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The AdS-CFT correspondence suggests that the Wilson loop of the largeN gauge theory withN54
supersymmetry in four dimensions is described by a minimal surface in AdS53S5. We examine various
aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is
a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet
divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal
surface in AdS53S5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop
operator. In theN54 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the
scalar fields in the supermultiplet. We will show how this is realized for the minimal surface.
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I. INTRODUCTION

The remarkable duality between four dimensional sup
symmetric gauge theories and type IIB string theory on
AdS53S5 background@1# has been studied extensively ov
the past year and a half. This conjecture is difficult to test.
with many dualities, it relates a weakly coupled string theo
to a strongly coupled gauge theory. Weakly coupled str
theory is well defined, even though there are technical pr
lems in doing calculations with Ramond-Ramond ba
grounds. But how can one compare the results to the ga
theory, which is strongly coupled? Even if there is no pha
transition in going from weak to strong coupling in the gau
theory, there is little that can be said about the stron
coupled gauge theory. By virtue of nonrenormalization th
rems, it is possible to calculate some quantities in pertur
tion theory and extrapolate to strong coupling. Such te
niques, however, raise the question of whether th
comparisons can be regarded as strong evidence for the
jecture or whether the result is dictated by symmetry alo

Gauge theory without fermions has a nonperturbative
mulation on the lattice. This allows one to define, if n
compute, quantities at arbitrarily large bare couplings. T
lattice formulation of gauge theory enables one to deriv
rigorous form of the loop equation@2#, for the largeN limit
of the theory. These equations are satisfied on the lattice
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are solved by the master field of the theory. The only c
where the loop equation has been explicitly solved is t
dimensions, where the theory is soluble@3#.

The loop equation can also be derived formally in t
continuum field theory. It has been shown that the pertur
tive expansion of the theory yields a solution to the lo
equation. This is also the case for supersymmetric theo
Thus, although there is no formulation of supersymme
theories on the lattice, we assume that those theories
satisfy a largeN loop equation. Since this equation holds f
all couplings, we can use it for strong coupling as well. O
of the goals of this paper is to check if the AdS5 ansatz for
the expectation value of the Wilson loop operator satis
the loop equation. To the extent that we were able to relia
estimate properties of string in AdS5, the loop equation is
satisfied. However, we were unable to test them in all int
esting cases. In the course of our investigation we will a
learn new facts about Wilson loops and strings in anti–
Sitter space~Ads!.

We discuss the best understood and most studied cas
the AdS conformal field theory~CFT! correspondence be
tween type IIB superstring on AdS53S5 and N54 super
Yang-Mills theory with gauge group SU(N) in four dimen-
sions. We will concentrate on the case with Euclidean sig
ture metric. Let us review some basic facts about t
duality.1

The near horizon geometry ofN D3-branes is given by the
metric

1For more complete reviews, see@4,5#.
©1999 The American Physical Society06-1
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ds2

a8
5

U2

A4pgsN
(
m50

3

dXmdXm

1A4pgsN
dU2

U2 1A4pgsNdV5
2, ~1.1!

wheregs is the string coupling constant and the string te
sion is (2pa8)21. The background containsN units of
Ramond-Ramond flux. TheX and U are coordinates on
AdS5, and dV5

2 is the metric on S5 with unit radius. The
curvature radii of both AdS5 and S5 are given by
(4pgsN)1/4l s wherea85 l s

2. We will find it more convenient
to rescale the coordinatesXm by 1/A4pgsN and introduce
new coordinatesYi5u i /U ( i 51, . . .,6), where u i are the
coordinates on S5 and u251. The metric in this coordinate
system is

ds2

a8
5A4pgsNY22S (

m50

3

dXmdXm1(
i 51

6

dYidYi D .

~1.2!

It is interesting to note that AdS53S5 is conformal to flatR10

if the radii of AdS5 and S5 are the same. In this coordina
system, the boundary of AdS5 is mapped to the originYi

50 of R6.
The gauge theory couplinggYM and the string couplinggs

are related bygYM
2 54pgs . We are interested in the limit o

N→` while keeping the ’t Hooft couplingl5gYM
2 N finite

@6#. After taking the largeN limit, we will consider the re-
gion l@1, where the curvature is small compared to t
string scale and stringy excitations are negligible. In t
case, the supergravity approximation is reliable. Accord
to the AdS-CFT correspondence, every supergravity field
a corresponding local operator in the gauge theory. Corr
tors of local operators are given by the supergravity act
for fields with point sources on the boundary of AdS5 @7,8#.
In the classical limit one just solves the equations of mot
with such sources.

An interesting set of nonlocal operators in a gauge the
is composed of Wilson loops. It was proposed in@9,10# that
the Wilson loop is defined by an open string ending on
loop at the boundary of AdS5. In the classical limit, the
string is described by a minimal surface. As a result of
curvature of AdS5, the minimal surface does not stay ne
the boundary, but goes deep into the interior of space, wh
the area element can be made smaller. Because of this
behavior of the Wilson loop, for a large area, is that o
conformal theory, and the area law does not produce confi
ment.

The gauge theory under discussion does not con
quarks or other fields in the fundamental representation
the gauge group. To construct the Wilson loop describing
phase associated with moving a particle in the fundame
representation around a closed curve, we place one of
D-branes very far away from the others. The ground state
the string stretched from the distant D-brane to the oth
consist of theW bosons and their superpartners in the fun
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mental representation of the gauge group of the remain
branes. Thus, for largel, the expectation value of the Wilso
loop is related to the classical action of the string, with a
propriate boundary conditions. To the leading order inl, we
can ignore the effect of the Ramond-Ramond flux and
the Nambu-Goto action, namely, the area of the minim
surface:

A5E ds1ds2

2pa8Al
Ag

5E ds1ds2

2pY2
Adet~]aXm]bXm1]aYi]bYi !. ~1.3!

Because of theY22 factor, this area is infinite. After regu
larizing the divergence, the infinite part was identified as d
to the mass of theW boson and subtracted@9#. Taking two
parallel lines~with opposite orientation! as a quark-antiquark
pair, the remaining finite part defines the quark-antiqu
potential. Such calculations were used to study the phase
the N54 super Yang-Mills theory and to demonstrate co
finement in nonsupersymmetric generalizations@11,12#.

We will argue below that the correct action of the Wilso
loop is not the area of the minimal surface, but the Legen
transform of it with respect to some of the loop variable
The reason is that some of the string coordinates satisfy N
mann conditions rather than Dirichlet conditions. For a c
tain class of loops, this Legendre transform exactly remo
the divergent piece from the area. As a result, the expecta
values of such loops are finite.

The appropriate Wilson loop forN54 super Yang-Mills
theory is an operator of the form~suppressing all fermion
fields for the moment!

W/@C#5
1

N
Tr P expS R ~ iAmẋm1F i ẏ

i !dsD , ~1.4!

whereAm are the gauge fields andF i are the six scalars in
the adjoint representation, andC represents the loop vari
ables„xm(s),yi(s)…. Here„xm(s)… determines the actual loo
in four dimensions;„yi(s)… can be thought of as the extra s
coordinates of the ten-dimensionalN51 super Yang-Mills
theory, of which our theory is the dimensionally reduc
version. It turns out that minimal surfaces terminating at
boundary of AdS5 correspond only to loops that satisfy th
constraintẋ25 ẏ2. This constraint was derived before, an
we study in greater depth its origin and meaning. In@9#, the
constraint was introduced as a consequence of the fact
the mass of the open string and the Higgs vacuum expe
tion value ~VEV! are proportional to each other. We wi
show that the constraint also has a geometric interpretatio
terms of a minimal surface in AdS53S5. Another interpreta-
tion of the constraint has to do with theN54 supersymme-
try; the loops obeying the constraint are Bogomol’ny
Prasad-Sommerfield-~BPS!-type objects in loop space. Afte
discussing various aspects of loops obeying the constra
we present some idea on how to extend the calculation
more general class of loops.
6-2
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WILSON LOOPS AND MINIMAL SURFACES PHYSICAL REVIEW D60 125006
The loop equation is a differential equation on the lo
space. We evaluate, using string theory on AdS5, the action

of the loop differential operatorL̂ on a certain class of Wil-
son loops. On a smooth loopC, we find that the differential
operator annihilates the vacuum expectation of the loop^W&,
in accordance with the loop equation as derived in the ga
theory. On the other hand, for a loop with a self-intersect

point, the gauge theory predicts thatL̂^W& is nonzero and
proportional togYM

2 N. We point out the gauge theory als
predicts that a cusp~a sharp turning point! in a loop gives a
nonzero contribution to the loop equation, proportional

gYM
2 N. We will show that L̂^W& for a loop with a cusp

evaluated by the minimal surface in AdS53S5 is indeed non-
vanishing and proportional togYM

2 N. We have not been abl
to reproduce the precise dependence on the angle at the
due to our lack of detailed understanding of loops not ob
ing the constraintẋ25 ẏ2. For the same reason we were u
able to reproduce the expected result at an intersection.

The paper is organized as follows.
In Sec. II, we start with a brief review of the Wilson loo

operator in the pure Yang-Mills theory. We then point out
important subtlety in performing the Wick rotation in th
supersymmetric theory. We will present some results fr
the perturbation theory where the subtlety in the Wick ro
tion plays an interesting role.

In Sec. III, we turn to string theory in AdS53S5. We will
give a precise specification of boundary conditions on
string world sheet and the geometric origin of the constra
ẋ25 ẏ2. For some cases, we can compute the area of min
surfaces explicitly. These include loops with intersections
cusps. For such loops, the areas have logarithmic di
gences. After calculating those areas, we explain the nee
the Legendre transform and show that it removes the lin
divergence. The absence of a linear divergence fits well w
what we expect for the supersymmetric gauge theory.
will clarify the issue of zigzag symmetry and end the sect
with a discussion of loops that do not satisfy the constra

In Sec. IV, we give a review of the loop equation in th
pure Yang-Mills theory and derive its generalization to t
case ofN54 super Yang-Mills theory in four dimensions.

In Sec. V, we will discuss to what extent the minim
surface calculation in AdS5 is consistent with the loop equa
tion.

To make the body of the paper more readable, some
tails are presented in appendixes. In Appendix A we der
the Wilson loop as the first quantized action of theW boson.
In Appendix B we calculate the area of a minimal surfa
near a cusp. In Appendix C we present some more detail
the loop equation of theN54 theory.

II. WILSON LOOPS IN N54 GAUGE THEORY

We define the Wilson loop operator in the supersymm
ric gauge theory and review some of its basic properties.
pay particular attention to its coupling to the scalar fields
the supermultiplet.
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A. Definition

One of the most interesting observables in gauge theo
is the Wilson loop, the path-ordered exponential of the ga
field,

W5
1

N
Tr P expS i R Amdxm D , ~2.1!

with the trace in the fundamental representation. The Wils
loop can be defined for any closed path in space, providin
large class of gauge invariant observables. In fact, these
erators, and their products, form a complete basis of gau
invariant operators for pure Yang-Mills theory. An approp
ate definition of the loop operator for theN54 super Yang-
Mills theory in four dimensions will be given below.

One of physical applications of Wilson loops stems fro
the fact that an infinitely massive quark in the fundamen
representation moving along the loop will be transformed
the phase factor in Eq.~2.1!. Thus the dynamical effects o
the gauge dynamics on external quark sources is meas
by the Wilson loop. In particular, for a parallel quark
antiquark pair, the Wilson loop is the exponent of the effe
tive potential between the quarks and serves as an orde
rameter for confinement@13#.

The Maldacena conjecture states that type IIB str
theory on AdS53S5 is dual to N54 super Yang-Mills
theory in four dimensions. This gauge theory does not c
tain quarks in the fundamental representation. To const
the Wilson loop, we separate a single D-brane from theN
D-branes and take it very far away. For largeN, we can
ignore the fields on the distant D-brane, except for op
strings stretching between it and the otherN. The ground
states of the open string are theW bosons and their super
partners of the broken, SU(N), gauge group. Their trajecto
ries should give the same effect as that of an infinitely m
sive particle in the fundamental representation.

The correlation functions of theW boson can be written in
the first quantized formalism as an integral over paths. T
description is studied in detail in Appendix A. When th
four-dimensional space has the Lorentzian signature me
the phase factor associated with the loop is given by
vacuum expectation value of the operator

W5
1

N
Tr P expS i R ~Amẋm1uẋuF iu

i !dsD . ~2.2!

When the metric is Euclidean, there is an important mod
cation to this formula as

W5
1

N
Tr P expS i R ~Amẋm2 i uẋuF iu

i !dsD . ~2.3!

Notice the presence ofi in the second term in the exponen
The ‘‘phase factor’’ in the Euclidean theory is not really
phase, but contains a real part.

In the above,u i are angular coordinates of magnitude
and can be regarded as coordinates on S5. In the gauge
theory, we may consider a more general class of Wils
loops of the form
6-3
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W5
1

N
Tr P expS R ~ iAmẋm1F i ẏ

i !dsD , ~2.4!

with an arbitrary functionyi(s). This is the general loop we
would get by dimensional reduction from the ten dime
sional gauge theory, whereF i would be the extra six com
ponents of the gauge field. Equation~2.3! restricts us to the
case ofẋ22 ẏ250. This suggests that the metric on the lo
variables„xm(s),yi(s)… has the signature~4,6!. It is impor-
tant to stress that this is not the signature of AdS53S5, but of
the space where the loops are defined.2 As we will show
later, the signature of the loop space metric is related to
fact that the six loop variablesyi(s) correspond toT-dual
coordinates on the string world sheet. The constraintẋ2

2 ẏ250 is also related to supersymmetry.
Gauge invariance in four dimensions requires that

Wilson loop close in four dimensions; i.e. the loop variab
xm(s) are continuous and periodic around the loop. This
not the case for the other six variablesyi(s), and the loop
may have a jump in these six directions.

B. Perturbation theory

As a warm-up, we study properties of the Wilson loops
perturbation theory. To first order ingYM

2 N, the expectation
value of the loop̂ W& is given by

^W@C#&512gYM
2 N R ds R ds8P$ẋm~s!ẋv~s8!Gmn

3@x~s!2x~s8!#2 ẏi~s!ẏ j~s8!Gi j @x~s!2x~s8!#%,

~2.5!

whereGmn and Gi j are the gauge field and scalar propag
tors. The relative minus sign comes from the extrai in front
of the scalar piece in the exponent in Eq.~2.3!. This integral
is linearly divergent. With a regularization of the propaga
with cutoff e @i.e., replacing 1/x2 with 1/(x21e2)], the di-
vergent piece coming from the exchange of the gauge fi
Am is evaluated as

2
l

8p2 R dsE
e/uẋu

e/uẋu
ds8ẋm~s!ẋn~s8!

dmn

e2

52
l

~2p!2e
R dsuẋu52l

L

~2p!2e
, ~2.6!

whereL is the circumference of the loop. The divergent co
tribution from the exchange of the scalarsF i is

2One may regard the extra factor ofi in the Euclidean case~2.3!
as a Wick rotation of the sixy coordinates so that we can expre
the constraint asẋmẋm1 ẏi ẏi50, both in the Lorentzian and Euclid
ean cases. To avoid confusion, we will not use this convention
write the i explicitly in all our expressions in the Euclidean case
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8p2 R dsE
e/uẋu

e/uẋu
ds8ẏi~s!ẏ j~s8!

d i j

e2 5
l

~2p!2e
R dsuẋu

ẏ2

ẋ2 .

~2.7!

Combining these terms together, we find

W511
l

~2p!2e
R dsuẋuS 12

ẏ2

ẋ2D 1finite. ~2.8!

We note that the linear divergence cancels when the c
straint ẋ25 ẏ2 is satisfied.

At nth order in thel5gYM
2 N expansion, one finds a linea

divergence of the form

ln

e R dsuẋuGnS ẏ2

ẋ2D , ~2.9!

for some polynomialGn(z). We now argue thatGn(1)50;
namely the linear divergence cancels whenẋ25 ẏ2, to all
order in the perturbative expansion. Thenth order term is
calculated by connected Feynman diagrams with exte
legs attached to the loop. The linear divergence appe
when all the external legs come together in four dimensio
Since the Feynman rule of theN54 gauge theory is ob-
tained by the dimensional reduction of the ten-dimensio
theory, the ten-dimensional rotational invariance of t
Feynman rule is recovered in the coincidence limit. The
fore the contractions of the external indices by the Feynm
rule produce only rotational invariant combinations
( ẋm,i ẏ i), namely, a polynomial of (ẋ22 ẏ2). The polynomial
does not have a constant term since a connected Feyn
diagram for ^W& needs to have at least two external lin
attached to the loop. Therefore the polynomial vanish
when ẋ22 ẏ250.

When the loop has a cusp, there is an extra logarith
divergence from graphs as shown in Fig. 1. Let us denote
angle at the cusp byV. We choose the angle so thatV5p at
a regular point of the loop. A one-loop computation with t
gauge field gives

l

~2p!2
@~p2V! cotV11# log

L

e
. ~2.10!

A cusp is a discontinuity ofẋm. There may also be a discon
tinuity in ẏi , which we measure by an angleU. We chooseU
so thatU50 whenẏi is continuous. A one-loop computatio
with the scalar fields gives
d

FIG. 1. ~a! At one loop, there is a linear divergence from th
propagator connecting coincident points. The divergence is pro
tional to the circumference of the loop.~b! At cusps and intersec
tions, an additional logarithmic divergence appears when the
external legs approach the singular point.
6-4
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2
l

~2p!2 S 2
p2V

sinV
cosU11D log

L

e
. ~2.11!

Combining Eqs.~2.10! and ~2.11! together, we obtain

l

~2p!2

p2V

sinV
~cosV1cosU! log

L

e
. ~2.12!

A similar computation at an intersection gives

l

2p

1

sinV
~cosV1cosU! log

L

e
. ~2.13!

III. MINIMAL SURFACES IN ANTI –de SITTER SPACE

According to the Maldacena conjecture, the expectat
value of the Wilson loop is given by the action of a strin
bounded by the curve at the boundary of space:

^W@C#&5E
]X5C

DX exp~2AlS@X# !, ~3.1!

for some string actionS@X#. Here X represents both the
bosonic and the fermionic coordinates of the string. For la
l, we can estimate the path integral by the steepest des
method. Consequently, the expectation value of the Wil
loop is related to the areaA of the minimal surface bounde
by C as

^W&. exp~2AlA!. ~3.2!

The motivation for this ansatz is that theW boson considered
in Sec. II A is described in the D-brane language by an o
string going between the single separated D-brane and
otherN D-branes. In the near-horizon limit, theN D-branes
are replaced by the AdS5 geometry and the open string
stretched from the boundary to the interior of AdS5.

To be precise, this argument only tells us that the Wils
loop and the string in AdS5 are related to each other. Th
expression~3.1! is schematic at best, and there may be
additional loop-dependent factor in Eq.~3.2!. A similar prob-
lem exists in computation of correlation functions of loc
operators; there is no known way to fix the relative norm
ization of local operators in the gauge theory and superg
ity fields in AdS5. To determine the normalization facto
one has to compute the two-point functions@14,15#. In our
case, the normalization factor in Eq.~3.2! may depend on the
loop variablesC5„xm(s),yi(s)…. In fact, we will argue be-
low that the correct action to be used in Eq.~3.2! is not the
areaA of the surface, but the Legendre transform of it. Th
modification does not change the equations of motion,
the solutions are still minimal surfaces. However, the val
of the classical action for these surfaces are different t
their areas.

We will assume that, to the leading order inl, there is no
further C-dependent factor. Otherwise, the conjecture wo
be meaningless as it would produce no falsifiable pred
tions. On the other hand, one expects aC-dependent factor in
the subleading order, such as the fluctuation determinan
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the surface in AdS5. There can also be a factor in the relatio
between theW-boson propagation amplitude and the Wils
loop computed in Appendix A. Such a factor would be kin
matic in nature and independent ofl, and therefore negli-
gible in our analysis.

A. Boundary conditions and BPS loop

The Wilson loop discussed in@9# obeys the constraint

ẋ25 ẏ2. ~3.3!

This constraint was originally derived by using the coupli
of the fundamental string to the gauge fields and to the s
lars. In our derivation of the loop operator from the pha
factor for theW-boson amplitude in Appendix A, the con
straint arises from the saddle point in integrating over diff
ent reparametrizations of the same loop, essentially for
same reason as in@9#.

In this section, we will give another interpretation of th
constraint~3.3!, in terms of the string theory in AdS53S5.
For this interpretation we need to give a precise specifica
of the boundary condition on the string in AdS53S5.

We begin with super Yang-Mills theory in ten dimen
sions, which is realized on space-filling D9-branes. We
nore the fact that this theory is anomalous since we w
reduce it to the anomaly-free theory in four dimension
Moreover, we are only interested in the boundary conditio
on bosonic variables.3 The Wilson loop in ten dimension
corresponds to an open string world sheet bounded by
loop; i.e., we should impose full Dirichlet boundary cond
tions on the string world sheet. This is natural since, with
the Wilson loop operator, the string end point obeys fu
Neumann boundary conditions along the D9-brane. The c
ditions imposed by the Wilson loop are complementary
the boundary conditions on the D9-brane.

To reduce the theory to four dimensions, we perfo
T-duality along six directions. An open string ending on t
D3-brane obeys four Neumann and six Dirichlet bound
conditions. Consequently, the Wilson loop operator in
four-dimensional gauge theory imposes complement
boundary conditions, namely, four Dirichlet and six Ne
mann boundary conditions. If the Wilson loop is param
etrized by the loop variables„xm(s),yi(s)…, where ẏi(s)
couples to the six scalar fields, then the six loop variab
ẏi(s) are to be identified with the six Neumann bounda
conditions on the string world sheet.

We are ready to specify the boundary condition on
string world sheet residing in AdS53S5, with line element

ds2

a8
5AlY22S (

m50

3

dXmdXm1(
i 51

6

dYidYi D . ~3.4!

Choose the string world-sheet coordinates to be (s1,s2)
such that the boundary is located ats250. SinceXm is iden-

3Boundary conditions for fermionic variables are not relevant
our analysis of the loop for largel.
6-5
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tified with the four-dimensional coordinates where the gau
theory resides, it is natural to impose Dirichlet conditions
Xm, so that

Xm~s1,0!5xm~s1!. ~3.5!

The remaining six string coordinatesYi(s1,s2) obey Neu-
mann boundary conditions. We propose that these boun
conditions are

J1
a]aYi~s1,0!5 ẏi~s1!, ~3.6!

whereJa
b(a,b51,2) is the complex structure on the strin

world sheet given in terms of the induced metricgab ,

Ja
b5

1

Ag
gagegb. ~3.7!

Although we do not have a derivation of the bounda
condition ~3.6! from first principles, it can be motivated a
follows. Because of the identification of the SO~6! symme-
tries in the AdS-CFT correspondence, it is clear that N
mann boundary conditions must setẏi equal toJ1

a]aYi up to
a relative normalization of the two. The use of the induc
complex structureJa

b in the Neumann boundary condition
required by the reparametrization invariance on the wo
sheet. The fact that the conditionẋ25 ẏ2 has a natural inter-
pretation in terms of the minimal surface, as we will expla
below, suggests that the normalization factor is 1, as in
~3.6!.

For a generic choice of the loop variables„xm(s),yi(s)…,
there is a unique minimal surface in Euclidean space obe
the ten boundary conditions, Eqs.~3.5! and ~3.6!. However,
the resulting minimal surface does not necessarily termin
at the boundaryYi50 of AdS5. The conditionYi50 would
be additional Dirichlet conditions, which may or may not
compatible with Eq.~3.6!. In fact, one can show that, for
smooth loop, the additional conditionYi(s1,0)50 is satis-
fied by the minimal surface if and only if the loop variabl
obey the constraintẋ25 ẏ2. To see this consider th
Hamilton-Jacobi equation4 for the areaA of a minimal sur-
face bounded by a loop„Xm(s),Yi(s)… in AdS53S5:

S dA

dXmD 2

1S dA

dYi D 2

5
1

~2p!2Y4 @~]1Xm!21~]1Yi !2#.

~3.8!

Since the momenta conjugate to theXm’s and theYi ’s are
given by

4In general, the Hamilton-Jacobi equation for the area of a m
mal surface on a Riemannian manifold with a metricGIJ takes the
form

GIJ~dA/dXI !~dA/dXJ!5GIJd1XId1XJ.
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dA

dXm 5
1

2pY2 J1
a]aXm,

dA

dYi 5
1

2pY2 J1
a]aYi ,

~3.9!

we obtain

~J1
a]aXm!21~J1

a]aYi !25~]1Xm!21~]1Yi !2.
~3.10!

If the minimal surface obeys the boundary conditions~3.5!
and ~3.6!, this becomes

ẋ22 ẏ25~J1
a]aXm!22~]1Yi !2. ~3.11!

Now impose the additional condition that the string wor
sheet terminate at the boundary of AdS5, i.e., Yi(s1,0)50.
Obviously, ]1Yi(s1,0)50. This alone tells us thatẋ22 ẏ2

>0. Moreover, if the boundary is smooth, it costs a lar
area to keepJ1

a]aXm nonzero near the boundary of AdS5, so
it has to vanish at the boundaryY50 @9#. Therefore the
condition that the minimal surface terminate at the bound
of AdS5 requiresẋ25 ẏ2.

When the constraintẋ25 ẏ2 is satisfied, one can reinter
pret the six Neumann conditions~3.6! as Dirichlet conditions
on S5. To see this, it is useful to decompose the six coor
natesYi

Yi5Yu i ~3.12!

whereu i are coordinates on S5 and Y5U21 is one of the
coordinates on AdS5. Since for a smooth loop the classic
solution has]aYi5(]aY)u i at the boundaryY50 of AdS5,
the Neumann conditions~3.6! turn into the Dirichlet condi-
tions on S5 as

u i~s1,0!5
ẏi

u ẏu
. ~3.13!

This justifies the boundary conditions used in@9#.
There is yet another interpretation of the constraintẋ2

5 ẏ2, and it has to do with supersymmetry. The loops
have considered so far couple only to bosonic fields:
gauge fieldAm and scalarsF i . We also need to allow cou
pling to the fermionic fields in the exponent. Fermionic va
ablesz(s) along the loop couple to the gauginosC as

z̄~ ẋmGm2 i ẏ iG i !C, ~3.14!

where we are using ten-dimensional gamma matricesGm and
G i with signature~10,0!. This is derived in Appendix C.
Exactly when the constraint is satisfied this combination
gamma matrices becomes nilpotent. Consequently, only
the components ofz couple toC, putting the loop in a short
representation of local supersymmetry in super loop spa
The simplest example is when the Wilson loop is a strai
line, whenẋ andẏ are independent ofs. If z is also constant,
this loop is the phase factor associated with the a trajec
of a free BPS particle.

i-
6-6
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B. Calculating the area

The computation of the Wilson loop in AdS5 requires an
infrared regularization, since the area of the minimal surf
terminating at the boundary of AdS5 is infinite due to the
factorY22 in the metric. In order to make sense of the ans
~3.2!, we need to regularize the area. One natural way to
so is to impose the boundary conditions~3.5! and ~3.6! at
Y50, but integrate the area element only over the part of
surface withY>e. On the gauge theory side, the Wilso
loop requires regularization in the ultraviolet. According
the UV-IR relation in the AdS-CFT correspondence@16#, the
IR cutoff e in AdS5 should be identified with the UV cutof
in the gauge theory.

There are a few cases when minimal surfaces can be s
ied analytically.

1. Parallel lines

The minimal surface for parallel lines, each of lengthL
and separated by a distanceR, was obtained in@9,10#. The
area of the loop is

A5
2L

2pe
2

4p&

G~1/4!4

L

R
. ~3.15!

2. Circular loop

The minimal surface in AdS5 bounded by a circle of ra
dius R is found in @17,18# as

Y~r ,w!5AR22r 2, ~3.16!

wherer andw are radial coordinates on a plane in the fo
dimensions, and we use them as coordinates on the s
world sheet also. The area of the surface with the cutoffe is

A5
1

2p
E dr rdwY22A11Y82

5RE
0

AR22e2 rdr

~R22r 2!3/25
2pR

2pe
21. ~3.17!

3. Cusp

Another family of minimal surfaces we can solve analy
cally is a surface near a cusp onR4 and its generalization
including a jump on S5. We can find analytical solutions in
this case since the boundary conditions are scale invar
Using radial coordinates in the vicinity of the cusp,r andw,
as world-sheet coordinates, the scale-invariant ansatz

Y~r ,w!5
r

f ~w!
~3.18!

reduces the determination of the minimal surface to a o
dimensional problem. The resulting surface is depicted
Fig. 2. When there is also a jump on S5, one needs to intro-
duce another variable. An analytical solution in this case
found in a similar way. These solutions are presented in
12500
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pendix B. The result is that the area of the surface ha
logarithmic divergence as well as a linear divergence. It
haves as

A5
L

2pe
2

1

2p
F~V,U! log

L

e
1¯ , ~3.19!

whereV and Q are the cusp angles in R4 and S5, respec-
tively.

When either Q or V vanishes, we can expres
F(V,Q)/2p in terms of elliptic integrals. In Fig. 3 we show
the numerical evaluation of the functionF(V,0) as the solid
curve. This is to be compared with the perturbative expr
sion ~2.12! shown as the dashed curve. The functionF(V,0)
is zero atV5p and has a pole atV50. As the angleV
→0 at the cusp, the loop goes back along its original path
backtracks. Regularizing the extra divergence from the p
turns it into a linear divergence which cancels part of t
linear divergence from the length of the loop. This is relat
to issues discussed in the section on the zigzag symmet

Away from the cusp, the surface approaches the bound
along theY direction without a momentum in theX direction.
Right at the cusp, however, the surface has momentum

FIG. 2. A minimal surface for a Wilson loop with a cusp. Th
regularized area is evaluated over the shaded region.

FIG. 3. The solid curve shows the functionF(V,0)/2p, which
appears in the logarithmic divergence of the minimal surface w
the cusp of angleV. This is compared with the perturbative resu
~2.12! at a cusp shown as the dashed curve. The dotted curve is
of the perturbative result~2.13! at an intersection.
6-7



he
i-

he
x

th

nc
p
e

e
ng
f

b

th
a

s

s
m

ary
n

p to

lso
the
ich
e

y
re
ing
is

etry

und-

is
of

rld
ow-

mo-
al
und-

son

gue

o-

e

-
r

the

r an
t

ns

NADAV DRUKKER, DAVID J. GROSS, AND HIROSI OOGURI PHYSICAL REVIEW D60 125006
both theY and r directions. This means that, although t
constraintẋ25 ẏ2 is obeyed almost everywhere, it is mod
fied at the cusp as

ẋ25~11 f 0
2!ẏ2, ~3.20!

where f 05 f (w5V/2) is the minimal value off (w).

4. Intersection

The minimal surface for a self-intersecting loop is just t
sum of two cusps. The only difference is that, by the e
change symmetry of the two components of the loop,
intersection forces

ẏ

uẋu
50 ~3.21!

instead of Eq.~3.20!
In all the examples above, there is a linear diverge

(2pe)21 in the regularized area. This is true for any loo
As explained in@9#, this leading divergence in the area of th
minimal surface in AdS5 is proportional to the circumferenc
of the loop.5 The linear divergence arises from the leadi
behavior of the surface at smallY, i.e., near the boundary o
AdS5.

In this section, we have computed the regularized area
imposing the boundary condition at the boundaryY50 of
AdS5 and integrating the area element over the part of
surfaceY>e. This is not a unique way to regularize the are
Another reasonable way to compute the minimal surface i
impose the boundary conditions, not atY50, but atY5e.
The area bounded by the loop onY5e is then by itself finite.
A comparison of the two regularization prescriptions is illu
trated in Fig. 4. These two regularizations give the sa
values for the area, up to terms which vanish ase→0. For
example, consider the circular loop. The solution~3.16! can

5We are using the coordinatesXm in Eq. ~1.2! to describe the
configurations of the Wilson loops. With these coordinates, ther
no factor ofl in the relation between the IR cutoffe in AdS5 and
the UV cutoff of the gauge theory@16#. These coordinates are dif
ferent from the coordinates on the D3-brane probe, by a facto
Al @19#.

FIG. 4. The comparison of the two regularization prescriptio
The boundary conditions are imposed atY50 in ~a! and atY5e in
~b!. The shaded regions represent the regularized areas.
12500
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also be regarded as a minimal surface with the bound
condition onY5e, except that the radius of the circle o
Y5e is now R05AR22e2. The area computed in this new
regularization is then

A5
1

e
AR0

21e2215
2pR0

2pe
211

e

2R0
1¯ . ~3.22!

Thus the results of the two regularizations are the same u
terms which vanish ase→0. It is straightforward to show
that this is also the case for the parallel lines. We have a
verified that when the loop has a cusp or an intersection,
two regularizations give the same area modulo terms wh
are finite ase→0, which are subleading compared to th
logarithmic divergence.

When we impose the boundary condition atY5e, the
constraint on the loop variables is not exactlyẋ25 ẏ2, but it
is modified. If the loop is smooth, the modification is only b
O(e) terms.6 Therefore most of the results in this paper a
independent of the choice between the two ways of impos
the boundary conditions. The only exception to this rule
the discussion of the zigzag symmetry. The zigzag symm
of the string world sheet on AdS5 seems to fit well with our
expectations about the gauge theory when we use the bo
ary conditions atY5e rather than atY50.

C. Legendre transformation

The Maldacena conjecture implies that the Wilson loop
related to a string ending along the loop on the boundary
space. In the classical limit, we expect that the string wo
sheet is described by a minimal surface. This argument, h
ever, does not completely determine the value of^W& for
largel since there are many actions whose equations of
tion are solved by minimal surfaces. They differ by tot
derivatives, or boundary terms. Since the surface has bo
aries, such terms can be important. In@9,10# it was assumed
that one should use the Nambu-Goto action, so the Wil
loop was given in terms of the areaA of the minimal surface.
This is what we have studied so far. In this section, we ar
that ^W& is in fact given not byA but by an appropriate
Legendre transform.

We have shown that the loop variablesẏi impose Neu-
mann boundary conditions~3.6! on the coordinatesYi .
Therefore^W& should be regarded as a functional of the c
ordinatesXm and the momentaPi conjugate toYi , defined
by

Pi5
dA

d]2Yi 5
1

2pAla8
Agg2a]aYjGi j . ~3.23!

is

of

6If the loop has a cusp or an intersection, as we saw earlier,
boundary conditions imposed atY50 imply that the constraintẋ2

5 ẏ2 holds almost everywhere along the loop, except at a cusp o
intersection point. When we impose the boundary conditions aY
5e, the constraint is modified in regions of sizee near the cusp and
the intersection point.

.

6-8
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WILSON LOOPS AND MINIMAL SURFACES PHYSICAL REVIEW D60 125006
The Nambu-Goto action is a natural functional ofXm(s) and
Yi(s) and is more appropriate for the full Dirichlet bounda
conditions. To replace it with a functional ofXm(s) and
Pi(s), we need to perform the Legendre transform

L̃5L2]2~PiY
i ! ~3.24!

or

Ã5A2 R ds1PiY
i . ~3.25!

To show thatÃ is a natural functional of (Xm,Pi), we use
Hamilton-Jacobi theory. Under a general variation of theY
coordinates, the variation of the areaA of the minimal sur-
face is given by

dA5E ds1ds2S dA

dYi 2]a

dA

d]aYi D dYi~s1 ,s2!

1 R ds1

dA

d]2Yi dYi~s1,0!

5 R ds1Pi~s1,0!dYi~s1,0!. ~3.26!

Here we used the equations of motion. Therefore, after
forming the Legendre transformation, we obtain

dÃ52 R ds1Yi~s1,0!dPi~s1,0!. ~3.27!

Thus Ã is a functional of the momentaPi at the boundary,
not the coordinatesYi .

The Neumann boundary conditions~3.6! are conditions
on the momentaPi :

ẏi

2p
5Pi5Y2Pi . ~3.28!

In fact, if the loop variablesẏi(s) are continuous, the coor
dinatesYi are parallel to the momentaPi , as we saw in Eq.
~3.13!. In this case, the Legendre transform gives

Ã5A2
1

2p
R ds1

ẏi

Y2 Yi

5A2
1

2p
R ds1

u ẏu

Y
5A2

1

2pe
R dsu ẏu, ~3.29!

wheree is the regulator. In the last step, we have setY5e
since the regularized action is evaluated forY>e.

In the previous section, we saw that the areaA of minimal
surface has a linear divergence proportional to the circu
ference of the boundary. By combining it with Eq.~3.29!, we
find

Ã5
1

2pe R ds~ uẋu2u ẏu!1finite ~3.30!
12500
r-

-

for a smooth loop. Therefore the linear divergence canc
when the constraintẋ25 ẏ2 is satisfied. The minimal surfac
in AdS5 is supposed to describe the Wilson loop for lar
couplingl. We saw in Sec. II B that the cancellation of th
divergence also takes place to all order in the perturba
expansionl. This suggests that the cancellation of the line
divergence is exact, and a smooth loop obeyingẋ25 ẏ2 does
not require regularization. We suspect that this is a con
quence of the BPS property of the loop. When the loop i
straight line, it preserves a global supersymmetry, not o
the local one. In that case the lowest order perturbation
culation is exact. The modified action is zero; the expectat
value of the Wilson loop is 1.

We were not able to find an explicit expression forL̃ as a
function of Xm, Pi , and their derivatives. We only know
how to evaluate it for classical solutions in terms of the o
variables.

By definition, the areaA of the minimal surface is posi
tive. On the other hand, its Legendre transformÃ may be
negative and the expectation value of the loop,^W&
5exp(2AlÃ), may be larger than 1. In the pure Yang-Mil
theory, the Wilson loop is a trace of a unitary operator~di-
vided by the rankN of the gauge group!, and its expectation
value has to obey the inequality^W&<1. This is not the case
in the supersymmetric theory in the Euclidean signat
space sinceW in Eq. ~2.3! is not a pure phase, and there is n
unitarity bound on its expectation value.

We have shown that the expectation value of a smo
Wilson loop obeyingẋ25 ẏ2 is finite. If the loop has a cusp
or an intersection, the cancellation is not exact and we
left with the logarithmic divergence7

Ã52
1

2p
F~V,U! log

L

e
1finite. ~3.31!

It is interesting to note that the constraintẋ25 ẏ2 is not sat-
isfied either at a cusp

ẋ25~11 f 0
2!ẏ2 ~3.32!

or at an intersection point

ẏi

uẋu
50. ~3.33!

We suspect that the logarithmic divergences at the cusp
the intersection are caused by the failure of the loop to
isfy the BPS condition at these points.

D. Zigzag symmetry

A Wilson loop of the form

W5
1

N
Tr P expS i R dsAmẋm D ~3.34!

7If UÞ0, the functionF(V,U) gets a contribution from the Leg
endre transformation.
6-9
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is reparametrization invariant, ins, namely, unchanged bys
→ f (s). Formally, it is even invariant under reparametriz
tions which backtrack@namely, when ḟ (s) is not always
positive# since the phase factor going forward and then ba
wards will cancel. Polyakov has argued in@20# that this
‘‘zigzag symmetry’’ is one of the basic properties of th
QCD string. One must, however, be careful, even in p
Yang-Mills theory, since the loop requires regularizatio
Zigzag symmetry, in fact, is only true perturbatively f
regularized loops, where the backtracking paths are clo
than the ultraviolet cutoff. It was pointed out in@9# that the
Wilson loop in the supersymmetric theory~2.3!, with the
constraintẋ25 ẏ2, does not have this symmetry. This is b
cause the couplings of the Wilson loop to the scalar fieldsF i

are proportional touẋu, which does not change the sign whe
the loop backtracks. Thus, if the loop stays at the same p
u i on S5, there is no cancellation of the coupling to the sca
fields.

In perturbation theory, one can easily prove that the z
zag symmetry holds for the Wilson loop~2.4! when ẏi50.
Suppose we have a segmentC1 of a loop which goes in one
direction and another segmentC2 which comes back paralle
to C1 , but in the opposite direction, as shown in Fig. 5. If t
distanceh betweenC1 and C2 is much less than the UV
regularizatione of the gauge theory, there is one-to-one ca
cellation between a Feynman diagramG which has one of its
external leg ending onC1 and another diagramG8 which is
identical toG except that the corresponding leg ends onC2 .
Therefore, to all order in the perturbative expansion, the s
mentsC1 andC2 do not contribute to the expectation valu
of the Wilson loop. On the other hand, ifẏi5uẋuu i andu i is
fixed at a point on S5, a diagram with a leg coupled toẏi on
C1 and one with the corresponding leg coupled toẏi on C2
add up, rather than cancel each other. The perturbative c
putation therefore shows no zigzag symmetry in this cas

When the couplingl is large, we expect that̂W& is re-
lated to the minimal surface. The area functional, and a
matter of fact any other functional which is an integral ov
a minimal surface, has zigzag symmetry. The proof
simple. If we look at the regionY>e, the minimal surface
bounded by a backtracking loop is almost identical to
surface bound by the curve without backtracking if the se
ration h betweenC1 andC2 is much less than the cutoffe.
This is illustrated in Fig. 6. Therefore an action on the s
face given by an integral over the part of the surface inY
>e is the same with or without the backtracking.

At first sight, the zigzag symmetry of the minimal surfa

FIG. 5. The zigzag loop. The loop goes in one direction alo
C1 and comes back alongC2 . The two segmentsC1 and C2 are
parallel and their distanceh is less than the gauge theory UV cuto
e.
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appears in contradiction with the gauge theory expecta
since we know the minimal surface ending along a smo
loop on the boundary of AdS5 obeys the constraintẋ25 ẏ2

and thereforeẏiÞ0. In the gauge theory, we donot expect
zigzag symmetry whenẏi is nonzero and constant. A clos
examination of the boundary condition, however, reveals t
the situation is more subtle. It is true that, if we impose t
boundary conditions atY50, the part of the surface connec
ing C1 andC2 does not reachY5e and does not contribute
to the regularized area forY>e. Therefore zigzag symmetry
holds for ^W&. This is also the case when we impose t
boundary condition atY5e. In this case, ife@h, the mini-
mal surface goes fromC1 to C2 along theY5e surface.
Therefore the contribution of the segments to the regulari
area is proportional toh/e2 times the length of the segmen
and vanish in the limith→0.

However, the physical interpretations of the two comp
tations are quite different. If the boundary conditions a
imposed atY50, the constraintẋ25 ẏ2 holds provided the
segmentsC1 and C2 are smooth. On the other hand, if th
conditions are imposed on theY5e hypersurface, the mini-
mal surface bounded byC1 and C2 stays withinh from Y
5e, andẏ2 vanishes ash/e→0. If we take the latter point of
view, the apparent contradiction with the gauge theory
pectation disappears since the minimal surface in questio
related to the Wilson loop which does not couple to t
scalar fields in the segmentsC1 andC2 . This is exactly the
situation in which zigzag symmetry arises in the gau
theory.

One may argue that the boundary condition atY5e gives
a more precise definition of the Wilson loop^W& as a func-
tional of the loop variables„xm(s),yi(s)…. The Legendre
transformation of the areaA in Sec. III C, for example, is a
way to define a functional of the momentaPi evaluated at
Y5e and not atY50. It does not make sense to perform th
procedure atY50 since the factor 1/e on the right-hand side
of Eq. ~3.25! needs to be replaced bỳ. In most of the cases
discussed in this paper, whether we impose the bound
conditions atY50 or Y5e does not make much differenc
since the value of the momentaPi stays almost the same i
the region 0<Y<e. The analysis of zigzag symmetry, how
ever, seems to be an exception to this rule. If we use
boundary condition atY5e, the existence of the minima
surface requires the constraintẏi(s)50 rather thanẋ25 ẏ2

for the backtracking loop, and the result fits well with th

g

FIG. 6. The area of a loop with a zigzag~a! is roughly the same
as the loop without it~b!.
6-10
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WILSON LOOPS AND MINIMAL SURFACES PHYSICAL REVIEW D60 125006
gauge theory expectation. Clearly, the regularizati
dependent nature of zigzag symmetry needs to be clar
further.

An analysis similar to the one given above leads to
following observations about the Wilson loop, which we fin
interesting. Consider a self-intersecting loop as in Fig. 7. T
area calculated on the minimal surface bound by the loop~a!
is the same as the sum of the two areas bounded by
separated loops~b!. In the gauge theory, these loops are ve
different objects. One is a single trace operator and the o
a multitrace operator.

We can even connect two distant closed loops by a l
neck without changing the value of the loop since the m
mal surface spanning the neck region does not contribut
the area. Graphically, this can be written as

. ~3.35!

This suggests that the parallel transportU
5P exp (i*Am dxm) along an open curve behaves as a rand
matrix. As in the case of the zigzag symmetry, if we impo
the boundary condition atY5e, the minimal surface exists
only when ẏi(s)50, and we are considering a loop whic
does not couple to the scalar fields in the neck region.

E. Removing the constraint

So far we considered loops of the form~2.3! which satisfy
the constraintẋ22 ẏ250. When the loop has a cusp or a
intersection, this constraint is modified as in Eqs.~3.20! and
~3.21!. In the gauge theory, we can define the loop opera
for any„xm(s),yi(s)…, not necessarily obeying the constrain
Consequently, we need to find a way to calculate an exp
tation value of such a loop in AdS5 so that the relation be
tween the gauge theory and string theory is complete.

The reason given by Maldacena for the constraint~and
also in Appendix A! is that theW bosons are BPS particle
and their charges and masses are related. To break the
straint, one needs a non-BPS object with an arbitrary m
Fortunately, string theory contains many such objects.
stead of considering the ground state of the open string
responding to theW boson, one may use excited string stat
which have extra mass from the string oscillations. As sho
in the Appendix A, an excited string indeed generates a l
obeying the modified constraint

ẏ25 ẋ2
M2

M21m2
, ~3.36!

FIG. 7. ~a! A self-intersecting loop which corresponds to
single trace operator and~b! a pair of loops obtained by reconnec
ing the loop at the intersection.
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where M5e21 is the originalW-boson mass andm is the
mass of the excitations. This makes it possible to relax
constraint, at least forẋ2>y2.

For the loop obeying the original constraintẋ25 ẏ2, the
regularized area has the linear divergence of the form

A5
1

2pe R dsuẋu1¯5
1

2p R M uẋu1¯ . ~3.37!

We expect that the corresponding computation using
string excitation replacesM by AM21m2 as

A5
1

2p R dsAM21m2uẋu1¯5
1

2pe R ds
ẋ2

u ẏu
1¯ .

~3.38!

The Legendre transformation turns this into

Ã5A2
1

2pe R dsu ẏu

5
1

2pe R dsS ẋ2

u ẏu
2u ẏu D1¯ . ~3.39!

This shows that the linear divergence is not completely c
celed foruẋuÞu ẏu. Since a highly excited string state may b
sensitive to stringy corrections, we can trust this estimate
the linear divergence only for small deviation from the co
straint. In the following, we will use an approximate expre
sion for uẋu;u ẏu as

Ã5
1

pe R ds~ uẋu2u ẏu!1¯ . ~3.40!

IV. LOOP EQUATION

Since the expectation value of the Wilson loop is a m
sure of confinement, much attention has been given to
culating them. In particular, in the largeN limit of gauge
theory, they satisfy a closed set of equations@2#. In this sec-
tion, we first give a review of the loop equation for pu
Yang-Mills theory~for more details see@21,22#!. The equa-
tion is easy to write down and is formally satisfied, order
order, in the perturbative expansion of the gauge theory.
lattice version of the loop equations is also satisfied in
nonperturbative lattice formulation of the theory. Howev
the only case where one can solve explicitly for Wils
loops is in two dimensions. There indeed they do satisfy
loop equation. We will then formulate the loop equation f
theN54 super Yang-Mills theory in four dimensions. As fa
as we know, the loop equation in this case has not b
derived before. We will find that the BPS condition~3.3! will
play a crucial role. We will discuss details of the constru
tion in Appendix C and present only the general ideas he
6-11
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A. Bosonic theories

The action of pure gauge theory in any number of dim
sions is8

S5
1

4gYM
2 E dx Tr FmnFmn, ~4.1!

and the Wilson loop is given by

W5
1

N
Tr P expS i R Amdxm D , ~4.2!

where the integral is over a path parametrized byxm. The
main observation is that there is a differential operator
loop space which brings down the variation of the act
DnFmn as

L̂^W&52 i R ds ẋmK ~DnFmn!a~s!
1

N
Tr PTa~s!

3expS i R Amdxm D L , ~4.3!

whereTa(s) is the generator of the gauge group inserted
the points along the loop.

There are a few equivalent definitions ofL̂. We will use

L̂5 lim
h→0

R dsE
s2h

s1h
ds8

d2

dxm~s8!dxm~s!
. ~4.4!

As we will explain below,h has to be taken much shorte
than the UV cutoff scalee in order to extract the term
DnFmn . The insertion ofDnFmn into the loop would be zero
if we use the classical equation of motion, but quantum c
rections produce contact terms. To see that, one can write
equations of motion as the functional derivative of the act
S and use the Schwinger-Dyson equations, i.e., integra
by parts in the functional integral,

L̂^W&5 igYM
2 E DA R ds

1

N
Tr PTa~s!

3expS i R Amdxm D ẋm~s!
de2s

dAma
„x~s!…

52 igYM
2 K R dsẋm~s!

d

dAma
„x~s!…

1

N
Tr PTa~s!

3expS i R Amdxm D L . ~4.5!

The functional derivatived/dAm(x(s)) in this equation is
formally evaluated as

8The complete action contains a gauge-fixing term and gho
Those appear also in the equations of motion, but can be drop
by a Ward identity@23#.
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L̂^W&5
l

N2 R ds R ds8d„xm~s8!2xm~s!…ẋm~s!ẋm~s8!

3K Tr PTa~s!Ta~s8! expS i R Amdxm D L . ~4.6!

We then use the relation between the generators of SU(N),

Tnm
a Tkl

a 5dnkdml2
dnmdkl

N
. ~4.7!

Ignoring the 1/N term, the trace is broken into two. Thi
gives the correlation function of two loops. In the largeN
limit, the correlator factorizes and we obtain

L̂^W&5l R ds R ds8d„xm~s8!2xm~s!…

3 ẋm~s!ẋm~s8!^Wss8&^Ws8,s&. ~4.8!

HereWss8 is a Wilson loop that start ats and goes tos8 and
Ws8s goes froms8 to s. They are closed due to the del
function.9

Equation ~4.8! shows thatL̂^W& receives contributions
from self-intersections of the loop. Since the derivation
the equation is rather formal, it is not clear whether we ne
to count the trivial case ofs5s8, in which caseWss851 and
Ws8s5W. In most of the literature on the loop equation, th
trivial self-intersection is ignored. In any case, it can be tak
care of by multiplicative renormalization of the loop oper
tor. In the supersymmetric gauge theory, the leading con
bution from the trivial self-intersection cancels whenẋ2

5 ẏ2.
In the definition of the loop derivativeL̂, it is important to

take the limit h→0. This procedure isolates the ter
DnFnm , which is a contact term of the double function
derivative. Ifh is of the order of the UV cutoffe, there will
be other contributions to the loop equation such
FmnFnrẋr . When calculating the loop equation in perturb
tion theory, we can takeh to be arbitrarily small, and in
particularh!e. This is how we view the loop equation i
the continuum theory. In fact, it was shown that the pert
bative expansion of the Wilson loop solves the loop equat
@23#. When we study the loop equation the string in AdS5,
we will consider the same limith→0.

In the lattice regularization, it is not possible to calibra
the variation of the loop in distance shorter than the latt
spacinge. In this case, a different definition ofL̂ is used
which does not require taking such a limit.

s.
ed

9The delta function is not sharp, but is regularized by the cutofe.
That means that the loopsWss8 and Ws8s are not exactly closed
loops, and the two ends may be separated by a distancee. This does
not contradict gauge invariance since one may consider only ga
transformations which do not vary much over that scale, so
‘‘almost’’ closed loops are ‘‘almost’’ gauge invariant. We expe
those loops to be equal to the closed loops up toO(e) corrections.
6-12
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WILSON LOOPS AND MINIMAL SURFACES PHYSICAL REVIEW D60 125006
It is possible to define a loop derivative localized at
point on the loop, instead of the integrated version cons
ered above. The entire derivation goes through by sim
dropping onerds.

B. Supersymmetric case

We briefly summarize how to derive the loop equation
the supersymmetric theory, leaving the details to Appen
C. We derive them only for variations from constrain
loopsẋ25 ẏ2. One important modification is due to the ext
factor of i in front of the scalars in the Wilson loop operat
in the Euclidean theory:

W5
1

N
Tr P expS R ~ iAmẋm1F i ẏ

i !dsD . ~4.9!

Another novelty is the need to include the fermions. T
fermions are important even when the loop equation is ev
ated at the body partz(s)50 of super loop space since th
fermions appear as source terms in the equations of mo
for the gauge fields and the scalars. Here we will explain
effect of the extrai. In Appendix C, we will discuss how to
deal with the fermions.

If we define loop derivative

L̂5 lim
h→0

R dsE
s2h

s1h
ds8S d2

dxm~s8!dxm~s!
2

d2

dyi~s8!dyi~s! D ,

~4.10!

then the relative minus sign combines with the extrai to give

L̂^W&52 i
gYM

2

N R dsK S ẋm
d

dAma2 i ẏ i
d

dF iaDTr PTa

3expS R ~ iAmẋm1F i ẏ
i !dsD L

5l R ds R ds8@ ẋm~s!ẋm~s8!2 ẏi~s!ẏi~s8!#

3d4
„x~s!2x~s8!…^W1&^W2&. ~4.11!

A simple way to obtain this is by considering the extrai as
the Wick rotation of theyi coordinates and repeat the de
vation from Eq.~4.4! to ~4.8!. The right-hand side of the
bosonic loop equation contains a cubic divergence prop
tional to the circumference of the loop. In the supersymm
ric case this ‘‘zero-point energy’’ cancels for a smooth lo
by the constraintẋ25 ẏ2.

C. Predictions

In this subsection, we evaluate the right-hand side of
loop equation~4.11! for various types of loops. In the nex
section, we will compare it with computations of the loo
using the minimal surface spanned by the loop in AdS5.

In the supersymmetric theory, the trivial self-intersecti
at s5s8 does not contribute to the right-hand side if the lo
is smooth and obeys the constraintẋ25 ẏ2. This is related to
the fact that such a loop does not require regularization.
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be precise, the constraint only cancels the leading diverge
proportional toe23. Since the delta function in Eq.~4.11!
has a widthe, the Taylor expansion ofx(s8) at s85s gives
subleading terms ine such as

2
l

3e R ds~ ẍ22 ÿ2!. ~4.12!

However, this expression is highly regularization depende
Moreover, there are other contributions of the same or
due to the fact that the loopsWss8 andWs8s are not precisely
closed, as explained in footnote 9. At any rate, these te
are negligible~by a factore! compared to the terms we wil
find at cusps and intersections, and we will ignore them
the rest of the paper.

For a loop with an intersection, the integral over the reg
larized delta function on the right-hand side of the loop eq
tion gives

l~cosV1cosQ! R ds R ds8uẋ~s!uuẋ~s8!u

3de
4
„xm~s!2sm~s8!…

5l~cosV1cosQ!E
2`

`

dxE
2`

`

dx8de
4
„sinV~x2x8!…

5l
cosV1cosQ

2pe2 sinV
. ~4.13!

It is important to note that the result depends explicitly
the UV cutoffe22. Here we have evaluated the leading te
in thee21 expansion only. There are subleading terms in
expansion which are comparable to Eq.~4.12! at the trivial
self-intersection.

A cusp also gives an interesting contribution to the lo
equation. This may be regarded as a special case of the tr
self-intersection. In fact, in the literature, this effect is i
nored together with that of the trivial self-intersection.10 In
the supersymmetric theory, the contribution from the triv
self-intersection at a smooth point on the loop is canceled
the constraintẋ25 ẏ2. The situation is more interesting at th
cusp since the tangent vectorẋm(s) is discontinuous there. If
there is a jump onS5, ẏi(s) is also discontinuous. A simple
calculation@identical to Eq.~2.12!, where we found the loga
rithmic divergence in perturbation theory# shows that the
cusp contribute to the right-hand side of the loop equation

2l~cosV1cosQ!E
2`

0

dxE
0

`

dx8de
4
„sinV~x2x8!…

5l
~p2V!~cosV1cosQ!

~2pe!2 sinV
. ~4.14!

To summarize, we can express the loop equation as

10In the lattice formulation, the effect of the cusp to the loo
equation is not seen since there is no local definition of a cusp
6-13
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L̂^W&5
l

2pe2 S (
n: cusps

~p2Vn!~cosVn1cosQn!

2p sinVn
^W&

1 (
m: intersections

cosVm1cosQm

sinVm
^Wm&^W̃m& D

1OS l

e D , ~4.15!

whereWm andW̃m are Wilson loops one obtains by detac
ing the original loop into two at the intersection pointm.

V. LOOP EQUATION IN AdS 53S5

A. General case

In this section, we will examine whether the computati
of the loop using string theory in AdS5 agrees with the pre
dictions of the loop equation. A general form of the loo
expectation value is

^W&5D exp~2AlÃ!. ~5.1!

We assume that the dependence of the prefactorD on the
loop variables is subleading for largel. Since the loop de-
rivative L̂ does not commute with the constraintẋ25 ẏ2, we
need an expression forÃ when the constraint is not satisfie
As we saw in Sec. III E the exponentÃ has a linear diver-
gence of the form

Ã~x,y!5
1

pe R ds~ uẋu2u ẏu!1 ¯ ~5.2!

to the leading order in (uẋu2u ẏu). The loop derivative is a
second order differential operator. When the derivatives
on the exponent and bring it down twice, the result is p
portional tol. On the other hand, when they act onD or on
the sameÃ twice, we get things only of orderl or less. In
the following, we will pay attention to the leading term inl
only. The exact expression we have to evaluate is, theref

l lim
h→0

R dsE
s2h

s1h
ds8S dÃ

dxm~s8!

dȦ

dxm~s!
2

dÃ

dyi~s8!

dÃ

dyi~s!
D .

~5.3!

We do not have to include the fermionic derivative. When
acts once on a bosonic loop, it gives a fermion whose exp
tation value is zero. There are also nonzero contributi
when it acts twice onÃ, but they are subleading inl.

Let us evaluate Eq.~5.3!. Although the linear divergence
(1/2pe)rds(uẋu2u ẏu) in Ã(x,y) vanishes for the loop obey
ing the constraint, the variationL̂ does not commute with the
constraint. Thus the linear divergence term gives an imp
tant contribution to Eq.~5.3!. Since the variation of the
length functional

L5 R dsAẋ2 ~5.4!
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gives the accelerationẍm ~in the parametrization whereuẋu
51) and the same fory, we obtain

lS dÃ

dxm~s8!

dȦ

dxm~s!
2

dÃ

dyi~s8!

dÃ

dyi~s!
D

5
l

p2e2 @ ẍm~s!ẍm~s8!2 ÿi~s!ÿi~s8!#1¯ . ~5.5!

Note that it has the same divergence,e22, as the right-hand
side of the loop equation. Moreover, the powers ofl match
up in the loop equation and in Eq.~5.5!. The ellipsis on the
right-hand side represents variations of the remaining te
in Ã, which are finite for a smooth loop. To computeL̂^W&,
we integrate Eq.~5.5! overs2h<s8<s1h. When the loop
is smooth, the acceleration (ẍm,ÿi) itself is finite. Therefore,
by takingh→0, one finds thatL̂^W&50 in this case. This is
consistent with the loop equation. Therefore we reach
first conclusion, that a minimal surface in AdS5 bounded by
a smooth loop solves the loop equation.

B. Loops with cusps

If the loop has a cusp of angleV, the tangent vector is
discontinuous andẍ has a delta function pointing along th
unit vector bisectorê:

ẍm52 cos
V

2
d~s!êm. ~5.6!

A similar thing happens whenẏ is discontinuous, with the
angle Q replacing V in the above. This delta function i
regularized byh, not e, since it is related to the shortes
length scale on which the loop is defined. Thus the integ
of Eq. ~5.5! over s ands8 gives a nonzero result as

l

p2e2 R dsE
s2h

s1h
ds8@ ẍm~s!ẍm~s8!2 ÿi~s!ÿi~s8!#

5
4l

p2e2 S cos2
V

2
2sin2

Q

2
D

5
2l

p2e2 ~cosV1cosQ!. ~5.7!

In comparison with the prediction of Eq.~4.14! of the loop
equation, we are missing the factor of (p2V)/ sinV. This,
however, is not a contradiction. The expression for the lin
divergence term in Eq.~5.2! is an approximation for smal
(uẋu2u ẏu). Since ẋ25(11 f 0) ẏ2 with f 05 f (V/2) at the
cusp, this approximation is valid only whenf 0 is small.
Apart from this factor, Eq.~5.7! agrees with the prediction o
the loop equation, that the cusp gives a nonzero contribu
to the loop equation proportional tol5gYM

2 N timese22.
When (uẋu2u ẏu) is not small, the expression~5.2! needs

to be modified as

Ã~x,y!5
1

pe R dsuẋuGS ẏ2

ẋ2D1 ¯ ~5.8!
6-14
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WILSON LOOPS AND MINIMAL SURFACES PHYSICAL REVIEW D60 125006
for some functionG(z). By repeating the computations th
lead to Eq.~5.7!, we find that the contribution of the cus
takes the form

L̂ exp~2AlÃ!5lG~ f 0!~cosV1cosQ!exp~2Alã!1¯ ,
~5.9!

whereG( f 0) is a function related toG(z). The agreemen
with Eq. ~4.14! requires

G„f ~V/2!…5
p2V

8 sinV
. ~5.10!

Proving this would be a very strong evidence for the conj
ture.

Loops with cusps have also logarithmic divergenc
which could contribute to the loop equations. To see th
one may write the logarithmically divergent term as

1

2p
F~V! log

L

e
5

1

2p E dsE ds8uẋ~s!uuẋ~s8!u

3
sinw

p2w
F~w!

1

~x2x8!21e2
~5.11!

wherep2w is the angle betweenẋ(s) and ẋ(s8). To check
this equation one should integrate over two straight lin
meeting at a point. Differentiating Eq.~5.11! gives a few
terms, among them

ẍ~s!
1

e

sinV

p2V
F~V! , ~5.12!

which has the same divergence as the piece that gave
~5.7!.

C. Self-intersecting loops

The situation at a self-intersection is more mysterio
since ẋ and ẏ are both continuous at the intersection poi
However, we have problems in our ability to test the lo
equation in this case. First of all,ẏi50 at the intersection
and the functionG(z) which appears in the linear divergenc
term in Eq.~5.8! may be singular atz5u ẏu/uẋu50. Since we
do not know about the functionG(z) except for its behavior
nearz51, it is difficult to tell whether there is a contributio
from the intersection.

The presence of the unknown factorD in Eq. ~5.1! makes
the situation worse. As we explained before, the Wilson lo
is

^W&5D exp~2AlÃ!. ~5.13!

For a self-intersecting loop we expect

L̂^W112&5l
cosV1cosQ

sinV
^W1&^W2&, ~5.14!
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whereW112 is the self-intersecting loop andW1 andW2 its
two pieces. In order for this to be consistent with the Ad5
computation, we need to find

L̂ exp~2AlÃ112!5l
cosV1cosQ

sinV

D1D2

D112

3exp@2Al~Ã11Ã2!#. ~5.15!

Since we do not know the relation between the factorsD1 ,
D2 , and D112 , a quantitative test is difficult in this cas
although it seems unlikely that the ration would be zero.

It would be very interesting to determine the functio
G(z) which appears in the linear divergence as it wou
settle the question as to whether the intersection gives
contribution to L̂ exp (2AlÃ) predicted by the loop equa
tion.

VI. DISCUSSION

The AdS-CFT correspondence allows us to calculate c
tain Wilson loops in terms of minimal surfaces in anti–
Sitter space. We presented a few reasons why only lo
satisfying the constraintẋ25 ẏ2 ~generically! are given in
terms of minimal surfaces. For more general loops we
into the problem of inconsistent boundary conditions.

The constrained loops are invariant under half of the lo
supersymmetry in super loopspace. As such, they are
objects and are free from divergences. The area of the m
mal surface is divergent, so it is not the correct function
that yields the Wilson loop. Since the minimal surface sa
fies Neumann boundary conditions, its natural to take for
action the Legendre transform of the area. We showed
yields a finite result.

In other examples of the AdS-CFT correspondence
action has to be modified as well. In nonsupersymme
cases, such as the near extremal D3-brane, the effect of
ing the boundary term is to subtractL/(2pe). The result is
finite, but contains a piece proportional to the circumferen
times the radius of the horizon. This may be considere
mass renormalization of theW boson. The scale of the reno
malization is not the UV cutoff, but rather the scale of s
persymmetry breaking. In addition, ifẋ2Þ ẏ2, the Wilson
loop will contain a linear divergence proportional to the U
cutoff.

The surface observables on the M5-brane theory, as
culated in AdS73S4 have quadratic and logarithmic dive
gences@9,18,28#. Taking the Legendre transformation wi
eliminate the quadratic divergence, but we are not s
whether it will also remove the logarithmic divergence.

Recently, there were some attempts to go beyond the c
sical calculation and include fluctuations of the minimal s
faces@24,25,26#. One of the goals was to find the ‘‘Lu¨scher
term,’’ the Coulomb-like correction to the linear potential
a confining phase@27#. Any attempt to perform such a ca
culation will require using the correct Neumann bounda
conditions on the spherical coordinates and including the
propriate boundary terms.

Finally, we formulated the loop equations for those loo
6-15



o
io
om

rip
s
n

op
ni

th

te
u
o

t i

p
a
P
a
ru
p

te
e
e

l-
nk
l-
nt
ve
eir
-

an
hi
94

l-

f-
n
ta

ve
s

th
te

ld
es
pe

re-

as
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and checked if the AdS ansatz satisfies them. For smo
loops, as a result of the supersymmetry, the loop equat
should give zero. This is indeed the result we find also fr
variation of the minimal surface.

This calculation actually requires extending the presc
tion to loops that do not satisfy the constraint. We propo
that the natural extension for small deviation from the co
straint gives a linear divergence proportional toAlL. This
term is particularly important when we consider the lo
equations for loops with cusps. The expected result is fi
and proportional tol. This is in fact what we find, but we do
not have enough control over the calculation to compare
coefficients.

The situation with self-intersecting loops is more mys
rious: we expect a nonzero answer, but cannot reprod
that. There are, however, some reasons why this test is m
difficult than the other cases. In particular, the constrain
broken by a large amount at the intersection.

Classical string theory tells us only how to calculate loo
satisfying the constraint. These are BPS objects in loop sp
and, therefore, easier to control. As we argued, non-B
Wilson loops are related to excited open strings, but we
unable to evaluate them reliably. A similar statement is t
for local opeartors: one has control only over the chiral o
erators. Nonchiral operators should be given by exci
closed string states. Despite the large effort devoted to t
ing the Maldacena conjecture, there is still no good und
standing of non-BPS objects.
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APPENDIX A: DERIVATION OF THE WILSON LOOP

In this appendix, we will define the coupling of the Wi
son loop to the bosonic fields,Am andF i , in theN54 super
Yang-Mills theory. We will pay special attention to the e
fect of Wick rotation on the Euclidean signature space. I
gauge theory containing a matter field in the fundamen
representation of the gauge group, the Wilson loop is deri
by writing a correlation function of the matter fields in term
of the first quantized path integral over trajectories of
corresponding particle. The resulting phase factor dicta
the proper coupling of the Wilson loop to the gauge fie
The N54 super Yang-Mills theory in four dimensions do
not contain such fields. Instead, we use W bosons that ap
when we break SU(N11)→SU(N)3U~1!.

The bosonic action for the SU(N11) theory is
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By decomposing the gauge group to SU(N)3U~1! as

Âm5S Am
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Mu i
D , ~A2!

with u251, the action can be written as
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whereFmn and f mn are the field strengths of the SU(N) and
U~1! factors, respectively. The ellipsis in the action rep
sents terms in higher powers ofwi , etc. If u i is in the one-
direction, the mass term forwi with iÞ1 becomes

wi
†~F12Mu1!2wi2wi

†F i~F12Mu1!w1 ~A4!

with approximate mass eigenvaluesF12Mu1 . To simplify
the following analysis, we replace these terms with

w†~F12Mu1!2w. ~A5!

Let us consider the correlation function

^w~x!†w~x!w~y!†w~y!&. ~A6!

We can integrate over thew field and find

E DAmDF iDwDamDMu ie
2Ŝw~x!†w~x!w~y!†w~y!

5E DMu iDam expS E 1

2
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21
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2 ~F i2Mu i !
2UyL

3K yU 1
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2 ~Dm2 iam!21 1

2 ~F i2Mu i !
2UxL . ~A7!

The correlation functions in this expression can be written
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1

2
~F i2Mu i !

2D G . ~A8!

Combining everything together and integrating overy, we obtain

E dy^w~x!†w~x!w~y!†w~y!&5E DMu iexpS 2E 1
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~]mMu i !

2D E dTE
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x~T!5x
Dx~s!

3expS 2
1

2 E0

T

ds~xm
2 1M2! D E Dam expS E 1

4
~ f mn!2e R dsiamẋmD E DAmDF ie
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Let us examine Eq.~A9! carefully. The first term

M2* 1
2 (]mu i)

2 is the action of theu i field, which for largeM
becomes classical. The second term includes an integral
all the closed paths throughx. To define the Wilson loop we
just look at one such path, leaving the integration over pa
for latter. The next term in the exponent breaks reparame
zation invariance and will setẋm

2 5u i
2, as shown below. The

next term is the action for the Abelian gauge field on t
single brane and the effect of the Wilson loop on it. Sin
N@1 and we are taking the probe approximation, we sho
ignore this term. As we will see, for largeM theF2 term will
be subleading, so the last term is simply the Wilson loop

^W~xm,u i !&5E DAmDF ie
2SSU~N!

3expS E ds~ iAmẋm2F iu
i ! D . ~A10!

The term with ẋ21M2 is not reparametrization invarian
When we perform the integral over different parametriz
tions of the same path~including the integral overT!, we find
a saddle point. A general parametrization iss→ s̃(s) such
that s̃(0)50 and s̃(T̃)5T. To integrate over different pa
rametrizations, we can perform the path integral overc(s)
5ds̃/ds with the action

2E
0

T

ds
1

2 S 1

c
ẋ̃m

2 1cM2D
1E

0

T

dsS iAm ẋ̃m2c
1

2
F i

21cMF iu
i D . ~A11!

For large M the first term dominates, so it will pick th
saddle point
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and indeed theF2 piece in the loop drops out.
Combining them together, we obtain

E dy^w~x!†w~x!w~y!†w~y!&

5E D̃x~s! expS 2E dsMuẋu D E DAmDF ie
2SSU~N!

3expS E
0

1

ds~ iAmẋm1uẋuF iu
i ! D . ~A13!

The integral*dsuẋuM is the length of the loop times th
massLM. Since it is ac number independent ofl, we can
ignore it as subleading in the largel analysis in this paper
For the same reason, possible determinant factors are
neglected in the above.

The calculation above can also be done in Lorentzian
nature. The difference is an extrai in Eq. ~A8!:

K xU 1
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The rest of the calculation carries through with thisi show-
ing up in different places. The final result is
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though it is less clear now why the termi ( ẋ21M2) should
dominate the path integral to set the saddle point.

Instead of theW boson, we may consider a more gene
particle with an arbitrary mass with a propagator

1
1
2 ~Dm2 iam!21 1

2 ~F i2Mu i !
21 1

2 m2
. ~A16!

By the same calculation as above, we obtain the expone

2E
0

1

dsAẋm
2 ~M21m2!1E

0

1

dsS iAmẋm1
M uẋu

AM21m2
F iu

i D .

~A17!

Excited states of the open strings have this propagator
can be used to construct loops withẋ2Þ ẏ2.

So faru is a constant. To construct loops which move
the u directions, we have to use many probe D-branes,
for each value ofu the loop goes through. We start wit
SU(N1M ) and break to SU(N)3SU(M ), which will then
be broken to SU(N)3U~1!M. Likewise, one should be abl
to couple the loop to the fermions to get the supersymme
loops used in Appendix C.

APPENDIX B: AREA OF A CUSP

1. At one point on S5

Here we study the minimal surface near a cusp. We c
sider a loop on a two-dimensional plane in four dimensio
staying at the same point on S5. We take the opening angl
of the cusp to beV. We choose radial coordinatesr andw on
the plane and use them to parametrize the world sheet
The boundary conditions are~using the first regularization
discussed in Sec. III B!

Y~r ,0!5Y~r ,V!50. ~B1!

To study the behavior of the surface near the cusp, we
use scale invariance to set

Y~r ,w!5
r

f ~w!
. ~B2!

Using this ansatz, the area is

A5
1

2p
E drdw

1

r
Af 41 f 21 f 82. ~B3!

This reduces the minimal surface to a one-dimensional p
lem with the effective Lagrangian
12500
l

t

nd

e

ic

n-
,

so.

an

b-

L5E dwAf 41 f 21 f 82. ~B4!

SinceL does not depend explicitly onw, the energyE given
by

E5
f 21 f 4

Af 41 f 21 f 82
~B5!

is conserved. At the minimum off, the energy is given by

E5 f 0A11 f 0
2 @ f 05 f ~V/2!#. ~B6!

Substituting this back in Eq.~B5!,

V
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5
i
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2
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2

11 f 0
2 D , ~B7!

whereP is an elliptic integral of the third kind. The regular
ized action is then

L5E
r>e f ~w!

dwAf 41 f 82

5E dzA z21 f 0
211

z212 f 0
211

5 iA11 f 0
2ES arcsini

A r 2

e22 f 0
2

112 f 0
2,A112 f 0

2

11 f 0
2
D ,

~B8!

whereE is an elliptic integral of the second kind. For sma
e, it diverges linearly as 2r /e2F(V). The functionF is
obtained by solving Eq.~B7! for f 0 as a function ofV and
substituting it intoL in the above. The total area is

A5
1

2p EL

dr
1

r S 2r

e
2F~V! D5

2L

2pe
2

1

2p
F~V!log

L

e
.

~B9!

This is the regular linear divergence plus a logarithmic
vergence. After the Legendre transformation, we obtain

Ã52
1

2.p
F~V!log

L

e
. ~B10!

2. With a jump on S5

The same analysis can be done for a loop which jumps
the cusp, to a different point onS5 with a relative angleQ.
We parametrize the string world sheet byr andu, whereu is
6-18
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a coordinate along the large circle connecting the two diff
ent points on S5. Because of scale invariance, we can se

Y~r ,u!5
r

f̃ ~u!
, ~B11!

for some functionf̃ (u). The other angular parameterw is a
function of u only. The area is therefore

A5E dr du
1

r
A f̃ 821~11 f̃ 2!~11 f̃ 2w82!. ~B12!

The problem is integrable since there are two conser
quantities

E5
11 f̃ 2

A f̃ 821~11 f̃ 2!~11 f̃ 2w82!

,

J5
~11 f̃ 2! f̃ 2w8

A f̃ 821~11 f̃ 2!~11 f̃ 2w82!
. ~B13!

In general, the result cannot be written in terms of ellip
integrals, and we will leave it to the overmotivated reader
find simple expressions for those integrals. If we setV
5p, there is no cusp in thex plane. In this case, the integra
are simplified, and the results are expressed in terms of
elliptic integrals.

APPENDIX C: DETAILS OF THE LOOP EQUATION
IN N54 SUPER YANG-MILLS THEORY

The bosonic part of the Euclidean Wilson loop is

W5
1

N
TrP expS E ~ iAmẋm1F i ẏ

i !dsD . ~C1!

We can define the bosonic part of the loop derivative to

L̂5 lim
h→0

E dsE
s2h

s1h
ds8S d2

dxm~s8!dxm~s!
2

d2

dyi~s8!dyi~s!
D .

~C2!

The extrai in front of F i ẏ
i in the exponent conspires wit

the relative minus sign in the loop derivative to give t
bosonic part of the equations of motion

L̂^W&52 i E dsK ~ ẋm(DnFmn)a

1 i ẋm[F i ,DmF i ]
a1 i ẏ i(DnDnF i)

a

2 i ẏ i [F j ,[F i ,F j ]]
a!Tr PTa(s)

3expE ~ iAmẋm1F i ẏ
i !dsL . ~C3!

This is a linear combination of the bosonic equations of m
tion for Am andF i , but we are missing source terms due
the fermions. What we would like to do here is to modify t
functional differential operatorL̂, including derivatives of
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fermionic variables, so that the full equations of motion a
reproduced. With suchL̂, the loop equation can be written a

L̂^W&52 i
gYM

2

N E dsK S ẋm
d

dAma2 i ẏ i
d

dF iaDTr PTa~s!

3expS E ~ iAmẋm1F i ẏ
i !dsD L

5lE dsE ds8@ ẋm~s!ẋm~s8!2 ẏi~s!ẏi~s8!#

3d4
„x~s!2x~s8!…W1W2 . ~C4!

The Euclidean super Yang-Mills theory has fermion
fields C which are Euclidean Majorana fermions@29# with
16 complex components. The gamma matricesGM satisfy
the Dirac algebra in ten dimensions with signature~10, 0!,
with the index M5(m,i ). The loop is parametrized by
„xm(s),yi(s)… and their superpartnerz(s) coupling to the
gauginosC.

A natural choice for the supersymmetrized loop is

W5
1

N
Tr P FexpS E z̄~s!QdsD

3expS E ~ iAmẋm1F i ẏ
i !dsDexp~2*z̄~s!Qds!G .

~C5!

Here Q is the generator of supersymmetry of the gau
theory, which acts as

@Q,AM#5
i

2
GMC,

$Q,C%52
1

4
GMNFMN, ~C6!

where we have combined the gauge fieldAm and the scalars
F i into the ten-dimensional gauge fieldAM and computed
the field strengthFNM . One may also include

@Q,ẋM#5
i

4
GM ż ~C7!

in the exponent, but it does not affect our analysis since
will only be interested at the top component of the Gra
mann algebra and at the end of the calculation we setz50.
The exponent of the Wilson loop is therefore given by

ez̄Q~ iAmẋm1F i ẏ
i !e2 z̄Q

5~ iAmẋm1F i ẏ
i !2

1

2
z̄~ ẋmGm2 i ẏ iG i !C

2
1

16
ẋmFnrz̄GmGnrz1¯ . ~C8!
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We will write the loop equation only for loops satisfyin
the constraintẋ25 ẏ2. ThereforeẋMGM5 ẋmGm2 i ẏ iG i is nil-
potent. In this case, it is useful to work in the basis wher

ẋmGm2 i ẏ iG i5S 0
2uẋu

0
0D , z5

1

Auẋu
S z1

z2
D , C5S c1

c2
D ,

~C9!

and

z̄5zTC, ~C10!

where C is the charge conjugation matrix. The Majora
spinor in Lorentzian signature space satisfies the reality c
dition z̄5z†G0. In the Euclidean case, we do not impose a
reality condition@29#. The exponent of the loop Eq.~C8! in
this basis becomes

~ iAmẋm1F i ẏ
i !2Auẋu z̄1c11

1

8
AuẋuFNMz̄1GNM1z1¯ .

~C11!

By applying the fermionic derivative operator
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uẋu
d

dz~s8!

d

dz̄~s!
W;

d

dz1~s8!

d

dz̄1~s!
W, ~C12!

we obtain the desired combination for the source terms in
equation of motion,

uẋuc̄1c15C̄~ ẋmGm1 i ẏ iG i !C. ~C13!

All other terms contain at least onez(s) and are not relevan
for our analysis of the loop atz50. Thus we found that the
supersymmetric loop derivative defined by

L̂5 lim
h→0

E dsE
s2h

s1h
ds8

3S d2

dxm~s8!dxm~s!
2

d2

dyi~s8!dyi~s!
1

d

dz~s8!

d

dz̄~s!
D

~C14!

produces the variation of the action. For the loop atz50,
this completes the loop equation for theN54 super Yang-
Mills theory.
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