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In this work we consider a coupled system of Schwinger-Dyson equations for self-energy and vertex
functions in QER. Using the concept of a semiamputated vertex function, we manage to decouple the vertex
equation and transform it in the infrared into a nonlinear differential equation of the Emden-Fowler type. Its
solution suggests the following picture: in the absence of infrared cutoffs there is only a trivial infrared
fixed-point structure in the theory. However, the presence of masses, for either fermions or photons, changes
the situation drastically, leading to a mass-dependent nontrivial infrared fixed point. In this picture a dynamical
mass for the fermions is found to be generated consistently. The nonlinearity of the equations gives rise to
highly nontrivial constraints among the mass and effectivenning” ) gauge coupling, which impose lower
and upper bounds on the latter for dynamical mass generation to occur. Possible implications of this to the
theory of high-temperature superconductivity are briefly discudS@#656-282(199)02524-2

PACS numbgs): 11.15.Me, 11.10.Kk, 11.15.Tk

I. INTRODUCTION component notation for the fermiongrovides motivation
for searches beyond the larfetreatment. Moreover, up to

Three-dimensional quantum electrodynamics (@ED now the gauge coupling in the infrared has been treated as an
with an even number of fermion flavors, apart from servingarbitrary parameter, whose size has not been restricted by an
as a toy model for studying chiral-symmetry breaking andadditional dynamical constraint. At present we are lacking a
confinement, also constitutes a physically interesting theorgelf-consistent treatment of the dynamical Schwinger-Dyson
per sg in view of its possible applications in modeling novel (SD) equations involving the vertex function on an equal
(high-temperaturesuperconductorfl—4]. footing with the self-energy and gap functions. In all the

Chiral symmetry breaking or, equivalently, dynamical approaches so far, at least within the laNjéreatment that
mass generation for fermions, in even-flavor QBias still  we are aware of, one invokes a specific ansatz for the vertex,
many unresolved issues. One of those is the existence of 8 the sole requirement of satisfying some truncated form of
(dimensionless critical coupling, above which dynamical the Ward-Takahashi identity stemming from gauge invari-
mass generation for the fermions occiB} In the context of  ance[8—11]. The lack of dynamical information for the cou-
large-N treatment, which at present constitutes the only well-pling poses problems; for instance, its size in the infrared is
studied approach, the role of the dimensionless coublg treated as an arbitrary parameter, being assumed to merely
played by the inverse of the fermion flavor numidérThe  exceed a critical value, if one wishes to trigger chiral sym-
issue of the existence of a critical coupling in QER a  metry breaking.
delicate one[6]. Many of the original approximationg5] Another point, related to the above, which is already fa-
leading to its existence have been questioned, in particulamiliar from studies in the case of four-dimensional non-
the fact that wave-function renormalization effects have nojbelian gauge theories, is whether chiral-symmetry breaking
been properly accounted for. Recently, however, the incoris associated with confinement of charddg]. This issue
poration of such effects, still within the largécontext, ap-  acquires physical importance in view of the condensed-
pears to corroborate/—9] the qualitative picture advocated matter applications. In particular, it may shed more light in
in [5]. In addition, the latter is also supported by lattice simu-the dynamics of spin-charge separation, by analogy with the
lations[10]. physics of strong interactionf43].

Nonetheless, the situation is far from being conclusive. In this work we shall not deal with issues of confinement,
The fact that the criticaN, below which dynamical mass which exists in QED despite its Abelian nature. Instead, we
generation occurs, is found to be of order(® a four-  shall attempt a novel approach to chiral symmetry breaking,

independently of a larght treatment, by studying the
coupled fermion and photon self-energies and vertex SD
UIn three dimensions the couplired has dimensions of mass. One €duations in the context of a method first introduced for the
can still define, however, dimensionless couplings by dividing with¢@se of four-dimensional QC[14]. The novel ingredient is
a dynamically generated scale, which in the lanyareatment that we concentrate on the semi-amputated vertex, defined in
arises by demanding thEs] e2N=8a, with the scalex kept fixed ~ Sec. I, which is the correct gauge-invariant quantity to de-
asN—o. The dimensionless coupling is then defined as the ratidermine a physically meaningful “running” coupling‘ef-
€%/8a=1/N. fective charge’). The fact that QERis superrenormalizable
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FIG. 1. Schematic form of the SD equation for the gauge field FIG. 2. Schematic form of the SD equation for the full fermion
propagator in resummed perturbation theory. The blobs on the@ropagator. Blobs indicate full non-perturbative quantities. Notice
right-hand-side indicate the fullnon-perturbative vertex correc-  the full vertex appears on both ends of the internal photon line.
tions.

trivial infrared fixed point. The so-derived running charge is
in the ultraviolet does not preclude the possibility of defining 4 monotonically decreasing function of the momentum, tend-
such a quantity, having nontrivial structure in the infrared.ing asymptotically to a constant positive value in the ultra-
As we show in Secs. Il and Ill, the existence of a nontrivial iplet. In Sec. IV, we solve the equations for the photon and
infrared fixed point is a propertynly of the infrared-  fermjon self-energies, which in our approximations decouple
regularized theory, as conjectured[itt]. In other words, in from each other and depend only on the semi-amputated ver-
the absence of fermiofor photon masses, the infrared sin- tex function. We then verify the self-consistency of the ap-
gularities of the vertex equation will force the effective nroach. In Sec. V we examine the self-consistency of the
charge to vanish at zero momentum transfer, thereby exclucgynamicm generation of the fermion mass, by solving the
ing the possibility of an interesting infrared behavior. From 8appropriate SD equation upon substituting the solution for
condensed-matter application point of view this would cor-the semi-amputated vertex found in previous sections. The
respond to what is usually called the Landau-Fermi liquidse|f.consistency of the approach restricts the allowed regions
theory (trivial infrared fixed point [15,11]. In the presence of the effective charge, implying the existence of a lower
of masses, and in particular fermion masses, we show in Segound (critical coupling but also of an upper one. In Sec.
Il that there is a non-trivial infrared fixed point structure, v/ we examine an alternative type of infrared cutoff, namely
stemming from the fact that the effective charge obtained agat of a(bare covariant photon mass term. This case also
a self-consistent solution of theon-linearvertex SD equa-  exhibits a non-trivial infrared fixed-point structure but, in
tion, is driven to a finite positive value, which can be largecontrast to the monotonic decrease of the effective charge in
enough to trigger dynamical generation of a fermion massgne case of fermion masses, here the coupling initially in-
This implies that the phenomenon of chiral symmetry breakyreases in the infrared, then displays a local maximum, and
ing is intimately associated with deviations from the trivial eyentually decreases, tending asymptotically to a constant
infrared fixed-point structure. ~ value in the ultraviolet. Some possible applications of this

We should stress that, as a result of the non-linearity ohenavior, inspired by condensed-matter physics, are briefly

the vertex equation, there are delicate constraints betweeflscussed. Finally, in Sec. VIl we present our conclusions
the fermion mass and the effective charge, which are responmg outlook.

sible for the appearance of regions of the latter for which

dynamical generations occurs. At presgnt, these re_strictions Il. THE SD EQUATION FOR THE SEMIAMPUTATED

appear as a consequence of mathematical self-consistency of VERTEX

the truncated equations. It is not clear to us, whether the

upper bounds on the effective charge, imposed by the present In this section we will first set up the SD equations for the

cubic approximations for the vertex corrections, will survive photon and electron self-energies, and the photon-electron

the inclusion of higher orders. In contrast, we believe that thevertex; then we will define the semi-amputated vertex and

lower bounds will survive such a treatment, thereby indicat-derive its corresponding SD equation. As we will explain,

ing the existence of a critical coupling above which dynami-the latter governs the behavior of the effective coupling in

cal mass generation will occur. This is physically appealingthe infra-red. The derivation of the SD equations for the

given that one would not expect a weakly coupled theory tghoton propagatah ,, , the electron propagat@:, and the

be capable of breaking dynamically chiral symmetry. photon-electron vertex”,, proceeds following standard
The layout of this article is as follows: in Sec. Il we set up methodg 18,19 (see Figs. 1,2)3

the SD equations that we wish to study, and discuss in detail The full photon propagatak ,, , its inverseA;Vl, and the

the approximations employed. We demonstrate that, undguil vacuum polarizatioril,,, in Euclidean space are related

certain assumptions to be justified retrospectively in Sec. IVpy

the equation for the semi-amputated vertex decouples from

the rest, and hence can be solved separately. Moreover, we A;,}(Q)=A5/}V(q)+ﬂw(q),

establish the absence of a non-trivial infrared fixed point rig-

orously (within the cubic approximation for the vertgxoy . 5

casting the SD equation for the effective charge in a form of 20,,(4) =076, ~

a non-linear differential equation, known as Emden-Fowler

equation[16,17. In Sec. Il we study the equation for the —(025 —

vertex in the presence of a fermion mass, acting as an infra- I1,,,(9)=(a%6,,~9,9,)11(q),

red regulator. We derive the appropriate non-linear differen- _ _ 2724 o2 -1

tial equation describing the infrared behavior of the running Bud =05, = 0,0, /0% a+a” 11(a)]

coupling, and solve it to demonstrate the existence of a non- + gqﬂqqu“, (2.7

1
1—3 4.9,
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where¢ is the gauge fixing parametén covariant gauges
The corresponding SD equation reads

3

- - d3k
AL (a)=Ag,,(0)+ ezf (277)3Tr[rMsFerF] +oenl
(2.2

The SD equation for the electron propaga$aris given by

—1 H 2 d3k v
S (p)=—ip—e f(zr)sFMSFFVA“ +---. (2.3

Finally, the SD equation for the photon-electron vertéx
has the form

3

Fﬂ(plvpz,Ps):)’M_ezf I Se(k—p1)

(2m)®
XT,Se(K)T pA%B(k+py)+ - - -
(2.4

with p;+p,+p3=0. The ellipses on the right-hand side of
Egs. (2.2—-(2.4), denote the infinite set of terms containing

the two-particle irreducible four-point functidri8,19. Al-
though we are not working in the context of a latganaly-

sis, we note that the above truncation is compatible with

working to leading order in resummedNLEXpansion.
We next define the scalar quantitiés B, and G as fol-
lows:

Sr(k)= ﬁ, (2.9
A, (k)= Our 5 (2.6)
B(k)k
and
I',(P1,P2,P3) =G(P1.P2,P3) ¥, - (2.7

The quantityB is related toll defined in Eq(2.1) by B(q)

=1+1II(q). The definition in Eq(2.6) implies that the lon-

PHYSICAL REVIEW D60 125008

traviolet, it appears to be less compelling in the context of
the superrenormalizable QEDIn addition, it is known that,
while the conventionally defined fermion self-energy and
photon-fermion vertex depend explicitly on the gauge-fixing
parametek, it is possible to construct —at least at one-loop
— a ¢&-independent fermion self-energy and vertex, by re-
sorting to the diagrammatic rearrangement of Smatrix
known as the pinch techniqu0]. It turns out that the
&-independent fermion self-energy and vertex so constructed
coincidewith their conventional counterparts, if we choose
for the latter the special valug=1 (Feynman-'t Hooft
gauge [21]. Furthermore, as has been formally shown in
[22], all longitudinal pieces appearing in E¢R.1) vanish
from physicalobservables, such &matrix elements, to all
orders in perturbation theory. Thus, one is led to a general-
ized form of the Feynman-'t Hooft gauge, known as the
“stagnant gauge,” where only thé,,, part of the vacuum
polarization contributes, tall orders in perturbation theory.
This gauge will be adopted throughout the present article.
Following [14] and [19] we define the semi-amputated

vertexG as

G(p1,P2,P3)=Z(P1,P2,P3)G(P1.P2,p3) (2.9

with

Z(p1,P2,P3) =B Y(p) A Y(p) A"V ps). (2.9

This definition proves very useful in reducing the complexity
of the set of equation&.3) and(2.4), under certain approxi-
mations to be discussed in detail in the next sections. In
addition, the quantity

(2.10

provides a natural generalization of the concept of the run-
ning or effective charge in the context of superrenormaliz-
able gauge theorig®3], such as QER This running of the
coupling should be understood as a Wilsonian rather than
Gell-Mann-Low type, in the sense that it is not associated
with ultraviolet infinities; instead, it expresses a non-trivial
infrared structure of the theofyL1].

Note that in QEL the effective charg«aﬁff is defined in

QR(plypz,Ps)Eeé(pl,pz,ps)

gitudinal pieces of the photon propagator will be discarded interms of the photon vacuum polarization as

what follows. Of course, there are no rigorous field-theoretic
arguments justifying their omission or inclusion. The correct
treatment of such terms necessitates a formalism which
would allow for the self-consistent truncation of the SD se-and is a gauge-, scale-, and scheme-independent quantity
ries in a manifestly gauge-invariant way; unfortunately, no[24] to all orders in perturbation theorgZ; depends explic-
such formalism exists to date. The standard lore when writitly on g? andthe masses of the fermions inside the vacuum

eZi(a?)=e¥1+11(g?)] 4, (2.19)

ing down SD equations is to use in .3 the form ofA ,,
given in Eq.(2.1), settingé=0 (Landau gauge While in
four-dimensional quantum electrodynamics (QIEDthis

polarization loop. In the limit where the fermion masses can
be neglectedegﬁ(qz) coincides with the running coupling
obtained by the3 function of QED, i.e. the solution of the

choice renders the vertex corrections unimportant in the ulusual renormalization-group differential equation. An advan-

FIG. 3. The SD equation for the vertd, .
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tage of the definition given in E2.10 is that it captures &)=z for all &(p)~B Y 1 _
the running coupling even in the case of scalar thedi6 (P)=2(p). p. G(p) (P)—1, p?zia
where, due to the absence of Ward-Takahashi identities, the

role of the gauge boson self-energies is not as prominent g§uice that&(p) in the ultraviolet is thereby given bjl
in gauge theories. As we shall see in Sec. V, the interpretajrl—[(p)]—l/z as in QED. This is the perturbative result

tion of gg defined in Eq(2.10 as a running coupling is also \ypich "as we shall see later, is modified non-trivially in the
justified by the form of the SD for the fermion mass gap. jnfrared, in a way consistent with gauge invariance. More-

The equation for the semi-amputated vertéxmay be  over, as we shall see later, the self-consistency of the ap-
obtained from Eq.2.4) by multiplying both sides by the proximations employed will requiré(0)s \/372.

factorZ(py,pz,ps), i-e., Our next assumption is that in the infrared regirkéy
&K <1, which is of interest to us here, the effects of the inho-
&3 mogeneous terrd(p) can be ignored. This assumption will
(2m)3 be justified later on, when we consider a non-trivial self-
consistency check of the solutions. We now remark that by
1 1 1 ignoring the effects oZ(p) one can decouple the equation
Kk—p, 7’#; Vam' for the (gauge-invariantamputatedvertex from the equa-
tions for A(p),B(p). As we shall discuss in subsequent sec-
(2.12 tions, these latter equations also decouple from each other,

depending only on the vertex functi€s(p).
Because of this, we commence our analysis from the SD
G3=G(p3,k+p,.p1—k)G(p;,—k,k—py) equation for the verte(p), which we solve upon ignoring
R the effects of the inhomogeneodép) term. Thus we arrive
XG(p2,K,—k=p2). (2.13  at the homogeneous equation

G(p1.P2.P3) ¥, = Z(P1.P2.P3) ?’M_ezf

a

Xy

where

In what follows we shall restrict ourselves to the case where 1

the photon momentum is vanishingly small, and thus one is é(p):—ezf

left with a single momentum scafe One can then define a 3

renormalization-grougg function from this “running” cou-

pling G(p) by setting This integral equation involves only one unknown function,
namelyG, which must be self-consistently determined. Note

,BEpié(p). (2.14  that this equation is invariant under the rescal(Bng»é/e_.
dp This indicates a straightforward extension of the analysis to a
o ) largeN treatment, given thatl can be absorbed in a redefi-
In order to further simplify the SD equation f@(p) we pition of e2.
make the additional approximation thét3=é3(k), e, a It is easy to see that, written in the forf®.17), the equa-
cubic power of a singl&(k) depending only on the integra- tion does not admiphysically acceptablsolutions, i.e., so-
tion variablek. This approximation will be justified by the Iutions with G=0 andfinite.? Indeed, settingp=0 one ob-

ok (k)
(2m)® Wi (k—p)?’

(2.17

self-consistency of the solutions. tains after thetrivial) angular integration:
Carrying out the gamma-matrix algebra using the formu-
las y,y,=—d, and y,y,y,=(d—2)y, valid for 4x4 R e2 redk.
gamma matrices ird(=3)-dimensional Euclidean space, G(0)= 12726 FG3(k). (2.18

one obtains in a straightforward manner:

3 Finiteness ofé(O) requires that the integrand of the right-

(219  hand side of Eq(2.18 converges ay—0 and <, where
y=k/a. The ultraviolet limit does not present a problem,
. . 72 . - .
Several remarks are now in order. First, one observes thg}gcause the kernel vamshgs lige*, which is consistent
with the superrenormalizability of the theory as well as the

Z(p)—1 for p—oo, where perturbation theory is valid. This . -
is inferred from the fact that in such a case, as can be readiI];?Ct that the amputated vertex tends to 1. In the infrared limit

verified, the functionsA(p),B(p)—1+ O(e?/p). In addi-
tion, in the ultraviolet regionp—«, gauge invariance re-
quiresG(p)~A(p). Second, from Eq(2.15 one observes ?Solutions that blow up in any point of the integration region are

that, if G stays positive, which is expected for any physicaldiscarded: , ,
theory, then, as a result of the positivity of the integrand,, These arguments remain unaffected even in the presence of an

N . . inhomogeneous terrd(p), such thatz(0) is non-negative and fi-
G(p)=Z(p) for any p. Thus, one has the following basic njte The non-negative nature {p) Eq. (2.9 stems from that of

properties ofG(p), which stem directly from the integral A(p), which is guaranteed from general renormalization-group ar-
equation(2.15: gumentg 25].

X é3<k>i
(2m)® k? (k—p)?

. 1
am=am+§éf
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y—0, however, the kernel blows up. For the integral to re- g2
main finite at that point, as required by the finiteness assump-

tion for G(0), G3(y) must approach zero ag®,a>1/3,

thereby implying thaG(0)=0. However, for that to happen

the integrand in Eq2.18 must change sign, which would in As discussed in the mathematical literatyfes], the only

turn imply thatG(y) itself must change sign somewhereyin npn-trivial real solutionsof Eq. (2.24, as¢—+, areos-

According to our assumption above this is not a physicallyC ) S ) .
acceptable situation. ever, oscillate infinitely rapidly ags— 0. The amplitude of

To show rigorously that there are pbysicallyacceptable e above solutions behaves like % for x<1. We inter-
solutions leading to a non-trivial infrared structure we nextPret this behavior as indicating amstability of the massless-
convert the integral equation into a non-linear differentialf€’Mion ground state. ,
equation of the type known in the mathematical literature as It is interesting to notice that_the o_nly p9wer"aW solution
the Emden-Fowleequation16,17). To this end, we perform  ©f EQ- (2.23 for x<1, is purely imaginary i.e.,
the angular integration in Eq2.17), to arrive at the equa-

tion: \/E 1/2

G(x) =i 7x

d—gn(§)+§73’2n3(§)=0, §—to. (229

X<1. (2.25

&p) 2 aJ’deé(k)3I k+p
= — —f n_
P 3m2plo K k—p

, (2.19

This solution would imply a “trivial infrared fixed point
structure” given that its associate@l function vanishes at
where we have se’=8a to make contact with the usual x=0. However, the fact that E42.25 is purely imaginary
largeN definition [5]. For us, however, the number of fer- would again suggest instability.

mion flavors is not assumed to be necessarily large. In fact, The above analysis constitutes a rigorous proof that,
for brevity we setN=1 (in a four-component notation for within the context ofproper (i.e., finite and with finite-
the fermion$ throughout this work. Next we introduce the derivative$ solutions, and modulo the approximations dis-
dimensionless variables=p/a andy=k/a. Since we are cussed, no non-trivial infrared-fixed point is possible in
interested in the infrared behavior of the model we consideQED, in the absence of an infrared cutoff. This was conjec-
the limit x<1, for which one obtains by expanding the loga- tured in Ref[11], but here we have given an analytic proof.
rithms in the integrand: This motivates one to look for the existence of a possible
non-trivial infrared fixed-point structure in the presence of
fermion and/or photon masses. In the next section we shall
discuss the case when the fermions develop a mass we
shall show, the existence of a non-trivial infrared fixed point
is guaranteed due to the form of the resulting equations.

2 (=dy. y+X
—G3(y)In|=——
3m’xJo Y ¥

G(x)= y=x

4 fxd ) 4 deyés( )
“372x2)o yEy 3m?x y? Y-

IIl. EQUATION FOR THE VERTEX IN THE CASE

(2.20 OF NON-ZERO FERMION MASS
Differentiating appropriately with respect to we arrive at As a first kind of infrared cutoff in the integral equation
the following differential equation for smak: (2.17 we shall consider the case of a fermion mass gap
m(p)=2(p)/A(p), whereX(p) is the fermion self-energy.
d2G déG 8 . In that case the fermion propagat®¢ becomes
X2 ——+3x°—+—=G3%(x)=0, x<1. (2.2)
dx? dx 342
i
. . -~ . Sp(k)=———. 3.1
It is convenient to rescal& by setting F(K) AK)[k+me(k)] 3.1
G= A /i@ (2.22 For our purposes below we assume tmaf(p)=m;(0)
372 ' =m;#0. In that case the integral equatih1? becomes

Then, Eq.(2.21) becomes

6(p)= Zf X sk -
=-e
@G dG P73 ) e i (k-p)?
xX3—+3x°>—+G3%x)=0, x<1. (2.23
dx2 dx . 2m$f d3k &%k
3 3 N 22, 2"
Upon the change of variables= 1/2x?,G=2%*3(¢), the (2) (k*+mp)“(k=p)
equation becomes of the Emden-Fowler ty{6,17: (3.2

125008-5
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Notice that the effects of the fermion mass are not giverDifferentiating with respect ta one arrives at

simply by just adding a mass squared term in the fermion

denominators, but they result in additional structures in the 5. oup d? . s 2502

integral equation. X(X“+m?) &G(X)Jﬂ(x +m9)7 5 G(X)
Performing the angular integrations one arrives at

8 N
R 2 +x| . +——(x>+3m?)G3(x)=0. 3.7
G(x)= f dyf(y)In|—— &(y), (3.3 3m?
372X y—X
_ _ The above equation can be solved numerically, to which we
wherex=p/a,m=m;/a are dimensionless, and return later on. However, in the infrared regiar<m the
) ) equation accepts an analytic treatment, as we discuss below.
y°+3m In this region Eq(3.7) is approximated b
f(y)=y— =0 (3.4 gion =4 PP Y
(y=+m°) 42 q
—G(x)+3—-G(x)+ G3(x)=0. :
Differentiation with respect tx yields deZG(x) 3de(X) WZmZG ()=0 @8

d. 2 % y+X 2xy ns It is immediate to see that a special power-law solution is
XX =~ 3772xfo dyf(y)| In y—x + —y? G3(y). given by[for positive G(x)] by
(3.5 A 3
G(x):mﬂ-ixfl’z. (3.9
One observes that formally as-0 the right-hand-side van- 42

ishes, provided tha is finite. This indicates the existence
of a fixed point. As we shall show below this is confirmed
analytically by converting the integral equation into a non-
linear differential equation.

An additional feature which one would have hoped to 1.
study already at the level of the integral equati8rb) is the B(X)=— §G~x‘1/2—> +o, as x—0, (3.10
monotonicity ofG. Unfortunately the kernel in Eq3.5) is
not manifestly positive to allow for such an analytic proof atindicating the absence of an infrared fixed point. The asso-
the level of the integral equation for generic valuex,odnd  cjated operator appears to belevant(negative scaling di-
one has to resort to numerical treatments, which fall beyongnension, which implies the possibility that the theory be
the scope of this article. However, one can already infer frontiriven to a non-trivial fixed point.

Eq. (3.9 that, for high momenta>1, a monotonically de- However, in the infrared regimg<1, one can find a
creasingG is consistent with the expectation that in this different type of solutior16]:

regimeG is essentially given by its perturbative expression

which asymptotes to 1. The analysis is omitted because it is ézmw£ c

straightforward. 242 1+¢’
For low momenta, on the other hand, the behavior of

é(x) will also be shown to be monotonica”y decreasing,Wherec is a constant of integration to be fixed by the bound-

starting from a nontrivial fixed point. This will be achieved ary condition atx=0 implied by the integral equation, to be

by converting the integral equation into a differential one.discussed later on. For physical solutianis assumed posi-

Unfortunately, at present, we cannot analytically derive theive.

Notice the infrared divergence of this type of solutieven
in the presence of gbare fermion mass. The associated
renormalization-grougB function (2.14) for this case reads

x—0, (3.1

monotonicity for intermediate momenta. This type of solution has a renormalization-group
To derive the differential equation from E¢g.3 we fol-  B-function (2.14 of the form
low a similar analysis to the one leading to EB.20). First, 243
one expands the logarithms for smatk 1, thereby writing oA 29
the equation as p=-G0o+ \/§7rmcG S (1+c2x)2_)0' x=0
(3.12
R 4  ([x y? 4 (= dy .
G(X)=-— zf dyG(y)®’ 5 ——=+-—]| —5—=G%Y)  from which we observe the existence of a non-triviabn-
3m7x°Jo ye+m* 37°)x y“+m L . . A
perturbative infrared fixed point atG* = wm+/3c/2./2>0.
8m? [x . y? Such a fixed point is the result of the dynamical generation
T j dyG(y)3ﬁ of a parity-invariant, chiral-symmetry breaking fermion mass
3mx=Jo (y“+m?) [5], indicating the connection of the phenomenon of chiral
8m? (= dy symmetry breaking in QEPto a non-trivial infrared fixed
+ f G3(y). (3.6) point structure, in agreement with the expectations of Ref.
3w J)x (y?>+m?)? [11].
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The non-trivial fixed-point solutiori3.11) is not compat-
ible with the integral equatiori3.2) for any value of the
fermion massn. Indeed one can derivetsundary condition

for G(0) from Eq.(3.2), which reads

G(O)——f y———G3(y)

y +m

+8m2f°cd ! G3(y) (3.13
372J)o y(y2+m2)2\J y)- '

In contrast to the massless cd48el8, G(0) is now a finite
constant;rmcy/3/8, as seen from E@3.11), and this allows
for a compatibility of the solution(3.11) with Eq. (3.13,

providedthatmG(0) satisfies certain conditions to be speci-
fied below.

To this end, we split thg-integration in Eq.(3.13 into
two intervals:(i) y e [0,m), where the forn{3.11) is valid to
a good approximation, andi) ye[m,«), where we ap-
proximateG(x) by its perturbative asymptotic valu@=1.
By this latter approximation we overestimate the actual valu

of the integration, given tha® is actually slightly smaller
than unity for finitep, approaching it only asymptoticalfyf.
Eqg. (2.16]. However, this is sufficient for our qualitative
purposes of demonstrating the existence of constraints on t
fermion mass implied by the boundary conditi13).

With these in mind, the boundary conditié®13 reduces

' o

. mc?
T2

1 1
yy2+1 (1+mdcdy)

A (1
3m2m?c

To obtain the condition imposed an by the boundary con-
dition (3.13 it suffices to observe that the first term on the
right-hand-side is a function @hc? alone, and that, after the
(elementaryy integration, the resulting function cnﬁc2 as-
ymptotes rapidly to the value 3/4ee Fig. 4.

This implies the following inequality:

2
y2+1

0

1

N

ko

(3.19

. 8 ( 1)

As already mentioned this bound is overestimated, given tha

in the actual situation the functioB(y) is not exactly 1
immediately after the regiop=m.
We next remark thatm should actually be determined

self-consistently from a solution of the pertinent gap equa-
tion. This will be done in Sec. V. However, at the moment,

and for completeness, we shall assume thas determined
by its approximate form derived within the context of a
largeN treatmen{5,1]. Compatibility of the dynamical so-
lution with the constraint(3.15 will then lead to further
restrictions on the range of the allowed massesAs we

PHYSICAL REVIEW D60 125008

10 20 30 40

FIG. 4. Plot of the functionf(z):zlzfédy1/y2+1[1/(l
+zy)3](1+ 2%+ 1), wherez=mc. The function asymptotes
rapidly to 3/4.

allowed fermion-mass ranges, obtained within the context of
a largeN treatment, and those obtained from a self-
consistent solution of the mass gap equation within our ap-
é)roach

In the context of a larg®l treatment, and to leading order
in 1/N resummation, the following solution for the dynami-
cally generatedn is found[5,1]:

he

~0O(1)exp (3.1

where g§=772/32 is the critical coupling, above which dy-
namical mass generation occyif§. Compatibility of the so-
lution (3.16 with the constraint3.15 implies the existence
of an upper boundon fermion massesn<m,,.x, where
Mmax iS defined through the intersection of the cury@d5
and (3.16 in the (m,g) plane (see Fig. 5. This yields
My a=0.3.

0.

0.

FIG. 5. Fermion mass versus the infrared-value of the coupling
G(0). Thesolid curve represents the condition derived from the
integral equation for the vertex, whereas the dashed line represents
the solution obtained from the standard gap equation in the Idrge-

shall see in Sec. V, there is good agreement between thesatment.
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2 comes important, and E@3.7) receives additivepositive
contributions, resulting itG(p)~1, for largep, as required
L s by Eq.(2.16).

IV. EQUATIONS FOR PHOTON AND FERMION
1 SELF-ENERGIES

As a consistency check of our assumption about ignoring
0.5 the effects of the inhomogeneous terifp) asp— 0, next to

G, we now turn our attention to the equations that determine

the fermion and photon self-energiégp) and B(p), re-

spectively. As shown below, upon neglecti@gp) in the

infrared, these equations decouple from each other and both
FIG. 6. Numerical squ}ion of Eq3.7) versusp/ a, for atypical  fynctions can be determined solely from knOW|edgé()f()_

set of valuesn~0.1 andG(0)=2; the solution decreases mono- |t should also be stressed that in the massless case the system

tonically and asymptotes quickly to a positive constant value.  does not admit a self-consistent solution. In contrast, the

presence a fermion mass term changes the situation drasti-

On the other hand, for large momenta, we know Bat cally by yielding self-consistent solutions fak(p),B(p)

1. Physically one expects monotonic decreasef G(x) ~ Which are such thaZ(p)—36/5, but at a rate slower than

over theentire range ofxe[0,2). This would occur in our the one with whichG approache$5(0) asx—0. Thus the

case if and only ifG(0)>1, which, in the context of the approximation of ignoring the effects a(x) in the regipn
fermion masseg> mmm_o 03. Actually, as we shall argue check of our approach, and JUStIers fully the approximations

used above.
in the next section(0) should be comfortably larger than . . . ]
J312 for self-consistency of our approximations. To this end, we begin from the integral equation Aqix):
Hence, we see that the monotonicity of the running cou-

0.02 0.04 0.06 0.08 0.1 0.12

3

pling can be achieved in the context of a lafgareatment, _ 2 2
if the massm lies in the following regime: A(p)p=p—e (277)39 (k)
0.03=m=0.3 (3.17 i Ouv
, (4.7

Y Yv
_ , , . L “AkK "' B(k—p)(k—p)?
or equivalently if the coupling at the infrared poiB{0) is

restricted in the regimésee Fig. 4 L . N
gimes g- 4 which in terms of the semi-amputated ver@®xbecomes

1<G(0)<2.5. (3.18

d3k . k
=p—e’A f G?(k . (4.2
At this point it is useful to turn to a numerical study of Eq. ) P=P (P) (27r)3° ( )kz(k—p)z (

(3.7), supplemented with the boundary conditions imposed

by the solutions of the fornt3.11), specifically: To arrive at the above equation we have carried out the
y-matrix algebra and we have used the approximation that
. 3 . 8G%(0 G =G i imation i i
G(0)=mz\ﬁc; &/(0)=— ( )' (3.19 G(k,p) Cj(!(). This approxm)atmn.ls (.aguwalent to the one
2 V2 372m? made forG in Eq. (2.12. It will be justified below, by the

self-consistency of the solution.
where the constartshould be chosen in such a way that the N€xt we introduce &constank fermion massm; in the
bound(3.15 be satisfied. The numerical solution of Eg.7) ~ @PPropriate parts of the integrand in the right-hand side of
is given in Fig. 6, for a typical case, whera=0.1, and Ed:(4.2. This effectively amounts to using E(.1) for the
&8(0)=2. A b the fi learly d tral fermion propagator in the loop. In terms of the dimensionless
(0)= i SWeo serye., e figure cgary emonstr X,m parameters introduced previously, E4.2) becomes
monotonic decreasef G in the smallx interval, where Eq.

(3.7 is valid. We also note that the solution asymptotes

4 2 2
quickly to a constant positive value, smaller than 1 in con-  4_ A L(x)x4— _J G (y) 2X fl yM
trast to Eq.(2.16, which would requireé(x)~1, for x y +m? 7% )k T yPem?
>1. This, however, presents no contradiction, because Eq. 4.9

(3.7 was based on ignoring the inhomogeneous t&(x).
As one goes to a region of largey this assumption is no Differentiating twice with respect ta one obtains the fol-
longer valid. In that case the inhomogeneous t&i(x) be- lowing differential equation:
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~2
i x*%(x“A’l(X)) +£G—(X)=O. (4.9 -

A20 o\
dx 2 X2+ m2 G“(x)=0,

d
xfla(x“B*l)

32
+ —
w2 X2+ m?

- . . . x—0. (4.8
Restricting our attention to the infrared regiar-0, one

may ignorex? in front of m?, and use the forng3.11) for Making the same approximations in the infrared1 as in
G(x). After elementary integrations one then finds forthe case ofA(x), and substituting Emden’s solutid8.11)
A(x) L for G on the right-hand-side of Eq4.8), we obtain after
some elementary integrations, upon setting their constants
but one €,) to zero

A*l( ) 3 2 73_’_1 -2 2 -1
X)=5| =X X T 3X 6 6 3 6
2l o c® 3c? x*B7H(x)= 5 Xx2— —x+ —x*+ —In(1+c?x)
2 67 o4 c8
2 1
+—x"4In(1+c?x) +Zc’ 6x2 1
c — —In(1+c?) + Z e, (4.9
c 8
1/, 3} 3 1 3.2 5
=7\ ¢~ T 5eX 53X HOX), X0, which for x<1 yields
(4.5 . 6 . 2 c1 3\c?
B (X)—EX 1 §X+ §+ 5 EX +
wherec>0 is the integration constant of the soluti(8111), (4.10

which obeys the restrictiof8.15. We choose the constant of

integrationc’ = 3/c, so that This form of B(x) gives rise to the following form for the

photon propagator in the infraréd—0,

A )_l~§C _EC3 2+ (4 6) A Né,u,v k—0 (4 1])
(x —5x2x . e . .

. o ~ Notice, as a consistency check, that the photon continues to
asx—0. As we shall show later, this choice is compatible he massless in the chiral-symmetry broken phase. The corre-
with the boundary behavioZ(x)—const, asx—0, advo-  sponding static effective potential is given by the appropriate
cated for the inhomogeneous term. Fourier transform of the OGtemporal component of the

Next we turn our attention to the equation for the photonphoton propagator fok,=0. In the casg4.11) this yields
functionB(p). Following similar steps to the ones leading to formally an effective potential scaling lik@? for large dis-

Eq. (4.2), the pertinent integral equation reads tancesR, suggestive of confining behavibdihe fact that this
behavior is found in the chiral-symmetry broken case is con-
sistent with generalfour-dimensional arguments[12,14]
that confinement is a sufficient but not necessary condition

d3k for chiral-symmetry breaking.

+B(p)e2f G2(k) An important feature of the expressiofs6) and(4.8) is

(2m)® that, although they are derived only in case where a fermion
massm+ 0, however they do not explicitly depend on the

B(p)(pza,u,v_ pp,pv) = pza,uv_ p/.LpV

<1t K kK—p @7 magnitude of the mass. From Ed4.6) and (4.10 one ob-
Yu k2 7”(k_ p)2|’ ' tains forZ(x) in the infrared regiorx—0:
Z(x)=B"(x) A7 (x)
To transform the above equation into a scalar equation for
B(p) it is necessary to take the trace on both sides. In doing ~3\/€_ 2\6 E 2 3
. ) : = x| 1+-c%|+0O(x°) ..., x—0,

so one assumes that the integral term on the right-hand side 5 5 4
is also transverse. This is expected from gauge invariance. In .12

our truncated scheme it can be demonstrated that this is in-
deed the case, provided one makes our working hypothesighere we have chosen the constant of integratiprsuch
that G(k,p) = G(k). Specifically if one contracts both sides that there are n@(x?) terms.

of Eq. (4.7) by p#, the right-hand-side vanishé®/ard iden-

tity for the photon only upon making the above assumption

for the semi-amputated vertex, and shifting appropriately the 4However, this is a formal result, given that the corresponding

integration variable. _ momentum integrals are infrared divergent and hence need proper
Introducing a fermion mass, and following standard ma-regularization, which falls beyond our scope here. For standard
nipulations similar to the ones above, one arrives at treatments see discussiong| ir?].
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In order to check under which conditions the omission of

the x-dependent parts & next to those of5(x) is justified,
we must compare the corresponding linear termsaf both
quantities. Using that

G(x)~ \é(

this requires

ar a 3
m—=—c—m—=c3x+--- |,

2 2 Xx—0

J8/3G3(0)—2G%(0)— (374/5)m?>0.  (4.14

This inequality furnishes a condition d&(0) under the as-
sumptionm<1, which, as we shall see in Sec. V, turns out
to be correct. The condition is

. 3
G(0)> \[5:1.22.

In the above formulas the symb®l means actually at least
an order of magnitude. As we shall see below, such a regim
for G(O) arises self-consistently. Note that the condition
(4.19 is in agreement with Eq(2.16 given that Z(0)
=3./6/5=1.47 [cf. Eq. (4.12] is only slightly larger than
V312,

In view of the existence of a non-zero constant value o
Z(x) in the infrared region, our analysis on the restrictions

(4.195

PHYSICAL REVIEW D60 125008

1 -

0.8}

6.5 7 7.5 8

FIG. 7. Fermion mass versus the infrared-value of the coupling
G(0) for the case where the effects of the inhomogeneous term
(almost constantZ(x) have been taken into account in the infrared.
The solid curve represents the condition derived from the integral
equation for the vertex, whereas the dashed line represents the so-
lution obtained from the standard gap equation in the |&tgesat-

8

ment.
( )
3

126

GO~~~

1

T

© 12\6

m< G(O)>T:5.88, (4.18

fwhich replaces Eq3.15.

One may repeat the comparison with the lafgdimit

(3.19, (3.18 has to be repeated, given that these restrictionggg|ts[5), as in the previous section, to determine the new

stem from the integral equation. From E¢.14), and the
valueZ(0)=3/6/5 it becomes clear that the boundary con-
dition (3.14 is now modified to

L 12 mczfld 1 1 1. 2
4 1 ! \F 4.1
+37r2m20 IEIAE) (418

The first term continues to asymptote to 3/4, but now one

obtains the following restrictions on the coupling:

12\/6 8(1 )

5 '3
From the above relation it becomes clear that,Gif0)
<12\6/5 there is no restriction om. However, for this
regime of the couplings the conditiqd.15), necessary for
safely ignoring the effects of the inhomogeneous t&ip)
in the infrared next t(fs(p), is only marginally satisfied. On
the other hand, if one allow&(0) to exceed this value,
which is physically acceptable, then the following upper
bound onm as a function ofG(0) is obtained:

1

T

1

G(0)< pureg (4.17

region of allowed values of the mass. The analysis is given
in Fig. 7.

From Fig. 7 we then obtain the following allowed range
of the couplingG(0):

5.88<G(0)<7 (4.19

to be compared with Eq3.18 associated with the monoto-

nicity requirement forG(p). This analysis shows that the
new allowed region for the fermion masses, in cas&9 is

(4.20

where the lowest bound is the value mfcorresponding to

G=5.88 from the largeN-analysis formula(3.16). The re-
gion (4.20 is to be compared with Eq3.17). As we shall

see in Sec. V, the dynamically generated mass in our sce-
nario, which does not resort to a larbetreatment, lowers
significantly the upper bound in E¢.20.

It is important to emphasize that, as a consequence of Egs.
(4.5),(4.10, the non-amputated vertgXp), defined in Eq.
(2.7), approaches a non-zefmite constant value in the in-
fraredp=0. Notice that this constant behavior is compatible
with the Ward identity in the infrared limip=0, thereby
implying that the information obtained about a non-trivial
infrared fixed-point structure is gauge invariant, as it should
be.

0.55<m<0.6,
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This completes our analysis of including the effects of an Passing into dimensionless variables, in units f
almost constanZ(x)=Z(0) in the infrared. The above con- =e2/8 M=M (k)/a,x=p/a,y=k/«, and working in the re-
siderations justify retrospectively the omissionzoin deriv-  gime of low momenta<1 as usual, one obtains after some
ing the differential equatiofB.7). Indeed, a constant shift of straightforward algebra, involving a truncated expansion of
G inside the derivative operators in that equation, whichthe logarithmic kernel:
would account for a constart, does not affect its form.

These results, therefore, constitute a highly non-trivial check - 121 1 (x y2M(y) .
of our approach. M) == _2J y#Gz(y)
e[ xJo T yc+MA(y)

V. DYNAMICAL DERIVATION OF THE FERMION MASS © M(y) R

GAP +J dy#Gz(y) . (5.3

. . x T yT+MA(y)
In the previous section we have assumed the presence of a

finite fermion mass, which we have treated effectively as arbifferentiating twice with respect t& one arrives at
arbitrary parameter of the model. In this section we turn to
the full problem, and study the dynamical generation of this d? _ d._ 24 M(x) .
mass, by deriving it self-consistently from the corresponding x—2M (x)+ 3d—M (X)+ - #G(X)ZI 0
SD mass-gap equation. dx X 7 X+ M2(X) 5.4

The equation for the gap(p) is derived from the graphs

of Fig. 2, which yields Given that dynamical mass generation is expected to be an

3 infrared phenomenon, we now restrict ourselves to the
APIB+3 (D)= +AD)E? | regior?
(2m)°
1 x2<M?2<1. (5.5
X G(K)?y, 7" , o —
kK+M(k) * (k—p)? In this region we neglect? next toM? in Eq. (5.4) and use
(5.1 the solution(3.11) for G(x)=M JEmc asx—0. The result
is
whereM (k)=X (k)/A(k) is the mass function, and we have
pulled out factors ofA(p) appropriately so as to be able to d2 _ d_ _
define an amputated vertex functi@(k). The consistency X_ZM(X)+3&M(X)+902M(X):Q x—0. (5.6
. . X
of the approach will be demonstrated below by the existence

of solutions.
Taking the trace in the above equation, and performin
the angular integration, one arrives easily at

Changing variablex— ¢é=x"1, the equation reduces to a
Bessel equatiopl7]

2
d*k . M (K) 1 Rl DR 2R £
M(D) = 362 &2k E-—M(E) =M +9c%7M(£)=0, £
® ef 27 e M) (k_p)? d¢? o
(5.7)
6 - k+p . .
=—— | dk———G(k)2M (K)In| ——|. with (formally) the general solution
7’p ‘ k2+M2(k)G( R yes
(5.2 M(§)=C1é3 o(—6c¢ M)+ C2§Y72(—6C§_1/2),(5 5

From the middle equatioit5.2) it becomes clear that the _ .

quantity gg(k)=e&(K), defined in Eq(2.10), plays indeed Where nci i=12 are arbitrary constants,J ,(x)

the role of a “running coupling.” The situation is analogous, —(—1)"Jn(x), n=1,2.3 ..., is aBessel function of the
but not identical, to that of11], where a running coupling first klnd,. andY,(x) is a ge_nerallzed 'Bessel func.tllon of the
has also been obtained from the gap equation in the contegecond kind17]. The latter is only defined for positiveand

of a largeN analysis. However, in that case, one assumed atliS imposes the choic€,=0 in Eq. (5.8). Expressing the
ansatz for the vertex, satisfying a truncated form of the Warcdolution in terms ofxx—0, one has the following power
identities. Instead, in our approach there was no necessity f@€ries expression for the dynamical mass:

a vertex ansatz, since the non-perturbative vertex function

was determined self-consistently from the SD equations. As

a consequence, the running couplit®10 is constructed  SNote that this is the opposite limit than the one usually consid-
out of the amputated vertex function alone; the latter is ared in the framework of largh-analysis of dynamical mass gen-
manifestly gauge-independent quantity, at least perturbaeration, where one arrives at a gap equation by making the assump-
tively. tion > p>m for the momenta of the pertinent excitations.
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o

~ 1
M(X):ClelE (_1)n(3c)2n+le+n
n=0

n!'T"(3+n)

9
:§C1c2+(9(x), Xx—0. (5.9

From this one obtains the following relation betwe8(0)
andM(0)=m¢/a:

1/3 0.
C13G?%0). (5.10

~ 12
M(O)Emf/a:(_z
a

8 10 12 14 16 18
This result is to be compared to the resi@t1l6 within the
context of a largeN analysis. In particular, at first sight it . i
seems that the relatiofs.10 does not have a critical cou- (_;(0),5“5'“9 Eq.(5.10 (dashed cu_rve)ﬂor two values ofCy
pling, above which dynamical mass generation occurs. How-, 10 (I.Ower dashed .Cumeand €1=10 (upper dashed C“FYE
ever, because the resfi.10 has been derived in the con- /'€ continuous curve is E¢d.18), viewed as a boundary condition.
. . . The valueC; =10~ should be excluded on grounds of yielding too
text of the solution(3.11), one should bear in mind the . ~
restrictions characterizing that situation, in particular Eq.hlgh values of the mass.
(4.17. This implies an appropriate restriction f6r,,°

FIG. 8. Fermion mass versus the infrared-value of the coupling

to be compared with Eq4.20), derived using the result for
the mass in the context of a largfeanalysis[5]. The corre-

G530 _12\/662/3 0)— 1-=|<o0 sponding regime of the coupling3(0) is
(0)==5 G50~ | 175 <O
5.88<G(0)<11. (5.13
. 126 . . . . .
G(O)>T' (5.11 Before closing this section we would like to discuss pos-

sible applications of the above behavior; specifically, the re-

) S N A striction (5.13 of the allowed values of5(0) may have
This_restriction implies a critical couplingG.=12V6/5  interesting applications in case the above model turns out to
=5.88 but it is derived in a way independent of any laNje- describe the physics of high-temperature superconductors.
analysis. The way to understand Ef.11) is the following:  we remind the reader that in such models dynamical mass
one should first fix a range @&(0), with G(0)>5.88, and generation coincides with superconductivity—3]. In that
then use &, that will be such that, within this range of the case, the fermion field¢“electrons”) of QED; represent

couplings, Eq(5.11) is satisfied for masses<1. As can be “holons,” i.e., electrically charged excitations of fermionic
readily seen, the bound @, obtained from the requirement Statistics, which are constituents of the physical electron. The
thatm<1 is far less restrictive than the one associated witHatter is believed to exhibit an effective spin-charge separa-
Eq. (5.11), provided3(0) is not too close to the criticﬁc, tion [26] in the complicated ground state of high-temperature
where the masm vanishes. For instance, f6(0)=0(8), superconductors. The photon of QEEhen represents an

. At effective Heisenberg spin-spin antiferromagnetic interaction,
the upper bound o€, from Eq.(5.11) is of orderO(10™7),  egponsible for binding the holons in Cooper-like pairs. In

while for G(0)=6 the upper bound i€;<4. Notice that some model§1,3] the effective(gauge-invariantcoupling

the bound is very sensitive to small change$ifD). G(0) may be expressed in terms of the parameters of the
A typical situation is depicted in Fig. 8 for two values of microscopic condensed-matter lattice systems, whose long-

C;=10"°,10°. We observe that the cas®y =10"?yields  wavelength limit is equivalent to the above QEModel, as

an upper bound in the mass which is of order 0.8 and hence

should be discarded on the basis that it is not small enough. ~ J

On the other hand, the valu@ =10"° yields an acceptable G(0)’~—(1-7), (5.149

upper boundn~0.1. In that case, from Fig. 8, we observe €

that the allowed region ah is wheren expresses the concentration of impurities in the sys-

tem (doping, andJ denotes the Heisenbefgntiferromag-
netic exchange energy. Hence, on account of &dl3), Eq.
(5.14 implies that 6<(J/e?)(1— 5)=<11 for superconduc-
tivity to occur. In phenomenologically acceptable modéls

®The restriction(4.17) is to be viewed as a boundary condition. e2/J~0.1, which implies an upper bound of~0.4. How-
We remind the reader that the requirement of finitenesSidiad  ever, the reader should bear in mind that the above-described
already fixed the other consta@ to zero. limiting values are rather indicative at present, given that a

0.08<m=0.12 (5.12
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complete quantitative understanding of the underlying dy-
namics of high-temperature superconductivity from an effec-%®
tive gauge-theory point of view is still lacking.

VI. EQUATION FOR THE VERTEX IN THE CASE
OF NON-ZERO PHOTON MASS

In this section we study the case whergsmall) covariant

photon mass’ is added to the photon propagat@6):
GO

Ouv
A;w(k)w k2+52. (61) 1

For the purposes of our analysis in this work, such a mass
term will simply be added by hand, without further discus- 9
sions about its origin. However, we point out for complete-

PHYSICAL REVIEW D60 125008

P

ness that a small photon mass may be the result of non- FIG. 9. Running couplingversus momentujnin the case of a

perturbative configurationginstantong in compact U1)
three-dimensional electrodynami€7]. Moreover, a term

small photon mass. Note the bump at low momenta, which is absent
in the case of non-zero fermionic masses. The dashed part of the

acting like a photon mass term arises in real-time finite-curve is conjectural at present, and can only be derived numerically.

temperature consideratiof28]; in the latter case, of course,

one loses manifest Lorentz covariance.

Continuous curves are the result of analytic studies.

It is straightforward to see that, in the presence of a pho- d 3

ton mass, small compared to the scate ?/8, the resulting
integral equation for the amputated vertex reads

1 e dké3(k)l
—| - n
2472 pJ K

(k+p)?+6°
(k=p)?+&?

G(p)= . (6.2

We are interested in the limt<< §, which would allow us to
study the effects of a photon mass on the infrared regime
the theory. Expanding the logarithm in E(.2) appropri-
ately, we obtain

X

G(x) 41dé3()+4f°°
X)=—=— —
372 82J)o y y 372 )x

dy .
—G3(y),
N (y)

(6.3

where d= 8/ a,x=pl a.
Differentiating once with respect toone obtains

d é _ 4 C3(yv) X2 6.4
= 37232 (X}x2+ 5’ (64

which can be integrated to yield

1
X)= , (6.5

8 . X
c+ —| darctg —| —x
3m26° 1)

Q

N 4 X
x—G(X)— 2G?’(x) 5 —5=0, asx—0. (6.6

dx 3 X2+ 52

Notice that the functiorG(x) increases monotonically with
increasingx, for small x. We next note that by choosing

appropriately one can satisfy the conditigd.15 G(0)

> /312, required for self-consistency of the approximation of
ignoring the effects of the inhomogeneous tef(p) in the
infrared. In such a case one expects that at laxge in-
crease of the coupling stops at a cert@mal) x=x,, and

then the coupling starts decreasing to reach asymptotically

the perturbative resutb—1 (see Fig. 9. The existence of a
local maximum is characteristic of the effects of the photon
mass on the infrared behavior, to be contrasted with the
monotonically decreasing situation in the case of a non-zero
fermion masgsee Fig. 6. We expect that in the general case,
when both photon and fermion masses are present, the run-
ning coupling will exhibit a local maximum at low when

the photon mass is larger than the fermion mass, while this
behavior will be replaced by a monotonic decrease, in the
case when the fermion mass is considerably larger than the
photon one. This situation should be compared with the cor-
responding one in four-dimensional QCD in the presence of
non-vanishing gluon and quark mas$#4].

Before closing we discuss briefly a physical situation
which could be qualitatively similar to the case of a covari-
ant infrared cutoff in the form of a non-zero photon mass,
discussed in this section. This situation has been argued in
[11] to simulate finite-temperature effects, given that in such
a case the photon propagator acquires a longitudinal plasmon

wherec is an integration constant to be fixed by the bound-Mass term:

ary condition imposed by the integral equati@ee below
The running couplingG(x) tends toG(0)=1/\c as x

—0. There is a non-trivial fixed point at=0, given that the

renormalization-grougB-function (2.14) vanishes:

5MO5OV
P2+ Mg,

A, (po=0P—0T)= + longitudinal parts,

(6.7)
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where, for simplicity, we restricted ourselves to the instanta- . |
neous approximatiofi], pp=0, and the plasmon mass term ~

2aIn2T
Mod(T) =\ ——— (6.9

We observe from the forr(6.7) that the presence of the mass 4| Z
term Mo behaves for lowl somewhat analogouslyput not P
identical tg a small photon cutoff mass. 0 ol Z

Prompted by this observation we would like now to make - Z
some speculations regarding the low temperature effects o #
the & cutoff term in Eq.(6.5). We hasten to emphasize that a 0.2 0.4 0.6 0.8 1
discussion could at best only qualitatively correct, given that o .
a quantitative understanding would require a finite- .FIG. 10. Plot of the reS|st|V|t)(6.12)_versus_ temperatur€ (in
temperature extension of the above analysis. Due to the lod#its of a), for a low-temperature regioftontinuous curvg and
of Lorentz covariance in the respective propagators th&omparison with the elxperlmentally observed single-scalirasi-

. . i i X y=

analysis is far more complicated than the zero-temperaturg?!ly lineaj behaviorT™=x,x =0.1 (dashed curve The agreement
one. However, when the temperatdies sufficiently low, its is very good for a regime of temperatures accessible to experiment.
effects on the pole structure of the photon propagator may be

simulated by a covariant photon-mass cutoff, at least quali- ZCTI 8 ([ /2TI
tatively [11,28. For this reason, we are motivated to exam- - n2+-——\5-1 7” 2. (6.12

. 372\ 2
ine the effects o<1 on the low-temperature scaling of the

ar
resistivity [4] p; the latter is defined as the inverse of the The functionp is plotted in Fig. 10, versus a single-power

conductivityo¢, which expresses the response of the systemcaling behavior of the formp~T* X, with y small; the
to a change in an externally applied electromagnetic potenatter is characteristic of certain theoretical condensed-matter
tial A,. Ohm’s law, in a gauge wittA,=0, then, gives models[30], and has been used in order to bound possible

[29,11,4: deviations from the experimentally observed lin@abehav-
ior of the resistivity of high-temperature superconductors at

1 optimal doping[4].

o=p 1= . (6.9 We observe that, upon the appropriate choice of the inte-

(P?+ pé)[1+H(P,pO,T)] . gration constant, the temperature dependence of 12
for a low-temperature regime, accessible to experiment, is

whereTI(P,p,,T) denotes the dimensionless photon IOOIar__hardly distinguishable from the single power scaling behav-

ization used in this work. Following the analysis[@B8] we
may assume for our discussion below that

VII. CONCLUSIONS AND OUTLOOK

2In2 In this work we have presented a study of chiral-

T. (6.10 symmetry breaking in QER based on a system of coupled

non-linear SD equations. The novel ingredient is the intro-

From the discussion following Eq2.10 one immediately duction of a se_mi—amputated vertex, who;e dynamiqs is gov-

L . 5 %o erned by a suitably truncated SD equation of cubic order.
sees that the resistivity, defined fBr:P’X = 6", would be This allows for a self-consistent determination of the infrared
given in terms of the running coupling(p) by value of the effective charge, in the presence of infrared
cutoffs provided by either the fermion mass or a covariant
photon mass. The theory is characterized bygauge-
invariany non-trivial infrared fixed-point, suggestive of non-

. Fermi-liquid behaviof15,11].

Using Eq.(6.5) in the limit x*= 6%, one has The non-linear vertex equation furnishes highly non-
trivial constraints among the infrared value of the effective
coupling and the mass of the fermions. When these con-

"The analysis of28] is based on a real-time finite temperature Sraints are combined with the fermion mass-gap equation,
approach. In such an approach the resistivity is defined in the infralh€Y select specific regions of the coupling space for which
red limit p,—0,P=0 in the presence of a plasmon mass téfg, ~ dynamical mass generation occurs. It will be interesting to

Eq. (6.9 in the photon propagator; as noted[28], the way in  Study how these constraints are affected if one goes beyond

which the two mass scalepg,P) approach 0 suffers from ambi- the one-loop dressed approximation considered here.

guities, related to physical Landau-damping processes; it is not our From the physical point of view, we remark that dynami-
purpose here to resolve such issues. cal fermion mass generation in QgD associated with su-

pgla—> M SO/a~ 5~

p=05%G3(0,T). (6.12)
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perconductivity [1,3]. In the relevant statistical models, tional advantage of not resorting to the approximations made
whose low-energy effective theories are of the QHipe, to the kernel of the integral equations in order to convert
the couplings depend on the doping concentration. Therghem into differential ones.
fore, the restrictions in the parameter space we have found Furthermore, an analysis at finite temperatures will reveal
above might impose restrictions in the allowed models.  whether our conjecture in Sec. VI, on the scaling behavior of
An interesting feature of our approach is the fact that thene resistivity, is correct. As we have discussed there, this
infrared structure of the photon propagator, derived as a conssue acquires great importance in view of very accurate ex-
sistent solution of a SD equation, implied formally a confin- periments in high-temperature superconductors indicating a
ing effective potential. The fact that this behavior occurs inpasically linear scaling with temperatures of the resistivity in
the chiral-symmetry broken phase of the theory, appears tghe normal phaséno fermion mass gaf the system.
be in agreement with generic expectations that confinement Finally, an extension of these ideas to the non-Abelian
is a sufficient condition for chiral symmetry breaking. case appears as a challenge for the future, especially in view
An obvious next step in this program is the attempt toof recent claimg3,31] that non-Abelian gauge symmetries
solve the coupled system of SD equations numerically, withmight describe the dynamics of spin-charge separation in

out the approximation of ignoring the effects of the inhomo-realjistic antiferromagnetic condensed-matter systtak
geneous terrZ(p) in the infrared. We remind the reader that

in the present work we have restricted the allowed values of

the coupling such that this approximation was self- ACKNOWLEDGMENTS

consistent. This, however, does not imply that solutions with
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