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Spin-1 massive particles coupled to a Chern-Simons field
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We study spin-one particles interacting through a Chern-Simons field. In the Born approximation, we
calculate the two body scattering amplitude considering three possible ways to introduce the interaction:~a! a
Proca-like model minimally coupled to a Chern-Simons field,~b! the model obtained from~a! by replacing the
Proca’s mass by a Chern-Simons term, and~c! a complex Maxwell-Chern-Simons model minimally coupled to
a Chern-Simons field. In the low energy regime the results show similarities with the Aharonov-Bohm scat-
tering for spin-1/2 particles. We discuss the one loop renormalization program for the Proca model. In spite of
the bad ultraviolet behavior of the matter field propagator, we show that, up to one loop, the model is power
counting renormalizable thanks to the Ward identities satisfied by the interaction vertices.
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I. INTRODUCTION

In recent years much work has been devoted to the s
of the properties of the Chern-Simons~CS! field @1#. This
was motivated not only by its potential applications to co
densed matter physics but also because these studies
unveiled some new and interesting aspects of the dynam
of relativistic quantum physics. In particular, it has been n
ticed that in some circumstances the CS field plays a st
lizing role providing theories with improved ultraviolet be
havior @2#. However, most of these investigations have be
restricted to the cases of spinless and spin-1/2 particles.
reasons behind this fact are the notorious difficulties found
the conventional treatment for higher spin fields in four
mensions. The troublesome aspects include noncausal p
gation and lack of renormalizability. It is certainly worth
while to study the interaction of a CS and spin one ma
field so that the origin of the difficulties could be better u
derstood and perhaps new and safer routes could be fo
With this in mind, we would like to present here the resu
of some investigations concerning the dynamics of spin
fields interacting through a CS term.

As a first observation, we note that a free, spin-one p
ticle of massM can be described alternatively by the Pro
Lagrangian

LP52
1

2
Fmn

† Fmn2M2fm
† fm , ~1!

where Fmn5]mfn2]nfm , or by the Maxwell-Chern-
Simons~MCS! Lagrangian,

LMCS52
1

2
Fmn

† Fmn1
M

2
emnr@fm

† ]nfr1fm~]nfr!†#.

~2!
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Whereas the first formulation encompasses both mode
spin61, the latter, Eq.~2!, represents only a single mode o
spinM /uM u. The two formulations are not entirely inequiva
lent, however. The model~2! is equivalent to the self-dua
model,@3,4# and this last model is similar to a square root
Proca’s@5#. Nevertheless, such equivalence does not in g
eral persist whenever the models are coupled to other
namical fields@6#. In this investigation we will study the two
body scattering amplitude for the cases of minimal coupl
of Eq. ~1! to a CS field and when in Eq.~1! the Proca mass
M2fm

† fm is replaced by a complex CS term. We will als
consider the case of minimal coupling of Eq.~2! to a CS
field. Analogously to the scattering of lower spin particl
we will expect to find similarities with the Aharonov-Bohm
~AB! scattering@7#. We may recall that for spinless particle
the Born approximation found in the perturbative meth
only agrees with the expansion of the exact result if a con
interaction, simulated in the field theory approach by a qu
tic (f* f)2 interaction, is included from the beginning@8,9#.
It is also known that in the spin-1/2 case no new interact
is needed, the role of the quartic interaction being played
the magnetic Pauli term@10#.

We will pursue the investigation of the spin effects on t
perturbative AB scattering by considering spin one particl
Previous work in this direction started either with a compl
Proca field minimally coupled to the electromagnetic fie
@11# or with a linearized Yang Mills equation@12#. In both
approaches the AB scattering was discussed from a
quantized viewpoint. Here we consider the problem from
perspective of the theory of quantum fields, i.e., as the
energy limit of a fully quantized relativistic theory of spi
one particles interacting through a CS field. One advant
of such procedure is that it incorporates some purely qu
tum field effects, as vacuum polarization and anomalo
magnetic momentum.
©1999 The American Physical Society16-1



e
a
el
by
l
t

rn
er

n
e

m
e

th
e
IV

ca

er
th
al
d

e

u

l,
a

icted

ator

s

led

M. GOMES, L. C. MALACARNE, AND A. J. da SILVA PHYSICAL REVIEW D60 125016
For the Proca model minimally coupled to a CS field w
will discuss the one loop renormalization program and c
culate the anomalous magnetic moment of the matter fi
As we will show, thanks to the Ward identities satisfied
the basic interaction vertices, up to one loop the mode
renormalizable, in spite of the bad behavior of the propaga
of the matter field. The MCS model, on the other hand, tu
out to be power counting renormalizable to all orders of p
turbation.

Our work is organized as follows. In Sec. II we prese
the polarization vectors and Feynman rules for the mod
mentioned above. There, we also study the Born approxi
tion for the two body scattering amplitudes. In Sec. III w
discuss in detail the one loop renormalization parts for
Proca model and also determine the anomalous magn
moment. A discussion of our results is presented in Sec.
The paper contains also an appendix with details of the
culations.

II. POLARIZATION VECTORS AND FEYNMAN RULES

As a preliminary step toward our study of the AB scatt
ing of two spin-one particles, let us examine some of
kinematic aspects of the asymptotic theories. First of
being a transversal field,]mfm50, the Proca field describe
by Eq. ~1! can be expanded in plane waves as

fm5
1

2pE d2p

2wp
(
l51

2

el
m@ale2 ipx1bl

†eipx#, ~3!

wherewp5ApW 21M2 and the polarization vectors satisfy th
transversality conditionpmel

m50. A convenient choice is

e1
m5S 0,e i j

pj

upW u
D , e2

m5S upW u
M

,
wp

M

pi

upW u
D . ~4!

The creation operatorsa† and b† allow us to construct the
Fock space of the asymptotic states. In this space, we fo
that the spin part of the angular momentum operator

J5E d2x « i j x
i :T0 j :, ~5!

whereTmn5Fr
†mFrn1Fr

mF†rn2gmnLP is given by

JS52 i E d2p

2wp
(

l,l851

2

e i j el8
i

~p!el
j ~p!

3@al8
†

~p!al~p!1bl8
†

~p!bl~p!#. ~6!

In the particle’s rest frame we can see that

up50,s561&5
a1

†~0!6 ia2
†~0!

A2
u0& ~7!

are eigenstates ofJS.
As discussed in Ref.@13#, in the case of the MCS mode

Eq. ~2! one has just one polarization which can be taken
12501
l-
d.
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«a~k!5„«0~k!,« i~k!…, ~8!

where «0(k)5kW•«W (0)/uM u and « i(k)5« i(0)1@kW•«W (0)/
uM u(wp1uM u)#ki with «m(0)51/A2@0,1,i (M /uM u)# being
the polarization vector in the particle’s rest frame.

Minimally coupling the Proca field to a CS field,Am,
leads us to the Lagrangian

LP52
1

2
Gmn

† Gmn2M2fm
† fm1

u

2
«mnrAm]nAr

1
l

2
~]mAm!2, ~9!

whereGmn5Dmfn2Dnfm andDm5]m2 ieAm. The Feyn-
man rules associated with the above Lagrangian are dep
in Fig. 1. In the Landau gauge (l→`), the analytic expres-
sions accompanying these rules are the CS field propag

Dmn~k!52
1

u
emnr

kr

k21 i e
, ~10!

matter field propagator

Dab~p!5
2 i

p22M21 i e
Fgab2

papb

M2 G , ~11!

and interaction vertices (p and p8 denote the matter field’s
momenta!

G1
mab~p,p8!52 ie@~p1p8!mgab2pbgma2p8agmb#

~12!

G2
mnab5 ie2@gmbgna1gmagnb22gmngab#. ~13!

The above propagators and vertices obey the identitie

e
dDab~p!

dpm
5Dar~p!G1

mrs~p,p!Dsb~p!, ~14!

e
d

dpn
G1

mab~p,p2q!5G2
mnab , ~15!

and

pb8G1
mab~0,p8!5paG1

mab~p,0!50. ~16!

FIG. 1. Feynman rules for the Proca model minimally coup
to a CS field.
6-2
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The expressions~14! and ~15! are typical of gauge theo
ries being similar to the ones found in scalar QED. The
properties will be helpful to discuss the ultraviolet behav
of the Green functions.

To make contact with the Aharonov-Bohm scattering,
us study the low energy approximation for the scattering
two vector particles. We assume that in the center of m
frame the incoming particles have momentap15(wp ,pW ) and
p25(wp ,2pW ) and spinss1 and s2 , respectively. We will
then denote the momenta and spins of the outgoing part
by p35(wp ,pW 8), p45(wp ,2pW 8) and s3 , s4 . The energy

of the incoming particle iswp5Am21pW 2, the spinssi can
either take the values61 and upW u5upW 8u. The tree approxi-
mation for this process is

M f i5@«b* ~p3 ,s3!G1
mab~p1 ,p3!«a~p1 ,s1!#

3Dmn~q!@«r* ~p4 ,s4!G1
nsr~p2 ,p4!«s~p2 ,s2!#

1~p3↔p4 ,s3↔s4!, ~17!

whereq5p12p3 and

«a~p,s!5
e1

a~p!1 ise2
a~p!

A2
, ~18!

with e1
a(p) ande2

a(p) as in Eq.~4!, are circularly polarized
vectors. From the above expressions we can verify that
scattering amplitude vanishes unless spin is conserved,
s15s3 ands25s4 or s15s4 ands25s3 .

After expanding in powers ofupW u/M , we get, in leading
order,

M f i~s,pW ,pW 8!5
4ie2uM u

u
e2 isa/2@s12i cot~a!#, ~19!

where a is the scattering angle ands5s11s2 is the total
spin of the incoming particles. Similarly to the spin-1/2 ca
the origin of the constant term in Eq.~19! is a Pauli interac-
tion between each vector particle and the magnetic field p
duced by the other. In the antiparallel case these effects
cel each other.

Let us now consider a model in which the mass of
vector particles has a topological origin. In such situati
one should use the polarization vector given in Eq.~8!. One
can then envisage two possibilities to introduce the coup
to the CS field. One could use~9! but with the Proca mas
replaced by a topological one, i.e.,

M2fm
† fm→ M

2
«mnrfm

† ]nfr1
M

2
«mnrfm~]nfr!† ~20!

or just consider the MCS field described by Eq.~2! mini-
mally coupled to a CS field. Had we employed a topologi
mass instead of the Proca’s, the Feynman rules would be
same unless for the propagator for the matter field wh
would become
12501
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DMCS
ab 5

2 i

p22M21 i e
Fgab2

papb

p2
1 iM «abr

pr

p2G . ~21!

As this propagator has a better ultraviolet behavior than
~11!, the corresponding theory will be in principle renorma
izable.

Using this propagator we found a scattering amplitude

4ie2uM u
u

@s12i cot~a!#, ~22!

which differs from Eq.~19! just by a phase factor. In the cas
of minimal coupling we get a result which contains an ad
tional numerical factor 1/4 in the front of Eq.~22!. The two
possible couplings give different cross sections and, at
present, there is no way to select a preferred one. Bes
that, radiative correction should produce diverse cross s
tions even in the cases associated to Eqs.~19! and~22! where
the corresponding Lagrangians differ only by the mass ter
This is apparent from an inspection of the asymptotic beh
ior of the matter field vector propagators. In the case of
Lagrangian with a Proca mass, the longitudinal term in
propagator spoils renormalizability. However, a more care
analysis, to be done in the next section, shows that the de
of superficial divergence is actually lowered. Taking in
consideration this fact we conclude that the effective deg
of divergence for a generic one loop graphg is

d~g!532NA2
1

2
Nf , ~23!

whereNA andNf are the number of external lines belongin
to the CS and to the matter vector field. In spite of the i
proved behavior, as established by Eq.~23!, the model still
suffers from renormalization problems due to the diverge
of graphs withNf equal to four and six. If the correspondin
counterterms are added to Eq.~9! then the relations~14!–
~16! will not be able to guarantee renormalizability even
one loop. Actually, higher order loops will contain nonreno
malizable divergences. The model is renormalizable only
to one loop. Of course these comments do not apply if
mass has a topological origin.

III. ONE LOOP RENORMALIZATION

As we will show now, the one loop contributions to th
amplitudes for the theory defined by Eq.~9! have an effec-
tive degree of divergence as given in Eq.~23!. By power
counting, any one loop graph withnCS and nf internal CS
and matter field lines, and containingV1 andV2 trilinear and
quadrilinear vertices has the degree of superficial diverge
given by

d~g!532nCS1V1532
Nf

2
1V1 , ~24!

where we used

nCS1nf5V11V2 , ~25!
6-3
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2nf1Nf52V112V2 , ~26!

2nCS1NCS5V112V2 . ~27!

Formula~23! follows now from the following observations
~1! Equations~14! and~15! imply that the sum of graphs

with NCS external CS lines will contain theNCS
th power of the

external momenta and therefore in such sum the degre
divergence is effectively reduced byNCS.

~2! In addition to that, due to Eq.~16! the contraction of
the longitudinal part of the matter field propagator with t
vertex G1 produces a result whose degree in the loop m
mentum is reduced byV1 .

After establishing Eq.~23! we shall now examine eac
case of divergence, i.e., withd(g)>0, as specified by Eq
~23!. Notice that logarithmically divergent parts are odd
the integration variables and therefore vanish under symm
ric integration. This implies that, up to one loop, the six po
vertex function of the matter field and the four point functi
with external lines associated to two CS field and two ma
fields do not generate counterterms. However, the radia
corrections to the two and to the four point vertex function
the matter field, the vacuum polarization and the triline
vertex all haved(g).0. We shall examine separately ea
one of them. We will employ dimensional regularizatio
which, for the cases under consideration, already acts
renormalization. Let us begin by the self-energy contrib
tions which in one loop correspond to the graphs shown
Fig. 2. Symmetric integration shows immediately that t
contributions of the graphs 2~b! and 2~c! vanish. The ampli-
tude associated to 2~a! is ~details of this calculation are pre
sented in the Appendix!

Sab~p!5E d3k

~2p!3
G1

naa8~p,p1k!Da8b8~p1k!

3G1
mb8b~p1k,p!Dmn~k!. ~28!

Although the degree of divergence indicates a quartic
vergence, because of Eq.~16!, the above expression diverge
only quadratically. We obtain

Sab~p!5
e2

8pu
F~p!«abrpr , ~29!

where~from now on we assumeM to be positive!

FIG. 2. Graphs contributing to the one loop correction to
vector meson propagator.
12501
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F~p!5
~3M21p2!

2Mp2 F ~M21p2!2
1

2MAp2
~M22p2!2

3 logS M1Ap2

M2Ap2D G . ~30!

Although finite the above expression does not vanish atp2

5M2. To secure that the physical mass isM one still has to
proceed with a finite renormalization. Thus we define
renormalized amplitude by

SR
ab~p!5Sab~p!2dM«abrpr

5
e2

8pu
FR~p!«abrpr , ~31!

wheredM5e2M /2pu and

FR~p!5
~M22p2!

2Mp2 F3M22p22
~M22p2!~3M21p2!

2MAp2

3 logS M1Ap2

M2Ap2D G . ~32!

In this situation we obtain the renormalized propagato

DR
ab5

2 i

p22M22S8~p2!
Fgab2S 12

S8~p2!

p2 D papb

M2

2 iQ~p!«abrprG , ~33!

where

S8~p2!5
e2

8pu

p2FR
2~p!

~p22M2!

and Q~p!5
e2

8pu

FR~p!

~p22M2!
. ~34!

One sees that the needed counterterm corresponds to
term for the matter field.

Let us now focus our attention on the vacuum polarizat
contributions to the CS field two point function. The asso
ated graphs have been drawn in Fig. 3. We have

FIG. 3. One loop vacuum polarization graphs associated w
the CS field.
6-4
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Pmn5PA
mn1PB

mn , ~35!

with

PA
mn5E d3k

~2p!3
G1

mba~p1k,k!Daa8~k!G1
na8b8

3~k,p1k!Db8b~p1k!,

PB
mn5E d3k

~2p!3
G2

mnabDab~k!. ~36!

After some calculations whose details are relegated to
Appendix, we get

Pmn5
ie2

8p
P~p2!S gmn2

pmpn

p2 D , ~37!

which is transversal as required by current conservation
the last expression

P~p2!5
~p224M2!

4M2
@4M2~p214M2!I 0#, ~38!

with

I 05E
0

1

dx
1

AM22p2x~12x!
. ~39!

For low momentumPmn approaches the expression

Pmn5
ie2

6pM
~gmnp22pmpn!, ~40!

implying that the effective low momentum Lagrangian co
tains a Maxwell term, analogously to what happens in
spin-1/2 case.

The lowest order contributions to the trilinear vertex com
from the first three graphs shown in Fig. 4. The correspo

FIG. 4. Graphs contributing to the vector meson anomal
magnetic moment.
12501
e

In

-
e

-

ing analytic expressions are, respectively,

Ga
mab~p,p8!5E d3k

~2p!3
@G1

raa8~p,p1k!Da8r8

3~p1k!G1
mr8s8~p1k,p81k!Ds8b8

3~p81k!G1
sb8b~p81k,p8!Dsr~k!#,

~41!

Gb
mab~p,p8!5E d3k

~2p!3
@G1

raa8~p,p1k!Da8b8

3~p1k!G2
msb8bDsr~k!#, ~42!

Gc
mab~p,p8!5E d3k

~2p!3
@G2

mraa8Da8b8~p81k!G1
sb8b

3~p81k,p8!Dsr~k!#. ~43!

These expressions are in general very complicated bu
the low momentum regime a great simplification occurs.
deed, performing the calculations on the matter field’s m
shell we get

Ga
mab~p,p8!5

2e3M

8pu F 5

4M2
gbm«asrpspr8

1
5

4M2
gam«bsrpspr82

14

4M2
gab«msrpspr8

1pbS 2
17

24M2
«amrpr2

15

8M2
«amrpr8D

1p8aS 15

8M2
«bmrpr1

17

24M2
«bmrpr8D

1pmS 2

3M2
«abrpr1

1

M2
«abrpr8D

1p8mS 1

M2
«abrpr1

2

3M2
«abrpr8D G , ~44!

Gb
mab~p,p8!5

2e3M

8pu F22«abm1
4

3M2
pb«amrpr

2
2

3M2
pm«abrprG , ~45!

Gc
mab~p,p8!5

2e3M

8pu F22«abm2
4

3M2
p8a«amrpr8

2
2

3M2
p8m«abrpr8G . ~46!

s

6-5
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FIG. 5. One loop contributions to the vector meson scattering.
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It can be easily verified that these results satisfy curr
conservation as expressed in the Ward identity

e
dSab~p!

d~p!m U
p25M2

5Ga
mab~p,p!1Gb

mab~p,p!1Gc
mab~p,p!.

~47!

We are now in a position to calculate the vector mes
anomalous magnetic moment. Usually this is done by c
pling the matter field to an external electromagnetic field.
addition to that, to disentangle the various contributions, h
it is also convenient to do the calculations in a particu
frame wherepW 1pW 850, the Breit frame. It is then found tha
the magnetic moment is given by@14#

m5 lim
q→0

1

2M
e i j

qj

q2
G i~pW ,2pW !, ~48!

where

G i~pW ,2pW !5«b* ~2pW ,s!G iab~pW ,2pW !«a~pW ,s!, ~49!

and the limit prescription singles out the term proportiona
qW . In the tree approximation we get

m5
e

2M
gs56

e

2M
, ~50!

wheres561 is the spin. The above result means that
gyromagnetic factor isg51. The gyromagnetic factor ma
be changed~sometimesg52 is desirable@15#! if the mag-
netic term@16#

Lmag52 ieg~]mAn2]nAm!f* mfn ~51!

is added to Eq.~9!. In such case, it is easy to check that t
magnetic moment for a spin one particle becomese(1
1g)/(2M ). Nevertheless, as the new vertex~51! does not
obey Eq.~16! the ultraviolet behavior of the Green function
is definitely wrecked. Thus, if one insists in havingg52
another approach becomes mandatory. For this reason
shall not anymore consider the possibility of adding Eq.~51!.
After these remarks let us proceed toward the computatio
12501
t

n
-

n
re
r

e

we

of

the anomalous magnetic moment. From the expressions
the three graphs given above we have

Ga2c
i ~pW ,2pW !5«b* ~2pW ,s!Ga1b1c

iab «a~pW ,s!5
3e3

8pu
e i j qj .

~52!

We still have to add the contributions of the graphs 4~d!
and 4~e! which corresponds to the analytic expressions

Gd
mab~p,p8!5@SR

aa8~p!Da8b8~p!G1
mb8b~p,p8!# ~53!

and

Ge
mab~p,p8!5@G1

maa8~p,p8!Da8b8~p8!SR
b8b~p8!#.

~54!

However, for small momenta and in the Breit frame,

Gd
iab~pW ,2pW !5

2e3M

8pu F2
1

M2
pb«a irpr

1
1

M2
gib«asrpspr8G , ~55!

Ge
iab~pW ,2pW !5

2e3M

8pu F 1

M2
pa«b irpr1

1

M2
gia«bsrpspr8G ,

~56!

so that, saturating with external polarizations, we get

«b* ~2pW ,s!@Gd
iab~pW ,2pW !1Ge

iab~pW ,2pW !#«a~pW ,s!

52
2e3

8pu
e i j qj . ~57!

The sum of Eqs.~52! and ~57! gives

G i~pW ,2pW !5
e3

8pu
« i j qj . ~58!

Thus, up to one loop, the magnetic moment for vector p
ticles of spin61 is
6-6
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m56
e

2M F16
e2

8puG . ~59!

It should be noticed that the graphs with self-energy corr
tions contribute significantly to the final result. This is sim
lar to what happens for the case of spin-1/2 particles in
Coulomb gauge and results from the fact that in both ca
the interaction with the CS field modifies the free propa
tors in an essential way. In our case, as can be seen from
~29! a CS term is produced. It is also worthwhile to rema
in
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that, as in the spin-1/2 case, the anomalous magnetic mom
has the same sign for both spin up and spin down situat
@10#.

IV. DISCUSSION

The calculation of the radiative corrections to the prop
gators and vertices done in the previous section allow u
incorporate vacuum polarization and anomalous magn
moment effects in the two body scattering amplitudes co
puted earlier. In fact, in the low energy regime we get
M a
s151,s251,s3 ,s45

ie4M

8pu2
~cosa2 i sina!H 11s4

12cosa
@221~12s3!cosa1~11s3!cos2 a2 i ~11s3!sina cosa#J ,

~60!
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s1521,s2521,s3 ,s45

ie4M

8pu2
~cosa1 i sina!H 211s4

12cosa
@22~11s3!cosa2~12s3!cos2 a2 i ~12s3!sina cosa#J ,

~61!
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ie4M

8pu2 H 211s4
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@~11s3!22s3 cosa2~12s3!cos2 a12i sina2 i ~12s3!sina cosa#J , ~62!
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@~211s3!22s3 cosa1~11s3!cos2 a12i sina2 i ~11s3!sina cosa#J , ~63!
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k,
for the contributions from the vertex corrections indicated
Fig. 5~a!. The result for Fig. 5~b! is obtained from the above
expressions by exchangings3 ands4 . For the vacuum polar-
ization diagram, Fig. 5~c!, we found the result

M c
s1 ,s2 ,s3 ,s45

2ie4M

3pu2
@~11s1s3!cosa2 i ~s11s3!sina#

3@~11s2s4!cosa2 i ~s21s4!sina#. ~64!

.
The next diagram, Fig. 5~d!, does not contribute at leadin

order of upW u/M . To complete the one loop calculation it
still necessary to compute the contributions of the trian
@Figs. 5~e! and 5~f!# and box@Figs. 5~g! and 5~h!# diagrams.
These graphs present a logarithmic ultraviolet divergence~by
Lorentz covariance the would be linear divergence does
appear!. In addtion to that they are so intricate that ev
using dimensional regularization and employing an algeb
computer program the integrals did not turned out to be f
sible.

To summarize, in this work we have studied some pr
erties of spin one particles interacting through a CS field.
argued in the introduction, this is a complex system but
found some simplifications which allowed us to study
behavior up to the one loop level. We have indicated ano
possible scheme as the use of the complex MCS model m
e

ot

ic
-

-
s
e

er
i-

mally coupled to a CS term. Although this model is pow
counting renormalizable, the algebraic structure is very m
cumbersome that no practical results are possible even a
one loop level. In such situation the scheme adopted by
seems to be the most useful although not being easily g
eralizable to higher orders.
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APPENDIX

In this appendix we shall present some details of the c
culations of the vector meson self-energy and of the CS
larization tensor. Let us begin considering Eq.~28!. There
are two denominators so that, employing Feynman’s tric

1

AB
5E

0

1

dx
1

@~A2B!x1B#2
~A1!

and changing the integration variable,k→k1px one finds

Sab~p!5
2 ie2

u E
0

1

dxE d3k

~2p!3

Lab

@k22C2#2
, ~A2!
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whereC25M2(12x)2p2x(12x) and

Lab5$@3M21xp2#~«sbrkska1«asrkskb!pr1@~12x!M2p22~12x!~pmkm!2~x22x3!p4#«absps

12xp2«abrkrksps%/M2. ~A3!

Using dimensional regularization one can perform the momentum integration to get

Sab~p!5
e2

8puM2E0

1

dx
6M41@p42M2p226M4#x1@M2p227p4#x216p4x3

AM2~12x!2p2x~12x!
«absps . ~A4!
i

n

ing
The computation of the remaining parametric integration
straightforward and produces the result~30!.

Let us now turn to the polarization tensor. From Eqs.~35!
and ~36! and proceeding analogously to what we have do
before we arrive at

Pmn5
e2

M2E d3k

~2p!3

N1
mn

@k22M2#@~k1p!22M2#
, ~A5!

where

N1
mn5@k2~pmkn1kmpn!22kmknkapa#1@8M2kmkn

2~4M2gmn1pmpn!k21kapa~2pmkn12kmpn

22gmnkbpb!1p2~23kmkn12gmnk2!#

1@3M2~pmkn1kmpn26gmnkapa!#

1@M2~4M2gmn1pmpn23p2gmn!#. ~A6!

Employing again Feynman’s formula~A1!, translating the
integration variable,k→k2px and deleting the terms odd in
k, results

Pmn5
e2

M2E0

1

dxE d3k

~2p!3

N2
mn

@k22a2#2
, ~A7!
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where, as before,a25M22p2x(12x) and

N2
mn5M2@4M2gmn1pmpn~126x18x2!

1p2gmn~2316x24x2!#1kmkn@8M223p212p2x#

1k2@24M2gmn2pmpn~112x!12p2gmn#

1@2kmpnkapa12pmknkapa22gmn~kapa!2#. ~A8!

With the help of dimensional regularization this becomes

Pmn5
ie2

8pM2E0

1

dx
N3

mn

@M22p2x~12x!#1/2
, ~A9!

with

N3
mn5M2~2212x18x2!@pmpn2p2gmn#

1p2@pmpn~2x17x226x3!

1p2gmn~2x2x212x3!#. ~A10!

The parametric integration can be done exactly produc
the result~37!.
d.

a

@1# S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett.48,
975 ~1982!; Ann. Phys.~N.Y.! 140, 372 ~1982!; J.F. Schon-
feld, Nucl. Phys.B185, 157 ~1981!.

@2# W. Chen and M. Li, Phys. Rev. Lett.70, 884 ~1993!; V.S.
Alves, M. Gomes, S.V.L. Pinheiro, and A.J. da Silva, Phy
Rev. D59, 045002~1999!; 60, 027701~1999!.

@3# P.K. Townsend, K. Pilch, and P. Van Nieuwenhuizen, Ph
Lett. 136B, 38 ~1984!; S. Deser and R. Jackiw,ibid. 139B, 371
~1984!.

@4# R. Banerjee, H.J. Rothe, and K.D. Rothe, Phys. Rev. D52,
3750 ~1995!; 55, 6339 ~1997!; I.A. Batalin and E.S. Fradkin,
Nucl. Phys.B279, 514 ~1987!; E. Fradkin and F.A. Schapos
nik, Phys. Lett. B338, 253 ~1994!.

@5# S.K. Paul and A. Khare, Phys. Lett. B171, 244 ~1986!.
@6# M. Gomes, L.C. Malacarne, and A.J. da Silva, Phys. Lett.

439, 137 ~1998!.
@7# Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
@8# O. Bergman and G. Lozano, Ann. Phys.~N.Y.! 229, 416
s.

s.

B

~1994!.
@9# M. Gomes, J.M.C. Malbouisson, and A.J. da Silva, Int. J. Mo

Phys. A13, 3157 ~1998!; Phys. Lett. A236, 377 ~1997!; M.
Gomes, L. C. Malacarne, and A. J. da Silva, Phys. Rev. D59,
045015~1999!.

@10# C.R. Hagen, Phys. Rev. D56, 2250 ~1997!; H.O. Girotti, M.
Gomes, J.R.S. Nascimento, and A.J. da Silva,ibid. 56, 3623
~1997!; M. Gomes and A.J. da Silva,ibid. 57, 3579~1998!.

@11# C.R. Hagen and S. Ramaswamy, Phys. Rev. D42, 3524
~1990!; C.R. Hagen, Int. J. Mod. Phys. A6, 3119~1991!.

@12# M.L. Horner and A.S. Goldhaber, Phys. Rev. D55, 5951
~1997!.

@13# F.P. Devecchi, M. Fleck, H.O. Girotti, M. Gomes, and A.J. d
Silva, Ann. Phys.~N.Y.! 242, 275 ~1995!.

@14# K.J. Kim and Y.S. Tsai, Phys. Rev. D7, 3710~1973!.
@15# S.L. Glashow, Nucl. Phys.10, 107 ~1959!; S. Ferrara and M.

Porrati, Phys. Rev. D46, 3529~1992!.
@16# H.S. Corben and J. Schwinger, Phys. Rev.58, 953 ~1940!;

T.D. Lee and C.N. Yang,ibid. 128, 885 ~1962!.
6-8


