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The AdS-CFT correspondence suggests that the Wilson loop of the Mrgauge theory withV=4
supersymmetry in four dimensions is described by a minimal surface in,AB5 We examine various
aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is
a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet
divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal
surface in AdSXS® gives a solution of the equation. We also discuss the zigzag symmetry of the loop
operator. In the\V'=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the
scalar fields in the supermultiplet. We will show how this is realized for the minimal surface.
[S0556-282(99)08718-4
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[. INTRODUCTION are solved by the master field of the theory. The only case
where the loop equation has been explicitly solved is two
The remarkable duality between four dimensional superdimensions, where the theory is solub8.

symmetric gauge theories and type IIB string theory on an The loop equation can also be derived formally in the
AdS; X S° background 1] has been studied extensively over continuum field theory. It has been shown that the perturba-
the past year and a half. This conjecture is difficult to test. Adive expansion of the theory yields a solution to the loop
with many dualities, it relates a weakly coupled string theoryequation. This is also the case for supersymmetric theories.
to a strongly coupled gauge theory. Weakly coupled stringrhus, although there is no formulation of supersymmetric
theory is well defined, even though there are technical probtheories on the lattice, we assume that those theories still
lems in doing calculations with Ramond-Ramond back-satisfy a largeN loop equation. Since this equation holds for
grounds. But how can one compare the results to the gaugdl couplings, we can use it for strong coupling as well. One
theory, which is strongly coupled? Even if there is no phas@f the goals of this paper is to check if the Ad&nsatz for
transition in going from weak to strong coupling in the gaugethe expectation value of the Wilson loop operator satisfies
theory, there is little that can be said about the stronglyfhe loop equation. To the extent that we were able to reliably
coupled gauge theory. By virtue of nonrenormalization theo€Stimate properties of string in AgSthe loop equation is
rems, it is possible to calculate some quantities in perturbaSatisfied. However, we were unable to test them in all inter-
tion theory and extrapolate to strong coupling. Such tech€Sting cases. In the course of our investigation we will also
niques, however, raise the question of whether thesg,am new facts about Wilson loops and strings in anti—de
comparisons can be regarded as strong evidence for the co itter sp.ace(Ads). .
jecture or whether the result is dictated by symmetry alone, W€ discuss the best understood and most studied case of

Gauge theory without fermions has a nonperturbative forthe AdS conformal field theoryCFT) correspondence be-

mulation on the lattice. This allows one to define, if not Ween type IIB superstring on AS S* and A’=4 super
compute, quantities at arbitrarily large bare couplings. The'@ng-Mills theory with gauge group S®) in four dimen-
lattice formulation of gauge theory enables one to derive £'0NS- We will concentrate on the case with Euclidean signa-
rigorous form of the loop equatioi], for the largeN limit ture metric. Let us review some basic facts about this

i, 1
of the theory. These equations are satisfied on the lattice arffH@!ity: , o
The near horizon geometry dfD3-branes is given by the

metric
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ds? U2 3 mental representation of the gauge group of the remaining
— E dX~d XH branes. Thus, for large, the expectation value of the Wilson
a VamrggN =0 loop is related to the classical action of the string, with ap-

propriate boundary conditions. To the leading ordex inve

du? :
+Jama.N S+ JAmaNdO2 _ can ignore the effect_ of the Ramond-Ramond flux ar_ld_ use
4mgsN u? 4mgsNdQds, (4.1 the Nambu-Goto action, namely, the area of the minimal

surface:
wheregs is the string coupling constant and the string ten-
sion is (2ra’) . The background containdl units of doido,
Ramond-Ramond flux. Th& and U are coordinates on =f ——Vg
ZWa’\/X

AdS;, and dQZ is the metric on Swith unit radius. The
curvature radii of both AdS and S are given by f do,do,

(4mgN) s wherea’ =12. We will find it more convenient = Vdet a9, X apX +3,Y a5Y). (1.3

2
to rescale the coordinate§* by 1//4mwg N and introduce 2myY

new coordinatesy'=6'/U (i=1,...,6), where ¢' are the = : o
coordinates on Band 62=1. The metric in this coordinate Sccause of th& = factor, this area is infinite. After regu-
svstem is ' larizing the divergence, the infinite part was identified as due
y to the mass of th&V boson and subtractd®]. Taking two
42 3 6 parallel lines(with opposite orientationas a quark-antiquark
2 AaNv-2 mg XH 4 i Jvi pair, the remaining finite part defines the quark-antiquark
a’ AmgsNY ,;o dxrdx .21 dYidy'. potential. Such calculations were used to study the phases of

(1.2 the /=4 super Yang-Mills theory and to demonstrate con-
finement in nonsupersymmetric generalizatiphs,12.
It is interesting to note that AdX S° is conformal to flati 1° We will argue below that the correct action of the Wilson
if the radii of AdS; and S are the same. In this coordinate loop is not the area of the minimal surface, but the Legendre

system, the boundary of AdSs mapped to the origiry' transform of it with respect to some of the loop variables.
=0 of RE. The reason is that some of the string coordinates satisfy Neu-

The gauge theory couplingy,, and the string coupling; ~ Mann conditions rather than Dirichlet conditions. For a cer-

are related by?,,=4mg,. We are interested in the limit of tain class of loops, this Legendre transform exactly removes
N— o while keeping the 't Hooft couplin@zg%MN finite  the divergent piece from the area. As a result, the expectation

[6]. After taking the largeN limit, we will consider the re- V&lues of such loops are finite. a _
gion A>1, where the curvature is small compared to the 1he @ppropriate Wilson loop fok'=4 super Yang-Mills

string scale and stringy excitations are negligible. In thisth€0rY is an operator of the forsuppressing all fermion

case, the supergravity approximation is reliable. Accordingi€lds for the moment
to the AdS-CFT correspondence, every supergravity field has
a corresponding local operator in the gauge theory. Correla- W/[C]= iTrPexp
tors of local operators are given by the supergravity action N
for fields with point sources on the boundary of Ad%,8].
In the classical limit one just solves the equations of motiorwhereA,, are the gauge fields anll; are the six scalars in
with such sources. the adjoint representation, ar@ represents the loop vari-
An interesting set of nonlocal operators in a gauge theorgbles(x*(s),y'(s)). Here(x*(s)) determines the actual loop
is composed of Wilson loops. It was proposed 10 that  in four dimensions(y'(s)) can be thought of as the extra six
the Wilson loop is defined by an open string ending on thecoordinates of the ten-dimension&f=1 super Yang-Mills
loop at the boundary of AdS In the classical limit, the theory, of which our theory is the dimensionally reduced
string is described by a minimal surface. As a result of theversion. It turns out that minimal surfaces terminating at the
curvature of Adg, the minimal surface does not stay nearboundary of Adg correspond only to loops that satisfy the
the boundary, but goes deep into the interior of space, whereonstraintk?=y?. This constraint was derived before, and
the area element can be made smaller. Because of this thee study in greater depth its origin and meaning[9h the
behavior of the Wilson loop, for a large area, is that of aconstraint was introduced as a consequence of the fact that
conformal theory, and the area law does not produce confinghe mass of the open string and the Higgs vacuum expecta-
ment. tion value (VEV) are proportional to each other. We will
The gauge theory under discussion does not contaishow that the constraint also has a geometric interpretation in
quarks or other fields in the fundamental representation oferms of a minimal surface in A¢X S°. Another interpreta-
the gauge group. To construct the Wilson loop describing théion of the constraint has to do with thé€=4 supersymme-
phase associated with moving a particle in the fundamentaly; the loops obeying the constraint are Bogomol'nyi-
representation around a closed curve, we place one of therasad-SommerfielBPS-type objects in loop space. After
D-branes very far away from the others. The ground states afiscussing various aspects of loops obeying the constraint,
the string stretched from the distant D-brane to the othersve present some idea on how to extend the calculation to a
consist of theW bosons and their superpartners in the fundaimore general class of loops.

ff (A X“+®y)ds|, (1.4
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The loop equation is a differential equation on the loop A. Definition

space. We evaluate, using string theory on fd8e action One of the most interesting observables in gauge theories
of the loop differential operatdr on a certain class of Wil- is the Wilson loop, the path-ordered exponential of the gauge
son loops. On a smooth lodp, we find that the differential field,

operator annihilates the vacuum expectation of the {&tp,

in accordance with the loop equation as derived in the gauge W= lTrPexp(i fﬁ A dx*
theory. On the other hand, for a loop with a self-intersection N "

point, the gauge theory predicts tHéstW) is nonzero and

: (2.1)

. > . with the trace in the fundamental representation. The Wilson
proportional togyyN. We point out the gauge theory also 1,4, can pe defined for any closed path in space, providing a
predicts that a cusfa sharp turning pointin a loop gives & |grge class of gauge invariant observables. In fact, these op-
nonzero contribution to th? loop equation, proportional togrators, and their products, form a complete basis of gauge-
g%MN. We will show thatL{W) for a loop with a cusp invariant operators for pure Yang-Mills theory. An appropri-
evaluated by the minimal surface in Ag8S° is indeed non-  ate definition of the loop operator for thé=4 super Yang-
vanishing and proportional 1g,,N. We have not been able Mills theory in four dimensions will be given below.

to reproduce the precise dependence on the angle at the cuspOne of physical applications of Wilson loops stems from
due to our lack of detailed understanding of loops not obeythe fact that an infinitely massive quark in the fundamental
ing the constraink?= 2. For the same reason we were un- representation moving along the loop will be transformed by

able to reproduce the expected result at an intersection. the phase factor In Eq2.1). Thus the dynamical e_ffects of
The paper is organized as follows. the gauge dynamics on external quark sources is measured

In Sec. Il, we start with a brief review of the Wilson loop by _the Wllspn Ioop._ In partlcglar, for a parallel quark
: . . antiquark pair, the Wilson loop is the exponent of the effec-
operator in the pure Yang-Mills theory. We then point out an_. X
. . . . S tive potential between the quarks and serves as an order pa-
important subtlety in performing the Wick rotation in the

. . rameter for confinemertL3].
supersymmetric theory. We will present some results from The Maldacena conjecture states that type IIB string

t_he perturbatign theory where the subtlety in the Wick rOta'theory on Ad$X S’ is dual to A'=4 super Yang-Mills
tion plays an interesting role. _ . _ theory in four dimensions. This gauge theory does not con-

In Sec. 1Il, we turn to string theory in AdX'S>. We will - t5in quarks in the fundamental representation. To construct
give a precise specification of boundary conditions on thgnhe Wilson loop, we separate a single D-brane from khe
string world sheet and the geometric origin of the constrainp-pranes and take it very far away. For larlye we can
x?=y?. For some cases, we can compute the area of minimagnore the fields on the distant D-brane, except for open
surfaces explicitly. These include loops with intersections ofstrings stretching between it and the otidr The ground
cusps. For such loops, the areas have logarithmic diverstates of the open string are thi¢ bosons and their super-
gences. After calculating those areas, we explain the need f@artners of the broken, SM(, gauge group. Their trajecto-
the Legendre transform and show that it removes the lineaties should give the same effect as that of an infinitely mas-
divergence. The absence of a linear divergence fits well witlsive particle in the fundamental representation.
what we expect for the supersymmetric gauge theory. We The correlation functions of thé/ boson can be written in
will clarify the issue of zigzag symmetry and end the sectionthe first quantized formalism as an integral over paths. This
with a discussion of loops that do not satisfy the constraintdescription is studied in detail in Appendix A. When the

In Sec. IV, we give a review of the loop equation in the four-dimensional space has the Lorentzian signature metric,
pure Yang-Mills theory and derive its generalization to thethe phase factor associated with the loop is given by the
case ofN=4 super Yang-Mills theory in four dimensions. Vacuum expectation value of the operator

In Sec. V, we will discuss to what extent the minimal
?urface calculation in AdSs consistent with the loop equa- W= %TrP exp
ion.

To make the body of the paper more readable, some de- o ) . ) »
tails are presented in appendixes. In Appendix A we derivéNhe” the metric is Euclidean, there is an important modifi-
the Wilson loop as the first quantized action of theboson. ~ cation to this formula as
In Appendix B we calculate the area of a minimal surface
near a cusp. In Appendix C we present some more details on W= ETrP exp
the loop equation of th&/=4 theory. N

. (22

[ #% (A X +|x|®;6")ds

[ 3§(Aﬂw—i|x|q>iai)ds). 2.3

Notice the presence @fin the second term in the exponent.
The “phase factor” in the Euclidean theory is not really a
phase, but contains a real part.

We define the Wilson loop operator in the supersymmet- In the above,§' are angular coordinates of magnitude 1
ric gauge theory and review some of its basic properties. Wand can be regarded as coordinates 6n I8 the gauge
pay particular attention to its coupling to the scalar fields intheory, we may consider a more general class of Wilson
the supermultiplet. loops of the form

Il. WILSON LOOPS IN N=4 GAUGE THEORY
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with an arbitrary functiory'(s). This is the general loop we

would get by dimensional reduction from the ten dimen- ] ) .

sional gauge theory, whe®; would be the extra six com- FIG. 1. (a) At one Ioop, t_here is a linear dl\{ergence ffom the
ponents of the gauge field. Equatiéh3) restricts us to the propagator co_nnectlng coincident points. The dlvergenge is propor-
case ofk?—y2=0. This suggests that the metric on the loop121al ©© the circumference of the loofb) At cusps and intersec-
variables(x“(s),yi(s)) has the signaturés,6). It is impor- tions, an additional Iogarlthmlc dlverggnce appears when the two
tant to stress that this is not the signature of AdS®, but of external legs approach the singular point.

the space where the loops are defiRedls we will show N 4 Y N 2

later, the signature of the loop space metric is related to the_— _ i; dsfe/Mds’yi(s)yj(s’)J= - % || y_
fact that the six loop variableg'(s) correspond tol-dual 872 el e (2m)% X2
coordinates on the string world sheet. The constrat (2.7
—y?=0 is also related to supersymmetry.

Gauge invariance in four dimensions requires that th
Wilson loop close in four dimensions; i.e. the loop variables 2
x*(s) are continuous and periodic around the loop. This is W=1+ 3€ ds|>'<|( 1- =
not the case for the other six variablg'{s), and the loop (2m)%€ X2
may have a jump in these six directions.

eCombining these terms together, we find

+finite. (2.8

We note that the linear divergence cancels when the con-
_ straintx®=y? is satisfied.
B. Perturbation theory At nth order in thex =g?2,,N expansion, one finds a linear
As a warm-up, we study properties of the Wilson loops indivergence of the form

perturbation theory. To fjrst order igﬁMN, the expectation A"
value of the loopW) is given by A fﬁ dslx|G
n

€

2

y

;) (2.9
_1_ (2 ’ : UV (!

(W[C)=1~-gvu N é ds i; ds'P{X*(s)X"(s")Gy, for some polynomial,(z). We now argue thaG,(1)=0;

S ) namely the linear divergence cancels when=y?, to all

X[x(8)=x(s") ]=¥'(8)¥)(s") Gjj[x(5) = x(s) I, order in the perturbative expansion. Théh order term is

(2.5 calculated by connected Feynman diagrams with external

legs attached to the loop. The linear divergence appears

. when all the external legs come together in four dimensions.

whereG,, and G;; are the gauge field and scalar propaga-g. . iha Feynman rule of the’=4 gauge theory is ob-

tors. The relative minus sign comes from the extra front tained by the dimensional reduction of the ten-dimensional
of the scalar piece in the exponent in E.3). This integral y ; . . \ .
theory, the ten-dimensional rotational invariance of the

s linearly divergent. With a regularization of the prOp"’lgmorFeynman rule is recovered in the coincidence limit. There-

with cutoff € [i.e., replacing M2 with 1/(x>+ €2)], the di- : -
vergent piece coming from the exchange of the gauge fiel(fjOre the contractions of th_e exte_rnal |_ndlces by t_he I_:eynman
fule produce only rotational invariant combinations of

A, s evaluated as (x*,iy'), namely, a polynomial of{¢—Vy?). The polynomial
does not have a constant term since a connected Feynman

N ey o Ouv diagram for(W) needs to have at least two external lines
T8z de _ds'xX¥(s)x"(s") —- attached to the loop. Therefore the polynomial vanishes
T el[X € G2 2
whenx—y<=0.
\ L When the loop has a cusp, there is an extra logarithmic
- (2m)2e jg {X|=—X m (2.6) divergence from graphs as shown in Fig. 1. Let us denote the

angle at the cusp b§2. We choose the angle so tHat= 7 at

a regular point of the loop. A one-loop computation with the
whereL is the circumference of the loop. The divergent con-gauge field gives

tribution from the exchange of the scalabs is

L
7— Q) cotQ+1]log—. 2.1
Sl ]log-— (210
20One may regard the extra factor ioin the Euclidean cas2.3)

as a Wick rotation of the siy coordinates so that we can express A CUSP is a discontinuity ok*. There may also be a discon-
the constraint ag“%,,+y'y,=0, both in the Lorentzian and Euclid- tinuity in y', which we measure by an angbe We choos®
ean cases. To avoid confusion, we will not use this convention ang0 that® =0 wheny' is continuous. A one-loop computation
write thei explicitly in all our expressions in the Euclidean case. with the scalar fields gives
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N pE—) L the surface in AdS There can also be a factor in the relation
cosO+1| log—. 211 between théN-boson propagation amplitude and the Wilson
€ loop computed in Appendix A. Such a factor would be kine-
matic in nature and independent ®f and therefore negli-
gible in our analysis.

a (21)2 ~ sinQ

Combining Egs(2.10 and(2.11) together, we obtain

N 7—Q L
—(2 2 oy (cosQ)+cosO) Iog;. (2.12 A. Boundary conditions and BPS loop

n

The Wilson loop discussed i®] obeys the constraint

A similar computation at an intersection gives L
x2=y?2. (3.3
L

57 sing (Cos(2+cosO) log—. (2.13  This constraint was originally derived by using the coupling

of the fundamental string to the gauge fields and to the sca-
lars. In our derivation of the loop operator from the phase
factor for theW-boson amplitude in Appendix A, the con-

According to the Maldacena conjecture, the expectatiorsiraint arises from the saddle point in integrating over differ-
value of the Wilson loop is given by the action of a string €Nt reparametrizations of the same loop, essentially for the

bounded by the curve at the boundary of space: same reason as [9]. _ _
In this section, we will give another interpretation of the

constraint(3.3), in terms of the string theory in AdX S°.
(W[C])= LX:CDX exp(— AS[X]), (3D For this interpretation we need to give a precise specification
of the boundary condition on the string in AgSS®.
for some string actiorS[X]. Here X represents both the =~ We begin with super Yang-Mills theory in ten dimen-
bosonic and the fermionic coordinates of the string. For larg&ions, which is realized on space-filing D9-branes. We ig-
\, we can estimate the path integral by the steepest descef@re the fact that this theory is anomalous since we will
method. Consequently, the expectation value of the Wilsorieduce it to the anomaly-free theory in four dimensions.
loop is related to the are& of the minimal surface bounded Moreover, we are only interested in the boundary conditions
by C as on bosonic variable$.The Wilson loop in ten dimensions
corresponds to an open string world sheet bounded by the
(W)= exp(— UNA). (3.2 loop; i.e., we should impose full Dirichlet boundary condi-
tions on the string world sheet. This is natural since, without
The motivation for this ansatz is that tiiéboson considered the Wilson loop operator, the string end point obeys fully
in Sec. Il A'is described in the D-brane language by an opemeumann boundary conditions along the D9-brane. The con-
string going between the single separated D-brane and thfitions imposed by the Wilson loop are complementary to
otherN D-branes. In the near-horizon limit, tié D-branes  the boundary conditions on the D9-brane.
are replaced by the AdSgeometry and the open string is  To reduce the theory to four dimensions, we perform
stretched from the boundary to the interior of AdS T-duality along six directions. An open string ending on the
To be precise, this argument only tells us that the WilsorD3-brane obeys four Neumann and six Dirichlet boundary
loop and the string in AdsSare related to each other. The conditions. Consequently, the Wilson loop operator in the
expression(3.1) is schematic at best, and there may be arfour-dimensional gauge theory imposes complementary
additional loop-dependent factor in E.2). A similar prob-  boundary conditions, namely, four Dirichlet and six Neu-
lem exists in computation of correlation functions of local mann boundary conditions. If the Wilson loop is param-
operators; there is no known way to fix the relative normal-etrized by the loop variable$x*(s),y'(s)), where y'(s)
ization of local operators in the gauge theory and supergravcouples to the six scalar fields, then the six loop variables
ity fields in AdS;. To determine the normalization factor, yi(s) are to be identified with the six Neumann boundary
one has to compute the two-point functidrist,15. In our  conditions on the string world sheet.
case, the normalization factor in E®.2) may depend onthe  We are ready to specify the boundary condition on the

loop variablesC= (x*(s),y'(s)). In fact, we will argue be- string world sheet residing in AdS S°, with line element
low that the correct action to be used in E§.2) is not the

IIl. MINIMAL SURFACES IN ANTI —de SITTER SPACE

areaA of the surface, but the Legendre transform of it. This d<? 3 &
modification does not change the equations of motion, and —,=\/XY’2 > dX"dX"+2 dy'dy'|. (3.9
the solutions are still minimal surfaces. However, the values @ n=0 =1

of the classical action for these surfaces are different than . : 2
their areas. Choose the string world-sheet coordinates to bé,§?)

We will assume that, to the leading ordeninthere is no such that the boundary is locatedeett=0. SinceX* is iden-

further C-dependent factor. Otherwise, the conjecture would

be meaningless as it would produce no falsifiable predic-

tions. On the other hand, one expects-dependent factor in  *Boundary conditions for fermionic variables are not relevant in
the subleading order, such as the fluctuation determinant afur analysis of the loop for large.
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tified with the four-dimensional coordinates where the gauge SA 1 SA 1 _
theory resides, it is natural to impose Dirichlet conditions on =——=J1,99 X!, —= J. %9, Y,
SOry resides, 1L1s natural to impose Lin " oXF 2mY? Tt &Y 2my?
X*, so that
(3.9
XH(0r1,0) =X (07). (3.5  we obtain
The remaining six string coordinat&é(o*,o%) obey Neu- (3170 XH)24 (3,99, Y) 2= (9. XH) 2+ (9, Y2
mann boundary conditions. We propose that these boundary (3.10

conditions are
If the minimal surface obeys the boundary conditig8<)

JilaaYi(O_l,O):yi(o.l), (3.6) and(3.6), this becomes

Y2 2 — a 2 2
. . —ye=(J3,%9 ,X*) = (d,Y")". 3.1
whereJaﬂ(a,ﬂz 1,2) is the complex structure on the string XY = (170X 7= (1Y) (319

world sheet given in terms of the induced megig, Now impose the additional condition that the string world

sheet terminate at the boundary of Adge., Yi(ot,0)=0.

s 1 i Obviously, 3,Y'(c%,0)=0. This alone tells us that®>—y?

Ja _\/_a Gaye™. (3.7) =0. Moreover, if the boundary is smooth, it costs a large
area to keeg, “d,X* nonzero near the boundary of A¢JSo

it has to vanish at the boundaty=0 [9]. Therefore the

condition that the minimal surface terminate at the boundary

of AdS; requiresx?=y?2.

When the constraink?=y? is satisfied, one can reinter-
pret the six Neumann conditio$3.6) as Dirichlet conditions
on . To see this, it is useful to decompose the six coordi-
dhatesy’

Although we do not have a derivation of the boundary
condition (3.6) from first principles, it can be motivated as
follows. Because of the identification of the 8D symme-
tries in the AdS-CFT correspondence, it is clear that Neu
mann boundary conditions must $&equal toJ,*d,Y' up to
a relative normalization of the two. The use of the induce
complex structuréf in the Neumann boundary condition is
required by the reparametrization invariance on the world Yi=vg (3.12
sheet. The fact that the conditiod=y? has a natural inter-
pretation in terms of the minimal surface, as we will explainyynere ¢ are coordinates on®sand Y=U ! is one of the

below, suggests that the normalization factor is 1, as in EQnqordinates on AdS Since for a smooth loop the classical
(3.6). ) ) ) i solution has?,Y'=(4,Y) 6" at the boundaryy=0 of AdS;,

For_ a generic ch_o!ce of the Ioo_p varlabb@(s),y (s)), _ the Neumann condition&.6) turn into the Dirichlet condi-
there is a unique minimal surface in Euclidean space obeyingons on $ as

the ten boundary conditions, Eq8.5 and(3.6). However,

the resulting minimal surface does not necessarily terminate _ yi
at the boundaryf'=0 of AdS;. The conditionY'=0 would 0'(at,00= . (3.13
be additional Dirichlet conditions, which may or may not be Vi

compatible with Eq(3.6). In fact, one can show that, for a his iustifies the bound diti
smooth loop, the additional conditiori (o1,0)=0 is satis- 1S justifies the boundary conditions used @j.

fied by the minimal surface if and only if the loop variables .'I;here is. yet another !nterpretation of the constraifit
2 To see this consider the =Y and it has to do with supersymmetry. The loops we

obey the constraintx®=y?2. ; i
Hamilton-Jacobi equatidrfor the areaA of a minimal sur- have considered so far couple only to bosonic fields: the

face bounded by a l0opX¥(s),Y' in AdS. X S5 gauge fieldA , and scalarsb’. We also need to allow cou-
. y OXES), YH(S)) | S pling to the fgrmionic fields in the exponent. Fermionic vari-
SA\?% [ SA .
+ 4[((71XM)2+(51Y|)2]-

5 ables{(s) along the loop couple to the gaugindsas
SXH N) T (2m)?Y . L(XT iy TV, (3.14

_ where we are using ten-dimensional gamma matrdigeand
Since the momenta conjugate to tKé¢’s and theY"s are  T'; with signature(10,0. This is derived in Appendix C.
given by Exactly when the constraint is satisfied this combination of
gamma matrices becomes nilpotent. Consequently, only half
the components of couple toW, putting the loop in a short

4In general, the Hamilton-Jacobi equation for the area of a mini/€Presentation of local supersymmetry in super loop space.

mal surface on a Riemannian manifold with a meig takes the | ne Simplest example is when the Wilson loop is a straight
form line, whenk andy are independent &f If £ is also constant,

this loop is the phase factor associated with the a trajectory
GY(8AI 86X (8A16X7) =G, ;8. X! 6, X7. of a free BPS particle.

125006-6



WILSON LOOPS AND MINIMAL SURFACES PHYSICAL REVIEW D60 125006

B. Calculating the area

The computation of the Wilson loop in Ad®equires an
infrared regularization, since the area of the minimal surface
terminating at the boundary of AgSs infinite due to the
factorY 2 in the metric. In order to make sense of the ansatz
(3.2, we need to regularize the area. One natural way to do
so is to impose the boundary conditio(&5) and (3.6) at
Y =0, but integrate the area element only over the part of the
surface withY=¢e. On the gauge theory side, the Wilson
loop requires regularization in the ultraviolet. According to
the UV-IR relation in the AdS-CFT corresponderjdé|, the
IR cutoff e in AdSs should be identified with the UV cutoff FIG. 2. A minimal surface for a Wilson loop with a cusp. The
in the gauge theory. regularized area is evaluated over the shaded region.

There are a few cases when minimal surfaces can be stud-
ied analytically.

pendix B. The result is that the area of the surface has a
logarithmic divergence as well as a linear divergence. It be-

1. Parallel lines
haves as

The minimal surface for parallel lines, each of lendth
and separated by a distanBe was obtained if9,10]. The

area of the loop is — L _ i E
A >re 27TF(Q,G) Iog6 e (3.19
2L 472 L
= 2—— 4 g (315) i
me T(1/4)*R where ) and © are the cusp angles in*Rand S, respec-
tively.
2. Circular loop When either ® or () vanishes, we can express

. . . F(Q,0)/27 in terms of elliptic integrals. In Fig. 3 we show
di Tf;{e_m}:nlmglls?if?cl%m Adgbounded by a circle of ra- the numerical evaluation of the functi¢i((2,0) as the solid
USRS found inls,lg as curve. This is to be compared with the perturbative expres-
N = sion(2.12 shown as the dashed curve. The functig(f,0)
Y(r @)= vR=r7, (318 s zero at == and has a pole & =0. As the angle)

. . . —0 at the cusp, the loop goes back along its original path, or
w_herer_and ¢ are radial coordinates on a plane in the fou_rbacktracks. Regularizing the extra divergence from the pole
NWrns it into a linear divergence which cancels part of the
linear divergence from the length of the loop. This is related
to issues discussed in the section on the zigzag symmetry.

A= i J drrdeY 2y1+Y’2 Away from the cusp, the surface approaches the boundary
2w along theY direction without a momentum in thédirection.

world sheet also. The area of the surface with the cutadf

Right at the cusp, however, the surface has momentum in

Je2_2 rdr 27R
=Rf e =——-1. (3817
0 (R°—=r?) 2me 1 .
3. Cusp 0.8

Another family of minimal surfaces we can solve analyti-
cally is a surface near a cusp & and its generalization 0.6]
including a jump on 8 We can find analytical solutions in
this case since the boundary conditions are scale invariant.o.4|
Using radial coordinates in the vicinity of the cuspand ¢,
as world-sheet coordinates, the scale-invariant ansatz 0.2

r

Y(r,¢)=m (3.18

reduces the determination of the minimal surface to a one- k|G, 3. The solid curve shows the functi&r{Q,0)/2m, which
dimensional problem. The resulting surface is depicted imppears in the logarithmic divergence of the minimal surface with
Fig. 2. When there is also a jump oR, ne needs to intro- the cusp of anglé). This is compared with the perturbative result
duce another variable. An analytical solution in this case ig2.12 at a cusp shown as the dashed curve. The dotted curve is half
found in a similar way. These solutions are presented in Apef the perturbative resul2.13 at an intersection.
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also be regarded as a minimal surface with the boundary
condition onY=¢, except that the radius of the circle on
Y=¢€ is nowR,=JR?— €%. The area computed in this new
regularization is then

()

€
—14 . (3.22

W / Thus the results of the two regularizations are the same up to
terms which vanish ag—0. It is straightforward to show

that this is also the case for the parallel lines. We have also
‘verified that when the loop has a cusp or an intersection, the
two regularizations give the same area modulo terms which
are finite ase—0, which are subleading compared to the
logarithmic divergence.

When we impose the boundary condition at e, the
constraint on the loop variables is not exacth=y?, but it
is modified. If the loop is smooth, the modification is only by

1 — 2
A=—\R§+e*—1=
€

FIG. 4. The comparison of the two regularization prescriptions
The boundary conditions are imposedyat 0 in (a) and atY=¢€ in
(b). The shaded regions represent the regularized areas.

both theY andr directions. This means that, although the
constraintx®=y? is obeyed almost everywhere, it is modi-
fied at the cusp as

X2=(1+12)y?, (3.20 O(e) terms® Therefore most of the results in this paper are
independent of the choice between the two ways of imposing
wherefy=f(¢=/2) is the minimal value of (¢). the boundary conditions. The only exception to this rule is
the discussion of the zigzag symmetry. The zigzag symmetry
4. Intersection of the string world sheet on AdSeems to fit well with our

expectations about the gauge theory when we use the bound-

The minimal surface for a self-intersecting loop is just the ..
ary conditions atY = e rather than ay=0.

sum of two cusps. The only difference is that, by the ex-
change symmetry of the two components of the loop, the

intersection forces C. Legendre transformation
y The Maldacena conjecture implies that the Wilson loop is
— =0 (3.21 related to a string ending along the loop on the boundary of
| space. In the classical limit, we expect that the string world

sheet is described by a minimal surface. This argument, how-
ver, does not completely determine the value(\&§ for
arge\ since there are many actions whose equations of mo-
tion are solved by minimal surfaces. They differ by total
derivatives, or boundary terms. Since the surface has bound-
aries, such terms can be important[#10] it was assumed
that one should use the Nambu-Goto action, so the Wilson
loop was given in terms of the aréeof the minimal surface.

This is what we have studied so far. In this section, we argue

In this section, we have computed the regularized area b . . i
imposing the boundary condition at the boundafy 0 of %Lﬁeegér\:\grelstrgn;?g:mgwen not byA but by an appropriate

AL, e e e ares Slmert ot e Part o 1S "W ave shown it th loop varsbssimse N
~ < q y 9 ‘mann boundary conditiong3.6) on the coordinatesy'.

Another reasonable way to compute the minimal surface is tcf'herefore(\/\/) should be regarded as a functional of the co-

impose the boundary conditions, not ¥t 0, but atY=e. : “ _ : i '
The area bounded by the loop ¥ € is then by itself finite. ordinatesX and the moment®; conjugate toy’, defined

A comparison of the two regularization prescriptions is illus-

instead of Eq(3.20

In all the examples above, there is a linear divergenc
(27e) 1 in the regularized area. This is true for any loop.
As explained iff 9], this leading divergence in the area of the
minimal surface in AdSis proportional to the circumference
of the loop® The linear divergence arises from the leading
behavior of the surface at sma] i.e., near the boundary of
AdS;.

trated in Fig. 4. These two regularizations give the same SA 1
values for the area, up to terms which vanisheas0. For P,= _— \/§g2a(9angij ) (3.23
example, consider the circular loop. The solut{@nl6 can 89,Y' 277\/Xa’

SWe are using the coordinate¢* in Eq. (1.2 to describe the 81 the loop has a cusp or an intersection, as we saw earlier, the
configurations of the Wilson loops. With these coordinates, there idoundary conditions imposed ¥i=0 imply that the constrairk?
no factor of\ in the relation between the IR cutoéfin AdS; and =Yy? holds almost everywhere along the loop, except at a cusp or an
the UV cutoff of the gauge theofyi6]. These coordinates are dif- intersection point. When we impose the boundary conditiong at
ferent from the coordinates on the D3-brane probe, by a factor of= ¢, the constraint is modified in regions of sig@ear the cusp and
N [19]. the intersection point.
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The Nambu-Goto action is a natural functionab@f(s) and  for a smooth loop. Therefore the linear divergence cancels
Y'(s) and is more appropriate for the full Dirichlet boundary when the constraint?=y? is satisfied. The minimal surface
conditions. To replace it with a functional of#(s) and in AdSs is supposed to describe the Wilson loop for large
Pi(s), we need to perform the Legendre transform coupling\. We saw in Sec. II B that the cancellation of the

or

5 ' divergence also takes place to all order in the perturbative

L=L—3d,(P;Y" (3.249 expansion\. This suggests that the cancellation of the linear
divergence is exact, and a smooth loop obeyifig y? does

not require regularization. We suspect that this is a conse-

quence of the BPS property of the loop. When the loop is a

A=A— fﬁ do,P;Y'. (3.25 straight line, it preserves a global supersymmetry, not only

the local one. In that case the lowest order perturbation cal-

culation is exact. The modified action is zero; the expectation

To show thatA is a natural functional of X*,P'), we use value of the Wilson loop is 1.

Hamilton-Jacobi theory. Under a general variation of the
coordinates, the variation of the aréaof the minimal sur-
face is given by

We were not able to find an explicit expression foas a
function of X#, P', and their derivatives. We only know
how to evaluate it for classical solutions in terms of the old

SA SA variables.
5A:f dUldaz(—i—ﬁa—i) SYi(ay,0) By definition, the areaA of the minimal surface is posi-
5Y 60aY tive. On the other hand, its Legendre transfofmmay be

SA _ negative and the expectation value of the loqpV)
+ § dfflm 3Y'(a1,0) =exp(—AA), may be larger than 1. In the pure Yang-Mills
2 theory, the Wilson loop is a trace of a unitary operdidir
, vided by the rankN of the gauge group and its expectation
= é do1Pi(01,008Y'(04,0). (3.26  value has to obey the inequalifyV)<1. This is not the case
in the supersymmetric theory in the Euclidean signature

Here we used the equations of motion. Therefore, after pesPace sinc&Vin Eq.(2.3) is not a pure phase, and there is no
forming the Legendre transformation, we obtain unitarity bound on its expectation value.

We have shown that the expectation value of a smooth
i Wilson loop obeyingk?=Yy? is finite. If the loop has a cusp
OA=— jg doY'(01,0)6Pi(01,0). (327 or an intersection, the cancellation is not exact and we are
left with the logarithmic divergende

ThusA is a functional of the moment®' at the boundary, 1 L
not the coordinate¥’. A= — 5-F(Q,0) log—_ +finite. (3.31)

The Neumann boundary conditiori8.6) are conditions

on the moment#®':

In

dinatesY' are parallel to the momenf,, as we saw in Eq.
(3.

It is interesting to note that the constraitft=y? is not sat-
¥ . isfied either at a cusp
5—= P =Y2P;. (3.29
™ X2=(1+f3)y? (3.32

. . . | .
fact, if the loop variabley'(s) are continuous, the coor- or at an intersection point

13. In this case, the Legendre transform gives y!
. = =0. (3.33
~ 1 yo IX|
A=A—— O do,; ;Y o
2 Y We suspect that the logarithmic divergences at the cusp and

1 . 1 the intersection are caused by the failure of the loop to sat-
—A— — fﬁ d01M=A— 3€ dsly|, (3.29 isfy the BPS condition at these points.
2 Y 2me

D. Zigzag symmetry

wheree is the regulator. In the last step, we have ¥ete

since the regularized action is evaluated Yo €. A Wilson loop of the form
In the previous section, we saw that the afeaf minimal 1
surface has a linear divergence proportional to the circum- W= —TrPexp| i 39 dsA,x* (3.34
ference of the boundary. By combining it with E§.29, we N
find
A 1 : : . If ©+0, the functionF(Q,0) gets a contribution from the Leg-
A= 2me § ds(|x| |y|)+f|n|te (330 endre transformation.
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n} D) |&
G

FIG. 5. The zigzag loop. The loop goes in one direction along
C, and comes back alonG,. The two segment§€,; andC, are
parallel and their distancg s less than the gauge theory UV cutoff
€.

. FIG. 6. The area of a loop with a zigz&a is roughly the same
is reparametrization invariant, & namely, unchanged by  as the loop without itb).
—f(s). Formally, it is even invariant under reparametriza-

tions which backtracKnamely, Wheni‘(s) is not always appears in contradiction with the gauge theory expectation
positive] since the phase factor going forward and then backsince we know the minimal surface ending along a smooth
wards will cancel. Polyakov has argued [[20] that this l0op on the boundary of AdSobeys the constraint®=y?
“zigzag symmetry” is one of the basic properties of the and thereforg/'#0. In the gauge theory, we dut expect
QCD string. One must, however, be careful, even in purezigzag symmetry wheg' is nonzero and constant. A close
Yang-Mills theory, since the loop requires regu|arization,examination of the boundary condition, however, reveals that
Zigzag symmetry, in fact, is only true perturbatively for the situation is more subtle. It is true that, if we impose the
regularized loops, where the backtracking paths are closdroundary conditions & =0, the part of the surface connect-
than the ultraviolet cutoff. It was pointed out [@] that the ing C; andC, does not reacl'=e and does not contribute
Wilson loop in the supersymmetric theof2.3), with the  to the regularized area fof=e. Therefore zigzag symmetry
constraintk’=y?, does not have this symmetry. This is be- holds for (W). This is also the case when we impose the
cause the couplings of the Wilson loop to the scalar fiditls boundary condition a¥=e. In this case, ife> 7, the mini-

are proportional tdx|, which does not change the sign when mal surface goes fron€; to C, along theY=e surface.

the loop backtracks. Thus, if the loop stays at the same pom'Eherefore the contribution of the segments to the regularized
' on $, there is no cancellation of the coupling to the scalararea is proportional toy/ €* times the length of the segment
fields. and vanish in the limity— 0.

In perturbation theory, one can easily prove that the zig- However, the physical interpretations of the two compu-
zag symmetry holds for the Wilson lod@.4) wheny'=0. tations are quite different. If the boundary conditions are
Suppose we have a segméht of a loop which goes in one imposed atY=0, the constraink?=y? holds provided the
direction and another segme®$ which comes back parallel segment€C; andC, are smooth. On the other hand, if the
to C,, but in the opposite direction, as shown in Fig. 5. If the conditions are imposed on thé= e hypersurface, the mini-
distancen betweenC, and C, is much less than the UV mal surface bounded b§;, and C, stays withinz from Y
regularizatione of the gauge theory, there is one-to-one can-= €, andy? vanishes as)/e— 0. If we take the latter point of
cellation between a Feynman diagrédmvhich has one of its  view, the apparent contradiction with the gauge theory ex-
external leg ending o€, and another diagrai’ which is  pectation disappears since the minimal surface in question is
identical toI” except that the corresponding leg ends@yn  related to the Wilson loop which does not couple to the
Therefore, to all order in the perturbative expansion, the segscalar fields in the segmen®; andC,. This is exactly the
mentsC, andC, do not contribute to the expectation value situation in which zigzag symmetry arises in the gauge
of the Wilson loop. On the other hand,jif=|x|¢' and¢' is  theory.
fixed at a point on § a diagram with a leg coupled {3 on One may argue that the boundary conditiorYate gives
C, and one with the corresponding leg coupled/tmn C, @ more precise definition of the Wilson log@/)) as a func-
add up, rather than cancel each other. The perturbative cortional of the loop variablegx*(s),y'(s)). The Legendre
putation therefore shows no zigzag symmetry in this case. transformation of the area in Sec. Il C, for example, is a

When the coupling\ is large, we expect thaiV) is re-  way to define a functional of the momen®A evaluated at
lated to the minimal surface. The area functional, and as & = € and not aty =0. It does not make sense to perform this
matter of fact any other functional which is an integral overprocedure atf =0 since the factor ¥on the right-hand side
a minimal surface, has zigzag symmetry. The proof isof Eq.(3.25 needs to be replaced by In most of the cases
simple. If we look at the regiolYy=¢, the minimal surface discussed in this paper, whether we impose the boundary
bounded by a backtracking loop is almost identical to theconditions atY=0 or Y= e does not make much difference
surface bound by the curve without backtracking if the sepasince the value of the momenkd stays almost the same in
ration  betweenC,; andC, is much less than the cutoé  the region B<Y=<e. The analysis of zigzag symmetry, how-
This is illustrated in Fig. 6. Therefore an action on the sur-ever, seems to be an exception to this rule. If we use the
face given by an integral over the part of the surfacerin boundary condition a¥=e¢, the existence of the m|n|mal
= e is the same with or without the backtracking. surface requires the constraipi(s)=0 rather tharx®=y?

At first sight, the zigzag symmetry of the minimal surface for the backtracking loop, and the result fits well with the
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whereM=¢"1 is the originalW-boson mass anth is the
OQ QO mass of the excitations. This makes it possible to relax the
constraint, at least fax?=y?.
@ () For the loop obeying the original constrait=y?, the
FIG. 7. (@) A self-intersecting loop which corresponds to a regularized area has the linear divergence of the form
single trace operator ar{)) a pair of loops obtained by reconnect-

ing the loop at the intersection. 1 1
A=m§d$lX|+"'=ﬂ§M|X|+“' . (3.37
gauge theory expectation. Clearly, the regularization-

dependent nature of zigzag symmetry needs to be clarified . . .
further. We expect that the corresponding computation using the

An analysis similar to the one given above leads to theSting excitation replaces! by yM“+m* as

following observations about the Wilson loop, which we find

interesting. Consider a self-intersecting loop as in Fig. 7. The 1 1 %2

area calculated on the minimal surface bound by the [app A= > § ds\yM?+ m2|>'<| o= % ds—+---.

. T 2me [y

is the same as the sum of the two areas bounded by the (3.39

separated loop). In the gauge theory, these loops are very '

different objects. One is a single trace operator and the other

a multitrace operator. The Legendre transformation turns this into
We can even connect two distant closed loops by a long

neck without changing the value of the loop since the mini- 1

mal surface spanning the neck region does not contribute to A=A— — é dsly|

the area. Graphically, this can be written as 2me

i k 1 1 %d (Xz ”
= ) = =5— S\ T
< > = y0itu (3.35 2me L S\ Y

7 l

e, (3.39

) This shows that the linear divergence is not completely can-
This  suggests that the parallel transporty  celed for|x|+#|y|. Since a highly excited string state may be
=Pexp (JA, dx) along an open curve behaves as a randonyensitive to stringy corrections, we can trust this estimate of
matrix. As in the case of the zigzag symmetry, if we imposethe |inear divergence only for small deviation from the con-

the boundary condition &= ¢, the minimal surface exists straint. In the following, we will use an approximate expres-
only wheny'(s)=0, and we are considering a loop which gjgon for|x|~|y| as
does not couple to the scalar fields in the neck region.

1 o
E. Removing the constraint A= p % ds([X[—y[)+---. (3.40

So far we considered loops of the fokgh3) which satisfy
the constraintx>—y2=0. When the loop has a cusp or an
intersection, this constraint is modified as in E(&20 and IV. LOOP EQUATION
(3.21). In the gauge theory, we can define the loop operator
for any (x*(s),y'(s)), not necessarily obeying the constraint.
Consequently, we need to find a way to calculate an expe
tation value of such a loop in AdSo that the relation be-
tween the gauge theory and string theory is complete.

The reason given by Maldacena for the constraatd

Since the expectation value of the Wilson loop is a mea-
sure of confinement, much attention has been given to cal-
%ulating them. In particular, in the largd limit of gauge
theory, they satisfy a closed set of equatip?k In this sec-
tion, we first give a review of the loop equation for pure

. ; _ . Yang-Mills theory(for more details sef21,22)). The equa-
also in Appendix A is that theW bosons are BPS particles tion is easy to write down and is formally satisfied, order by

and their charges and masses are related. To break the CUkger. | : :
. . . . er, in the perturbative expansion of the gauge theory. The
straint, one needs a non-BPS object with an arbitrary mass P ’ gaug y

Fortunatelv. string th tai h obiects. | attice version of the loop equations is also satisfied in the
ortunately, string theory contains many such objects. n'nonperturbative lattice formulation of the theory. However,
stead of considering the ground state of the open string co

. ) . the only case where one can solve explicitly for Wilson
responding to th&Vboson, one may use excited string States1oops is in two dimensions. There indeed they do satisfy the

which have extra mass from the string oscillations. As showqoop equation. We will then formulate the loop equation for

in thg Appendix A an excited' string indeed generates a IOo‘i’he/\/=4 super Yang-Mills theory in four dimensions. As far
obeying the modified constraint as we know, the loop equation in this case has not been
M2 derived before. We will find that the BPS conditi@3) will
Y= (3.3  play a crucial role. We will discuss details of the construc-
M2+ m? tion in Appendix C and present only the general ideas here.
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A. Bosonic theories

) A o
The action of pure gauge theory in any number of dimen- L{W)= I\ é ds § ds’ S(x(s") = x#(8))X . (S)X*(s")
sions i§

B 1
4Q$M

X < TrPT3(s)T(s’) exp > . (4.9

i %A#dx/‘

We then use the relation between the generators oN$U(

S

f dxTrF, F*, (4.)

and the Wilson loop is given by
Snmbii
TﬁmTEIZ‘Snkgml_ HE . (47)
i ff?A#dxﬂ),

4.2

1
W= NTr Pexp

Ignoring the 1N term, the trace is broken into two. This
where the integral is over a path parametrizedxly The gives the correlation function of two loops. In the larye
main observation is that there is a differential operator onimit, the correlator factorizes and we obtain
loop space which brings down the variation of the action

D’F,, as ~
mr L(W)=\ % ds § ds’ 8(x¥(s') —xH(s))
. _ , 1
L(W)=—i jg ds x"< (DFL)% () TrPTA(S) XX,,(S)XM(S" ) Weg (Wer o). (4.8
] HereW,y is a Wilson loop that start atand goes t®’ and
X expil %Aﬂdxﬂ , (4.3 W, goes froms’ to s. They are closed due to the delta
function?
whereT?(s) is the generator of the gauge group inserted at Equation (4.8) shows thatﬂ(W) receives contributions
the points along the loop. from self-intersections of the loop. Since the derivation of

There are a few equivalent definitions iof We will use  the equation is rather formal, it is not clear whether we need
to count the trivial case a§=s’, in which caseN.y =1 and
stm 52 Wy s=W. In most of the literature on the loop equation, this
fﬁ dSJ ~ ds XS X.(S) (4.4 trivial self-intersection is ignored. In any case, it can be taken
= a care of by multiplicative renormalization of the loop opera-

As we will explain below,7n has to be taken much shorter tor._ In the supersyr_nr_netnc gauge thgory, the leading _contrl-
bution from the trivial self-intersection cancels whénA

than the UV cutoff scalee in order to extract the term 2
D"F,,. The insertion oD"F ,, into the loop would be zero =y o .
if we use the classical equation of motion, but quantum cor- In the definition of the loop derivative, it is important to

rections produce contact terms. To see that, one can write tf@ke the limit »—0. This procedure isolates the term
equations of motion as the functional derivative of the action® "F... Which is a contact term of the double functional

S and use the Schwinger-Dyson equations, i.e., integratioferivative. If is of the order of the UV cutoft, there will
by parts in the functional integral, be other contributions to the loop equation such as

F..F"X,. When calculating the loop equation in perturba-

L= lim
7—0

. o, 1 tion theory, we can takey to be arbitrarily small, and in
L<W>:|gYMJ DA fﬁ dsy TrPT(s) particular p<e. This is how we view the loop equation in
the continuum theory. In fact, it was shown that the pertur-
) _ oe bative expansion of the Wilson loop solves the loop equation
Xexpil é A dx IXE(s) SAF(X(S)) [23]. When we study the loop equation the string in AdS

we will consider the same limip— 0.

o, ) 1) a In the lattice regularization, it is not possible to calibrate
= 19w ds¥(s) SAH3(X(S)) NTrPT (s) the variation of the loop in distance shorter than the lattice
spacinge. In this case, a different definition df is used

xexp(i 3g A, dxt > (4.5 which does not require taking such a limit.

The functional derivatives/ 6A ,(x(s)) in this equation is

formally evaluated as The delta function is not sharp, but is regularized by the cutoff

That means that the loop&/;y and W, are not exactly closed

loops, and the two ends may be separated by a distaridgs does

not contradict gauge invariance since one may consider only gauge
8The complete action contains a gauge-fixing term and ghostdransformations which do not vary much over that scale, so the

Those appear also in the equations of motion, but can be droppeétlmost” closed loops are “almost” gauge invariant. We expect

by a Ward identity{ 23]. those loops to be equal to the closed loops u@(@) corrections.
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It is possible to define a loop derivative localized at abe precise, the constraint only cancels the leading divergence
point on the loop, instead of the integrated version considproportional toe™ 3. Since the delta function in Eq4.11)
ered above. The entire derivation goes through by simplhhas a widthe, the Taylor expansion of(s') ats’=s gives
dropping onefds. subleading terms i@ such as

B. Supersymmetric case _ l jg ds(xz_-yz)_ (4.12
We briefly summarize how to derive the loop equation in 3¢

the supersymmetric theory, leaving the details to Appenditygever, this expression is highly regularization dependent.
C. We derive them only for variations from constrained yoreover, there are other contributions of the same order
loopsx“=y<. One important modification is due to the extra §,e to the fact that the loopW¢ andW, ¢ are not precisely

factor ofi in front of the scalars in the Wilson loop operator ¢|psed. as explained in footnote 9. At any rate, these terms

in the Euclidean theory: are negligible(by a factore) compared to the terms we will
1 find at cusps and intersections, and we will ignore them for
W= —TrP exp( jg (iA X+ d;yHds]|. (4.9  the rest of the paper.
N For a loop with an intersection, the integral over the regu-

Another novelty is the need to include the fermions. Thelarlzed delta function on the right-hand side of the loop equa-

) ; Lo tion gives
fermions are important even when the loop equation is evalu-

ated at the body pag(s)=0 of super loop space since the

fermions appear as source terms in the equations of motion \(cos()+cos®) é ds jg ds’|x(s)||x(s")|
for the gauge fields and the scalars. Here we will explain the

effect of the extrd. In Appendix C, we will discuss how to X 5‘5‘(x“(s)—s“(s’))

deal with the fermions.

If we define loop derivative o o
=)\(cosQ+cos)J' dxf dx’ 84 (sinQ(x—x"))

. jg sz ( 52 52 )
L=Ilim ds ds’ - - - ,
70 s OxH(s")ox,(s)  dY'(s")dyi(s) __ cos()+cos®
(4.10 M Z2nZsng

then the relative minus sign combines with the exti@give

(4.13

It is important to note that the result depends explicitly on
A 2 5 S the UV cutoffe 2. Here we have evaluated the leading term
(W)= —i N § ds< ( XMW_ iy'W) TrpPT2 inthee™?! expansion only. There are subleading terms in the
expansion which are comparable to E4.12 at the trivial
self-intersection.
% (iAMX“+<Diy‘)ds)> A cusp also gives an interesting contribution to the loop

X exp
equation. This may be regarded as a special case of the trivial
‘ self-intersection. In fact, in the literature, this effect is ig-
=\ 47 ds é ds'[X*(s)X,(s")—V'(s)yi(s")] nored together with that of the trivial self-intersecti@nin
the supersymmetric theory, the contribution from the trivial
X 8H(X(8) = X(S" )W Wi ){(W,). (4.1)  self-intersection at a smooth point on the loop is canceled by

the constraink?=y?. The situation is more interesting at the
A simple way to obtain this is by considering the extras  cusp since the tangent vectat(s) is discontinuous there. If
the Wick rotation of they' coordinates and repeat the deri- there is ajump or8®, y'(s) is also discontinuous. A simple
vation from Eq.(4.4) to (4.8). The right-hand side of the calculation[identical to Eq(2.12), where we found the loga-
bosonic loop equation contains a cubic divergence propofithmic divergence in perturbation thedrghows that the
tional to the circumference of the loop. In the supersymmetcusp contribute to the right-hand side of the loop equation as
ric case this “zero-point energy” cancels for a smooth loop

by the constraink®=y?.

0 )
2)\(cosﬂ+cos®)f de' dx’ 84 (sinQ(x—x"))
— o 0

C. Predictions

-0 () +
In this subsection, we evaluate the right-hand side of the =\ (m )(cos cosO) ) (4.14

loop equation(4.11) for various types of loops. In the next (2me)?sinQ)
section, we will compare it with computations of the loop
using the minimal surface spanned by the loop in AdS

In the supersymmetric theory, the trivial self-intersection
ats=s' does not contribute to the right-hand side if the loop
is smooth and obeys the constraidt=y2. This is related to  9n the lattice formulation, the effect of the cusp to the loop
the fact that such a loop does not require regularization. Tequation is not seen since there is no local definition of a cusp.

To summarize, we can express the loop equation as
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- A (m—Q,)(cosQ,+cosO,) gives the acceleratiok” (in the parametrization wher|
LW)=5_= 2 Fieps 5 sinQ) =1) and the same foy, we obtain
: n
N D cos(),+cosO, W N oA SA _ éA oA
m: intersections sinQ, < m>< m) ox*(s") 5XM(S) oy'(s") dyi(s)
A A 3 9 ’ ) (!
+0[ ], (4.15 =22 [X(XS) =9y (sH]+--. (5.9

whereW,, andW,, are Wilson loops one obtains by detach- I\!ote that it has the same divergenee;’, as the right-hand
ing the original loop into two at the intersection pomt S'de_’ of the loop equation. Moreover, the pow_ers?\ohatch
up in the loop equation and in E¢.5). The ellipsis on the

right-hand side represents variations of the remaining terms
in A, which are finite for a smooth loop. To computéw),
A. General case we integrate Eq(5.5 overs— n=<s'<s+ 5. When the loop

In this section. we will examine whether the computationis smooth, the acceleratiow(,Ay') itself is finite. Therefore,
of the loop using string theory in Ad®igrees with the pre- by taking »—0, one finds that (W) =0 in this case. This is
dictions of the |00p equation_ A genera| form of the |00p consistent with the |OOp equation. Therefore we reach the
expectation value is first conclusion, that a minimal surface in AglBounded by
a smooth loop solves the loop equation.

V. LOOP EQUATION IN AdS 5x S°

(W)y=A exp(— VAA). (5.1)
B. Loops with cusps
We assume that the dependence of the prefaston the )
loop variables is subleading for large Since the loop de- If the loop has a cusp of ang, the tangent vector is

discontinuous ané& has a delta function pointing along the

rivative L does not commute with the constraitft=y?, we . . N
unit vector bisectog:

need an expression fér when the constraint is not satisfied.

. ~ . . _ Q
As we saw in Sec. Il E the exponeAt has a linear diver =2 cos— 5(S)B . (5.6)
gence of the form 2

~ 1 : . A similar thing happens whey is discontinuous, with the
A(X’Y):; § ds(x[=yD+ -~ (5.2 angle © replacing() in the above. This delta function is
regularized by, not ¢, since it is related to the shortest
to the leading order in|k|—|y|). The loop derivative is a length scale on which the loop is defined. Thus the integral
second order differential operator. When the derivatives acef Eq. (5.5 oversands’ gives a nonzero result as
on the exponent and bring it down twice, the result is pro-

. N s+ :

portlonalio)\. .On the other hand, when they act Aror on — 3g dsf ds'[X,(S)X(s) ~ i ()¥'(s")]

the sameA twice, we get things only of ordex or less. In € s—7

the following, we will pay attention to the leading termin an Q o

only. The exact expression we have to evaluate is, therefore, =—(cos’-——sin2—>
m2e? 2 2

sty A SA A SA
A lim %dsf ds’ - - : 2\
70 s—7 ox*(s") ox,(s) dYy'(s") dyi(s) =ﬁ(cosﬂ+cos®). (5.7
(5.3

We do not have to include the fermionic derivative. When itIn comparison with the prediction of E¢d.14) of the loop

acts once on a bosonic loop, it gives a fermion whose expe equation, we are missing the factor af ¢ )/ sin{. This,
P.11g > €Xp Chowever, is not a contradiction. The expression for the linear

) ) ~ i n%iivergence term in Eq5.2) is an approximation for small
when it acts twice oA\, but they are subleading ix (x| =|y]). Since x2=(1+fg)y? with f,=f(Q/2) at the

Let us evaluate Ec(5.~3). Although the linear divergence cusp, this approximation is valid only whefy is small.
(1/2me)$ds(|x|—|y]) in A(x,y) vanishes for the loop obey- Apart from this factor, Eq(5.7) agrees with the prediction of
ing the constraint, the variatidn does not commute with the the loop equation, that the cusp gives a nonzero contribution
constraint. Thus the linear divergence term gives an importo the loop equation proportional to=g3,,N times e~ 2.
tant contribution to Eq.5.3). Since the variation of the When (X|—1y|) is not small, the expressiofs.2) needs
length functional to be modified as

‘2
y
2 + - (5.8

- 1
L= 35 dsy%? (5.4) A(xy)= — fﬁ ds|x|G
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for some functionG(z). By repeating the computations that whereW, . , is the self-intersecting loop and,; andW, its
lead to Eq.(5.7), we find that the contribution of the cusp two pieces. In order for this to be consistent with the AdS

takes the form computation, we need to find
L exp(— VAA)=\G(f()(cosQ +cos® )exp — YAa)+- -, Sy cosQtcos® A,
(5.9 Coqi-WAnd=r—go0— 3,
where G(f,) is a function related t@G(z). The agreement xexp[— W (A +A)]. (5.15

with Eq. (4.14) requires
Since we do not know the relation between the factbrs
m—Q A,, andA.,,, a quantitative test is difficult in this case
G(f(Q2)= s (5.10  although it seems unlikely that the ration would be zero.
8 sinQ) . . . ;
It would be very interesting to determine the function

Proving thi Id b ¢ id for th . G(z) which appears in the linear divergence as it would
turrc()avmg IS would be a very strong evidence 1or the ConjeCyqyiq the guestion as to whether the intersection gives the

Loops with cusps have also logarithmic divergencescontribution tol exp (~VAA) predicted by the loop equa-

which could contribute to the loop equations. To see that!'on-
one may write the logarithmically divergent term as

VI. DISCUSSION

i,:(g) |OgE= if dsf ds'|x(s)||x(s")] ‘The AdS-CFT correspondence allows us to calculate cer-
2m € 2w tain Wilson loops in terms of minimal surfaces in anti—de
Sitter space. We presented a few reasons why only loops

% sing Flo o (517  satisfying the constraink’®=y? (generically are given in
T @ (x—x")2+ € ' terms of minimal surfaces. For more general loops we run
into the problem of inconsistent boundary conditions.
wheren— ¢ is the angle betweek(s) andx(s’). To check The constrained loops are invariant under half of the local

this equation one should integrate over two straight lineSUPersymmetry in super loopspace. As such, they are BPS
meeting at a point. Differentiating Eq5.11) gives a few ©Objects and are free from divergences. The area of the mini-

terms, among them mal surface is divergent, so it is not the correct functional
that yields the Wilson loop. Since the minimal surface satis-

1 sinQ fies Neumann boundary conditions, its natural to take for the

X(s) el F(Q), (5.12  action the Legendre transform of the area. We showed this

yields a finite result.
. ] ) In other examples of the AdS-CFT correspondence the
which has the same divergence as the piece that gave Egetion has to be modified as well. In nonsupersymmetric
(5.7). cases, such as the near extremal D3-brane, the effect of add-
ing the boundary term is to subtract(2e). The result is
C. Self-intersecting loops finite, but contains a piece proportional to the circumference
The situation at a self-intersection is more mysterioustlmes the radius of the horizon. This may be considered a
sincex andy are both continuous at the intersection point.mas.S rgnor_mahzatlon of th& boson. The scale of the renor-
However, we have problems in our ability to test the Ioopmallzat|on is not the UV cutoff, but rather the scale of su-

- B g - 2 . 2 .
equation in this case. First of alj)) =0 at the intersection, persymmetry preak_mg. In_ addition, ¥°#y . the Wilson

. , , , . loop will contain a linear divergence proportional to the UV
and the functiorG(z) which appears in the linear divergence cutoff
term in Eq.(5.8) may be singular at=|y|/|X|=0. Since we ' i i
do not know about the functio®(z) except for its behavior The surface observables on the M5-brane theory, as cal

R . I culated in AdSx S* have quadratic and logarithmic diver-
fnri?nrztael,irllttclasrs%fcf;?our:t to tell whether there is a contribution gences[9,18,2§. Taking the Legendre transformation will

The presence of the unknown factiin Eq. (5.1) makes eliminate the quadratic divergence, but we are not sure

L . . whether it will also remove the logarithmic divergence.
the situation worse. As we explained before, the Wilson loop
i Recently, there were some attempts to go beyond the clas-

sical calculation and include fluctuations of the minimal sur-
_ N faces[24,25,28. One of the goals was to find the “lsaher
(W) =4 exp( A). (5.13 term,” the Coulomb-like correction to the linear potential in
a confining phas€27]. Any attempt to perform such a cal-
culation will require using the correct Neumann boundary
conditions on the spherical coordinates and including the ap-

propriate boundary terms.
(W) (W), (5.14 Finally, we formulated the loop equations for those loops

For a self-intersecting loop we expect

cos()+cos®

L<W1+2>:)\ sinQ
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and checked if the AdS ansatz satisfies them. For smooth 1. 1 . . 1 . .

loops, as a result of the supersymmetry, the loop equations S= ZFiﬁ E(D,ﬂ)l) 2L P ;1% (A1)
should give zero. This is indeed the result we find also from

variation of the minimal surface. By decomposmg the gauge group to wé( U(]_) as

This calculation actually requires extending the prescrip-

tion to loops that do not satisfy the constraint. We propose AL w, O, w

that the natural extension for small deviation from the con- A = b = (A2)
. . . . . . L T ! I t !

straint gives a linear divergence proportional\faL. This w, a, w Mé

term is particularly important when we consider the loop
equations for loops with cusps. The expected result is finitaVith 6°=1, the action can be written as
and proportional ta.. This is in fact what we find, but we do 1
not have enough control over the calculation to compare theg— 4 — |:2 S+ —(D d)2— _[q>i D12+ _((9 M 6;)2
coefficients. 4 2° "
The situation with self-intersecting loops is more myste- 1
rious: we expect a nonzero answer, but cannot reproduce +(‘9[uav])2+ W [(P—M ﬁk)25n
that. There are, however, some reasons why this test is more
difficult than the other cases. In particular, the constraint is 1
broken by a large amount at the intersection. —(D;—M6)(P;—M6))Iw;+ E[(Du_ ia,)w ]2+
Classical string theory tells us only how to calculate loops
satisfying the constraint. These are BPS objects in loop space 1 1 1
and, therefore, easier to control. As we argued, non-BPS = Sgy,+ z(&MM 6,)%+ fow+ Zr[(DM—ia#)wi]2
Wilson loops are related to excited open strings, but we are
unable to evaluate them reliably. A similar statement is true
for local opeartors: one has control only over the chiral op- + EW‘T[((D"_ M 0k)25ij —(®i—=Mo)(P;—M6))]w;
erators. Nonchiral operators should be given by excited

closed string states. Despite the large effort devoted to test- ... (A3)
ing the Maldacena conjecture, there is still no good under-
standing of non-BPS objects. whereF ,, andf ,, are the field strengths of the SN and

U(1) factors, respectively. The ellipsis in the action repre-
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W (@1—M o)W, —w Dy (D —MO)w;  (Ad)

We can integrate over the field and find

APPENDIX A: DERIVATION OF THE WILSON LOOP f DA, DO, DwDa, DM 6.6~ W) TwOOw(y) twiy)

In this appendix, we will define the coupling of the Wil-
son loop to the bosonic fields,, and®', in the N'=4 super :f DM 6. Da ex;{ f E(& M 6,)%+ E(f )2)
Yang-Mills theory. We will pay special attention to the ef- e 2 T4y
fect of Wick rotation on the Euclidean signature space. In a

gauge theory containing a matter field in the fundamental XJ’ DA Dd.e~Ssun)

representation of the gauge group, the Wilson loop is derived pe

by writing a correlation function of the matter fields in terms 1

of the first quantized path integral over trajectories of the X y
corresponding particle. The resulting phase factor dictates < ’—% (D,—ia,)*+3 (P;—M§)? >

the proper coupling of the Wilson loop to the gauge field.

The N'=4 super Yang-Mills theory in four dimensions does x(y 1 . (A7)
not contain such fields. Instead, we use W bosons that appear 3 (D, —ia,)?+5 (®;—M§;)?

when we break SN+ 1)—SU(N) X U(1).

The bosonic action for the SM(+ 1) theory is The correlation functions in this expression can be written as
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1 |
<X “1(D,—ia,)?+ i (d-M ei>2\y>

- f oo r(Z 0,10, Lot

T i, 1 1
J’ dTJ Dx(s)Dp(s)ex;{ jo ds( —ix,p*— z(pM-FA#-FaM)Z— E((I)i—M 002”

X(T)= y T
J' f X(S)ex jds
x(0)=x 0

Combining everything together and integrating oyewe obtain

1, .1 ,
—EXM+|AMX“+|a#x”—E(CDi—MHi) . (A8)

T)=x

f dy(w(x)'w(x)w(y)w(y))= JDMaex;{ J (9,M6;) )JdTL() XDx(s)

fz(f,w)ze é dsia,x*

><exp( - Efo ds(xi+M2)

f Da,, exp f DA, Dd;e” Ssun

X exp f ds(iAMXﬂ—%q>$+Mq>iai (A9)
|
Let us examine EQ.(A9) carefully. The first term %2
2_"n
M2[%(a,6,)% is the action of they, field, which for largeM () =y (A12)
becomes classical. The second term includes an integral over
all the closed paths through To define the Wilson loop we and indeed th&? piece in the loop drops out.
just look at one such path, leaving the integration over paths Combining them together, we obtain
for latter. The next term in the exponent breaks reparametri-
zation invariance and will seﬁ: 6?, as shown below. The f d + +
next term is the action for the Abelian gauge field on the yW(x) w(x)w(y) w(y))
single brane and the effect of the Wilson loop on it. Since _
N>1 and we are taking the probe approximation, we should =f Dx(s) exp( —f dSl\/||>'<|> f DA, Dd;e” Ssun
ignore this term. As we will see, for lardé the ®2 term will .
be subleading, so the last term is simply the Wilson loop Xex;{ fo ds(iAMX”+|>'<|<I>i0i)). (A13)

(W(x“,oi))=j DA, Dd;e” Ssun
The integral fds|X|M is the length of the loop times the

Xex[{J' ds(iA X —d;6)|. (AL0) massLM. Since it is ac number independent of, we can
ignore it as subleading in the largeanalysis in this paper.

¢ For the same reason, possible determinant factors are also

neglected in the above.
The calculation above can also be done in Lorentzian sig-
nature. The difference is an extran Eq. (A8):

The term withx?+ M? is not reparametrization invarian
When we perform the integral over different parametriza-
tions of the same patfincluding the integral ovef), we find

a saddle point. A general parametrizationsis3(s) such

that3(0)=0 and3(T)=T. To integrate over different pa- 1 |
rametrizations, we can perform the path integral ows) X y
= d¥ds with the action < ~4(D,~ia,)%+1(®—-M6)?| >

T, 2 i
—f dsz Ex#+cM =f dT( x| expiT
0

T . 1 . 1
+f ds(iA#“)'(“—c—CDinrcM(Dia'). (A11) —§(<I>i—l\/l0i)2>
0 2

1 H 2
+§(DM—|a#)

y> . (A14)

For large M the first term dominates, so it will pick the The rest of the calculation carries through with thishow-
saddle point ing up in different places. The final result is

125006-17



NADAV DRUKKER, DAVID J. GROSS, AND HIROSI OOGURI PHYSICAL REVIEW 50 125006

f D, exr{iJ%(ﬁﬂﬁi)z)J Dx(s) L=f do\F4+2+f'2, (B4)

l 1 . . . .
Xexp(iJ dsM|>'<|) J Da, eXF{iJ—(fW)2> SinceL does not depend explicitly op, the energyE given
0 4 by
_ 2, ¢4
Xexp(ij ds%xﬂ)fDAMD®i6|SSMN> E= [l (B5)
) V2472
Xexr( [ JO ds(A, X"+ |X|(Di0i)) (A15) s conserved. At the minimum df the energy is given by
_s 2 _
though it is less clear now why the terifix?+M?) should E=fovit+fy [fo=f(2/2)]. (B6)
dominate the path integral to set the saddle point. Substituting this back in EqB5)
Instead of the/V boson, we may consider a more general ’
particle with an arbitrary mass with a propagator Q B fmzd
1 2 0 ¢
_ . (A16)

3(D,—ia,)?+3(®;—M6)*+3m? (172 e : dez __

By the same calculation as above, we obtain the exponent fo FV(1+2)(f2—12)(F2+f3+1)
. o dz
N o vl MIX =t \/1+f2f
_ 2 (M 2+ 2 LA =
fods X, (M +m)+J0ds 1A XK+ m@,a' . 0 0 0(22+f§)\/(22+f§+1)(22+2f(2)+1)
(A17) i o N1+2f2 \/1+2 f2

Excited states of the open strings have this propagator and - f_OH arcsine, fo ' 1+fg ' (B7)

can be used to construct loops with+ 2. . o o
So far g is a constant. To construct loops which move inWherelT is an elliptic integral of the third kind. The regular-
the 6 directions, we have to use many probe D-branes, on&ed action is then
for each value ofé the loop goes through. We start with
SU(N+M) and break to SU{) X SU(M), which will then L=J doVf4+f'2
be broken to SU{) X U(1)M. Likewise, one should be able r=efle)

to couple the loop to the fermions to get the supersymmetric f [ 2%+ f(2)+ 1
i i = | dz\| 55—
loops used in Appendix C. 210 fc2>+1

APPENDIX B: AREA OF A CUSP

2

2o 2
1. At one point on § , 5 o € 1+2f;
o =iy1+fgE\ arcsini > =/,
Here we study the minimal surface near a cusp. We con- 1+215 1+15

sider a loop on a two-dimensional plane in four dimensions, (B8)
staying at the same point or*.SNe take the opening angle
of the cusp to b&). We choose radial coordinategand ¢ on

the plane and use them to parametrize the world sheet als
The boundary conditions ar@ising the first regularization
discussed in Sec. IlIB

whereE is an elliptic integral of the second kind. For small
§ it diverges linearly as 2e—F(Q). The functionF is
obtained by solving Eq(B7) for f, as a function of) and
substituting it intoL in the above. The total area is

Y(r.0)=Y(r,0)=0. N der%(z—:—F(Q)) -2 LF@g-.

To study the behavior of the surface near the cusp, we can (B9)

use scale invariance to set o ) ) ) o
This is the regular linear divergence plus a logarithmic di-

r vergence. After the Legendre transformation, we obtain
Y(rg)=r—. (B2) 9 ?
(¢) ~ 1 L
Using this ansatz, the area is A=- 2>p F(Q)log . (B10)
1 1
Azz_f drd()o?w/f4+f2+f’2_ (B3) 2. With a jump on S°
ar

The same analysis can be done for a loop which jumps, at
This reduces the minimal surface to a one-dimensional prolthe cusp, to a different point o8 with a relative angled.
lem with the effective Lagrangian We parametrize the string world sheetibgnd 6, wheref is
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a coordinate along the large circle connecting the two differfermionic variables, so that the full equations of motion are
ent points on & Because of scale invariance, we can set reproduced. With such, the loop equation can be written as

r 2
Y(r,0)=—, (B11) L W= — gﬂf i 2 a
F(0) L(W)=—i N ds 5A”a y'spa Tr PT4(s)
for some functionf(6). The other angular parameteris a o iy
function of ¢ only. The area is therefore Xexp | (IAX“+®y')ds
_ 1\/“/2 72 F2 12 . . NP
= | drdo P2+ 1+ (1+T2'2).  (B12) :)\stf ds' [K4(8)X,(5") — (9% (S)]
The problem is integrable since there are two conserved X 5HX(S) = X(S" )W, W, . (C4)
guantities
s The Euclidean super Yang-Mills theory has fermionic
B 1+f fields W which are Euclidean Majorana fermioh29] with
E= \/~ 5 ~ 2 2 16 complex components. The gamma matrifgs satisfy
fror (1+19)(1+1%") the Dirac algebra in ten dimensions with signat(t®, 0,
— with the index M=(u,i). The loop is parametrized by
I (1+9)f% (B13 (x*(s),y'(s)) and their superpartnef(s) coupling to the

> ~2 ~2 2 gauginosV.
\/f A+ (A+1%™) A natural choice for the supersymmetrized loop is
In general, the result cannot be written in terms of elliptic

integrals, and we will leave it to the overmotivated reader to W= ETrP exy{ f Z(S)st

find simple expressions for those integrals. If we €kt

=1, there is no cusp in theplane. In this case, the integrals

are simplified, and the results are expressed in terms of the xex;{ f (iA X“+ D yHds
elliptic integrals. ’

exp(— [£(s)Qd9) |.

(CH
APPENDIX C: DETAILS OF THE LOOP EQUATION
IN V=4 SUPER YANG-MILLS THEORY Here Q is the generator of supersymmetry of the gauge
theory, which acts as

The bosonic part of the Euclidean Wilson loop is
1 . _!
W= <TrP exp(f (iAMX“er)iy')ds). (C1) [Q.Au]=5Tu¥

We can define the bosonic part of the loop derivative to be

1
{Qiq,}:_ZFMNFMNI (CG)

52 52
= lim f ds f ( o - )
7—0 s=7 OxH(s")dx,(s)  8y'(s')dyi(s) where we have combined the gauge fidlg and the scalars
(C2 ®' into the ten-dimensional gauge fief, and computed

The extrai in front of ®;y' in the exponent conspires with the field strenglFyy . One may also include

the relative minus sign in the loop derivative to give the i _
bosonic part of the equations of motion [Q.%v]= Zng (C7)

L(W)=—i f ds< (x*(D"F,,)?

+ix#[®',D,®]2+iy"(D'D,®;)?

in the exponent, but it does not affect our analysis since we
will only be interested at the top component of the Grass-
mann algebra and at the end of the calculation we s€d.

—iy'[®],[®;,®;]]) TrPTA(s) The exponent of the Wilson loop is therefore given by
><e><|0J (iAMX“+<I>iy‘)ds>. (C3 efR(>iA XM+ Diyhe<C
o 1. .
This is a linear combination of the bosonic equations of mo- = (A, X"+ diy') — §§(XMFM_'y|Fi)‘P

tion for A, and®', but we are missing source terms due to
the fermions. What we would like to do here is to modify the

1. _
. . . ~ . . — —=XHtF"P Feee
functional differential operatot., including derivatives of 16" FPLTLT w8 (€8
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We will writze th(za loop equati'\c/)ln only for loops satisfying 1 S 5 w S
the constraink“=y<. Thereforex"'T"\y=X*T",—iy'T}; is nil- (] N = ~ N
potent. In this case, it is useful to work in#the basis where Xl 8¢(s") 6L(s) 04a(s") 6¢4(s)

W, (C12

we obtain the desired combination for the source terms in the

: i 0 0 1 (4 21 i -
XM —iy'Ti=| 4. ) = _( ) = , equation of motion,
w20 o) TR v e
(C9 X1y =W (XHT , +iy'T) ¥, (C13
and All other terms contain at least ori¢s) and are not relevant
o for our analysis of the loop at=0. Thus we found that the
(={"¢C, (C10 supersymmetric loop derivative defined by

where C is the charge conjugation matrix. The Majorana | _ |im f dsfﬁ”dsl
spinor in Lorentzian signature space satisfies the reality con- o s—p

dition = ¢'T°. In the Euclidean case, we do not impose any

reality condition[29]. The exponent of the loop E¢C8) in % 8 B 8 N o o
this basis becomes SXM(S") 8X,,(S) Syi(s')dyi(s) LS 50(s)
o g — 1 - _
(IAXE+ DY) = VX Ly + g\/MFNMQFNM+§+“‘- (C14

(C11) produces the variation of the action. For the loopZatO,
this completes the loop equation for thé=4 super Yang-

By applying the fermionic derivative operator Mills theory.
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