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Casimir energy of a compact cylinder under the condition«µ5c22

V. V. Nesterenko* and I. G. Pirozhenko†

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
~Received 27 July 1999; published 15 November 1999!

The Casimir energy of an infinite compact cylinder placed in a uniform unbounded medium is investigated
under the continuity condition for the light velocity when crossing the interface. As a characteristic parameter
in the problem the ratioj25(«12«2)2/(«11«2)25(m12m2)2/(m11m2)2<1 is used, where«1 andm1 are,
respectively, the permittivity and permeability of the material making up the cylinder and«2 andm2 are those
for the surrounding medium. It is shown that the expansion of the Casimir energy in powers of this parameter
begins with the term proportional toj4. The explicit formulas permitting us to find numerically the Casimir
energy for any fixed value ofj2 are obtained. Unlike a compact ball with the same properties of the materials,
the Casimir forces in the problem under consideration are attractive. The implication of the calculated Casimir
energy in the flux tube model of confinement is briefly discussed.@S0556-2821~99!06622-9#

PACS number~s!: 12.20.Ds, 03.70.1k, 12.40.2y
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I. INTRODUCTION

The calculation of the Casimir energy for boundary co
ditions given on the surface of an infinite cylinder has turn
out to be the most complicated problem in this field@1–6#. In
Ref. @3# an attempt was undertaken to predict the Casi
energy of a conducting cylindrical shell treating the cylind
as an intermediate configuration between a sphere and
parallel plates. Taking into account that the vacuum ener
of a conducting sphere and conducting plates have the o
site signs, the authors hypothesized that the Casimir en
of a cylindrical perfectly conducting shell should be ze
However, a direct calculation@1,2# showed that this energy i
negative as in the case of parallel conducting plates. T
calculation was repeated only in recent papers@4–6# by mak-
ing use of comprehensive methods, more simple but m
formal at the same time.

Thus in spite of its half-century history the Casimir effe
still remains a problem where physical intuition does n
work, and in order to reveal even the sign of the Casim
energy~i.e. the direction of the Casimir forces! it is neces-
sary to carry out a consistent detailed calculation.

The account for dielectric and magnetic properties of
media in the case of nonplanar interface proved to be a v
complicated problem in calculation of the Casimir ener
@7#. However if the light velocity is constant when crossin
the interface, then the calculation of the Casimir energy o
compact ball@8# or cylinder @4# is the same as that for con
ducting spherical or cylindrical shells, respectively. In su
calculations the expansion of the Casimir energy in terms
the parameterj25(«12«2)2/(«11«2)25(m12m2)2/(m1
1m2)2<1 is usually constructed, where«1 andm1 are, re-
spectively, the permittivity and permeability of the mater
making up the ball or cylinder, and«2 , m2 are those for the
surrounding medium. The same velocity of light,c, in both
the media implies that the condition«1m15«2m25c22 is
satisfied.
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The Casimir energy of a compact ball with the sam
speed of light inside and outside@8# and the Casimir energy
of a pure dielectric ball@9–11# turned out to be of the sam
sign: they are positive, and consequently the Casimir for
are repulsive.1 Moreover, the extrapolation of the result ob
tained under the condition«m5c22 to a pure dielectric ball
gives a fairly good prediction@8,9#.

For a compact cylinder under the condition«m5c22 it
has been found@4# that the linear term in the Casimir energ
expansion in powers ofj2 vanishes. Keeping in mind the
situation with a compact ball possessing the same spee
light inside and outside and a pure dielectric ball, it is tem
ing to check whether the Casimir energy of a compact c
inder under the condition«m5c22 is close to the Casimir
energy of a pure dielectric cylinder. However, in the case
a dielectric cylinder a principal difficulty arises, namely,
the integral representation for the corresponding spec
z-function ~or, in other words, for the sum of eigenfreque
cies! it is impossible to carry out the integration over th
longitudinal momentumkz . On the other hand, in Ref.@4#
the Casimir energy of a compact dielectric cylinder w
evaluated by a direct summation of the van der Waals in
action between individual fragments~molecules! of the cyl-
inder. By making use of the dimensional regularization
vanishing value for this energy was obtained. It is wo
noting that this procedure, having been applied to a p
dielectric ball@12#, gives the same result as the quantum fie
theory approach@10#. In view of all this, it is undoubtedly
interesting to elucidate whether the vacuum energy of
electromagnetic field for a compact cylinder with the con
tion «m5c22 vanishes exactly. Therefore the main goal
the present paper is, namely, to extend the analysis mad
@4# up to the fourth order inj. To this accuracy the Casimi
energy in question turns out to be nonvanishing. Our con
eration is concerned with zero temperature the

1We use the terms ‘‘pure dielectric ball’’ and ‘‘pure dielectr
cylinder’’ for the corresponding nonmagnetic configurations w
m15m251 and«1Þ«2.
©1999 The American Physical Society07-1
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only, and the main calculation ignores dispersion.
The layout of the paper is as follows. In Sec. II the fi

nonvanishing term proportional toj4 is calculated in the ex-
pansion of the Casimir energy of a compact cylinder in po
ers ofj2 under the condition«m5c22. This term proves to
be negative, and the Casimir forces seek to contract the
inder reducing its radius, unlike the repulsive forces act
on a compact ball under the same conditions. In Sec. III
Casimir energy in the problem at hand is calculated num
cally for several fixed values of the parameterj2 without
assuming the smallness ofj2, and the corresponding plot i
presented. In Sec. IV the implication of the obtained res
in the flux tube model~hadronic string! describing the quark
dynamics inside the hadrons is considered. In the Conclu
~Sec. V! some general properties of the Casimir effect
briefly discussed.

II. EXPANSION OF THE CASIMIR ENERGY
IN POWERS OF j2

We start with the formulas which allow us to construct t
expansion of the Casimir energy of a compact infinite cyl
der, possessing the same speed of light inside and outsid
powers of the parameterj2. The derivation of these formula
can be found in the papers cited below.

When using the mode-by-mode summation method@4# or
the zeta function technique@5# the Casimir energy per uni
length of a cylinder is represented as a sum of partial e
gies

E5 (
n52`

1`

En , ~2.1!

where

En5
c

4pa2E0

`

dy y ln$12j2@y„I n~y!Kn~y!…8#2%.

~2.2!

Here the condition

«1m15«2m25c22 ~2.3!
e
.
-
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is assumed to hold, withc being the velocity of light inside
and outside the cylinder~in units of that velocity in vacuum!.
The parameterj2 in Eq. ~2.2! is defined by the dielectric and
magnetic characteristics of the material of a cylinder an
surrounding medium

j25
~«12«2!2

~«11«2!2
5

~m12m2!2

~m11m2!2
. ~2.4!

The representation~2.1!, ~2.2! for the Casimir energy is
formal because the integral in Eq.~2.2! diverges logarithmi-
cally at the upper limit, and the sum overn in Eq. ~2.1! is
also divergent. These difficulties are removed by the follo
ing transformation of the sum~2.1!:

E5 (
n52`

1`

~En2E`1E`!5 (
n52`

1`

~En2E`!1 (
n52`

1`

E`

5 (
n52`

`

Ēn1E` (
n52`

`

n0, ~2.5!

where

Ēn5En2E` , n50,61,62 . . . , ~2.6!

E`5Enun→`52
cj2

16pa2E0

` z5dz

~11z2!3
. ~2.7!

A consistent treatment of the product of two infinitiesE`

3(n52`
` n0 leads to a finite result~see@4# and, especially,

@5#!

E`• (
n52`

1`

n05
cj2

16pa2
ln~2p!. ~2.8!

Thus

E5 (
n52`

`

Ēn1
cj2

16pa2
, ~2.9!

where
Ēn5Ē2n5
c

4pa2E0

`

dy yH ln@12j2sn
2~y!#1

j2

4

y4

~n21y2!3J , n51,2, . . . , ~2.10!

Ē05
c

4pa2E0

`

dy yH ln@12j2s0
2~y!#1

j2

4

y4

~11y2!3J , sn~y!5y„I n~y!Kn~y!…8. ~2.11!
The Casimir energy~2.9! is defined correctly because th
integrals in Eqs.~2.10! and ~2.11! exist and the sum in Eq
~2.9! converges@4#. It is this formula that should be ex
panded in powers ofj2. We confine ourselves with the firs
two terms in this expansion
E[E~j2!5E(2)j21E(4)j41O~j6!. ~2.12!

In the same way we have forĒn
7-2
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Ēn[Ēn~j2!5En
(2)j21En

(4)j41O~j6!, n50,1,2, . . . ,
~2.13!

where

E0
(2)52

c

4pa2E0

`

dy yFs0
2~y!2

y2

4~11y2!3G
5

c

4pa2
~20.490878!, ~2.14!

En
(2)52

c

4pa2E0

`

dy yFsn
2~y!2

y2

4~n1y2!3G ,

n51,2, . . . , ~2.15!
12500
E0
(4)52

c

8pa2E0

`

dy ys0
4~y!5

c

4pa2
~20.0860808!, ~2.16!

En
(4)52

c

8pa2E0

`

dy ysn
4~y!, n51,2, . . . . ~2.17!

The integrals in Eqs.~2.15! and ~2.17! containing Bessel
functions can be calculated numerically only forn,n0 with
a certain fixed value ofn0. For all the rest partial energie
with n>n0 one needs an analytic expression. We derive s
a formula using the uniform asymptotic expansion~UAE! for
the product of the modified Bessel functions@13#. Taking
into account all the terms up to then26 order we can write
lnH 12j2Fy
d

dy
„I n~ny!Kn~ny!…G2J 52j2

y4t6

4n2 F11
t2

4n2
~3230t2135t4!1

t4

4n4
~92256t211290t422037t611015t8!G

2j4
y8t12

32n4 F11
t2

2n2
~3230t2135t4!G2j6

y12t18

192n6
1OS 1

n8D , ~2.18!
to
-
i-

te
wheret51/A11y2.
Substituting this expression into Eq.~2.10! and integrat-

ing with the use of the formula@14#

E
0

`

dy yatb5
1

2

GS a11

2 DGS b2a21

2 D
GS b

2 D , ~2.19!

Re~a11!.0, ReS a2b13

2 D,1

one obtains@4#

Ēn5Ēn
asymp1OS 1

n6D , ~2.20!
Ēn
asymp5

c j2

4pa2 S 1023 j2

960n2
2

2822427344j21720j4

15482880n4 D .

~2.21!

From here we find the coefficientsEn
(2) andEn

(4) entering Eq.
~2.13!

En
(2)asymp5

c

4pa2 S 1

96n2
2

7

38040n4D , ~2.22!

En
(4)asymp52

c

4pa2 S 1

320n2
2

17

560•64n4D . ~2.23!

Now by a direct numerical calculation it is necessary
estimate the valuen5n0 starting from which the exact for
mulas ~2.15! and ~2.17! can be substituted by the approx
mate ones~2.22! and ~2.23!. In Ref. @4# it was shown that
when calculatingE(2) one can begin to use the approxima
formula fromn056
7-3
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E(2)5E0
(2)12 (

n521

5

En
(2)12(

n56

`

En
(2)asymp1

c

16pa2
ln~2p!5E0

(2)12 (
n521

5

En
(2)1

c

4pa2 S 1

48 (
n56

`
1

n2
2

7

19020(
n56

`
1

n4D
1

c

16pa2
ln~2p!5

c

4pa2
~20.49087810.02763810.00377820.00000710.459469!5

c

4pa2
~0.000000!. ~2.24!

This result obtained in@4# was interpreted there as the vanishing of the Casimir energy of a compact cylinder und
condition ~2.3!. However, as it will be shown below this is not the case.

Table I shows that when calculating the coefficientE(4) in Eq. ~2.13!, one can also taken056. As a result we obtain for
this coefficient

E(4)5E0
(4)12(

n51

5

En
(4)12(

n56

`

En
(4)asymp5E0

(4)12(
n51

5

En
(4)2

c

4pa2 S 1

160 (
n56

`
1

n2
2

17

560•32 (
n56

`
1

n4D
5

c

4pa2
~20.086080820.00831520.001133410.0000018!52

c

4pa2
0.095528. ~2.25!
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Thus, the Casimir energy of a compact cylinder posse
ing the same speed of light inside and outside does not
ish and is defined up to thej4 term by the formula

E~j2!52
cj4

4pa2
0.0955275520.007602

cj4

a2
.

~2.26!

In contrast to the Casimir energy of a compact ball@8# with
the same properties

Eball.
3

64a
cj250.046875

cj2

a
~2.27!

the Casimir energy of a cylinder under consideration turn
out to be negative. Consequentially, the Casimir forces st
to contract the cylinder. The numerical coefficient in E
~2.26! proved really to be small, for example, in comparis
with the analogous coefficient in Eq.~2.27!. Probably it is a
manifestation of the vanishing of the Casimir energy o
pure dielectric cylinder noted in the Introduction.

TABLE I. The dimensionless coefficientsE n
(4)5(4pa2/c)En

(4)

and E n
(4)asymp 5 (4pa2/c)En

(4)asymp calculated according to Eqs
~2.17! and ~2.23!, respectively.

n E n
(4) E n

(4)asymp

1 0.002747 0.003599
2 0.000752 0.000811
3 0.000341 0.000353
4 0.000193 0.000197
5 0.000124 0.000125
6 0.000086 0.000087
12500
s-
n-

d
e

.

III. NUMERICAL CALCULATION OF THE CASIMIR
ENERGY FOR ARBITRARY j2

Equations~2.9!–~2.11! obtained in the preceding sectio
enable one to calculate the Casimir energyE(j2) numeri-
cally, without making any assumptions concerning the sm
ness of the parameterj2. Comparing the results obtained b
the exact formula~2.10! and by the approximate one~2.21!

we again find the valuen5n0 starting from whichĒn
asymp

reproducesĒn precisely enough. In the general case there
its own n0 for each value ofj2. Obviously, one should ex
pect a substantial deviation from Eq.~2.26! only for j2.1.
Moreover the main contribution into the Casimir energy d

termined by the sum~2.9! is given by the termĒ0 which is
evaluated now exactly using Eq.~2.11! without expanding in
powers ofj2 as it has been done in the preceding section

The results of the calculations accomplished in this w
for E(j2) are presented in Fig. 1~solid curve!. Here the
Casimir energy defined by Eq.~2.26! as a function ofj2 is

FIG. 1. The dimensionless Casimir energyE(j2)
5(4pa2/c)E(j2) as a function of the parameterj2. The solid
curve is obtained without assuming the smallness ofj2 ~the exact
result!; the dashed curve presents the approximate equation~2.26!.
7-4
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CASIMIR ENERGY OF A COMPACT CYLINDER UNDER . . . PHYSICAL REVIEW D 60 125007
also plotted~dashed curve!. Whenj251 we get the Casimir
energy of a perfectly conducting cylindrical shell@4#. If we
used for its calculation the approximate formula~2.26!, we
should obtain for the dimensionless energyE5(4pa2/c)E
the value20.0955 instead of20.1704. Thereby, the ap
proximate formula~2.26! at this point gives a considerab
error of ;70%. At the same time the analogous formu
~2.27! for a compact ball atj251 gives the Casimir energ
of a perfectly conducting spherical shell with a few perce
error @8,15#.

IV. IMPLICATION OF THE CALCULATED
CASIMIR ENERGY IN THE FLUX TUBE

MODEL OF CONFINEMENT

The constancy condition for the velocity of gluonic fie
when crossing the interface between two media is used
example, in a dielectric vacuum model~DVM ! of quark con-
finement@16–18#. This model has many elements in com
mon with the bag models@19#, but among the other differ
ences, in DVM there is no explicit condition of the fie
vanishing outside the bag. It proves to be important for c
culation of the Casimir energy contribution to the hadro
mass in DVM. The point is that in the case of boundar
with nonvanishing curvature there happens a consider
~not full, however! mutual cancellation of the divergence
from the contributions of internal and external~with respect
to the boundary! regions. If only the field confined inside th
cavity is considered, as in the bag models@20–22#, then
there is no such a cancellation, and one has to remove s
divergences by means of renormalization of the phenome
logical parameter in the model defining the QCD vacu
energy density.

From a physical point of view the vanishing of the field
its normal derivative precisely on the boundary is an uns
isfactory condition, because due to quantum fluctuations
impossible to measure the field as accurately as desired
certain point of the space@23#.

In the DVM there is also considered a cavity that appe
in the QCD vacuum when the invariantFmnFmn;E22B2

exceeds a certain critical value (E andB are the color fields!.
Inside the cavity the gluonic field can be treated as an A
lian field in view of the asymptotic freedom in QCD. In th
approach it is assumed that in the QCD vacuum~outside the
cavity! the dielectric constant tends to zero«2→0 while the
magnetic permeability tends to infinitym2→` in such a way
that the relativistic conditione2m251 holds. Inside the cav
ity e15m151. As it was shown in the present paper for
compact cylinder and in Ref.@8# for a compact ball, in cal-
culation of the Casimir energy the condition«1m15«2m2
proves to be essential, and it is possible to take the limit«2
→0, m2→` in the resulting formula puttingj25(«1
2«2)2/(«11«2)25(m12m2)2/(m11m2)251.

Hence, in the DVM as a vacuum energy of gluonic fie
one should take the Casimir energy of a perfectly conduc
infinitely thin shell having the shape either of a sphere,
expanded ellipsoid, or cylinder. In the last case we deal w
the flux tube model of confinement@17,24,25# in which a
heavy quark and antiquark are considered to be cou
12500
t

or

l-

s
le

me
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t-
is
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-

g
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d

through a cylindrical cavity~flux tube! in the QCD vacuum.
Obviously, in the flux tube model of confinement the C
simir energy of a compact cylinder calculated under the c
dition e1m15e2m251 should be regarded as a quantum c
rection to the classical string tension. To estimate t
correction, it is necessary to define the value of the radiua
of the flux tube. Without pretending at high accuracy w
shall takea of the same order as the critical radiusRc in the
hadronic string model.2 At the distances between the quar
smaller thanRc the flux tube model has no sense. In t
Nambu-Goto string modelRc is determined by the string
tensionM0

2 @26,27#

Rc
25

p

6M0
2

. ~4.1!

Hence, we obtain the following estimation for the Casim
energy contribution into the string tension in the flux tu
model

U8E

M0
2U58

7.6•1023

a2M0
2

58
7.6•1023

Rc
2M0

2
.0.1. ~4.2!

The multiplier 8 makes an account for the contribution of t
eight gluonic field components into the string tension. Th
unlike the conclusion made in~1988! @17#, the quantum cor-
rection to the classical string tension, determined by the g
onic field confined in the flux tube, turned out to be essen
(;10%). This fact should be taken into account in detai
examination of this model.

V. CONCLUSION

The Casimir energy of a compact cylinder under the c
dition «m5c22 does not vanish, but it is negative with th
absolute value increasing asj4 for small j2. The Casimir
forces seek to contract the cylinder.

The calculation of the vacuum energy for the bounda
conditions of different geometries both with the account
the properties of the materials and without such accoun
enables one to make the following general conclusion. I
concrete problem the direction of the Casimir forces is
termined only by the geometry of the boundaries. Dielec
and magnetic properties of the media cannot change the
rection of these forces.

This conclusion is confirmed by the calculation of th
Casimir effect for parallel conducting plates, for a sphere a
cylinder, these boundaries being considered in the vacuum
dividing the materials with different dielectric and magne
properties. Even a dilute dielectric cylinder mentioned abo

2In principle the radius of the gluonic tube may be deduced
minimizing the linear density of a total energy in this model, t
QCD vacuum energy being considered to be negative@25#. How-
ever in this casea is expressed through the phenomenological
rameter, the flux of the gluonic field, that in its turn requires
definition.
7-5
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does not violate this pattern. Maybe the Casimir forces
this case vanish in fact, but there are no indications that t
can become repulsive.

The account for the dispersion probably does not cha
this inference. The calculation of the Casimir energy carr
out in @28# for a compact ball with« andm dependent on the
frequencies of electromagnetic oscillationsv confirms this.
In Ref. @29# the Casimir forces affecting a compact cylind
when«(v)m(v)5c22 were investigated. To remove the d
vergences the authors introduced a double cutoff over
frequencyv0 and over the angular momentumn0. The finite
s.

n-
,’

A

.

l
5

12500
n
y

e
d

e

answer proved to be very involved and depended on
cutoff parameters, but the Casimir forces are attractive a
our consideration. However there are other points of vi
concerning the role of dispersion in the Casimir effect@30–
33#.
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