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Fermion pairing dynamics in the relativistic scalar plasma
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Using many-body techniques we obtain the time-dependent Gaussian approximation for interacting fermion-
scalar field models. This method is applied to a uniform system of relativistic spin-1/2 fermion field coupled,
through a Yukawa term, to a scalar field in 311 dimensions, the so-called quantum scalar plasma model. The
renormalization for the resulting Gaussian mean-field equations, both static and dynamical, are examined and
initial conditions discussed. We also investigate solutions for the gap equation and show that the energy
density has a single minimum.@S0556-2821~99!00422-1#

PACS number~s!: 11.10.Gh, 11.10.Lm, 21.60.Jz
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I. INTRODUCTION

The self-consistent mean-field method remains one of
few analytical tools available to investigate a variety of pro
lems in quantum field theory which cannot be handled
perturbative theory. These include static problems in the c
text of spontaneous symmetry breaking@1# as well as time-
dependent problems involving the dynamics of the inflatio
driving scalar field in the early Universe@2# and the
dynamics of relaxation process in the ultrarelativistic hea
ion experiments@3#. In its most commonly used form, th
approximation is implemented, in the case of boson fie
through a time-dependent or -independent variational p
ciple using a Gaussian trial wave function in the Schro¨dinger
picture@4#. However, systematic corrections to this appro
mation are still an open problem. Furthermore, for the c
of fermion fields, the trial wave function is not straightfo
ward to take in a Gaussian form@5#.

On the other hand, the mean-field description of syste
of interest can be obtained from the Heisenberg equatio

i ^Ȯ&5Tr@O,H#F0 , ~1!

whereO is a one-body operator andH is the Hamiltonian of
the system. This can be kept under direct control when
takes a Gaussian-like density. In a formulation appropr
for the many-body theory we have

F05

expF (
( i , j )

Ai , jh i
†h j1Bi , jh i

†h j
†1Ci , jh ih j G

TrH expF (
( i , j )

Ai , jh i
†h j1Bi , jh i

†h j
†1Ci , jh ih j G J . ~2!
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In Eq. ~2! the h i
† (h i) are boson or fermion creation~anni-

hilation! operators of a particle in orbitali, andF0 can be, of
course, rewritten in a diagonal form when one uses the
goliubov quasiparticle operators@cf. Eqs.~5! and ~10!#. It is
not difficult to see that this scheme corresponds to the u
Gaussian variational approximation in the functional Sch¨-
dinger picture. There are, however, some important diff
ences. For instance, the usual technique of nonrelativ
many-fermion problems can be readily extended to the D
field theory@6#. Thus, instead of using anticommuting Gras
mann variables to write Gaussian wave-functional variab
@5#, we describe the pairing correlations by using a suita
Bogoliubov unitary transformation. Furthermore, this cou
be the starting point for the further approximation sche
beyond the Gaussian wave function@13#. In recent publica-
tions@7,8#, we have applied this scheme to thef4 theory and
chiral Gross-Neveu model~hereafter referred to as I,II, re
spectively!.

The main point of this paper is to apply this metho
within the context of interacting fermion-boson models. As
first step towards this end, Takano Natti and de Toledo P
@9# have obtained relevant dynamics for the Jayn
Cummings Hamiltonian, a well known model in quantu
optics@10#. This can be seen as~011!-dimensional quantum
field theory known as relativistic scalar plasma@11#. Exact
numerical results have been useful in this case to asses
quality of various approximation schemes. In particular,
have shown that the method described here is a good
proximation whenever a moving Gaussian has enough f
dom to mimic the complicated evolution of the exact wa
function. In this paper, we report an application of the sa
technique to describe the real-time evolution for a ferm
field interacting with scalar boson in 311 dimensions. The
paper is outlined as follows. In Sec. II we extend the disc
sions of I and II to a system containing interacting boson a
fermion fields. Section III will illustrate this scheme in th
simplest context of the scalar plasma model. In Sec. IV
discuss the self-consistent renormalization for the resul
equations in the equilibrium situation. The renormalizati
©1999 The American Physical Society13-1
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of the time-dependent equations is then considered in Se
and finite initial conditions discussed.

II. KINETIC OF INTERACTING FERMION-SCALAR
SYSTEMS

The present discussion for the real-time evolution of th
ries containing both scalar and fermion fields basically f
lows the earlier works in the context off4 and Chiral-Gross-
Neveu models. The basic idea of our approach is to focus
the time evolution of the expectation values of linear,f(x),
and bilinear field operators such asf(x)f(x), c̄(x)c(x),
c(x)c(x), etc., referred to as Gaussian observables. M
technical details of the method can be found in I and II, a
we restrict ourselves here to a few key steps of the deriva
of equations of motion for the present case.

Let us consider first the bosonic sector of the system.
Heisenberg field operatorsf(x) andP(x) are expanded as

f~x,t !5(
p

1

~2Vp0!1/2
@bp~ t !eip•x1bp

†~ t !e2 ip•x# ,

~3!

P~x,t !5 i(
p

S Vp0

2 D 1/2

@bp
†~ t !e2 ip•x2bp~ t !eip•x#,

wherebp
†(t) andbp(t) are the usual boson creation and a

nihilation operators satisfying the standard commutation
lations at equal times

@bp~ t !,bp8
†

~ t8!# t5t85dp,p8 ,

~4!
@bp

†~ t !,bp8
†

~ t8!# t5t85@bp~ t !,bp8~ t8!# t5t850.

In Eq. ~3! V is the volume of the periodicity box,

~p0!25p21V2 and px5p0t2p•x,

whereV is the mass parameter, and will be fixed later.
In order to deal with condensate and pairing dynamics

the scalar field we follow Sec. II of I and define a unita
Bogoliubov transformation as

F bp

b2p
† G5F coshkp2 i

hp

2
sinhkp2 i

hp

2

sinhkp1 i
hp

2
coshkp1 i

hp

2

G F dp

d2p
† G , ~5!
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wheredp is the shifted boson operator

dp~ t ![bp~ t !2B~ t !dp,0

with Bp~ t ![^bp~ t !&5TrBF@bp~ t !F0#. ~6!

Here and in what follows the symbol TrBF denotes a trace
over both bosonic and fermionic variables. Partial traces o
bosonic or fermionic variables will be written as TrB and
TrF , respectively. The Bogoliubov coefficients are det
mined from the secular problem given in~2.8!–~2.10! of I to
yield ^bpb2p&50. The resulting eigenvalues,np5^bp

†bp&,
are quasi-particle occupation numbers.

For the fermion field, we follow the discussion of II an
decompose the field operators in Fourier components,

c~x,t !5(
k,s

S M

k0
D 1/2 1

AV

3@u1~k,s!ak,s
(1)~ t !eik•x1u2~k,s!ak,s

(2)†~ t !e2 ik•x# ,
~7!

c̄~x,t !5(
k,s

S M

k0
D 1/2 1

AV

3@ ū1~k,s!ak,s
(1)†~ t !e2 ik•x1ū2~k,s!ak,s

(2)~ t !eik•x#,

whereak,s
(1)†(t) andak,s

(1)(t) @ak,s
(2)†(t) andak,s

(2)(t)] are fermion
creation and annihilation operators associated with posi
@negative#-energy solutionsu1(k,s) @u2(k,s)# and satisfy
the anticommutation rules

$ak,s
(l)†~ t !,ak8,s8

(l8)
~ t8!% t5t85dk,k8ds,s8dl,l8 for l,l851,2 ,

~8!

$ak,s
(l)†~ t !,ak8,s8

(l8) †~ t8!% t5t85$ak,s
(l)~ t !,ak8,s8

(l8)
~ t8!% t5t850.

In Eq. ~7! the spinors are normalized tok0 /M and

~k0!25k21M2 and kx5k0t2k•x, ~9!

whereM is a mass parameter for the fermions.
Adapting Eqs.~3!–~11! and ~30! of II to the present case

of ~311!-dimensional field we can write the Bogoliubo
quasiparticle operators as
3
ak,s

(1)

ak,s
(2)

a
2k,s̄
(1) †

a
2k,s̄
(2) †

4 53
coswk 0 0 e2 igk sinwk

0 coswk 2e2 igk sinwk 0

0 eigk sinwk coswk 0

2eigk sinwk 0 0 coswk

4 3
ak,s

(1)

ak,s
(2)

a
2k,s̄
(1) †

a
2k,s̄
(2) †

4 ~10!
3-2
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and requirê a
2k,s̄
(l8)

ak,s
(l)&50 in order to determine this unitar

transformation. The quasi-fermion occupation number w
be given by nk,s

(l)5^ak,s
(l)†ak,s

(l)&. In Eq. ~10! we used us̄&
5(2)1/22su2s& to write the spin labels.

The next step is to obtain the equations of motion for
condensate,̂f& and^P&, and for the Bogoliubov parameter
given in Eqs.~5!, ~6! and ~10!. This is carried out by using
the Heisenberg equation of motion~1!, where O are per-
formed by linear or bilinear combinations of creation a
annihilation parts of the field operators@see~2.17! of I and
~5! of II for details#. For the bosonic variables we have

i ^ḟ&5TrBF@f,H#F0 , ~11!

i ^Ṗ&5TrBF@P,H#F0 , ~12!

ṅp5TrBF@bp
†bp ,H#F0 , ~13!

2 i k̇p2e2kp~ ḣp1k̇php!5
Tr@bp

†b2p
† ,H#F0

112np
. ~14!

Analogously, the dynamical equations for fermionic va
ables read as

ṅk,s
(l)5TrBF~@ak,s

(l)†ak,s
(l) ,H#F0!,

~15!

@ i ẇk1ġksinwk coswk#e2 igk5
TrBF~@a2k,s

(1) ak,s
(2) ,H#F0!

12nk,s
(1)2nk,s

(2)
.

~16!

Our implementation of the Gaussian mean-field appro
mation consists in assuming a factorized form for the den
matrix @9#

F0~ t !5F 0
BF 0

F. ~17!

In Eq. ~17! the subsystem densitiesF 0
B andF 0

F are Gaussian
densities given in Eq.~2!, now rewritten in the diagona
forms using the Bogoliubov quasiboson and quasiferm
operators,

F 0
B5)

p

1

11np
S np

11np
D bp

†bp

, ~18!

F 0
F5 )

k,s,l
@nk,s

(l)ak,s
(l)†ak,s

(l)1~12nk,s
(l)!ak,s

(l)ak,s
(l)†#. ~19!

SubstitutingF0 into Eqs. ~13! and ~15! one immediately
verifies that the occupation numbers are constant,
12501
ll

e

i-
ty

n

ṅp5TrBF@bp
†bp ,H#F05 ṅk,l5TrBF@ak,s

(l)†ak,s
(l) ,H#F050.

~20!

Thus, Eqs.~11!–~16! form a set of self-consistent equation
of motion to the Gaussian variables. Its implementation fo
specific model essentially consists of taking the traces
appropriate commutators in the Fock space. The fact
occupancies are constant implies that the entropy func
associated withF0, i.e., S52TrBFF0 logF0, does not
change in time. Therefore, one recovers the usual isoentr
character of the Gaussian approximation.

A method to improve the mean-field approximation
field theory was discussed in I. The approach follows the l
of thinking of a time-dependent projection technique p
posed some time ago by Willis and Picard@12# in the context
of a master equation for coupled systems and extended
by Nemes and de Toledo Piza to study nonrelativistic ma
fermion dynamics@13#. The method essentially consists
writing the correlation information of thefull densityof the
system in terms of a memory kernel acting on the unco
lated densityF0, with the help of a time-dependent project
~see Sec. III and Appendix A of I for details!. At this point,
a systematic mean-field expansion for two-point correlatio
can be perfomed. The lowest order reported in this w
corresponds to the results of the usual Gaussian approx
tion. The higher orders describe the dynamical correlat
effects between the subsystems and are expressed thr
suitable memorial integrals added to the mean-field dyna
cal equations. Thus, the resulting equations acquire the s
ture of kinetic equations, with the memory integrals perfor
ing as collisional dynamics terms, which eliminate th
isoentropic constraint. This higher order approximation h
been implemented for the case of~011!-dimensional field
model @9# and will not be done in this paper.

III. EFFECTIVE DYNAMICS OF RELATIVISTIC SCALAR
PLASMA

The procedure discussed in the preceding section is q
general and can be, in principle, utilized for systems conta
ing scalar and spin-1/2 particles. This is not, however
straightforward task, since divergences that appear in
equations require a discussion of the renormalizability
specific models of interest. In Ref.@14# the properties and
stability of possible vacuum states for several fermion-sca
models utilizing the Gaussian-effective-potential~GEP! ap-
proach have been studied. It is shown that in 311 dimen-
sions the models seem doomed to instability and the GE
bounded below only if the Yukawa coupling vanishes. W
have reached a similar conclusion in an early stage of
work.

In order to give a well defined physical application, he
we shall adopt the relativistic scalar plasma model wid
used within the context of ultrahigh dense matter@15#. This
system consists of relativistic fermion gas interacting o
through a massive scalar meson and corresponds to on
the simplest quantum-field theoretical models used to disc
3-3
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the relativistic dense matter in the contexts of heavy-ion c
lisions and the high-density astrophysical system@11#. In this
application, one considers that the mean-field contributio
^f&, are much larger than the fluctuations,^f2&2^f&2.
Therefore, the bosonic pairing is ignored and Bogoliub
transformation~5! reduces to identity. We shall show in th
next sections that the resulting equations of interest in
case can be made finite by introducing appropriate coun
terms.

We now proceed to apply the technique discussed in S
II to the scalar plasma model. The dynamics is governed
the Hamiltonian~we use the notation:*x[*d3x)

H5E
x
H,

H52c̄~ igW •]W2m!c2gc̄fc

1
1

8p
@~4pP!21u]fu21m2f2#1Hc , ~21!

where the parametersm andm are, respectively, the mass o
fermion and scalar particles andg is the coupling constant
The last term of this expression contains the counterte
necessary to remove the infinities occurring later@15#,

4pHC5
A

1!
f1

dm2

2!
f21

C

3!
f31

D

4!
f4, ~22!

where the coeffcientsA, dm2, C, andD are infinite constants
to be defined later.

By introducing these ingredients into Eqs.~11!, ~12!, and
~16!, one easily obtains a dynamical equation for the cond
sate

^ḟ&54p^P&, ~23!
rg
s

ef
in
hi

12501
l-
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^Ṗ&52
1

4p FA1
C

2
G~V!G

2
1

4p Fm21dm21
D

2
G~V!G^f&2

C

8p
^f&2

2
D

24p
^f&32g(

s
E

k

1

k0
@M cos 2wk

1k sin 2wkcosgk#~12nk,s
(1)2nk,s

(2)!, ~24!

wherek[uku, and two real equations for the fermion pai
ing

ẇk5
k

k0
~M2m̄!singk , ~25!

sin 2wkġk5
2~k21m̄M !

k0
sin 2wk

1
2~M2m̄!

k0
k cos 2wkcosgk . ~26!

In Eq. ~24! we have introduced the notation

G~V!5E
p

112np

2Ap21V2
5

1

8p2 S Lp
21V2log

2Lp

AeV
D 1E

p

np

p0
,

~27!

whereLp is a momentum cutoff used in evaluating the int
gral. In Eqs.~25!–~26! m̄[m2g^f& stands for the effective
fermion mass.

Another physical quantity of interest is the energy dens
of the system,
^H&
V

5
1

V
Tr HF052(

s
E

k
F ~k21m̄M !

k0
cos 2wk1

~m̄2M !

k0
k sin 2wkcosgkG ~12nk

(1)2nk
(2)!

1
1

8p
@^P&21m2^f&2#1

1

4p FA1
C

2
G~V!G^f&1

1

8p Fdm21
D

2
G~V!G^f&2

1
C

24p
^f&31

D

96p
^f&41

1

8p
@m21dm2#G~V!1

D

32p
G2~V!. ~28!
ons
An important feature of this scheme is that the mean ene
is conserved, a property which can be verified explicitly u
ing the equations of motion~23!–~26!. Notice also that the
results above contain divergent integrals, so that the co
cientsA, dm2, C, andD have to be adjusted appropriately
order to give a well defined dynamics. We shall focus on t
point in the next sections.
y
-

fi-

s

IV. STATIC EQUATIONS AND RENORMALIZATION

This section considers Eqs.~23!–~26! in the equilibrium
situation. We shall investigate the solution of these equati
and study renormalization conditions. Hence, we set

ġk5ẇk5^ḟ&5^Ṗ&50. ~29!
3-4
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Since our main goal here is to set up a Gaussian mean-
approximation for interacting fermion-boson fields, we sh
for simplicity, not consider the matter contribution in th
present calculation. This can be done in the case of Gaus
mean-field approximation by assuming an appropriate sta
tical distribution to the occupation numbersnp and nk,s

(l) as
initial conditions in Eqs.~13! and ~15!. Thus, for the rest of
the discussion we have vanishing occupancies,np5nk,s

(l)50
and the sum in spin gives a numerical factor,(s52. With
these assumptions, Eqs.~23!–~26! become

^P&ueq50, ~30!

FA1
C

2
G~V!G1Fm21dm21

D

2
G~V!G^f&ueq

1
C

2
^f&ueq

2 1
D

6
^f&ueq

3

18pgE
k

1

k0
~M cos 2wkueq1k sin 2wkueqcosgkueq!50,

~31!

~M2m̄!singkueq50, ~32!

~k21m̄M !sin 2wkueq1~M2m̄!cos 2wkueqcosgkueq50,
~33!

where m̄ is now the effective fermion mass calculated
^f&ueq. Solutions of this set of equations correspond to s
tionary points of the energy density, and include the grou
state of the system in this approximation.

A. Equilibrium conditions and mass parameters

Considering Eqs.~32! and ~33!, one sees that two situa
tions have to be analyzed.

~i! singkueq50: Using this solution in Eq.~33! we have

cos 2wkueq56
k21m̄M

k0k̄0

, sin 2wkueq57
M2m̄

k0k̄0

, ~34!

where k̄05Ak21m̄2. By substituting this result into Eq
~31!, one finds the following gap equation for this case:

FA1
C

2
G~V!G1Fm21dm21

D

2
G~V!G^f&ueq

1
C

2
^f&ueq

2 1
D

6
^f&ueq

3 5616pgm̄G~m̄!, ~35!

where G(m̄) is the divergent integral defined in Eq.~27!
with np50.

~ii ! M5m̄: In this casegk can have any value and Eq
~33! has

sin 2wkueq50, cos 2wkueq561 ~36!
12501
ld
,
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s-
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as the solution. Comparing Eq.~34! with Eq. ~36!, one im-
mediately notices that the former includes the second s
tion as a particular case, where the mass parameterM is
defined by the equilibrium condition and the Bogoliubo
transformation~10! reduces to an identity matrix.

The above discussion shows that the equilibrium va

^f&ueq of the condensate, or the effective fermion massm̄,
are independent of the initial choice of the mass param
M. In fact, the effects of pairing transformation will be suc
that the effective fermion mass is always given by the eq
librium value calculated with Eq.~35!. @See also Eq.~43!
below for the mean-field energy.# Henceforth, we shall take
M5m without loss of generality.

B. Counterterms

The arbitrary parametersA, dm, C, and D can be fixed
easily by adjusting the coefficients of^f&ueq in both sides of
Eq. ~35! to give a finite gap equation. Thus, taking into a
count the6 signs in Eq.~35!, we choose the following self-
consistent renormalization prescription:

D5648pg4L~m!, ~37!

dm25724p2g4L~m!G~m!716pg2G~0!

624pm2g2L~m!, ~38!

C5748pmg3L~m!, ~39!

A5624pmg3L~m!G~m!616pmgG~m!, ~40!

where

L~m![E
k

1

2k2~k21m2!1/2
5

1

4p2
log

2Lp

m
. ~41!

Furthermore,m and m are the mass scales for boson a
fermion fields, respectively.

Substitution of these counterterms into Eq.~35! produces
the appropriate cancellations, which render the equation
nite. A combination of typeL(m)@G(m)2G(V)# comes
from the first two terms. SinceV is an arbitrary expansion
mass parameter, one can remove this divergence by se
V5m. The resulting finite gap equation is

p

2
m2^f&ueq2gm̄3F lnS m̄

m
D 1

1

2
G50. ~42!

The above equation together with Eqs.~32!–~33! determines
the stationary points of the model in the Gaussian mean-fi
approximation.

C. Mean energy and stationary solutions

Next we examine the energy density when it is station
with respect to the fermion variables. With the help of E
~34!, Eq. ~28! becomes
3-5
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^H&
V

~wkueq,gkueq,^f&!57E
k
G21~m̄!

1
1

4p FA1
C

2
G~m!G^f&

1
1

8p Fm21dm21
D

2
G~m!G^f&2

1
C

24p
^f&31

D

96p
^f&4. ~43!

By substituting next the counterterms from Eqs.~37!–~40!
into this result, we obtain the renormalized version of me
field energy as a function of mean-field value^f& or m̄

^H&
V

5
1

8p2 Fpm2

g2
~m2m̄!21m̄4 lnS m̄

m
D 1

m̄42m4

4 G ,

~44!

where we have added an appropriate constant in order to
^H&(^f&50)50. One can now discuss the possible solut
of Eq. ~42! by analyzing the minima of Eq.~44!.

Let us definex[g^f&ueq/m and E(x)[(8p2/m4)^H&/
V. Equations~42! and~44! can then be written, respectively
as

pm2

2g2m2
x2~12x!3F ln~12x!1

1

2G50 ~45!

and

E~x!5
pm2

g2m2
x21~12x!4F ln~12x!1

1

4G2
1

4
. ~46!

The combination 4g2m2/pm2 has been used as an effecti
coupling constant in Ref.@15#.

The behavior ofE(x) is shown in Figs. 1–4 for severa
combinations ofm/m andg2. Notice first that this function
has the domain at 0<x<1, which is the physical range fo
the fermion mass. The pointx50 corresponds tôf&50 or
m̄5m andx51 is the case when the effective fermion ma
m̄50. Qualitatively, the results indicate that the system
ways presents a singleminimum. Figures 1 and 2 showE(x)
for several values ofg2 with m/m fixed ~see figure captions
for the numerical values of the parameters!. The positions of
xmin indicate that the vacuum approachesx50 when we
decreaseg2. In the limit of g2→0, one getsxmin→0, as
shown in Fig. 3. In this case,m'm̄ is the optimal fermion
mass, as it must be in the free field theory. On the ot
hand, Figs. 3 and 4 plot the functionE(x), keeping the value
of the Yukawa couplingg2 fixed, but with different values of
the ratiom/m. Comparing these two curves, one seesxmin
→0 whenm/m→`. In other words, when the meson ma
is large, the force range is small, as usual in the Yuka
theory. In the limit of infinitym, the fermion particles of the
system cannot interact. It can also be seen from the A
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formula, wherem/m plays roles of effective coupling con
stant. The above discussions suggest that the field always
a stable vacuum. This means that there is a finite ra
around the minimum where the dynamics of the system
well-defined. Therefore, we shall discuss renormalizat
conditions for time-dependent equations in the next sect

V. RENORMALIZATION AND INITIAL CONDITIONS
FOR THE TIME-DEPENDENT EQUATIONS

In the last section we discussed the problem of renorm
ization for the vacuum sector of the relativistic scalar plas
model in the Gaussian mean-field approximation. We h
shown that the physical quantities can be made finite w
the counterterms introduced in Eq.~22! and Eqs.~37!–~40!.
Here we shall consider an off-equilibrium situation and stu
renormalizability for the Gaussian equations of motion

FIG. 1. The behavior of the ground-state mean-field energy d
sity E(x) of the scalar plasma system as a function of fermio

effective massx5g^f&/m512m̄/m for any values of the coupling
constantg and mass scalem/m50.1 fixed.

FIG. 2. The behavior of the ground-state mean-field energy d
sity E(x) of the scalar plasma system as a function of fermio

effective massx5g^f&/m512m̄/m for any values of the coupling
constantg and mass scalem/m52 fixed.
3-6
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this model.~See, e.g., Refs.@16,17# for the issue of renor-
malization of time-dependent equations inf4 field theory.!

A. Equations of motion and initial state

In order to pose the problem more clearly, let us begin
rewriting Eq.~24!, with the help of Eqs.~37!–~40!, as

^f̈&52m2^f&28pgF~ t !, ~47!

where

F~ t !5E
k
Fk~ t !5E

k
F m

k0
cos 2wk1

k

k0
sin 2wkcosgk

1
m̄~ t !

k
2

m̄3~ t !

2k2k0
G . ~48!

FIG. 3. The behavior of the ground-state mean-field energy d
sity E(x) of the scalar plasma system as a function of fermio

effective massx5g^f&/m512m̄/m for coupling constantg2

5p/100 and mass scalem/m52.

FIG. 4. The behavior of the ground-state mean-field energy d
sity E(x) of the scalar plasma system as a function of fermio

effective massx5g^f&/m512m̄/m for coupling constantg2

5p/100 and mass scalem/m50.1.
12501
y

Notice that the integral is divergent unlessFk decreases
faster thank23. For simplicity, we shall ignore the possibili
ties of fractional powers, logarithmic, or oscillatory behavi
and take the convergence condition for the integral to be

lim
k→`

Fk5OS 1

k4D . ~49!

Thus, the allowed domains for the dynamical variables
momentum space suffer strong constraints, and our inve
gation of renormalizability for the equations of motion co
sists of analyzing the large momentum behavior ofFk from
this point of view. In order to satisfy Eq.~49! at all times, the
pairing variableswk and gk must have their time evolution
restricted. These restrictions are analyzed better by ma
the variable changes

k0
2 cos 2wk52mRk2kAk0

22Rk
2 ~50!

or, equivalently,

k0
2 sin 2wk52kRk1mAk0

22Rk
2 ~51!

and

cosgk512Wk . ~52!

In terms of these new variables we have

F~ t !5E
k
F k

(1)1E
k
F k

(2) , ~53!

where

F k
(1)52

Rk

k0
1

m̄~ t !

k
2

m̄3~ t !

2k2k0

, ~54!

F k
(2)5

k

k0
3

Wk~2kRk1mAk0
22Rk

2!. ~55!

We see inF k
(1) that the leading term ofRk→` must bem̄ in

order to cancel the quadratic divergence. Thus, we defin

lim
k→`

Rk5m̄1Sk ~56!

valid for largek. Using this in Eq.~54! one obtains

lim
k→`

F k
(1)5

m̄m2

kk0~k1k0!
2

m̄3

2k2k0

2
Sk

k0

5
1

k0
F m̄~m22m̄2!

k~k1k0!
2SkG1OS 1

k5D . ~57!

There is still a logarithmic divergence left. To keep this u
der control we must have

n-
c

n-
c

3-7
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lim
k→`

Sk5
m̄~m22m̄2!

k~k1k0!
~58!

in order to get finite*kF k
(1) .

Next we examine the convergence condition for*kF k
(2) .

Using Eqs.~56! and~58! in Eq. ~55! we find the asymptotic
expression forF k

(2) to be

lim
k→`

F k
(2)5F k3~m̄22m2!

k0
3~km̄1k0m!

1OS 1

k3D GWk . ~59!

This will constrain the large-k behavior ofWk to be

lim
k→`

Wk5OS 1

k3D ~60!

in order to satisfy Eq.~49!.
The asymptotic conditions~56!, ~58!, and~60! restrict the

dynamics of the Gaussian variables in the momentum sp
Whenever the Fourier spectrumFk has such properties, Eq
~47! and ~48! are well defined, and one ought to use the
also as a criterion for choosing initial conditions. Since, ho
ever, we are dealing with a time-dependent problem,
question we want to address is whether the nonlinear ev
tion will distort the asymptotic behavior built into the initia
state. From the energy viewpoint, we argue that, if the re
tions ~56!, ~58!, and~60! result in a finite energy density, it
conservation will enforce these relations at all times. In fa
as we shall show below, the asymptotic behavior obtaine
Eqs.~56!, ~58!, and~60! is sufficient to make Eq.~28! finite.

B. Asymptotic conditions and energy density

In terms of the new variables,Rk andWk the energy den-
sity ~28! can be rewritten as

^H&
V

5
1

8p
@^P&21^f&2#22E

k
E k

(1)22E
k
E k

(2) , ~61!

where

E k
(1)5

2k

k0
Ak0

22Rk
21

2m̄Rk

k0
2

m̄2

k
1

m̄4

4k2k0

, ~62!

E k
(2)5

~m̄2m!k

k0
3

Wk~2kRk1mAk0
22Rk

2!. ~63!

Substracting an unimportant constant 2k from E k
(1) we find,

after a little algebra,

E k
(1)52kFRk

k0
2

m̄

k
G2

1
k

k0
F m̄4

4k3
2

Rk
4

k0~k01Ak0
22Rk

2!2G ,

~64!

from which it follows that
12501
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lim
k→`

E k
(1)52

k

k0
2 S 2

m̄m2

k~k1k0!
1SkD 2

1
k

k0
F m̄4

4k3
2

m̄4

4k0
3

1OS 1

k4D G , ~65!

where we have applied Eq.~56!. It is clear now that this
expression decreases as fast ask25 and *kE k

(1) is finite. In
comparing Eq.~63! with Eq. ~55!, one immediately notes
that

lim
k→`

E k
(2); lim

k→`

F k
(2) . ~66!

Hence,*kE k
(2) is finite when the condition~60! is satisfied.

The above qualitative discussion shows that the presc
tions given in Eqs.~56!, ~58!, and ~60! can make energy
density finite. They will thus define the initial states and t
system will develop a well-defined time evolution within
limited momentum space. Because of the energy conse
tion, the asymptotic behavior of the Gaussian variables
sentially will not be modified by the dynamics; otherwis
this will expend an infinite amount of energy from the sy
tem. This discussion has not considered, however, possi
ties of eventual runaway, caused by eventual unbounded
low behavior of the potential. The studies of this proble
will require further detailed analysis of^H& as a multidimen-
sional function ofm̄, Rk , andWk ~one coordinate for each
k), and verification of its functional properties@17#.

VI. CONCLUDING REMARKS

In summary, in this paper we have presented a framew
to treat the initial-value problem for interacting fermion
scalar field models. The method allows one to describe
real-time evolution of the fields in terms of the dynamics
a few observables yielding a set of self-consistent equat
for expectation values of linear and bilinear field operato
Although the procedure is quite general, we have, howe
implemented the calculation within the simplest context
the relativistic scalar plasma system. We have shown in
tail that the usual form of renormalization also applies to
present nonperturbative calculation and we have obtaine
nite expression for energy density. A simple numerical c
culation suggests that the system always has a single s
minimum, although further investigation will be necessa
for other oscillation modes. The standard approach to
question is through the use of random phase approxima
~RPA! analysis, where the stability is indicated by its eige
values. It is interesting to mention here that the excitat
modes described by the RPA equations are the quantum
ticles of the field. In fact, the physics of one meson and t
spin-1/2 fermions can be investigated from this equation.
have also discussed the renormalization for the tim
dependent equations. Using energy conservation as the
we found that there is a finite range around the vacu
where the dynamics of the system is well defined.

Finally, we comment that systematic corrections to
3-8
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clude dynamical correlation effects in the present mean-fi
calculations can, in principle, be readily applied with t
help of a projection technique discussed in I and Ref.@9#. In
this case, the occupation numbers are no longer constan
will affect the effective dynamics of the Gaussian obse
ables. The framework presented here serves also as gro
work to finite density and finite temperature discussions@18#.
In particular, a finite-matter density calculation beyond t
mean-field approximation allows one to study collisional o
servables such as transport coefficients@19#. The extension
of this procedure to explore nonuniform systems is straig
n

ys

n
ar
. N

I
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r-

12501
ld

nd
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nd-
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forward but lengthy. In this case, the spatial dependence
the field is expanded in natural orbitals of extended one-b
density. These orbitals can be given in terms of a momen
expansion through the use of a more general Bogoliu
transformation@20#.
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@4# O. Éboli, S.-Y. Pi, and R. Jackiw, Phys. Rev. D37, 3557
~1988!; A. K. Kerman and D. Vautherin, Ann. Phys.~N.Y.!
192, 408 ~1989!.

@5# S. K. Kim, K. S. Soh, and J. H. Yee, Phys. Rev. D41, 1345
~1990!.

@6# L. S. Celenza and C. M. Shakin, Phys. Rev. C24, 2704~1981!.
@7# C.-Y. Lin and A. F. R. de Toledo Piza, Mod. Phys. Lett. A5,

1605~1990!; A. F. R. de Toledo Piza and C.-Y. Lin, inQuan-
tum Many-Body Dynamics in the Gaussian Approximation a
Beyond, International Conference on Many-Body Nucle
Physics, edited by C. Fiolhais, M. Fiolhais, C. Souza, and J
Urbano~World Scientific, Singapore, 1994!, p. 277.

@8# Lin Chi Yong and A. F. R. de Toledo Piza, Phys. Rev. D46,
742 ~1992!; P. L. Natti and A. F. R. de Toledo Piza,ibid. 54,
7867~1996!. Hereafter these papers are referred to as I and
respectively.

@9# E. R. Takano Natti and A. F. R. de Toledo Piza, Physica
236, 321 ~1997!; E. R. Takano Natti, Doctoral thesis, Unive
sity of São Paulo, 1998.
,

.

d

.

I,

@10# E. T. Jaynes and F. W. Cummings, Proc. IEEE51, 89 ~1963!.
@11# G. Kalman, Phys. Rev.161, 156~1967!; Phys. Rev. D9, 1656

~1974!.
@12# C. R. Willis and R. H. Picard, Phys. Rev. A9, 1343~1974!.
@13# M. C. Nemes and A. F. R. de Toledo Piza, Phys. Rev. C27,

862 ~1983!.
@14# P. M. Stevenson, G. A. Hajj, and J. F. Reed, Phys. Rev. D34,

3117 ~1986!.
@15# G. Marx, Nucl. Phys.1, 660 ~1956!; Ya. B. Zeldovich, Zh.
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