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We study the viscosity corrections to the growth rate of nucleating bubbles in a slightly supercooled first
order phase transition ifil+1)- and (3+1)-dimensional scalar field theory. We proposen&roscopicap-
proach that leads to the nonequilibrium equation of motion of the coordinate that describes small departures
from the critical bubble and allows us to extract the growth rate consistently in a weak coupling expansion and
in the thin wall limit. Viscosity effects arise from the interaction of this coordinate with the stable quantum and
thermal fluctuations around a critical bubble. In the case -bfl1dimensions we provide an estimate for the
growth rate that depends on the details of the free energy functionak Ih &mensions we recognize robust
features that are a direct consequence of the thin wall approximation that transcend a particular model. These
are long-wavelength hydrodynamic fluctuations that describe surface waves. We identify these low energy
modes with quasi Goldstone modes which are related to surface waves on interfaces in phase ordered Ising-like
systems. In the thin wall limit the coupling of this coordinate to these hydrodynamic modes results in the
largest contribution to the viscosity corrections to the growth rate. Rpt scalar field theory at temperature
T<T, the growth rate to lowest order in the quartic self-coupling is Q= (\2/Ry)[1
—0.003\T£(R,/£)?] with R, , £ the critical radius and the width of the bubble wall, respectively. We obtain
the effective non-Markovian Langevin equation for the radial coordinate and derive the generalized fluctuation
dissipation relation. The noise is correlated on time scélés as a result of the coupling to the slow
hydrodynamic modes. We discuss the applicability of our results to describe the growth rate of hadron bubbles
in a quark-hadron first order transitiof80556-282(99)07120-9

PACS numbdps): 11.27+d, 05.70.Fh, 12.38.Mh

[. INTRODUCTION the limit in which nucleation is dominated by thermal acti-
vation and overbarrier transitions, these bubbles are pro-

The dynamics of first order phase transitions is a fundaduced via large thermal fluctuations. These bubbles will
mental ingredient in particle physics and in condensed matgrow whenever their radius is larger than a critical value and
ter. First order phase transitions occur via the nucleation o¢ollapse if it is smaller. Supercritical bubbles will grow to
bubbles of the true vacuum phase in the metastable or falgonvert the metastable phase into the stable phase or until
vacuum phase. At large temperature it is mediated by thetthey percolate achieving the total conversion of the meta-
mal or overbarrier activation and at low temperatures viastable phase. For slightly supercritical bubbles an important
quantum nucleation. First order phase transitions are conje€lynamicalquantity is the growth rate of a bubble
tured to occur in QCD and in electroweak theory. In QCD a
first order phase transitiocould describe the hadronization _dy R
of the quark-gluon plasma, possibly produced in the early ~dt R;
Universe at about IC s after the big bang or in relativistic
heavy ion collisiong1-3]. In electroweak theory a first or- with R(t) the (time dependentradius of a slightly supercriti-
der phase transition is argued to provide the nonequilibriuntal nucleating bubble ani, is the critical radiug14,3,10.
setting for baryogenes[€l—6]. In early universe cosmology, Langer’s theory provides the nucleation rate per unit volume
first order phase transitions had been proposed as mechger unit time given by
nisms to generate the inflationary std@e-9]. In condensed
matter physics thermal activation results in the nucleation of |=QDe Fo/T (1.2
bubbles of the lowest free energy phase in binary fluids
[10,11 and also of the decay of metastable dimerized statewhere F,, is the free energy of a critical bubble arel is
in quasi-one-dimensional charge density wave systems argtoportional to the ratio of the determinants of the fluctuation
nondegenerate organic conductft®,13. operators around the bubble configuration to that around the

The most comprehensive microscopic theory of nuclehomogeneous metastable stptd,3,17. The regime of ap-
ation via thermal activation was presented by Landgel  plicability of homogeneous nucleation theory is fo§>T,
and was later extended to quantum field theory to accourfor F,~T small amplitude thermal fluctuations can trigger
both for thermal activation as well as for quantum nucleatiorthe phase transition and nucleation and spinodal decomposi-
[15-18. An approach to describe nucleation in a nonsteadyion can no longer be distinguished. The ratio of determi-
state situation in real time has been advocated in[R6f. In  nants inD has been computed analytically and numerically

In -1

}; R(t)=R, (1.2
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in several important cas¢®0—27. Csernai and Kapus{®]  determine the profile of the bubble configuration, since the
have studied the growth rate of hadronic bubbles in a quarlasymptotic behavior of the bubble is determined by the po-
gas by extending Langer’s theory to the relativistic casesition of the minima of the equilibrium free energy.
These authors studied a coarse-grained field theory in terms The importance of the growth rate for describing the dy-
of a relativistic hydrodynamic description with viscous termsnamics of nucleation in the hadronization and the elec-
in the energy momentum tensor and the baryon currentroweak phase transitions as well as the practical importance
Their conclusion was that the growth rate is determined byf nucleation in quasi-one-dimensional organic conductors
the coefficients of the shear and bulk viscosities and thajustifies a continued effort to understand frormé&roscopic
hadronic bubbles do not grow when these coefficients vanperspective the influence of dissipation, viscosity, and fric-
ish. Another approach presented by Ruggeri and Friedmation upon the growth rate of supercritical nucleating bubbles.
[23] also based on baryon-free relativistic hydrodynamics Focus and strategyOur goal in this article is precisely to
but with a different treatment of the heat conduction andstudy dissipative effects upon the growth r@d¢rom a more
energy flow reached a different conclusion, th at the growthmicroscopicpoint of view in model quantum field theories
rate is nonzero even for vanishing bulk and shear viscositiethat describe the main features of nucleation. The simplest
and that viscosity effects are subleading for small viscositiesmodel to study nucleation and a first order phase transition is
If the hadronization phase transition is of first order there ar@ ¢* field theory with a small explicit symmetry breaking
potentially important experimental signatures associated witlerm that breaks the degeneracy between ground states and
the homogeneous nucleation of the hadronic phase some tfus leads to the existence of a metastable state. Although
which had been studied in R¢R4]. arguably this model could hardly describe the features of the
Homogeneous nucleation of the quark-gluon plasma hagquark-hadron or electroweak phase transitions, our hope is to
been recently studied with a bag model of the equation oéxtract robust phenomena that will be generic to the physics
state for the quark and hadron phases and the different pref nucleation and that could enlighten the effect of viscosity
dictions above have been compar@®b]. The formulation on the growth rate.
and results of Csernai and Kapusta had recently been used to This study begins by identifying the inhomogeneous
study first order quark-hadron phase transition in the earlpubble configuration which is a solution of the static equa-
Universe for a first order hadronization transitif26] and  tions of motion. We include the finite temperature effects by
more recently homogeneous nucleation has been tested neensidering the equation of motion in terms of the finite
merically in (2+1)-dimensional systems with qualitative temperature effective potential, this is achieved consistently
agreement to the standard red@]. by the addition of finite temperature counterterms to the La-
An alternative phenomenological description of thegrangian. The quadratic fluctuations around this bubble solu-
growth rate based on dissipative hydrodynamics combinetion feature an unstable mode that describes small perturba-
with the finite temperature effective potential has been pretions from the critical bubble. The instability is a
sented in Ref[28]. In this work analytical and numerical manifestation of the growtfor collapse of supercritical(or
studies reveal a dependence of the growth rate on the phsubcritica) bubbles and the unstable eigenvalue is directly
nomenological dissipative coefficient. related to the growth rate of slightly supercritical bubbles. In
Khlebnikov[29] and Arnold[30] have studied dissipative addition to this unstable mode there are modes of zero fre-
effects that slow down the growth rate of a supercriticalquency corresponding to translations of this configuration
bubble by coupling the order parameter that describes nuclend modes of positive frequency that correspond to stable
ation to other fields(with a trilinear coupling and applied fluctuations.
the fluctuation dissipation relation to one loop order in the The main strategy is to consider the dynamics of the co-
coupling to the other field. ordinate that determines the unstable direction in functional
Finally we must mention a numerical approach to the despace, and treating it as a collective coordinate. We then
scription of nucleation, based on a phenomenological Marfocus on theinteraction of this coordinate with those repre-
kovian Langevin dynamics in terms of the finite temperaturesenting the stable fluctuations by expanding the original La-
effective potential(typically computed to one loop order grangian in terms of these coordinates in function space and
with a (local) friction coefficient and a Gaussian white noise recognize the interaction terms between these coordinates.
term related by the fluctuation-dissipation theorg3d,32.  The translational mode is anchored and ignored since we are
The use of the finite temperature effective potential in thenot interested in studying the dynamics of the translational
description of the inhomogeneous bubble configuration thatlegree of freedom but that of the growth of a supercritical
seeds the nucleation of the phase of lowest free energy is dnubble. We assume that the stable degrees of freedom are in
important ingredient, in particular in coarse-grained phenomthermal equilibrium and that they serve as a “bath” with
enological descriptiong3]. Finite temperature effects are in- which the unstable coordinate interacts. Integrating out the
cluded in the coarse grained free energy which describedegrees of freedom associated with the stable fluctuations we
long wavelength physics by integrating out short wavelengtiobtain an effective description of the dynamics for the un-
fluctuations which are in thermodynamic equilibrium stable coordinate which includes the “viscosity and friction”
[33,34]. These finite temperature corrections modify quanti-effects associated with the transfer of energy to the stable
tatively and sometimes substantially the equilibrium free enimodes. This description allows us to obtain the equations of
ergy functional, for example, the position of the minima, motion for the expectation value of the unstable coordinate
masses, and couplings. These are important parameters thelherefrom we can obtain the corrections to the growth rate
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from the interaction with the stable degrees of freedom. Fur- V(o)
thermore, integrating out the stable degrees of freedom in the
nonequilibrium functional allows us to extract the effective
Langevin equation for the unstable coordinate and to obtain
consistently the noise terms. We emphasize that this ap-
proach isfundamentally differenfrom the previous studies
described above. First of all, we anet computing the ratio

of determinants that enter in the rate expression. This ratio of
determinants only involves the quadratic fluctuationsrimit o
the interaction between the coordinates associated with the
fluctuations. Our approach is different from that of Refs. 2 o,

29,30, in these references the coupling of the order param- .

[eter gssociated with the nucleatingpfiel% wasotber inge- FIG. 1. Form of the potentiaV(¢).
pendent fieldsContrary to this we consider the coupling of
the unstable coordinates to the stable fluctuations involvin

rate is given by Eq(4.40. Furthermore, we obtain the ef-

the samefield. Our approach starts from the microscopicqutive Langevin eqqation fo_r the unst_able coordingte that

theory and d.oes not rely on a hydrodynamic descriptionrevea.ls the correct microscopic correlations qf the noise term

however, as it will be seen later, long-wavelength hydrody-'showIng that the.coqplmg to the hydrqdynammfmodes deter-

namic qu,ctuations associated Wi'Eh surface waves provide the' e that -the roIse 1S _correlated on time sqzﬁesl.-

largest contribution to viscosity effects in three spatial di- The article is qrgamzed as foIIovys. Sec'non Il introduces
the model, describes the strategy in detail, and sets up the

melrrlls;o\r/]; specific sense our proaram obtains the effectiv eneral form of the correction to the growth rate to lowest
y sp Prog rder(one loop and in the classical limit. In Sec. Il the case

action for the degree of freedom that represents departur%sf 1+1 dimensions is analyzed in detail within the model

from a critical bubble by integrating out the degrees of free- : o :
dom describing stable fluctuations, but of geme fieldour  considered. In Sec. IV we study thé+ 1)-dimensional case,

) . and discuss the low energy fluctuations associated with sur-
app_roach. must necess_anly rely on several dnfferent aPProXlr) ce waves providing the argument that these are quasiGold-
mations:(i) vyeak cgupllng to allow a perturbat!ve €Xpansion gione hydrodynamic fluctuations. We argue that these low
QT the effgctlve action "’?”d the r_eal tl_me equat_pns of mou.ontenergy fluctuations are present independent of the model and
(i) the thin wall approximation in which the critical radius is

) X . will dominate the viscosity corrections to the growth rate.
muc_h Ia_rger than the width of the bubble_wall. Th's. apProXI"rpe conclusions are presented in Sec. V, along with a critical
mation is necessary to be able to provide quantitative an,,

swers. Finally as it will be justified later the important fluc- discussion on the validity of our results to describe the
tuations can be described by thkssicallimit of the finite growth rate of supercritical bubbles in coarse-grained de-

temperature distribution functions scriptions of a first order quark-hadron phase transition. An
V\?e carry out this broaram to Ibwest order in the uartiCappendix presents the effective Langevin equation for small
i y Pprog . . gua departures of the critical radius and analyzes the generalized
coupling and to leading order in the thin wall approximation

both in 1+1 and 3+1 dimensions. The motivation to study fluctuation-dissipation refation.
the lower-dimensional case is provided by its potential appli-
cation in experimentally relevant condensed matter systems !l THE MODEL: GENERALITIES AND STRATEGY
[12,13.

Summary of result©Our main results can be summarized ~We consider a real scalar fieli(x) whose dynamics is
as a consistent perturbative correction to the growth ratéetermined by the following Lagrangian density:
from “dynamical viscosity” effects associated with the in-
teraction of the radius of the bubble with the stable quantum
and thermal fluctuations. In#11 dimensions the growth rate
for bubbles is given by Eq3.15 with R, , ¢ the radius and
width of the critical bubble, respectively, the quartic self- where V(¢) is a double well potential with a metastable
coupling, and=[R./£] a slowly varying dimensionless func- minimum at¢_ and a stable minimum ap, . It proves
tion that depends on the details of the potential and spectrumonvenient to parametrize it in the following form:
of stable fluctuations, in particular scattering states.

In 3+1 dimensions we find that in the thin wall limit the V(p)=N(dp— d_)?p(dp— ¢*). (2.2
important low energy excitations algydrodynamic fluctua-
tions associated with surface waves. These are identified as This form of the potential is depicted in Fig. 1 and is very
quasiGoldstone bosons and give the dominant contribution teimilar to the coarse-grained free energy proposed in[Réf.
viscosity effects on the growth rate. These low energy exciidentifying the local energy variabkein that reference with
tations are a robust feature afiy model and not particular to the scalar fieldp, and also similar to the effective potential
the one considered in this article, however, toplingof  description used in numerical simulations for electroweak
the unstable radial coordinate to these fluctuations dependbkeory[31,32,34.
on the model. To lowest order in the coupling the growth  The stable minimumy . is given by

1
L=5(0,8)(0"$)=V(¢), (2.1
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1 energy. Furthermore, these finite temperature renormaliza-
¢+=g(2¢-+3¢,~ VA2 +9¢5 —4d_o,), (23 tions will determine theorrectscales for the bubble size, its
width and the unstable frequency associated with the growth
where the pointp, is parametrized by the massof small ~ Of & supercritical bubble. o
oscillations around thenetastableminimum ¢_ as We account for these finite temperature renormalizations
by replacing the parameters in the potential by the finite
P*=¢_(1—e), (2.9 temperature renormalized parameters and adding counter-
terms to the Lagrangian. The counterterms are then found
where consistently in a coupling or loop expansion by requesting
that they cancel the contributions from the tadp@e simi-
. m 5 m lar) terms completely i.e., including the finite temperature
T ong? and m°=V'(¢-) (29 parts. This prescription is at the heart of using the finite
temperature effective potential to study the solutions that
and\ is the quartic coupling. Although this parametrization lead to the decay of the metastable s{@@7,31-34 Thus
does not look familiar it will prove advantageous later. Inthe Lagrangian density becomes
particular, (1-€) gives a measure of the free energy differ- 1
ence between the true and the false vacua and is therefore = “ o) —
related to the supercooling temperature. &s 1, the two L91=300.8) )~ V(S T+ oLal £, (27
minima become degenerate and the conditenl defines
the thin-wall limit (this will become clear later when we where the potential/(¢,T) is of the same form as in Eq.
analyze the bubble profilewhen the radius of the nucleating (2.2) but in terms of the parameters that include the finite
bubble is much larger than the width of its surfacéor the ~ temperature (and ultraviolet renormalizations, i.e.,
correlation length This corresponds to the case of smallA(T),m(T),e(T), etc. and the counterterm Lagrangian den-
supercoolingT<T, but T/T,~1 in the description of Ref. Sity is of the form
[3]. In the thin wall limit, we find thatp, has the following
simple form: L= ONp*+ 593+ M2 P2 +H ¢, (2.9

¢+=—%(6—1)+O[(6—1)Z]- (2.6

2

where space-time translational invariance dictates that the
counterterms are constant. These counterterms will be con-
sistently chosen in the loop expansion to cancel the contri-
bution from local tadpoles. We will argue below that this
procedure renormalizes consistently in perturbation theory
We anticipate that there will be renormalization of the the static properties of the bubble, in particular the width and
parameters in the potential, not only arising from ultravioletradius of a critical bubble. In particular the free energy den-
divergences but more importantly from medium effects, i.e.sity studied in[3,31—-34 is precisely of this form with pa-
finite temperature contributions to the mass, couplings andameters that depend on temperature.
explicit symmetry breaking terms. In particular in three spa- At this point we may consider adding to the counterterms
tial dimensions we expect a correction to the mass and tha wave-function renormalization which would involve cor-
linear symmetry breaking term both proportional to rections for inhomogeneous configurations. A wave-function
T2,T,... . The origin of these finite temperature correc-renormalization will arise at one loop order and beyond be-
tions are the usual tadpole diagrams, the correction to theause of the trilinear coupling. However, computing this cor-
linear symmetry breaking term is a consequence of the trirection in the usual loop expansion around a homogeneous
linear coupling. These finite temperature corrections are thbackground is not very relevant for the bubble configuration.
usual ones obtained in an effective potential description an&ince our goal is to obtain theal timeequations of motion
provide a finite renormalization to the potential. Our aim isfor particular fluctuations around the bubble configuration,
to describe the dynamical aspects of the thermal fluctuationthese renormalizations will arise automatically in the equa-
that are responsible for thermal activation and the nucleatiotions of motion obtained to one loop order. Thus the coun-
of the true phase in the false vacuum phase. These are therterms that we include in the Lagrangian density are only
solutions of the static field equations hntpresence of the those forstatic renormalization thus accounting for the cor-
thermal fluctuationsi.e., with the potential renormalized by rect scales and asymptotic values of the classical solution
the finite temperature effects. That is to say, the potential thaand obtain the equivalent of the wave-function renormaliza-
must enter in the field equations must be the finite temperaion directly from the real time evolution of fluctuations
ture effective potentia[27,31-34. The finite temperature around the bubble configuration. This procedure will become
effective potential includes the finite temperature correctionglear when we obtain explicitly the evolution equations in
for static and homogeneous field configurations. Includinghe next sections.
these finite temperature effects in the equations of motion We will focus our attention on the cases of one and three
guarantees that thenhomogeneousubble configurations spatial dimensions. Although the case of one spatial dimen-
will asymptotically tend to the homogeneous values of thesion is of limited interest in particle physics, it is important
field representing theorrectextrema of the equilibrium free in condensed matter and statistical physics of quasi-one-

A. The counterterms
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dimensional systemgl2,13. Furthermore most aspects of In d space dimensions, we can use the radius of the
the treatment are general and the one-dimensional case prodbbleR as a variational parameter and introduce the total
vides a somewhat simpler setting to introduce the main stratenergy of a bubble configuration with radiRsby

egy as well as to explore the general features. The three-
dimensional case will be studied in detail subsequently.

1 - -
Eva(R) = f d’ 5[V¢b<x,R>]2+V[¢b<x,R>]}.
B. The bubbles (2.11)

Before proceeding to the specific situations, we now con- o ) ) ]
sider general features of the bubble solutions and the quand in the limitR/&(T)>1 (thin wall) has two main contri-
dratic fluctuations around them to focus on the precise strafutions: a volume contribution proportional B which is
egy to follow. A critical bubble is a solution of thstatic ~ negative and arises from the region of the bubble that probes

field equations, which in terms of theffective potential ~ the true vacuum which has lowéfree) energy, and a surface

V(¢,T) is given in one spatial dimension by term which is positive and arises from the region of the
bubble corresponding to the wall, includes gradient terms
d’¢, INV(,T) and is therefore proportional to the area of the surface of the
el b =0 (2.9  wall R In one spatial dimension the “surface” of the
X by bubble corresponds to two points and the gradient energy

. . saturates to a constant independent of the radius for large
with boundary conditions such thag,— ¢_ for |x|—cc. bubble radius.

Such a solution describes a “bubblelike” configuration e general behavior of the total energy of a bubble con-
W.h'Ch approaches the false vacuum at asympt_0t|cally !argﬁguration as a function o§=R/¢ is depicted in Fig. 3 for
distances and probes the true vacuum in a localized region ifl o spatial dimension and in Fig. 4 for three spatial dimen-

space of size R. with R; the critical “radius.” Such a so- ; ;
Iuriion will be focund in coletail in Sec. lll. In three spatial S|ons_(see Secs_. lll and ¥/ The rmaximurm of the_energy
: ) . : X X . function determines the value of the critical radiRs as
dimensions, the critical bubble is a radially symmetric statiCyjscssed in detail in the next sections. Clearly a critical
field configuration solution of the following equation bubble is arunstablestatic solution of the equations of mo-
2 tion. For R<R, the surface energy term dominates and the
_ T 2ddy  V(ST) =0 (2.10  bubble shrinks into the false vacuum phase, RorR. the
dr2 rdr dp ™ volume energy dominates and the bubble will grow as the
gain in the volume energy is greater than the cost in elastic
with the boundary conditiorp,(r)— ¢_ asr—co. It corre-  surface energy.
sponds to a field configuration that starts close to the true A more clear description is obtained in the case of three
vacuume . and tends to the false vacuwn at asymptoti-  spatial dimensions for a spherically symmetric bubble.det
cally large radial distance. The solution of Eg.10 will be  be the surface tensidenergy per unit argaf the spherical
studied in detail in the thin wall approximation in Sec. IV. bubble configuration separating the metastable phase from
In both cases the change from the true vacuum to the falstne stable one. Then the total energy of the bubble is
one occurs around the radius of the bubBle over a dis-
tance £(T)~1/m that defines the wall thickness of the A
bubble and is related to the correlation length in the meta- EvalR) =~ ?AfR3+47TUR2+ e (212
stable phase. We will study the nonequilibrium dynamical

viscosity of nucleating bubbles in the thin wall limit in which where AF=|V(¢, ,T)~V(¢_,T)|, and the dots stand for

the rcj:u'jms of the bUbe? IS much Iarger than the wall tr.“Ck'corrections that are subleading in the thin wall approxima-
ness; |.(_3.R>§. These f|_eld cclnflgu_ratlons are parametrlz_edtion, see Sec. IEq. (4.22 for detaild. These(smal) cor-

by two important coordinates, which describes the posi- rections will be neglected for the arguments presented below.
tion of the center of the bubble and the radiBsi.e., @  The energy attains its maximuB, at the critical radius
bubble configuration is of the formp(x—Xy;R) and a criti-

cal bubble corresponds ®=R, determined by the solution 20

to the equations of motiofR2.9),(2.10. The coordinate?o is Rc:ﬂ:
associated with translational invariance and typically treated

as a collective coordina{@5], while the radiuRR determines 54 it is given by

the size of the bubble and will be treated also as a collective

coordinate(see below. Since we are not concerned here with 4 16703
the dynamics of the translational degrees of freedom, but E.=E,(R.)= 79 e 2279
rather with that of the radius, we “clamp” the collective R B TV o &

coordinateio by fixing the center of the bubble a&):o.

Integration over this collective coordinate results in the typi-Near the maximum of the energy function, it can be written
cal volume factof14,15 and is not relevant for our discus- as an expansion in terms of tliemal) departures from the
sion. critical radius as

(2.13

(2.19
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1 case, the zero modd2.20 correspond to the angular mo-
EvalR) =Ec— sz(R— Ro)2+ -, (219  mentuml =1 spherical harmonics, therefore there must be an
=0 (spherically symmetricsolution of the Schidinger-
where the frequency like eigenvalue probleni2.18 with a negative eigenvalue
In a later section we study in detail the bubble solution and
d?E a(R) the spectrum of fluctuations around it and conclude that the
—w'=—17——| =-87m0c (2.16  eigenfunction corresponding to the negative eigenvalue is
Re Z/{_lcxd(ﬁb(r,R)/dR|Rc in the thin wall approximatiorisee
Sec. IV, Eq.(4.27) for Uyyq] .

is independent of the critical radius and” and as it will be Therefore the respective spectra of the fluctuation opera-
seen in detail below, it is related to the growth rate of slightly;, s are

supercritical bubbles.

dgb X, R)
C. Fluctuations 1(X,Re) =N .
R
The study of the fluctuations around the classical bubble ¢
configuration begins by studying the spectrum of the fluctua- =—02%  0%>0;
tion operator ’
i Up(X,Re) = VNoV ¢(X,R.),  @3=0,
— — + V[ hp(X,Re)] [Un(X) = 0iU(X)F in 1D, A
dx 217 Un-o(X,Rs), @>>0, (2.21)

. . . . with N_; ;Ng normalization factorgchosen real The clas-
{—V2+V”[¢b(x,Rc)]}un(x)=wﬁun(x) in3D, sical bubble solution corresponds to a saddle point in func-
(2.189 tional space, the modé_, determines an unstable direction.
The field operator can now be expanded in the complete
Basis of eigenfunctions of2.17),(2.18 in either case and
write in general

where the prime represents differentiation with respect to th
field ¢. Taking a spatial derivative of the equation of motion
satisfied by the bubble configuration it is straightforward to

find that $(X,1) = bp(X—Xo,Re) + - 1(DU- 1(X—Xo)
d¢p(X,Rc) S S
Up(X,Re) TC (2.19 +do(t)Up(X—Xo) + 20 An(DU(X—X0),
n>
is a solution of the one dimensional eigenvalue problem (2.22

: 2_
(2.17) with @ =0 and that whereas the bound state eigenfunctions are chosen real, the

scattering states are chosen to satisfy the hermiticity condi-
(2.20  tion Un(X)=U* ,(X); gn(t)=0g* ,(t). The quanta associated
with the coordinatemwo for the stable modes will be re-

ferred generically as “mesons,” and the opera cre-
are eigenfunctions of the three-dimensional fluctuation OP3te ang annlhlla%/e meson states. peraigys.o

erator with zero eigenvalue. These are the zero modes arising From Eq.(2.21) it is clear that the modely:2{_ corre-
from translational invariancgl4,15,39. In one dimension o . 07t
spond to shifts in the position of the bubbbe, and the

the zero mode is an odd function w&ince the bubble solu- . . . ;
radius R, respectively. The collective coordinate treatment

tion is even, therefore it has a node. Hence there must b3 beorbs th . definiti f
another solution of the Schdmger-like operatof2.17) that 5] absorbs the zero modg, into a definition of a new

has no nodes and has a smaller and therefegativeeigen-  quantum mechanical degree of freedag(t) and expands
value. The form of the bubble solution in the thin wall ap- the field operator in terms of the directions perpendicular to
proximation is that of a widely separated kink-antikink pair, this zero mode,

as it will be shown in detail in the next section we find that

the eigenfunction corresponding to the negative eigenvalue .t =X t),R.]+ DU [X—X t)

must beu,locd¢b(x,R)/dR|Rc. This can be understood sim- PO =l O( Rel*a-a(OU-Al O( )]

ply from the fact that the zero mode associated with the
bubble solution is thantisymmetriccombination of the zero
modes associated with the individual kink35], hence the
eigenfunction with lower eigenvalue must be temmetric We are not interested in the dynamics of the translational
combination and the form of the bubble profile immediatelycollective coordinate, therefore we will “clamp” the posi-
leads to the conclusion that is the derivative with respect tdion of the bubble and focus solely on the dynamics of the
the radiugsee Sec. Ill, Eq(3.11)]. In the three-dimensional unstable coordinatg_4(t). Technically this is achieved by

X dey(r,Re)

UO(X RC)Oc |X| dr

+ 3 AU~ Xo(D)]. (2.23
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Equation(2.26) is very useful since it relates the second
erivative of the totalclassical variational energyE,(R)
the energy of the classical bubble as a function of its radius
to the eigenfrequency associated with theantumunstable
n mode. Usually it is a difficult task to find the spectrum of the
Xo(t)=0. We note that for small amplitudes of the unstablequantum fluctuation operator, and consequently the fre-
mode we can write the expansi¢n.23 as guency of the unstable mode. The above relation can be used
to find the value of the unstable frequency, or the normaliza-
tion factorN_, if the frequencies are known.

inserting a functional delta function fo_fo(t) in the path
integral, the corresponding Jacobian from the change of fiel
variables to the collective coordinatg5] leads to the usual
volume factor[14,15, hence in what follows we will set

¢<xit>~¢b[k’,R<t>]+n§O An(DUX);

E. The strategy

R(t)=R.+q_q(t)yN_ 2.2
(=Rt a1V . (229 Our goal is to study the effects of quantum and thermal

that allows us to identifyR(t) — R.=q_4(t) /_,\Ll and the fluctuations upon theeal time evolution of a bubble whose
coordinateq_; is associated with small departures from theradius is slightly larger than critical. This is achieved by
critical radius. treating the coordinate_(t)<[R(t) —R.] as acollective

coordinate i.e., the radius of the bubble is treated as a fully
quantum mechanical variable interacting with the other de-
grees of freedom corresponding to the stable fluctuations and
At this stage we recognize that the fluctuation modedescribed by the coordinatgg(t). The “zero mode”(trans-

U_1(x)=dey(X,R.)/dR, is the (unstablg functional direc- lational d_egree of freedo)n'; plamped and f_rozen since we
tion along which the bubble either grows or collapses, thereare only interested in describing the dynamics of the unstable
fore the coordinate_,(t)=[R(t)—R.] describes the small mode. The interaction of the stable degrees of freedom with
fluctuations around the critical bubble. An immediate questhe collective coordinate describing the departure from the
tion is, what is the relation between the frequeadyin Eqs.  critical radius will introduce viscosity effects and slow down
(2.15,(2.16 and Q?, the eigenvalue associated with ;  the growth of a supercritical bubble. This will result in a
(2.21)? The answer to this important question is obtained bysmaller growth rate and our aim is to precisely compute this
taking the second derivative of the total energy in Eq11)  Viscosity effect on the growth rate for small departures from

with respect to the radius of the bubtR which results in  the critical radius. By including the finite temperatigtatic
the following equation: counterterms in the Lagrangian and requesting that these be
cancelled consistently in the perturbative expansion, we can

D. The relation between? and w?

d?E .(R) ol ls(dop 2 . [ d%¢y isolate the static renormalization to the unstable frequency
NPT f ) [Vigr /| V¢V IR from the dynamicalviscosity effects associated with the en-
ergy transfer to the stable modes.
2 2 2 This program begins by expanding the field in terms of
A"y V() +(%) M ) the unstable and stable coordinatafer clamping the trans-
dr? ) 99 dR Ig? lational mode as
(2.29
X, 1) = pp(X,Re) + 0 1()U_1(X) + DU (X),
Integrating the first two terms in E¢R.25 by parts using H0 = uRe)+q-1(DU-100 Zp (D00
the boundary conditions for the bubble solution and Egs. (2.28
(2.9,(2.10,(2.17,(2.18, which are evaluated at the critical
radiusR., we obtain the following relation: where the summation inde runs over all stable, bound,
5 5 and scattering states other than the translational and unstable
d°Eva(R) o, O (2.26 modes. Throughout the indgxrefers to both scattering and
dR2 YT N, ' bound states.
R=Re Using the above expansion, E@2.29, of the field

$(x,t), the Lagrangian can be shown to have the following

in terms of the normalization factor of the unstable mod orm:

[see EQ.(2.21)] which will be found for the one and three-
dimensional cases separately below. We note that the rela-
tion (2.24) determines that in the absence of interactions with L[g-1.9p]=Lo[a-1]+Lolap]+Li[d-1,0,], (2.29
other degrees of freedom the growth rate of a supercritical
bubble is given by

where
d R(t)
&'”R —1=0 (227 1., 2.2 2 2
¢ Lold-1]=51a%1(0) + Q%974 (1) + 8069 4 (D) +hg-1 (D)},
for small departures from the critical radius. (2.30
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1 . . bath of infinitely many degrees of freedogy, as well as
Loldpl= 52 {Ap(D)0- (1) = w20p(1) g (1)}, with self-interaction. The self-interaction of the coordinate
P (2.31) g will be neglected because we are only interested in the
' viscosity effects arising from interaction with the stable de-
grees of freedom. The nonlinear termsgin, are neglegted
Li[g-1,0p]=— \/Xq,l(t)z Bpp/qp(t)qp,(t)—qz,l(t) because we will extract the growth rate for small departures
p.p’ from the critical bubble.
The bath of mesons will introduce viscosity effects on
x{ \/XE qup(t)+)\2 App,qp(t)qp,(t)] evolution of the coordinate associated with departures from
P p.p’ the critical radius and will result in a correction to the growth
rate. These effects can be studied in a consistent manner by
_qgl(t)[ WNB_ A qup(t)] integratin.g out the meson degree_s _of freedom in g_co_nsistent
p perturbative expansion, thus obtaining the nonequilibrium ef-
fective action forq_,. The variational derivative of this ef-
fective action leads to the equation of motion that includes
(2.32  the effects of the meson bath. This nonequilibrium effective
action is obtained up to one loop order in Appendix B. The
where we have used the equations of motion satisfied by theffective equation of motion is a Langevin equation with a
bubble configurations, and Eq®.17) and(2.18. The terms  non-Markovian viscosity kernel and a Gaussian noise term
502,g%,;hq_, are the quadratic and linear termsdn;  (to one loop orderwhose correlations are related to the vis-
from the counterterm Lagrangian. The terms denoted byosity kernel via the fluctuation-dissipation relation. The de-
h.o.t. in Eq.(2.32 correspond to higher order interactions tails are provided in Appendix B. Alternatively we obtain the
that are not important to the order that we are studying. Thequation of motion for the expectation value of the coordi-
term L¢{q_,,9,] arise from the nonlinearlcubic and nateq_; directly by means of linear response.
highep terms in the coordinates from the counterterm La- We have already accounted for thitic renormalization
grangian, they do not need to be specified since they will bef the unstable frequencf by introducing the finite tem-
requested to cancel tadpole and static terms in the equatiopgrature counterterms and using the finite temperature effec-
of motion for the collective coordinatg_, and do not con- tive potential in the equations of motion. However, we an-
tribute to lowest ordef O(\)]. The matrix elements are ticipate that there will arise further corrections to the growth
given by rate () from velocity dependerterms in the effective equa-
tions of motion. These are trulgynamicalviscosity effects

—NA_G% (D +hotLefg-1,0,],

1 (*+= . . , which cannot be captured by a static calculation. The viscos-
Bpp’EmJ'oo dX" U1 (X" )U(X" ) Upr (X) ity terms that are a function of the time derivative of the
unstable coordinate will be revealed by obtaining the effec-
XV"[dp(x",Ro) ], (2.33  tive nonequilibrium equation of motion for this coordinate

by integrating out the stable modes, which act as a bath for
1 [+ the quantum mechanical degree of freedgm,. We will

By= —f dax'u 2_1(x’)Z/{p(x’)v’”[gbb(X’,Rc)], restrict our study to small departures from the critical radius

2N - and obtain the linearized equation of motion for the expec-
(2349 tation value ofg_,. This is consistent with the definition of

. the growth rate as the logarithmic derivative of the radius for

_ T , small departures from the critical value. As is clear from Eq.

B-1= 6NJ = dXU =1 (X IV L (X', Ro)], (2.30), in the absence of interactions the Hamiltonian for the
(2.35  unstable coordinatg_; is that of aninverted harmonic os-
cillator (of negative frequency squanegind small departures

+

e, ’ ) from the unstable equilibrium valug_ ;=0 will grow expo-
APP’EGJ’,OO dX'U < (X U(X")Up: (X)), (236 nentially with the growth rate).
+
ApE4f_ dx'U 3_1(X’)Z/lp(X’), (2.37 F. The initial value problem

We study the time evolution of the expectation value of
o the unstab!e coordinat@f<q_1> .by pfopqsing an initial
A_lzf dx'u ‘ll(x’), (2.39 state described by a density matrix which is a tensor product
— of the density matrix for the unstable coordinate and a den-

) o sity matrix that describes all the stable modes in thermal
so that theh dependence is explicit in each term of the equilibrium at a given temperature. Therefore

effective action.
We thus see that the above Lagrangian describes a quan-
tum mechanical degree of freedogn ; interacting with a p(0)=p_1(0)®p4(0), (2.39
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wherep_, describes a pure state in which the expectationg—(t)q”,(t"))=is, _, G, "(t,t’)
value of the unstable coordinate @, andpg(0) is a ther- 1 . P ) PR

mal density matrix for the stable modes. As mentioned above =—i8, _pG, (L) ==i6, G (t'1),
the translational mode is clamped. The time evolution of the (2.43
initially prepared density matrix is given by Liouville's :

equation, whose solution is
where

p()=U(t)p(0)U~ (1) (2.40 i
G, (tt)= 2—[(1+ Np)exp—iwy(t—t")}
with U(t) being the unitary time evolution operator. As de- @p
scribed in detail in Ref.36] the time evolution can be cast in +n, expliwy(t—t")}],
terms of a time dependent Hamiltonian in which the interac-
tion is switched on at the initial time=0. Alternatively the
initial value problem can be cast in terms of linear response .

: . i
to an external source adiabatically turned on from—oo g;(t,t'): [ (1+ny)expliwy(t—t")}
that determines the initial preparatig®7]. Both approaches 2wp
are equivalent and the reader is referred to Ré&8,37] for
more details on the initial value problem.

The equation of motion in real time is obtained by using
the generating functional of nonequilibrium Green’s func-
tions which requires a path integral along a contour in com- n— 1 (2.44)
plex time and the following effective Lagrangi§g8,39: PexpBwpt—1" ’

+npexp—iwy(t—t")}],

P o We will carry our derivation of the equation of motion in
Ler=L[a"1,0p1-LIA-1.0p ], (24D the linear theory where we will neglect nonlinear terms,

O(Q?) and higher, and furthermore we will neglect the self-

where the labels- refer to the forward+) and backward-) interaction of the unstable coordinateubic and quartic

branches along the complex time cont¢s8,39. The equa- termg. As mentioned before, the linearization of the equa-

tion of motion for the expectation valu@(t)=(q_1(t)) is  tion of motion is consistent with the focus on the dissipative

obtained by performing the shift corrections to the growth rate, which is defined for small
departures from the critical radius. In this case, the nonequi-
librium effective actionS.; becomes

a5 (H=Q+a*(1); (G (1)=0. (242

Imposing the conditiomai(t))zo to all orders in perturba- S 4= j+ dt[ Lo[a+(t)]+Lo[q;(t)]+<~q+(t)

tion theory leads to the retarded equation of motionQ¢t). -

For a detailed presentation of this method in many other

situations see Ref39]. %
The important ingredients in this program are the real

time Green’s functions for the stable coordinates which are

assumed to be in thermal equilibrium. These are the follow-

ing:

—Q() +(02+802)Q(1)

— N6 By g (DG (1)
p.p’

—2N6(H) 2 App,dp, (DG, (HQY +h
p.p

(9p (00, (1) = =18, Gy F(L,t")
=—i6, _p[G, (t,t)O(t—t")

— o > Bppfq;u)q;,(t)—[(ﬂw—)]},
+G (L0t —1)], p.p’

(2.49
(Qp (DG (1)) = =185 G, (L,
. - , where we have written only the terms that are relevant to the
=—i6p,p[Gp (L1)O(' —1) lowest order calculatiorO(\) which is the focus of the
FES(LE)O(t—t)] present discussion and included the time dependence of the
pir ' Hamiltonian to set up the initial value probl€fB6].
o o ) ) Imposing the conditiofq”,(t))=0, up toO()\), we ob-
<q;(t)qp'(t )) =185, -Gy (L) ==i8y 5 G5 (L), tain the following equation to one-loop order:
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N N o, , the reverse process with probability €hp)n,, [40]. The
'f_xdt (@ (g™ (1)) Q(t") = Q(t") —AQ(t") countertermsQ?Z, will be chosen to cancel the tadpole con-
tribution to A [see Eq(2.46] as well as thestatic contribu-
) tion from the self-energy, since this contribution istatic
—H-2in > By .0,Bp4p, renormalization of the unstable frequency associated with a
P1.P2.P3.P4 .
stationary bubble.
i + + + +
X f_oc dt {<qpl(t )qps(t )><qu(t )qp4(t ) G. Viscosity corrections to the growth rate
In order to obtain the influence of thermal and quantum
_<q; (t’)qg (t”))(q; (t’)q; (t"))}Q(t") fluctuations on the growth rate of the bubble, we must solve
1 3 2 4

the equation of motion(2.47). This is achieved via the
Laplace transform. Introducing the Laplace transforms of

=0 ~ =
Q(t),2(t) asQ(s),2(s), respectively, withs the Laplace
ith variable. The Laplace transform of E@.47) with the speci-
wi fied initial conditions is given by
2 ; 3(s)= 5% (2.49
+ ! ! - ~ 3 .
A=5Qct—2?\’% Ap pr(dp (), (1)), $—(Q2+A)—-rS(s)
where3 (s) is given by
=h— , +opr Tot! ~ B, 2 wpt Wy
e ﬁ% Bppr(Gp ()0 (17). 249 Si9)=3 oo {<1+np+np1>—z —
' pp WpWp S°H (wpt wpr)
Since the correlatioiq ' (t)q*(t')) does not vanish for all Wp— Wy
values oft andt’, this implies that the quantity between the _(”p_np')sz+(w "2 (2.50
square brackets must vanigB9]. Furthermore, we now PP
choose the counterterm in such a way to ensure thao. We now isolate the static contribution by subtracting
We thus obtain the equation of motion for the expectation
value of the unstable coordinate for 0 S(0)=limg_ o3 (S) (2.5)

from the Laplace transform of the self-energy. Using the

" 2 to, , , identity
Q) —Q°Q() —AQ(t) —A Odt (t=t)Q(t")=0;
1
, lim,_, —=7?(—) (2.52
Q(t=0)=0; Q(t=0)=Qy, (2.47 TOsrwe W
. 2 ft _
where the self-energy (t—t') is given by \I/;/](;,\rgdct/\(/:i;l; the countertern®(}?, such thatA +A2(0)=0.
~ 1B, o|2| 1+ ny+ny, 2
) 1B,y |? _ , T'(s)= p.p pMp
S(t=t) =2 {(L+nptny)sin (wpt wp)(t—t')] ) E wppr | wptwy SE+(wpt wy)?
p‘p’ (l)p(,l)p/
i ’ 52
—(Np=Ny)sin (wp— @p) (t—t)]}, (2.48 _(np_np,)P( : 2}
wp— @y | ST (wp—wpr)

and we have used the fact thﬁtvp,zB,p,,p,. The two (2.53
different terms in the self-energy, proportional to the sum ) ]

and difference of frequencies respectively have a simple buhe Laplace transform of the equation of motion becomes
important interpretation. The first term proportional to the

sum of frequencies corresponds to the process in which the sQo

coordinateq_; “decays” into two mesons with probability $2— Q2+ AT (s)’
(1+ny)(1+ny) minus the “recombination” process with

probability nyn,, . The second term proportional to the dif-  In order to avoid cluttering of notation we will not write
ference of frequencies originates in Landau damping aneéxplicitly the P in Eq. (2.53 in what follows, but it must
corresponds to the scattering of the unstable coordinate withlways be understood that the termd- w,/) actually re-
mesons in the medium, with probability In,.)n, minus  fers to its principal part. This principal part prescription

Q(s)= (2.54
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arises from the subtraction in the limit of vanishiagvhich Sp==(Q+38Q), (2.57
is the equivalent of the frequency in the real time domain,
since the Laplace transform requires tBatiw+ e with @  Where the first order quantum and thermal fluctuation correc-

the frequency 36]. tion 6Q) to the bubble growth is given by
At this stage it becomes clear that the procedure of ab- -

sorbing the localzero frequency limit contributions to the 50— Q)
self-energy in thestaticrenormalization of the growth rat@ N 20
provides the correct description of the dynamics. Viscosity
and dissipative effects only arise from the time dependence A |prpr|2 (1+n,+ny,)
of the expectation value of the coordinate and steic me- T2 o (wo+ oy
dium renormalization had already been absorbed into the L PP
definition of the growth rate as the limit of zero frequency. QO Ne—no

X . LS. . . p p
Viscosity and dissipation arise from the transfer of energy of 5 2) -
the bubble wall to other excitatiorimesongand the growth QA+ (wpt wp) Wp™ Wpr
slows down because of these processes. An important dis-
tinction arises in this case as compared to the familiar situa- Q ) _ (2.59
tion in field theory in which complex poles determine the QZ+(wp—wp,)2

renormalization to the mass from theal part of the self-

energy on shell and the decay width from theaginarypart We note that both terms inside bracket in E2.58 are

of the self-energy on shell. In this case, however, because thositivesincen,<n, for w,>w,, we recall again that the
frequency associated with the unstable modériaginary,  term l/(wp—wp)=P[1(w,—w,)] from the discussion
the real part of the self-energy will renormalize thewth following Eq. (2.53. Therefore we conclude that the correc-
rate whereas the imaginary pdif any) at the position of the tion to the growth rate isegativei.e., the dissipative effects
(purely imaginary pole will provide oscillatory contribu-  Of the coupling to mesons results in a smaller growth rate of
tions to the bubble dynamics. Therefore, we emphasize thgupercritical bubbles.

viscosityeffects that will diminish the growth rate are deter-  Neither the frequencies of oscillations around the station-
mined by thereal part of the self-energgt the position of ~ary bubble nor the matrix elements are quantum mechanical
the pole. This is a striking difference from the usual case irin origin. However, the one loop contributia®(\) to the
which damping and viscosity are associated with the imagiself-energy is of quantum origin.

nary part of the self-energy on shell. If we restorefi in the expression above, this resultsNn
The real time dynamics of the bubble growt(t) is  —M\#A; T—T/A4. Obviously neither the eigenvalues of the
given by the inverse Laplace transform fluctuation operator nor the matrix elements depend dut

the one loop contribution to the self-energy includes #&he

1 = from the couplinglone loop as well as from the temperature
Q(t)==—| e’'Q(s)ds, (259  factors
2l )¢ '

whereQ(s) is given by Eq.(2.54 andC refers to the Bro- H. Classical limit

mwich contour running along the imaginary axis to the right In the next sections we will see that the correction to the
of all the singularities ofQ(s) in the complexs plane. The growth rate is dominated by low lying excitations and for

analytic structure of)(s) consists of cuts along the imagi- Nigh temperatures these will be such that<T. In this case

nary axis in thes-plane and poles. The two different pro- W& can invoke the qlassmal limit which is best understood by

cesses of decay into meson paiesid recombinationand ~ 'estoring# as mentioned above

Landau damping discussed above yield two different cut

structures. nk:—l ~ T
The first term in Eq(2.53 gives a two-meson cut and the elBox—1 oy

contribution from Landau damping determines a cut struc-

ture that includes the origin in theplane. The structure of In this form,

these cuts depend on the matrix elements of the interaction

as well as the full spectrum of excitations and will be inves- T

tigated in detail for particular cases in the next sections. M= Me~2
The growth rate of the bubble with the quantum fluctua-

tion effects included is given by the potg of Q(s), Eq. and in the high temperature limit we further approximate
(2.54), which satisfies the following relation:

>1. (2.59

1 1

T wy— oy
Wi Wy

=——— (260

ﬁ Wy Wy

ka+ Wy ka+ Wyr

2 024\ T _ 1+nc+nu=~1+ ~ . (2.6)
Sp Q +)\F(Sp)_0 (25@ K k h Wy Wy h W Wy

To first order in\, the pole ofQ(s) which corresponds to a These approximations lead to a simplified expression for the
growing bubble is given to lowest orde©O(\)] by lowest order correction to the growth rate
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AT 1B, |2 The gradient termd¢,/dx)? contributes to the surface
o0 =— > 2 g'pz energy whileV(¢y) has two contributions; surface contribu-
p.p’ WpWy, tion and volume contribution. Substituting(¢y,) in EQ.
qQ qa (2.11) and evaluating the integral, one finds that the total
i energy of the bubble is given by
Q2+ (wptwp)? Q2+ (0p—wp)?) -
(2.62) Evar(s) - Esur(s) + Evol(s) (33)
. . with
where the producd T is independent ofi and displays
clearly the classical limit. _am? Amds
The classical limit will be justified in each particular case Eeu(S)= +
in the next sections. The expressi62) is the final form 3\ (—1+e*)\
of the one loopO(\) correction to the growth rate arising
from dynamical viscositgince all of the static contributions 3m*(—1+e%—8e*s)(2+ 7)
had been absorbed by the counterterms. This is as far as we + 4(—1+e*)2\
can pursue in a general manner without addressing the de-
tails of the spectrum of fluctuations around the bubble solu- 4e*m[1—e*+2(1+e*)s]
tion. In the next two sections we study the details of the + 3 . (34
model determined by the Lagrangiéhl) with the potential (—=1+e™)°A
(2.2) for the cases of £1 and 3+1 dimensions. .
Eval(s)=— nTs, (3.5

Ill. THE (1+1)-DIMENSIONAL CASE

As mentioned in the Introduction, thé-+1)-dimensional  where 5 is defined as
case is relevant in statistical and condensed matter physics.
Quantum field theory models based on the Lagran@at) 1
with potentials with a stable and metastable state are pro- n= Je+ —=—-2. (3.6
posed to describe the low energy phenomenology of quasi- Ve
one-dimensional charge density wave systehg2], and o ) ) )
therefore their relevance in these physical situations warrantshe volume contribution grows linearly with the radius of

the study of this case.

the bubble while the surface contribution saturates at about

For V(&) given by Eq.(2.2), the solution to the static the critical radius of the bubbls, and attains the following
classical equation of motio(2.9) for one spatial dimension asymptotic value:

can be found exactl{13,19. The critical bubble is found to

be given by{13,19

bdp(X,Sg)=cd_+ m [tam’{ﬁso —tanr{f—so ];
2\2x 3 S

, m3(2+97)
lim Esu,(s)aT.

S—®

In the thin wall limit (»—0), the surface energy is simply
twice the kink mas$35], as the kink-antikink pair became
widely separated and the exponential interaction between

2
&= o (3. kink and antikink becomes negligible.
01y
where ¢ is the width of the bubble wall ans, is given in ool
terms of the critical radiu®; by _0'1 i
_Rc_l hl<€+1 39 = 021
so—?—icos 1 3.2 o 03]
= -04f
Nl |
with e given by Eq.(2.5). The above solution corresponds to & 0
a kink-antikink pair centered at=0, and separated by a 087
distanceR., and is displayed in Fig. 2. This is the one- 07T
dimensional bubble that starts at the false vacubmalmost -0.8]
reaches the true vacuumh, and returns top_ and it is -08[
similar to the polaron solution found in quasi-one- 10 p ” ” . . ; . .
dimensional polymer§l13]. The total energy of the bubble, wE
given by Eq.(2.11), as a function of its dimensionless radius '
s can be calculated from the fieldi(X,So) by replacings, FIG. 2. ¢y(X)/| p_| for a critical bubble in #1 dimensionse
=R./é—s=R/&in Eq. (3.1). =1.001.
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The total energy of the bubble is depicted in Fig. 3. ltstate with frequency ®%/4 that is also localized in the well
attains its maximunk,, at the critical radius, where and a continuum of scattering states.
We can use approximate methods such as the linear com-
bination of atomic orbitals approximatigbhCAO) (available
in elementary textbooksto provide a reliable estimate for
low lying bound states of the above potential from the spec-
with trum of the single potential well. In this method, the ground
state of the potentidV”(¢;,) is thesymmetridinear combi-
(3.9 nation of the ground states of the single well located-at
+R. while the first excited state of"(¢y) is the antisym-
metric linear combination.

In the thin wall I|m|t, the above eXpressionS Slmp|lfy and we In the thin wall ||m|t’ these two states are given by
find

m3

Be=2an

[4+129+379°—3sun(8+ 67+ 75%)] (3.7

1 e+1

4+ 75
sozicosh‘1 —

m d¢

. <e—4 D7, of(e—1) U1(x,80) = stgb(x,so)
and with
me w?,=—0%=—24m’e *0= —6ym? (3.1)
EC=6—)\+O[(5—1)2]. (3.9 and
To study the fluctuationg around lthe bubple splution we 1 de¢y, _ ,
need the complete set of eigenfunctidbg} satisfying Uo(X,Sg) = W(X,so) with  wg=0.
d2 (3.12
Cdx V(o) | Un(0) = wrlde(X), @10 rhese are the unstalile ; and the zerd{, modes which we

discussed earlier, see Eq&.19 and (2.21). Obviously
with Up(X) is associated with translations since it is the spatial
derivative of the bubble solution and must correspond to a
X s vanishing eigenvalue by translational invariance. Since it is
g antisymmetric there has to be a nodeless eigenfunction of
smaller frequency. The symmetric combinationZis 1(X)
Although the spectrum of eigenfunctions and eigenvalues iand since the two combinations will be split off in energy by
known exactly in the case of one kink or antikif®5], for  a tunneling amplitude that is exponentially small in the dis-
the case of the kink-antikink pair there are not known resultsance between the kink and the antikink, the unstable fre-
that we are aware of. Solving for the eigenfunctigdé} in ~ quency must be negative and exponentially small in this
this case is a difficult task but in the thin wall limit, the separation as is clearly displayed in £g§.11).
above potential consists of two identical and widely sepa- In addition to the unstable and the zero modes, there are
rated wells centered at==R.. The spectrum of each po- two bound states that have energieg3m?/4)+ AE(s)
tential well is known in the literaturg35]. It consists of a  with energy difference which is again exponentially small in
zero frequency mode localized in the well, an excited bound, and correspond to the symmetric and antisymmetric linear
combinations of the bound states of the kinkd# theory
15T [35] localized atx=*+R.. SinceV"(¢,) does not exactly
i reachm? near the center of the bubble, the potential in the
Schralinger equation could allow for shallow bound states
near the scattering continuum with binding energies that are
exponentially small in the variablg,. These bound states if
present are extremely difficult to obtain.
Finally there is the scattering continuum region of the
ey —— spectrum characterized by functiobf, whose eigenfunc-

5 10 15 20 25 30 . . . . .
i s tions are asymptotically phase shifted plane waves with ei-
o5 | genvaluesw?=k?+ m?.

i In order to compute the matrix elements that enter in the
expression for the correction to the growth r&a#62 we
need either the exact form of the eigenfunctions or an excel-
FIG. 3. The total energy of the one dimensional bubble as dent approximation to them. Whereas we are confident of our
function of its dimensionless radiusfor e=1.2, A=0.1, and¢_ analysis regarding the low lying bound states, we lack a full
=2.0. understanding of shallow bound and continuum states. Such

2

3m
V" (p) =m?— Tsecﬁ

2

m
- Tsecﬁ

X

E—SO .
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an understanding requires a detailed study of the spectruiand the total shift in the frequency is given b§Q
which certainly lies beyond the scope of this article. Al- =5Q,nest 6Qp -

though we do not have a complete understanding of the spec- Thus we conclude that although we do not have a com-
trum of eigenfunctions and therefore we do not have even glete knowledge of the eigenfunctions and therefore cannot
good approximation to the matrix elements, we can, howprovide a complete calculation of the correction to the
ever, provide some physically reasonable assumptiongrowth rate, suitable assumptions based on the properties of
complemented with dimensional arguments to provide an eshe spectrum of the one kink case combined with dimen-
timate for the corrections in this case. We begin by notingsional arguments suggest that to lowest order in the coupling
that in the one kink case, the potential that enters in thend in the thin wall approximation the growth rate of a
Schralinger equation for the fluctuation is reflectionl¢85]  slightly supercritical bubble is given by

and the scattering states for the one kiok antikink) case

have a transmission amplitude which is a pure phase. B 46 _ 2R, It ATE [R]| AT?8 [R;
Thus we expect that in the thin wall limit when the kink- R R 3 el a4 a3
antikink pair separation is much larger than the width of an (3.19

isolated kink the wave functions of the scattering states will
acquire a phase shift that is at least twice as large as that inith F[R./£],C[R./£] slowly varying dimensionless func-
the one kink case and will have a rather smooth dependendi®ns of their argument. Obviously a full calculation of
on the kink-antikink separation. Because the potentials foF[R./&],C[R./£] requires a detailed understanding of the
each kink are reflectionle§85] we assumehat in the thin ~ spectrum, in particular the scattering states. However it is
wall limit the reflection coefficients of each potential well are clear from Eq.(3.15 that the validity of a perturbative ex-
very small and therefore there are no substantial interferenggansion places a severe constrain on the coupling constant
effects in the region between the kink and the antikink. Un-and the value of the temperature, in particular the second
der these assumptions the matrix eleméhts, will be simi-  contribution in Eq.(3.15 arising from Landau damping
lar to those calculated in Rd#1] for a single kink case and gives the leading correction in the thin wall approximation
fall off very fast at large momenta justifying the classical and signals a potential breakdown of perturbation theory in
limit [41]. Hence, under these suitable assumptions the mdhis limit. A more detailed understanding of this possibility
trix elements are smooth functions §§=R./&. The contri-  requires a better knowledge of the scattering matrix ele-
bution from the two-meson cut, i.e., the first term in thements, this is an extremely difficult problem that depends on
bracket in Eq(2.62 is proportional toQ) because thé) in  the details of the potential and lies outside the scope of this
the denominator can be neglected in comparison with tharticle.
frequencies for the meson stateg~O(m). Since in 1
dimensions the coupling has dimensions of (massihe IV. THE (3+1)-DIMENSIONAL CASE
correction to the growth rate arising from the two meson cut
is of the form A. General aspects
We now study thé3+1)-dimensional case which is more
AT relevant from the point of view of particle physics, however,
0Qomes™ — —3 QF[So] (3.13  pefore focusing on a particular form of the potential and
m bubble profile, we can study fundamental model independent
properties of the3+1)-dimensional case that will determine

with F[s,] a dimensionless slowly varying function ef very robust predictions for the corrections to the bubble

=R./¢ which is rather difficult to calculate and can only be

) i . . growth.
obtained from a detailed knowledge of the eigenfunctions. . ' . . : i
The contribution from the Landau damping cut is more The static bubble configuratiofi,(r,Re) is radially sym

. metric and satisfies the static equati@l0. To study quan-
%um fluctuations around the critical bubble configuration, we
need to find the spectrum of the fluctuation operatdr
which in 3 spatial dimensions is given by

(2.62 has the form of a Lorentzian and sinfeis exponen-
tially small it is a function that is strongly peaked af,
=y and the suntintegra) over p,p’ is dominated by a

region of width() nearw,= w,, . Assuming that the matrix V()
elements are smooth functions of momentum, in this one- M=—-V?+ 5 4.1
dimensional case the integral over a small regign- d¢p (1R

~() can be done by taking a narrow Lorentzian and integrat-

ing over the relative momentum within this regipt®], lead-  Since the critical bubble solution is radially symmetric, we
ing to a contribution of the form-(A\T/m?)C[s,], where write the eigenfunctions/,(r,6,¢) of the differential op-
C[so] is a smooth function of its argument that can only beerator M as a product of spherical harmoni¥g,(6,¢) and
calculated from a detailed knowledge of the scattering waveadial functionsy,,(r) that satisfy

functions. Hence

C[so] (3.14 drz rdr 2 I?

d> 2d I(I+1) ¢°Vv
( )+ (d)b) lﬂnl(r):wﬁ‘ﬁnl(r)-

4.2

AT
o0 p~— E
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Because of the translational invariance of the Lagrangian 1
(2.1), there is a three-fold degenerate zero mode given by the Noi=—— (4.9

eigenfunction ochsb(i,Rc)och;ilydj%/dr which corre- ¥

spond to translations of the bubble in three dimensions with . . .

no energy cost. These are the Goldstone modes of the spo'ﬁ'— terms of the critical radius and the surface tension. We
taneously broken translational invariance. This can be easiljtmmarize several noteworthy features of these low-lying

seen by taking the derivative of E(.10 with respect tor olutions: L .
which r)t/esults ?n the following equa?tziono:) P (1) These excitations become Goldstone modes in the

limit as R.—o°, i.e., in the limit in which the radius of cur-
@ 2d 2 V() dey vature of thg bubb!e goes Fo infinity. _This ;tatement will be
- — 4 —4+——21_2-0. (4.3 understood in detail below in connection with the case of flat
dr2 rdr g2 ag? | dr interfaces in 3-1 dimensions.
(2) The eigenfunction with the lowest eigenvalue, corre-
In addition to the Goldstone mode, there are other low-sponds td =0, i.e., a spherically symmetric solution with a
lying excitations corresponding to different valueslefl.  negative eigenvalue given §%4,3,43
The eigenfunctions of these excitations and their eigenvalues
can be obtained by writing the=1 term in the above equa-
tion as wi=—0%=—

= (4.10
2 10+1) (1-1)(1+2)

2 2 2

5 (4.4  This is the unstable mode which corresponds to a spherically
r

symmetric expansion or contraction of the bubble and there-
fore corresponds to the unstable functional direction. The

r r

and we rewrite Eq(4.3) in the following form: coordinate associated with this mode is the displacement
from the critical radius.
d> 2d I(1+1) V()| dey (3) The three Goldstone modds ol 11 are the
S dr? r_dr+ r2 + 92 dr translation modes.
(4) The higher energy modes witk=2 are excitations on
(I=21)(1+2) depy, doy the surface of the bubble, or surface waves with energies
T Ta T (4.5 given by
2
where wé|=w=ﬂ—(l—l)(l+2); |=2.
R2 2
1 1 (4.1
Vi) =(-1)(1+2) —2——21. (4.6
r° R These low lying modes will play a dominant role and we

) , ) ) i will refer to them collectively asfy, with eigenvalues given
Smce_the funpt|prd¢b/dr is strongly Iocah;ed at=R; in " py Eq. (4.7 and whose normalized eigenfunctions E48)
the thin wall limit, the second term on the right hand side is,re simple functions of the bubble configuration which for
a small localized perturbationTherefore the unperturbed o potential(2.2) in the thin wall approximation are given
lowest lying eigenvalues are given by by Eq. (4.27) below.
(I1-1)(1+2) That the modes witth=2 can be identified as wiggles of
- = 4.7 the bubble surface, or surface waves, can be seen from the
Rg following expansion 43,44 where as discussed before the
translational modes is not included because it is “clamped:
In the thin wall limit, {/R.<1 we find that the lowest

2
wo)

order correction(in V) to these eigenvalues is of order (r,1) = dp(r —Re) +d-1(t)Uood T, 0, ¢)

O(£%IR?). For details see Ref§14,43 and Appendix A. dob

This analysis reveals that there is a band of low lying modes + 2 am(H)Ym(0,¢) k) I

with eigenfunctions 1=Z;m dr R,

dey(r,Re) ~ _
U0|m(ra9a<P):‘/N0|Y|m(9,§0)Tc (4.9 ¢p(r —R(0,¢,1))+_1()Uood T, 0, )
+o, (4.12

with Ng; the normalization constants, corresponding to the

(21 +1)-fold degenerate eigenvalues given by B7). Us-  Where

ing Egs.(2.16, (2.26), (2.21), and (4.7) with =0 (corre-

Epon'dlng to the unstable modee find the normalization to R(6,¢,t)=R.— 2 Am(D)Yim( 6, 0).

e given by 1Z2;m
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This is an important identification that we emphasize: thiswhere¢,,(z) satisfies the boundary conditia,(z) — ¢ as
band of low-lying modes describes fluctuations of the surz— ¥ andz is the coordinate perpendicular to the planar
face of the bubble. We will argue below that these excitainterface.
tions dominate the infrared behavior of the viscosity correc- The quantum fluctuations around the classical static wall
tion and will provide the largest contribution to the viscosity solution ¢,,(z) are given by the spectrum of the differential

coefficient. operator
The low lying spectrum described above is fairly general
and only depends on the existence of a thin wall bubble. V[ py(2)]
Depending on the form of potential(¢), there might be M=-V?4 ———. (4.19
other bound states. 9o

An analysis similar to that leading to the band of low- Since the domain wall only depends on the coordirzate

lying excitations reveals that for the potenti@l2) there is . . . . .
another band of rotational bound state excitations that starttg e differential operator for the fluctuations is separable in

nearw2,=3m%4. In the thin wall limit the radial wave func- (€M of eigenfunctiongq (z,x,) =€ y(2), wherex,

tion for the lowest state in this band is given by the bounddenotes the transverse coordinateg, tnamelyx andy, and
state of energy 8%/4 of the ¢* theory in 1+1 dimensions q, the transverse momentum. The functiohgz) are solu-
[35] which is also localized at the wall. The eigenfunctionstion of the following eigenvalue problem:

and eigenvalues for this rotational band of excitations are

given by (see Appendix A d> . dV(¢pw(2) -
— A %} Yn(2)= 02(4,) Pin(2).
Unim(T,8,0)= VN1, Yin(0,0) Y (1); (4.16

Taking the derivative of Eq4.14) with respect t, i.e.,

W~

2 R? dow _

, 3m? I(I+1) g)
—+OR—C, doby _
dz

(4.13 2 g2
{— LA L) 0 (4.17

dZ dp?

where y,(r) is given by the bound state of the theory with and comparing to Eq4.15 we see thatlé,,/dz is the zero
potential and2.2) in one spatial dimensiofB5], the eigen-  mode which corresponds to the translational invaridi3&

functions in this band are given in EG.28 below. Therefore the eigenfunctions
Finally there is a continuum of scattering eigenstates with
eigenvalueso?=k?+m?. As will be discussed later, the . . doy,
contribution to the growth rate from the rotational band qu:ququ'XL)E (4.18

(4.13 and of the scattering states is subleading in the thin

wall limit. The maximum val f angular momentum avail- : > .
aximu ue of ahgu 0 a have eigenvalueg’ . These are Goldstone modes associated

able for the Iow-lylng part of the spectruf.?) is limited by_ with translational invariance and represent excitations of the
the edge of the continuum spectrum or the presence of higher

Surface of the planar interfa Z) since
bound states, henck, /Re<n? or |2 <(mR)?=(R./&> P o(2)

Therefore in the thin wall limit the maximum value of the do
angular momentuny,,,&1. H(r)=dy(z—20)+ >, aq exp(iq, x,) d_zw
ar
B. Planar interfaces, surface waves, andquasi) Goldstone =¢ulz—2,(X,)],
bosons

) ) ) ) wherez, is the position of the planar interface and
The low lying spectrum of eigenfunctions given by Eq.

(4.8) with eigenvalues(4.7) has a simple physical origin,
which can be understood by noticing that in the lirRit 2, (x,)=20— 2 aq, explig, X,).
— oo the discrete spectrum becomes a continuum. In the limit L
when the radius of the critical bubble is very laigg— «,
the interface between the two phasgs and ¢ _ becomes
planar and the two phases become degenerate.

Let us consider a static planar interface configuration cor
responding to a domain wall along tkexis in three spatial
dimensions. Such a configuration satisfies the followin

This is clearly similar to the case of the spherical bubble
Eqg. (4.12 and describes the same physics, i.e., fluctuations
of the surface. In the case of a planar interface these surface
waves are also called capillary waves, and describenyhe
drodynamicmodes of long-wavelength fluctuations of inter-
%aces in systems with two degenerate phases separated by an

equation[35,43 interface[44]. In the case of degenerate phases, such as, for
Rh(z)  N(by) example, a liquid-gas or an Ising system, these surface waves
_ w4 ¥ =0, (4.14  are Goldstone modes associated with the breakdown of

dz dp translational invariance by the presence of the interface.
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For a spherical bubble in the thin wall limit these surface ¢, (r,R,) by replacingR. in Eq. (4.19 by R. The gradient
waves acquire a gap given by the inverse radjp®por-  arm (V $,)? contributes to the surface energy whitée,)

tional to th_e Gaussian cur_vature of the surfadéerefore in - a5 two contributions: a surface contributish(¢y) and
analogy Wlth_ the case of interfaces for degenerate sep_arat%mn]e contributionV, ( ;) given by
phases, we identify these surface fluctuations as quasiGold-
stone modes. Since, as argued before the maximum fre- 1 ) pm*
quency of the surface waves<sm they areclassicalin the V(o) = 5[Véu(N]"+ 55
high temperature limiiT>m. Hence the surface waves are
identified as classical hydrodynamic fluctuations of the r-rR r-RrR
bubble shape and quasiGoldstone modes in the thin wall x| sectt 3 3—tan I3 ,
limit.
We want to emphasize that these low energy excitations (4.20
are a robust feature of the thin wall approximation and are 4
model independentHaving studied in detail thgeneralas- __ 7m _ r-R
: ; V,(op) 1—tan , (4.2))
pects of fluctuations around a thin wall bubble, we now focus 8\ &
on the specific details of the theory with a potential given by ) ) o
Eq.(2.2) so as to be able to compute the matrix elements an¥here 7 is defined by Eq(3.6). Substituting the above ex-
provide a quantitative analysis of the viscosity effects. pressions in Eq(2.1) and evaluating the integral, we find
at the total energy of the bubble is given by
that the total f the bubbl b

C. ¢* theory: specifics

A 3 47R’m?3 9n 3né
The critical bubble solution that satisfies E8.10) with EvalR)= 5 V(¢ )R+ —o— | 1+ —— -0
the potential(2.2) is not in general an elementary function,
but in the thin wall limit the critical radius of the bubble m—6 3mwiyp\| &2
mR.~R./&>1 and the functiord¢y,/dr is localized near H +T)—2 : (4.22
R. which makes the “friction” term, r lde¢,/dr R
0_<1/(_m R.) ~ ¢&/R:<1. In this limit, the critical bubble solu- where in the thin wall limit
tion is found to be
R 2 Vig=— T s of(e-17)
m r—Rg )= €— .
rR)=c¢_+ 1—tanh——|}; §&é=—. 4\
N
(4.19 The total energy of the bubble is depicted in Fig. 4. It

attains its maximum at

It corresponds to a field configuration that starts around 1
r=0 at the true vacuum, , given by Eq.(2.6), and goes to _ + 97+ A+ 367+ 4572
the false vacuum¢_ as r—o with a surface width¢ Re 12§ﬂ[2 9t N4+ 367+ 4577]. (4.23
=m/2 and a critical radiu®. . Having specified the critical ) ) . _ o .
bubble solutiong,,, we now go back and determine explic- USing the _fect thatr_; is sr_nall_ in the thin wall limit, we find
itly the general expressions which we discussed in the prethat the critical radiuR, is given by
vious sections. 1

The total energy of the bubble as a function of its radius Rc:3n§{1+0[(6—1)2]}—> g 37 (4.24

R, given by Eq.(2.11), can be calculated from the field R
25 and the total critical energy is given by
20 —
E 47m 5
B E E.= S11+0[(e=1)°]} (4.25
P w0f 81\ 7
S E
S 5F which is equivalent to Eq$2.13 and(2.14) with the surface
w 10 20 30 40 50 60 70 tension given by
N
w SF S
S oF m3
L a5 _ o= ﬁ (4.2@
20 3 The low-lying fluctuation modes{y,(6,¢,r) Eq. (4.8
%= are given by
FIG. 4. The total energy of the three dimensional bubble as a
function of its dimensionless radissfor e=1.2, A=0.1, and¢_ U r0,0)= Vém R r—Re Y, (6,0)
:20 Olm( 1 ,(P - 4Rc Sec f Im( 1(P
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with We now note that the bound state energies only depend on
I, and that the energy of the scattering states is independent

2

RC

of |. Therefore there im0 Landau damping contribution
(427 from the bound states as consequence of the principal part
and the next rotational band of bound states is giveffdry
details see Appendix A

(1-1)(1+2)
—

2
o)

prescription which subtracts the contribution fram= w

in the Landau damping term as discussed in detail below
Egs. (2.53,(2.58. Therefore the correction to the growth
rate can be written agQ) = 6Q,+ Q¢ with the correction

r—R. from the bound states given by
Z/(1|m(l’,0,<p): N1|SeC+T:| | | |2
AT 21+1)|B,
- 5Qb=—7 E 2 ( 2) 2n,n |
xtan'{Tc Yim(6,¢) nn'=01 ! Wn @y
X o (4.39
Wlth QZ+(wn|+wn,|)2 ’
3m? I(1+1 : i
Wl = i ( _ ) +O<R£)‘ (4.29 and that from the scattering states given by
c C
AT (214 1)| By er 1|2
==y 33 IEIS S
D. Corrections to the bubble growth rate kk'#01 | W W,
From Eq.(2.62, the corrections from quantum and ther- ) 0
mal fluctuations to the bubble growth in the present case has 5 >t — 5
the following form in the classical limit: A+ (ot o) QA+ (o= o)
(4.39
é‘Q:—E |Bqlm,q’l’m’|2

The bound state correction has three contributions; the
quasiGoldstone modes contribution corresponding to surface
[ Q Q waves withw3 =Q%(1—1)(1+1)/2; 1=2, the contribution

2 2
2 qlm,q’1’'m’ wq|wqr|/

; from the higher energy rotational band of bound states near
w?=3m?/4, and the mixed contribution from the quasiGold-
(4.29 stone and the higher energy bound states modes. The de-
nominators inéQ, are of order()® for the quasiGoldstone
where the index runs over bound and scattering states andnodes contribution as comparedns for the mixed and the
higher energy bound states contributions. Since in the thin
1 3\ wall approximationm/Q«R_./&>1, the largest contribution
Baim,qr1m = mj AV (@)U 1 (1) Ugim( 1) Ugr17 e (T) arises from the quasiGoldstone surface modes with the low-
(4.30 est energy denominators. It can be easily seen that the matrix
' elements cannot compensate for the difference in powers of
with R. and that in fact for the higher energy bound states these
matrix elements aremallerthan those for the surface modes
because the wave functiobs,,, actually vanish at the posi-
(4.3) tion of the bubble wal[see Eq(4.28].
The contribution from the scattering states is also seen to
be much smaller than that from the surface waves. The fre-
quencies for the continuum stateg=m>() and the two

+
Qz+(wq|+wq,|/)2 Qz+(wq|—wq,|,)2

r—Rg

V" () = —6m\/ﬁtam{

SinceV"” is spherically symmetric, the angular integral leads

to . o . -
meson cut give a contribution of ordé€r (since in the de-
Baima 7. =Basqr 18117 S (4.32 nominators the) can be neglected as co_mpz_are_dﬂ)). For
the Landau damping cut, the argument is similar to that of
with the case of one space dimension.

For <m this contribution has a Lorentzian shape of

3m)37? width ~(), and the integral over the momenta can be per-

(3m) ) : . I ;

Byqr1= —4\/;R VNG VNg/ | redr formed in the narrow width approximation. The subtraction
C

of the static contribution guarantees that the integral is domi-
nated by the Lorentziaj%2] and the regionv,~ w,, can be

r-rR r-R
xtank{ °|seck C} Baq(r) g (r). integrated by changing to relative variables and now in three
¢ ¢ spatial dimensions the phase space in the regipn wy.
(4.33 ~() give extra powers of(Q} as compared to the one-
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dimensional case. Furthermore, the matrix elements are/\/\>T>m in the weak coupling limit. Furthermore the
smooth functions of the radius of the bubble as can be unlow-lying excitations with frequenciescm are obviously
derstood simply by a scattering argument from a sharplylassical.
peaked potential in three spatial dimensions. These matrix
elements do not introduce any singularity in the liRRjt/ &

>1, hence the contribution of the scattering states is at least

prqportional to() and is therefore subleading in the thinwall  The focus of this article is to provide a microscopic cal-
limit. culation of the growth rate of slightly supercritical nucleation

This analysis leads to the conclusion that the largest comyybbles. The model under consideration is‘ascalar theory
tribution to the correction to the growth rate is given by theyjith an explicitly symmetry breaking term that produces a
quasiGoldstone modese., the surface waves, since thesemetastable and a stable ground state, we studied the case of
are the lowest lying excitations and hence provide the smallpycleation in %1 dimensions as well as43l dimensions.

V. CONCLUSIONS AND DISCUSSION

est energy denominators. The former is relevant in the case of quasi-one-dimensional
The matrix element, o, for the surface waves can be charge density wave systems and organic conductors. We
calculated easily and we find begin our analysis by obtaining the critical bubble solution
) by including finite temperature effects in the potential that
B = /3_mi: 3_mQ_ (4.36 enters in the classical equation of motion, counterterms are
0,0} T 5R§ T 5 ' added to the Lagrangian to compensate for the finite tem-
perature corrections consistently in a perturbative expansion.
leading to the following correction: Our approach to obtaining the growth rate is very differ-
ent from previous treatments in that we begin by expanding
Q. — 6hamT the quantum field around the critical bubble in terms of the
Mgw=— 257 Q (4.3 guadratic fluctuations around the critical bubble configura-
tion. These fluctuations describe an unstable direction asso-
where ciated with small departures from the critical radius, transla-
RoJE tional zero modes, and stable fluctuations. The translational
_ i 21+5 ~0.039 modes are anghored py fixing the center of the bupbles and
@ 0 (1+D2(1+ 4 1+20+ D)1 +4)] we treat explicitly the interaction between the coordinate as-

(4.39 sociated with the growtlor collapsé of the bubble with
those associated with the stable fluctuations. We obtain the
The above series converges rapidly and only the first fevgrowth rate by obtaining the effective linearized equation of
terms contribute to the sum, we have evaluated the sum nurotion for the unstable coordinate by integrating out the
merically with R;/&=10. coordinates associated with the stable fluctuations. Two dif-
Hence we summarize one of the main results of this arferent approximations are involved) a weak coupling ex-
ticle: the lowest order correction to the bubble growth forpansion in terms ok the quartic self-coupling andi) the
three dimensional bubbles is dominated by viscosity effectghin wall approximation in terms of/ R, with & the width of
arising from the excitation of long-wavelength surface waveghe bubble wall andR; the critical radius. The first approxi-
and is given by mation allows a consistent perturbative expansion of the self-
energy of the unstable coordinate, the second allows a quan-
Re (4.39 titative calculation of the relevant matrix elements,
£ : furthermore our analysis reveals that the important fluctua-
tions areclassicalfor temperature§ .>T>m, with T the
Therefore to lowest order ik (one-loop and to leading critical temperature andh the mass of quanta in the meta-
order in the thin wall approximation we find that the growth stable phase.
rate of slightly supercritical bubbles is given by In the one-dimensional case we are able to provide an
) estimate for the growth rate given by E®.15 where the
&) functions F[R./£¢],C[R./¢] depend in a detailed manner
£

upon the scattering states solutions of the eigenvalue prob-
lem for the quadratic fluctuations, and clearly will depend on
with ¢ andR. are the width and radius of the critical bubble. the details of the potential. This estimate points out the po-
This is one of the important results of our study. The validitytential breakdown of perturbation theory in the thin wall
of perturbation theory places a very stringent constraint onimit.
the quartic coupling constant in the thin wall link,/é>1 In the case of three dimensions we are able to extract
and in the classical limif/m~Té&>1. The validity of the some robust features that transcend the form of the potential
classical limit in this case is warranted: we are studying theand are solely a consequence of the thin wall limit. In par-
dynamics of nucleation via thermal activation for tempera-ticular we identify a rotational band of low lying excitations
tures below the critical temperatufe<T,~m/\/A but for  which describesurface wavesi.e., ripples on the surface of
temperatures much larger than the energy of the low lyinghe bubble. We establish the connection of these surface
excitations, the relevant regime for thermal activation iswaves to the capillary waves of flat interfaces in the case of

2

60 =— 0.003\QT§(

0= 2

R, (4.40

1—0.003\T§(
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degenerate but phase separated thermodynamic ésaiels lowest order estimate for the quark-hadron transition beyond
as the Ising or liquid-gas at coexistefcthe surface waves the statement that the viscosity induced by the hydrodynamic
are then identified aglassical long-wavelength hydrody- fluctuationscouldresult in a very largénegative correction
namic fluctuationsThe unstable coordinate couples to theseto the growth rate and therefore a rather small nucleation
hydrodynamic fluctuations and as a result the friction ternrate.
arising from the self-energy is dominated by the coupling to For larger supercooling the critical radius becomes
these hydrodynamic modes. Clearly tb@uplingof the un-  smaller and the thin wall approximation breaks down, but in
stable coordinate to these hydrodynamic modes depends dinis case nucleation and spinodal decomposition will be in-
the model, and in the case under consideration we find in thdistinguishable and homogenous nucleation theory may not
thin wall limit and to lowest order in perturbation theory the be the proper description.
following expression for the growth rate: However, despite the limitations of the perturbative ex-
pansion and the thin wall approximation, we have provided a
J2 R.\? consistent approach to obtain friction or viscosity corrections
Q= R_c 1-0.003T¢ ? : G.D o the growth rate from anicroscopicperspective without
invoking a phenomenological description. The observation

We also obtain the effectiveon-MarkovianLangevin thatin the thin wall limit the most important corrections arise
equation for the coordinate describing small departures fronffom the coupling toclassical hydrodynamic fluctuations
the critical radius and establish the generalized fluctuatioi§ould perhaps pave the way to a systematic hydrodynamic
dissipation relation between the viscosity and the noise kertreatment that would circumvent the weak coupling expan-
nel. The noise is correlated on time scales comparable tgion and allow us to extract nonperturbative physics.

Q1 precisely as a consequence of the coupling to the hy-
drodynamic modes and cannot be treated simply with white VI. ACKNOWLEDGMENTS
(delta function correlations.

Discussion.Although we have studied a specific micro-
scopic model, in the case oftd dimensions we have been
able to identify some robust features that transcend the paF : . : )
ticular model. These are the existence and dominance of h)é-)r financial support. S.E.J. thanks CNPq for financial sup-

: . : : ; ort. F.I.T. thanks FAPEMIG for support. E.S.F. thanks
drodynamic fluctuations associated with surface waves in th
thin wall limit. The coupling of the coordinate associated NPq and FAPERJ for support and D.G.B. thanks FAPERJ

with small departures from the critical radius to these Iowand CNPq for support through a binational collaboration.

energy fluctuations induces friction or viscosity corrections .
to the growth rate of slightly supercritical bubbles and in the APPENDIX A: CORRECTIONS
weak coupling and thin wall limit these fluctuations give the TO THE QUASIGOLDSTONE MODES

largest contribution to the friction corrections. _ In this appendix we calculate the corrections to the eigen-
One of our original motivations is to make contact with \5)yes of the quasiGoldstone modes that obey the(£6)

previous studies of nucleation as applied to the quark-hadrogising first order perturbation theory. First we write

phase transition. In particular Csernai and Kap(i8jehave

parametrized the coarse grained free energy that describes a (I-D+2) (=1)(1+2)
quark-hadron first order phase transition in terms of a local 2 = R2 +
energy variable that can be identified with our scalar figld ¢
The form of the potential taken by these authors coincidegjiy
with our potentialV(¢) (2.2), with coefficients that depend

on temperature, just as we have argued in this article. Their
form of the critical bubble solution and the variational en- sV=(1-1)( +2)(—2— —2)
ergy as a function of the radius of a bubble are very similar r° Re
to those studied in this article. These authors have esta

lished that for about 1% supercooling the critical radius for
such a model is abolR.~12fm, the width of the wall is
abouté~0.7fm, and the thin wall approximation must be

D.B. thanks the N.S.F for partial support through the
grants PHY-9605186 and INT-9512798. S.M.A. thanks King
ahad University of Petroleum and Minerafsaudi Arabia

sV (A1)

he first order energy correctid&(® is given by

E(Y= — Uoim| V|Uoim)

reliable in this regime. (1-1)(1+2) (> depp | 2 R§

We can obtain the quartic self-coupling in Eq. (2.2) :——Zf rzdrNo,(—) (—2— ,
from the parameters used in RE3] by relating the width of Re dr r
the bubbleé=2/m and the surface tensiom to N via Eq. (A2)

(4.26. In Ref.[3] the value of the surface tension for the

particular quark-hadron model is=50MeV/f? for T  where we have integrated out the angular degrees of free-
~200MeV, yielding a valuex~6 which leads to a very dom.

large correction to the growth rate. Certainly the large value For the ¢* potential given by Eq(2.2), the normalized

of the coupling invalidates the perturbative scheme and wevave functions are given by E¢4.27) and when it is sub-
cannot draw a definite conclusion as to the relevance of oustituted in Eq.(A2) one finds that
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C(I=1)(1+2) (m*-6) &

E(l) :
R2 12 Re?

1
=20y 03l 0+a0] 0= -a ),

Thus to first order in perturbation theory, the eigenvalues arf€ generating functional becomiges—-50
given by

Z[0]= f DxDre'Sxr] (B3)
,_(-D0+2)[ (&
wor R2 R2) | with the nonequilibrium effective action given by
A similar treatment can be used for the next rotational _ . ) )
band based on the bound state of i#fetheory in one spatial Sx,r]= | dtr(t)] =x(O)+Qx(H)+X | dt
dimension. For this we treat the term .
i
’d 11 X Eret(t—t’)x(t’)wtEK(t—t’)r(t’)”,
5v<1>=—T+|(|+1) - (A4)
rar RC T (B4)

as a perturbation. The unperturbed wave function is the posivhere for clarity we have neglected the counterterms as well
tive energy bound state of the one-dimensioél theory  as the tadpoles arising in the computation of the influence
[35] and the first order correction is obtained as before and ifunctional. The kernel (t—t’) and K(t—t') are given
I(1+1)/R2+ O(¢IR,). by

APPENDIX B: LANGEVIN EQUATION AND Telt—t)=2(t-t")O(t-t"),
FLUCTUATION DISSIPATION RELATION

The semiclassical Langevin equation is obtained by per- K(t—t')=— E |Bp1p2|2{g;1(tvt/)ggz(t't')
forming the path integrals over the bath degrees of freedom, P1P2
i.e., the stable modes, thus obtaining a nonequilibrium effec- +g§1(t,t')g§2(t,t’)}
tive functional for the unstable mode. This is achieved con-

sistently in perturbation theoy89,41], and to lowest order |Bpp,|2
we find => ———{(1+np+ny+2n,n,)
. pyp’ 2wpwpy
Z[j"=j =0 ,
Lim=1"=0] X co§ (@t wp ) (t—t')]
— ir® ’ + 9 - —
=f Dq” g et (boldal"holdaD 71 g7 g7y ], + (Nt N +2n005) g (@p— wp) (L)1},
(B1) (B5)
where the Lagrangiarisy[q~,] are given by Eq(2.30 and  with 3(t—t’) given by Eq.(2.48.
f[qfl,qjl] is the influence functiondk5,46 which to one At this stage it proves convenient to introduce the identity
loop order and neglecting the tadpole contributions is given
by e (1/2) fdtdt’ r()K(t—t")r(t")
Aaty.954] =C(t)f Die (U2 Jdtdt KM=t &) +i/dte)r (1)
=exp[ —i2\ 2 |Bpp’|zf dtdt’ with C(t) being an inessential normalization factor, to cast
PP the nonequilibrium effective action of the unstable mode in
X[qT (DG T (Lt)G T (6t)g (1) terms of a stochastic noise variable with a definite probabil-
SRR A e A AL ity distribution, [46—50. Using the above relation, the gen-
+q:l(t)G,;_(t,t’)G;,_(t,t’)qjl(t’) erating functional becomes
At + - ' + - AP ’ .
921Gy (LE)G,, (L,E)g_4(1) Z[O]=f DxDerP[f]exp[iJ dtr(t)| —X(t) + Q2x(t)
—q:ﬂt)Gg+<t,t’>G;,+(t,t'>qt1(t’)]}, (B2) t
+xf dt’E(t—t’)x(t’)+§(t)H. (B6)

where the Green’s functions are given by E243).
Introducing the Wigner coordinates or center of mass andvhere the probability distribution of the stochastic noise
relative coordinates(t) andr(t), respectively, given by P[] is given by
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1
P[§]=J :Dfexp{ —ﬁf dtdt’ E(K ™ t—t")E(t") . IM[S e @)]=— (1= ) X [Byp| Gy ().
PP (B12)
(B7) . : .
On the other hand the kernel that determines the noise-noise
In this approximation we find that the noise-noise correlatiorcorrelation functiorK(t—t’) has a Fourier transform given
function is given by by k(w) with
(&DE&t)))=K(t—t"), (B8)

k(w)=(1+e77) X |Boy|°G,, (@)
which is in general colored, i.e., it is not a delta function p.p’

S(t—t"). »
The semiclassical Langevin equation is obtained by ex- :—COI”{% IM[Z e @) ]. (B13)

tremizing the effective action in E¢B6) with respect ta (t)

The above relation between the Fourier transform of the

noise-noise correlation function and the imaginary part of the

self-energy is the generalized fluctuation-dissipation relation.
In particular the contribution from the surface waves to

Taking the average of the above equation with the nois¢he kernelK(t—t") is given by

probability distribution P[£] and identifying ({x(t))) SR IE

=Q(t) yields the equation of motion for the expectation Kool 7)= 12mT E (21+1)

value of the unstable mode, E@.47). 257 =2 (1-1)%(1+2)?
The relationship between the kern&lg(t—t’) andK(t

—1") constitutes a generalized quantum fluctuation dissipa- 1+co5{2 —1(+2 T
tion relation. This relation is established by considering the ( A )RC

. . : > AYazs ’

time F<our|(?r tr<ansf?rms Pf the functiorés, (t’t>)gp'(t’t ) This function oscillates with constant amplitude on a time
and G (t,t")G(t,t") which are denoted by, (w) and  scale ~R, which is the same time scale for growth of a
g;p,(w), respectively. These Fourier transforms obey thesupercritical bubble. Therefore the noise temannot be

ik(t)—sz(t)—xﬁ dt’S (t—t")x(t")=&(t). (B9)

X

}. (B14)

KMS condition[51] taken to be uncorrelated over the time scales associated with
_ _ the growth of a bubble, i.e., the noisecisloredand a Lange-
Qpp,(w)zefﬁ‘”gpp,(w). (B10)  vin description based on a white noise would miss the long-

_ _ _ _ time correlations. The contribution of the scattering states
Using the above relation we find that.(w), the Fourier  could lead to a short range part of the kernel, but the long
transform in time of the retarded self-enerBy.(t—t") is  time behavior of the kernel will be dominated by the low

given by energy surface waves. The reason that a Markovian Lange-
- , g’ vin equation with Whitg noisg fails to describe the dynamics
B , [(do’ Gy (e")[1—e 7] of the unstable coordinate is that there are slow hydrody-
Eret(“’)_zz, | Bop'| f T o—o' tie namic fluctuations with time scales comparable to the growth
PP (B11) rate that couple to the unstable coordinate, precisely the
same type of fluctuations that dominate the viscosity or fric-
leading to the imaginary part tion.
[1] E. V. Shuryak, Phys. Ref1, 71 (1980; H. Stocker and W. Nucl. Part. Sci43, 27 (1993; Phys. Lett. B263 86 (1991);
Greiner,ibid. 137, 277 (1986; B. Muller, The Physics of the 295 57 (1992; Nucl. Phys.B349 727 (1991).
Quark Gluon Plasmayol. 225 of Lecture Notes in Physics [5] V. A. Rubakov and M. E. Shaposhnikov, Phys. U8p, 461
(Springer-Verlag, Berlin, 1985L. P. Csernai/ntroduction to (1996; G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. D
Relativistic Heavy lon Collision§Wiley, England, 199% C. 50, 774 (19949; V. A. Kuzmin, V. A. Rubakov, and M. E.
Y. Wong, Introduction to High-Energy Heavy lon Collisions Shaposhnikov, Phys. Letl55B, 36 (1985; G. Farrar, Nucl.
(World Scientific, Singapore, 1994 Phys. B(Proc. Supp). 43, 312 (1995; M. E. Shaposhnikov,
[2] For a comprehensive review of aspects of the QCD phase tran-  Phys. Lett. B277, 324(1992.
sition see H. Meyer-Ortmanns, Rev. Mod. Phy8, 473 [6] For a review of possible mechanisms for Baryogeneis see A.
(1996. Dolgov, Phys. Rep222 309 (1992; N. Turok, Electroweak
[3] L. P. Csernai and J. I. Kapusta, Phys. Rev&) 1379(1992); Baryogenesisin Perspectives on Higgs Physjeaxdited by G.
L. P. Csernai and J. |. Kapusta, Phys. Rev. Lé8, 737 L. Kane(World Scientific, Singapore, 1993. 300; M. Trod-
(1992; M. Carrington and J. I. Kapusta, Phys. Rev.43, den, “Electroweak Baryogenesis,” hep-ph/9803479; A. Ri-
5304 (1993. otto, “Theories of Baryogenesis,” hep-ph/9807454.

[4] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Annu. Rev. [7] A. Linde, Particle Physics and Inflationary Cosmologilar-

125003-22



DYNAMICAL VISCOSITY OF NUCLEATING BUBBLES

wood Academic Publishers, Switzerland, 199Rep. Prog.
Phys.47, 925(1984).

[8] E. W. Kolb and M. S. TurnerThe Early UniversgAddison
Wesley, Reading, MA, 1990

[9] R. Brandenberger, Rev. Mod. Phy&, 1 (1985; Int. J. Mod.
Phys. A2, 77 (1987).

[10] For a review of nucleation in soft condensed matter physics

see J. D. Gunton, M. San Miguel, and P. S. SahniPlrase
Transitions and Critical Phenomenpadited by C. Domb and J.
L. Lebobowitz(Academic Press, London, 1983/0l. 8.

[11] J. S. Langer and K. Binder, i8ystems Far from Equilibrium
Vol. 132 of Lecture Notes in Physics, edited by L. Carrido
(Springer-Verlag, Sitges, 1980

[12] Yu-Lu, Solitons and Polarons in Conducting Polymévgorld
Scientific, Singapore, 1988A. J. Heeger, S. Kivelson, J. R.
Schrieffer, and W. P. Su, Rev. Mod. Phy), 781(1988; G.
Gruner, Density Waves in Solid@ddison-Wesley, 1994

[13] D. Boyanovsky, C. A. A. de Carvalho, and E. S. Fraga, Phys.

Rev. B50, 2889(1994; C. A. A. de Carvalho, Acta Phys. Pol.
B 19, 875 (1988; Mod. Phys. Lett. B3, 125(1989; E. S.
Fraga and C. A. A. de Carvalho, Phys. Rev.52, 7448
(1995; D. G. Barci, E. S. Fraga, and C. A. A. de Carvalho,
Phys. Rev. D55, 4947 (1997.

[14] J. S. Langer, Ann. PhysIN.Y.) 41, 108 (1967; 54, 258
(1969; 65, 53 (1972; J. S. Langer and L. A. Turski, Phys.
Rev. A8, 3230(1973; L. A. Turski and J. Langerbid. 22,
2189(1980.

[15] S. Coleman, Phys. Rev. D5, 2929(1977; C. Callan and S.
Coleman,ibid. 16, 1762(1977.

[16] M. Stone, Phys. Lett76B, 186 (1977.

[17] I. Affleck, Phys. Rev. Lett46, 388 (1981.

[18] A. D. Linde, Nucl. PhysB216, 421(1983. There is a factor
proportional to the growth rate of a supercritical bubble miss-
ing in the pre-exponential factor in this article, see Refs.
[14,17,3.

[19] D. Boyanovsky and C. A. A. de Carvalho, Phys. Rev48
5850(1993.

[20] L. Carson, X. Li, L. McLerran, and R. T. Wang, Phys. Rev. D
42, 2127(1990.

[21] J. Baacke, Phys. Rev. B2, 6760(1995; J. Baacke and S.
Junker,ibid. 49, 2055 (1994); J. Baacke and V. Kiselewy8s,
5648(1993.

[22] M. Gleiser, G. C. Marques, and R. O. Ramos, Phys. Re48D
1571(1993; G. H. Flores, R. O. Ramos, and N. F. Svaiter, Int.
J. Mod. Phys. Al4, 3715(1999.

[23] F. Ruggeri and W. A. Friedman, Phys. Rev. 33, 6543
(1996.

[24] J. I. Kapusta and A. P. Vischer, Phys. RevbZ; 2725(1995;

J. |. Kapusta, A. P. Vischer, and R. Venugopalaig. 51, 901
(1995.

[25] E. E. Zabrodin, L. V. Bravina, H. Stker, and W. Greiner,
Phys. Rev. B9, 894(1999; E. E. Zabrodin, L. V. Bravina, L.
P. Csernai, H. Sttker, and W. Greiner, Phys. Lett. 423 373
(1998.

[26] D. Chandra and A. Boyal, hep-ph/9903466.

[27] A. Strumia and N. Tetradis, hep-ph/9904246.

[28] J. Ignatius, inStrong and Electroweak Matter '9@dited by F.
Csikor and Z. FodofWorld Scientific, Singapore, 1998

[29] S. Y. Khlebnikov, Phys. Rev. @6, 3223(1992.

PHYSICAL REVIEW D 60 125003

[30] P. Arnold, Phys. Rev. 28, 1539(1993.

[31] J. Borrill and M. Gleiser, Phys. Rev. b1, 4111(1995; M.

Gleiser, Phys. Rev. Letf3, 3495(1994; M. Alford and M.

Gleiser, Phys. Rev. Di8, 2838 (1993; M. Gleiser, G. C.

Marques, and R. O. Ramabjd. 48, 1571(1993; M. Gleiser,

A. F. Heckler, and E. W. Kolb, Phys. Lett. 805 121(1997);

M. Gleiser and A. F. Heckler, Phys. Rev. L6, 180(1996.

[32] R. Haas, Phys. Rev. B7, 7422(1998.

[33] B. H. Lin, L. McLerran, and N. Turok, Phys. Rev. 45, 2668
(1992.

[34] Y. Brihaye and J. Kunz, Phys. Rev. 48, 3884(1993.

[35] R. RajaramanKinks and Instantons An Introduction to Kinks
and Instantons in Quantum Field Thediyorth-Holland Pub-
lishing, Amsterdam, 1982

[36] D. Boyanovsky and H. J. de Vega, Phys. Rev4D 2343
(1993; D. Boyanovsky, D. S. Lee, and Anupam Singibid.

48, 800 (1993; D. Boyanovsky, M. D’Attanasio, H. J de
Vega, R. Holman, and D. S. Leigid. 52, 6805(1995.

[37] D. Boyanovsky, H. J. de Vega, R. Holman, and M. Sinionato,
Phys. Rev. D60, 065003(1999.

[38] J. Schwinger, J. Math. Phy2, 407 (1961); L. V. Keldysh, zZh.
Eksp. Teor. Fiz47, 1515(1964 [Sov. Phys. JETR0, 1018
(1969]; K. T. Mahanthappa, Phys. Re%26, 329 (1962; P.

M. Bakshi and K. T. Mahanthappa, J. Math. Ph;s1 (1963;
4, 12 (1963; V. Korenman, Ann. PhysIN.Y.) 39, 72 (1966);
G. Z. Zhou, Z. B. Su, B. L. Hao, and L. Yu, Phys. R448 1
(1989; J. Rammer and H. Smith, Rev. Mod. Phy8, 323
(1986; E. M. Lifshitz and L. P. PitaevskiiPhysical Kinetics
(Pergamon, New York, 1981G. D. Mahan,Many Particle
Physics 2nd ed.(Plenum, New York, 1990 H. Kleinert, Path
Integrals in Quantum Mechanics, Statistics and Polymer Phys-
ics, 2nd ed.(World Scientific, Singapore, 1996R. Mills,
Propagators for Many Particle Systen@@ordon and Breach,
New York, 1969.

[39] D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee, and A.
Singh, Phys. Rev. B1, 4419(1995; D. Boyanovsky, H. J. de
Vega, and R. HolmarRroceedings of the Second Paris Cos-
mology ColloquiumObservatoire de Paris, June 1994, edited
by H. J. de Vega and N. 8ahez(World Scientific, Singapore,
1995 pp. 127-215;Advances in Astrofundamental Physics
Erice Chalonge School, edited by N.ri8aez and A. Zichichi
(World Scientific, Singapore, 1935D. Boyanovsky, H. J. de
Vega, and R. Holmanyth. Erice Chalonge School, Current
Topics in Astrofundamental Physieslited by N. Sachez and
A. Zichichi (World Scientific, Singapore, 1996pp. 183-270.

[40] H. A. Weldon, Phys. Rev. 28, 2007(1983.

[41] S. M. Alamoudi, D. Boyanovsky, and F. Takahura, Phys. Rev.
D 58, 105003(1998; Phys. Rev. B57, 919(1998.

[42] We thank Peter Arnold for an illuminating discussion on this
point.

[43] N. J. Ginther, D. A. Nicole, and D. J. Wallace, J. Phys13
1755 (1980; D. J. Wallace, inRecent Advances in Field
Theory and Statistical Mechanicsdited by J-B. Zuber and R.
Stora(North-Holland Publishing Co., Amsterdam, 1984

[44] S. A. Safran,Statistical Thermodynamics of Surfaces, Inter-
faces and Membrang#@ddison Wesley, New York, 1994

[45] R. Feynman and F. Vernon, Ann. PhyN.Y.) 24, 118(1963.

[46] A. O. Caldeira and A. J. Leggett, Physical®1, 587 (1983.

125003-23



S. ALAMOUDI et al. PHYSICAL REVIEW D 60 125003

[47] A. Schmid, J. Low Temp. Phy€9, 609 (1982. [50] D. Boyanovsky and D.-S. Lee, Nucl. PhyB[FS] 406, 631
[48] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. RE@S (1993.
115(1988. [51] A. L. Fetter and J. D. WaleckaQuantum Theory of Many
[49] U. Weiss, Quantum Dissipative Systent§V/orld Scientific, Particle Systems (McGraw-Hill, San Francisco, 1971
Singapore, 1993 and references therein. Chap. 9.

125003-24



