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Casimir energy of a compact cylinder under the conditionep=c~?
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The Casimir energy of an infinite compact cylinder placed in a uniform unbounded medium is investigated
under the continuity condition for the light velocity when crossing the interface. As a characteristic parameter
in the problem the ratig?= (e, —&,)%/(e1+ &5)%= (11— )% (1 + m2)?<1 is used, where, and u, are,
respectively, the permittivity and permeability of the material making up the cylindee aadd «, are those
for the surrounding medium. It is shown that the expansion of the Casimir energy in powers of this parameter
begins with the term proportional &#*. The explicit formulas permitting us to find numerically the Casimir
energy for any fixed value af? are obtained. Unlike a compact ball with the same properties of the materials,
the Casimir forces in the problem under consideration are attractive. The implication of the calculated Casimir
energy in the flux tube model of confinement is briefly discusg88556-282(199)06622-9

PACS numbeps): 12.20.Ds, 03.706:k, 12.40-y

[. INTRODUCTION The Casimir energy of a compact ball with the same
speed of light inside and outsidi®] and the Casimir energy
The calculation of the Casimir energy for boundary con-of a pure dielectric bal[9-11] turned out to be of the same
ditions given on the surface of an infinite cylinder has turnedsign: they are positive, and consequently the Casimir forces
out to be the most complicated problem in this figld-6]. In  are repulsive. Moreover, the extrapolation of the result ob-
Ref. [3] an attempt was undertaken to predict the Casimitained under the conditioau=c 2 to a pure dielectric ball
energy of a conducting cylindrical shell treating the cylindergives a fairly good predictiofi,9].
as an intermediate configuration between a sphere and tWo For 3 compact cylinder under the conditiep=c 2 it

parallel plates. Taking into account that the vacuum energiegas peen founfi] that the linear term in the Casimir energy
of a conducting sphere and conducting plates have the OPPRypansion in powers of? vanishes. Keeping in mind the

site signs, the authors hypothesized that the Casimir energyy .ation with a compact ball possessing the same speed of

of a cylindrical perfectly conducting shell should be Zero. jinht insi ; - - P

. ) : ~“light inside and outside and a pure dielectric ball, it is tempt-
However, a d_|rect calculaticiil, 2] showed that .th's energy Is .ing to check whether the Casimir energy of a compact cyl-
negative as in the case of parallel conducting plates. This

calculation was repeated only in recent pagédrst] by mak- inder under the conditio u=c™“ is close to the Casimir

ing use of comprehensive methods, more simple but mor&nergy of a pure dielectric cylinder. However, in the case of
formal at the same time ’ a dielectric cylinder a principal difficulty arises, namely, in

Thus in spite of its half-century history the Casimir effect th€ integral representation for the corresponding spectral
still remains a problem where physical intuition does not¢-function (or, in other words, for the sum of eigenfrequen-
work, and in order to reveal even the sign of the Casimircied it is impossible to carry out the integration over the
energy(i.e. the direction of the Casimir forcedt is neces- longitudinal momentunk,. On the other hand, in Ref4]
sary to carry out a consistent detailed calculation. the Casimir energy of a compact dielectric cylinder was

The account for dielectric and magnetic properties of theevaluated by a direct summation of the van der Waals inter-
media in the case of nonplanar interface proved to be a vergction between individual fragmentsiolecules of the cyl-
complicated problem in calculation of the Casimir energyinder. By making use of the dimensional regularization, a
[7]. However if the light velocity is constant when crossing Vanishing value for this energy was obtained. It is worth
the interface, then the calculation of the Casimir energy of 410ting that this procedure, having been applied to a pure
compact bal[8] or cylinder[4] is the same as that for con- dielectric ball[12], gives the same resqlt as 'the quantum field
ducting spherical or cylindrical shells, respectively. In suchtheory approacti10]. In view of all this, it is undoubtedly
calculations the expansion of the Casimir energy in terms ofteresting to elucidate whether the vacuum energy of the
the parameter£2=(e,—e,)%/(e1+£2)%= (1 — o) (1 glectromagnehc f[eld for a compact cylinder with t.he condi-
+ uy)?<1 is usually constructed, wheeg and ., are, re-  tion spu=c? vamshes exactly. Therefore the main goal of'
spectively, the permittivity and permeability of the material the present paper is, namely, to extend the analysis made in
making up the ball or cylinder, ans,, u, are those for the [4] up to the fourth order if. To this accuracy the Casimir
surrounding medium. The same velocity of light,in both ~ €nergy in question turns out to be nonvanishing. Our consid-
the media implies that the conditiom u;=e,u,=c 2 is  eration is concerned with zero temperature theory
satisfied.

We use the terms “pure dielectric ball” and “pure dielectric
*Email address: nestr@thsundl.jinr.ru cylinder” for the corresponding nonmagnetic configurations with
TEmail address: pirozhen@thsunl.jinr.ru m1=pmr=1 ande;#e,.
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only, and the main calculation ignores dispersion. is assumed to hold, with being the velocity of light inside
The layout of the paper is as follows. In Sec. Il the firstand outside the cylindém units of that velocity in vacuum

nonvanishing term proportional & is calculated in the ex- The parameteé? in Eq. (2.2) is defined by the dielectric and

pansion of the Casimir energy of a compact cylinder in pow-magnetic characteristics of the material of a cylinder and a

ers of £ under the conditior x=c~ 2. This term proves to surrounding medium

be negative, and the Casimir forces seek to contract the cyl- ) )

inder reducing its radius, unlike the repulsive forces acting 522(81_82) _(pa—po) (2.4

on a compact ball under the same conditions. In Sec. Il the (e1t82)% (1t pp)? .

Casimir energy in the problem at hand is calculated numeri-

cally for several fixed values of the paramet&r without The representatiof2.1), (2.2 for the Casimir energy is

assuming the smallness &f, and the corresponding plot is formal because the integral in E@.2) diverges logarithmi-

presented. In Sec. IV the implication of the obtained result$ally at the upper limit, and the sum overin Eq. (2.1) is

in the flux tube mode{hadronic string describing the quark glso divergent. These difficulties are removed by the follow-

dynamics inside the hadrons is considered. In the Conclusioffd transformation of the surt2.1):

(Sec. VJ some general properties of the Casimir effect are +oo

briefly discussed.

+ o0

+
E= >, (E,—E.+E.)= (E,—E.)+ > E.
— o0 n=—ow

n=—ox n=

Il. EXPANSION OF THE CASIMIR ENERGY w o
IN POWERS OF &2 S E+E. S n° (2.5
n o] ] .

We start with the formulas which allow us to construct the " A
expansion of the Casimir energy of a compact infinite cylin-where

der, possessing the same speed of light inside and outside, in

powers of the parametéf. The derivation of these formulas E,=E,—E., n=0,x£1*2..., (2.6
can be found in the papers cited below.
When using the mode-by-mode summation metfdicbr c&? (= Z°dz
the zeta function techniqué] the Casimir energy per unit E..=Enln—x=— 2f 2,3 2.7
. . . 167a“J/o (1+2z°)
length of a cylinder is represented as a sum of partial ener-
gies
. A consistent treatment of the product of two infinities,
x3%__.n° leads to a finite resultsee[4] and, especially,
E= > E,, @Y (5 4] pecialy
n=-—ow
+ o0 2
c
where E.- > n'= ¢ ~In(2). 2.9
n=—o 6mra
C o0
B [ Cay vy Ko Thas
4acJo
(22) < sz
= + .
Here the condition E == E 167a? 2.9
81#1:82,&2:072 (23) where
|
o c - 2 y4
— — _ g2 2 > s —
En E—n 477a2fo dyy In[l g O-n(y)]"' 4 (n2+y2)3 1 n 1121 DR} (2'10
— g A
Eo= fd In[1—£203(y) ]+ ———1, =y(I,(y)K . 2.1
=2, yy[ [1-&os(y)]+7 (1+y2)3] on(y)=y(a(y)Kn(y)) (2.11
|
The Casimir energy2.9) is defined correctly because the E=E(&2)=E@E+EM® & +0(£5). (2.12

integrals in Eqs(2.10 and(2.11) exist and the sum in Eq.
(2.9 converges[4]. It is this formula that should be ex-
panded in powers of?. We confine ourselves with the first

two terms in this expansion In the same way we have fEn
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=EN()=EPE+EW+0(£%, n=01.2...,

(2.13

where

c (= y?

E@— _ fd 2(y)—

° ama2lo yy{%(y) 4(1+y2)3]
(2.14

£(@)_ f >

n dma yy{an(y) 4(n+y2)

n=12,..., (2.15

2

d 2 4t6
|n{1—g{yd—y(|n<ny>|<n(ny)> }=—fzi7

t
1+ —(3— 30t2+35t%) + —(9- 256t2+1290t*— 2037t®+ 1015t%)
4n 4n
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f y Yo Y)_

87ra

4) _
EE])_

4y), n=1.2,.... (2.17

The integrals in Egs(2.195 and (2.17 containing Bessel
functions can be calculated numerically only foxng with

a certain fixed value ohgy. For all the rest partial energies
with n=n, one needs an analytic expression. We derive such
a formula using the uniform asymptotic expans{\E) for

the product of the modified Bessel functiofk3]. Taking
into account all the terms up to the © order we can write

4

8 12 2 12,18
yBt t y1% 1
— & 1+ —(3—30t?+35t%) |- &° —1, (2.18
¢ 32n* 2n2( )|~¢ 192n° nd
|
wheret=.1/v_1+y2.- o _ —ovmg CE° [10-3 & 28224-7344£2+720&*

Substituting this expression into E.10 and integrat- ESSYMR= > o 2
ing with the use of the formulfl4] 4ma®\ 960n 15482880

a+1 ( )
r r
1
fdyyatﬁ—j B , (219
(%)
%a—ﬂ+3
Re(a+1)>0, Rg———|<1
one obtaing4]
— 1
E,=E3Y™P+ O ) (2.20
n®

(2.29

From here we find the coefficienE? andE(* entering Eq.

(2.13

c 1 7
E{2asymi - : 2.2
A 47-ra2<96n2 3804On4) 223
" 47a®\ 320n% 560 64n*

Now by a direct numerical calculation it is necessary to
estimate the value=n, starting from which the exact for-
mulas(2.15 and (2.17) can be substituted by the approxi-
mate oneg2.22 and (2.23. In Ref.[4] it was shown that
when calculatinge® one can begin to use the approximate
formula fromny=6
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5 © 5 © ©

c c 1 1 7 1
@_g@ 4 @ (2)asymp,_ _g@4 @ - __ 0 5=
E@=E( 2n;lEn 226 E¢ . In(27)=E{ zn;lEn 1| 48 2 190202)6 v

6ma’®

C C c
5In(2m) = (—0.490878-0.027638- 0.003778-0.00000# 0.459469= Ara?
Ta

+
16ma 47ra?

(0.000000. (2.29

This result obtained 4] was interpreted there as the vanishing of the Casimir energy of a compact cylinder under the
condition(2.3). However, as it will be shown below this is not the case.

Table | shows that when calculating the coefficigft) in Eq. (2.13), one can also take,=6. As a result we obtain for
this coefficient

5 © 5 o0

c 1 1 17 41
(4)_ £(4) (4) (4)yasymp_ =(4) 4)_ N S -
E@=E{ +2n§=)1 E( +2n§=)6 E¢ E +2n; E¢ p— 160;:‘,6 p 560-3226 v
C C
= (—0.0860808- 0.008315- 0.0011334- 0.0000018= — 0.095528. (2.25
47ra? 47ra?

Thus, the Casimir energy of a compact cylinder possess- Ill. NUMERICAL CALCULATION OF THE CASIMIR
ing the same speed of light inside and outside does not van- ENERGY FOR ARBITRARY ¢£2
ish and is defined up to th&* term by the formula

Equations(2.9—(2.11) obtained in the preceding section

ot ceh enable one to calculate the Casimir enefft?) numeri-
E(&%)=— 50.0955275- —0.007602—-. cally, without making any assum_ptions concerning the small-
4ma a ness of the parametéf. Comparing the results obtained by

(2.26  the exact formuld2.10 and by the approximate or(@.21)
we again find the valua=n, starting from whichgj*>'™P
In contrast to the Casimir energy of a compact b&]lwith _reproducefn precisely enough. In t.he general case there is
the same properties its own ng for ez_;lch val_ue_ of~. Obviously, one should ex-
pect a substantial deviation from E@.26) only for £2=1.
Moreover the main contribution into the Casimir energy de-
3 cé? termined by the sun2.9) is given by the ternk, which is
@Cf :0-046875§ (2.27) evaluated now exactly using E@.11) without expanding in
powers of&? as it has been done in the preceding section.
The results of the calculations accomplished in this way

the Casimir energy of a cylinder under consideration turnedor E(¢°) are presented in Fig. solid curve. Here the
out to be negative. Consequentially, the Casimir forces striv€asimir energy defined by E¢2.26 as a function of? is
to contract the cylinder. The numerical coefficient in Eq.

(2.26 proved really to be small, for example, in comparison 0.0
with the analogous coefficient in ER.27). Probably it is a
manifestation of the vanishing of the Casimir energy of a
pure dielectric cylinder noted in the Introduction.

Epan=

TABLE I. The dimensionless coefficients"= (47a?/c)E{"
and £(M3YMP = (47a%/c)E(M3YMP calculated according to Egs.
(2.17 and(2.23, respectively.

-0.0955

n 85]4) £g4)asymp
—0.1704
1 0.002747 0.003599
2 0.000752 0.000811 —o2l 8(52)
3 0.000341 0.000353
4 0.000193 0.000197 FIG. 1. The dimensionless Casimir energy(£?)
5 0.000124 0.000125 =(4ma®/c)E(&?) as a function of the parametef. The solid
6 0.000086 0.000087 curve is obtained without assuming the smallnesg?fthe exact

resul); the dashed curve presents the approximate equé2i@eg).
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also plotteddashed curve When&?=1 we get the Casimir  through a cylindrical cavityflux tube in the QCD vacuum.
energy of a perfectly conducting cylindrical shedl]. If we  Obviously, in the flux tube model of confinement the Ca-
used for its calculation the approximate formfa26, we  simir energy of a compact cylinder calculated under the con-
should obtain for the dimensionless enedy (47a’/c)E  dition e;uq= €e,u,=1 should be regarded as a quantum cor-
the value —0.0955 instead of-0.1704. Thereby, the ap- rection to the classical string tension. To estimate this
proximate formula(2.26) at this point gives a considerable correction, it is necessary to define the value of the radius
error of ~70%. At the same time the analogous formulaof the flux tube. Without pretending at high accuracy we
(2.27 for a compact ball at>=1 gives the Casimir energy shall takea of the same order as the critical radi@sin the
of a perfectly conducting spherical shell with a few percenthadronic string modeél.At the distances between the quarks
error[8,15]. smaller thanR; the flux tube model has no sense. In the
Nambu-Goto string modeR. is determined by the string

: 2
IV. IMPLICATION OF THE CALCULATED tensionMj (26,27

CASIMIR ENERGY IN THE FLUX TUBE
MODEL OF CONFINEMENT R2 m (4.1)

cT 2
The constancy condition for the velocity of gluonic field 6Ma

when crossing the interface between two media is used, f
example, in a dielectric vacuum mod&VM) of quark con-
finement[16—18. This model has many elements in com-
mon with the bag modelgl9], but among the other differ-

cﬁence, we obtain the following estimation for the Casimir
energy contribution into the string tension in the flux tube
model

ences, in DVM there is no explicit condition of the field 8E 76102 76103
vanishing outside the bag. It proves to be important for cal- log —g ~0.1. (4.2
culation of the Casimir energy contribution to the hadronic M2 a’M3 R2M3

mass in DVM. The point is that in the case of boundaries

with nonvanishing curvature there happens a considerabl€he multiplier 8 makes an account for the contribution of the
(not full, howevej mutual cancellation of the divergences eight gluonic field components into the string tension. Thus,
from the contributions of internal and exterralith respect unlike the conclusion made 11988 [17], the quantum cor-

to the boundaryregions. If only the field confined inside the rection to the classical string tension, determined by the glu-
cavity is considered, as in the bag modg&-22, then  onic field confined in the flux tube, turned out to be essential
there is no such a cancellation, and one has to remove sonfe-10%). This fact should be taken into account in detailed
divergences by means of renormalization of the phenomenaxamination of this model.

logical parameter in the model defining the QCD vacuum

energy density. V. CONCLUSION

From a physical point of view the vanishing of the field or
its normal derivative precisely on the boundary is an unsat- The Casimir energy of a compact cylinder under the con-
isfactory condition, because due to quantum fluctuations it iglition e x=c~2 does not vanish, but it is negative with the
impossible to measure the field as accurately as desired atadsolute value increasing @ for small £2. The Casimir
certain point of the spade3]. forces seek to contract the cylinder.

In the DVM there is also considered a cavity that appears The calculation of the vacuum energy for the boundary
in the QCD vacuum when the invariaft, F*"~ E2—B?  conditions of different geometries both with the account for
exceeds a certain critical valuk @ndB are the color fields  the properties of the materials and without such accounting
Inside the cavity the gluonic field can be treated as an Abeenables one to make the following general conclusion. In a
lian field in view of the asymptotic freedom in QCD. In this concrete problem the direction of the Casimir forces is de-
approach it is assumed that in the QCD vacuuside the termined only by the geometry of the boundaries. Dielectric
cavity) the dielectric constant tends to zerg—0 while the  and magnetic properties of the media cannot change the di-
magnetic permeability tends to infinigy,— % in such away rection of these forces.
that the relativistic conditior,u,=1 holds. Inside the cav- This conclusion is confirmed by the calculation of the
ity e;=u,=1. As it was shown in the present paper for a Casimir effect for parallel conducting plates, for a sphere and
compact cylinder and in Ref8] for a compact ball, in cal- cylinder, these boundaries being considered in the vacuum or
culation of the Casimir energy the conditienu,;=e,u, dividing the materials with different dielectric and magnetic
proves to be essential, and it is possible to take the kimit properties. Even a dilute dielectric cylinder mentioned above
—0, up—o in the resulting formula puttingé?= (g,

—£5)%(e1+87)°= (1~ p2)? (1 + pp)*=1.

Hence, in the DVM as a vacuum energy of gluonic field 2y principle the radius of the gluonic tube may be deduced by
one should take the Casimir energy of a perfectly conductingninimizing the linear density of a total energy in this model, the
infinitely thin shell having the shape either of a sphere, 0lQCD vacuum energy being considered to be negd@&. How-
expanded ellipsoid, or cylinder. In the last case we deal witlever in this case is expressed through the phenomenological pa-
the flux tube model of confinemefl7,24,23 in which a  rameter, the flux of the gluonic field, that in its turn requires a
heavy quark and antiquark are considered to be coupledefinition.
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does not violate this pattern. Maybe the Casimir forces imanswer proved to be very involved and depended on the

this case vanish in fact, but there are no indications that thegutoff parameters, but the Casimir forces are attractive as in

can become repulsive. our consideration. However there are other points of view
The account for the dispersion probably does not changeoncerning the role of dispersion in the Casimir effe3—

this inference. The calculation of the Casimir energy carried33].

out in[28] for a compact ball witke and . dependent on the

frequencies of eIecFro_magnetlc oscn_latlomsconflrms th_|s. ACKNOWLEDGMENTS
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