
PHYSICAL REVIEW D, VOLUME 60, 125008
Nonlinear dynamics in three-dimensional QED and nontrivial infrared structure
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In this work we consider a coupled system of Schwinger-Dyson equations for self-energy and vertex
functions in QED3. Using the concept of a semiamputated vertex function, we manage to decouple the vertex
equation and transform it in the infrared into a nonlinear differential equation of the Emden-Fowler type. Its
solution suggests the following picture: in the absence of infrared cutoffs there is only a trivial infrared
fixed-point structure in the theory. However, the presence of masses, for either fermions or photons, changes
the situation drastically, leading to a mass-dependent nontrivial infrared fixed point. In this picture a dynamical
mass for the fermions is found to be generated consistently. The nonlinearity of the equations gives rise to
highly nontrivial constraints among the mass and effective~‘‘running’’ ! gauge coupling, which impose lower
and upper bounds on the latter for dynamical mass generation to occur. Possible implications of this to the
theory of high-temperature superconductivity are briefly discussed.@S0556-2821~99!02524-2#

PACS number~s!: 11.15.Me, 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

Three-dimensional quantum electrodynamics (QED3),
with an even number of fermion flavors, apart from servi
as a toy model for studying chiral-symmetry breaking a
confinement, also constitutes a physically interesting the
per se, in view of its possible applications in modeling nov
~high-temperature! superconductors@1–4#.

Chiral symmetry breaking or, equivalently, dynamic
mass generation for fermions, in even-flavor QED3 has still
many unresolved issues. One of those is the existence
~dimensionless! critical coupling, above which dynamica
mass generation for the fermions occurs@5#. In the context of
large-N treatment, which at present constitutes the only w
studied approach, the role of the dimensionless coupling1 is
played by the inverse of the fermion flavor numberN. The
issue of the existence of a critical coupling in QED3 is a
delicate one@6#. Many of the original approximations@5#
leading to its existence have been questioned, in particu
the fact that wave-function renormalization effects have
been properly accounted for. Recently, however, the inc
poration of such effects, still within the large-N context, ap-
pears to corroborate@7–9# the qualitative picture advocate
in @5#. In addition, the latter is also supported by lattice sim
lations @10#.

Nonetheless, the situation is far from being conclusi
The fact that the criticalN, below which dynamical mas
generation occurs, is found to be of order 3~in a four-

1In three dimensions the couplinge2 has dimensions of mass. On
can still define, however, dimensionless couplings by dividing w
a dynamically generated scale, which in the large-N treatment
arises by demanding that@5# e2N58a, with the scalea kept fixed
as N→`. The dimensionless coupling is then defined as the r
e2/8a51/N.
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component notation for the fermions! provides motivation
for searches beyond the large-N treatment. Moreover, up to
now the gauge coupling in the infrared has been treated a
arbitrary parameter, whose size has not been restricted b
additional dynamical constraint. At present we are lackin
self-consistent treatment of the dynamical Schwinger-Dy
~SD! equations involving the vertex function on an equ
footing with the self-energy and gap functions. In all th
approaches so far, at least within the large-N treatment that
we are aware of, one invokes a specific ansatz for the ver
by the sole requirement of satisfying some truncated form
the Ward-Takahashi identity stemming from gauge inva
ance@8–11#. The lack of dynamical information for the cou
pling poses problems; for instance, its size in the infrared
treated as an arbitrary parameter, being assumed to me
exceed a critical value, if one wishes to trigger chiral sy
metry breaking.

Another point, related to the above, which is already
miliar from studies in the case of four-dimensional no
Abelian gauge theories, is whether chiral-symmetry break
is associated with confinement of charges@12#. This issue
acquires physical importance in view of the condens
matter applications. In particular, it may shed more light
the dynamics of spin-charge separation, by analogy with
physics of strong interactions@13#.

In this work we shall not deal with issues of confineme
which exists in QED3 despite its Abelian nature. Instead, w
shall attempt a novel approach to chiral symmetry breaki
independently of a large-N treatment, by studying the
coupled fermion and photon self-energies and vertex S
equations in the context of a method first introduced for
case of four-dimensional QCD@14#. The novel ingredient is
that we concentrate on the semi-amputated vertex, define
Sec. II, which is the correct gauge-invariant quantity to d
termine a physically meaningful ‘‘running’’ coupling~‘‘ef-
fective charge’’!. The fact that QED3 is superrenormalizable
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in the ultraviolet does not preclude the possibility of defini
such a quantity, having nontrivial structure in the infrare
As we show in Secs. II and III, the existence of a nontriv
infrared fixed point is a propertyonly of the infrared-
regularized theory, as conjectured in@11#. In other words, in
the absence of fermion~or photon! masses, the infrared sin
gularities of the vertex equation will force the effectiv
charge to vanish at zero momentum transfer, thereby exc
ing the possibility of an interesting infrared behavior. From
condensed-matter application point of view this would c
respond to what is usually called the Landau-Fermi liq
theory ~trivial infrared fixed point! @15,11#. In the presence
of masses, and in particular fermion masses, we show in
III that there is a non-trivial infrared fixed point structur
stemming from the fact that the effective charge obtained
a self-consistent solution of thenon-linearvertex SD equa-
tion, is driven to a finite positive value, which can be lar
enough to trigger dynamical generation of a fermion ma
This implies that the phenomenon of chiral symmetry bre
ing is intimately associated with deviations from the triv
infrared fixed-point structure.

We should stress that, as a result of the non-linearity
the vertex equation, there are delicate constraints betw
the fermion mass and the effective charge, which are resp
sible for the appearance of regions of the latter for wh
dynamical generations occurs. At present, these restrict
appear as a consequence of mathematical self-consisten
the truncated equations. It is not clear to us, whether
upper bounds on the effective charge, imposed by the pre
cubic approximations for the vertex corrections, will survi
the inclusion of higher orders. In contrast, we believe that
lower bounds will survive such a treatment, thereby indic
ing the existence of a critical coupling above which dynam
cal mass generation will occur. This is physically appeali
given that one would not expect a weakly coupled theory
be capable of breaking dynamically chiral symmetry.

The layout of this article is as follows: in Sec. II we set u
the SD equations that we wish to study, and discuss in de
the approximations employed. We demonstrate that, un
certain assumptions to be justified retrospectively in Sec.
the equation for the semi-amputated vertex decouples f
the rest, and hence can be solved separately. Moreover
establish the absence of a non-trivial infrared fixed point r
orously ~within the cubic approximation for the vertex!, by
casting the SD equation for the effective charge in a form
a non-linear differential equation, known as Emden-Fow
equation@16,17#. In Sec. III we study the equation for th
vertex in the presence of a fermion mass, acting as an in
red regulator. We derive the appropriate non-linear differ
tial equation describing the infrared behavior of the runn
coupling, and solve it to demonstrate the existence of a n

FIG. 1. Schematic form of the SD equation for the gauge fi
propagator in resummed perturbation theory. The blobs on
right-hand-side indicate the full~non-perturbative! vertex correc-
tions.
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trivial infrared fixed point. The so-derived running charge
a monotonically decreasing function of the momentum, te
ing asymptotically to a constant positive value in the ult
violet. In Sec. IV, we solve the equations for the photon a
fermion self-energies, which in our approximations decou
from each other and depend only on the semi-amputated
tex function. We then verify the self-consistency of the a
proach. In Sec. V we examine the self-consistency of
dynamical generation of the fermion mass, by solving
appropriate SD equation upon substituting the solution
the semi-amputated vertex found in previous sections.
self-consistency of the approach restricts the allowed reg
of the effective charge, implying the existence of a low
bound ~critical coupling! but also of an upper one. In Se
VI, we examine an alternative type of infrared cutoff, name
that of a~bare! covariant photon mass term. This case a
exhibits a non-trivial infrared fixed-point structure but,
contrast to the monotonic decrease of the effective charg
the case of fermion masses, here the coupling initially
creases in the infrared, then displays a local maximum,
eventually decreases, tending asymptotically to a cons
value in the ultraviolet. Some possible applications of t
behavior, inspired by condensed-matter physics, are bri
discussed. Finally, in Sec. VII we present our conclusio
and outlook.

II. THE SD EQUATION FOR THE SEMIAMPUTATED
VERTEX

In this section we will first set up the SD equations for t
photon and electron self-energies, and the photon-elec
vertex; then we will define the semi-amputated vertex a
derive its corresponding SD equation. As we will expla
the latter governs the behavior of the effective coupling
the infra-red. The derivation of the SD equations for t
photon propagatorDmn , the electron propagatorSF , and the
photon-electron vertexGm proceeds following standard
methods@18,19# ~see Figs. 1,2,3!.

The full photon propagatorDmn , its inverseDmn
21 , and the

full vacuum polarizationPmn in Euclidean space are relate
by

Dmn
21~q!5D0mn

21 ~q!1Pmn~q!,

D0mn
21 ~q!5q2dmn2S 12

1

j Dqmqn ,

Pmn~q!5~q2dmn2qmqn!P~q!,

Dmn~q!5~dmn2qmqn /q2!@q21q2 P~q!#21

1jqmqn /q4, ~2.1!

d
e

FIG. 2. Schematic form of the SD equation for the full fermio
propagator. Blobs indicate full non-perturbative quantities. Not
the full vertex appears on both ends of the internal photon line
8-2
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NONLINEAR DYNAMICS IN THREE-DIMENSIONAL QED . . . PHYSICAL REVIEW D60 125008
wherej is the gauge fixing parameter~in covariant gauges!.
The corresponding SD equation reads

Dmn
21~q!5D0mn

21 ~q!1e2E d3k

~2p!3
Tr@GmSFGnSF#1•••.

~2.2!

The SD equation for the electron propagatorSF is given by

SF
21~p!52 ip”2e2E d3k

~2p!3
GmSFGnDmn1•••. ~2.3!

Finally, the SD equation for the photon-electron vertexGm
has the form

Gm~p1 ,p2 ,p3!5gm2e2E d3k

~2p!3
GaSF~k2p1!

3GmSF~k!GbDab~k1p2!1•••

~2.4!

with p11p21p350. The ellipses on the right-hand side
Eqs. ~2.2!–~2.4!, denote the infinite set of terms containin
the two-particle irreducible four-point function@18,19#. Al-
though we are not working in the context of a largeN analy-
sis, we note that the above truncation is compatible w
working to leading order in resummed 1/N expansion.

We next define the scalar quantitiesA, B, andG as fol-
lows:

SF~k!5
1

A~k!k”
, ~2.5!

Dmn~k![
dmn

B~k!k2
, ~2.6!

and

Gm~p1 ,p2 ,p3!5G~p1 ,p2 ,p3!gm . ~2.7!

The quantityB is related toP defined in Eq.~2.1! by B(q)
511P(q). The definition in Eq.~2.6! implies that the lon-
gitudinal pieces of the photon propagator will be discarded
what follows. Of course, there are no rigorous field-theore
arguments justifying their omission or inclusion. The corre
treatment of such terms necessitates a formalism wh
would allow for the self-consistent truncation of the SD s
ries in a manifestly gauge-invariant way; unfortunately,
such formalism exists to date. The standard lore when w
ing down SD equations is to use in Eq.~2.3! the form ofDmn

given in Eq. ~2.1!, settingj50 ~Landau gauge!. While in
four-dimensional quantum electrodynamics (QED4) this
choice renders the vertex corrections unimportant in the
12500
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traviolet, it appears to be less compelling in the context
the superrenormalizable QED3. In addition, it is known that,
while the conventionally defined fermion self-energy a
photon-fermion vertex depend explicitly on the gauge-fixi
parameterj, it is possible to construct —at least at one-lo
— a j-independent fermion self-energy and vertex, by
sorting to the diagrammatic rearrangement of theS-matrix
known as the pinch technique@20#. It turns out that the
j-independent fermion self-energy and vertex so construc
coincidewith their conventional counterparts, if we choo
for the latter the special valuej51 ~Feynman-’t Hooft
gauge! @21#. Furthermore, as has been formally shown
@22#, all longitudinal pieces appearing in Eq.~2.1! vanish
from physicalobservables, such asS-matrix elements, to all
orders in perturbation theory. Thus, one is led to a gene
ized form of the Feynman-’t Hooft gauge, known as t
‘‘stagnant gauge,’’ where only thedmn part of the vacuum
polarization contributes, toall orders in perturbation theory
This gauge will be adopted throughout the present article

Following @14# and @19# we define the semi-amputate
vertexĜ as

Ĝ~p1 ,p2 ,p3![Z~p1 ,p2 ,p3!G~p1 ,p2 ,p3! ~2.8!

with

Z~p1 ,p2 ,p3!5B21/2~p1!A21/2~p2!A21/2~p3!. ~2.9!

This definition proves very useful in reducing the complex
of the set of equations~2.3! and~2.4!, under certain approxi-
mations to be discussed in detail in the next sections
addition, the quantity

gR~p1 ,p2 ,p3![eĜ~p1 ,p2 ,p3! ~2.10!

provides a natural generalization of the concept of the r
ning or effective charge in the context of superrenorma
able gauge theories@23#, such as QED3. This running of the
coupling should be understood as a Wilsonian rather t
Gell-Mann-Low type, in the sense that it is not associa
with ultraviolet infinities; instead, it expresses a non-triv
infrared structure of the theory@11#.

Note that in QED4 the effective chargeeeff
2 is defined in

terms of the photon vacuum polarization as

eeff
2 ~q2!5e2@11P~q2!#21, ~2.11!

and is a gauge-, scale-, and scheme-independent qua
@24# to all orders in perturbation theory.eeff

2 depends explic-
itly on q2 and the masses of the fermions inside the vacu
polarization loop. In the limit where the fermion masses c
be neglected,eeff

2 (q2) coincides with the running coupling
obtained by theb function of QED4, i.e. the solution of the
usual renormalization-group differential equation. An adva
FIG. 3. The SD equation for the vertexGm .
8-3
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N. E. MAVROMATOS AND J. PAPAVASSILIOU PHYSICAL REVIEW D60 125008
tage of the definition given in Eq.~2.10! is that it captures
the running coupling even in the case of scalar theories@19#,
where, due to the absence of Ward-Takahashi identities
role of the gauge boson self-energies is not as prominen
in gauge theories. As we shall see in Sec. V, the interpr
tion of gR defined in Eq.~2.10! as a running coupling is als
justified by the form of the SD for the fermion mass gap.

The equation for the semi-amputated vertexĜ may be
obtained from Eq.~2.4! by multiplying both sides by the
factor Z(p1 ,p2 ,p3), i.e.,

Ĝ~p1 ,p2 ,p3!gm5Z~p1 ,p2 ,p3!gm2e2E d3k

~2p!3
Ĝ3

3ga
1

k”2p” 1

gm

1

k”
ga

1

~k1p2!2
,

~2.12!

where

Ĝ3[Ĝ~p3 ,k1p2 ,p12k!Ĝ~p1 ,2k,k2p1!

3Ĝ~p2 ,k,2k2p2!. ~2.13!

In what follows we shall restrict ourselves to the case wh
the photon momentum is vanishingly small, and thus on
left with a single momentum scalep. One can then define
renormalization-groupb function from this ‘‘running’’ cou-
pling G(p) by setting

b[p
d

dp
Ĝ~p!. ~2.14!

In order to further simplify the SD equation forG(p) we
make the additional approximation thatĜ35Ĝ3(k), i.e., a
cubic power of a singleĜ(k) depending only on the integra
tion variablek. This approximation will be justified by the
self-consistency of the solutions.

Carrying out the gamma-matrix algebra using the form
las gmgm52d, and gmgrgm5(d22)gr valid for 434
gamma matrices ind(53)-dimensional Euclidean spac
one obtains in a straightforward manner:

Ĝ~p!5Z~p!1
1

3
e2E d3k

~2p!3
Ĝ3~k!

1

k2

1

~k2p!2
. ~2.15!

Several remarks are now in order. First, one observes
Z(p)→1 for p→`, where perturbation theory is valid. Th
is inferred from the fact that in such a case, as can be rea
verified, the functionsA(p),B(p)→11O(e2/p). In addi-
tion, in the ultraviolet region,p→`, gauge invariance re
quiresG(p);A(p). Second, from Eq.~2.15! one observes
that, if Ĝ stays positive, which is expected for any physic
theory, then, as a result of the positivity of the integran
Ĝ(p)>Z(p) for any p. Thus, one has the following bas
properties ofĜ(p), which stem directly from the integra
equation~2.15!:
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Ĝ~p!>Z~p!, for all p, Ĝ~p!;B21/2~p!→1, p→`.
~2.16!

Notice thatĜ(p) in the ultraviolet is thereby given by@1
1P(p)#21/2 as in QED4. This is the perturbative result
which, as we shall see later, is modified non-trivially in t
infrared, in a way consistent with gauge invariance. Mo
over, as we shall see later, the self-consistency of the
proximations employed will requireĜ(0)@A3/2.

Our next assumption is that in the infrared regime,k/a
!1, which is of interest to us here, the effects of the inh
mogeneous termZ(p) can be ignored. This assumption wi
be justified later on, when we consider a non-trivial se
consistency check of the solutions. We now remark that
ignoring the effects ofZ(p) one can decouple the equatio
for the ~gauge-invariant! amputatedvertex from the equa-
tions forA(p),B(p). As we shall discuss in subsequent se
tions, these latter equations also decouple from each o
depending only on the vertex functionĜ(p).

Because of this, we commence our analysis from the
equation for the vertexĜ(p), which we solve upon ignoring
the effects of the inhomogeneousZ(p) term. Thus we arrive
at the homogeneous equation

Ĝ~p!5
1

3
e2E d3k

~2p!3
Ĝ3~k!

1

k2

1

~k2p!2
. ~2.17!

This integral equation involves only one unknown functio
namelyĜ, which must be self-consistently determined. No
that this equation is invariant under the rescalingĜ→Ĝ/e.
This indicates a straightforward extension of the analysis
large-N treatment, given thatN can be absorbed in a redefi
nition of e2.

It is easy to see that, written in the form~2.17!, the equa-
tion does not admitphysically acceptablesolutions, i.e., so-
lutions with Ĝ>0 andfinite.2 Indeed, settingp50 one ob-
tains after the~trivial! angular integration:3

Ĝ~0!5
e2

12p2E0

`dk

k2
Ĝ3~k!. ~2.18!

Finiteness ofĜ(0) requires that the integrand of the righ
hand side of Eq.~2.18! converges aty→0 and `, where
y[k/a. The ultraviolet limit does not present a problem
because the kernel vanishes likey22, which is consistent
with the superrenormalizability of the theory as well as t
fact that the amputated vertex tends to 1. In the infrared li

2Solutions that blow up in any point of the integration region a
discarded.

3These arguments remain unaffected even in the presence o
inhomogeneous termZ(p), such thatZ(0) is non-negative and fi-
nite. The non-negative nature ofZ(p) Eq. ~2.9! stems from that of
A(p), which is guaranteed from general renormalization-group
guments@25#.
8-4
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y→0, however, the kernel blows up. For the integral to
main finite at that point, as required by the finiteness assu
tion for Ĝ(0), G3(y) must approach zero asya,a.1/3,
thereby implying thatĜ(0)50. However, for that to happe
the integrand in Eq.~2.18! must change sign, which would i
turn imply thatĜ(y) itself must change sign somewhere iny.
According to our assumption above this is not a physica
acceptable situation.

To show rigorously that there are nophysicallyacceptable
solutions leading to a non-trivial infrared structure we ne
convert the integral equation into a non-linear different
equation of the type known in the mathematical literature
theEmden-Fowlerequation@16,17#. To this end, we perform
the angular integration in Eq.~2.17!, to arrive at the equa
tion:

Ĝ~p!5
2

3p2

a

pE0

`dk

k
Ĝ~k!3lnUk1p

k2pU, ~2.19!

where we have sete2[8a to make contact with the usua
large-N definition @5#. For us, however, the number of fe
mion flavors is not assumed to be necessarily large. In f
for brevity we setN51 ~in a four-component notation fo
the fermions! throughout this work. Next we introduce th
dimensionless variablesx[p/a and y[k/a. Since we are
interested in the infrared behavior of the model we consi
the limit x!1, for which one obtains by expanding the log
rithms in the integrand:

Ĝ~x!5
2

3p2x
E

0

`dy

y
Ĝ3~y!lnUy1x

y2xU
.

4

3p2x2E0

x

dyĜ~y!31
4

3p2Ex

`dy

y2
Ĝ3~y!.

~2.20!

Differentiating appropriately with respect tox, we arrive at
the following differential equation for smallx:

x3
d2Ĝ

dx2
13x2

dĜ

dx
1

8

3p2
Ĝ3~x!50, x!1. ~2.21!

It is convenient to rescaleĜ by setting

G[A 8

3p2
Ĝ. ~2.22!

Then, Eq.~2.21! becomes

x3
d2G

dx2
13x2

dG

dx
1G3~x!50, x!1. ~2.23!

Upon the change of variablesj51/2x2,G523/4h(j), the
equation becomes of the Emden-Fowler type@16,17#:
12500
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d2

dj2
h~j!1j23/2h3~j!50, j→1`. ~2.24!

As discussed in the mathematical literature@16#, the only
non-trivial real solutionsof Eq. ~2.24!, asj→1`, areos-
cillatory about zero of simple sinusoidal form, which, how
ever, oscillate infinitely rapidly asx→0. The amplitude of
the above solutions behaves likex21/2, for x!1. We inter-
pret this behavior as indicating aninstability of the massless-
fermion ground state.

It is interesting to notice that the only power-law solutio
of Eq. ~2.23! for x!1, is purely imaginary, i.e.,

G~x!5 i
A5

2
x1/2, x!1. ~2.25!

This solution would imply a ‘‘trivial infrared fixed point
structure’’ given that its associatedb function vanishes at
x50. However, the fact that Eq.~2.25! is purely imaginary
would again suggest instability.

The above analysis constitutes a rigorous proof th
within the context ofproper ~i.e., finite and with finite-
derivatives! solutions, and modulo the approximations d
cussed, no non-trivial infrared-fixed point is possible
QED3 in the absence of an infrared cutoff. This was conje
tured in Ref.@11#, but here we have given an analytic proo
This motivates one to look for the existence of a possi
non-trivial infrared fixed-point structure in the presence
fermion and/or photon masses. In the next section we s
discuss the case when the fermions develop a massm. As we
shall show, the existence of a non-trivial infrared fixed po
is guaranteed due to the form of the resulting equations.

III. EQUATION FOR THE VERTEX IN THE CASE
OF NON-ZERO FERMION MASS

As a first kind of infrared cutoff in the integral equatio
~2.17! we shall consider the case of a fermion mass g
m(p)5S(p)/A(p), whereS(p) is the fermion self-energy
In that case the fermion propagatorSF becomes

SF~k!5
i

A~k!@k”1mf~k!#
. ~3.1!

For our purposes below we assume thatmf(p).mf(0)
[mfÞ0. In that case the integral equation~2.17! becomes

Ĝ~p!5
1

3
e2E d3k

~2p!3
Ĝ3~k!

1

~k21mf
2!~k2p!2

1
2mf

2

3 E d3k

~2p!3
Ĝ3~k!

1

~k21mf
2!2~k2p!2

.

~3.2!
8-5
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Notice that the effects of the fermion mass are not giv
simply by just adding a mass squared term in the ferm
denominators, but they result in additional structures in
integral equation.

Performing the angular integrations one arrives at

Ĝ~x!5
2

3p2x
E dy f~y!lnUy1x

y2xUĜ3~y!, ~3.3!

wherex[p/a,m[mf /a are dimensionless, and

f ~y![y
y213m2

~y21m2!2
>0. ~3.4!

Differentiation with respect tox yields

x
d

dx
Ĝ~x!52

2

3p2x
E

0

`

dy f~y!S lnUy1x

y2xU1 2xy

x22y2D Ĝ3~y!.

~3.5!

One observes that formally asx→0 the right-hand-side van
ishes, provided thatĜ is finite. This indicates the existenc
of a fixed point. As we shall show below this is confirme
analytically by converting the integral equation into a no
linear differential equation.

An additional feature which one would have hoped
study already at the level of the integral equation~3.5! is the
monotonicity ofĜ. Unfortunately the kernel in Eq.~3.5! is
not manifestly positive to allow for such an analytic proof
the level of the integral equation for generic values ofx, and
one has to resort to numerical treatments, which fall bey
the scope of this article. However, one can already infer fr
Eq. ~3.5! that, for high momentax@1, a monotonically de-
creasingĜ is consistent with the expectation that in th
regimeĜ is essentially given by its perturbative expressi
which asymptotes to 1. The analysis is omitted because
straightforward.

For low momenta, on the other hand, the behavior
Ĝ(x) will also be shown to be monotonically decreasin
starting from a nontrivial fixed point. This will be achieve
by converting the integral equation into a differential on
Unfortunately, at present, we cannot analytically derive
monotonicity for intermediate momenta.

To derive the differential equation from Eq.~3.3! we fol-
low a similar analysis to the one leading to Eq.~2.20!. First,
one expands the logarithms for smallx!1, thereby writing
the equation as

Ĝ~x!.
4

3p2x2E0

x

dyĜ~y!3
y2

y21m2
1

4

3p2Ex

` dy

y21m2
Ĝ3~y!

1
8m2

3p2x2E0

x

dyĜ~y!3
y2

~y21m2!2

1
8m2

3p2Ex

` dy

~y21m2!2
Ĝ3~y!. ~3.6!
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Differentiating with respect tox one arrives at

x~x21m2!2
d2

dx2
Ĝ~x!13~x21m2!2

d

dx
Ĝ~x!

1
8

3p2
~x213m2!Ĝ3~x!50. ~3.7!

The above equation can be solved numerically, to which
return later on. However, in the infrared regionx!m the
equation accepts an analytic treatment, as we discuss be
In this region Eq.~3.7! is approximated by

x
d2

dx2
Ĝ~x!13

d

dx
Ĝ~x!1

8

p2m2
Ĝ3~x!50. ~3.8!

It is immediate to see that a special power-law solution
given by @for positiveG(x)] by

Ĝ~x!5mp
A3

4A2
x21/2. ~3.9!

Notice the infrared divergence of this type of solutioneven
in the presence of a~bare! fermion mass. The associate
renormalization-groupb function ~2.14! for this case reads

b~x!52
1

2
Ĝ;x21/2→1`, as x→0, ~3.10!

indicating the absence of an infrared fixed point. The as
ciated operator appears to berelevant ~negative scaling di-
mension!, which implies the possibility that the theory b
driven to a non-trivial fixed point.

However, in the infrared regimex!1, one can find a
different type of solution@16#:

Ĝ5mp
A3

2A2

c

11c2x
, x→0, ~3.11!

wherec is a constant of integration to be fixed by the boun
ary condition atx50 implied by the integral equation, to b
discussed later on. For physical solutionsc is assumed posi-
tive.

This type of solution has a renormalization-grou
b-function ~2.14! of the form

b52Ĝ~x!1
2A2

A3pmc
Ĝ2~x!;2

x

~11c2x!2
→0, x→0

~3.12!

from which we observe the existence of a non-trivial~non-
perturbative! infrared fixed point atĜ* 5pmA3c/2A2.0.
Such a fixed point is the result of the dynamical generat
of a parity-invariant, chiral-symmetry breaking fermion ma
@5#, indicating the connection of the phenomenon of chi
symmetry breaking in QED3 to a non-trivial infrared fixed
point structure, in agreement with the expectations of R
@11#.
8-6
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The non-trivial fixed-point solution~3.11! is not compat-
ible with the integral equation~3.2! for any value of the
fermion massm. Indeed one can derive aboundary condition

for Ĝ(0) from Eq.~3.2!, which reads

Ĝ~0!5
4

3p2E0

`

dy
1

y21m2
Ĝ3~y!

1
8m2

3p2E0

`

dy
1

~y21m2!2
Ĝ3~y!. ~3.13!

In contrast to the massless case~2.18!, Ĝ(0) is now a finite
constant,pmcA3/8, as seen from Eq.~3.11!, and this allows
for a compatibility of the solution~3.11! with Eq. ~3.13!,
providedthatmĜ(0) satisfies certain conditions to be spe
fied below.

To this end, we split they-integration in Eq.~3.13! into
two intervals:~i! yP@0,m), where the form~3.11! is valid to
a good approximation, and~ii ! yP@m,`), where we ap-
proximateĜ(x) by its perturbative asymptotic valueĜ.1.
By this latter approximation we overestimate the actual va
of the integration, given thatĜ is actually slightly smaller
than unity for finitep, approaching it only asymptotically@cf.
Eq. ~2.16!#. However, this is sufficient for our qualitativ
purposes of demonstrating the existence of constraints on
fermion mass implied by the boundary condition~3.13!.

With these in mind, the boundary condition~3.13! reduces
to

15
mc2

2 E
0

1

dy
1

y211

1

~11mc2y!3 S 11
2

y211
D

1
4

3p2m2c
S 12

1

p DA2

3
. ~3.14!

To obtain the condition imposed onm by the boundary con-
dition ~3.13! it suffices to observe that the first term on t
right-hand-side is a function ofmc2 alone, and that, after th
~elementary! y integration, the resulting function ofmc2 as-
ymptotes rapidly to the value 3/4~see Fig. 4!.

This implies the following inequality:

mĜ~0!,
8

3p S 12
1

p D . ~3.15!

As already mentioned this bound is overestimated, given
in the actual situation the functionĜ(y) is not exactly 1
immediately after the regiony>m.

We next remark thatm should actually be determine
self-consistently from a solution of the pertinent gap eq
tion. This will be done in Sec. V. However, at the mome
and for completeness, we shall assume thatm is determined
by its approximate form derived within the context of
large-N treatment@5,1#. Compatibility of the dynamical so
lution with the constraint~3.15! will then lead to further
restrictions on the range of the allowed massesm. As we
shall see in Sec. V, there is good agreement between
12500
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allowed fermion-mass ranges, obtained within the contex
a large-N treatment, and those obtained from a se
consistent solution of the mass gap equation within our
proach.

In the context of a largeN treatment, and to leading orde
in 1/N resummation, the following solution for the dynam
cally generatedm is found @5,1#:

m;O~1!expS 2
2p

Ag2

gc
2

21D , ~3.16!

wheregc
25p2/32 is the critical coupling, above which dy

namical mass generation occurs@5#. Compatibility of the so-
lution ~3.16! with the constraint~3.15! implies the existence
of an upper boundon fermion masses,m,mmax, where
mmax is defined through the intersection of the curves~3.15!
and ~3.16! in the (m,g) plane ~see Fig. 5!. This yields
mmax.0.3.

FIG. 4. Plot of the function f (z)5z/2*0
1dy1/y211@1/(1

1zy)3#(112/y211), where z5mc2. The function asymptotes
rapidly to 3/4.

FIG. 5. Fermion mass versus the infrared-value of the coup

Ĝ(0). The solid curve represents the condition derived from t
integral equation for the vertex, whereas the dashed line repres
the solution obtained from the standard gap equation in the largN
treatment.
8-7
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On the other hand, for large momenta, we know thatĜ

→1. Physically one expectsa monotonic decreaseof Ĝ(x)
over theentire range ofxP@0,̀ ). This would occur in our
case if and only ifĜ(0).1, which, in the context of the
large-N result of @5,1#, implies a minimum bound for the
fermion massesm.mmin.0.03. Actually, as we shall argu
in the next section,Ĝ(0) should be comfortably larger tha
A3/2 for self-consistency of our approximations.

Hence, we see that the monotonicity of the running c
pling can be achieved in the context of a large-N treatment,
if the massm lies in the following regime:

0.03&m&0.3 ~3.17!

or equivalently if the coupling at the infrared pointĜ(0) is
restricted in the regime~see Fig. 4!:

1,Ĝ~0!,2.5. ~3.18!

At this point it is useful to turn to a numerical study of E
~3.7!, supplemented with the boundary conditions impos
by the solutions of the form~3.11!, specifically:

Ĝ~0!5m
p

2
A3

2
c; Ĝ8~0!52

8Ĝ3~0!

3p2m2
, ~3.19!

where the constantc should be chosen in such a way that t
bound~3.15! be satisfied. The numerical solution of Eq.~3.7!
is given in Fig. 6, for a typical case, wherem50.1, and
Ĝ(0)52. As we observe, the figure clearly demonstratesthe

monotonic decreaseof Ĝ in the smallx interval, where Eq.
~3.7! is valid. We also note that the solution asympto
quickly to a constant positive value, smaller than 1 in co
trast to Eq.~2.16!, which would requireĜ(x);1, for x
@1. This, however, presents no contradiction, because
~3.7! was based on ignoring the inhomogeneous termZ(x).
As one goes to a region of largerx, this assumption is no
longer valid. In that case the inhomogeneous termZ(x) be-

FIG. 6. Numerical solution of Eq.~3.7! versusp/a, for a typical

set of valuesm;0.1 andĜ(0)52; the solution decreases mon
tonically and asymptotes quickly to a positive constant value.
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comes important, and Eq.~3.7! receives additive~positive!
contributions, resulting inĜ(p);1, for largep, as required
by Eq. ~2.16!.

IV. EQUATIONS FOR PHOTON AND FERMION
SELF-ENERGIES

As a consistency check of our assumption about ignor
the effects of the inhomogeneous termZ(p) asp→0, next to
Ĝ, we now turn our attention to the equations that determ
the fermion and photon self-energiesA(p) and B(p), re-
spectively. As shown below, upon neglectingZ(p) in the
infrared, these equations decouple from each other and
functions can be determined solely from knowledge ofĜ(x).
It should also be stressed that in the massless case the sy
does not admit a self-consistent solution. In contrast,
presence a fermion mass term changes the situation dr
cally by yielding self-consistent solutions forA(p),B(p)
which are such thatZ(p)→3A6/5, but at a rate slower tha
the one with whichĜ approachesĜ(0) asx→0. Thus the
approximation of ignoring the effects ofZ(x) in the region
x!1 is qualitatively correct. This is a highly non-trivia
check of our approach, and justifies fully the approximatio
used above.

To this end, we begin from the integral equation forA(x):

A~p!p”5p”2e2E d3k

~2p!3
G 2~k!

3gm

i

A~k!k”
gn

dmn

B~k2p!~k2p!2
, ~4.1!

which in terms of the semi-amputated vertexĜ becomes

A~p! p”5p”2e2A~p!E d3k

~2p!3
Ĝ2~k!

k”

k2~k2p!2
. ~4.2!

To arrive at the above equation we have carried out
g-matrix algebra and we have used the approximation
Ĝ(k,p)5Ĝ(k). This approximation is equivalent to the on
made forĜ in Eq. ~2.12!. It will be justified below, by the
self-consistency of the solution.

Next we introduce a~constant! fermion massmf in the
appropriate parts of the integrand in the right-hand side
Eq. ~4.2!. This effectively amounts to using Eq.~3.1! for the
fermion propagator in the loop. In terms of the dimensionle
x,m parameters introduced previously, Eq.~4.2! becomes

x45A21~x!x42
2

p2E0

x

dy
y4Ĝ2~y!

y21m2
2

2x4

p2 Ex

1

dy
Ĝ2~y!

y21m2
.

~4.3!

Differentiating twice with respect tox one obtains the fol-
lowing differential equation:
8-8
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d

dx Fx23
d

dx
„x4A21~x!…G1

8

p2

Ĝ2~x!

x21m2
50. ~4.4!

Restricting our attention to the infrared regionx→0, one
may ignorex2 in front of m2, and use the form~3.11! for
Ĝ(x). After elementary integrations one then finds f
A(x)21:

A21~x!5
3

2 F2
2

c7
x231

1

c5
x222

2

3c3
x21

1
2

c9
x24ln~11c2x!G1

1

4
c8

.
1

4 S c82
3

cD1
3

5
cx2

1

2
c3x21O~x5!, x→0,

~4.5!

wherec.0 is the integration constant of the solution~3.11!,
which obeys the restriction~3.15!. We choose the constant o
integrationc853/c, so that

A~x!21.
3

5
cx2

1

2
c3x21••• ~4.6!

as x→0. As we shall show later, this choice is compatib
with the boundary behaviorZ(x)→const, asx→0, advo-
cated for the inhomogeneous term.

Next we turn our attention to the equation for the phot
functionB(p). Following similar steps to the ones leading
Eq. ~4.2!, the pertinent integral equation reads

B~p!~p2dmn2pmpn!5p2dmn2pmpn

1B~p!e2E d3k

~2p!3
Ĝ2~k!

3TrFgm

k”

k2
gn

k”2p”

~k2p!2G . ~4.7!

To transform the above equation into a scalar equation
B(p) it is necessary to take the trace on both sides. In do
so one assumes that the integral term on the right-hand
is also transverse. This is expected from gauge invarianc
our truncated scheme it can be demonstrated that this is
deed the case, provided one makes our working hypoth
that Ĝ(k,p)5Ĝ(k). Specifically if one contracts both side
of Eq. ~4.7! by pm, the right-hand-side vanishes~Ward iden-
tity for the photon! only upon making the above assumptio
for the semi-amputated vertex, and shifting appropriately
integration variable.

Introducing a fermion mass, and following standard m
nipulations similar to the ones above, one arrives at
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dx Fx21
d

dx S x21
d

dx
~x4B21! D G1

32

p2

1

x21m2
Ĝ2~x!50,

x→0. ~4.8!

Making the same approximations in the infraredx!1 as in
the case ofA(x), and substituting Emden’s solution~3.11!
for Ĝ on the right-hand-side of Eq.~4.8!, we obtain after
some elementary integrations, upon setting their const
but one (c1) to zero

x4B21~x!5
6

c2
x22

6

c6
x1

3

c4
x21

6

c8
ln~11c2x!

2
6x2

c4
ln~11c2x!1

1

8
c1x4, ~4.9!

which for x!1 yields

B21~x!.
6

c2
x22F12

2

3
x1S c1

8
1

3

2D c2

6
x21•••G .

~4.10!

This form of B(x) gives rise to the following form for the
photon propagator in the infraredk→0,

Dmn;
dmn

k4
, k→0. ~4.11!

Notice, as a consistency check, that the photon continue
be massless in the chiral-symmetry broken phase. The co
sponding static effective potential is given by the appropri
Fourier transform of the 00~temporal! component of the
photon propagator fork050. In the case~4.11! this yields
formally an effective potential scaling likeR2 for large dis-
tancesR, suggestive of confining behavior.4 The fact that this
behavior is found in the chiral-symmetry broken case is c
sistent with general~four-dimensional! arguments@12,14#
that confinement is a sufficient but not necessary condi
for chiral-symmetry breaking.

An important feature of the expressions~4.6! and~4.8! is
that, although they are derived only in case where a ferm
massmÞ0, however they do not explicitly depend on th
magnitude of the mass. From Eqs.~4.6! and ~4.10! one ob-
tains forZ(x) in the infrared regionx→0:

Z~x!5B21/2~x!A21~x!

.
3A6

5
2

2A6

5
xS 11

5

4
c2D1O~x3! . . . , x→0,

~4.12!

where we have chosen the constant of integrationc1 such
that there are noO(x2) terms.

4However, this is a formal result, given that the correspond
momentum integrals are infrared divergent and hence need pr
regularization, which falls beyond our scope here. For stand
treatments see discussions in@12#.
8-9
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In order to check under which conditions the omission
the x-dependent parts ofZ next to those ofĜ(x) is justified,
we must compare the corresponding linear terms inx of both
quantities. Using that

Ĝ~x!;A3

2S m
p

2
c2m

p

2
c3x1••• D , x→0

~4.13!

this requires

A8/3Ĝ3~0!22Ĝ2~0!2~3p2/5!m2@0. ~4.14!

This inequality furnishes a condition onĜ(0) under the as-
sumptionm!1, which, as we shall see in Sec. V, turns o
to be correct. The condition is

Ĝ~0!@A3

2
.1.22. ~4.15!

In the above formulas the symbol@ means actually at leas
an order of magnitude. As we shall see below, such a reg
for Ĝ(0) arises self-consistently. Note that the conditi
~4.15! is in agreement with Eq.~2.16! given that Z(0)
53A6/5.1.47 @cf. Eq. ~4.12!# is only slightly larger than
A3/2.

In view of the existence of a non-zero constant value
Z(x) in the infrared region, our analysis on the restrictio
~3.15!, ~3.18! has to be repeated, given that these restricti
stem from the integral equation. From Eq.~4.14!, and the
valueZ(0)53A6/5 it becomes clear that the boundary co
dition ~3.14! is now modified to

15
12

5pmc
1

mc2

2 E
0

1

dy
1

y211

1

~11mc2y!3 S 11
2

y211
D

1
4

3p2m2c
S 12

1

p DA2

3
. ~4.16!

The first term continues to asymptote to 3/4, but now o
obtains the following restrictions on the coupling:

Ĝ~0!,
12A6

5
1

8

3 S 12
1

p D 1

pm
. ~4.17!

From the above relation it becomes clear that, ifĜ(0)
,12A6/5 there is no restriction onm. However, for this
regime of the couplings the condition~4.15!, necessary for
safely ignoring the effects of the inhomogeneous termZ(p)
in the infrared next toĜ(p), is only marginally satisfied. On
the other hand, if one allowsĜ(0) to exceed this value
which is physically acceptable, then the following upp
bound onm as a function ofĜ(0) is obtained:
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8

3p
S 12

1

p
D

Ĝ~0!2
12A6

5

, Ĝ~0!.
12A6

5
.5.88, ~4.18!

which replaces Eq.~3.15!.
One may repeat the comparison with the largeN limit

results@5#, as in the previous section, to determine the n
region of allowed values of the mass. The analysis is giv
in Fig. 7.

From Fig. 7 we then obtain the following allowed rang
of the couplingĜ(0):

5.88,Ĝ~0!,7 ~4.19!

to be compared with Eq.~3.18! associated with the monoto
nicity requirement forĜ(p). This analysis shows that th
new allowed region for the fermion masses, in case~4.18! is

0.55,m,0.6, ~4.20!

where the lowest bound is the value ofm corresponding to
Ĝ55.88 from the large-N-analysis formula~3.16!. The re-
gion ~4.20! is to be compared with Eq.~3.17!. As we shall
see in Sec. V, the dynamically generated mass in our
nario, which does not resort to a large-N treatment, lowers
significantly the upper bound in Eq.~4.20!.

It is important to emphasize that, as a consequence of
~4.5!,~4.10!, the non-amputated vertexG(p), defined in Eq.
~2.7!, approaches a non-zerofinite constant value in the in-
fraredp50. Notice that this constant behavior is compatib
with the Ward identity in the infrared limitp50, thereby
implying that the information obtained about a non-trivi
infrared fixed-point structure is gauge invariant, as it sho
be.

FIG. 7. Fermion mass versus the infrared-value of the coup

Ĝ(0) for the case where the effects of the inhomogeneous t
~almost constant! Z(x) have been taken into account in the infrare
The solid curve represents the condition derived from the inte
equation for the vertex, whereas the dashed line represents th
lution obtained from the standard gap equation in the large-N treat-
ment.
8-10
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This completes our analysis of including the effects of
almost constantZ(x).Z(0) in the infrared. The above con
siderations justify retrospectively the omission ofZ in deriv-
ing the differential equation~3.7!. Indeed, a constant shift o
Ĝ inside the derivative operators in that equation, wh
would account for a constantZ, does not affect its form
These results, therefore, constitute a highly non-trivial ch
of our approach.

V. DYNAMICAL DERIVATION OF THE FERMION MASS
GAP

In the previous section we have assumed the presence
finite fermion mass, which we have treated effectively as
arbitrary parameter of the model. In this section we turn
the full problem, and study the dynamical generation of t
mass, by deriving it self-consistently from the correspond
SD mass-gap equation.

The equation for the gapS(p) is derived from the graphs
of Fig. 2, which yields

A~p!p”1S~p!5p”1A~p!e2E d3k

~2p!3

3Ĝ~k!2gm

1

k”1M ~k!
gm

1

~k2p!2
,

~5.1!

whereM (k)[S(k)/A(k) is the mass function, and we hav
pulled out factors ofA(p) appropriately so as to be able
define an amputated vertex functionĜ(k). The consistency
of the approach will be demonstrated below by the existe
of solutions.

Taking the trace in the above equation, and perform
the angular integration, one arrives easily at

M ~p!53e2E d3k

~2p!3
Ĝ2~k!

M ~k!

k21M2~k!

1

~k2p!2

5
6a

p2p
E dk

k

k21M2~k!
Ĝ~k!2M ~k!lnUk1p

k2pU.
~5.2!

From the middle equation~5.2! it becomes clear that th
quantitygR(k)[eĜ(k), defined in Eq.~2.10!, plays indeed
the role of a ‘‘running coupling.’’ The situation is analogou
but not identical, to that of@11#, where a running coupling
has also been obtained from the gap equation in the con
of a largeN analysis. However, in that case, one assumed
ansatz for the vertex, satisfying a truncated form of the W
identities. Instead, in our approach there was no necessit
a vertex ansatz, since the non-perturbative vertex func
was determined self-consistently from the SD equations.
a consequence, the running coupling~2.10! is constructed
out of the amputated vertex function alone; the latter i
manifestly gauge-independent quantity, at least pertu
tively.
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Passing into dimensionless variables, in units ofa

5e2/8,M̃[M (k)/a,x[p/a,y[k/a, and working in the re-
gime of low momentax!1 as usual, one obtains after som
straightforward algebra, involving a truncated expansion
the logarithmic kernel:

M̃ ~x!5
12

p2 F 1

x2E0

x

dy
y2M̃ ~y!

y21M̃2~y!
Ĝ2~y!

1E
x

`

dy
M̃ ~y!

y21M̃2~y!
Ĝ2~y!G . ~5.3!

Differentiating twice with respect tox one arrives at

x
d2

dx2
M̃ ~x!13

d

dx
M̃ ~x!1

24

p2

M̃ ~x!

x21M̃2~x!
Ĝ~x!250.

~5.4!

Given that dynamical mass generation is expected to be
infrared phenomenon, we now restrict ourselves to
region5

x2!M̃2!1. ~5.5!

In this region we neglectx2 next toM̃2 in Eq. ~5.4! and use

the solution~3.11! for Ĝ(x).M̃A3
8 pc asx→0. The result

is

x
d2

dx2
M̃ ~x!13

d

dx
M̃ ~x!19c2M̃ ~x!50, x→0. ~5.6!

Changing variablesx→j5x21, the equation reduces to
Bessel equation@17#

j2
d2

dj2
M̃ ~j!2j

d

dj
M̃ ~j!19c2j21M̃ ~j!50, j→`

~5.7!

with ~formally! the general solution

M̃ ~j!5C1jJ22~26cj21/2!1C2jY22~26cj21/2!,
~5.8!

where Ci ,i 51,2 are arbitrary constants, J2n(x)
5(21)nJn(x), n51,2,3, . . . , is a Bessel function of the
first kind, andYn(x) is a generalized Bessel function of th
second kind@17#. The latter is only defined for positiven and
this imposes the choiceC250 in Eq. ~5.8!. Expressing the
solution in terms ofx,x→0, one has the following powe
series expression for the dynamical mass:

5Note that this is the opposite limit than the one usually cons
ered in the framework of large-N analysis of dynamical mass gen
eration, where one arrives at a gap equation by making the assu
tion a@p@m for the momentap of the pertinent excitations.
8-11
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M̃ ~x!5C1x21(
n50

`

~21!n~3c!2n12x11n
1

n!G~31n!

.
9

2
C1c21O~x!, x→0. ~5.9!

From this one obtains the following relation betweenĜ(0)
andM̃ (0)[mf /a:

M̃ ~0![mf /a5S 12

p2D 1/3

C1
1/3Ĝ2/3~0!. ~5.10!

This result is to be compared to the result~3.16! within the
context of a large-N analysis. In particular, at first sight
seems that the relation~5.10! does not have a critical cou
pling, above which dynamical mass generation occurs. H
ever, because the result~5.10! has been derived in the con
text of the solution~3.11!, one should bear in mind th
restrictions characterizing that situation, in particular E
~4.17!. This implies an appropriate restriction forC1,6

Ĝ5/3~0!2
12A6

5
Ĝ2/3~0!2

8

3~12pC1!1/3S 12
1

p D,0,

Ĝ~0!.
12A6

5
. ~5.11!

This restriction implies a critical coupling,Ĝc512A6/5
.5.88 but it is derived in a way independent of any largeN
analysis. The way to understand Eq.~5.11! is the following:
one should first fix a range ofĜ(0), with Ĝ(0).5.88, and
then use aC1 that will be such that, within this range of th
couplings, Eq.~5.11! is satisfied for massesm̃!1. As can be
readily seen, the bound forC1 obtained from the requiremen
that m!1 is far less restrictive than the one associated w
Eq. ~5.11!, providedĜ(0) is not too close to the criticalĜc ,
where the massm vanishes. For instance, forĜ(0)5O(8),
the upper bound onC1 from Eq.~5.11! is of orderO(1024),
while for Ĝ(0)56 the upper bound isC1,4. Notice that
the bound is very sensitive to small changes inĜ(0).

A typical situation is depicted in Fig. 8 for two values o
C151025,1022. We observe that the caseC151022 yields
an upper bound in the mass which is of order 0.8 and he
should be discarded on the basis that it is not small enou
On the other hand, the valueC151025 yields an acceptable
upper boundm;0.1. In that case, from Fig. 8, we observ
that the allowed region ofm is

0.08&m&0.12 ~5.12!

6The restriction~4.17! is to be viewed as a boundary conditio

We remind the reader that the requirement of finiteness ofM̃ had
already fixed the other constantC2 to zero.
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to be compared with Eq.~4.20!, derived using the result fo
the mass in the context of a large-N analysis@5#. The corre-
sponding regime of the couplingsĜ(0) is

5.88,Ĝ~0!,11. ~5.13!

Before closing this section we would like to discuss po
sible applications of the above behavior; specifically, the
striction ~5.13! of the allowed values ofĜ(0) may have
interesting applications in case the above model turns ou
describe the physics of high-temperature superconduc
We remind the reader that in such models dynamical m
generation coincides with superconductivity@1–3#. In that
case, the fermion fields~‘‘electrons’’! of QED3 represent
‘‘holons,’’ i.e., electrically charged excitations of fermioni
statistics, which are constituents of the physical electron.
latter is believed to exhibit an effective spin-charge sepa
tion @26# in the complicated ground state of high-temperatu
superconductors. The photon of QED3 then represents an
effective Heisenberg spin-spin antiferromagnetic interacti
responsible for binding the holons in Cooper-like pairs.
some models@1,3# the effective~gauge-invariant! coupling
Ĝ(0) may be expressed in terms of the parameters of
microscopic condensed-matter lattice systems, whose lo
wavelength limit is equivalent to the above QED3 model, as

Ĝ~0!2;
J

e2
~12h!, ~5.14!

whereh expresses the concentration of impurities in the s
tem ~doping!, and J denotes the Heisenberg~antiferromag-
netic! exchange energy. Hence, on account of Eq.~5.13!, Eq.
~5.14! implies that 6&(J/e2)(12h)&11 for superconduc-
tivity to occur. In phenomenologically acceptable models@1#
e2/J;0.1, which implies an upper bound onh;0.4. How-
ever, the reader should bear in mind that the above-descr
limiting values are rather indicative at present, given tha

FIG. 8. Fermion mass versus the infrared-value of the coup

Ĝ(0) using Eq. ~5.10! ~dashed curves!, for two values of C1

51025 ~lower dashed curve! andC151022 ~upper dashed curve!.
The continuous curve is Eq.~4.18!, viewed as a boundary condition
The valueC151022 should be excluded on grounds of yielding to

high values of the massm̃.
8-12
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complete quantitative understanding of the underlying
namics of high-temperature superconductivity from an eff
tive gauge-theory point of view is still lacking.

VI. EQUATION FOR THE VERTEX IN THE CASE
OF NON-ZERO PHOTON MASS

In this section we study the case where a~small! covariant
photon massd is added to the photon propagator~2.6!:

Dmn~k!;
dmn

k21d2
. ~6.1!

For the purposes of our analysis in this work, such a m
term will simply be added by hand, without further discu
sions about its origin. However, we point out for comple
ness that a small photon mass may be the result of n
perturbative configurations~instantons! in compact U~1!
three-dimensional electrodynamics@27#. Moreover, a term
acting like a photon mass term arises in real-time fin
temperature considerations@28#; in the latter case, of course
one loses manifest Lorentz covariance.

It is straightforward to see that, in the presence of a p
ton mass, small compared to the scalea5e2/8, the resulting
integral equation for the amputated vertex reads

Ĝ~p!5
1

24p2

e2

p E dk

k
Ĝ3~k!lnU~k1p!21d2

~k2p!21d2U . ~6.2!

We are interested in the limitp!d, which would allow us to
study the effects of a photon mass on the infrared regim
the theory. Expanding the logarithm in Eq.~6.2! appropri-
ately, we obtain

Ĝ~x!5
4

3p2

1

d̂2E0

x

dyĜ3~y!1
4

3p2Ex

` dy

y21 d̂2
Ĝ3~y!,

~6.3!

whered̂[d/a,x5p/a.
Differentiating once with respect tox one obtains

d

dx
Ĝ~x!5

4

3p2d̂2
Ĝ3~x!

x2

x21 d̂2
, ~6.4!

which can be integrated to yield

Ĝ~x!5
1

Ac1
8

3p2d̂2 F d̂ arctgS x

d̂
D 2xG

, ~6.5!

wherec is an integration constant to be fixed by the boun
ary condition imposed by the integral equation~see below!.

The running couplingG(x) tends toĜ(0)51/Ac as x
→0. There is a non-trivial fixed point atx50, given that the
renormalization-groupb-function ~2.14! vanishes:
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x
d

dx
Ĝ~x!→ 4

3p2
Ĝ3~x!

x3

x21 d̂2
50, as x→0. ~6.6!

Notice that the functionĜ(x) increases monotonically with
increasingx, for small x. We next note that by choosingc
appropriately one can satisfy the condition~4.15! Ĝ(0)
@A3/2, required for self-consistency of the approximation
ignoring the effects of the inhomogeneous termZ(p) in the
infrared. In such a case one expects that at largerx the in-
crease of the coupling stops at a certain~small! x5x0, and
then the coupling starts decreasing to reach asymptotic
the perturbative resultĜ→1 ~see Fig. 9!. The existence of a
local maximum is characteristic of the effects of the phot
mass on the infrared behavior, to be contrasted with
monotonically decreasing situation in the case of a non-z
fermion mass~see Fig. 6!. We expect that in the general cas
when both photon and fermion masses are present, the
ning coupling will exhibit a local maximum at lowx when
the photon mass is larger than the fermion mass, while
behavior will be replaced by a monotonic decrease, in
case when the fermion mass is considerably larger than
photon one. This situation should be compared with the c
responding one in four-dimensional QCD in the presence
non-vanishing gluon and quark masses@14#.

Before closing we discuss briefly a physical situati
which could be qualitatively similar to the case of a cova
ant infrared cutoff in the form of a non-zero photon ma
discussed in this section. This situation has been argue
@11# to simulate finite-temperature effects, given that in su
a case the photon propagator acquires a longitudinal plas
mass term:

Dmn~p050,P→0,T!5
dm0d0n

P21M00
2

1 longitudinal parts,

~6.7!

FIG. 9. Running coupling~versus momentum! in the case of a
small photon mass. Note the bump at low momenta, which is ab
in the case of non-zero fermionic masses. The dashed part o
curve is conjectural at present, and can only be derived numeric
Continuous curves are the result of analytic studies.
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where, for simplicity, we restricted ourselves to the instan
neous approximation@1#, p050, and the plasmon mass ter

M00~T!5A2a ln 2T

p
. ~6.8!

We observe from the form~6.7! that the presence of the ma
term M00 behaves for lowT somewhat analogously~but not
identical to! a small photon cutoff massd.

Prompted by this observation we would like now to ma
some speculations regarding the low temperature effect
thed cutoff term in Eq.~6.5!. We hasten to emphasize that
discussion could at best only qualitatively correct, given t
a quantitative understanding would require a fini
temperature extension of the above analysis. Due to the
of Lorentz covariance in the respective propagators
analysis is far more complicated than the zero-tempera
one. However, when the temperatureT is sufficiently low, its
effects on the pole structure of the photon propagator ma
simulated by a covariant photon-mass cutoff, at least qu
tatively @11,28#. For this reason, we are motivated to exa
ine the effects ofd̂!1 on the low-temperature scaling of th
resistivity @4# r; the latter is defined as the inverse of t
conductivitys f , which expresses the response of the sys
to a change in an externally applied electromagnetic po
tial Am . Ohm’s law, in a gauge withA050, then, gives
@29,11,4#:

s f[r215
1

~P21p0
2!@11P~P,p0 ,T!#

U
P50

, ~6.9!

whereP(P,p0 ,T) denotes the dimensionless photon pol
ization used in this work. Following the analysis of@28# we
may assume for our discussion below that7

p0
2/a→M00

2 /a;d̂2;
2 ln 2

p
T. ~6.10!

From the discussion following Eq.~2.10! one immediately
sees that the resistivity, defined forP50,x25 d̂2, would be
given in terms of the running couplingĜ(p) by

r5 d̂2/Ĝ2~0,T!. ~6.11!

Using Eq.~6.5! in the limit x25 d̂2, one has

7The analysis of@28# is based on a real-time finite temperatu
approach. In such an approach the resistivity is defined in the in
red limit p0→0,P50 in the presence of a plasmon mass termM00

Eq. ~6.8! in the photon propagator; as noted in@28#, the way in
which the two mass scales (p0 ,P) approach 0 suffers from ambi
guities, related to physical Landau-damping processes; it is not
purpose here to resolve such issues.
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r;
2cT

p
ln 21

8

3p2 S p

2
21DA2T

p
ln 2. ~6.12!

The functionr is plotted in Fig. 10, versus a single-pow
scaling behavior of the form:r;T12x, with x small; the
latter is characteristic of certain theoretical condensed-ma
models@30#, and has been used in order to bound poss
deviations from the experimentally observed linear-T behav-
ior of the resistivity of high-temperature superconductors
optimal doping@4#.

We observe that, upon the appropriate choice of the in
gration constantc, the temperature dependence of Eq.~6.12!
for a low-temperature regime, accessible to experiment
hardly distinguishable from the single power scaling beh
ior.

VII. CONCLUSIONS AND OUTLOOK

In this work we have presented a study of chira
symmetry breaking in QED3, based on a system of couple
non-linear SD equations. The novel ingredient is the int
duction of a semi-amputated vertex, whose dynamics is g
erned by a suitably truncated SD equation of cubic ord
This allows for a self-consistent determination of the infrar
value of the effective charge, in the presence of infra
cutoffs provided by either the fermion mass or a covari
photon mass. The theory is characterized by a~gauge-
invariant! non-trivial infrared fixed-point, suggestive of non
Fermi-liquid behavior@15,11#.

The non-linear vertex equation furnishes highly no
trivial constraints among the infrared value of the effecti
coupling and the mass of the fermions. When these c
straints are combined with the fermion mass-gap equat
they select specific regions of the coupling space for wh
dynamical mass generation occurs. It will be interesting
study how these constraints are affected if one goes bey
the one-loop dressed approximation considered here.

From the physical point of view, we remark that dynam
cal fermion mass generation in QED3 is associated with su

a-

ur

FIG. 10. Plot of the resistivity~6.12! versus temperatureT ~in
units of a), for a low-temperature region~continuous curve!, and
comparison with the experimentally observed single-scaling~basi-
cally linear! behaviorT12x,x50.1 ~dashed curve!. The agreement
is very good for a regime of temperatures accessible to experim
8-14
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perconductivity @1,3#. In the relevant statistical models
whose low-energy effective theories are of the QED3 type,
the couplings depend on the doping concentration. Th
fore, the restrictions in the parameter space we have fo
above might impose restrictions in the allowed models.

An interesting feature of our approach is the fact that
infrared structure of the photon propagator, derived as a c
sistent solution of a SD equation, implied formally a confi
ing effective potential. The fact that this behavior occurs
the chiral-symmetry broken phase of the theory, appear
be in agreement with generic expectations that confinem
is a sufficient condition for chiral symmetry breaking.

An obvious next step in this program is the attempt
solve the coupled system of SD equations numerically, w
out the approximation of ignoring the effects of the inhom
geneous termZ(p) in the infrared. We remind the reader th
in the present work we have restricted the allowed value
the coupling such that this approximation was se
consistent. This, however, does not imply that solutions w
Z(p) not meeting these requirements are impossible; to
tablish or exclude their existence one should solve the wh
system of equations, which at present can only be done
merically. Such a numerical treatment will have the ad
os
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tional advantage of not resorting to the approximations m
to the kernel of the integral equations in order to conv
them into differential ones.

Furthermore, an analysis at finite temperatures will rev
whether our conjecture in Sec. VI, on the scaling behavio
the resistivity, is correct. As we have discussed there,
issue acquires great importance in view of very accurate
periments in high-temperature superconductors indicatin
basically linear scaling with temperatures of the resistivity
the normal phase~no fermion mass gap! of the system.

Finally, an extension of these ideas to the non-Abel
case appears as a challenge for the future, especially in v
of recent claims@3,31# that non-Abelian gauge symmetrie
might describe the dynamics of spin-charge separation
realistic antiferromagnetic condensed-matter systems@26#.
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