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Using many-body techniques we obtain the time-dependent Gaussian approximation for interacting fermion-
scalar field models. This method is applied to a uniform system of relativistic spin-1/2 fermion field coupled,
through a Yukawa term, to a scalar field ir-B dimensions, the so-called quantum scalar plasma model. The
renormalization for the resulting Gaussian mean-field equations, both static and dynamical, are examined and
initial conditions discussed. We also investigate solutions for the gap equation and show that the energy
density has a single minimurhS0556-282(99)00422-1

PACS numbsefs): 11.10.Gh, 11.10.Lm, 21.60.Jz

I. INTRODUCTION In Eq. (2) the ] (7;) are boson or fermion creatio@nni-

hilation) operators of a particle in orbitél and.F, can be, of
The self-consistent mean-field method remains one of theourse, rewritten in a diagonal form when one uses the Bo-

few ar)alytlcal tools_avanable to |n\{est|gate a variety of pfOt_)-goliubov quasiparticle operatofsf. Egs.(5) and(10)]. It is
lems in quantum field theory which cannot be handled innot gifficult to see that this scheme corresponds to the usual

perturbative theory. These include static problems in the congayssian variational approximation in the functional $ehro

text of spontaneous symmetry breakifid as well as time-  ginger picture. There are, however, some important differ-
dependent problems involving the dynamics of the inflation-gceq "For instance, the usual technique of nonrelativistic

dnvmg_ scalar f'eld. in the ea_rly Universg2] . qnq the many-fermion problems can be readily extended to the Dirac
Qynam|cs.of relaxatlon_process in the ultrarelativistic heavy—field theory[6]. Thus, instead of using anticommuting Grass-
lon experimentq3]. In its most commonly used form, the mann variables to write Gaussian wave-functional variables

approximation is implemented, in the case of boson fields[s] we describe the pairing correlations by using a suitable
through a time-dependent or -independent variational prin="-"’ P 9 y 9

ciple using a Gaussian trial wave function in the Scimger Bogoliubov unitary transformation. Furthermore, this could
picture[4]. However, systematic corrections to this approxi- ¢ the starting point for the further approximation scheme

mation are still an open problem. Furthermore, for the cas@eYond the Gaussian wave functifig]. In regéent publica-
of fermion fields, the trial wave function is not straightfor- ions[7,8], we have applied this scheme to #etheory and
ward to take in a Gaussian forfb]. chiral Gross-Neveu moddhereafter referred to as |,ll, re-

On the other hand, the mean-field description of system§PECtively.

of interest can be obtained from the Heisenberg equation ~_1h€ main point of this paper is to apply this method
within the context of interacting fermion-boson models. As a

first step towards this end, Takano Natti and de Toledo Piza
i(@)zTr[O,H]FO, (1) [9] ha_ve obtair_led _relevant dynamics for t_he Jaynes-

Cummings Hamiltonian, a well known model in quantum

optics[10]. This can be seen &6+ 1)-dimensional quantum

where(© is a one-body operator arlis the Hamiltonian of ~ field theory known as relativistic scalar plasiifel]. Exact
the system. This can be kept under direct control when ongumerical results have been useful in this case to assess the

takes a Gaussian-like density. In a formulation appropriatéluality of various approximation schemes. In particular, we
for the many-body theory we have have shown that the method described here is a good ap-

proximation whenever a moving Gaussian has enough free-
dom to mimic the complicated evolution of the exact wave
function. In this paper, we report an application of the same
technique to describe the real-time evolution for a fermion
. (2) field interacting with scalar boson int31 dimensions. The
Tr{ exr{ > A i+ B 7]1_T+ Ciim ”J” paper is outlined as follows. In Sec. Il we extend the discus-
oy ‘ ’ sions of | and Il to a system containing interacting boson and
fermion fields. Section Il will illustrate this scheme in the
simplest context of the scalar plasma model. In Sec. IV we
*Present address: Universidade do Norte do ParAmaParis, discuss the self-consistent renormalization for the resulting
675, CEP 86041-140, Londrina, ParaBaazil. equations in the equilibrium situation. The renormalization

exu[(iZj) Ai,j77iT77j+Bi,j77iT77r+ Ci i mim;
foz :
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of the time-dependent equations is then considered in Sec. Whered,, is the shifted boson operator
and finite initial conditions discussed.

dp(t)=bp(t) =B(t) 60

II. KINETIC OF INTERACTING FERMION-SCALAR with Bp(t)E<bp(t)>:TrBF[bp(t)_7-“0]_ (6)
SYSTEMS

Here and in what follows the symbol g¢ denotes a trace

The present discussion for the real-time evolution of theo-over both bosonic and fermionic variables. Partial traces over
ries containing both scalar and fermion fields basically fol-bosonic or fermionic variables will be written asglrand
lows the earlier works in the context gf* and Chiral-Gross- Trg, respectively. The Bogoliubov coefficients are deter-
Neveu models. The basic idea of our approach is to focus omined from the secular problem given(2.8)—(2.10 of | to
the time evolution of the expectation values of linex),  vyield (8,8_,)=0. The resulting eigenvaluesp=<ﬂ;§ﬁp),
and bilinear field operators such @€x)¢(x), ¥(x)#(x),  are quasi-particle occupation numbers.
#(X)¥(x), etc., referred to as Gaussian observables. Many For the fermion field, we follow the discussion of Il and
technical details of the method can be found in | and II, anddecompose the field operators in Fourier components,
we restrict ourselves here to a few key steps of the derivation
of equations of motion for the present case. 12 q

Let us consider first the bosonic sector of the system. The #(X,t) = E (k_) \/——
Heisenberg field operatoks(x) andII(x) are expanded as ks 170 v

X[ul(k S)a(l)(t)elk X4+ u2(k S)a(Z)T(t)efik-x] ,

d(x,H)=2, #[b (1)eP*+bl(t)e P @)
, P (2Vp0)1/2 P . , 12 q

112 3 P(x,t)= Z(ko) N

[bi(t)e P X—by(t)elP¥],
X [u(k,s)alR (e * X+ uy(k,s)aZ(t) el ],

I1(x,t) |2 ( Po

whereb! p(t) andby(t) are the usual boson creation and an-
n|h|Iat|on operators satisfying the standard commutation re
lations at equal times

wherea(’J(t) anda{’)(t) [a{2(t) anda®(t)] are fermion
creation and annihilation operators associated with positive
[bp(t),b;,(t’)]tzt;5pyp,, [negativg-energy solutionsu;(k,s) [us(k,s)] and satisfy

(4) the anticommutation rules
[b(1),b}, (1) ]—p =[bp(t) by (t')]i= =0

In Eq. (3) V is the volume of the periodicity box, {a(m(t),a(k, (1) et = s, Sy nr fOr AN =1,2,
(Po)?=p?+Q? and px=pot—p-X, - - ®)
Mt N) e — (7\) A
where(} is the mass parameter, and will be fixed later. {ags' (1), Ao (t () h=v=1ag¢ t),a. o (t Y =tr=0

In order to deal with condensate and pairing dynamics of
the scalar field we follow Sec. Il of | and define a unitary In Eq. (7) the spinors are normalized t¢/M and
Bogoliubov transformation as
(kg)?=k?+M? and kx=Kkqt—k-X, 9)

coshk sinhk,—i
Bp P2 P2 dp whereM is a mass parameter for the fermions.
L , (9 Adapting Egs(3)—(11) and(30) of Il to the present case
Bp sinhx +iﬂ coshx +iﬂ of (3+1)-dimensional field we can write the Bogoliubov
P2 P2 quasiparticle operators as

[ a7 r i AT g ]
ks COS®y 0 0 e '"ksing
2 S 2
a(kg 0 cospy  —e '%ksingy 0 af(,s)
— (10
(,lif 0 e'7ksingy CoSpy 0 (,1&5
C —el%sing, 0 0 cospy a®t
X ks J - =L —k,s J
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and require{a@&a@é)zo in order to determine this unitary  v,=Trgd 818, H1Fo= vy, = Tred a2 ad H17=0.
transformation. The quasi-fermion occupation number will (20
be given by r{()=(aTa)). In Eq. (10) we used|s)

=(=)"*"%|~s) to write the spin labels. _ Thus, Eqgs(11)—(16) form a set of self-consistent equations
The next step is to obtain the equations of motion for theyt mation to the Gaussian variables. Its implementation for a
condensate|) and(Il), and for the Bogoliubov parameters gpecific model essentially consists of taking the traces of
given in Eqs.(5), (6) and(10). This is carried out by using  4n5r0priate commutators in the Fock space. The fact that
the Heisenberg equation of motidd), where O are per-  5ccypancies are constant implies that the entropy function
formed by linear or bilinear combinations of creation and;qsgciated WithF, i.e., S=—TraeFologFy, does not

annihilation parts of the field operatofsee(2.17) of l and  hange in time. Therefore, one recovers the usual isoentropic
(5) of Il for details|. For the bosonic variables we have character of the Gaussian approximation.
A method to improve the mean-field approximation in
i()=Trad &,H] %, (11  field theory was discussed in I. The approach follows the line
of thinking of a time-dependent projection technique pro-
_ posed some time ago by Willis and Picid] in the context
i(IT)=Trgd IT,H] A, (12 of a master equation for coupled systems and extended later
by Nemes and de Toledo Piza to study nonrelativistic many-
fermion dynamicg13]. The method essentially consists of

vo=Tred BpBp . H1Fo, (13)  writing the correlation information of théull densityof the
system in terms of a memory kernel acting on the uncorre-
Tr[IBTBT H1F lated densityF,, with the help of a time-dependent projector
—iKy— e KDyt Ky 7)) = ] 0 (14)  (see Sec. Il and Appendix A of | for detallsAt this point,
Kp Mo Kplp 142 : ; , , .
Yp a systematic mean-field expansion for two-point correlations

can be perfomed. The lowest order reported in this work
Analogously, the dynamical equations for fermionic vari- corresponds to the results of the usual Gaussian approxima-

ables read as tion. The higher orders describe the dynamical correlation
effects between the subsystems and are expressed through

. suitable memorial integrals added to the mean-field dynami-
V(kngfBF([a%Ta(kg H1F0), cal equations. Thus, the resulting equations acquire the struc-

15 ture of kinetic equations, with the memory integrals perform-

ing as collisional dynamics terms, which eliminate the

Tree([a®) a®) H]F,) isoentropic constraint. This higher order approximation has
[ o+ v4SiN @ COS@y Je Thm e —Ksks® 1207 been implemented for the case @+ 1)-dimensional field
1-v—v{2 model[9] and will not be done in this paper.
(16)

Our implementation of the Gaussian mean-field approxi-
mation consists in assuming a factorized form for the densityl!l. EFFECTIVE DYNAMICS OF RELATIVISTIC SCALAR
matrix [9] PLASMA

The procedure discussed in the preceding section is quite
]-‘O(t)=.7-‘g]-"g. 17 general and can be, in principle, utilized for systems contain-
ing scalar and spin-1/2 particles. This is not, however, a
straightforward task, since divergences that appear in the
equations require a discussion of the renormalizability of
specific models of interest. In Refl4] the properties and
r]s;tability of possible vacuum states for several fermion-scalar

In Eq. (17) the subsystem densitigS; and F{, are Gaussian
densities given in Eq(2), now rewritten in the diagonal
forms using the Bogoliubov quasiboson and quasifermio

operators, models utilizing the Gaussian-effective-potenti@EP) ap-
proach have been studied. It is shown that ihl3dimen-
1 v\ Babo sions the models seem doomed to instability and the GEP is
Fe=11 1 1+p : (18)  bounded below only if the Yukawa coupling vanishes. We
P Yp “p have reached a similar conclusion in an early stage of this
work.
In order to give a well defined physical application, here
F8=m [vNaMTaM+ (11— ) alNal']. (199 we shall adopt the relativistic scalar plasma model widely

used within the context of ultrahigh dense maftEs]. This
system consists of relativistic fermion gas interacting only
Substituting 7, into Egs. (13) and (15 one immediately through a massive scalar meson and corresponds to one of
verifies that the occupation numbers are constant, the simplest quantum-field theoretical models used to discuss
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the relativistic dense matter in the contexts of heavy-ion col- . 1 C
lisions and the high-density astrophysical sysfadi. In this (== 7_|A+5G(Q)
application, one considers that the mean-field contributions,
(¢), are much larger than the fluctuationgp?)— (). 5 c
Therefore, the bosonic pairing is ignored and Bogoliubov Rl I N i AV
transformation(5) reduces to identity. We shall show in the ot ou 2 GR) () 87r<¢>
next sections that the resulting equations of interest in this
case can be made finite by introducing appropriate counter-
terms. ~5a ((/))3—92 fk [M cos 2p,
We now proceed to apply the technique discussed in Sec. ™
Il to the scalar plasma model. The dynamics is governed by
the Hamiltonian(we use the notationf,= [ d3x) +k sin 2¢,c0sy, ](1— ,,(l) ,,l((Zg) (24)
_ wherek=|k|, and two real equations for the fermion pair-
= | ing
- .. _ k — .
H==¢(iy-d—m)y—gidy ¢k=k—o(M —m)sinyx, (25
1 2 2 242
+o—[(4nI)*+|0p|*+ up?1+He, (2D , . 2(K2+mM)
8 sin Zcpkyk—k—sm 20y
0
where the parameters and u are, respectively, the mass of _
' ' i i 2(M—m
fermion and scalar particles amylis the coupling constant. n ( )kcos 26,C0S Y (26)

The last term of this expression contains the counterterms Ko
necessary to remove the infinities occurring ldtEs], ) )
In Eqg. (24) we have introduced the notation

A 5 2 3 D 4
dnHe=Tr¢+ 5 d> ,¢ TR (22 &) J 1+2v, 1 e Vp
. . — - = 0 —,
. o 02p?+ 02 82 g[a pPo
where the coeffcients, 2, C, andD are infinite constants (27)

to be defined later. ) ) ) ]
By introducing these ingredients into Eq4&1), (12), and  WhereA is a momentum cutoff used in evaluating the inte-
(16), one easily obtains a dynamical equation for the condengral. In Eqs (25)—(26) m=m— g{ ¢) stands for the effective

sate fermion mass.
) Another physical quantity of interest is the energy density
() =4m(IT), (23)  of the system,
|
HY 1 k2+mM m—M
H_ “TrHFy=— >, f gcos 2(pk+( )ksin 20,c0sy | (1— v — »(?))
V \ S k ko k0

1 1
+ §[<H)2+M2<¢>2]+ yp

ACGQ 152DGQ 2
s ( )<¢>+5 ot Q) (o)

D
+ e (B o (D) o Lu?+ OB + - GHQ). (28

An important feature of this scheme is that the mean energy V. STATIC EQUATIONS AND RENORMALIZATION
is conserved, a property which can be verified explicitly us- . . . . I
ing the equationg ol? motiofR23)—(26). Notice also t%at t)r:e This section considers Eq&23)~(26) in the equilibrium
results above contain divergent integrals, so that the coefﬂ-'tuat'on We shall investigate the solution of these equations
cientsA, du2, C, andD have to be adjusted appropriately in and study renormalization conditions. Hence, we set

order to give a well defined dynamics. We shall focus on this o ) )
point in the next sections. Y= er=(#)=(I1)=0. (29
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Since our main goal here is to set up a Gaussian mean-fie
approximation for interacting fermion-boson fields, we shall,
for simplicity, not consider the matter contribution in the
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s the solution. Comparing E4) with Eq. (36), one im-
mediately notices that the former includes the second solu-
tion as a particular case, where the mass paraniétés

present calculation. This can be done in the case of Gaussialefined by the equilibrium condition and the Bogoliubov
mean-field approximation by assuming an appropriate statigransformation(10) reduces to an identity matrix.

tical distribution to the occupation numbers and ) as
initial conditions in Eqs(13) and (15). Thus, for the rest of
the discussion we have vanishing occupancigs; v‘k§s)=0
and the sum in spin gives a numerical factBg=2. With
these assumptions, Eq23)—(26) become

<H>|eq=Oa (30

C , ., D
A+5G(Q) |+ | u?+ ou’+ 5 G(Q) [(h)leq

C D
+ E<¢>|<2aq+ €<¢>|2q

1 )
+8mg fkk—O(M COS 2py| eqt K SiN 20| 6qCOSYi|e) =0,

(31
(M—m)siny|e=0, (32)
(k2+mM)sin 20| eqt (M — m)cos 24| eqCOS¥i|eq=0,

(33

where m is now the effective fermion mass calculated at

<¢>|eq. Solutions of this set of equations correspond to sta-
tionary points of the energy density, and include the ground

state of the system in this approximation.

A. Equilibrium conditions and mass parameters

Considering Egs(32) and (33), one sees that two situa-
tions have to be analyzed.
(i) sinyleq=0: Using this solution in Eq(33) we have

Sin 2(,0 =+ —, (34
kieq | ol .

k24 mM

COS 2py|eq= *
kO 0
where ko= Vk2+m2. By substituting this result into Eqg.
(31), one finds the following gap equation for this case:

+

C , ., D
A+ 5 G(Q) | +| u?+ 8u®+ 5 G(Q) |(#)]eq

C , D s_ . B
+E<¢>|eq+ €<¢>|eq_—167TgmG(m)r (39

where G(m) is the divergent integral defined in E€R7)
with vp=0.

(i) M=m: In this casey, can have any value and Eq.
(33 has

Sin 2py]e=0, €OS 2py|eq=*1 (36)

The above discussion shows that the equilibrium value

(¢)]eq Of the condensate, or the effective fermion mass
are independent of the initial choice of the mass parameter
M. In fact, the effects of pairing transformation will be such
that the effective fermion mass is always given by the equi-
librium value calculated with Eq(35). [See also Eq(43)
below for the mean-field energyHenceforth, we shall take

M =m without loss of generality.

B. Counterterms

The arbitrary parameterd, su, C, andD can be fixed
easily by adjusting the coefficients ()|, in both sides of
Eq. (35) to give a finite gap equation. Thus, taking into ac-
count thex signs in Eq.(35), we choose the following self-
consistent renormalization prescription:

D= +487g*L(m), (37)
Su’=¥24m*g*L(M)G(u) ¥ 167g°G(0)
+247m?g®L(m), (39
C=F48mmgiL(m), (39
A= *24rmg’L(m)G(ux)* 16mmgG(m), (40)
where
L(m) f - L logZa® a)
m)= —_— = e
KK+ D) 47?0 m

Furthermore,. and m are the mass scales for boson and
fermion fields, respectively.

Substitution of these counterterms into E85) produces
the appropriate cancellations, which render the equation fi-
nite. A combination of typelL (m)[G(u)—G(Q)] comes
from the first two terms. Sinc€ is an arbitrary expansion
mass parameter, one can remove this divergence by setting
Q= pu. The resulting finite gap equation is

m 1
+=|=0.

Ina 2

gl‘«2< ¢>|eq_ ga3 (42)

The above equation together with E¢32)—(33) determines
the stationary points of the model in the Gaussian mean-field
approximation.

C. Mean energy and stationary solutions

Next we examine the energy density when it is stationary
with respect to the fermion variables. With the help of Eq.
(34), Eq. (28) becomes

125013-5
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0.30 T T T T

H _
¥((Pk|eqv')’k|eq-<¢>): + ka_l(m)

N At C G 0.15
1| At 3G ((4)
b WP P4 2 G(w) (¢p2 w000
8w 2
+ ¢ 3y 2 gy 43
2477<¢> 96’7T<¢> . ( ) -0.15
By substituting next the counterterms from E¢37)—(40)
into this result, we obtain the renormalized version of mean- -0_300
field energy as a function of mean-field val(g) or m ) X
(H) 1 WMZ _ _ m mf-m* FIG. 1. The behavior of the ground-state mean-field energy den-
EVA F ?(m_m)2+ m*In m + 4 ) sity E(x) of the scalar plasma system as a function of fermionic
v

effective masx=g(¢)/m=1— m/m for any values of the coupling

(44 constantg and mass scalg/m=0.1 fixed.

where we have added an appropriate constant in order to get

(H)({¢)=0)=0. One can now discuss the possible solutionformula, wherem/. plays roles of effective coupling con-
of Eqg. (42) by analyzing the minima of Eq44). stant. The above discussions suggest that the field always has

Let us defineng<¢>)|eq/m and E(x)E(87r2/m4)(H>/ a stable vacuum. This means that there is a finite range

V. Equationg(42) and(44) can then be written, respectively, around the minimum where the dynamics of the system are
well-defined. Therefore, we shall discuss renormalization

as
conditions for time-dependent equations in the next section.
T u? 3 1
2gzmzx_(l_x) In(1-x)+3/=0 (45) V. RENORMALIZATION AND INITIAL CONDITIONS
FOR THE TIME-DEPENDENT EQUATIONS

and In the last section we discussed the problem of renormal-
5 a1 ization for the vacuum sector of the relativistic scalar plasma
TR, N4 B o model in the Gaussian mean-field approximation. We have
E()= meZX +(1=x)7 In(1=x)+ 4| 4 (46) shown that the physical quantities can be made finite with

the counterterms introduced in E@2) and Eqs(37)—(40).
The combination 4°m?/ 7u? has been used as an effective Here we shall consider an off-equilibrium situation and study

coupling constant in Ref15]. renormalizability for the Gaussian equations of motion for
The behavior ofE(x) is shown in Figs. 1-4 for several

combinations ofu/m andg?. Notice first that this function 0.20 ~ ' ' '

has the domain at€x=<1, which is the physical range for —-— g’=100n

the fermion mass. The point=0 corresponds t0¢)=0 or o0l T7° gi?gz |

m=m andx=1 is the case when the effective fermion mass

m=0. Qualitatively, the results indicate that the system al-
ways presents a singfainimum Figures 1 and 2 show(x)

for several values o§? with u/m fixed (see figure captions
for the numerical values of the paramejei&he positions of -0.10
Xmin indicate that the vacuum approaches0 when we
decreasey®. In the limit of g?>—0, one getsXyi,—0, as

shown in Fig. 3. In this casen~m is the optimal fermion
mass, as it must be in the free field theory. On the other
hand, Figs. 3 and 4 plot the functi&{(x), keeping the value -0.30
of the Yukawa couplingy? fixed, but with different values of 0.0 0.2 0.4 06 0.8 10

the ratio u/m. Comparing these two curves, one s&gs,

—0 whenu/m—-co. In other words, when the meson mass  FIG. 2. The behavior of the ground-state mean-field energy den-
is large, the force range is small, as usual in the Yukawaity E(x) of the scalar plasma system as a function of fermionic
theory. In the limit of infinity x, the fermion particles of the effective masx=g( $)/m=1—m/m for any values of the coupling
system cannot interact. It can also be seen from the AH'sonstantg and mass scalg/m=2 fixed.

0.00

-0.20
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Notice that the integral is divergent unlesg decreases
faster thark 3. For simplicity, we shall ignore the possibili-
ties of fractional powers, logarithmic, or oscillatory behavior
and take the convergence condition for the integral to be

1
Thus, the allowed domains for the dynamical variables in
momentum space suffer strong constraints, and our investi-
gation of renormalizability for the equations of motion con-
sists of analyzing the large momentum behaviotFpffrom

this point of view. In order to satisfy E@¢49) at all times, the
pairing variablesp, and y, must have their time evolution

FIG. 3. The behavior of the ground-state mean-field energy den[estrict_ed. These restrictions are analyzed better by making
sity E(x) of the scalar plasma system as a function of fermionictn€ variable changes

effective massng(¢)/m=1—ﬁ/m for coupling constantg?®

=7/100 and mass scaje/m=2.

this model.(See, e.g., Refd.16,17] for the issue of renor-

malization of time-dependent equationsd field theory)

A. Equations of motion and initial state

In order to pose the problem more clearly, let us begin by

rewriting Eq.(24), with the help of Eqs(37)—(40), as

()y=—u*(¢)-8mgAL), (47)
where
m k
]:(t)=fk]-"k(t)=fk k_OCOS 20, + k—osm 2¢COS Yy
m(t) m3(t)
T_ 2k2k0 ' (48)
0.9 . ; . ;

k3 cos 2p=—mR—k k3 —R? (50)
or, equivalently,
k2 sin 2¢,= — kR +myk2—R? (51)
and
cosy=1—W,. (52

In terms of these new variables we have
A= f FM+ J F&, (53)
k k

where

R m(t) mt)

FO=_ Ky , 54
k ko k  2k%, (59
k
FE= 5 Wi~ KR+ mykG—Rp). (55
0

We see inF{! that the leading term aR ., must bem in
order to cancel the quadratic divergence. Thus, we define

w lim Ry=m+S, (56)
k— o0
valid for largek. Using this in Eq.(54) one obtains
mm? m?
lim FH= — X
0s , , , , e Kko(k+ko) 2k, Ko
~0.0 0.2 0.4 0.6 0.8 1.0 . .
x 1 [m(mz—mz) sl+o 1 57
FIG. 4. The behavior of the ground-state mean-field energy den- Kol k(k+ko) K5/

sity E(x) of the scalar plasma system as a function of fermionic

effective massng(¢)/m=1—ﬁ/m for coupling constantg?®
= /100 and mass scaje/m=0.1.

There is still a logarithmic divergence left. To keep this un-
der control we must have
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m(m2—m2)

k(k+ Kg) 58

lim S.=

k— o

in order to get finitef  F( .

Next we examine the convergence condition Q&%) .
Using Eqgs.(56) and(58) in Eq. (55) we find the asymptotic
expression fotF{?) to be

lim F{&)=

k3(m2—m?) ( 1
+

- tol =W, (59
k3(km-+ kom) k3” S

This will constrain the largé- behavior ofW, to be

lim wkzo(%) (60)

K—s o0

in order to satisfy Eq(49).
The asymptotic condition&6), (58), and(60) restrict the
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lim & k( i +S
iméEy'=——=\| -t~
ke k3| k(k+ko)
LS 1) (65
Ko 4k®  4K3 k4|

where we have applied E@56). It is clear now that this
expression decreases as fastas and [ £ (kl) is finite. In
comparing Eq.(63) with Eq. (55), one immediately notes
that

lim £3~lim F@.

K—s o0

(66)

k— o0

Hence,fke(kz) is finite when the conditiori60) is satisfied.

The above qualitative discussion shows that the prescrip-
tions given in Eqgs.(56), (58), and (60) can make energy
density finite. They will thus define the initial states and the
system will develop a well-defined time evolution within a

dynamics of the Gaussian variables in the momentum spacémited momentum space. Because of the energy conserva-
Whenever the Fourier Spectruﬁ’k has such propertieS' Eqs tion, the asymptotic behavior of the Gaussian variables es-
(47) and (48) are well defined, and one ought to use thesesentia”y will not be modified by the dynamiCS; OtherWise,
also as a criterion for choosing initial conditions. Since, how-this will expend an infinite amount of energy from the sys-
ever, we are dea“ng with a time_dependent prob]em’ théem This discussion has not considered, however, pOSSibili'
question we want to address is whether the nonlinear evoliies of eventual runaway, caused by eventual unbounded be-
tion will distort the asymptotic behavior built into the initial 10w behavior of the potential. The studies of this problem
state. From the energy viewpoint, we argue that, if the relawill require further detailed analysis ¢H) as a multidimen-
tions (56), (58), and(60) result in a finite energy density, its sional function ofm, R,, andW, (one coordinate for each
conservation will enforce these relations at all times. In factk), and verification of its functional properti¢$7].

as we shall show below, the asymptotic behavior obtained in

Egs.(56), (58), and(60) is sufficient to make Eq28) finite.

B. Asymptotic conditions and energy density

In terms of the new variable®, andW, the energy den-
sity (28) can be rewritten as

H 1
¥=§[<H>2+<¢>ZJ—2 fks‘k”—z fksﬁz’, (61)

where
2k 2mR, m?> m?
EM="\KE-R2+ - , 62
e TR T T i (62
(2)_(5_’“)" JE—RZ
Ex —TWK(—kRk+m ko—R)- (63

0

Substracting an unimportant constarit om £ we find,
after a little algebra,

m* Ry

4 Ko(kot VIG—RD)Z)
(64)

ed=—k

Ry EZ k
ko k| ko

from which it follows that

VI. CONCLUDING REMARKS

In summary, in this paper we have presented a framework
to treat the initial-value problem for interacting fermion-
scalar field models. The method allows one to describe the
real-time evolution of the fields in terms of the dynamics of
a few observables yielding a set of self-consistent equations
for expectation values of linear and bilinear field operators.
Although the procedure is quite general, we have, however,
implemented the calculation within the simplest context of
the relativistic scalar plasma system. We have shown in de-
tail that the usual form of renormalization also applies to the
present nonperturbative calculation and we have obtained fi-
nite expression for energy density. A simple numerical cal-
culation suggests that the system always has a single stable
minimum, although further investigation will be necessary
for other oscillation modes. The standard approach to this
question is through the use of random phase approximation
(RPA) analysis, where the stability is indicated by its eigen-
values. It is interesting to mention here that the excitation
modes described by the RPA equations are the quantum par-
ticles of the field. In fact, the physics of one meson and two
spin-1/2 fermions can be investigated from this equation. We
have also discussed the renormalization for the time-
dependent equations. Using energy conservation as the key,
we found that there is a finite range around the vacuum
where the dynamics of the system is well defined.

Finally, we comment that systematic corrections to in-
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clude dynamical correlation effects in the present mean-fieldorward but lengthy. In this case, the spatial dependence of
calculations can, in principle, be readily applied with thethe field is expanded in natural orbitals of extended one-body
help of a projection technique discussed in | and R&f.In  density. These orbitals can be given in terms of a momentum
this case, the occupation numbers are no longer constant aedpansion through the use of a more general Bogoliubov

will affect the effective dynamics of the Gaussian observ-transformatior 20].
ables. The framework presented here serves also as ground-
work to finite density and finite temperature discussidr&.

In particular, a finite-matter density calculation beyond the
mean-field approximation allows one to study collisional ob- E.R.T.N. and C-Y. L. were supported by Conselho Nacio-
servables such as transport coefficigiit8]. The extension nal de Desenvolvimento Ciefito e Tecnolgico (CNPqQ),
of this procedure to explore nonuniform systems is straightBrazil.
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