one-loop in dimen-

sional regularization. This fact is due to the special analytic
The UV degree of divergence of the second term is one lesgroperties of the one-loop amplitudes in odd dimensional
than that of the first term and thus gives no contribution tospace-timg¢17]. As a consequence, there is no need for us to
the UV divergent part of the integral. Thus, in calculating theconsider the subtraction of sub-divergences.
divergent part of the integral, we can make the replacement Using the above observations, one can show that all di-
vergent terms will be proportional to the two-loop integral of

""""" I X N i P
9 9 e ‘5% -7 8§-° X .
! : n n ,¢’
a) * , 6
9 9 6 ;
Pt 9 x n\
’ 6 X Y x \ X ”, X \ X
1 m X S AN s R
N 6 ’ ‘\ ’ \\ ’ \\
[P 4 KU R / \ /! \ )/ N
9 9 A3 A Y Ay
b) a) b) ©
FIG. 9. Two loop contributions té\* part of the effective ac- FIG. 11. Two loop contributions td\* part of the effective
tion. action.
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FIG. 14. Two loop contributions t&\* part of the effective
action.

diagrams are shown in Fig. 16. This term is a contribution to
the gauge invariant structur@(LqS)“ and must be finite if
the action is to be renormalizable. We find that in this case
the divergent terms do not cancel so that the two-loop quan-
tum effective action is not renormalizable.
|:J ko dqSq)S(k)S(k+q,m) (24) Howevgr, as we yviII show in the next secti'on, the twq-
loop effective potential can be made renormalizable provid-
. . . ing certain conditions are satisfied by the coupling constants
with dk=d*k/(2)°. The divergence will appear as a pole " iha model. Therefore, for the lowest order in the momen-
of the form 1/(3—n)._ . . ) tum expansion of the quantum effective action, the non-
We concentrate first on diagrams in which the prefactony,inimal model may yield physically relevant predictions for

does not depend on the external photon momentEigs.  yhe snontaneous symmetry breaking by the radiative correc-
4-195. These diagrams can be further classified into thre ions at the two-loop level.

groups by coupling constant prefactors. The first group o
diagrams is shown in Figs. 4, 5, 8, 11, 13, 14 and is propor-
tional to €?y2; the second group is shown in Figs. 6, 7, 10, IV. EFFECTIVE POTENTIAL

. . 4 2 2 . .
12, 15 and is proportional te"yp(yov)©. The third group is The effective potential is the energy density of the

. . . . 2
shown in Fig. 9 and is proportional &' y5(yov)*. Each of  \acuum in which the expectation value of the scalar field is

these sets of diagrams must be separately finite if the theor@\,en by($)=v [11]. It can be determined from the effec-
is to be renormalizable. We will concentrate on the f'rSttive actionl"[?{;] according to

group of diagrams, Figs. 4, 5, 8, 11, 13, 14. Direct calcula-

tion shows that the divergent pieces cancel between the dia- ~

grams in Figs. 4, 5, 8, 11, 13, while Fig. 14 is finite. I[¢=v]=—(2m)"5"(0)Ven(v), (25
As a further check, we calculate t%& term with four

external momentum factors. Gauge nvariance requires thafhered is the vacuum expectation value of the scalar field

this contribution should take the fornfr(,)", and renormal- i, the presence of the external source. Using the fact that

izability requires that it be finite. We obtain contributions F[Tﬁ] is the generating functional of the proper vertex

from the diagrams in Fig. 8, with all of the externdl’s '

replaced byg's. Direct calculation shows that the divergent .

pieces cancel. ~ 1 :
Unfortunately, further checking reveals that the action is F[¢]=le J_If d",d";- - -d”ij(')(xl, e Xj),s

not in fact renormalizable. We have calculated gfeterm

with four external momentum factors. The corresponding0

FIG. 12. Two loop contributions t\* part of the effective
action.

ne has
: Sl .
. g ! Ver(v)=—>, —T'(0,0,...,0v), (26)
Nom o, ' 5 =2 ]!
X X
______ 3 FRRRE
X 5
a) ! b)
FIG. 13. Two loop contributions t&\* part of the effective FIG. 15. Two loop contributions td\* part of the effective
action. action.
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x 6 m 6 % x 6 m 6 x X n x
| | ' |
a : ' ' b
1 1 ] 1 )
1 1 ] '
o x M6 X Mix oM ovox 3a 3b 3¢
X g 6°._.-6 X 6:.6-6 6
X 6 n 6 x X .6 n 6 x
. . ] ' X n n
'6 : ' :
c) , ' | d) FIG. 17. Two loop contributions to the effective potential from
] 1
) : ' ' two scalar loops.
x " n X p A M A ; X
6 6 6> 6.7

------- D, (p)=K,,=(—p*+e*v’)g,,
FIG. 16. Two loop contributions to/* part of the effective

action. + ( 1- E) p,u,py_ yoevzeuvpl pp, (30)

which means that one can get the effective potential by cal-
culating the 1PI vacuum diagrams. From Eg6) we can \yhich gives[10]

write [18]
Veﬁ(v)z\/tree(v)_ff d"p IndefiD ~(p)] detk ,,=exp TrinK ,,
2 (277)” 1
' —(p2—a2y2)| @2y2_ 22
+iﬁ<eX;{%d”xﬁmt(ﬁl’z(ﬁ,v))> , (27 (p°-evi)|ev P )
- X [(p?—e*v?)—(yoev?)?p?]. (31)

where D~ %(p) is the inverse propagator for each of the

bosonic fields in the theory/"®¢is the tree potential and can Substituting above results into E29) and making use of
be obtained directly from Eq1) as, the integration formulas given in Ref10],

Vtreezivii (28)
6! 1

d"p 2_ 2 F(—zn) N

|(27,-)n|n(p —m)=—Wm = —B?m,

The second term of Eq27) is the one-loop effective poten- f
tial, and the third term contains the higher order contribu-
tions. We shall use this expression to get the two-loop con-
tribution to the effective potential.

d"p
. o . o f : In[(p?—e?v?)?~ (yoev?)?p?]
A. One-loop effective potential in dimensional regularization i(2m)"

The one-loop effective potential of this model was com-
puted in Ref[7] in Pauli-Villars regularization. In order to
discuss spontaneous symmetry breaking, we now re-

calculate the one-loop effective potential using dimensional

n—3

1
— 578V 4+ yv)YAL+ypvd), (32

regularization. According to Eq27) we have we obtain the one-loop effective potential in the Landau
gauge €=0),
ﬁ n
Vo= 2 In[iS, *(p)]+In[is,*
=2 [y S, RIS, (p)] | . I
Vet %= — ——[m+m) +(ev)*(4+ yov) A1+ ygv?)
+Inde(iD ;X(p)]}. 29 T2 M (A o
From the quadratic pa (*) of the Lagrangiari4) we have LI 3/2+ 1 312 s
the inverse scalar propagators 127 | 11 41 51
(1) 1\ — (2 2
SX (p) P me 3 2, ,2\1/2 2,2
) . +(ev) (4+ yovo) "1+ yov9) ;. (33
s Y(p)=p?2-m?,
and the inverse gauge field propagator This result agrees with the one obtained .
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xm xn X n
4a 4a 4b 4b
S8 ST
’ A ’ N
Oy n
N NP FIG. 19. Theta diagrams constructed from scalar propagators.

FIG. 18. Two loop contributions to the effective potential from gent and finite pieces. The divergent piece is represented by
one scalar and one gauge field loop. the integrall as defined in the Appendix, and is thus propor-
tional to the factor

B. Two-loop effective potential

It is straightforward to see that the two-loop effective po- 3= vtltindx
tential is given by diagrams that contain only vertices from
the cubic and quartic parts of the interaction Lagrangian. Allwherey is the Euler constant. As a last step we use EQb.
of these diagrams are either “theta” type diagrams or “fig- to write the results in terms of the fundamental paramegers
ure eight” type diagrams. For each diagram we give theyq, andv.
integral expression for the amplitude. The integral is evalu- (1) The “figure eight” diagrams containing two scalar
ated by rotating to Euclidean space and using the integral®ops (Fig. 17). These diagram are produced by the quartic
given in the Appendix. The theta diagrams contain ultravio-interactionZ ). The amplitude can be calculated by rotating
let divergent terms and the results are separated into divete Euclidean space. We obtain

d"g d"p
(2m)" (2m)"

V= —hzxvzﬂ(3*”>f

3 1 3 1 1 1

X 2,2 2\ 2 2 +E 2 2\ 2 2 +E 2_ 2\ /2 2
(pT=my)(g=—my) (pe—m3)(q°—m3) (p==m)(q°—ms3)

72\v2 (3 , 3 1 )
= +—m?+—mm
1672

2™ 10M " 10y
_ﬁz)\v 31 31 111 4
= 24177051 " 10 B a1/ 39

(2) The “figure eight” diagram containing one scalar loop and one gauge field(Bigp 18). This diagram is produced by
the quartic interaction£ () and £ ®. Its amplitude is

d"p d"q - 1 1
V@ =in? <3—”>f iD“"(p)(2ieg,,— 2Yo€€,,,,P’ +
eff M (277)” (277)“ (p)( g,u. YoC€, pp ) q2—m2 qz_mz

X
zzezﬁzms—n)f o da |z
(2m)" (2m)"

1(11 11)11

1 1 1
my +m, mg p?| m5lp?-mi p?
- 1 1 - dp d'q p
x[(n—l)pz—zpz]}(qz 7+ 2)—43’oeﬁzﬂ(3 “>f

1 1
—m? 2-m? (2m)" (2m)" mﬁmz(pz—mi_ pz—m%)

x( ! + ! ) (35
2 21
g*-m:  g*-m?

—_ +_
My p2—mi Mz p?—mj

2

Rotating to Euclidean space we obtain
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d"p d"q
(2m)" (2m)"

2 P2 . 2 P2 +n—1 p? 2 p?
Mi(My+Mp) p24mi  MaA(Mi+Mp) p24m3  mj p?+mi  m3 p?+m3

V@)= —2eu0 |

1 1

dnp dnq 'E)Z
(2m)" (2)" Myt My

—4ypehi’uEm J

y 1 N 1
9?+m:  g’+m?

1 1
2 2 2 2 2 2+ 2 2
petmi potmz/\g+tmy g +m;
A2 m +m
X Nr 2202 1 3_ .3
= — ————[e“(m{+m35)+ yoe(m;—m
472 m1+m2[ (m1+m3)+ yoe(m;—m3)]
2 2
:ﬁ imx+m,, fic 1 m4+m

L L e S Nl G I Sy 2 2,2
42 V2 m1+m2(m1+mz) a2 o2 m1+m2[(m1 m3)“+2mim;

72 N4+ \/5!
=— —————(ev)¥4 4y 2407 a6
47?2 JyPra (ev)°[4(yov) "+ (yov) ] (36)

(3) The “theta” diagrams constructed from scalar propagatig. 19. These diagrams come from the interactiof
and contain UV divergences. Their contribution to the effective potential is

V(3):_ﬁ_2 ()\\/3)2,“(3—n)J dnp dnq 1
T2 ek 2o e (p-m)@d-m)i(pra?-m’]
_ﬁ_Z ()\VS)ZM(S—n)f dnp dnq 1
2 (51x302x21) (2m)" (2m)" (p?—m’) (g~ m2)[(p+q)2—m’]
h? 1 p"¥ 1
= =(\3?| —+ ( —y+1+In4 )
2 (W9 318 (5x3!1)2x2!) 3272 |3—n 7 i
#2 9m? 1 2m, +m,)2
— —(\v3)? —In—2+ n( p M)
2 3272|318 u?  (5x31)2x2! w?
—\/(3)div4 \/(3)finite (37)

(4) The “theta” diagram composed of one gauge field propagator,ppeopagator and ong propagatoi(Fig. 20. This
diagram arises from the cubic interactiad® and £ (®) and the UV divergence is present. lts contribution to the effective
potential is

T2
v (3_”)f d% _d'q
e

> - ———{[e(p+20) .~ i Y0€,.59°P"I[€(P+20),— i 70€,,sP"q°]iD**(P)iS,(P+ A)iS,(a)}.
(2m)" (2m)

(39)

Inserting the gauge field propagatd0), employing the identitie§14) to simplify the expression and performing the contrac-
tions:

(p+29),(p+20),(p?9,,— P,.P,) =4[ P°0*—4(p-q)],
(p+2q),(p+20),(p?g“"—p“p*) =4[ p?g®—(p-q)?],

[(P+20) ,€,,5P70%+ €,,050°PP(P+20),1(0°0 ., — PLP,) =[(P+20) ,€,,5P"A°+ €,,,50°PP(P+20) ]
X (p?gH’—ptp*)=0,
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[(P+20) ,€,,5070%+ €,450°PP(P+20) ,]1€*°p, =4[ P?0*— 4(P- ) 1€,,050°PP€,,5P"A°(P?D ., — P LP,)
=p?(p-)* =747,

€,ap0°PP€,,5P7Q°(p?g""— pp*) = p?[p?9>—4(p- )],

EﬂaﬁqapﬁsvyﬁpyqﬁeMvppp:0! (39)
we obtain
#21 d'p d"q 1 1
vl =_ Gl s(p)-—u— +—S(p)|S.(a)S.(p+0q)(4e?
eff 2 (2’77)“ (27T)nILL | ml(m1+m2) l(p) mz(m1+m2) SZ(p) mg (p) X(q) n(p Q)(

- -~ h? 4dey, d'p d"q - -~
+ 22 252 N2 4 — f (3—n) IS _ S S + 252 72
YoP?)[P"a"—(p-q) ]] 2 mrmy) 2mn 2m ™ [S1(P) = S2(P) IS (A)S,(P+a)[P™a"—(p-a)7]

#2 1 ( d'p d"q
2 m3) (2m)" (2m)"

1 M[Sy(p) — S(P)1S(A)S,(p+a){4eX p?a2— (p-)?]

—[4€’+ y3(p?>—pH)1[P%9>— (p- %1}, (40)

where the evanescent terms are thrown away since their contribution vanishes in tle-ighitUsing the integrals given in
the Appendix, we find, for the divergent part,

) ﬁZ (n—3) 1
ngtf)(dnv):“_(_— y+1+ In(477)>

1 1
6472 |3—n E[(ml—m2)2+mlm2](m§+mi)—Z(mf—mg)z

2
—+
V2 Yo

1 1 1
+ - mymy(mg— mz)z_zmimg + Zvé(mi— m%)z}

4
ﬁZM(n—3)
=~ 5304062 | 3=5 ~ Y+ 1+n(4m) v2(—90e?yave\ — 45002\ v y2+ 9006 y5v 8+ 630G 4y + 1170@* yav?
—360e?\v2+ 360"+ y2\2v®) (41)

and, for the finite part,

ini 12 (m,+m,)2\  A2(yavi+4)m,
(4)(finite) _ _ 2 2\2 X n 2_ 2 _ 2
Vet 647T2V2(m)( ms,) In( 12 256772v2(m1+m2)[(mx+ m,)“—ms][(m,—m,)
(m,+my+m,)? h2(yav2+4)m, (m,+my+m,)2
—m> X U 2_ 2 o 12 2 X ”
m2]|n MZ + 256772V2(m1+m2) [(m)(—‘rmn) ml][(m)( mn) ml]ln ,LL2
h2(yov2+4)
- 1536772V2(m1+m2) [12(m§+m§)(mi—m)2(m,,—m37mx+ mi)+5mi+ Smg—(mi—l— mg)

X (10m2+12m,m, + 10m%) + m3(my + my) (10m: + 10m? — 5m3) + 12(mj+m3)(m, +m,)]

ﬁzyg
~ =gg0.2 6Mi+6M3— (12m° +12m?+ 6m3) (mf +m3) + 25m — 26(m?+ my) m3 + 60m,m, (m?+ m?)
+25m2—m?2)2]. 42
X 7
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(5) The “theta” diagram with oney propagator and two gauge field propagatdtg. 21). The interaction Lagrangians
yielding this diagram are ® and £ 9. The corresponding contribution to the effective potential is

G dp dq (B-n)froia2 ~ o TN .
Vi=in f(Zw)” 2mt {[2ie“vg,\+ Yovee,n (P —a")]iDy,(Q)iS,(p+a)

x[2ie*vg,,+ yovee,,s(pP—a#)]iD . (p)}. 43
Denoting
V. (p.a)=2ie?vg,,,+ yovee,,,(p"— ),
P(=p%g,,—p,p,.
P=p%g,,~D.p,. (44)
and performing the contractions
Vo (P.a)V,,,(p,q) PP = —4ey2[pZg%+ (p- )21+ (yove)H{ — (p?+9%)[p?a®+ (p- )% +4p?a*(p-9)},
V(P )V, (p,q) PO PN = — 464y 2 2027~ p7q% + (p-9)*]+ (vove) [ 4p*a%(p- d) — 2p*q*+ p*q*—p?(p- 0)?
—g%(p-9)2—p%a%g?],
Vo (P.9)V,,(p,q) PMD#PMA = —4ety2[ (n—3)p2q®+ p?g®+ (p- q) 2]+ (vove) d — 2p%g%(p?+0?) + 4p2a®(p-q)
—(p?+ ) (p- )%+ (p*+9?)p%a?],
Vo (P, @)V, (p,q) P i, = — 2 yov?e® — 4p”p-q+2(p-9)°+2p°g],
Vo (P, 9)V,,(p,q) P Mg, = —4yov?e® — 2p%p-q-+2p°q*+ (p-4)°~ p?q°],
Vo (P,9)V,,(p,0) €4 %ip €' 7Fiq 5= 8e*vZp-q+ 2(yove)’[(p°+9%)p-q— pa®— (p- )7, (45)

we get

dn dn ~ ~
VE=in? f P =322, (p+q)[e?] — 462C(p)C(q)p2a2(n—3) — I6LA(p)— C(p) IC(Q)PA( P~ G2)
(2m)" (27)

—4C(p)C(a)[p°a*+ (p-a)*]—4[A(p)A(Q) — C(p)C(a)][p*p?+ (p-q)*]+8B(p)B(a)p-q]+eyo[8A(P)B(Q)
X[p?a2+ (p- )~ 2p?p- ]+ 16C(p)B(q)(p?~p?) (9%~ p- 9]+ ¥5(—4C(p)C(a)(p?~ p?)(a®~ ) (p*~p-q)
—4A(p)C(a)(a?~d?)p*~ C(p)A()(p*~p?)2p’a*+2(p-4)*~ 89°p-q+2B(p)B(4)[(p*+4*)p-d— p°q°
—(p- @)1= 2A(p)A(9){2p%q*[p*~ (p- @)1 - P*[P%a~ (p- DI (46)

In deriving Eq.(46) we have used the fact that the integrand is invariant under the intercpange
The calculation of this amplitude is quite lengthy. For clarity we divide the result in three parts. We Iabe\Vghe‘m}yo,

andvyg. They correspond to the terms proportionakfo ey,, and y(z) respectively in Eq(46) above. In the expressions that
appear below, the couplingsand y, do not explicitly appear because we have used the relafidhso write

1
e?’o:F(ml_mz),
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2
i (my—my)
vZ  mim,

Yo— ) (47)

and eliminate the couplings in favor of the masses. This substitution allows us to combine all three terms to obtain the simplest
expression possible for the final result of this diagram. As a last step we us€1Byso write the result in terms of the

fundamental parametees y,, andv. First, thee? part is
24
mX

| m)z(
+ —=——In
32’772V2

22

~ 3ﬁ2M(n—3)

1672v?

A2m;(m5—m?)? . ((m2+ mX)Z)

In
1672(my+ m,)v? u?

ﬂ— ’y+ 1+ |n(4’77) mg

e2

ﬁzmz(mi—mf()zl((mlerX)2 AZmi(4m3—m?)? ((2m2+mX)2) AZm3(4ms —m?)? ((2m1+mX)2)

© 16724(my+my)vZ w? 32(m;+my)?mov? : wu? 32(m;+my)?mv? : w?
A2m3((my—m,)2— m)z()zI (my+my+m,)? . A2m3[ — 3(my—my)?+2m (m;+my+m,)] -
16(m;+my)27ov? w? 8(m; +my)2m?y? '
The term proportional t@vy, is given by
SﬁZM(n73) )
Veyoz — W 3_—n — ’y+ 1+ In(477)) (ml— m2) ms
- f.2m3(m; —my) 2 49mZ+ 49m3— 42(m; + my)m, + 26m§—12m§]_ h2(4ms— mi)z(mz—ml)mzl ((2m1+ m,)?
48(m; +m,)2m2v2 16(m;+m,)272v? w?
ﬁ2(4m§—m§)2(m2—ml)mll (2my+m,)? hz(ml—m2)2[(m1—m2)2—m§]zln (Mg +my+m,)?
16(m1+ m2)27T2V2 I ,LLZ 16(m1+ m2)2’7T2V2 I [.L2
i %(my —my) (m;—m?)? ((m2+mx>2 _AAm=my)(mE-m? ((my+m,)? 9
167%(my + m,)v? w? 1672(my+my)vZ w? '

The term proportional '[Q/(z) can be calculated in a similar way:

ﬁz(ml_mz)z

1 2(4m?—m?)2 [ (2m;+m.)2
,u(”3)(——y+1+In(4w))[25(m§+m§)—35m§—6m2]_ =My [(2mat my)

N 3-n AT T gt my)Z w?
_ 2(4mp—my)? ((2m2+mx)2) (mg—m)*my <<m1+mx>2) (mp—mi)*m, ((mz+mx)2>
(Mg +m,)? w? (my+my)mj n? (Mg +my)m3 e
(My—my)2[(my—my)Z—m3]12 [ (m;+my+m,)>
_ I X + r 4+ 4y 3+ 3
(et M) 2 2 531 m, g7, 8998 mi + m3) — 1108800, (mi + m})
— (38373 +28158n2) (M + m3) + ( — 46200m, M3+ 9240m?) (M, + m,) — 193561 m3 + 34124n3 } . (50)
|
The final expression fok/(e?f) is obtained by combining Vg’fvfo""opzv(e}fhrngbrvgf)“”"%r Vg‘f‘f)“””%r Vg’f)ﬁ”"e_
Egs.(48), (49), and(50): (52)
O)=V+V,, +
Ver =Vert Vey, Vch)' (52) Having obtained an expression for the effective potential, the

next step is to absorb the divergent terms into renormalized
coupling constants by choosing certain renormalization con-
ditions. However, from Eq(41), it is easy to see that{y)"
contains terms proportional %®. Since these terms would

ree.1 + sone-loon, « oo require counterterms that have no correspondence in the clas-
Verr= VI V™ P Vi 0%, sical Lagrangian, we must require that they vanish to ensure

To summarize, in thé1S scheme, the effective potential
to two loops is given by
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g—% 19 10—%—10 9 —=~—10
5 6 6 6 5 5 ' /’ ‘ /’ \\ ’
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FIG. 21. Theta diagrams from two gauge field propagators and
one scalar propagator.
FIG. 20. Theta diagrams from one gauge field propagator and
two scalar propagators. symmetry breaking mechanism, will be the subject of a fu-
o ) ] ~ ture publication.

the renormalizability of two-loop effective potential. This Finally, we remark that the two-loop calculations pre-
can be done by imposing the constraint sented above are extremely lengthy, in part due to the com-
plicated form of the dimensionally regulated gauge field
propagator. It would therefore be of interest to examine an
alternative regularization scheme that preserves gauge invari-
ance without the need to dimensionally continue the anti-
symmetric tensor. One excellent candidate is operator regu-

¥3(—90e?ya\ +900e* y5+ A?) =0. (53

The solutions to this equation are

(3=\B)\ larization, which was shown to greatly facilitate two-loop
%=0 o yp=—F—. (54 calculations in Chern-Simons th
60e? calculations in Chern-Simons thedig0].
The first, trivial, solution merely verifies that the theory is ACKNOWLEDGMENTS

renormalizable in the limity,—0. For the case of a finite . . .
non-minimal Chern-Simons coupling, we must choose one . This work is supported by the Natural Sciences and En-

of the second solutions and impose a non-trivial relation pedNeerng Research Council of Canada. We are greatly in-

tween this non-minimal coupling and the other fundamentafhabteci to R. Kobes for various useful discussions.
coupling constants of the theory. Note that our result that the

non-minimal coupling depends on the fundamental couplings APPENDIX: TWO-LOOP INTEGRATION FORMULAS
is consistent with the fact that in a theory without non-
minimal Chern-Simons coupling the magnetic moment inter
action would be generated through quantum correcfit@k
We should emphasize that E4) applies to the tree level
couplings. Since it is not protected by any symmetry, it will
probably be subject to quantum corrections. However, since

This appendix is a collection of the integration formulas
‘used in the calculation of two-loop effective potential. De-
noting dk=d"k/(2#)" and using the following notation for
the Euclidean space propagators,

we cannot go beyond two loops in this model, these correc- Si(q)= ; Sy(k) = ;
tions, which would affect the effective potential only at three q+ mf K2+ mg
loops, are not relevant.
V. SUMMARY AND CONCLUSIONS Ss(k+a)= (ktq)tme’
3

We have studied in some detail the two-loop quantum
behavior of (2+1)-dimensional scalar QED with a non- S2=5,(q)S,(K)S5(k+q),
minimal Chern-Simons coupling. As expected from dimen-
sional arguments, the complete theory is not renormalizableve introduce the following integrals:
beyond the one-loop level. This is not a major problem in
principle, since the theory is most reasonably considered as I_J’ dkda <
an effective field theory describing magnetic moment inter- B qs.
actions between the charged scalar and the electromagnetic
fields. At this level the renormalizability is useful because it
limits the number of parameters that must be introduced atlef dksS(k), szf dkkS(k), stf dkK!S(k),
each order in perturbation theory in order to make unambigu-
ous predictions. We find that the effective potential, which is
the zeroth order contribution to the quantum effective action K‘“’“=J' dkdqo‘q”k k™S?,
in the momentum expansion, can be made renormalizable
providing the fundamental couplings are related to the non-
minimal one by the conditio(64). It is of interest to further Twmzf dkdgg‘q'qtk™S?,
examine the effective potential with this condition imposed.
The renormalization of the two-loop effective potential using
a physical renormalization scheme is a straightforward but vaBNT_ _— -
lengthy procedure. This, plus an analysis of the resulting Lt _J dkdac'a*q g’k kS’,
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2(n—-3)
reve = [ dkdadrag kA KS’ Kom— P 3 3y 2
1 > 1 )3 12t
167
Contracting the tensor indices in various combinations with 2(n-3)
the n- and three-dimensional metric tensors, we get the inte- ~
; e g Ko= [m3(mymg-+mpmg —m;my)
grations needed for two-loop calculations: 642

Kl:J' dkdqPk2S?, Kzzf dkdgrk- q)2S3, —mg(3mS+3m3+mim, +msmy) + (Mg +m3)mymy ]
(M mE-md)2,
Kizf dkdqofk?S®,
3
Ki:ﬁKly
R1=J dkdqfk?S®, R2=f dkdqgk-q)3S?,

x

= D) LN IKe (6= 18K

lef dkdqdf(k-q)S?, T1=f dkdqcf(k-q)S?,

T~ [ okoad s TR
2= q -q ’
2(n-3)
= 302 [M3(mg—my) +2m3mg + mm,ms]

L1=J dkdqd'k?®s®, [1=f dkdqdk?s®,

1
— =mi(mi+m3—m3)l,

2
Lzzjdkdqqz(kﬂ)283,
T Do
~ ~ e~ 1:—+2 1, 2=~ 11,
= [ dkoq#® @2, L= [ akdadies? nn+2) 0
1
L= [ dkagifies L= 209 mims + mimy(mi + 3+ m3) |
4= q ,
—mjmal,
Lo [ dkdad@es®,  Lo= [ dkdad(k s
L ane9) 1 4. 4.3 22
L2:167T2,u« myms Zml+ m2+ Zmlmz

Rlzf dkdqck?(q-k)S®, Rzzf dkdq(q-k)3S?,
2.2 1 2.2 1 3 2 2 2
— 7MiMz +=m;m3| — —mimy[mi+m;—mg]

4 3 4
R =J dkdgqdfk?(k-q)S3, R =f dkdqdfk?(k-q)S3. 1 1 1
4 qqZ~ (k-q) 5 qofk?(k-q) _ Zm?+§mi(m§_m§)+Zmi(mg_mg)z I,

Ry- | akagiRE S,
2 4

1 1
+ mlmS[—m‘l‘Jr —m2(m2+ms—m3)

The results are listed below: 15

B MZ(n73) 1 (ml+m2+m3) Ll:n(n_l)(n+2)(n+8)[(3n+13)|-1+8(n_3)|-2]1
3272 [3-n 7 Amu® ’ 15
2(n—3) 2(n—-3) Lzzn(n_l)(n+2)(n+8)[(n_3)L1+2(5n_4)L2],
Ny=— 2 m N,=2 m3
1 47T ' 2 477 ! 3
/_L2(n73) L3=n(n_1)(n+2)(n+8)[(3n+2)(n+7)L1+4(n+4)
—— 5
W= ™ X (n=3)Ly),
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L4= 1 L L—3L
“nn+z e BTty

o= D+ 2y g LN T O3

+2(3n%+12n—8)L,],

MZ(n—B)
Ry ="———-[mim3—m3(m$+m3) —mg(m3+m)]
327
+ 1(m2+ m2—m?2)K
2 1 2 3 1
(207911
Rx= > §[m§m§—mg(m§+m§)]—m3(m?+m§)
327
+ 1(mzwL m3—m3)K
2 1 2 3 2
15
Rs [R1(5n—1)+2R,(n—3)],

“nin—1)(n+2)(n+4)

R——lS R
A n(n+2) Y

3
RSZHR].'
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We have employed the following relations to facilitate the
two-loop calculation:

Kl—Kzzm(Kl—Kz),

~ - 30
Ll_LZ_m(Ll_LZ)a
~ 3(n—3)
L =D me 2y e) e T 100
+4(n—6)L,],
_ 3(n—3)
L b= D) inr g (N L BLal,
3(n—3)
Ls— 4:m|-1,
_ 3(n—3)
Lo L=ty 2 g LN+ Db+ 2(3n
—4)L,],
. 18n-3)
R R = Dn+2)(n+a) (T DR 2R,
3(n—3)
Rs— 4T hn+2)

[1] S. Deser, R. Jackiw, and S. Templeton, Ann. PkisY.) 140,
372 (1982; R. Jackiw and S. Templeton, Phys. Rev.2B,
2291(1981).

[2] Fractional Statistics, Superconductivity of Anypedited by F.
Wilczeck (World Scientific, Singapore, 1990S. Forte, Rev.

Mod. Phys.64, 193(1992.

[3] J. Hong, Y. Kim, and P. Y. Park, Phys. Rev. Ldit, 2230
(1990; R. Jackiw and E. J. Weinberggid. 64, 2234(1990;
R. Jackiw, K. Lee, and E. Weinberg, Phys. Rev4P) 3488
(1990.

[4] D. Gross, R. Pisaski, and L. Yaffe, Rev. Mod. Phg8, 43
(198)); R. Efraty and V. P. Nair, Phys. Rev. Le@8, 2891
(1992.

[5] J. Goryo and K. Ishikawa, Phys. Lett. 246, 549 (1998.

[6] S. Coleman and E. Weinberg, Phys. Rev7,D1888(1973.

[7] M. E. Carrington and G. Kunstatter, Phys. Rev.5D, 2830
(19949.

[8] A. Antillon, J. Escalona, and M. Torres, Phys. Re\6$)6327
(1997.

[9] M. Torres, Phys. Rev. @6, R2295(1992.

[10] P. N. Tan, B. Tekin, and Y. Hosotani, Phys. Lett3B8 611

(1996; Nucl. Phys.B502, 483(1997.

[11] S. Coleman,Aspects of SymmetryCambridge University
Press, Cambridge, England, 1986hap. 5.

[12] R. Pisarski and S. Rao, Phys. Rev.3R 2081(1985.

[13] M. Chaichian and W. F. Chen, Phys. Rev. 33, 125004
(1998.

[14] G. 't Hooft and M. Veltman, Nucl. PhysB44, 189 (1972.

[15] P. Breitenlohner and D. Maison, Commun. Math. P5%.11
(1977.

[16] G. Giavarini, C. P. Martin, and F. Ruiz Ruiz, Nucl. Phys.
B381, 222(1992.

[17] E. R. Speer, J. Math. Phys5, 1 (1974.

[18] R. Jackiw, Phys. Rev. D, 1698(1974).

[19] I. I. Kogan, Phys. Lett. B265 83 (199); I. I. Kogan and G.
W. Semenoff, Nucl. PhysB368 718 (1992; M. Chaichian,
W. F. Chen, and V. Ya. Fainberg, Eur. Phys. J.5C545
(1998.

[20] F. A. Dilkes and D. G. C. Mckeon, Phys. Rev. &2, 4668
(1995; D. G. C. Mckeon and S. K. C. Wong, Int. J. Mod.
Phys. A10, 2181(1995.

125018-17



