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The density of mass levelsr(m) and the critical temperature for strings in de Sitter space-time are found.
QFT and string theory in de Sitter space are compared. A ‘‘dual’’ transform is introduced which relates
classical to quantum string lengths, and more generally, QFT and string domains. Interestingly, the string
temperature in de Sitter space turns out to be the dual transform of the QFT Hawking-Gibbons temperature.
The back reaction problem for strings in de Sitter space is addressed self-consistently in the framework of the
‘‘string analogue’’ model~or thermodynamical approach!, which is well suited to combine QFT and string
study. We find de Sitter space-time is a self-consistent solution of the semiclassical Einstein equations in this
framework. Two branches for the scalar curvatureR(6) show up: a classical, low curvature solution (2), and
a quantum high curvature solution (1), entirely sustained by the strings. There is a maximal value for the
curvatureRmax due to the string back reaction. Interestingly, our dual relation manifests itself in the back
reaction solutions: the (2) branch is a classical phase for the geometry with the intrinsic temperature given by
the QFT Hawking-Gibbons temperature. The (1) is a stringy phase for the geometry with a temperature given
by the intrinsic string de Sitter temperature. 211 dimensions are considered, but conclusions hold generically
in D dimensions.@S0556-2821~99!05120-6#

PACS number~s!: 11.10.2z, 04.60.2m, 04.62.1v, 11.25.2w
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I. INTRODUCTION AND RESULTS

In the context of quantum field theory~QFT! in curved
spacetime, de Sitter spacetime has a Hawking-Gibbons
perature given by

TDS5
\

2pKB
H5

\c

2pKB

1

LDS

~see Ref.@1# for its appropriated interpretation!, H being the
Hubble constant,LDS5cH21 being the classical horizon
size.

In the context of string theory in curved spacetime, strin
in de Sitter spacetime have a maximal or critical tempera
given by

TS5
c3

a8KBH
5

\c

KB
S LDS

LS
2 D

~see Sec. III in this paper for its appropriated derivatio!,
LS[(a8\/c)1/2 being a characteristic string length scale.

We introduce here anR or ‘‘dual’’ transformation over a
length

L̃5RL5LR
2 L21;

i.e., if L[LDS, then

L̃DS5
a8\

c2
H.
0556-2821/99/60~12!/125014~10!/$15.00 60 1250
m-

s
re

L̃DS is precisely the Compton length of a particle whose m
is given by

mmax5S c

a8H
D .

This is the maximal mass for the spectrum of particle~oscil-
lating or stable! string states in de Sitter spacetime Re
@2–4#.

The R transformation links classical lengths to quantu
string lengths.@In de Sitter spacetime, it links the classic
horizon sizeLDS to the quantum string size in this spacetim
We are refering here to the oscillatory or stable strings~those
from which the quantum particle states derive!.#

Under theR transformation~see Sec. III!:

TS52pT̃DS.

The string temperature in de Sitter spacetime turns outp
times the ‘‘dual’’ (R-transformated! of the Hawking tem-
perature~and conversely!. That is, the intrinsic QFT and
string temperatures in de Sitter space areR dual. In fact, this
has a more general validity: theR-transform can map QFT
and string domains~or regimes! and applies to other space
times as well. In particular, it plays a key role when appli
to black holes@5#.

In the context of QFT, de Sitter~as well as AdS! space-
time, is an exact solution of the semiclassical Einstein eq
tions with back reaction included@6,7#. Semiclassical in this
context means that quantum matter fields~including the
©1999 The American Physical Society14-1
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graviton! are coupled toc-number gravity and the vacuum
expectation value of matter energy momentum tensor ac
turn as a source of gravity~quantum back reaction effect!.

In this paper we investigate the quantum back reac
effect of strings in de Sitter spacetime. In principle, th
question should be properly addressed in the contex
string field theory. On the lack of a tractable framework f
it, we work here in the framework of the string analog
model~or thermodynamical approach!: the string as a collec
tion of fields Fn coupled to the classical background, a
whose massesmn are given by the degenerate string ma
spectrum in the curved space considered.~The fieldsFn are
without self-interaction but are coupled to the classical
ometry.! The fieldsFn are ‘‘repeated’’r(m) times, the de-
generacy of states being given byr(m), the density of mass
levels of the string.

In flat spacetime, the higher masses string spectrum
given by

r~m̄!.m̄2aebm̄, m̄[Aa8c

\
m

(a and b being constants, depending on the model, and
the number of space dimensions!. In de Sitter spacetime, w
find r(m) is given by@Eq. ~33b!#

r~m̄!5
m̄

G

4g2

~12G!2
expF4p2

3g
~12G!G1/2

,

G[~12m̄2g!1/2, g[
5a8\

4c3
H2.

It satisfies the behavior

r~m̄!;exp
2p

A6
Aa8c

\
mF12

5

32S ma8H

c D 2

10S ma8H

c D 3G
WhenH50, it yields the flat spacetime asymptotic behavi

Here we deal with 211 dimensions, but the results a
the same forD dimensions, only the numerical values of th
constants will change. In QFT, the expectation value of
(211)-dimensional energy-momentum tensor for a quant
massive field @in the de Sitter invariant~Bunch-Davies!
vacuum# @8,9# is given by Eq.~35!. In the framework of the
analogue model, the string vacuum expectation value^tm

m& is
given by

^tm
m&5

E
m0

mmax

^Tm
m~m!&Sr~m!dm

E
m0

mmax
r~m!dm

,

^Tm
m(m)&S being the trace stress tensor vacuum expecta

value for an individual quantum field with mass in the stri
mass spectrum.m0 is the lowest mass from which th
asymptotic expression forr(m) is still valid.
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We apply self-consistently the strinĝtm
m& to the right-

hand side~RHS! of the semiclassical Einstein equations, w
study the back reaction effect in de Sitter space of the hig
excited string modes. In constant curvature spaces~such as
dS and AdS! the semiclassical back reaction equations yi
the scalar curvature in terms ofH and of the quantum matte
content~the tracê tm

m&).
The mass domain for fields in de Sitter spacetime is giv

by

mQFT,
\H

c2

while in string theory, the string mass in de Sitter spaceti
satisfies

mS,
c

a8H
.

Under theR transformation we have

m̃QFT5RmQFT5mS ,

m̃S5RmS5mQFT,

R^Tm
m&QFT5^T̃m

m&QFT[^Tm
m&S .

Here ^Tm
m&S is given by@Eq. ~46!# as a function of the vari-

ablex[(m/mmax)
2.

We find ^tm
m& up to orderg „as given by@Eq. ~55b!#…, in

terms ofa8 and of the scalar curvatureR56H2/c2:

^tm
m&52

\H3

3p3c2
A6gS 11

2

p
A6g D .

Inserting it self-consistently in the semiclassical Einste
equations for the effective geometry, we find for the sca
curvature:

R656L65
1

2
RmaxF16S 124

R

Rmax
D 1/2G .

Due to the quantum string back reaction, the curvat
reaches a maximum value:

Rmax5
9c4p2

4G S 6

5a8c\3D 1/2

.

Three cases show up depending on whether~i! R, 1
4 Rmax,

~ii ! R5 1
4 Rmax, or ~iii ! R, 1

4 Rmax.
Case~i! describes two semiclassical de Sitter spacetim

with constant positive curvaturesR6.0 and well defined
associated temperaturesT(6) .

Case~ii ! describes one semiclassical de Sitter~positive
curvature! space for whichR15R25 1

2 Rmax.
For ~iii !, no real spacetime geometries, nor temperatu

are possible.
4-2
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QFT, STRING TEMPERATURE, AND THE STRING . . . PHYSICAL REVIEW D60 125014
Two branches, (1) and (2), for the curvature show up
The leading term isR in the (2) branch, while isRmax in the
(1) branch. In an expansion inR/Rmax, classical de Sitter
space is recovered in the (2) branch.R(2) is a low curva-
ture, classically allowed solution, whileR(1) is a ‘‘quan-
tum’’ branch ~it does not exist classically! and its curvature
is very high. The quantum string back reaction generates
branch.

Our dual relation between classical-QFT and the str
domains manifests here again in the back reaction soluti
the branch (2) is a classical phase for the geometry whi
temperature is given by the QFT Hawking-Gibbons tempe
ture T(2)5TDS5(\c/2pKB) (R2/6)1/2.

The branch (1) is a stringy phase for the geometry whic
temperature is the intrinsic string de Sitter temperat
T(1)5TS5(c2/a8KB) (6/R1)1/2. Moreover, our dual rela-
tion and the two phases: a classical-QFT phase~with the
Hawking temperature! and a quantum-string phase~with the
string temperature!, appear to be a generic feature and a
very enlighting for black holes. Our study of the string bla
hole temperature and quantum string back reaction for b
holes is reported elsewhere Ref.@5#.

The duality transform introduced here does not require
existence of any symmetry or isometry in the curved ba
ground. In this sense, it is not related to theT duality, a well
established symmetry of strings in backgrounds with isom
tries. Our duality is more of the type of a classical-quant
~or wave-particle! duality relating classical-semiclassical an
quantum behaviors or regimes, here extended and inclu
the quantum string regime. At the stage we are using it,
duality is a consequence or a matter of fact from the res
of this paper.

The QFT and string results of this paper and of Ref.@5#
satisfy this duality~they do not assume it!. In this sense, this
is not a conjectural duality. It could be that a more gene
operation underlies this transform, but we do not study it
this paper.

This paper is organized as follows. In Sec. II we summ
rize de Sitter spacetime and the QFT Hawking-Gibbons te
perature. In Sec. III, we derive the string temperature in
Sitter spacetime and its dual relation to the Hawkin
Gibbons temperature. In Sec. IV we find the quantum str
back reaction and its solution. In Sec. V we present the c
cluding remarks.

II. de SITTER SPACE-TIME

de Sitter space-time is a cosmological space with cons
scalar curvature (R), and vanishing spatial curvature inde
(K). Its D-dimensional metric is given by

ds252c2dt21a2~ t !~dr21r 2dVD22
2 !, ~1!

a~ t !5eHt,

t being the cosmic time andH5d ln a(t)/dt being the Hubble
constant.

de Sitter space-time can be generated by a cosmolog
constant (L). The curvatureRmn ,R,H, andL are related by
12501
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Rmn2
1

2
gmnR1Lgmn50, ~2a!

R5D~D21!
H2

c2
5

2D

D22
L, ~2b!

L5
~D21!~D22!

2

H2

c2
. ~2c!

The D-dimensional de Sitter metric can be also expresse
terms of the so-called static coordinates

ds252A~r !c2dT21A21~r !dr21r 2dVD22
2 , ~3!

where

A~r !512
H2r 2

c2
~4!

which show the existence of a horizon at

r 5LDS5cH21. ~5!

In the context of quantum field theory in curved spac
time, de Sitter space-time has a Hawking-Gibbons temp
ture (TDS) given by Ref.@1#

TDS5
H\

2pKB
. ~6a!

Notice that this expression forTDS holds in any number of
space-time dimensions. In terms ofR andL, TDS reads

TDS5
\c

2pKB
A R

D~D21!
~6b!

or

TDS5
\c

2pKB
A 2L

~D21!~D22!
. ~6c!

If one defines a surface gravitykDS equal tocH, TDS
@Eq. ~6!# reads

TDS5
\kDS

2pKBc
. ~7!

Furthermore,TDS can be also expressed in terms of the cl
sical length scaleLDS @Eq. ~5!# as

TDS5
\c

2pKB

1

LDS
. ~8!

III. QUANTUM STRINGS IN de SITTER SPACE-TIME

String theory in de Sitter space-time is exactly integra
in any dimension@10#. However, explicit expressions for th
string solutions are not easy to write due to the complexity
the equations, and even of the solutions. Two main quan
4-3
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frameworks have been studied and solved:~i! canonical
quantization of generic strings in any dimension@2,3# and
~ii ! semiclassical quantization of exact circular strings c
figurations in 211 space-times Ref.@4#.

In this section we will consider the case~i! ~canonical
quantization!. We now remind the reader of some of th
main issues@Eqs.~2! and~3!#. In canonical quantization, on
treats the de Sitter classical background exactly, and con
ers the string oscillations around its center of mass as pe
bations. The string center of mass is an exact solution of
geodesic equation. The perturbations~dimensionless! param-
eter is here

LS

LDS
5

H

c
Aa8\

c
5A 2La8\

~D21!~D22!c
!1, ~9!

whereLDS ~de Sitter length or horizon! is given by@Eq. ~5!#
andLS ~string length scale! is

LS[S a8\

c D 1/2

. ~10!

Here a8[c2/2pT, whereT is the string tension@(a8)21 :
linear mass density#.

In this framework, the mass spectrum formula in de Sit
space for anN-th level state is given by@2,3#

a8S c

\
Dm2524(

n.0

2n22H2m2~a82/c2!

An22H2m2~a82/c2!

12N
22H2m2~a82/c2!

A12H2m2~a82/c2!
. ~11!

One of the consequences of the spectrum is that the n
ber of string oscillating states, although being very large
finite. This maximum number is given by

Nmax.IntF0.15S LDS

LS
D 2G5IntF0.15S c3

a8\H2D G . ~12!

Furthermore, there is a maximum mass (mmax) for the
corresponding real mass solutions

a8S c

\ Dmmax
2 .S LDS

LS
D 2

, ~13!

i.e.,

mmax
2 .S c

a8H
D 2

.

As @Eq. ~9!# is fulfilled for oscillating string states, i.e.
1!(LDS /LS)

2(5c3/a8H2\), the number of oscillating
strings and the maximum string mass are large.

The fact that there is a maximum mass implies the e
tence of a maximum or critical temperature for the strings
de Sitter space-time. The temperatureTS corresponding to
mmax @Eq. ~13!#, is given by
12501
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TS5
c3

a8HKB

, ~14!

or, in terms of the classical and string length scalesLDS and
LS ,

TS5
\c

KB
S LDS

LS
2 D . ~15!

If we compare this maximal or critical temperature f
strings in de Sitter space-time (TS) with the quantum field
theory Hawking-Gibbons temperature for de Sitter spa
time (TDS) @Eq. ~6a!#, we have

TS5S c3\

2pa8KB
2 D 1

TDS
• ~16!

Let us define now the following transformationR over a
lengthL:

L̃5RL5LR
2 L21. ~17!

If LR5LS @Eq. ~10!#, and we apply this transformation t
L[LDS @Eq. ~5!#, we obtain

L̃DS5RLDS5
a8\H

c2
. ~18!

But L̃DS is precisely the~reduced! Compton wave length
(l5\/mc) of a particle whose mass is equal tommax given
by @Eq. ~13!#, i.e., L̃DS is the minimal quantum length of a
string in de Sitter space. Therefore, this transformation lin
the classical de Sitter length scaleLDS to the quantum
string–de Sitter oneL̃DS.

The string temperatureTS @Eq. ~15!# in de Sitter space
time can be rewritten in terms ofL̃DS @Eq. ~18!# as

TS5
\c

KB

1

L̃DS

. ~19!

We see now from@Eq. ~8!# and@Eq. ~19!# that the following
relations hold under theR transformation:

T̃DS5
1

2p
TS ~20!

and

T̃S52p TDS. ~21!

From the above equations we can read as well

TSTDS5T̃ST̃DS.

That is, the maximal string temperature in de Sitter spa
time is the dual„in the sense of theR transformation@Eq.
~17!#… of the Hawking~QFT! temperature.
4-4
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IV. QUANTUM STRING BACK REACTION
IN de SITTER SPACE-TIME

When quantum matter~particle fields, strings! is present
in de Sitter space-time, the relation between the scalar
vature and the cosmological constantL will be modified
through the semiclassical Einstein equations. Semiclass
in this context means that matter, which is aq number, is
coupled toc number gravity through the equations

Rmn2
1

2
R gmn1Lgmn5

8pG

c4
^tmn~q,gmn!&. ~22!

The space-time background metricgmn generates a nonzer
vacuum expectation value of the energy momentum ten
^tmn&, which in turn acts as a source of curvature.~For in-
stance, in four-dimensional quantum field theory, ma
fields f̂ include the graviton and̂Tmn(f̂,gmn)& is calculated
up to one loop order, wherêTmn& stands for its renormalized
value @11,7#.!

For maximally symmetric~constant curvature! spaces
~such as de Sitter and anti-de Sitter!, these equations read

S 22D

2D
R1L Dgmn5

8pG

c4
^tmn& ~23!

which yields the trace equation

R2
2D

D22
L52

16pG

c4~D22!
^tm

m& ~24a!

or

R5
2D

D22
Leff , ~24b!

where

Leff5L2
8pG

Dc4
^tm

m& ~24c!

which shows clearly quantum matter as a source of curva
and of temperature@Eq. ~7b!#.

As ^tmn& is proportional togmn , de Sitter~DS! @as well as
anti–de Sitter (ADS)] backgrounds are exact self-consiste
solutions to@Eq. ~22!# with back reaction included.

In de Sitter space, there is one real parametera family of
de Sitter group invariant vacuaua.. Here ^tmn& is the ex-
pectation value in the Bunch-Davies@8,9# ~‘‘Euclidean’’ or
‘‘inflationary’’ ! vacuum obtained fora50.

In order to study the back reaction problem for stri
theory in de Sitter space-time, we will work in the fram
work of the string analogue model, and in a 211 space-time,
where we will use the results coming from semiclassi
quantization of exact circular strings configurations Ref.@4#.
However, one should have in mind that the 211 string dy-
12501
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namics could be embedded in a higher dimensional sp
time and our results generalized to higher dimensions
well.

In the spirit of the analogue model, we consider here
string as a collection of fieldsf̂n coupled to the classica
background, and whose massesmn are given by the degen
erate mass spectrum of the string. The fieldsf̂n are free
~without self-interactions! but interact here with the classica
geometry. The~higher! mass spectrum is described by th
density of mass levelsr(m). As it is known, in flat space-
time r(m) is given by

r~m̄!;m̄2a expb m̄, ~25!

where we have introduced the adimensional mass variab

m̄[Aa8c

\
m ~26!

~which will prove useful later on!. The constantsa and b
depend on the string model and on the dimensions of
space-time.

In de Sitter space-time,r(m) has a different behavio
from the one of@Eq. ~25!#, as it follows from the string mass
spectrum in de Sitter space@Eq. ~11!#. Classical string equa
tions of motion and constraints have been solved exactly
circular string configurations@ t5t(t),r 5r (t),f5s# in a
211 de Sitter space-time Ref.@12#. Semiclassical quantiza
tion of the time periodic~oscillating! solutions has been per
formed Ref. @4#. For a8H2\/c3!1 @i.e., (LS /LDS)

2!1#,
corresponding to the semiclassical quantization here,
which is always satisfied for oscillating strings, the resu
are the following.~i! The quantized mass formula is give
for largen , by

a8S c

\ Dm2.4n~12gn!, ~27!

where

g[
5a8H2\

4c3
. ~28!

~Notice that forH50 one recovers the mass formula f
closed strings in Minkowski space.! ~ii ! The number of os-
cillatory circular string states, although being very large,
finite

Nmax.IntF0.34
c3

a8H2\
G . ~29!

~iii ! The level spacing is approximately constant,
(a8c/\)21 units~although smaller than in Minkowski space
time and slightly decreasing!.

Furthermore, from@Eq. ~27!# and @Eq. ~28!#, the maxi-
mum value for the string mass states is given by
4-5
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mmax
2 .

4

5 S c

a8H
D 2

~30a!

or

m̄max
2 .g21 ~30b!

@see Eqs.~26! and~28!#. The above results are in very goo
agreement with the ones corresponding to canonical qua
zation of generic strings@Eqs. ~12! and ~13!#. It must be
noticed that Eq.~30! will provide a maximum string tem-
perature similar to the one of Eq.~14!.

The asymptotic degeneracy of levelsdn ~in flat as well as
in curved space-time! is generically;n2(D11)/2e4pA(D22)n/6

for any noncompactD-dimensional space-time. For close
string solutions andD53 , the asymptotic degeneracy o
levelsdn reads

dn;n22e4pAn/6, ~31a!

wheren has now to be expressed as a function of the qu
tized mass. It is through the relationm5m(n) of the mass
spectrum, that the differences due to the space-time cu
ture enter in the above formula.

The density of mass levelsr(m) and the degeneracydn
satisfy

r~m!dm5dn~m!dn. ~31b!

From @Eq. ~27!# and @Eq. ~28!# we have

n.IntS 2c3

5a8H2\
H 12F12

5

4 S a8Hm

c D 2G1/2J D ~32a!

or

n.IntH 1

2g
@12~12m̄2g!1/2#J , ~32b!

in terms of the adimensional variablesm̄ and g @Eqs. ~26!
and ~28!#.

Therefore from Eqs.~31b! and ~32b!, the asymptotic
string density of mass levels in de Sitter space is

r~m!;S a8
c

\ Dm
dn

122gn
~33a!

which for H50 @g50, Eq. ~28!# gives the flat space-time
relationr(m);mdn(m).

From Eqs.~32b!, ~33a!, and~31a!, we obtain

r~m̄!;m̄~12m̄2g!21/2F 1

2g
@12~12m̄2g!1/2#G22

3expH 4p

A6
F 1

2g
@12~12m̄2g!1/2#G1/2J , ~33b!
12501
ti-

n-

a-

whereg is given by@Eq. ~28!#. Equation~33b! generalizes to
de Sitter spacetime the standard flat space time behavior@Eq.
~25!#.

If we develop the exponent ofr(m̄) in powers ofm̄2g
5(m/mmax)

2,1 @Eqs.~26! and ~30b!#, we have

r~m̄!a exp
2p

A6
Aa8c

\
mH 12

1

8 S m

mmax
D 2

1OF S m

mmax
D 3G J

or, showing the explicit dependence onH,

r~m̄!a exp
2p

A6
Aa8c

\
mF12

5

32S a8H

c D 2

m21•••G .
We see that forH50 one recovers the flat space tim
asymptotic behavior.

Now, returning to the semiclassical Einstein equatio
~24a!, ~24b!, and~24c!, ^tm

m& will be the vacuum expectation
value of the trace of the stress tensor for the collection
fields ~interacting with the background! which correspond to
the string tower of mass states in de Sitter space. In
framework of the analogue model, the string vacuum exp
tation value^tm

m& is given by

^tm
m&.

E
m0

mmax

^Tm
m~m!&S r~m!dm

E
m0

mmax
r~m!dm

, ~34!

where^Tm
m&S is the vacuum expectation value of the trace

the stress tensor for an individual quantum field. We in
grate over string field masses and divide by the total m
degeneracy. In fact we should have^n(m)&r(m), where
^n(m)&;*0

`kD22dk , but this divergent contribution cance
out ~as it appears as a multiplicative factor for both nume
tor and denominator!.

Since in de Sitter space-time the number of particle os
lating states is finite, the sum goes up tommax @Eq. ~30!#
~instead of up to infinity as for Minkowski space-time!; m0 is
the lowest mass from which the asymptotic expression of
density of mass levels@Eq. ~33!# is valid. Therefore, we are
studying the back reaction effect in de Sitter space-time
to the higher excited string modes.

Herer(m) @Eq. ~33!# depends only on the mass as usu
thereforê Tm

m&S will be chosen for our study to be the expe
tation value of the stress tensor for a massive scalar field~in
the de Sitter invariant or Bunch-Davies vacuum!.

The quantum field theory valuêTm
m(m)&QFT, correspond-

ing to a scalar massive field in a 211 de Sitter space-time
~in the de Sitter invariant vacuum!, is given by Refs.@13# and
@9#

^Tm
m&QFT5

\H3

4pc2 S mc2

\H D 2F ~126z!2S mc2

\H D 2G1/2

3ctgpF ~126z!2S mc2

\H D 2G1/2

, ~35!
4-6
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where z, a numerical factor, is the scalar couplin
(2 1

2 zRf; conformal coupling :z5 1
8 ). Notice that for a

massless scalar field there is no trace anomaly in 211 di-
mensions. This happens too also for any odd dimensiona
Sitter space-time Ref.@14#. In addition, for these spaces
^Tm

m& is finite and no renormalization procedure is needed
contrast to theD54 case Ref.@15#.

At this point, let us analyze the mass scales in the co
sponding quantum field theory~QFT! and string theory in de
Sitter space-time. From Eqs.~32! and~35!, one can read the
following domains for the field mass in QFT and in strin
theory (z50 for simplicity! :

mQFT,
\H

c2
~36a!

and

mS,
2

A5

c

a8H
~36b!

which can be rewritten as well as@see Eqs.~26!, ~30a!, and
~30b!#

mQFT

MH
,1 ~37a!

and

mS

mmax
5m̄SAg,1. ~37b!

HereMH[\H/c2 is the mass scale of de Sitter space. Eq
tion ~37a! just means thatmQFT is a test particle field in de
Sitter space, andmmax is the maximum value for string state
in the 211 de Sitter semiclassical quantization.

Now we express the above inequalities in terms ofLDS

@Eq. ~5!# and L̃DS, being the later the minimal Compto
wave length as before. Here, according tommax given by Eq.
~30a!, L̃DS is

L̃DS5
A5

2

a8H\

c2
~38!

~semiclassical and canonical quantizations of the string
differ in the factorA5/2).

From Eqs.~36a!, ~36b!, ~5!, and~38! we have

mQFT,
\

c

1

LDS
~39a!

and

mS,
\

c

1

L̃DS

. ~39b!
12501
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But these domains are going to be exchanged by theR
transformation given by Eq.~18!. In fact, if we apply theR
transformation to both sides of Eqs.~39a! and ~39b! we ob-
tain

m̃QFT,
\

c

1

L̃DS

~40a!

and

m̃S,
\

c

1

LDS
. ~40b!

„LR5(A5a8\/2c)1/2 in Eq. ~7!. The numerical factorA5/2 ,
that appears here and inL̃DS as well, is just due to the
slightly smallermmax one obtains in semiclassical quantiz
tion @Eq. ~30a!# as compared with the canonical quantizati
@Eq. ~13!#. Obviously, the action of theR transformation is
equal for both cases.…

We can summarize the action of theR transformation, on
the masses and on their domains, in the following Eqs.~37a!,
~37b!, ~40a!, and~40b!:

m̃QFT5RmQFT5mS , ~41a!

m̃S5RmS5mQFT, ~41b!

RS mQFTc
2

\H D5
mS

mmax
5m̄SAg. ~41c!

Now we are able to write the vacuum expectation va
~VEV! of the stress tensor^Tm

m&S that appears in the RHS o
Eq. ~34!, and which corresponds to the high masses of
string domain. From the previous mass-domain study, i
clear that^Tm

m&S is precisely theR2transformed object of
^Tm

m&QFT: i.e.,

R^Tm
m&QFT5^T̃m

m&QFT[^Tm
m&S . ~42!

Applying theR transformation@Eqs. ~41a! and ~41c!# to
^Tm

m&QFT, given by Eq.~35!, we obtain

^T̃m
m&5

\H3

4pc2
~m̄2g!@~126z!2m̄2g#1/2

3ctgp@~126z!2m̄2g#1/2 ~43!

in terms of the adimensional variable

m̄2g5
5

4 S a8mH

c D 2

@Eqs.~26! and ~28!#.
In order to computê tm

m& @Eq. ~34!#, it is convenient to

expressr(m̄)dm̄ @Eq. ~33!# and^T̃m
m& @Eq. ~43!#, in terms of

the adimensional variablex[m2g ~running ratiom2/mmax
2 ) :
4-7
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r~m̄!dm̄5
1

2g
r~x!dx, ~44!

where

r~x![~12x!21/2@12~12x!1/2#22

3expH 2p

A3g
@12~12x!1/2#1/2J ~45!

and

^T̃m
m&52

\H3

4pc2
F~x!, ~46!

where

F~x![2x~12x!1/2ctgp~12x!1/2 ~47!

~we set herez50 for simplicity!.
Finally, ^tm

m& will be given by

^tm
m&52S \H3

4pc2D Ex1

x2
F~x!r~x!dx

E
x1

x2
r~x!dx

[2S \H3

4pc2D I N

I D
, ~48!

where x15m̄0
2g. In our case, the adimensional variablex

runs in the interval@x1 , 3
4 ) . About the upper limitx2, a word

on F(x) is now in order.F(x) is a non-singular~monotoni-
cally! decreasing function in the interval@0,1#, and F(x)

.0 for x in @0,3
4 ). But this later interval is in fact the saf

range for the physical validity of̂Tm
m&QFT ~the mass of the

test particlem is much smaller than the mass scaleMH of a
de Sitter universe!, and hence for̂ T̃m

m&.
On the other hand, if we consider the integralI N in the

numerator of@Eq. ~48!#, the exponential ofr(x) @Eq. ~45!#

plays a leading role in the interval@x1 , 3
4 ) from the physical

point of view sinceg21@1 . Therefore, the monotonicall
decreasing behavior of the functionF(x) can be approxi-
mated by the straight liney52(8/3p)(x2 3

4 ).
After a straightforward calculation one obtains forI N and

I D @Eq. ~48!# the following expressions:

I N52
32

3p H 2
3

4 F2
ez/l

2z2
2

ez/l

2lz
1

1

2l2
Ei S z

l D G
2ez/l~zl2l2!12Ei S z

l D J
z1

z2

~49!

and
12501
I D54H 2
ez/l

2z2
2

ez/l

2lz
1

1

2l2
Ei S z

l D J
z1

z2

, ~50!

where

z5@12~12x!1/2#1/2, ~51!

l5
A3g

2p
. ~52!

Considering thel(Ag) leading terms, we have forI N and
I D :

I N.
128

3p
e2p/A6gl2~117A2l! ~53!

I D.16e2p/A6glS 1

A2
13l D . ~54!

From Eqs.~48!, ~53!, and~54!, ^tm
m& reads, up to orderg

@Eq. ~28!#:

^tm
m&52

\H3

3p3c2
A6gS 11

2

p
A6g D ~55a!

or, in terms of the scalar curvatureR @Eq. ~2b!; R
56H2c22#

^tm
m&52

R2

36p3 S 5a8c\3

6 D 1/2F11
2

p S 5a8\

4c
RD 1/2G .

~55b!

Inserting ^tm
m& @Eq. ~55b!# into the back reaction@Eq.

~24a!# for D53, we have

R26L5
4GR2

9p2c4 S 5a8\3c

6 D 1/2F11
2

p S 5a8\

4c
RD 1/2G

~56a!

~for D53,@G#5L2t22M 21) or @Eqs.~24b! and ~24c!#:

R56Leff , ~56b!

where

Leff5L1
2GR2

27p2c4 S 5a8\3c

6 D 1/2F11
2

p S 5a8\

4c
RD 1/2G .

~57!

We are going to analyze now the physical consequen
of the back reaction@Eq. ~56a!#. For simplicity we consider
^tm

m& @Eq. ~55a!# up to orderAg. We have

R26L.âR2, ~58!

where
4-8
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â[
4G

9c4p2 S 5a8c\3

6 D 1/2

~59!

@Eq. ~58!# is a second order equation inR , similar to the one
found for the back reaction of massless quantum fields~in-
cluding the graviton! in four-dimensional de Sitter space
time Ref. @7#. The expression forâ is here different as it
containsa8. ~In the case of massless QFT,â arise from the
trace anomalŷTm

m&.!
From Eq.~58! we have two solutions@Eq. ~2b!#

R656L6 ~60!

with

L65
1

12â
@16~1224Lâ!1/2#. ~61!

L6 are the effective cosmological constants.
One can distinguish three cases.
~i! If L,1/24â 5 3c4p2/32G\ (6/5a8c \3)1/2. We have

two de Sitter space-times with curvatures@Eq. ~60!#

R65
9c4p2

8G S 6

5a8c\3D 1/2

3H 16F12
32GL

3c4p2 S 5a8c \3

6 D 1/2G 1/2J . ~62!

Both branches are well defined and haveR6.0.
~ii ! If L51/24â, there is a unique de Sitter space-time

R15R25
1

4â
5

9c4p2

16G S 6

5a8\3c
D 1/2

. ~63!

~iii ! If L.1/24â, there are neither physical real curv
tures nor temperatures.

For smallL,

L!
1

24â
S 5

3c4p2

32G S 6

5ca8\3D 1/2D ,

for which ^Tm
m&QFT, and hencêT̃m

m& and^tm
m&, are not trivial,

we have

R2.6L!
1

4â
, ~64a!

R1.
1

â
5

9c4p2

4G S 6

5a8c \3D 1/2

[Rmax.

~64b!

From the above equations we see that one recovers
classical space-time for theR2 solution.R2 is a small cur-
vature solution. On the contrary,R1 does not represent
classical allowed configuration and its curvature is very hi
12501
he

.

The two branches of solutions are generically of differe
kind. We call theR2 branch ‘‘classical’’ as it represent
solutions which are classically allowed, while theR1 branch
will be the ‘‘quantum’’ one as the configurations do not o
cur classically.

From Eqs.~60! and ~61!, we read a maximum value fo
the effective cosmological constant:

Lmax.
1

6â
5

3c4p2

8G S 6

5a8c \3D 1/2

. ~65!

In terms ofLmax alternatively ofRmax, we have

L65
1

2
LmaxF16S 124

L

Lmax
D 1/2G , ~66!

R65
1

2
RmaxF16S 124

R

Rmax
D 1/2G . ~67!

In an expansion inR/Rmax, the leading order isR(2)
5R,R(1)5Rmax. QFT de Sitter temperature@Eq. ~6b!# asso-
ciated to the classical branchR(2) is

T2DS5
\c

2pkB
S R(2)

6 D 1/2

.

The string quantum branchR(1) has a string temperature

T1string5
c2

a8kB
S 6

R(1)
D 1/2

.

V. CONCLUSIONS

A combined study of QFT and string theory in curve
backgrounds allowed us to go further in the understanding
quantum gravity effects. The string analogue model~or ther-
modynamical approach! is a suitable framework in cosmol
ogy and black holes to combine both QFT and string stu
and address the problem of quantum string back react
The dual relationship shown here between the two doma
classical-QFT and quantum string, applies also to ot
space-times and plays a key role in the black hole case
@5#.

The string black hole temperature and quantum str
back reaction for black holes is reported in another pa
Ref. @5#. The two phases correspond to the evaporation fr
a classical black hole geometry with intrinsic temperatu
given by the QFT Hawking temperature to a string phase
the geometry~sustained by the quantum string back reactio!
which temperature becomes the intrinsic string temperat
These studies and our dual relation between classical-Q
and string phases appear irrespective of conformal inv
ance. A similar study for anti–de Sitter space time is un
investigation by these authors.

QFT in anti–de Sitter space time does not possess
intrinsic or Hawking temperature. Strings in AdS space-tim
do not possess a maximal or critical temperature@3,4#. The
partition function for a gas of strings in AdS space-time
4-9
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defined at any positive temperature Ref.@3#.
Such results for strings in AdS space-time were also c

firmed in the presence of a full conformal invariant Ad
string background Wess-Zumino-Witten-Novikov~WZWN!
model SL(2,R) ~AdS with torsion! @16#. As shown in Ref.
@16# conformal invariancesimplifiesthe mathematics of the
problem but the physics remain mainlyunchanged. For low
and high masses, the string mass spectra in conformal
nonconformal backgrounds are the same.

The purpose of this paper was to go further in the und
standing of string theory in de Sitter space-time and motiv
~andat priory justify! the choice of de Sitter space time:~i!
the cosmological~inflationary! relevance of de Sitter space
time, ~ii ! the present knowledge of string dynamics in co
formal and nonconformal invariant backgrounds, in partic
,
ac

.

12501
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nd
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lar in the conformal and nonconformal invariant Ad
backgrounds mentioned above,~iii ! the lack, at the presen
time, of a full string conformal invariant treatement involv
ing de Sitter space-time.
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