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Spin-1 massive particles coupled to a Chern-Simons field
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We study spin-one particles interacting through a Chern-Simons field. In the Born approximation, we
calculate the two body scattering amplitude considering three possible ways to introduce the intei@cion:
Proca-like model minimally coupled to a Chern-Simons fiéil the model obtained frorte) by replacing the
Proca’s mass by a Chern-Simons term, érich complex Maxwell-Chern-Simons model minimally coupled to
a Chern-Simons field. In the low energy regime the results show similarities with the Aharonov-Bohm scat-
tering for spin-1/2 particles. We discuss the one loop renormalization program for the Proca model. In spite of
the bad ultraviolet behavior of the matter field propagator, we show that, up to one loop, the model is power
counting renormalizable thanks to the Ward identities satisfied by the interaction vertices.
[S0556-282(199)04422-1

PACS numbegps): 11.10.Ef

I. INTRODUCTION Whereas the first formulation encompasses both modes of
spin =1, the latter, Eq(2), represents only a single mode of
In recent years much work has been devoted to the studgpinM/|M|. The two formulations are not entirely inequiva-
of the properties of the Chern-Simof&9) field [1]. This  |ent, however. The modePR) is equivalent to the self-dual
was motivated not only by its potential applications to con-model,[3,4] and this last model is similar to a square root of
densed matter physics but also because these studies hawca’s[5]. Nevertheless, such equivalence does not in gen-
unveiled some new and interesting aspects of the dynamiasral persist whenever the models are coupled to other dy-
of relativistic quantum physics. In particular, it has been noamical fieldd6]. In this investigation we will study the two
ticed that in some circumstances the CS field plays a stabbody scattering amplitude for the cases of minimal coupling
lizing role providing theories with improved ultraviolet be- of Eq. (1) to a CS field and when in Eql) the Proca mass
havior[2]. However, most of these investigations have beeny 2¢;¢u is replaced by a complex CS term. We will also
restricted to the cases of spinless and spin-1/2 particles. Theynsider the case of minimal coupling of E@) to a CS
reasons behind this fact are the notorious difficulties found iffield. Analogously to the scattering of lower spin particles
the conventional treatment for higher spin fields in four di-we will expect to find similarities with the Aharonov-Bohm
mensions. The troublesome aspects include noncausal propas) scattering 7]. We may recall that for spinless particles
gation and lack of renormalizability. It is certainly worth- the Born approximation found in the perturbative method
while to study the interaction of a CS and spin one mattelpnly agrees with the expansion of the exact result if a contact
field so that the Origin of the difficulties could be better Un'interaction’ simulated in the field theory approach by a quar-
de_rstoo_d _and _perhaps new a_nd safer routes could be founge (* $)2 interaction, is included from the beginnif@,9].
With this in mind, we would like to present here the resultsjt js also known that in the spin-1/2 case no new interaction
of some investigations concerning the dynamics of spin ongs needed, the role of the quartic interaction being played by
fields interacting through a CS term. the magnetic Pauli terriL0].
As a first observation, we note that a free, spin-one par- e will pursue the investigation of the spin effects on the
ticle of massM can be described alternatively by the Procaperturbative AB scattering by considering spin one particles.

Lagrangian Previous work in this direction started either with a complex
Proca field minimally coupled to the electromagnetic field
Lo=— EFT Fer—M26T 1) [11] or with a linearized Yang Mills equatiofiL2]. In both
2 # pTRe approaches the AB scattering was discussed from a first

quantized viewpoint. Here we consider the problem from the
where F,,=d,¢,—d,¢,, or by the Maxwell-Chern- perspective of the theory of quantum fields, i.e., as the low
Simons(MCS) Lagrangian, energy limit of a fully quantized relativistic theory of spin
one particles interacting through a CS field. One advantage
of such procedure is that it incorporates some purely quan-
tum field effects, as vacuum polarization and anomalous
(2 magnetic momentum.
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0556-2821/99/6(12)/1250168)/$15.00 60 125016-1 ©1999 The American Physical Society



M. GOMES, L. C. MALACARNE, AND A. J. da SILVA PHYSICAL REVIEW D60 125016

For the Proca model minimally coupled to a CS fieldwe o . o » B V1) — W
will discuss the one loop renormalization program and cal- A'lp = Do)

culate the anomalous magnetic moment of the matter field.

As we will show, thanks to the Ward identities satisfied by n

the basic interaction vertices, up to one loop the model is " v
renormalizable, in spite of the bad behavior of the propagatorl-lmﬁ(p’p’)= p r I_H"“l(*p p) =2 >

of the matter field. The MCS model, on the other hand, turns o p 2 @ B

out to be power counting renormalizable to all orders of per- FIG. 1. Feynman rules for the Proca model minimally coupled

turbation. .
. . to a CS field.
Our work is organized as follows. In Sec. Il we present

the polarization vectors and Feynman rules for the models

mentioned above. There, we also study the Born approxima- ea(K)=(e0(k),&i(K)), G
tion for the two body scattering amplitudes. In Sec. Ill we Lo ..
discuss in detail the one loop renormalization parts for thevhere eo(k)=k-&(0)/|M| and e;(k)=¢;(0)+[K-£(0)/
Proca model and also determine the anomalous magnetib|(W,+|M|)]k; with e“(0)=1/y2[0,1j(M/[M[)] being
moment. A discussion of our results is presented in Sec. IVthe polarization vector in the particle’s rest frame.

The paper contains also an appendix with details of the cal- Minimally coupling the Proca field to a CS fieldy*,

culations. leads us to the Lagrangian
1 0
Il. POLARIZATION VECTORS AND FEYNMAN RULES
Lp=—5G,G*" = M2, ¢H+ S, AtI"A?

As a preliminary step toward our study of the AB scatter-

ing of two spin-one patrticles, let us examine some of the A 2
kinematic aspects of the asymptotic theories. First of all, +§((9MA )% ©)
being a transversal field,, =0, the Proca field described
by Eg. (1) can be expanded in plane waves as whereG**=D#¢"—D"¢* andD*= 9*—ieA*. The Feyn-
, 2 man rules associated with the above Lagrangian are depicted
¢M:i d“p S eifa e P4 bl (3 InFig. 1 In the Landau gauge (=), the analytic expres-
2m) 2w, =1 AL A ' sions accompanying these rules are the CS field propagator
wherew,= v 52+ M? and the polarization vectors satisfy the = 1 kP
transversality conditiomp ,e)'=0. A convenient choice is D (k)= -~ 9 Enve K+ie (10
P o| w, p' -
eti= ( 0.él p_J) , etz ll\/lﬂﬁp L (4 ~ matter field propagator
[p| [Pl
i T t A*B(p)= L apB pp” (1D
The creation operatora’ andb' allow us to construct the p D2—M2+ie M2 |’

Fock space of the asymptotic states. In this space, we found

hat the spin part of the angular momentum operator . . . .
that the spin part of the angular momentum operato and interaction verticesp(and p’ denote the matter field's

S momenta
sz d?x e;;x": T, (5)
T4%(p,p’)=—ie[(p+p')*g*#—pfg+ —p’“g*]
whereT#"= F;”F’“’+ FgF*PV—gWLP is given by (12)
d2p 2 o ryref=ie’{grfg  +greg-29+9*7]. (13
Js:_ifz— > eij€, (P)ey(p)
PaN=1 The above propagators and vertices obey the identities

x[ay, (P)ay(p)+ by, (P)by(P)]. (6) dA,(p)
e——"——=A T'4P7(p,p)A,5(p), 14
In the particle’s rest frame we can see that dp, apPITL(P.P) A (P) (14

T ot
a;(0)=iay(0) d
—0s=+1)= 727 e—I4“F(p,p—q)=T4"**, 15
|p=0,5==*1) N |0) (7) dap, 11 (p,p—a)=I% (15
are eigenstates dfs. and
As discussed in Refl3], in the case of the MCS model, g ’ op

Eq. (2) one has just one polarization which can be taken as psl'1*"(0p")=pI'1*"(p,0)=0. (16)
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The expressiongl4) and (15) are typical of gauge theo- —i pph
ries being similar to the ones found in scalar QED. These Aﬁ,{ész 5 S b
properties will be helpful to discuss the ultraviolet behavior —M“tie p p

of the Green functions. . . .
To make contact with the Aharonov-Bohm scattering, letA'S this propagator has a better ultraviolet behavior than Eq.

us study the low energy approximation for the scattering O1_(11), the corresponding theory will be in principle renormal-
two vector particles. We assume that in the center of mas€aPle.

frame the incoming particles have momepta- (w, ,5) and Using this propagator we found a scattering amplitude
p2=(wp,—5) and spinss; ands,, respectively. We will 4ie?|M| )

then denote the momenta and spins of the outgoing particles g Lst2icota)], (22)
by p3=(wWy,p"), pPsa=(wWp,—p’') andssz, s,. The energy

of the incoming particle isv,= N 52, the spinss; can which differs from Eq(19) just by a phase factor. In the case
i Sl—lar . of minimal coupling we get a result which contains an addi-
fr:;h[?ornt?lgretmse I;/ril)lgeezslisand|p| [p’|. The tree approxi tional numerical factor 1/4 in the front of E¢R2). The two

possible couplings give different cross sections and, at the
present, there is no way to select a preferred one. Besides
that, radiative correction should produce diverse cross sec-

+i|v|saﬁpp—’2’ . (2D

Mfi:[8Z(p3:Ss)rlfaﬁ(pl:p3)8a(p1:51)]

XD, (@)X (P4,5)T17"(P2,Pa)e (P2.,52)] tions even in the cases associated to Et®.and(22) where
the corresponding Lagrangians differ only by the mass terms.
+(p3<—P4,S3<Sy), (170 This is apparent from an inspection of the asymptotic behav-
ior of the matter field vector propagators. In the case of the
whereq=p;—p3 and Lagrangian with a Proca mass, the longitudinal term in the
propagator spoils renormalizability. However, a more careful
€1(p)+ises(p) analysis, to be done in the next section, shows that the degree
sa(p,s):T, (18 of superficial divergence is actually lowered. Taking into

consideration this fact we conclude that the effective degree

_ ) _ ) of divergence for a generic one loop graphs
with €7(p) ande5(p) as in Eq.(4), are circularly polarized

vectors. From the above expressions we can verify that the 1
scattering amplitude vanishes unless spin is conserved, i.e., d(y)=3—Na- §N¢>v (23
S$1=5S; ands,=s, or s;=s, ands,=S;3.
After expanding in powers dfp|/M, we get, in leading whereN, andN,, are the number of external lines belonging
order, to the CS and to the matter vector field. In spite of the im-
proved behavior, as established by E2@), the model still
- o 4ie?|M| sl ] suffers from renormalization problems due to the divergence
Mii(s,p,p’)= ——e ®“Is+2icotl@)], (19  of graphs withN, equal to four and six. If the corresponding
counterterms are added to E®) then the relationg14)—
where « is the scattering angle arg=s,+s, is the total (16) will not be able to guarantee renormalizability even at

spin of the incoming particles. Similarly to the spin-1/2 case °"€ 00p. Actually, higher order loops will contain nonrenor-
the origin of the constant term in E(L9) is a Pauli interac- malizable divergences. The model is renormalizable only up

tion between each vector particle and the magnetic field prol® One loop. Of course these comments do not apply if the

duced by the other. In the antiparallel case these effects caf?@Ss has a topological origin.
cel each other.

Let us now consider a model in which the mass of the lll. ONE LOOP RENORMALIZATION
vector particles has a topological origin. In such situation,
one should use the polarization vector given in B}. One
can then envisage two possibilities to introduce the couplin
to the CS field. One could ug®) but with the Proca mass
replaced by a topological one, i.e.,

As we will show now, the one loop contributions to the
amplitudes for the theory defined by E@®) have an effec-
Yive degree of divergence as given in H@3). By power
counting, any one loop graph withcs and n, internal CS
and matter field lines, and containivg andV, trilinear and
quadrilinear vertices has the degree of superficial divergence

M M L
M 2¢L¢#_> 78#142(1,;(9‘}(25’)_{_ ?SWPCf);L(&y(f)p)T (20) given by

N
or just consider the MCS field described by E8) mini- d(y)=3—nNcstV,=3- 7¢+V11 (24)
mally coupled to a CS field. Had we employed a topological
mass instead of the Proca’s, the Feynman rules would be thghere we used
same unless for the propagator for the matter field which
would become NestNg=Vi1+Vy, (25
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a

FIG. 2. Graphs contributing to the one loop correction to the A B

vector meson propagator. FIG. 3. One loop vacuum polarization graphs associated with

the CS field.
(3M?%+p?) 1
E - 7 M2+ 2\ _ MZ_ 2\2
2ncstNes=V+2V,. (27) (P) 2Mp? ( P) 2M \/F( P
Formula(23) follows now from the following observations. Xlog M+ Vp? . (30
(1) Equations(14) and(15) imply that the sum of graphs M — \/F

with Ng external CS lines will contain thels power of the

external momenta and therefore in such sum the degree éfithough finite the above expression does not vanish?at

divergence is effectively reduced B¢s. =M?2. To secure that the physical massMsone still has to
(2) In addition to that, due to Eq16) the contraction of proceed with a finite renormalization. Thus we define a

the longitudinal part of the matter field propagator with therenormalized amplitude by

vertexI'; produces a result whose degree in the loop mo-

mentum is reduced by . 3 &8(p)=3*F(p)— oMerp,

After establishing Eq(23) we shall now examine each o2
case of divergence, i.e., witth(y)=0, as specified by Eq. =—FR(p)£“'B"pp, (31
(23). Notice that logarithmically divergent parts are odd in 8mo

the integration variables and therefore vanish under symmet- 5
fic integration. This implies that, up to one loop, the six pointWhere M =e“M/2m 6 and
vertex function of the matter field and the four point function

with external lines associated to two CS field and two matter (p)= (M2-p?) 3M2—p?— (M2—p?)(3M?+p?)
fields do not generate counterterms. However, the radiative R 2Mp? M \/Hf
corrections to the two and to the four point vertex function of

the matter field, the vacuum polarization and the trilinear M +\/p?

vertex all haved(y)>0. We shall examine separately each Xlog m - (32)

one of them. We will employ dimensional regularization
which, fqr the cases under pon3|derat|on, already acts as a | thjs situation we obtain the renormalized propagator
renormalization. Let us begin by the self-energy contribu-

tions which in one loop correspond to the graphs shown in i 3/(p?) | pep?
Fig. 2. Symmetric integration shows immediately that the AgP= aﬁ_(l_ A
contributions of the graphs(®) and Zc) vanish. The ampli- p?—M?—3"(p?) p? M2
tude associated to(® is (details of this calculation are pre-
sented in the Appendjx —i®(p)8“5pppl, (33)
d3k '
E“B(p)=f SP1Y (P p+ KA (PHK) where
(2m)
: e p*Fa(p)
XT48 B(p+k,p)D,,, (k). (29 S/(p2)= o 2 RP

870 (p?~M?)

Although the degree of divergence indicates a quartic di- )
vergence, because of Hd.6), the above expression diverges and O(p)= e Fr(p)
. . p)= . (34
only quadratically. We obtain 870 (p2—M?)
e? One sees that the needed counterterm corresponds to a CS
3% (p)= —F(p)s“ﬁppp, (29)  term for the matter field.
8w Let us now focus our attention on the vacuum polarization
contributions to the CS field two point function. The associ-

where (from now on we assumbl! to be positive ated graphs have been drawn in Fig. 3. We have
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k k ing analytic expressions are, respectively,
;J;Im_( p+k
| f +K)A
bep ppé (p,p")= (2m )3 “(p.p+k)

X(p+K)T 7 (p+K,p’ +K)A g0

k k
B pk L X(p' +K)T " P(p'+k,p)D (K],
ép P P_Pé (41)
d
c k 3
Tt (p,p’ :f 05 (p,p+K)A 4 g
ok 57 (p,p") (277)3[ 1 (PP KA,
év-p‘ X(p+KT577#D,, (K], (42
I 3
FIG. 4. Graphs contributing to the vector meson anomalous o " k aa , op' B
magnetic moment. re™(p,p )_f (ZW)S[F’Z”’ Aa’ﬁ’(p +KT'y
[IA7=TI4"+ TIEY (35 X(p"+K,p")D (K. (43)
with These expressions are in general very complicated but in
the low momentum regime a great simplification occurs. In-
) d3k Ba va' B! deed, performing the calculations on the matter field’s mass
1y IJ 7P K KA 4o (KT shell we get
(2)
X(kvp+k)Aﬁ’ﬁ(p+k)1 pnaf ry — _eSM 5 B,u aop
3 P PP = g | a2 ® e 7 PaPy
d°k
H’B”:f 5 )J@W%aﬁ(k). (36) 5 4
(2 MDA T e rer R
After some calculations whose details are relegated to the
Appendix, we get 8 17 )
+ — g¥HPp — gampp’
o2 Dhp” P T 22 P g2 P
mer=—Ti(p?)| g*'~ —- |, (37)
87T p2
+p/a — & ,BMPpp+ ZSBMPp’;)
which is transversal as required by current conservation. In 8M 24M
the last expression
+ pH aBp +i8aﬁp ’
2, _ (PP—4M?) 2 a2 S ETVER AN VER
M(p?)=—————[4M—(p*+4M?)lo],  (39)
4M 1
rpl —_ oaBp aBppn’
with p S Pt 3M28 IO,JH, (44)
1 1 3
|0:f dx . (39 pap / :_e M _ogaBp _4 Boaup
0 /MZ_pZX(l_X) Fb (p,p ) 870 2¢e +3M2p £ pp

For low momentunmI#” approaches the expression
ie? 2
67 M (9*'p

Hr= —p*p"), (40)
implying that the effective low momentum Lagrangian con-
tains a Maxwell term, analogously to what happens in the

p“e*frp, |, (45)

3M?

3

r#aﬁ( "= M —2gaBp_ _4 ragaup
¢ (pp) =g | ~2e P Py

spin-1/2 case.
The lowest order contributions to the trilinear vertex come —p'rgabep’ |, (46)
from the first three graphs shown in Fig. 4. The correspond- 3M2 P
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P, by 2 Py P P, P P,

P, P. P, P: B, P P, Dy
a
b c d
P k Py P P b k Py I k [
r, P B, k A P, P P, P

e f g h

FIG. 5. One loop contributions to the vector meson scattering.

It can be easily verified that these results satisfy currenthe anomalous magnetic moment. From the expressions for

conservation as expressed in the Ward identity the three graphs given above we have
dxef sz > ia > 3 |
e—(f) =T4A(p,p)+TE*P(p,p) +TL%(p,p). Too(p—P)=ef(—P.S)Ty s cea(p.S) = g€ di-
d(p) p2:M2 (52)
(47)

We still have to add the contributions of the grapttd)4

We are now in a position to calculate the vector meson, 4 4e) which corresponds to the analytic expressions

anomalous magnetic moment. Usually this is done by cou-
pling the matter field to an external electromagnetic field. In
addition to that, to disentangle the various contributions, here
it is also convenient to do the calculations in a particular

- and
frame wherep+p’ =0, the Breit frame. It is then found that

T4 (p,p" ) =[2&" (P)A 5 (P)T4? E(p,p')] (53

th t t i i 4 o ! Dta, ! ! ! !
e magnetic moment is given §§4] I A(p,p )=[T4° (9,p")A 4 g:(p )Eg F(p"].
o a (54)
’“_qITO 2m €l @ (P.=P), (48) However, for small momenta and in the Breit frame,
where g - - —€M -
Fd(p=P)= g 5| ~ 1z e P
T'(p,—p)=e5(—p.ST'*(p,~ple,(p.s), (49
1
and the limit prescription singles out the term proportional to + WQ'BSW’JDUD[,}, (55
g. In the tree approximation we get
_ -e M| 1 . 1
e e iaBrn _A)— € = na.Bip = ANia Bop ’
,u,zmgs=im, 50 Te"(p, p) 876 sz emip,t Mzg € poppl’

: . (56)
wheres= *1 is the spin. The above result means that the

gyromagnetic factor ig=1. The gyromagnetic factor may SO that, saturating with external polarizations, we get
be changedsometimesy=2 is desirabld15]) if the mag-

netic term[16] ef(—p.S)ITEA(p,—p)+ T (p,—p)leq(p.s)
— v 283 .
‘Cmag_ - Ie‘)/( aMAV_ aVA,bL) ¢*#¢ (51) = — % E'] qJ . (57)

is added to Eq(9). In such case, it is easy to check that the

magnetic moment for a spin one particle becons4 The sum of Eqs(52) and(57) gives
+y)/(2M). Nevertheless, as the new vertéxl) does not
obey Eq.(16) the ultraviolet behavior of the Green functions

is definitely wrecked. Thus, if one insists in havigg- 2
another approach becomes mandatory. For this reason we
shall not anymore consider the possibility of adding &§).  Thus, up to one loop, the magnetic moment for vector par-
After these remarks let us proceed toward the computation dfcles of spint1 is

e e3 .
F(p.—p)=87768’q;- (58)
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that, as in the spin-1/2 case, the anomalous magnetic moment
1x—. (590 has the same sign for both spin up and spin down situations
[10].
It should be noticed that the graphs with self-energy correc-
tions contribute significantly to the final result. This is simi-

lar to what happens for the case of spin-1/2 particles in the The calculation of the radiative corrections to the propa-
Coulomb gauge and results from the fact that in both casegators and vertices done in the previous section allow us to
the interaction with the CS field modifies the free propagadincorporate vacuum polarization and anomalous magnetic
tors in an essential way. In our case, as can be seen from Emoment effects in the two body scattering amplitudes com-
(29) a CS term is produced. It is also worthwhile to remarkputed earlier. In fact, in the low energy regime we get

IV. DISCUSSION

4

MSl:lSz:l'SS'S":—ieM(COSa—iSina) % [~ 2+(1—sg)cosa+ (1+55)c0f a—i(1+s3)sina cosalt,
? 8m6? 1—cosa
(60)
=—1s5,= ie‘M —1+s
sp=—1sp=—1s83,54_ L 4 . L o .
M —87T02(005a |sma)r—1_COSa[2 (1+s3)cosa—(1—sz)cos a—i(1l s3)smac03a]],
(61)
Y e e ie*M [ —1+s, (L4 59— 25, c0s— (151608 @+ 21 Sina—i(1—sy)sinacosa]l. (62
: 8w 9% | 1—cosa s 3 Lusa™ 3 a a 3)Sina cosa
M31=71,32=1,33,S4_ ie*M ﬂ(_1+s)_23 cos +(1+S)CO§ +2i sina—i(1+sy)sina cos 63
2 8w h? 1—COSa[ 3 3 LOsa 3 atzisina—l 5)sina cosa]

for the contributions from the vertex corrections indicated inmally coupled to a CS term. Although this model is power
Fig. 5a). The result for Fig. Bo) is obtained from the above counting renormalizable, the algebraic structure is very much
expressions by exchangiisg ands,. For the vacuum polar- cumbersome that no practical results are possible even at the

ization diagram, Fig. &), we found the result one loop level. In such situation the scheme adopted by us
seems to be the most useful although not being easily gen-
ie%M eralizable to higher orders.
$1:52,53:54 + i + i
M 7 L(1+818g)cosa—i(s +sg)sina] ACKNOWLEDGMENTS
X[ (14 5,8,)C0S8a—i(S,+5,)sina]. (64) This work was supported in part by Conselho Nacional de

Desenvolvimento Cierfico e Tecnolgico (CNPg), Coorde-
na@o de Aperfejoamento de Pessoal dewdl Superior
(CAPES, and Fundaao de Amparo @esquisa do Estado de

The next diagram, Fig.(8), does not contribute at leading S% Paulo(FAPESP

order of |p|/M. To complete the one loop calculation it is

still necessary to compute the contributions of the triangle APPENDIX
[Figs. 5e) and §f)] and box[Figs. 5g) and §h)] diagrams. _ _ _
These graphs present a logarithmic ultraviolet divergébge In this appendix we shall present some details of the cal-

Lorentz covariance the would be linear divergence does ndtulations of the vector meson self-energy and of the CS po-
appea). In addtion to that they are so intricate that evenlarization tensor. Let us begin considering ER8). There
using dimensional regularization and employing an algebrai@re two denominators so that, employing Feynman'’s trick,
computer program the integrals did not turned out to be fea- 1 ) 1
sible. _

To summarize, in this work we have studied some prop- AB jo dX[(A— B)x+B]?
erties of spin one particles interacting through a CS field. As
argued in the introduction, this is a complex system but weand changing the integration variable;>k+px one finds
found some simplifications which allowed us to study its 4K L ab
behavior up to the one loop level. We have indicated another 3 @h(p)=
possible scheme as the use of the complex MCS model mini- (2m)® [K2—C?]2'

(A1)

—ie?

(A2)
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whereC?=M?(1—x)— p?x(1—x) and
LB={[3M?+xp?](s7PPk,k*+ &7k kP)p,+[ (1= X)M?p?— (1—X)(p,k*)*(x*~x*)p*]e“F7p,,
+2xp?e *PPK K ,p7H M2, (A3)

Using dimensional regularization one can perform the momentum integration to get

3%(p)= e*P7p,. (A4)

e’ fld 6M*+[p*—M?p?—6M*Ix+[M?p?—7p*]x*+6p*x°
X
8mOM? VM?(1—x)—p?x(1—x)

The computation of the remaining parametric integration isvhere, as beforeg?=M2—p?x(1—x) and
straightforward and produces the resi30).

Let us now turn to the polarization tensor. From E@S) wv_np2 20V AV 2
and (36) and proceeding analogously to what we have doneN2 =MTT4M7g""+ pp”(1—6x+8x%)

before we arrive at +p?g”(— 3+ 6x—4x%) ]+ k“k[8M?—3p?+ 2p?x]
e’ [ d% N4 +K2[ —4M2grr— pkp¥(1+2x) +2p°gH"]
e e (89
(2m)” [k*=M?][(k+p)*—=M?] +[2kHp"k?p,+2p k" kP, — 29" (k*P,)?].  (A8)
where ] ) ) o .
With the help of dimensional regularization this becomes
N&Y=[K?(p“k"+kHp”) — 2k“Kk"k“p, ]+ [ 8M 2k“K” 2 1 NE?
my—
— (AM2g¥+ prpY) K2+ kap ,(2phkP+ 2kep” . SwMzL o1 Y
—29""kPpg) + p?(— 3kHKk"+ 294 k?)]
+[3M2(p“K”+kHp? — 6g4*kp,,)] with
N4"=M?(2—12x+8x%)[p*p"— pgH”
H[MZAMZgr+pip =3pPge).  (A6) o e pre]
. . . +p[pHp"(—x+T7x*—6x%)
Employing again Feynman’s formulgAl), translating the
integration variablek— k— px and deleting the terms odd in +p%gH(—x—x2+23)]. (A10)
k, results
d3k N5 o . .
Huvz_ J f , (A7) The parametric integration can be done exactly producing
(2m)3 [k2 a’)? the result(37).
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