PHYSICAL REVIEW D, VOLUME 60, 125014
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The density of mass levejgim) and the critical temperature for strings in de Sitter space-time are found.
QFT and string theory in de Sitter space are compared. A “dual” transform is introduced which relates
classical to quantum string lengths, and more generally, QFT and string domains. Interestingly, the string
temperature in de Sitter space turns out to be the dual transform of the QFT Hawking-Gibbons temperature.
The back reaction problem for strings in de Sitter space is addressed self-consistently in the framework of the
“string analogue” model(or thermodynamical approaghwhich is well suited to combine QFT and string
study. We find de Sitter space-time is a self-consistent solution of the semiclassical Einstein equations in this
framework. Two branches for the scalar curvatR(e-) show up: a classical, low curvature solution), and
a quantum high curvature solutior-{), entirely sustained by the strings. There is a maximal value for the
curvatureR,,,, due to the string back reaction. Interestingly, our dual relation manifests itself in the back
reaction solutions: the<{) branch is a classical phase for the geometry with the intrinsic temperature given by
the QFT Hawking-Gibbons temperature. The)(is a stringy phase for the geometry with a temperature given
by the intrinsic string de Sitter temperaturet 2 dimensions are considered, but conclusions hold generically
in D dimensions[S0556-282099)05120-4

PACS numbd(s): 11.10—z, 04.60—m, 04.62+v, 11.25-w

I INTRODUCTION AND RESULTS EDS is precisely the Compton length of a particle whose mass

. ) is given by
In the context of quantum field theo@FT) in curved

spacetime, de Sitter spacetime has a Hawking-Gibbons tem- c
perature given by Mna= | ——
a'H
h hc 1
TDSZZWKB H= 27Kg Lps This is the maximal mass for the spectrum of partidscil-

lating or stable string states in de Sitter spacetime Refs.
(see Ref[1] for its appropriated interpretatiprH being the  [2—4].
Hubble constantLps=cH ™! being the classical horizon The R transformation links classical lengths to quantum
size. string lengths[In de Sitter spacetime, it links the classical
In the context of string theory in curved spacetime, stringdhorizon sizel ps to the quantum string size in this spacetime.
in de Sitter spacetime have a maximal or critical temperatur&Ve are refering here to the oscillatory or stable strifigese

given by from which the quantum particle states dejiye
Under theR transformation(see Sec. Il
e c®  #c|Lps ~
S a'KBH KB Lé TSZZ’]TTDs.

The string temperature in de Sitter spacetime turns aut 2
times the “dual” (R-transformatef of the Hawking tem-
perature(and conversely That is, the intrinsic QFT and
string temperatures in de Sitter space Rrdual. In fact, this
has a more general validity: tl-transform can map QFT
T=RL=L2L"L and string domaingor regime$ and applies to other space-

RE times as well. In particular, it plays a key role when applied
to black holeq5].
In the context of QFT, de Sittdias well as Ad$ space-
o'h time, is an exact solution of the semiclassical Einstein equa-
Lps=——H. tions with back reaction includgd,7]. Semiclassical in this
c? context means that quantum matter fieldscluding the

(see Sec. lll in this paper for its appropriated derivation
Ls=(a'%/c)*? being a characteristic string length scale.

We introduce here aR or “dual” transformation over a
length

i.e., if L=Lpg, then
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graviton) are coupled tac-number gravity and the vacuum  We apply self-consistently the strings;) to the right-
expectation value of matter energy momentum tensor acts ihand sideRHS) of the semiclassical E|nste|n equations, we
turn as a source of gravitjguantum back reaction effect  study the back reaction effect in de Sitter space of the higher
In this paper we investigate the quantum back reactiorexcited string modes. In constant curvature spdsash as
effect of strings in de Sitter spacetime. In principle, thisdS and Ad$the semiclassical back reaction equations yield
question should be properly addressed in the context ahe scalar curvature in terms Bfand of the quantum matter
string field theory. On the lack of a tractable framework for content(the trace( TM))
it, we work here in the framework of the string analogue  The mass domain for fields in de Sitter spacetime is given
model(or thermodynamical approaklthe string as a collec- py
tion of fields ®,, coupled to the classical background, and
whose massem, are given by the degenerate string mass #H
spectrum in the curved space consider@dhe fields®,, are Mopr<—
without self-interaction but are coupled to the classical ge- ¢
ometry) The fields®, are “repeated”’p(m) times, the de-
generacy of states being given pym), the density of mass
levels of the string.
In flat spacetime, the higher masses string spectrum is c
given by Mg<—.
a'H

while in string theory, the string mass in de Sitter spacetime
satisfies

a’'c

p(ﬁ):ﬁ’aebm, m= Tm Under theR transformation we have

(a andb being constants, depending on the model, and on Morr=RMorr=Ms,
the number of space dimensignk de Sitter spacetime, we

find p(m) is given by[Eq. (33b)] Mg=RMs= Mger,
-0 od R(Thdrr=(Th)grr=(T})s.
€ ;
Fa-n Here(T")S is g|ven by[Eg. (46)] as a function of the vari-
ablex= (m/mmax)
[=(1—m2y)t2 _Sa'h H2 We find (7/;) up to ordery (as given by{Eq. (55b)]), in
N LEEE A 4¢3 ' terms ofa’ and of the scalar curvatuiR=6H?/c?:
isfi i hH3
It satisfies the behavior (r")-— \/— 2 \/—)
373c?
— 27 [|a'c 5 (ma’H\? ma'H\3
p(m)~exp% V7 M1i-35 ¢ c Inserting it self-consistently in the semiclassical Einstein
equations for the effective geometry, we find for the scalar
curvature:

WhenH =0, it yields the flat spacetime asymptotic behavior.
Here we deal with 221 dimensions, but the results are 1

the same foD dimensions, only the numerical values of the R.=6A. :_Rma{ 1+

constants will change. In QFT, the expectation value of the 2

(2+ 1)-dimensional energy-momentum tensor for a quantu

massive field[in the de Sitter invariantBunch-Davie$

vacuun [8,9] is given by Eq.(35). In the framework of the

1-4

R 1/2
RmaK) :| .

nbue to the quantum string back reaction, the curvature
reaches a maximum value:

analogue model, the string vacuum expectation v is
nalog g p altfe octn?| g |12
given by R =— | =
4G \5a’ch3]
Mmax "
o (T(m)sp(m)dm Three cases show up depending on whetheR< }Rax
(Tﬁj>= — , (i) R=%Rmax, O (i) R<ZRmax-
f maxp(m)dm Case(i) describes two semiclassical de Sitter spacetimes
mo with constant positive curvaturd2.>0 and well defined

associated temperaturég.. .
<T“(m))s being the trace stress tensor vacuum expectation Case(ii) describes one semchaSS|caI de Sittpositive

value for an individual quantum field with mass in the string curvature space for whichlR, =R_ =3 Rax.
mass spectrumm, is the lowest mass from which the For (iii ), no real spacetime geometrles nor temperatures
asymptotic expression fgr(m) is still valid. are possible.
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Two branches, ) and (—), for the curvature show up. 1
The leading term iR in the (—) branch, while iR, in the Ruv™ 59, R+AQ,,=0, (23
(+) branch. In an expansion iR/R,y, classical de Sitter
space is recovered in the-() branch.R(—) is a low curva- H2 2
ture, classically allowed solution, whilB(+) is a “quan- R=D(D—1)—=——=A, (2b)
tum” branch (it does not exist classicallyand its curvature c2 D-2
is very high. The quantum string back reaction generates this
branch. (D—1)(D—2) H?
Our dual relation between classical-QFT and the string A= f? (20

domains manifests here again in the back reaction solutions:
the branch €) is a classical phase for the geometry whichThe p-dimensional de Sitter metric can be also expressed in
temperature is given by the QFT Hawking-Gibbons temperaterms of the so-called static coordinates
ture T(—) =Tps= (Ac/l2mKg) (R_/6)Y2.
The branch ¢ ) is a stringy phase for the geometry which ds’=—A(r)c2dT?+A " Y(r)dr?+r2dQ3_,, (3
temperature is the intrinsic string de Sitter temperature
T(+)=Ts=(c%a'Kg) (6/R.)Y2 Moreover, our dual rela- Where
tion and the two phases: a classical-QFT phéasih the ” 5
Hawking temperatupeand a quantum-string phageith the Alr)=1— Hr
) ; (=1 (4)
string temperatune appear to be a generic feature and are c2
very enlighting for black holes. Our study of the string black
hole temperature and quantum string back reaction for blackhich show the existence of a horizon at
holes is reported elsewhere RE3]. .
The duality transform introduced here does not require the r=Lps=cH -~ ®)

existence of any symmetry or isometry in the curved back- In the context of quantum field theory in curved space-

ground. In this sense, it is not related to theluality, a well . : . X .

) ) : o time, de Sitter space-time has a Hawking-Gibbons tempera-
established symmetry of strings in backgrounds with isome; (Too) given by Ref[1]
tries. Our duality is more of the type of a classical-quantum ps) 9 y '
(or wave-particlg duality relating classical-semiclassical and H#
guantum behaviors or regimes, here extended and including TDszm.

B

the quantum string regime. At the stage we are using it, this

duality is a consequence or a matter of fact from the result§qgtice that this expression foFps holds in any number of

of this paper. _ _ space-time dimensions. In termsRfand A, Tpg reads
The QFT and string results of this paper and of RBf.

(6a)

satisfy this duality(they do not assume)itin this sense, this e [ R
is not a conjectural duality. It could be that a more general TDSZZ’TTK D(D-1) (6b)
operation underlies this transform, but we do not study it in B
this paper. or
This paper is organized as follows. In Sec. Il we summa-
rize de Sitter spacetime and the QFT Hawking-Gibbons tem- ke 2A
perature. In Sec. lll, we derive the string temperature in de TDszszB \/ (D-1)(D-2) (60)

Sitter spacetime and its dual relation to the Hawking-

Gibbons temperature. In Sec. IV we find the quantum string |f one defines a surface gravityps equal tocH, Tps
back reaction and its solution. In Sec. V we present the cOnFgq, (6)] reads
cluding remarks.

hkps

II. de SITTER SPACE-TIME Tos= 27Kge’

de Sitter space-time is a cosmological space with constargyrthermore T 55 can be also expressed in terms of the clas-
scalar curvatureR), and vanishing spatial curvature index sjca| length scalé pg [Eq. (5)] as

(K). Its D-dimensional metric is given by

()

Ac 1
ds?= —c2dt?+a2(t)(dr2+r2d03 ), (1) T08= 2K Log. ®

a(t)=e"", "
. QUANTUM STRINGS IN de SITTER SPACE-TIME
t being the cosmic time anld =d In a(t)/dt being the Hubble String theory in de Sitter space-time is exactly integrable
constant. in any dimensiorj10]. However, explicit expressions for the
de Sitter space-time can be generated by a cosmologicatring solutions are not easy to write due to the complexity of
constant (\). The curvatureR ,,,,R,H, andA are related by the equations, and even of the solutions. Two main quantum
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frameworks have been studied and solvéd: canonical c3
guantization of generic strings in any dimensid3] and Ts=— , (14
(ii) semiclassical quantization of exact circular strings con- a’'HKp

figurations in 2+-1 space-times Ref4].

In this section we will consider the casp (canonical
guantization. We now remind the reader of some of the =S:
main issue$Eqgs.(2) and(3)]. In canonical quantization, one
treats the de Sitter classical background exactly, and consid- TS:@ L_DS _ (15)
ers the string oscillations around its center of mass as pertur- Kel L3
bations. The string center of mass is an exact solution of the
geodesic equation. The perturbatigdénensionlessparam-  If we compare this maximal or critical temperature for
eter is here strings in de Sitter space-timd §) with the quantum field
theory Hawking-Gibbons temperature for de Sitter space-

_:_\/a h \/ 2Aa'h <1 © time (Tps) [Eq. (68)], we have

or, in terms of the classical and string length scélgg and

Lps (D-1)(D—-2)c
% 1
wherel pg (de Sitter length or horizoris given by[Eq. (5)] Ts= k2 To (16)
andLg (string length scaleis Ta e
o' B\ 12 Let us define now the following transformatidR over a
Ls ( c ) (10)  lengthL:
L=RL=L%L"% 17

Here a'=c?/2xT, whereT is the string tensiofi(a’) ! :
linear mass density

In this framework, the mass spectrum formula in de S|tter|_ IfLLR[EIaS([S]q \Evlé))gb?e:?] we apply this transformation to
space for arN-th level state is given bj2,3] DS

(C =243 2n2—H?m?(a'?/c?) Lps=RLps=
fi

n=0 \n2—H2m?2(a'2/c?)

a'hH

(18

But Lps is precisely thereduced Compton wave length
11) (A=%h/mc) of a particle whose mass is equalrg,,, given
\/1—H2m2(a’2/02) by [Eq. (13)], i.e., Lps is the minimal quantum length of a
string in de Sitter space. Therefore, this transformation links
One of the consequences of the spectrum is that the nuntke classical de Sitter length scalg,s to the quantum
ber of string oscillating states, although being very large, isstring—de Sitter oné& .

finite. This maximum number is given by The string temperatur@g [Eq. (15)] in de Sitter space
L2 3 time can be rewritten in terms &fys [Eq. (18)] as

0. 15( DS) 0 15( H (12)
Ls

2—H’m?(a'?/c?)

+2N

Nmac Int =Int
a'fiH? hc 1
Furthermore, there is a maximum mass,f,) for the B Lbs
corresponding real mass solutions We see now fromiEqg. (8)] and[Eq. (19)] that the following
2 relations hold under th& transformation:
' E ma. ~ L_DS (13)
AT Tos= ! T 20
- ps=5 - Ts (20)
, ( c \2 and
M= — =2
a,H TS:2’7TTD8. (21)

As [Eq. (9)] is fulfilled for oscillating string states, i.e., From the above equations we can read as well
1<(Lps/Lg)®(=c®a’H?h), the number of oscillating
strings and the maximum string mass are large. TSTDS:'TS'TDS,

The fact that there is a maximum mass implies the exis-
tence of a maximum or critical temperature for the strings in  That is, the maximal string temperature in de Sitter space-
de Sitter space-time. The temperatudrg corresponding to time is the dual(in the sense of th& transformation Eq.
Mmax LEQ- (13)], is given by (17)]) of the Hawking(QFT) temperature.
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IV. QUANTUM STRING BACK REACTION namics could be embedded in a higher dimensional space-
IN de SITTER SPACE-TIME time and our results generalized to higher dimensions as
well.

When quantum mattefparticle fields, stringsis present In the spirit of the analogue model, we consider here the
in de Sitter space-time, the relation between the scalar cur- | ) A ’ )
vature and the cosmological constahtwill be modified string as a collection of field®, coupl_ed to the classical
through the semiclassical Einstein equations. SemiclassicBgckground, and whose masseg are given by the degen-
in this context means that matter, which isganumber, is erate mass spectrum of the string. The fielbls are free
coupled toc number gravity through the equations (without self-interactionsbut interact here with the classical

geometry. Thethighep mass spectrum is described by the
density of mass levelp(m). As it is known, in flat space-

1 87G . L
Ry, — ER O T Ang?(rﬂy(q,gw)). (22)  time p(m) is given by

. . m)~m~2expb m, 25
The space-time background metdg, generates a nonzero p(m) P (25)
vacuum expectation value of the energy momentum tens:Ovﬁlhere we have introduced the adimensional mass variable
(7,2, which in turn acts as a source of curvatui€or in-

stance, in four-dimensional quantum field theory, matter -
a' C
\/—m
f

fields ¢ include the graviton andTW(qAb,gW» is calculated m=
up to one loop order, whekd ,,) stands for its renormalized
value[11,7].) ) )

For maxima”y Symmetric(constant Curvatuﬂespaces (Wh|Ch will prove useful later 0)] The constanta and b
(such as de Sitter and anti-de Siite¢hese equations read  depend on the string model and on the dimensions of the

(26)

space-time.
2-D 817G In de Sitter space-timep(m) has a different behavior
(—R+A gW:_4<TW> (23 from the one O[Eq. (25)], as it follows from_ the st_rlng mass
2D spectrum in de Sitter spa¢Eqg. (11)]. Classical string equa-
tions of motion and constraints have been solved exactly for
which yields the trace equation circular string configurationgt=t(7),r=r(7),¢=0] in a
2+ 1 de Sitter space-time Rdf12]. Semiclassical quantiza-
2D 167G tion of the time periodidoscillating solutions has been per-
R-pg3A=- D-2) (i) (243  formed Ref.[4]. For a'H?k/c3<1 [i.e., (Ls/Lpg)?<1],

corresponding to the semiclassical quantization here, and
which is always satisfied for oscillating strings, the results
or are the following.(i) The quantized mass formula is given,
for largen , by

R= 2D A 240
=p et (24b) .
a' z m?=4n(1— yn), (27
where
where
A A 87G u ”
eff — DC4 <T,u,> ( C) B 5a,H2ﬁ (28)
[P I

which shows clearly quantum matter as a source of curvature

and of temperaturgEq. (70)]. _ (Notice that forH=0 one recovers the mass formula for
As (7,,) is proportional tog,,,, de Sitter(DS) [as well as  ¢josed strings in Minkowski spade(ii) The number of os-

anti—de Sitter fpg)] backgrounds are exact self-consistent gjjjatory circular string states, although being very large, is
solutions to[ Eq. (22)] with back reaction included. finite

In de Sitter space, there is one real parametéamily of
de Sitter group invariant vacya>. Here(r,,) is the ex-
pectation value in the Bunch-Davi¢8,9] (“Euclidean” or N e INt
“inflationary” ) vacuum obtained fowr=0.

In order to study the back reaction problem for string
theory in de Sitter space-time, we will work in the frame- (i) The level spacing is approximately constant, in
work of the string analogue model, and in & 2 space-time, («’c/#) ™! units(although smaller than in Minkowski space-
where we will use the results coming from semiclassicaltime and slightly decreasing
guantization of exact circular strings configurations Réf. Furthermore, fromEq. (27)] and [Eq. (28)], the maxi-
However, one should have in mind that the-2 string dy- mum value for the string mass states is given by

3

C
0.34——|. (29
a'H2h
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2
’ 4 c
mmax— g ( m (30@
or
Maa=7 " (30b)

[see Eqs(26) and(28)]. The above results are in very good
agreement with the ones corresponding to canonical quan

zation of generic string$Eqgs. (12) and (13)]. It must be

noticed that Eq(30) will provide a maximum string tem-

perature similar to the one of E(l4).
The asymptotic degeneracy of levels (in flat as well as
in curved space-timds generically~n~ (P +1)/2g4m(D=2)n/8

for any noncompacD-dimensional space-time. For closed
string solutions and> =3 , the asymptotic degeneracy of

levelsd, reads

d,~ n— 2™

tized mass. It is through the relation=m(n) of the mass
ture enter in the above formula.
The density of mass leveljs(m) and the degeneraay;,
satisfy
p(m)ydm=d,(m)dn. (31b)

From[Eqg. (27)] and[Eq. (28)] we have

2¢? 5(a’'Hm)?]"?
5a’H2ﬁ[1_[1_Z( c H ]) (329

n=Int

or

n:mt{%[l—(l—ﬁy)lm]], (32b)

in terms of the adimensional variables and y [Egs. (26)
and (28)].

Therefore from Egs.31b) and (32b), the asymptotic
string density of mass levels in de Sitter space is

,C d,
plm)~| « i ml—2'yn

(333

which for H=0 [y=0, Eq. (28)] gives the flat space-time

relation p(m)~md,(m).
From Egs.(32b), (333, and(31a, we obtain

p(m)~m(1—m?y) Y3

1 o -2
2—7[1—<1—m27>1’2]}

A7 1 o 1/2
Xex;{%{z[l—(l—mzy)”z]} ] . (33b

PHYSICAL REVIEW D60 125014

wherevy is given by[Eq. (28)]. Equation(33b) generalizes to
de Sitter spacetime the standard flat space time behfdsipr
(25)]. B B

If we develop the exponent gf(m) in powers ofm?y
=(m/My2)°<1 [Eqgs.(26) and (30b)], we have

= 27 Ja'c [1 1( mw)2+o< mx)3
m)a exp—=\/——mj{ 1— = | —
pPmaepEN T ™ g m, Mo

tBr, showing the explicit dependence bin

a'H

— 27 [a'c 5 2
p(m)aexp% Tm 1—3—2 e me+---

We see that forH=0 one recovers the flat space time
asymptotic behavior.

Now, returning to the semiclassical Einstein equations
(243, (24b), and(240), (7/,;) will be the vacuum expectation
value of the trace of the stress tensor for the collection of
fields (interacting with the backgroundvhich correspond to
the string tower of mass states in de Sitter space. In the

framework of the analogue model, the string vacuum expec-

spectrum, that the differences due to the space-time curvzgf-itlon value<rﬂ> is given by

f T T (m)) s p(m)dm

Mo
mmax
J p(m)ydm

Mg

(7= : (34)

where(T4)s is the vacuum expectation value of the trace of
the stress tensor for an individual quantum field. We inte-
grate over string field masses and divide by the total mass
degeneracy. In fact we should haya(m))p(m), where
(n(m))~ [okP~2dk, but this divergent contribution cancels
out (as it appears as a multiplicative factor for both numera-
tor and denominator

Since in de Sitter space-time the number of particle oscil-
lating states is finite, the sum goes up .. [Eq. (30)]
(instead of up to infinity as for Minkowski space-timen, is
the lowest mass from which the asymptotic expression of the
density of mass levelkEq. (33)] is valid. Therefore, we are
studying the back reaction effect in de Sitter space-time due
to the higher excited string modes.

Herep(m) [Eq. (33)] depends only on the mass as usual,
therefore(T%)s will be chosen for our study to be the expec-
tation value of the stress tensor for a massive scalar field
the de Sitter invariant or Bunch-Davies vacuum

The quantum field theory valud’,(m))qer, correspond-
ing to a scalar massive field in at2l de Sitter space-time
(in the de Sitter invariant vacuumis given by Refs[13] and

(9]

ﬁH3 mCZ 2 21172
el ) |00~ |

m 211/2
XCtgw{(l-G{)—(m>} ) (35

125014-6
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where ¢, a numerical factor, is the scalar coupling But these domains are going to be exchanged byRhe
(—3¢{R¢; conformal coupling :Z=3). Notice that for a transformation given by Eq18). In fact, if we apply theR
massless scalar field there is no trace anomaly-l2di-  transformation to both sides of Eq89a and(39b) we ob-
mensions. This happens too also for any odd dimensional d&in

Sitter space-time Refl14]. In addition, for these spaces,

(T4 is finite and no renormalization procedure is needed, in ~ nol
contrast to thdd =4 case Ref[15]. mQFT<E[_ (409
At this point, let us analyze the mass scales in the corre- DS
sponding quantum field theof@QFT) and string theory in de and
Sitter space-time. From Eg&2) and(35), one can read the
following domains for the field mass in QFT and in string . h 1
theory (=0 for simplicity) : Mmg<— (40b)
c LDS
mQFT<h_|: (363 (Lr=(\Ba'#/2c)?in Eq. (7). The numerical factox/5/2 ,

that appears here and inps as well, is just due to the
slightly smallerm,,5, ONne obtains in semiclassical quantiza-

and tion [Eq. (30a] as compared with the canonical quantization
[Eq. (13)]. Obviously, the action of th& transformation is
2 c equal for both cases.
ms<ﬁ a'H (36D We can summarize the action of tlietransformation, on

the masses and on their domains, in the following E8jga),
(37b), (40a, and(40b):

which can be rewritten as well §see Eqs(26), (303, and
(30b)] -
Moer= RMgrr= Mg, (41a
M—H< 1 (373) Mmg= RmS: mQFT! (41b)
and MqerC? Mg —
R( iH ) V7 (419
mmax_ mS‘/—<1 (37D Now we are able to write the vacuum expectation value

(VEV) of the stress tensdiT/)s that appears in the RHS of
HereM,=7#H/c? is the mass scale of de Sitter space. Equa£q. (34), and which corresponds to the high masses of the
tion (37a just means thamger is a test particle field in de string domain. From the previous mass-domain study, it is
Sitter space, anth,,is the maximum value for string states clear that(T%)s is precisely theR —transformed object of

in the 2+ 1 de Sitter semiclassical quantization. (T qer: i€,

Now we express the above inequalities in termd_g§
[Eq. (5] and Lps, being the later the minimal Compton R(T orr= (T4 orr=(T4)s- (42)
wave length as before. Here, accordingrg,, given by Eq.
(30a, Lps is Applying the R transformation Egs.(41a and(410] to

(Th)qeT, given by Eq.(35), we obtain
~ \/g a'HA
DS:7 - (39 =, AH3 —, — 1
c (T =45 (M y(1-60)-m?y]

(semiclassical and canonical quantizations of the string just
differ in the factor\/5/2).
From Egs.(363, (36b), (5), and(38) we have

X ctgm[(1—6¢) —m2y]¥2 (43)

in terms of the adimensional variable
o1

M el — 39 — 5/a'mH)?
T T (393 = o[ )
and [Egs.(26) and (28)].
- In order to compute{r") [Eg. (34)], it is convenient to
Mmg<— =—. (39b) expressp(m)dm [Eq. (33)] and(T") [Eq. (43)], in terms of
CLops the adimensional variabbe=m?y (runnlng ratiom?/m2_.) :
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p(m)dm= ipmdx,

2y (44)
where
p(X)=(1=x)""1-(1-x)"7?
Xexp{%[l—(l—x)llz]l’z (45)
and
_ 3
(Thy=- 477c2F(X)' (46)
where
F(x)=—x(1—x)Y2ctgm(1—x)? (47)
(we set here=0 for simplicity).
Finally, (%) will be given by
. .. LXIZF(x)p(x)dx
4mc? J:p(x)dx
3
- j:cz :_E’ 48

where xlzﬁgy. In our case, the adimensional variabde

runs in the intervalx,,3) . About the upper limik,, a word
on F(x) is now in order.F(x) is a non-singulamonotoni-
cally) decreasing function in the interv@0,1], and F(x)

>0 for x in [0,2). But this later interval is in fact the safe

range for the physical validity ofT4)qer (the mass of the
test particlem is much smaller than the mass schlg, of a
de Sitter universe and hence foﬁj’;}.

On the other hand, if we consider the integrglin the
numerator of Eq. (48)], the exponential op(x) [Eq. (45)]
plays a leading role in the intervpk,,3) from the physical

point of view sincey '>1 . Therefore, the monotonically

decreasing behavior of the functidi(x) can be approxi-
mated by the straight ling= — (8/37)(x— 2).

After a straightforward calculation one obtains fgrand
I5 [EQ. (48)] the following expressions:

32 3
IN=-3-1"7

e?r 1 = (2
222 2\z 232 '\\

<l

1

(49

—e?Mzn—\?) + 2E;

and
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ez/)\ ez/>\ 1 7 4]
B Pl
2}
where
z=[1—(1-x)"*2, (51)
3
:Q_ (52)
2

Considering thex(\/y) leading terms, we have fdg, and
Ip:

128 ,

In=5 " NH1+7V2)) (53)

I p=16e?"67\ Loia. (54)
V2

From Egs.(48), (53), and(54), <TZ> reads, up to ordey
[Eq. (29)]:

iH?
<Tﬁ>=—m\/6_7

7 C

(553

2
1+ —\/Gy)
T

or, in terms of the scalar curvatur® [Eqg. (2b); R
=6H’c™?]

" RZ 5a’Cﬁ3 1/2] L 2 5a/ﬁR 1/2
<T">_ B 3673 6 7\ 4c
(55h)

Inserting (74,) [Eq. (55D] into the back reactiofEq.
(2439] for D=3, we have

AGR? [5a'h3c\ Y L 2 5a’hR 12
9-2c4 6 7 Tac

(563
(for D=3,[G]=L%t"2M 1) or [Egs.(24b) and (249]:

R—6A=

R=6A¢1, (56b)

2(50’/% )1/2}
+ R .
m\ 4c

(57)

where

2GR? [5a’'#3c\ 2
57264\ 6 1

We are going to analyze now the physical consequences

of the back reactiofiEg. (563]. For simplicity we consider
(%) [Eq. (55a] up to orderyy. We have
R—6A=aR? (58)

where
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“ 4G
a= —9C4772 (59

5a/CfL3 1/2
.

[Eq.(58)] is a second order equation®, similar to the one
found for the back reaction of massless quantum fiéildls
cluding the gravitoh in four-dimensional de Sitter space-
time Ref.[7]. The expression for is here different as it
containsa’ . (In the case of massless QF&,arise from the
trace anomaly(T%).)

From Eq.(58) we have two solutionfEqg. (2b)]

R.=6A_ (60)

with

1 n
Ar=——[1+(1—-24A a)V2. 6
. 120[[1 (1-24Aa)'?] (61)

A+ are the effective cosmological constants.

One can distinguish three cases.

(i) If A<1/24a = 3c*w?/32GH (6/5a' ¢ £%)Y2 We have
two de Sitter space-times with curvatuféy. (60)]

octm2[ 6 |\
© 8G <5a’cﬁ3)
32GA (5a’c 3| ¥2]"?
X311+ 1—E(T . (62

Both branches are well defined and hae>0.
(i) If A=1/24a, there is a unique de Sitter space-time

6 12
<5a’ﬁ3c) .

(i) If A>1/24a, there are neither physical real curva-
tures nor temperatures.
For smallA,

R _R — 1 _9C4772
T4 166G

(63

3c*7?
32G

6 172
SCa’ﬁ?’) )

for which(T%)qer, and hencéﬁ'ﬁj} and( %), are not trivial,
we have

A< —=
24

1
R,26A<r, (64@
o
1 oc*m2[ 6 |\
APTe (5—ﬁ = Rimax
(64b)
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The two branches of solutions are generically of different
kind. We call theR_ branch “classical” as it represents
solutions which are classically allowed, while tRe branch
will be the “quantum” one as the configurations do not oc-
cur classically.

From Egs.(60) and (61), we read a maximum value for
the effective cosmological constant:

1 3ct#2 6 |\
maxzfs_a/= 8G 5a'Ch3) . (65)
In terms of A 5, alternatively ofR,ax, We have
1 A 1/2
At:EAmah{lt(l_élA K) , (66)
ma
1 R 1/2
R+=§me{1i(1—4R J } (67
ma

In an expansion iNR/Ry,y, the leading order iR
=R,R(+)=Rnax- QFT de Sitter temperatuf&g. (6b)] asso-
ciated to the classical bran@y_, is

1/2
R
6

T o

~DST ok,
The string quantum brandR, has a string temperature
6 1/2
Re+)

CZ
T+ string= ,
a kB

V. CONCLUSIONS

A combined study of QFT and string theory in curved
backgrounds allowed us to go further in the understanding of
guantum gravity effects. The string analogue mddelther-
modynamical approaghs a suitable framework in cosmol-
ogy and black holes to combine both QFT and string study,
and address the problem of quantum string back reaction.
The dual relationship shown here between the two domains:
classical-QFT and quantum string, applies also to other
space-times and plays a key role in the black hole case Ref.
[5].

The string black hole temperature and quantum string
back reaction for black holes is reported in another paper
Ref.[5]. The two phases correspond to the evaporation from
a classical black hole geometry with intrinsic temperature
given by the QFT Hawking temperature to a string phase for
the geometrysustained by the quantum string back reagtion
which temperature becomes the intrinsic string temperature.
These studies and our dual relation between classical-QFT
and string phases appear irrespective of conformal invari-
ance. A similar study for anti—de Sitter space time is under
investigation by these authors.

From the above equations we see that one recovers the QFT in anti—de Sitter space time does not possess an

classical space-time for tHe_ solution.R_ is a small cur-
vature solution. On the contraryy, does not represent a

intrinsic or Hawking temperature. Strings in AdS space-time
do not possess a maximal or critical temperaf®d]. The

classical allowed configuration and its curvature is very highpartition function for a gas of strings in AdS space-time is
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defined at any positive temperature R lar in the conformal and nonconformal invariant AdS
Such results for strings in AdS space-time were also conbackgrounds mentioned abowdi) the lack, at the present

firmed in the presence of a full conformal invariant AdS time, of a full string conformal invariant treatement involv-

string background Wess-Zumino-Witten-Novik¢WZWN) ing de Sitter space-time.

model SL(2R) (AdS with torsion [16]. As shown in Ref.

[16] conformal invariancesimplifiesthe mathematics of the

problem but the physics remain mainipchangedFor low ACKNOWLEDGMENTS
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