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Two-loop quantum corrections of scalar QED with nonminimal Chern-Simons coupling
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We investigate two-loop quantum corrections to non-minimally coupled Maxwell-Chern-Simons theory.
The non-minimal gauge interaction represents the magnetic moment interaction between the charged scalar and
the electromagnetic field. We show that one-loop renormalizability of the theory found in previous work does
not survive to the two-loop level. However, with an appropriate choice of the non-minimal coupling constant,
it is possible to renormalize the two-loop effective potential and hence render it potentially useful for a detailed
analysis of spontaneous symmetry breaking induced by radiative corrections.@S0556-2821~99!05024-9#

PACS number~s!: 11.30.Qc, 11.10.Kk, 11.15.Ex
ie
h

as

a
ad
o
o

ve
rn
ig

s
n

d
r
o
ti

el
t,
o

f

te

r
b

es
th

tio

be
al
rst-
ell
nd
ve

al
a
the

, is

D
w-
s.

t in
us

liz-

the

ns
be-
e

ak-
the

nd
etry

al-
nd
the
o-

na-
n-

of
f the
l-
ur-
-

rt
I. INTRODUCTION

Maxwell-Chern-Simons electrodynamics has been stud
extensively in recent years for a variety of reasons. T
Chern-Simons term gives the photon a topological m
without spontaneously breaking gauge symmetry@1# and al-
lows for the existence of charged particles with fraction
statistics@2#. Pure Chern-Simons scalar electrodynamics
mits topological and non-topological self-dual solitons, f
which many exact solutions to the classical equations of m
tion are available@3#. Moreover, such theories may also ha
physical significance. Relativistic three dimensional Che
Simons theories provide a consistent description of the h
temperature limit of four dimensional gauge theories@4# and
certain solid state systems with planar dynamics@2#. In ad-
dition, the non-relativistic version of Maxwell-Chern-Simon
theory has been applied to the fractional Hall effect, a
more recently to rotating superfluid3He-A @5#.

Recently a version of scalar electrodynamics in three
mensions has been studied in which a non-minimal Che
Simons type gauge interaction was introduced. The n
minimal coupling in this model represents a magne
moment interaction between the charged scalar and the
tromagnetic field. It is of interest for several reasons. Firs
is well known that one of the most important features
scalar quantum electrodynamics~QED! is the occurrence o
the Coleman-Weinberg mechanism@6#. In scalar QED with
non-minimal coupling, the Chern-Simons term is genera
through the Coleman-Weinberg mechanism@7#. In this
sense, the non-minimal model is the one in which the Che
Simons term arises naturally rather than being put in
hand.

Another reason that the non-minimal model is of inter
involves the study of vortex solutions. In recent years,
classical vortex solutions of~211!-dimensional Chern-
Simons field theories have received considerable atten
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@3,8#. To find such a solution exactly, the model must
self-dual. A self-dual theory is one in which the classic
equations of motion can be reduced from second- to fi
order differential equations. In the absence of a Maxw
term, scalar QED with a Chern-Simons term is self-dual, a
the topological and non-topological vortex solutions ha
been found with an appropriately chosen scalar potential@3#.
However, if the Maxwell term is present, a self-du
Maxwell-Chern-Simons theory can be achieved only if
magnetic moment interaction between the scalar and
gauge field, i.e., the non-minimal Chern-Simons coupling
introduced@8,9#.

It is well known that Maxwell-Chern-Simons scalar QE
is renormalizable. Non-minimal gauge interactions are, ho
ever, notoriously non-renormalizable in four dimension
There is some hope that the situation might be differen
three dimensions. Some time ago it was found by two of
that the non-minimal Chern-Simons coupling in~211!-
dimensional scalar electrodynamics is actually renorma
able at the one-loop level@7#. The renormalizability occurs
because the non-minimal gauge interaction contains
three-dimensional antisymmetric tensor. An analysis@7# of
the symmetry breaking by induced radiative correctio
shows that at the one-loop level the non-minimal model
haves differently from the minimally coupled one. In th
usual Maxwell-Chern-Simons scalar QED, symmetry bre
ing results from quantum corrections but depends on
choice of a renormalization scale@10#, whereas in the non-
minimal model the symmetry breaking is unambiguous a
there is a finite temperature phase transition to the symm
restored state.

It is clearly of interest to discover whether the renorm
izability of this model persists beyond the one-loop level a
to compare the symmetry breaking phase transitions in
minimal and non-minimal models at higher orders. The tw
loop behavior of the minimal model has recently been a
lyzed in detail@10# where it was shown that the Colema
Weinberg mechanism occurs at two-loops. The purpose
the present paper is to commence a detailed analysis o
two-loop behavior of the non-minimally coupled Maxwel
Chern-Simons theory. We will show that the model, not s
prisingly, is not renormalizable at the two-loop level. How

a,
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ever, the two-loop effective potential can be ma
renormalizable providing certain conditions are satisfied
the coupling constants of the model. Thus we will show t
under certain circumstances~i.e. when the lowest order in th
momentum expansion is sufficient! the model may yield
physically relevant predictions for spontaneous symme
breaking by radiative corrections at the two-loop level.
detailed analysis of the renormalized effective potential a
the consequent symmetry breaking is deferred to a fu
publication.

The paper is organized as follows. Section II is a br
review, containing an introduction to the model, a discuss
of some technical aspects of dimensional regularization
211 dimensions, and a list of some of the necessary Fe
man rules. Section III demonstrates that the full effect
action is not renormalizable at the two loop-level. Section
is devoted to the~somewhat lengthy! calculation of the two-
loop effective potential in the modified minimal subtractio
MS scheme. In contrast to the one-loop case, the renor
izability of the two-loop effective potential requires a sp
cific choice of the non-minimal coupling constant. Our co
clusions are summarized in Sec. V, while some use
formulas are collected in the Appendix.

II. SCALAR QED WITH NON-MINIMAL CHERN-SIMONS
COUPLING

A. Lagrangian

The Lagrangian for scalar QED in 211 dimensions with
a non-minimal Chern-Simons coupling is@7#

L5
1

2
~Dmf!* Dmf2

1

4
FmnFmn2

i

8
g0emnrFnr

3@f* Dmf2~Dmf!* f#2
l

6!
~f* f!3, ~1!

where the complex scalar fieldf can be decomposed into th
real and imaginary parts,f5x1 ih, Fmn5]mAn2]nAm ,
Dmf5]mf1 ieAmf, andg0 , e, andl are the non-minimal
Chern-Simons coupling, the gauge coupling and the sc
self-interaction coupling constants, respectively. The dim
sional assignments for the fields and coupling constants
as follows:

@Am#5@f#5@e#5M1/2, @g0#5M 21/2, @l#5M0.
~2!

The negative mass dimension ofg0 indicates that the theory
is not renormalizable in general.

Following the standard technique to calculate the eff
tive potential we first assume the existence of a n
vanishing vacuum expectation value for the scalar field^f&
5v with v real, and shift the real part of the scalar field,x
→x1v @11#. We look for a non-vanishing value ofv by
determining the minimum of the effective potential gen
ated by quantum corrections. Note that in the Lagrangian~1!,
we have put the bare mass of the scalar field, the qua
scalar self-interaction coupling and the statistical param
12501
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of a possible Chern-Simons term equal to zero, even tho
these terms are allowed by the gauge symmetry. The co
sponding counterterms may appear, however, in the coun
term Lagrangian. The physical parameters can be obtaine
the usual way, i.e. by choosing renormalization conditio
that give zero renormalized parameters atv50. To avoid the
infrared divergences we use the Landau-typeRj gauge@12#.
The gauge-fixing term is

Lg.f.52
1

2j
~]mAm2jevh!2, j50. ~3!

Up to a total derivative term, the Lagrangian can be divid
into the kinetic part and ten interaction terms:

L (0)52
1

2
xS ]21

l

4!
v4Dx2

1

2
hS ]21

l

5!
v42je2v2Dh

1
1

2
AmF ~]21e2v2!gmn2S 12

1

j D ]m]n

2g0ev2emnr]rGAn,

L (1)52lS 1

6!
x61

1

534!32!
x4h2

1
1

534!32!
x2h41

1

6!
h6D ,

L (2)52lvS 1

5!
x51

1

533!32!
x3h21

1

534!
xh4D ,

L (3)52lv2S 1

234!
x41

1

1032!32!
x2h21

1

1034!
h4D ,

L (4)52
1

3!33!
lv3x32

1

5!33!32!
lv3xh2,

L (5)5eAm~]mhx2]mxh!,

L (6)5
1

2
g0emnr]nAr~x]mh2h]mx!,

L (7)5
1

2
e2AmAm~x21h2!,

L (8)52
1

2
g0eemnrAm]rAn~x21h2!,

L (9)5e2vAmAmx,

L (10)52g0veemnrAm]rAnx. ~4!
8-2
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B. Regularization

A regularization scheme must be chosen to handle
ultraviolet divergences of the theory. In this paper we sh
use dimensional regularization. The use of dimensional re
larization in a theory that explicitly depends on epsilon te
sors involves adopting a complicated form for the gauge fi
propagator, as will be discussed below. In spite of this co
plication, dimensional regularization is simpler than t
Pauli-Villars regularization adopted in a previous paper@7#
since it allows us to preserve explicit gauge symmetry.

There are several problems involved with analytic co
tinuation ton dimensions. The first of these is standard. T
mass dimensions of the fields and parameters become

@f#5@Am#5@v#5M (n22)/2, @e#5M (22n)/2,

@g0#5M (22n)/2, @l#5M2(32n), ~5!

and thus, in order to ensure that the parameters keep
original mass dimensions, one must make the following
placements for the parameters in the regularized Lagrang

v→m (n23)/2v, e→m (32n)/2e, g0→m (32n)/2g0 ,

l→m2(32n)l. ~6!

The second problem is more complicated. Dimensional re
larization in a theory with a three-dimensional antisymme
tensoremnr must be handled carefully. It has been explici
shown that naive dimensional regularization schemes ca
make the theory well defined when they are applied to
Chern-Simons type model@13#. Therefore, in carrying ou
dimensional regularization we must adopt the thr
dimensional analogue of the consistent definition forg5,
which was originally proposed by ’t Hooft and Veltman@14#,
and later given a strict mathematical justification by Breite
lohner and Maison@15#. The explicit definition of this di-
mensional continuation for Chern-Simons-type theory w
explained in Ref.@16# where it is shown that this regulariza
12501
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tion method is indeed compatible with the Slavnov-Tay
identities. The explicit definition for the dimensional co
tinuation of the epsilon and the metric tensors is

emnr5H 61 if ~mnr!5permutation of ~0,1,2!,

0 otherwise,

gmn5H 11 for m5n50,

21 for m5n51,2, . . . ,n21,

gmn5H 11 for m5n50,

21 for m5n51,2.
~7!

These definitions give rise to the following contractions:

emnrer
lh5g̃mlg̃nh2g̃mhg̃nl, gmng̃n

l5g̃ml,

p̃m5g̃mnpn , p̃25 p̃mpm.

C. Feynman rules

The tree-level Feynman rules can be derived by stand
functional integration techniques. The propagators for
scalar fieldsx and h have the same form as in the fou
dimensional case,

iSx~p!5
i

p22mx
2

, mx
25

l

4!
v4;

iSh~p!5
i

p22mh
2

, mh
25

l

5!
v4. ~8!

Following Ref.@10# we can obtain the dimensional regu
larized propagator for the gauge field,
iD mn~p!5 i H 2F ~g0ev2!2

~p22e2v2!@~p22e2v2!22p2~g0ev2!2#
1

1

p2~p22e2v2!
G ~ p̃2g̃mn2 p̃mp̃n!

1
g0ev2

~p22e2v2!22p2~g0ev2!2
emnripr2

1

p2~p22e2v2!
@~p2gmn2pmpn!2~ p̃2g̃mn2 p̃mp̃n!#

1
~g0ev2!3~p22 p̃2!

@~p22e2v2!22 p̃2~g0ev2!2#@~p22e2v2!22p2~g0ev2!2#
F g0ev2

p22e2v2
~ p̃2g̃mn2 p̃mp̃n!2emnriprG J . ~9!

The above expression can be rewritten as
8-3
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iD mn~p!5 i H 2F 1

m11m2
S 1

m1

1

p22m1
2

1
1

m2

1

p22m2
2D 2

1

m3
2

1

p2G ~ p̃2g̃mn2 p̃mp̃n!1
1

m11m2
S 1

p22m2
2

2
1

p22m1
2D emnripr

2
1

m3
2 S 1

p22m3
2

2
1

p2D @~p2gmn2pmpn!2~ p̃2g̃mn2 p̃mp̃n!#

1
~g0ev2!3~p22 p̃2!

@d22 p̃2~g0ev2!2#@d22p2~g0ev2!2#
F g0ev2

p22e2v2
~ p̃2g̃mn2 p̃mp̃n!2emnriprG J

[2 i H A~p!~ p̃2g̃mn2 p̃mp̃n!2B~p!emnripr1C~p!@~p2gmn2pmpn!2~ g̃2g̃mn2 p̃mp̃n!#

1
~g0ev2!3~p22 p̃2!

@d22 p̃2~g0ev2!2#@d22p2~g0ev2!2#
F g0ev2

p22e2v2
~ p̃2g̃mn2 p̃mp̃n!2emnriprG J , ~10!
-
where we have defined

m15
1

2
ev~A~g0v !2141g0v !,

m25
1

2
ev~A~g0v !2142g0v !,

m3
25e2v2, d5p22e2v2, ~11!

and

A~p!5
1

m11m2
S 1

m1

1

p22m1
2

1
1

m2

1

p22m2
2D 2

1

m3
2

1

p2
,

B~p!5
1

m11m2
S 1

p22m1
2

2
1

p22m2
2D ,

C~p!5
1

m3
2 S 1

p22m3
2

2
1

p2D . ~12!

FIG. 1. Interaction verticesV1a ,V1b ,V2a ,V2b ,V2c .
12501
To further simplify the notation we make the following defi
nitions:

S~p!5
1

p2
, Si~p!5

1

p22mi
2

, i 51,2,3,

which allow us to write,

A~p!5
1

m1m2~m11m2!
@m2S11m1S22~m11m2!S#,

B~p!5
1

m11m2
@S12S2#, C~p!5

1

m1m2
~S32S!.

~13!

These expressions obey the following identities:

2e2v2~A2C!1eg0v2B5S11S21S3 ,

FIG. 2. Interaction verticesV3a ,V3b ,V3c ,V4a ,V4b .
8-4
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TWO-LOOP QUANTUM CORRECTIONS OF SCALAR QED . . . PHYSICAL REVIEW D60 125018
e2v2~A2C!1eg0v2B

5
1

m11m2
@m1S11m2S22~m11m2!S3#,

A2C5
1

m1m2~m11m2!
@m2S11m1S22~m11m2!S3#,

e2A1
1

2
eg0B5

1

2v2
~S11S222S!. ~14!

These expressions are useful to simplify calculations.
There are several mass poles in the dimensional regu

ized gauge field propagator. The first two terms in Eq.~10!
show thatm1 andm2 are the photon masses in the origin
three-dimensional space-time. The third term indicates
m3 is the mass that photons acquire inn23 dimensional
space-time. The last term is proportional to an evanes
quantity, p22 p̃2, and the power counting shows that th
term behaves as 1/p5 for largep. In the two-loop calculation
the contribution of this term at the level of regularization
finite and hence vanishes in the limitn→3.

The interaction vertices of the model were derived in R
@7#. These vertices are shown in Figs. 1–3 with dotted lin
denoting gauge bosons, while solid lines corresponding
either theh field or thex field, as labeled. For concisenes
the vertices in the figures are labeled purely by their numb
so that for example 3b denotesV3b , etc. The Feynman rule
for the vertices and the corresponding interact
Lagrangians are as follows:

L (1)→V1a~x6!52 il, V1b~x4h2!5V1b~x2h4!52 il/5,

L (2)→V2a~x5!52 ilv,

V2b~x3h2!5V2c~xh4!52 ilv/5,

L (3)→V3a~x4!52 ilv2/2,

V3b~x2h2!5V3b~h4!52 ilv2/10,

L (4)→V4a~x3!52 ilv3/6, V4b~xh2!52 ilv3/30,

FIG. 3. Interaction verticesV5 ,V6 ,V7 ,V8 ,V9 ,V10.
12501
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L (5)1L (6)→V5~hxA!1V6~hxA!

5e~p2q!l1 ig0etalktpa ,

L (7)1L (8)→V7~x2A2!1V8~x2A2!

5V7~h2A2!1V8~h2A2!

52ie2gab2eg0vealb~p2q!l ,

L (9)1L (10)→V9~xA2!1V10~xA2!

52eg0veman~k2q!a12ie2vgmn . ~15!

III. TWO-LOOP RENORMALIZABILITY

In this section we discuss the renormalizability of t
theory at the two-loop level. In order to show that the theo
is renormalizable we must show that contributions to
two-loop quantum effective action from terms that do n
appear in the original Lagrangian are finite. The superfic
degree of divergence~SDD! of a diagram is given by

v53L1(
v

dvvv22I , ~16!

whereL is the number of loops,I is the number of interna
lines, dv is the number of derivatives associated with ea
vertex, andvv is the number of vertices of each type. Th
sum is over all vertices in the diagram. We can rewrite t
expression using the following relations:

L5I 112V,

I 5
1

2 (
v

i vvv ,

l v5 i v1ev , ~17!

where V5(vvv is the number of vertices,l v is the total
number of lines entering vertexv, andi v andev are respec-
tively the number of internal and external lines entering
vertex v. Furthermore, there exists a relation between
number of vertices and lines:

(
v

l vvv52I 1E. ~18!

Using Eqs.~17! with L52 this constraint can be written a

(
v

~ l v22!vv521E. ~19!

Consequently, we have the SDD

v531(
v

vvvv2
1

2
E, ~20!

wherevv[dv1 1
2 l v23 is the degree of divergence for eac

vertex, which can be read out from the interaction Lagra
ian ~4!,
8-5
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v150, v252
1

2
, v3521, v452

3

2
, v552

1

2
,

v65
1

2
, v7521, v850, v952

1

2
, v1052

3

2
.

Substituting in we get

v532
1

2
E1S 2

1

2
v22v32

3

2
v42

1

2
v5

1
1

2
v62v72

1

2
v92

3

2
v10D . ~21!

To explicitly verify the renormalizability, we need to loo
at the one-particle-irreducible~1PI! parts of the Green func
tions that have positive SDD but no correspondence in
classical Lagrangian. We consider the 1PI part of the fo
point function of gauge fields,A4[^AmAnAlAr&. It is
straightforward to determine which combinations of vertic
satisfy the two conditions~19! and ~21!. One must then se
lect those combinations from which it is possible to obtain
diagram with four external photon lines. We categorize th
diagrams in three groups: diagrams with two internalV6’s,
one internalV6 and no internalV6.

Note that when calculating the SDD of anA4 diagram, the
following points must be taken into account. IfV6 is an
external vertex, then its degree of divergence isv6521/2
instead ofv651/2. This change occurs because of the f
thatV6 carrys one factor of momentum from the photon lin

FIG. 4. Two loop contributions toA4 part of the effective ac-
tion.

FIG. 5. Two loop contributions toA4 part of the effective ac-
tion.
12501
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which becomes an external momentum whenV6 is an exter-
nal vertex. Similarly, the degree of divergence ofV8 is re-
duced tov8521 instead ofv850 whenV8 is an external
vertex (V8 is considered an external vertex if both phot
lines are external legs!. These exceptions must be consider
in looking for divergent diagrams.

From Eq.~21! all diagrams with 2V6’s have SDD5 2, 1,
or 0. The diagrams with SDD equal to 0 and no externalV8’s
are shown in Figs. 4–10. It is straightforward to see tha
the SDD is 2, then the graph has two externalV8’s. As dis-
cussed above, these graphs have factors of the external
ton momentum from the verticesV8 which can be factored
out, leaving a two-loop integral with SDD50. The diagrams
are the same as those shown in Fig. 4, with the externalV7’s
replaced byV8’s. If the SDD is 1, then the diagram has on
externalV8. These graphs also have a factor of external p
ton momentum which can be factored out to leave an inte
of SDD50. The diagrams are the same as those show
shown in Figs. 5–7 with the externalV7’s replaced byV8’s.

The same thing happens for diagrams with oneV6. The
SDD is either 1 or 0. The diagrams with SDD equal to 0 a
no externalV8’s are shown in Figs. 11, 12. If the SDD is 1
then the diagram has an externalV8 which reduces the SDD
to 0, with a prefactor that contains an external photon m
mentum. These diagrams are the same as those shown in
11 with the externalV7’s replaced byV8’s. For the diagrams
with no V6, all V8’s contribute one photon line which i
internal and one which is external, and thus contribute
naive valuev850 to the counting of the diagram’s SDD. A
divergent diagrams have SDD50 and are shown in Figs
13–15.

Note that all of the diagrams with externalV5’s have part-
ner diagrams with all possible combinations and permu

FIG. 6. Two loop contributions toA4 part of the effective ac-
tion.

FIG. 7. Two loop contributions toA4 part of the effective ac-
tion.
8-6
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TWO-LOOP QUANTUM CORRECTIONS OF SCALAR QED . . . PHYSICAL REVIEW D60 125018
tions of V5’s replaced byV6’s. These partner diagrams wi
have the same SDD50 as the original diagrams, but the
will contain additional factors of external photon momen
since they contain externalV6’s.

The above analysis shows that all the two-loop diverg
diagrams forA4 have SDD50. For the purpose of studyin
renormalizability, we need to extract only the divergent pa
and see whether they cancel. There are several simpli
tions that one can make when extracting the divergent pa
a diagram with SDD50. We start by considering the scal
propagator. When a scalar propagator~8! contains an exter-
nal momentum it has the form

S~q1p,m!5
1

~q1p!22m2

wherep is an external momentum andq is an internal mon-
entum that will be integrated over. To study the UV behav
of this propagator we can employ following decompositio

S~q1p,m!5
1

~q1p!22m2
5

1

q2
2

2p•q1p22m2

q2@~q1p!22m2#
.

~22!

The UV degree of divergence of the second term is one
than that of the first term and thus gives no contribution
the UV divergent part of the integral. Thus, in calculating t
divergent part of the integral, we can make the replacem

FIG. 8. Two loop contributions toA4 part of the effective ac-
tion.

FIG. 9. Two loop contributions toA4 part of the effective ac-
tion.
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S~q1p,m!→S~q![1/q2. ~23!

To avoid the IR divergence induced by this procedure, i
necessary to keep the mass term at least in one propag
i.e., replaceS(q1p,m) by S(q,m). We will keep all three.

Similar simplifications are possible for the gauge prop
gator ~10!. First, the evanescent parts of the gauge fi
propagator will give vanishing contribution to the UV dive
gent part of the integral in the limitn→3 since they have
good UV behavior. Second, the UV degree of divergence
the parity odd term in the gauge field propagator is one l
than that of the parity even part of the propagator. Th
there are no contributions to the UV divergent part of t
integral from terms in the propagator that are proportiona
the epsilon tensor. Last, as explained above for the sc
propagator, factors of external momentum can be droppe

In addition, the calculation is simplified because of t
fact that there are no UV divergences at one-loop in dim
sional regularization. This fact is due to the special analy
properties of the one-loop amplitudes in odd dimensio
space-time@17#. As a consequence, there is no need for us
consider the subtraction of sub-divergences.

Using the above observations, one can show that all
vergent terms will be proportional to the two-loop integral
the form

FIG. 10. Two loop contributions toA4 part of the effective
action.

FIG. 11. Two loop contributions toA4 part of the effective
action.
8-7
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I 5E dkE dqS~q!S~k!S~k1q,m! ~24!

with dk[d3k/(2p)3. The divergence will appear as a po
of the form 1/(32n).

We concentrate first on diagrams in which the prefac
does not depend on the external photon momentum~Figs.
4–15!. These diagrams can be further classified into th
groups by coupling constant prefactors. The first group
diagrams is shown in Figs. 4, 5, 8, 11, 13, 14 and is prop
tional to e2g0

2; the second group is shown in Figs. 6, 7, 1
12, 15 and is proportional toe4g0

2(g0v)2. The third group is
shown in Fig. 9 and is proportional toe4g0

2(g0v)4. Each of
these sets of diagrams must be separately finite if the th
is to be renormalizable. We will concentrate on the fi
group of diagrams, Figs. 4, 5, 8, 11, 13, 14. Direct calcu
tion shows that the divergent pieces cancel between the
grams in Figs. 4, 5, 8, 11, 13, while Fig. 14 is finite.

As a further check, we calculate theA4 term with four
external momentum factors. Gauge invariance requires
this contribution should take the form (Fmn)4, and renormal-
izability requires that it be finite. We obtain contribution
from the diagrams in Fig. 8, with all of the externalV5’s
replaced byV6’s. Direct calculation shows that the diverge
pieces cancel.

Unfortunately, further checking reveals that the action
not in fact renormalizable. We have calculated thex4 term
with four external momentum factors. The correspond

FIG. 12. Two loop contributions toA4 part of the effective
action.

FIG. 13. Two loop contributions toA4 part of the effective
action.
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diagrams are shown in Fig. 16. This term is a contribution
the gauge invariant structure (Dmf)4 and must be finite if
the action is to be renormalizable. We find that in this ca
the divergent terms do not cancel so that the two-loop qu
tum effective action is not renormalizable.

However, as we will show in the next section, the tw
loop effective potential can be made renormalizable prov
ing certain conditions are satisfied by the coupling consta
in the model. Therefore, for the lowest order in the mome
tum expansion of the quantum effective action, the no
minimal model may yield physically relevant predictions f
the spontaneous symmetry breaking by the radiative cor
tions at the two-loop level.

IV. EFFECTIVE POTENTIAL

The effective potential is the energy density of t
vacuum in which the expectation value of the scalar field
given by ^f&5v @11#. It can be determined from the effec
tive actionG@f̃# according to

G@f̃5v#52~2p!nd (n)~0!Veff~v !, ~25!

wheref̃ is the vacuum expectation value of the scalar fie
in the presence of the external source. Using the fact
G@f̃# is the generating functional of the proper vertex,

G@f̃#5(
j 51

`
1

j ! E dnx1dnx2•••dnxjG
( j )~x1 , . . . ,xj !,

one has

Veff~v !52(
j 52

`
1

j !
G ( j )~0,0, . . . ,0!v j , ~26!

FIG. 14. Two loop contributions toA4 part of the effective
action.

FIG. 15. Two loop contributions toA4 part of the effective
action.
8-8
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which means that one can get the effective potential by
culating the 1PI vacuum diagrams. From Eq.~26! we can
write @18#

Veff~v !5Vtree~v !2
i\

2 E dnp

~2p!n
ln det@ iD 21~p!#

1 i\ K expS i

\
dnxLint~\1/2f,v ! D L

1PI

, ~27!

where D21(p) is the inverse propagator for each of th
bosonic fields in the theory.Vtree is the tree potential and ca
be obtained directly from Eq.~1! as,

Vtree5
l

6!
v6. ~28!

The second term of Eq.~27! is the one-loop effective poten
tial, and the third term contains the higher order contrib
tions. We shall use this expression to get the two-loop c
tribution to the effective potential.

A. One-loop effective potential in dimensional regularization

The one-loop effective potential of this model was co
puted in Ref.@7# in Pauli-Villars regularization. In order to
discuss spontaneous symmetry breaking, we now
calculate the one-loop effective potential using dimensio
regularization. According to Eq.~27! we have

Veff
one-loop5

\

2E dnp

i ~2p!n
$ ln@ iSx

21~p!#1 ln@ iSh
21~p!#

1 ln det@ iD mn
21~p!#%. ~29!

From the quadratic partL (0) of the Lagrangian~4! we have
the inverse scalar propagators

Sx
(21)~p!5p22mx

2 ,

Sh
(21)~p!5p22mh

2 ,

and the inverse gauge field propagator

FIG. 16. Two loop contributions tox4 part of the effective
action.
12501
l-

-
-

-

e-
l

Dmn
21~p![Kmn5~2p21e2v2!gmn

1S 12
1

j D pmpn2g0ev2emnripr, ~30!

which gives@10#

detKmn5exp Tr lnKmn

5~p22e2v2!S e2v22
1

j
p2D

3@~p22e2v2!2~g0ev2!2p̃2#. ~31!

Substituting above results into Eq.~29! and making use of
the integration formulas given in Ref.@10#,

E dnp

i ~2p!n
ln~p22m2!52

G S 2
1
2 nD

~4p!n/2
mn 5

n→3
2

1
6p m3,

E dnp

i ~2p!n
ln@~p22e2v2!22~g0ev2!2p̃2#

5
n→3

2
1

6p ~ev !3~41g0
2v2!1/2~11g0

2v2!, ~32!

we obtain the one-loop effective potential in the Land
gauge (j50),

Veff
one-loop52

\

12p
@mx

31mh
31~ev !3~41g0

2v2!1/2~11g0
2v2!#

52
\

12p H F S 1

4! D
3/2

1S 1

5! D
3/2Gl3/2v6

1~ev !3~41g0
2v2!1/2~11g0

2v2!J . ~33!

This result agrees with the one obtained in@7#.

FIG. 17. Two loop contributions to the effective potential fro
two scalar loops.
8-9
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B. Two-loop effective potential

It is straightforward to see that the two-loop effective p
tential is given by diagrams that contain only vertices fro
the cubic and quartic parts of the interaction Lagrangian.
of these diagrams are either ‘‘theta’’ type diagrams or ‘‘fi
ure eight’’ type diagrams. For each diagram we give
integral expression for the amplitude. The integral is eva
ated by rotating to Euclidean space and using the integ
given in the Appendix. The theta diagrams contain ultrav
let divergent terms and the results are separated into d

FIG. 18. Two loop contributions to the effective potential fro
one scalar and one gauge field loop.
12501
-

ll

e
-
ls
-
r-

gent and finite pieces. The divergent piece is represente
the integralI as defined in the Appendix, and is thus propo
tional to the factor

1

32n
2g111 ln 4p

whereg is the Euler constant. As a last step we use Eqs.~11!
to write the results in terms of the fundamental parametere,
g0, andv.

~1! The ‘‘figure eight’’ diagrams containing two scala
loops ~Fig. 17!. These diagram are produced by the quar
interactionL (3). The amplitude can be calculated by rotatin
to Euclidean space. We obtain

FIG. 19. Theta diagrams constructed from scalar propagato
Veff
(1)52\2lv2m (32n)E dnq

~2p!n

dnp

~2p!n

3F3

2

1

~p22mx
2!~q22mx

2!
1

3

10

1

~p22mh
2 !~q22mh

2 !
1

1

10

1

~p22mx
2!~q22mh

2 !
G

5
\2lv2

16p2 S 3

2
mx

21
3

10
mh

21
1

10
mxmhD

5
\2l2v6

16p2 S 3

2

1

4!
1

3

10

1

5!
1

1

10

1

A5

1

4! D . ~34!

~2! The ‘‘figure eight’’ diagram containing one scalar loop and one gauge field loop~Fig. 18!. This diagram is produced by
the quartic interactionsL (7) andL (8). Its amplitude is

Veff
(2)5 i\2m (32n)E dnp

~2p!n

dnq

~2p!n
iD mn~p!~2ie2gmn22g0eemnrp̃r!S 1

q22mx
2

1
1

q22mh
2 D

52e2\2m (32n)E dnp

~2p!n

dnq

~2p!n H 22p̃2F 1

m11m2
S 1

m1

1

p22m1
2

1
1

m2

1

p22m2
2D 2

1

m3
2

1

p2G2
1

m3
2 S 1

p22m3
2

2
1

p2D
3@~n21!p222p̃2#J S 1

q22mx
2

1
1

q22mh
2 D 24g0e\2m (32n)E dnp

~2p!n

dnq

~2p!n

p̃2

m11m2
S 1

p22m1
2

2
1

p22m2
2D

3S 1

q22mx
2

1
1

q22mh
2 D . ~35!

Rotating to Euclidean space we obtain
8-10
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Veff
(2)522e2\2m (32n)E dnp

~2p!n

dnq

~2p!n F 2

m1~m11m2!

p̃2

p21m1
2

1
2

m2~m11m2!

p̃2

p21m2
2

1
n21

m3
2

p2

p21m3
2

2
2

m3
2

p̃2

p21m3
2G

3S 1

q21mx
2

1
1

q21mh
2 D 24g0e\2m (32n)E dnp

~2p!n

dnq

~2p!n

p̃2

m11m2
S 1

p21m1
2

2
1

p21m2
2D S 1

q21mx
2

1
1

q21mh
2 D

5
\2

4p2

mx1mh

m11m2
@e2~m1

21m2
2!1g0e~m1

32m2
3!#

5
\2

4p2

1

v2

mx1mh

m11m2
~m1

41m2
4!5

\2

4p2

1

v2

mx1mh

m11m2
@~m1

22m2
2!212m1

2m2
2#

5
\2

4p2

Al/4!1Al/5!

Ag0v214
~ev !3@4~g0v !41~g0v !212#. ~36!

~3! The ‘‘theta’’ diagrams constructed from scalar propagators~Fig. 19!. These diagrams come from the interactionL (4)

and contain UV divergences. Their contribution to the effective potential is

Veff
(3)52

\2

2

~lv3!2m (32n)

3!3 E dnp

~2p!n

dnq

~2p!n

1

~p22mx
2!~q22mx

2!@~p1q!22mx
2#

2
\2

2

~lv3!2m (32n)

~5!33! !232!
E dnp

~2p!n

dnq

~2p!n

1

~p22mh
2 !~q22mh

2 !@~p1q!22mx
2#

5
\2

2
~lv3!2S 1

3!3
1

1

~533! !232!
D m~n23!

32p2 S 1

32n
2g111 ln 4p D

2
\2

2
~lv3!2

1

32p2 F 1

3!3
ln

9mx
2

m2
1

1

~533! !232!
ln

~2mh1mx!2

m2 G
[V(3)div1V(3)finite. ~37!

~4! The ‘‘theta’’ diagram composed of one gauge field propagator, oneh propagator and onex propagator~Fig. 20!. This
diagram arises from the cubic interactionL (5) andL (6) and the UV divergence is present. Its contribution to the effec
potential is

Veff
(4)5

i\2

2
m (32n)E dnp

~2p!n

dnq

~2p!n
$@e~p12q!m2 ig0emabqapb#@e~p12q!n2 ig0engdpgqd# iD mn~p!iSh~p1q!iSx~q!%.

~38!

Inserting the gauge field propagator~10!, employing the identities~14! to simplify the expression and performing the contra
tions:

~p12q!m~p12q!n~ p̃2gmn2 p̃mp̃n!54@ p̃2q̃224~ p̃•q̃!#,

~p12q!m~p12q!n~p2gmn2pmpn!54@p2q22~p•q!2#,

@~p12q!mengdpgqd1emabqapb~p12q!n#~ p̃2gmn2 p̃mp̃n!5@~p12q!mengdpgqd1emabqapb~p12q!n#

3~p2gmn2pmpn!50,
125018-11
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@~p12q!mengdpgqd1emabqapb~p12q!n#emnrpr54@ p̃2q̃224~ p̃•q̃!#emabqapbengdpgqd~ p̃2gmn2 p̃mp̃n!

5 p̃2@~p•q!22 p̃2q̃2#,

emabqapbengdpgqd~p2gmn2pmpn!5p2@ p̃2q̃224~ p̃•q̃!#,

emabqapbengdpgqdemnrpr50, ~39!

we obtain

Veff
(4)52

\2

2 E dnp

~2p!n

dnq

~2p!n
m (32n)H F2

1

m1~m11m2!
S1~p!2

1

m2~m11m2!
S2~p!1

1

m3
2

S~p!GSx~q!Sh~p1q!~4e2

1g0
2p̃2!@ p̃2q̃22~ p̃•q̃!2#J 1

\2

2

4eg0

m11m2
E dnp

~2p!n

dnq

~2p!n
m (32n)@S1~p!2S2~p!#Sx~q!Sh~p1q!@ p̃2q̃22~ p̃•q̃!2#

2
\2

2

1

m3
2E dnp

~2p!n

dnq

~2p!n
m (32n)@S3~p!2S~p!#Sx~q!Sh~p1q!$4e2@p2q22~p•q!2#

2@4e21g0
2~p22 p̃2!#@ p̃2q̃22~ p̃•q̃!2#%, ~40!

where the evanescent terms are thrown away since their contribution vanishes in the limitn→3. Using the integrals given in
the Appendix, we find, for the divergent part,

Veff
(4)(div)5

\2m~n23!

64p2 S 1

32n
2g111 ln~4p! D F S 4

v2 1g0
2D S 1

2
@~m12m2!21m1m2#~mx

21mh
2 !2

1

4
~m1

22m2
2!2

1
1

4
m1m2~m12m2!22

1

4
m1

2m2
2D1

1

4
g0

2~mx
22mh

2 !2G
52

\2m~n23!

230400p2 S 1

32n
2g111 ln~4p! D v2~290e2g0

4v6l2450e2lv4g0
21900e4g0

6v616300e4v4g0
4111700e4g0

2v2

2360e2lv213600e41g0
2l2v6! ~41!

and, for the finite part,

Veff
(4)(finite)52

\2

64p2v2 ~mx
22mh

2 !2lnS ~mx1mh!2

m2 D1
\2~g0

2v214!m2

256p2v2~m11m2!
@~mx1mh!22m2

2#@~mx2mh!2

2m2
2# lnS ~mx1m21mh!2

m2 D1
\2~g0

2v214!m1

256p2v2~m11m2!
@~mx1mh!22m1

2#@~mx2mh!22m1
2# lnS ~mx1m11mh!2

m2 D
2

\2~g0
2v214!

1536p2v2~m11m2!
@12~m1

21m2
2!~mx

32mx
2mh2mh

2mx1mh
3 !15m1

515m2
52~m1

31m2
3!

3~10mx
2112mxmh110mh

2 !1m3
2~m11m2!~10mx

2110mh
225m3

2!112~m1
41m2

4!~mx1mh!#

2
\2g0

2

7680p2@6m1
416m2

42~12mh
2112mx

216m3
2!~m1

21m2
2!125m3

4226~mx
21mh

2 !m3
2160mhmx~mx

21mh
2 !

125~mx
22mh

2 !2#. ~42!
125018-12
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~5! The ‘‘theta’’ diagram with onex propagator and two gauge field propagators~Fig. 21!. The interaction Lagrangian
yielding this diagram areL (9) andL (10). The corresponding contribution to the effective potential is

Veff
(5)5 i\2E dnp

~2p!n

dnq

~2p!n
m (32n)$@2ie2vgml1g0veemla~ p̃a2q̃a!# iD lr~q!iSx~p1q!

3@2ie2vgrn1g0veernb~ p̃b2q̃b!# iD nm~p!%. ~43!

Denoting

Vmn~p,q![2ie2vgmn1g0veemnr~ p̃r2q̃r!,

Pmn
(T)[p2gmn2pmpn ,

P̃mn
(T)[ p̃2g̃mn2 p̃mp̃n , ~44!

and performing the contractions

Vml~p,q!Vrn~p,q!P̃(T)mnP̃(T)lr524e4v2@ p̃2q̃21~ p̃•q̃!2#1~g0ve!2$2~ p̃21q̃2!@ p̃2q̃21~ p̃•q̃!2#14p̃2q̃2~ p̃•q̃!%,

Vml~p,q!Vrn~p,q!P̃(T)mnP(T)lr524e4v2@2p̃2q22 p̃2q̃21~ p̃•q̃!2#1~g0ve!2@4p̃2q2~ p̃•q̃!22p̃4q21 p̃4q̃22 p̃2~ p̃•q̃!2

2q2~ p̃•q̃!22 p̃2q̃2q2#,

Vml~p,q!Vrn~p,q!P(T)mnP(T)lr524e4v2@~n23!p2q21p2q21~p•q!2#1~g0ve!2@22p2q2~ p̃21q̃2!14p2q2~ p̃•q̃!

2~p21q2!~ p̃•q̃!21~p21q2! p̃2q̃2#,

Vml~p,q!Vrn~p,q!P̃(T)mnelrgiqg522g0v2e3@24p̃2p̃•q̃12~ p̃•q̃!212p̃2q̃2#,

Vml~p,q!Vrn~p,q!P(T)mnelrgiqg524g0v2e3@22p2p̃•q̃12p2q̃21~ p̃•q̃!22 p̃2q̃2#,

Vml~p,q!Vrn~p,q!emnaipaelrbiqb58e4v2p̃•q̃12~g0ve!2@~ p̃21q̃2! p̃•q̃2 p̃2q̃22~ p̃•q̃!2#, ~45!

we get

Veff
(5)5 i\2E dnp

~2p!n

dnq

~2p!n
m32ne2v2Sx~p1q!†e2@24e2C~p!C~q!p2q2~n23!216@A~p!2C~p!#C~q!p̃2~q22q̃2!

24C~p!C~q!@p2q21~p•q!2#24@A~p!A~q!2C~p!C~q!#@ p̃2p̃21~ p̃•q̃!2#18B~p!B~q!p̃•q̃#1eg0@8A~p!B~q!

3@ p̃2q̃21~ p̃•q̃!222p̃2p̃•q̃#116C~p!B~q!~p22 p̃2!~ q̃22 p̃•q̃!#1g0
2
„24C~p!C~q!~p22 p̃2!~q22q̃2!~ p̃22 p̃•q̃!

24A~p!C~q!~q22q̃2! p̃42C~p!A~q!~p22 p̃2!2p̃2q̃212~ p̃•q̃!228q̃2p̃•q̃12B~p!B~q!@~ p̃21q̃2!p̃•q̃2 p̃2q̃2

2~ p̃•q̃!2#22A~p!A~q!$2p̃2q̃2@ p̃22~ p̃•q̃!#2 p̃2@ p̃2q̃22~ p̃•q̃!2#%…‡. ~46!

In deriving Eq.~46! we have used the fact that the integrand is invariant under the interchangep↔q.
The calculation of this amplitude is quite lengthy. For clarity we divide the result in three parts. We label themVe2, Veg0

,

andVg
0
2. They correspond to the terms proportional toe2, eg0, andg0

2 respectively in Eq.~46! above. In the expressions tha

appear below, the couplingse andg0 do not explicitly appear because we have used the relations~11! to write

e25
1

v2
m3

2 ,

eg05
1

v2
~m12m2!,
125018-13



simplest

CARRINGTON, CHEN, KUNSTATTER, AND MOTTERSHEAD PHYSICAL REVIEW D60 125018
g0
25

1

v2

~m12m2!2

m1m2
, ~47!

and eliminate the couplings in favor of the masses. This substitution allows us to combine all three terms to obtain the
expression possible for the final result of this diagram. As a last step we use Eqs.~11! to write the result in terms of the
fundamental parameterse, g0, andv. First, thee2 part is

Ve252
3\2m (n23)

16p2v2 S 1

32n
2g111 ln~4p! Dm3

41
\2mx

4

32p2v2
lnS mx

2

m2 D 2
\2m1~m2

22mx
2!2

16p2~m11m2!v2lnS ~m21mx!2

m2 D
2

\2m2~m1
22mx

2!2

16p2~m11m2!v2lnS ~m11mx!2

m2 D1
\2m1

2~4m2
22mx

2!2

32~m11m2!2p2v2 lnS ~2m21mx!2

m2 D1
\2m2

2~4m1
22mx

2!2

32~m11m2!2p2v2 lnS ~2m11mx!2

m2 D
1

\2m3
2~~m12m2!22mx

2!2

16~m11m2!2p2v2 lnS ~m11m21mx!2

m2 D1
\2m3

4@23~m12m2!212mx~m11m21mx!#

8~m11m2!2p2v2 . ~48!

The term proportional toeg0 is given by

Veg0
52

5\2m (n23)

8p2v2 S 1

32n
2g111 ln~4p! D ~m12m2!2m3

2

2
\2m3

2~m12m2!2@49m1
2149m2

2242~m11m2!mx126m3
2212mx

2#

48~m11m2!2p2v2 2
\2~4m1

22mx
2!2~m22m1!m2

16~m11m2!2p2v2 lnS ~2m11mx!2

m2 D
1

\2~4m2
22mx

2!2~m22m1!m1

16~m11m2!2p2v2 lnS ~2m21mx!2

m2 D1
\2~m12m2!2@~m12m2!22mx

2#2

16~m11m2!2p2v2 lnS ~m11m21mx!2

m2 D
1

\2~m12m2!~m2
22mx

2!2

16p2~m11m2!v2 lnS ~m21mx!2

m2 D2
\2~m12m2!~m1

22mx
2!2

16p2~m11m2!v2 lnS ~m11mx!2

m2 D . ~49!

The term proportional tog0
2 can be calculated in a similar way:

Vg
0
252

\2~m12m2!2

64p2v2 Fm (n23)S 1

32n
2g111 ln~4p! D @25~m1

21m2
2!235m3

226mx
2#2

2~4m1
22mx

2!2

~m11m2!2 lnS ~2m11mx!2

m2 D
2

2~4m2
22mx

2!2

~m11m2!2 lnS ~2m21mx!2

m2 D1
~m1

22mx
2!2m1

~m11m2!m3
2 lnS ~m11mx!2

m2 D1
~m2

22mx
2!2m2

~m11m2!m3
2 lnS ~m21mx!2

m2 D
2

~m12m2!2@~m12m2!22mx
2#2

~m11m2!2m1m2
lnS ~m11m21mx!2

m2 D1
1

2310~m11m2!2@89981~m1
41m2

4!2110880mx~m1
31m2

3!

2~3837m3
2128158mx

2!~m1
21m2

2!1~246200mxm3
219240mx

3!~m11m2!219356mx
2m3

2134124m3
4#G . ~50!
l

the
zed
on-

clas-
ure
The final expression forVeff
(5) is obtained by combining

Eqs.~48!, ~49!, and~50!:

Veff
(5)5Ve21Veg0

1Vg
0
2. ~51!

To summarize, in theMS scheme, the effective potentia
to two loops is given by

Veff5Vtree1Veff
one-loop1Veff

two-loop,
12501
Veff
two-loop[Veff

(1)1Veff
(2)1Veff

(3)finite1Veff
(4)finite1Veff

(5)finite.
~52!

Having obtained an expression for the effective potential,
next step is to absorb the divergent terms into renormali
coupling constants by choosing certain renormalization c
ditions. However, from Eq.~41!, it is easy to see thatVeff

(4)div

contains terms proportional tov8. Since these terms would
require counterterms that have no correspondence in the
sical Lagrangian, we must require that they vanish to ens
8-14
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the renormalizability of two-loop effective potential. Th
can be done by imposing the constraint

g0
2~290e2g0

2l1900e4g0
41l2!50. ~53!

The solutions to this equation are

g0
250 or g0

25
~36A5!l

60e2
. ~54!

The first, trivial, solution merely verifies that the theory
renormalizable in the limitg0→0. For the case of a finite
non-minimal Chern-Simons coupling, we must choose o
of the second solutions and impose a non-trivial relation
tween this non-minimal coupling and the other fundamen
coupling constants of the theory. Note that our result that
non-minimal coupling depends on the fundamental coupli
is consistent with the fact that in a theory without no
minimal Chern-Simons coupling the magnetic moment int
action would be generated through quantum corrections@19#.
We should emphasize that Eq.~54! applies to the tree leve
couplings. Since it is not protected by any symmetry, it w
probably be subject to quantum corrections. However, si
we cannot go beyond two loops in this model, these corr
tions, which would affect the effective potential only at thr
loops, are not relevant.

V. SUMMARY AND CONCLUSIONS

We have studied in some detail the two-loop quant
behavior of (211)-dimensional scalar QED with a non
minimal Chern-Simons coupling. As expected from dime
sional arguments, the complete theory is not renormaliza
beyond the one-loop level. This is not a major problem
principle, since the theory is most reasonably considere
an effective field theory describing magnetic moment int
actions between the charged scalar and the electromag
fields. At this level the renormalizability is useful because
limits the number of parameters that must be introduced
each order in perturbation theory in order to make unamb
ous predictions. We find that the effective potential, which
the zeroth order contribution to the quantum effective act
in the momentum expansion, can be made renormaliz
providing the fundamental couplings are related to the n
minimal one by the condition~54!. It is of interest to further
examine the effective potential with this condition impose
The renormalization of the two-loop effective potential usi
a physical renormalization scheme is a straightforward
lengthy procedure. This, plus an analysis of the result

FIG. 20. Theta diagrams from one gauge field propagator
two scalar propagators.
12501
e
-
l
e
s

-

l
e

c-

-
le

as
-
tic

t
at
-

s
n
le
-

.

t
g

symmetry breaking mechanism, will be the subject of a
ture publication.

Finally, we remark that the two-loop calculations pr
sented above are extremely lengthy, in part due to the c
plicated form of the dimensionally regulated gauge fie
propagator. It would therefore be of interest to examine
alternative regularization scheme that preserves gauge in
ance without the need to dimensionally continue the a
symmetric tensor. One excellent candidate is operator re
larization, which was shown to greatly facilitate two-loo
calculations in Chern-Simons theory@20#.
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APPENDIX: TWO-LOOP INTEGRATION FORMULAS

This appendix is a collection of the integration formul
used in the calculation of two-loop effective potential. D
noting dk5dnk/(2p)n and using the following notation fo
the Euclidean space propagators,

S1~q!5
1

q21m1
2

, S2~k!5
1

k21m2
2

,

S3~k1q!5
1

~k1q!21m3
2

,

S3[S1~q!S2~k!S3~k1q!,

we introduce the following integrals:

I 5E dkdqS3,

N15E dkS~k!, N25E dkk2S~k!, N35E dkk4S~k!,

Kmnlt5E dkdqqmqnklktS3,

Tmnlt5E dkdqqmqnqlktS3,

Lmnablt5E dkdqqmqnqaqbklktS3,

d

FIG. 21. Theta diagrams from two gauge field propagators
one scalar propagator.
8-15
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Rmnablt5E dkdqqmqnqakbklktS3.

Contracting the tensor indices in various combinations w
then- and three-dimensional metric tensors, we get the in
grations needed for two-loop calculations:

K15E dkdqq2k2S3, K25E dkdq~k•q!2S3,

K185E dkdqq̃2k2S3,

K̃15E dkdqq̃2k̃2S3, K̃25E dkdq~ k̃•q̃!2S3,

T15E dkdqq2~k•q!S3, T̃15E dkdqq̃2~ k̃•q̃!S3,

T25E dkdqq2~ k̃•q̃!S3,

L15E dkdqq4k2S3, L̃15E dkdqq̃4k̃2S3,

L25E dkdqq2~k•q!2S3,

L̃25E dkdqq̃2~ k̃•q̃!2S3, L35E dkdqq2q̃2k̃2S3,

L45E dkdqq̃4k2S3,

L55E dkdqq2q̃2k2S3, L65E dkdqq2~ k̃•q̃!2S3,

R15E dkdqq2k2~q•k!S3, R25E dkdq~q•k!3S3,

R35E dkdqq̃2k̃2~ k̃•q̃!S3,

R45E dkdqq2k̃2~ k̃•q̃!S3, R55E dkdqq2k2~ k̃•q̃!S3.

The results are listed below:

I 5
m2(n23)

32p2 F 1

32n
2g112 ln

~m11m21m3!2

4pm2 G ,

N152
m2(n23)

4p
m, N25

m2(n23)

4p
m3,

N352
m2(n23)

4p
m5,
12501
h
-

K152
m2(n23)

16p2
~m1

31m2
3!m31m1

2m2
2I ,

K25
m2(n23)

64p2
@m3

2~m1m31m2m32m1m2!

2m3~3m1
313m2

31m1
2m21m2

2m1!1~m1
21m2

2!m1m2#

1
1

4
~m1

21m2
22m3

2!2I ,

K185
3

n
K1 ,

K̃15
1

n~n21!~n12!
@~9n13!K11~6n218!K2#,

K̃25
1

n~n21!~n12!
@3~n23!K116~2n21!K2#,

T15
m2(n23)

32p2
@m1

3~m32m2!12m2
3m31m1

2m2m3#

2
1

2
m1

2~m1
21m2

22m3
2!I ,

T̃15
15

n~n12!
T1 , T25

3

n
T1 ,

L15
1

16p2
m2(n23)@m1

5m31m2
3m3~m1

21m2
21m3

2!#

2m1
4m2

2I ,

L25
1

16p2
m2(n23)H m2m3F1

4
m1

41m2
41

3

4
m1

2m2
2

2
1

4
m1

2m3
21

1

3
m2

2m3
2G2

1

4
m1

3m2@m1
21m2

22m3
2#

1m1m3F1

2
m1

41
1

4
m1

2~m1
21m2

22m3
2!G J

2F1

4
m1

61
1

2
m1

4~m2
22m3

2!1
1

4
m1

2~m2
22m3

2!2G I ,
L̃15

15

n~n21!~n12!~n18!
@~3n113!L118~n23!L2#,

L̃25
15

n~n21!~n12!~n18!
@~n23!L112~5n24!L2#,

L35
3

n~n21!~n12!~n18!
@~3n12!~n17!L114~n14!

3~n23!L2#,
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L45
15

n~n12!
L1 , L55

3

n
L1 ,

L65
3

n~n21!~n12!~n18!
@~n16!~n23!L1

12~3n2112n28!L2#,

R15
m2(n23)

32p2
@m1

3m2
32m3

3~m1
31m2

3!2m3~m1
51m2

5!#

1
1

2
~m1

21m2
22m3

2!K1 ,

R25
m2(n23)

32p2 F1

3
@m1

3m2
32m3

3~m1
31m2

3!#2m3~m1
51m2

5!G
1

1

2
~m1

21m2
22m3

2!K2 ,

R35
15

n~n21!~n12!~n14!
@R1~5n21!12R2~n23!#,

R45
15

n~n12!
R1 ,

R55
3

n
R1 .
12501
We have employed the following relations to facilitate t
two-loop calculation:

K̃12K̃25
6

n~n21!
~K12K2!,

L̃12L̃25
30

n~n21!~n12!
~L12L2!,

L32L̃15
3~n23!

n~n21!~n12!~n18!
@~3n117!L1

14~n26!L2#,

L42L̃15
3~n23!

n~n21!~n12!~n18!
@~n17!L128L2#,

L52L45
3~n23!

n~n12!
L1 ,

L62L̃25
3~n23!

n~n21!~n12!~n18!
@~n11!L112~3n

24!L2#,

R42R35
15~n23!

n~n21!~n12!~n14!
@~n11!R122R2#,

R52R45
3~n23!

n~n12!
R1 .
s.
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