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Dynamical viscosity of nucleating bubbles
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We study the viscosity corrections to the growth rate of nucleating bubbles in a slightly supercooled first
order phase transition in~111!- and ~311!-dimensional scalar field theory. We propose amicroscopicap-
proach that leads to the nonequilibrium equation of motion of the coordinate that describes small departures
from the critical bubble and allows us to extract the growth rate consistently in a weak coupling expansion and
in the thin wall limit. Viscosity effects arise from the interaction of this coordinate with the stable quantum and
thermal fluctuations around a critical bubble. In the case of 111 dimensions we provide an estimate for the
growth rate that depends on the details of the free energy functional. In 311 dimensions we recognize robust
features that are a direct consequence of the thin wall approximation that transcend a particular model. These
are long-wavelength hydrodynamic fluctuations that describe surface waves. We identify these low energy
modes with quasi Goldstone modes which are related to surface waves on interfaces in phase ordered Ising-like
systems. In the thin wall limit the coupling of this coordinate to these hydrodynamic modes results in the
largest contribution to the viscosity corrections to the growth rate. For af4 scalar field theory at temperature
T,Tc, the growth rate to lowest order in the quartic self-couplingl is V5 (A2/Rc) @1
20.003lTj(Rc /j)2# with Rc ,j the critical radius and the width of the bubble wall, respectively. We obtain
the effective non-Markovian Langevin equation for the radial coordinate and derive the generalized fluctuation
dissipation relation. The noise is correlated on time scalesV21 as a result of the coupling to the slow
hydrodynamic modes. We discuss the applicability of our results to describe the growth rate of hadron bubbles
in a quark-hadron first order transition.@S0556-2821~99!07120-9#

PACS number~s!: 11.27.1d, 05.70.Fh, 12.38.Mh
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I. INTRODUCTION

The dynamics of first order phase transitions is a fun
mental ingredient in particle physics and in condensed m
ter. First order phase transitions occur via the nucleation
bubbles of the true vacuum phase in the metastable or f
vacuum phase. At large temperature it is mediated by th
mal or overbarrier activation and at low temperatures
quantum nucleation. First order phase transitions are con
tured to occur in QCD and in electroweak theory. In QCD
first order phase transitioncould describe the hadronizatio
of the quark-gluon plasma, possibly produced in the ea
Universe at about 1025 s after the big bang or in relativisti
heavy ion collisions@1–3#. In electroweak theory a first or
der phase transition is argued to provide the nonequilibr
setting for baryogenesis@4–6#. In early universe cosmology
first order phase transitions had been proposed as me
nisms to generate the inflationary stage@7–9#. In condensed
matter physics thermal activation results in the nucleation
bubbles of the lowest free energy phase in binary flu
@10,11# and also of the decay of metastable dimerized sta
in quasi-one-dimensional charge density wave systems
nondegenerate organic conductors@12,13#.

The most comprehensive microscopic theory of nuc
ation via thermal activation was presented by Langer@14#
and was later extended to quantum field theory to acco
both for thermal activation as well as for quantum nucleat
@15–18#. An approach to describe nucleation in a nonstea
state situation in real time has been advocated in Ref.@19#. In
0556-2821/99/60~12!/125003~24!/$15.00 60 1250
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the limit in which nucleation is dominated by thermal ac
vation and overbarrier transitions, these bubbles are p
duced via large thermal fluctuations. These bubbles w
grow whenever their radius is larger than a critical value a
collapse if it is smaller. Supercritical bubbles will grow t
convert the metastable phase into the stable phase or
they percolate achieving the total conversion of the me
stable phase. For slightly supercritical bubbles an import
dynamicalquantity is the growth rate of a bubble

V5
d

dt F lnUR~ t !

Rc
21UG ; R~ t !>Rc ~1.1!

with R(t) the~time dependent! radius of a slightly supercriti-
cal nucleating bubble andRc is the critical radius@14,3,10#.
Langer’s theory provides the nucleation rate per unit volu
per unit time given by

I 5VDe2 Fb /T ~1.2!

where Fb is the free energy of a critical bubble andD is
proportional to the ratio of the determinants of the fluctuat
operators around the bubble configuration to that around
homogeneous metastable state@14,3,10#. The regime of ap-
plicability of homogeneous nucleation theory is forFb@T,
for Fb'T small amplitude thermal fluctuations can trigg
the phase transition and nucleation and spinodal decomp
tion can no longer be distinguished. The ratio of determ
nants inD has been computed analytically and numerica
©1999 The American Physical Society03-1
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in several important cases@20–22#. Csernai and Kapusta@3#
have studied the growth rate of hadronic bubbles in a qu
gas by extending Langer’s theory to the relativistic ca
These authors studied a coarse-grained field theory in te
of a relativistic hydrodynamic description with viscous term
in the energy momentum tensor and the baryon curr
Their conclusion was that the growth rate is determined
the coefficients of the shear and bulk viscosities and
hadronic bubbles do not grow when these coefficients v
ish. Another approach presented by Ruggeri and Friedm
@23# also based on baryon-free relativistic hydrodynam
but with a different treatment of the heat conduction a
energy flow reached a different conclusion, th at the grow
rate is nonzero even for vanishing bulk and shear viscos
and that viscosity effects are subleading for small viscosit
If the hadronization phase transition is of first order there
potentially important experimental signatures associated w
the homogeneous nucleation of the hadronic phase som
which had been studied in Ref.@24#.

Homogeneous nucleation of the quark-gluon plasma
been recently studied with a bag model of the equation
state for the quark and hadron phases and the different
dictions above have been compared@25#. The formulation
and results of Csernai and Kapusta had recently been us
study first order quark-hadron phase transition in the e
Universe for a first order hadronization transition@26# and
more recently homogeneous nucleation has been tested
merically in ~211!-dimensional systems with qualitativ
agreement to the standard result@27#.

An alternative phenomenological description of t
growth rate based on dissipative hydrodynamics combi
with the finite temperature effective potential has been p
sented in Ref.@28#. In this work analytical and numerica
studies reveal a dependence of the growth rate on the
nomenological dissipative coefficient.

Khlebnikov @29# and Arnold@30# have studied dissipative
effects that slow down the growth rate of a supercriti
bubble by coupling the order parameter that describes nu
ation to other fields~with a trilinear coupling! and applied
the fluctuation dissipation relation to one loop order in t
coupling to the other field.

Finally we must mention a numerical approach to the
scription of nucleation, based on a phenomenological M
kovian Langevin dynamics in terms of the finite temperat
effective potential~typically computed to one loop order!
with a ~local! friction coefficient and a Gaussian white noi
term related by the fluctuation-dissipation theorem@31,32#.
The use of the finite temperature effective potential in
description of the inhomogeneous bubble configuration
seeds the nucleation of the phase of lowest free energy i
important ingredient, in particular in coarse-grained pheno
enological descriptions@3#. Finite temperature effects are in
cluded in the coarse grained free energy which descr
long wavelength physics by integrating out short wavelen
fluctuations which are in thermodynamic equilibriu
@33,34#. These finite temperature corrections modify quan
tatively and sometimes substantially the equilibrium free
ergy functional, for example, the position of the minim
masses, and couplings. These are important parameters
12500
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determine the profile of the bubble configuration, since
asymptotic behavior of the bubble is determined by the
sition of the minima of the equilibrium free energy.

The importance of the growth rate for describing the d
namics of nucleation in the hadronization and the el
troweak phase transitions as well as the practical importa
of nucleation in quasi-one-dimensional organic conduct
justifies a continued effort to understand from amicroscopic
perspective the influence of dissipation, viscosity, and fr
tion upon the growth rate of supercritical nucleating bubbl

Focus and strategy.Our goal in this article is precisely to
study dissipative effects upon the growth rateV from a more
microscopicpoint of view in model quantum field theorie
that describe the main features of nucleation. The simp
model to study nucleation and a first order phase transitio
a f4 field theory with a small explicit symmetry breakin
term that breaks the degeneracy between ground states
thus leads to the existence of a metastable state. Altho
arguably this model could hardly describe the features of
quark-hadron or electroweak phase transitions, our hope
extract robust phenomena that will be generic to the phy
of nucleation and that could enlighten the effect of viscos
on the growth rate.

This study begins by identifying the inhomogeneo
bubble configuration which is a solution of the static equ
tions of motion. We include the finite temperature effects
considering the equation of motion in terms of the fin
temperature effective potential, this is achieved consiste
by the addition of finite temperature counterterms to the
grangian. The quadratic fluctuations around this bubble s
tion feature an unstable mode that describes small pertu
tions from the critical bubble. The instability is
manifestation of the growth~or collapse! of supercritical~or
subcritical! bubbles and the unstable eigenvalue is direc
related to the growth rate of slightly supercritical bubbles.
addition to this unstable mode there are modes of zero
quency corresponding to translations of this configurat
and modes of positive frequency that correspond to sta
fluctuations.

The main strategy is to consider the dynamics of the
ordinate that determines the unstable direction in functio
space, and treating it as a collective coordinate. We t
focus on theinteractionof this coordinate with those repre
senting the stable fluctuations by expanding the original
grangian in terms of these coordinates in function space
recognize the interaction terms between these coordina
The translational mode is anchored and ignored since we
not interested in studying the dynamics of the translatio
degree of freedom but that of the growth of a supercriti
bubble. We assume that the stable degrees of freedom a
thermal equilibrium and that they serve as a ‘‘bath’’ wi
which the unstable coordinate interacts. Integrating out
degrees of freedom associated with the stable fluctuations
obtain an effective description of the dynamics for the u
stable coordinate which includes the ‘‘viscosity and friction
effects associated with the transfer of energy to the sta
modes. This description allows us to obtain the equation
motion for the expectation value of the unstable coordin
wherefrom we can obtain the corrections to the growth r
3-2
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DYNAMICAL VISCOSITY OF NUCLEATING BUBBLES PHYSICAL REVIEW D 60 125003
from the interaction with the stable degrees of freedom. F
thermore, integrating out the stable degrees of freedom in
nonequilibrium functional allows us to extract the effecti
Langevin equation for the unstable coordinate and to ob
consistently the noise terms. We emphasize that this
proach isfundamentally differentfrom the previous studies
described above. First of all, we arenot computing the ratio
of determinants that enter in the rate expression. This rati
determinants only involves the quadratic fluctuations butnot
the interaction between the coordinates associated with
fluctuations. Our approach is different from that of Re
@29,30#, in these references the coupling of the order para
eter associated with the nucleating field was toother inde-
pendent fields. Contrary to this we consider the coupling
the unstable coordinates to the stable fluctuations involv
the samefield. Our approach starts from the microscop
theory and does not rely on a hydrodynamic descripti
however, as it will be seen later, long-wavelength hydro
namic fluctuations associated with surface waves provide
largest contribution to viscosity effects in three spatial
mensions.

In a very specific sense our program obtains the effec
action for the degree of freedom that represents depart
from a critical bubble by integrating out the degrees of fre
dom describing stable fluctuations, but of thesame field. Our
approach must necessarily rely on several different appr
mations:~i! weak coupling to allow a perturbative expansi
of the effective action and the real time equations of moti
~ii ! the thin wall approximation in which the critical radius
much larger than the width of the bubble wall. This appro
mation is necessary to be able to provide quantitative
swers. Finally as it will be justified later the important flu
tuations can be described by theclassical limit of the finite
temperature distribution functions.

We carry out this program to lowest order in the quar
coupling and to leading order in the thin wall approximati
both in 111 and 311 dimensions. The motivation to stud
the lower-dimensional case is provided by its potential ap
cation in experimentally relevant condensed matter syst
@12,13#.

Summary of results.Our main results can be summarize
as a consistent perturbative correction to the growth
from ‘‘dynamical viscosity’’ effects associated with the in
teraction of the radius of the bubble with the stable quant
and thermal fluctuations. In 111 dimensions the growth rat
for bubbles is given by Eq.~3.15! with Rc ,j the radius and
width of the critical bubble, respectively,l the quartic self-
coupling, andF@Rc /j# a slowly varying dimensionless func
tion that depends on the details of the potential and spect
of stable fluctuations, in particular scattering states.

In 311 dimensions we find that in the thin wall limit th
important low energy excitations arehydrodynamic fluctua-
tions associated with surface waves. These are identifie
quasiGoldstone bosons and give the dominant contributio
viscosity effects on the growth rate. These low energy ex
tations are a robust feature ofanymodel and not particular to
the one considered in this article, however, thecoupling of
the unstable radial coordinate to these fluctuations depe
on the model. To lowest order in the coupling the grow
12500
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rate is given by Eq.~4.40!. Furthermore, we obtain the ef
fective Langevin equation for the unstable coordinate t
reveals the correct microscopic correlations of the noise t
showing that the coupling to the hydrodynamic modes de
mine that the noise is correlated on time scalesV21.

The article is organized as follows. Section II introduc
the model, describes the strategy in detail, and sets up
general form of the correction to the growth rate to lowe
order~one loop! and in the classical limit. In Sec. III the cas
of 111 dimensions is analyzed in detail within the mod
considered. In Sec. IV we study the~311!-dimensional case
and discuss the low energy fluctuations associated with
face waves, providing the argument that these are quasiG
stone hydrodynamic fluctuations. We argue that these
energy fluctuations are present independent of the model
will dominate the viscosity corrections to the growth ra
The conclusions are presented in Sec. V, along with a crit
discussion on the validity of our results to describe t
growth rate of supercritical bubbles in coarse-grained
scriptions of a first order quark-hadron phase transition.
appendix presents the effective Langevin equation for sm
departures of the critical radius and analyzes the general
fluctuation-dissipation relation.

II. THE MODEL: GENERALITIES AND STRATEGY

We consider a real scalar fieldf(x) whose dynamics is
determined by the following Lagrangian density:

L5
1

2
~]mf!~]mf!2V~f!, ~2.1!

where V(f) is a double well potential with a metastab
minimum at f2 and a stable minimum atf1 . It proves
convenient to parametrize it in the following form:

V~f!5l~f2f2!2f~f2f* !. ~2.2!

This form of the potential is depicted in Fig. 1 and is ve
similar to the coarse-grained free energy proposed in Ref@3#
identifying the local energy variablee in that reference with
the scalar fieldf, and also similar to the effective potentia
description used in numerical simulations for electrowe
theory @31,32,34#.

The stable minimumf1 is given by

FIG. 1. Form of the potentialV(f).
3-3
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f15
1

8
~2f213f* 2A4f2

2 19f
*
2 24f2f* !, ~2.3!

where the pointf* is parametrized by the massm of small
oscillations around themetastableminimum f2 as

f* [f2~12e!, ~2.4!

where

e[
m2

2lf2
2 and m2[V9~f2! ~2.5!

andl is the quartic coupling. Although this parametrizatio
does not look familiar it will prove advantageous later.
particular, (12e) gives a measure of the free energy diffe
ence between the true and the false vacua and is there
related to the supercooling temperature. Ase→1, the two
minima become degenerate and the conditione'1 defines
the thin-wall limit ~this will become clear later when w
analyze the bubble profile!, when the radius of the nucleatin
bubble is much larger than the width of its surfacej ~or the
correlation length!. This corresponds to the case of sm
supercoolingT,Tc but T/Tc'1 in the description of Ref.
@3#. In the thin wall limit, we find thatf1 has the following
simple form:

f152
f2

2
~e21!1O@~e21!2#. ~2.6!

A. The counterterms

We anticipate that there will be renormalization of t
parameters in the potential, not only arising from ultravio
divergences but more importantly from medium effects, i
finite temperature contributions to the mass, couplings
explicit symmetry breaking terms. In particular in three sp
tial dimensions we expect a correction to the mass and
linear symmetry breaking term both proportional
T2,T, . . . . The origin of these finite temperature corre
tions are the usual tadpole diagrams, the correction to
linear symmetry breaking term is a consequence of the
linear coupling. These finite temperature corrections are
usual ones obtained in an effective potential description
provide a finite renormalization to the potential. Our aim
to describe the dynamical aspects of the thermal fluctuat
that are responsible for thermal activation and the nuclea
of the true phase in the false vacuum phase. These are
solutions of the static field equations butin presence of the
thermal fluctuations, i.e., with the potential renormalized b
the finite temperature effects. That is to say, the potential
must enter in the field equations must be the finite temp
ture effective potential@27,31–34#. The finite temperature
effective potential includes the finite temperature correcti
for static and homogeneous field configurations. Includ
these finite temperature effects in the equations of mo
guarantees that theinhomogeneousbubble configurations
will asymptotically tend to the homogeneous values of
field representing thecorrectextrema of the equilibrium free
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energy. Furthermore, these finite temperature renorma
tions will determine thecorrectscales for the bubble size, it
width and the unstable frequency associated with the gro
of a supercritical bubble.

We account for these finite temperature renormalizati
by replacing the parameters in the potential by the fin
temperature renormalized parameters and adding cou
terms to the Lagrangian. The counterterms are then fo
consistently in a coupling or loop expansion by request
that they cancel the contributions from the tadpole~or simi-
lar! terms completely, i.e., including the finite temperatur
parts. This prescription is at the heart of using the fin
temperature effective potential to study the solutions t
lead to the decay of the metastable state@3,27,31–34#. Thus
the Lagrangian density becomes

L@f#5
1

2
~]mf!~]mf!2V~f,T!1dLct@f#, ~2.7!

where the potentialV(f,T) is of the same form as in Eq
~2.2! but in terms of the parameters that include the fin
temperature ~and ultraviolet! renormalizations, i.e.,
l(T),m(T),e(T), etc. and the counterterm Lagrangian de
sity is of the form

dLct5dlf41dgf31dM2f21Hf, ~2.8!

where space-time translational invariance dictates that
counterterms are constant. These counterterms will be c
sistently chosen in the loop expansion to cancel the con
bution from local tadpoles. We will argue below that th
procedure renormalizes consistently in perturbation the
thestaticproperties of the bubble, in particular the width an
radius of a critical bubble. In particular the free energy de
sity studied in@3,31–34# is precisely of this form with pa-
rameters that depend on temperature.

At this point we may consider adding to the counterter
a wave-function renormalization which would involve co
rections for inhomogeneous configurations. A wave-funct
renormalization will arise at one loop order and beyond
cause of the trilinear coupling. However, computing this c
rection in the usual loop expansion around a homogene
background is not very relevant for the bubble configurati
Since our goal is to obtain thereal timeequations of motion
for particular fluctuations around the bubble configuratio
these renormalizations will arise automatically in the eq
tions of motion obtained to one loop order. Thus the cou
terterms that we include in the Lagrangian density are o
those forstatic renormalization thus accounting for the co
rect scales and asymptotic values of the classical solu
and obtain the equivalent of the wave-function renormali
tion directly from the real time evolution of fluctuation
around the bubble configuration. This procedure will beco
clear when we obtain explicitly the evolution equations
the next sections.

We will focus our attention on the cases of one and th
spatial dimensions. Although the case of one spatial dim
sion is of limited interest in particle physics, it is importa
in condensed matter and statistical physics of quasi-o
3-4
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DYNAMICAL VISCOSITY OF NUCLEATING BUBBLES PHYSICAL REVIEW D 60 125003
dimensional systems@12,13#. Furthermore most aspects o
the treatment are general and the one-dimensional case
vides a somewhat simpler setting to introduce the main s
egy as well as to explore the general features. The th
dimensional case will be studied in detail subsequently.

B. The bubbles

Before proceeding to the specific situations, we now c
sider general features of the bubble solutions and the q
dratic fluctuations around them to focus on the precise s
egy to follow. A critical bubble is a solution of thestatic
field equations, which in terms of the~effective! potential
V(f,T) is given in one spatial dimension by

2
d2fb

dx2
1

]V~f,T!

]f U
fb

50 ~2.9!

with boundary conditions such thatfb→f2 for uxu→`.
Such a solution describes a ‘‘bubblelike’’ configuratio
which approaches the false vacuum at asymptotically la
distances and probes the true vacuum in a localized regio
space of size 2Rc with Rc the critical ‘‘radius.’’ Such a so-
lution will be found in detail in Sec. III. In three spatia
dimensions, the critical bubble is a radially symmetric sta
field configuration solution of the following equation

2
d2fb

dr2
2

2

r

dfb

dr
1

]V~f,T!

]f U
fb

50 ~2.10!

with the boundary conditionfb(r )→f2 as r→`. It corre-
sponds to a field configuration that starts close to the
vacuumf1 and tends to the false vacuumf2 at asymptoti-
cally large radial distance. The solution of Eq.~2.10! will be
studied in detail in the thin wall approximation in Sec. IV

In both cases the change from the true vacuum to the f
one occurs around the radius of the bubbleRc over a dis-
tance j(T);1/m that defines the wall thickness of th
bubble and is related to the correlation length in the me
stable phase. We will study the nonequilibrium dynami
viscosity of nucleating bubbles in the thin wall limit in whic
the radius of the bubble is much larger than the wall thi
ness; i.e.,R@j. These field configurations are parametriz
by two important coordinates:xW0 which describes the posi
tion of the center of the bubble and the radiusR, i.e., a
bubble configuration is of the formf(xW2xW0 ;R) and a criti-
cal bubble corresponds toR5Rc determined by the solution
to the equations of motion~2.9!,~2.10!. The coordinatexW0 is
associated with translational invariance and typically trea
as a collective coordinate@35#, while the radiusR determines
the size of the bubble and will be treated also as a collec
coordinate~see below!. Since we are not concerned here w
the dynamics of the translational degrees of freedom,
rather with that of the radius, we ‘‘clamp’’ the collectiv
coordinatexW0 by fixing the center of the bubble atxW050.
Integration over this collective coordinate results in the ty
cal volume factor@14,15# and is not relevant for our discus
sion.
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In d space dimensions, we can use the radius of
bubbleR as a variational parameter and introduce the to
energy of a bubble configuration with radiusR by

Evar~R!5E ddxF1

2
@¹fb~xW ,R!#21V@fb~xW ,R!#G .

~2.11!

and in the limitR/j(T)@1 ~thin wall! has two main contri-
butions: a volume contribution proportional toRd which is
negative and arises from the region of the bubble that pro
the true vacuum which has lower~free! energy, and a surface
term which is positive and arises from the region of t
bubble corresponding to the wall, includes gradient ter
and is therefore proportional to the area of the surface of
wall Rd21. In one spatial dimension the ‘‘surface’’ of th
bubble corresponds to two points and the gradient ene
saturates to a constant independent of the radius for la
bubble radius.

The general behavior of the total energy of a bubble c
figuration as a function ofs5R/j is depicted in Fig. 3 for
one spatial dimension and in Fig. 4 for three spatial dim
sions ~see Secs. III and IV!. The maximum of the energy
function determines the value of the critical radiusRc as
discussed in detail in the next sections. Clearly a criti
bubble is anunstablestatic solution of the equations of mo
tion. For R,Rc the surface energy term dominates and
bubble shrinks into the false vacuum phase, forR.Rc the
volume energy dominates and the bubble will grow as
gain in the volume energy is greater than the cost in ela
surface energy.

A more clear description is obtained in the case of th
spatial dimensions for a spherically symmetric bubble. Les
be the surface tension~energy per unit area! of the spherical
bubble configuration separating the metastable phase f
the stable one. Then the total energy of the bubble is

Evar~R!52
4p

3
DFR314psR21•••, ~2.12!

whereDF5uV(f1 ,T)2V(f2 ,T)u, and the dots stand fo
corrections that are subleading in the thin wall approxim
tion, see Sec. IV@Eq. ~4.22! for details#. These~small! cor-
rections will be neglected for the arguments presented be
The energy attains its maximumEc at the critical radius

Rc5
2s

DF ~2.13!

and it is given by

Ec[Evar~Rc!5
4ps

3
Rc

25
16ps3

3~DF!2
. ~2.14!

Near the maximum of the energy function, it can be writt
as an expansion in terms of the~small! departures from the
critical radius as
3-5
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Evar~R!5Ec2
1

2
v2~R2Rc!

21•••, ~2.15!

where the frequency

2v2[
d2Evar~R!

dR2 U
Rc

528ps ~2.16!

is independent of the critical radius andDF and as it will be
seen in detail below, it is related to the growth rate of sligh
supercritical bubbles.

C. Fluctuations

The study of the fluctuations around the classical bub
configuration begins by studying the spectrum of the fluct
tion operator

F2
d2

dx2
1V9[fb~x,Rc!] GUn~x!5vn

2Un~x!F in 1D,

~2.17!

$2¹W 21V9@fb~xW ,Rc!#%Un~xW !5vn
2Un~xW ! in 3D,

~2.18!

where the prime represents differentiation with respect to
field f. Taking a spatial derivative of the equation of motio
satisfied by the bubble configuration it is straightforward
find that

U0~x,Rc!}
dfb~x,Rc!

dx
~2.19!

is a solution of the one dimensional eigenvalue probl
~2.17! with v0

250 and that

U0~xW ,Rc!}
xW

uxW u

dfb~r ,Rc!

dr
~2.20!

are eigenfunctions of the three-dimensional fluctuation
erator with zero eigenvalue. These are the zero modes ar
from translational invariance@14,15,35#. In one dimension
the zero mode is an odd function ofx since the bubble solu
tion is even, therefore it has a node. Hence there mus
another solution of the Schro¨dinger-like operator~2.17! that
has no nodes and has a smaller and thereforenegativeeigen-
value. The form of the bubble solution in the thin wall a
proximation is that of a widely separated kink-antikink pa
as it will be shown in detail in the next section we find th
the eigenfunction corresponding to the negative eigenva
must beU21}dfb(x,R)/dRuRc

. This can be understood sim
ply from the fact that the zero mode associated with
bubble solution is theantisymmetriccombination of the zero
modes associated with the individual kinks@35#, hence the
eigenfunction with lower eigenvalue must be thesymmetric
combination and the form of the bubble profile immediate
leads to the conclusion that is the derivative with respec
the radius@see Sec. III, Eq.~3.11!#. In the three-dimensiona
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case, the zero modes~2.20! correspond to the angular mo
mentuml 51 spherical harmonics, therefore there must be
l 50 ~spherically symmetric! solution of the Schro¨dinger-
like eigenvalue problem~2.18! with a negative eigenvalue.
In a later section we study in detail the bubble solution a
the spectrum of fluctuations around it and conclude that
eigenfunction corresponding to the negative eigenvalue
U21}dfb(r ,R)/dRuRc

in the thin wall approximation@see

Sec. IV, Eq.~4.27! for U000].
Therefore the respective spectra of the fluctuation ope

tors are

U21~xW ,Rc!5AN21

df~xW ,R!

dR
U

Rc

,

v21
2 52V2; V2.0;

U0~xW ,Rc!5AN0¹W f~xW ,Rc!, v0
250,

Un.0~xW ,Rc!, vn
2.0, ~2.21!

with N21 ;N0 normalization factors~chosen real!. The clas-
sical bubble solution corresponds to a saddle point in fu
tional space, the modeU21 determines an unstable directio

The field operator can now be expanded in the comp
basis of eigenfunctions of~2.17!,~2.18! in either case and
write in general

f~xW ,t !5fb~xW2xW0 ,Rc!1q21~ t !U21~xW2xW0!

1q0~ t !U0~xW2xW0!1 (
n.0

qn~ t !Un~xW2xW0!,

~2.22!

whereas the bound state eigenfunctions are chosen rea
scattering states are chosen to satisfy the hermiticity co
tion Un(xW )5U2n* (xW ); qn(t)5q2n* (t). The quanta associate
with the coordinatesqn.0 for the stable modes will be re
ferred generically as ‘‘mesons,’’ and the operatorsqn.0 cre-
ate and annihilate meson states.

From Eq.~2.21! it is clear that the modesU0 ;U21 corre-
spond to shifts in the position of the bubble,xW0 and the
radius R, respectively. The collective coordinate treatme
@35# absorbs the zero modeU0 into a definition of a new

quantum mechanical degree of freedomxŴ0(t) and expands
the field operator in terms of the directions perpendicular
this zero mode,

f~xW ,t !5fb@xW2xŴ0~ t !,Rc#1q21~ t !U21@xW2xŴ0~ t !#

1 (
n.0

qn~ t !Un@xW2xŴ0~ t !#. ~2.23!

We are not interested in the dynamics of the translatio
collective coordinate, therefore we will ‘‘clamp’’ the pos
tion of the bubble and focus solely on the dynamics of
unstable coordinateq21(t). Technically this is achieved by
3-6
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inserting a functional delta function forxŴ0(t) in the path
integral, the corresponding Jacobian from the change of fi
variables to the collective coordinate@35# leads to the usua
volume factor@14,15#, hence in what follows we will se

xŴ0(t)50. We note that for small amplitudes of the unstab
mode we can write the expansion~2.23! as

f~xW ,t !'fb@xW ,R~ t !#1 (
n.0

qn~ t !Un~xW !;

R~ t !5Rc1q21~ t !AN21 ~2.24!

that allows us to identifyR(t)2Rc5q21(t)AN21 and the
coordinateq21 is associated with small departures from t
critical radius.

D. The relation betweenV2 and v2

At this stage we recognize that the fluctuation mo
U21(xW )}dfb(xW ,Rc)/dRc is the ~unstable! functional direc-
tion along which the bubble either grows or collapses, the
fore the coordinateq21(t)}@R(t)2Rc# describes the smal
fluctuations around the critical bubble. An immediate qu
tion is, what is the relation between the frequencyv2 in Eqs.
~2.15!,~2.16! and V2, the eigenvalue associated withU21
~2.21!? The answer to this important question is obtained
taking the second derivative of the total energy in Eq.~2.11!
with respect to the radius of the bubbleR, which results in
the following equation:

d2Evar~R!

dR2
5E ddr H F¹W S dfb

dR D G2

1¹W fb .¹W S d2fb

dR2 D
1S d2fb

dR2 D ]V~fb!

]f
1S dfb

dR D 2 ]2V~fb!

]f2 J .

~2.25!

Integrating the first two terms in Eq.~2.25! by parts using
the boundary conditions for the bubble solution and E
~2.9!,~2.10!,~2.17!,~2.18!, which are evaluated at the critica
radiusRc , we obtain the following relation:

d2Evar~R!

dR2 U
R5Rc

52v252
V2

N21
~2.26!

in terms of the normalization factor of the unstable mo
@see Eq.~2.21!# which will be found for the one and three
dimensional cases separately below. We note that the
tion ~2.24! determines that in the absence of interactions w
other degrees of freedom the growth rate of a supercrit
bubble is given by

d

dt F lnUR~ t !

Rc
21UG5V ~2.27!

for small departures from the critical radius.
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Equation~2.26! is very useful since it relates the secon
derivative of the totalclassical variational energyEvar(R)
~the energy of the classical bubble as a function of its rad!
to the eigenfrequency associated with thequantumunstable
mode. Usually it is a difficult task to find the spectrum of th
quantum fluctuation operator, and consequently the
quency of the unstable mode. The above relation can be u
to find the value of the unstable frequency, or the normali
tion factorN21 if the frequencies are known.

E. The strategy

Our goal is to study the effects of quantum and therm
fluctuations upon thereal timeevolution of a bubble whose
radius is slightly larger than critical. This is achieved b
treating the coordinateq21(t)}@R(t)2Rc# as acollective
coordinate, i.e., the radius of the bubble is treated as a fu
quantum mechanical variable interacting with the other
grees of freedom corresponding to the stable fluctuations
described by the coordinatesqn(t). The ‘‘zero mode’’~trans-
lational degree of freedom! is clamped and frozen since w
are only interested in describing the dynamics of the unsta
mode. The interaction of the stable degrees of freedom w
the collective coordinate describing the departure from
critical radius will introduce viscosity effects and slow dow
the growth of a supercritical bubble. This will result in
smaller growth rate and our aim is to precisely compute t
viscosity effect on the growth rate for small departures fro
the critical radius. By including the finite temperaturestatic
counterterms in the Lagrangian and requesting that thes
cancelled consistently in the perturbative expansion, we
isolate the static renormalization to the unstable freque
from thedynamicalviscosity effects associated with the e
ergy transfer to the stable modes.

This program begins by expanding the field in terms
the unstable and stable coordinates~after clamping the trans
lational mode! as

f~x,t !5fb~x,Rc!1q21~ t !U21~x!1(
p

qp~ t !Up~x!,

~2.28!

where the summation indexp runs over all stable, bound
and scattering states other than the translational and uns
modes. Throughout the indexp refers to both scattering an
bound states.

Using the above expansion, Eq.~2.28!, of the field
f(x,t), the Lagrangian can be shown to have the followi
form:

L@q21 ,qp#5L0@q21#1L0@qp#1LI@q21 ,qp#, ~2.29!

where

L0@q21#5
1

2
$q̇21

2 ~ t !1V2q21
2 ~ t !1dVct

2 q21
2 ~ t !1hq21~ t !%,

~2.30!
3-7
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L0@qp#5
1

2 (
p

$q̇p~ t !q̇2p~ t !2vp
2qp~ t !q2p~ t !%,

~2.31!

LI@q21 ,qp#52Alq21~ t !(
p,p8

Bpp8qp~ t !qp8~ t !2q21
2 ~ t !

3HAl(
p

Bpqp~ t !1l (
p,p8

App8qp~ t !qp8~ t !J
2q21

3 ~ t !HAlB211l(
p

Apqp~ t !J
2lA21q21

4 ~ t !1h.o.t1Lct@q21 ,qp#,

~2.32!

where we have used the equations of motion satisfied by
bubble configurations, and Eqs.~2.17! and~2.18!. The terms
dVct

2 q21
2 ;hq21 are the quadratic and linear terms inq21

from the counterterm Lagrangian. The terms denoted
h.o.t. in Eq.~2.32! correspond to higher order interaction
that are not important to the order that we are studying. T
term Lct@q21 ,qp# arise from the nonlinear~cubic and
higher! terms in the coordinates from the counterterm L
grangian, they do not need to be specified since they wil
requested to cancel tadpole and static terms in the equa
of motion for the collective coordinateq21 and do not con-
tribute to lowest order@O(l)#. The matrix elements are
given by

Bpp8[
1

2Al
E

2`

1`

dx8U21~x8!Up~x8!Up8~x8!

3V-@fb~x8,Rc!#, ~2.33!

Bp[
1

2Al
E

2`

1`

dx8U 21
2 ~x8!Up~x8!V-@fb~x8,Rc!#,

~2.34!

B21[
1

6Al
E

2`

1`

dx8U 21
3 ~x8!V-@fb~x8,Rc!#,

~2.35!

App8[6E
2`

1`

dx8U 21
2 ~x8!Up~x8!Up8~x8!, ~2.36!

Ap[4E
2`

1`

dx8U 21
3 ~x8!Up~x8!, ~2.37!

A21[E
2`

1`

dx8U 21
4 ~x8!, ~2.38!

so that thel dependence is explicit in each term of th
effective action.

We thus see that the above Lagrangian describes a q
tum mechanical degree of freedomq21 interacting with a
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bath of infinitely many degrees of freedomqp , as well as
with self-interaction. The self-interaction of the coordina
q21 will be neglected because we are only interested in
viscosity effects arising from interaction with the stable d
grees of freedom. The nonlinear terms inq21 are neglegted
because we will extract the growth rate for small departu
from the critical bubble.

The bath of mesons will introduce viscosity effects
evolution of the coordinate associated with departures fr
the critical radius and will result in a correction to the grow
rate. These effects can be studied in a consistent manne
integrating out the meson degrees of freedom in a consis
perturbative expansion, thus obtaining the nonequilibrium
fective action forq21 . The variational derivative of this ef
fective action leads to the equation of motion that includ
the effects of the meson bath. This nonequilibrium effect
action is obtained up to one loop order in Appendix B. T
effective equation of motion is a Langevin equation with
non-Markovian viscosity kernel and a Gaussian noise te
~to one loop order! whose correlations are related to the v
cosity kernel via the fluctuation-dissipation relation. The d
tails are provided in Appendix B. Alternatively we obtain th
equation of motion for the expectation value of the coor
nateq21 directly by means of linear response.

We have already accounted for thestatic renormalization
of the unstable frequencyV by introducing the finite tem-
perature counterterms and using the finite temperature e
tive potential in the equations of motion. However, we a
ticipate that there will arise further corrections to the grow
rateV from velocity dependentterms in the effective equa
tions of motion. These are trulydynamicalviscosity effects
which cannot be captured by a static calculation. The visc
ity terms that are a function of the time derivative of th
unstable coordinate will be revealed by obtaining the eff
tive nonequilibrium equation of motion for this coordina
by integrating out the stable modes, which act as a bath
the quantum mechanical degree of freedomq21 . We will
restrict our study to small departures from the critical rad
and obtain the linearized equation of motion for the exp
tation value ofq21 . This is consistent with the definition o
the growth rate as the logarithmic derivative of the radius
small departures from the critical value. As is clear from E
~2.30!, in the absence of interactions the Hamiltonian for t
unstable coordinateq21 is that of aninverted harmonic os-
cillator ~of negative frequency squared! and small departures
from the unstable equilibrium valueq2150 will grow expo-
nentially with the growth rateV.

F. The initial value problem

We study the time evolution of the expectation value
the unstable coordinateQ5^q21& by proposing an initial
state described by a density matrix which is a tensor prod
of the density matrix for the unstable coordinate and a d
sity matrix that describes all the stable modes in therm
equilibrium at a given temperature. Therefore

r~0!5r21~0! ^ rs~0!, ~2.39!
3-8
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wherer21 describes a pure state in which the expectat
value of the unstable coordinate isQ0 , andrs(0) is a ther-
mal density matrix for the stable modes. As mentioned ab
the translational mode is clamped. The time evolution of
initially prepared density matrix is given by Liouville’
equation, whose solution is

r~ t !5U~ t !r~0!U21~ t ! ~2.40!

with U(t) being the unitary time evolution operator. As d
scribed in detail in Ref.@36# the time evolution can be cast i
terms of a time dependent Hamiltonian in which the inter
tion is switched on at the initial timet50. Alternatively the
initial value problem can be cast in terms of linear respo
to an external source adiabatically turned on fromt52`
that determines the initial preparation@37#. Both approaches
are equivalent and the reader is referred to Refs.@36,37# for
more details on the initial value problem.

The equation of motion in real time is obtained by usi
the generating functional of nonequilibrium Green’s fun
tions which requires a path integral along a contour in co
plex time and the following effective Lagrangian@38,39#:

Leff5L@q21
1 ,qp

1#2L@q21
2 ,qp

2#, ~2.41!

where the labels6 refer to the forward~1! and backward~-!
branches along the complex time contour@38,39#. The equa-
tion of motion for the expectation valueQ(t)5^q21(t)& is
obtained by performing the shift

q21
6 ~ t !5Q~ t !1q̃6~ t !; ^q̃6~ t !&50. ~2.42!

Imposing the condition̂q̃6(t)&50 to all orders in perturba
tion theory leads to the retarded equation of motion forQ(t).
For a detailed presentation of this method in many ot
situations see Ref.@39#.

The important ingredients in this program are the r
time Green’s functions for the stable coordinates which
assumed to be in thermal equilibrium. These are the follo
ing:

^qp
1~ t !qp8

1
~ t8!&52 idp,2p8Gp

11~ t,t8!

52 idp,2p8@G p
.~ t,t8!Q~ t2t8!

1G p
,~ t,t8!Q~ t82t !#,

^qp
2~ t !qp8

2
~ t8!&52 idp,2p8Gp

22~ t,t8!

52 idp,2p8@G p
.~ t,t8!Q~ t82t !

1G p
,~ t,t8!Q~ t2t8!#,

^qp
1~ t !qp8

2
~ t8!&5 idp,2p8Gp

12~ t,t8!52 idp,2p8G p
,~ t,t8!,
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^qp
2~ t !qp8

1
~ t8!&5 idp,2p8Gp

21~ t,t8!

52 idp,2p8G p
.~ t,t8!52 idp,2p8G p

,~ t8,t !,

~2.43!

where

G p
.~ t,t8!5

i

2vp
@~11np!exp$2 ivp~ t2t8!%

1np exp$ ivp~ t2t8!%#,

G p
,~ t,t8!5

i

2vp
@~11np!exp$ ivp~ t2t8!%

1np exp$2 ivp~ t2t8!%#,

np5
1

exp$bvp%21
. ~2.44!

We will carry our derivation of the equation of motion i
the linear theory where we will neglect nonlinear term
O(Q2) and higher, and furthermore we will neglect the se
interaction of the unstable coordinate~cubic and quartic
terms!. As mentioned before, the linearization of the equ
tion of motion is consistent with the focus on the dissipat
corrections to the growth rate, which is defined for sm
departures from the critical radius. In this case, the none
librium effective actionSeff becomes

Seff5E
2`

1`

dtH L0@ q̃1~ t !#1L0@qp
1~ t !#1q̃1~ t !

3F2Q̈~ t !1~V21dVct
2 !Q~ t !

2Alu~ t !(
p,p8

Bp,p8qp
1~ t !qp8

1
~ t !

22lu~ t !(
p,p8

Ap1p2
qp1

1 ~ t !qp2

1 ~ t !Q~ t !1hG
2Alu~ t !Q~ t !(

p,p8
Bpp8qp

1~ t !qp8
1

~ t !2@~1 !↔~2 !#J ,

~2.45!

where we have written only the terms that are relevant to
lowest order calculationO(l) which is the focus of the
present discussion and included the time dependence o
Hamiltonian to set up the initial value problem@36#.

Imposing the condition̂q̃21
1 (t)&50, up toO(l), we ob-

tain the following equation to one-loop order:
3-9
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i E
2`

`

dt8^q̃1~ t !q̃1~ t8!&F Q̈~ t8!2V2Q~ t8!2DQ~ t8!

2H22il (
p1 ,p2 ,p3 ,p4

Bp1p2
Bp3p4

3E
2`

1`

dt9$^qp1

1 ~ t8!qp3

1 ~ t9!&^qp2

1 ~ t8!qp4

1 ~ t9!&

2^qp1

1 ~ t8!qp3

2 ~ t9!&^qp2

1 ~ t8!qp4

2 ~ t9!&%Q~ t9!G
50

with

D5dVct
2 22l (

p,p8
Ap,p8^qp

1~ t8!qp8
1

~ t8!&,

H5h2Al (
p,p8

Bp,p8^qp
1~ t8!qp8

1
~ t8!&. ~2.46!

Since the correlation̂q̃1(t)q̃1(t8)& does not vanish for al
values oft and t8, this implies that the quantity between th
square brackets must vanish@39#. Furthermore, we now
choose the counterterm in such a way to ensure thatH50.
We thus obtain the equation of motion for the expectat
value of the unstable coordinate fort.0

Q̈~ t !2V2Q~ t !2DQ~ t !2lE
0

t

dt8S~ t2t8!Q~ t8!50;

Q̇~ t50!50; Q~ t50!5Q0, ~2.47!

where the self-energyS(t2t8) is given by

S~ t2t8!5 (
p,p8

uBpp8u
2

vpvp8

$~11np1np8!sin@~vp1vp8!~ t2t8!#

2~np2np8!sin@~vp2vp8!~ t2t8!#%, ~2.48!

and we have used the fact thatBp,p8
* 5B2p,2p8 . The two

different terms in the self-energy, proportional to the su
and difference of frequencies respectively have a simple
important interpretation. The first term proportional to t
sum of frequencies corresponds to the process in which
coordinateq21 ‘‘decays’’ into two mesons with probability
(11np)(11np8) minus the ‘‘recombination’’ process with
probability npnp8 . The second term proportional to the di
ference of frequencies originates in Landau damping
corresponds to the scattering of the unstable coordinate
mesons in the medium, with probability (11np8)np minus
12500
n

ut

he

d
ith

the reverse process with probability (11np)np8 @40#. The
countertermdVct

2 will be chosen to cancel the tadpole co
tribution to D @see Eq.~2.46!# as well as thestatic contribu-
tion from the self-energy, since this contribution is astatic
renormalization of the unstable frequency associated wit
stationary bubble.

G. Viscosity corrections to the growth rate

In order to obtain the influence of thermal and quantu
fluctuations on the growth rate of the bubble, we must so
the equation of motion~2.47!. This is achieved via the
Laplace transform. Introducing the Laplace transforms
Q(t),S(t) as Q̃(s),S̃(s), respectively, withs the Laplace
variable. The Laplace transform of Eq.~2.47! with the speci-
fied initial conditions is given by

Q̃~s!5
sQ0

s22~V21D!2lS̃~s!
, ~2.49!

whereS̃(s) is given by

S̃~s!5 (
p,p8

uBp,p8u
2

vpvp8
H ~11np1np8!

vp1vp8

s21~vp1vp8!
2

2~np2np8!
vp2vp8

s21~vp2vp8!
2J . ~2.50!

We now isolate the static contribution by subtracting

S̃~0!5 lims→0S̃~s! ~2.51!

from the Laplace transform of the self-energy. Using t
identity

lims→0

W

s21W2
5PS 1

WD ~2.52!

we now fix the countertermdVct
2 such thatD1lS̃(0)50.

Introducing

G̃~s!5 (
p,p8

uBp,p8u
2

vpvp8
H 11np1np8

vp1vp8

s2

s21~vp1vp8!
2

2~np2np8!PS 1

vp2vp8
D s2

s21~vp2vp8!
2J
~2.53!

the Laplace transform of the equation of motion become

Q̃~s!5
sQ0

s22V21lG̃~s!
. ~2.54!

In order to avoid cluttering of notation we will not write
explicitly the P in Eq. ~2.53! in what follows, but it must
always be understood that the term 1/(vp2vp8) actually re-
fers to its principal part. This principal part prescriptio
3-10
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arises from the subtraction in the limit of vanishings which
is the equivalent of the frequency in the real time doma
since the Laplace transform requires thats→ iv1e with v
the frequency@36#.

At this stage it becomes clear that the procedure of
sorbing the local~zero frequency limit! contributions to the
self-energy in thestaticrenormalization of the growth rateV
provides the correct description of the dynamics. Viscos
and dissipative effects only arise from the time depende
of the expectation value of the coordinate and thestatic me-
dium renormalization had already been absorbed into
definition of the growth rate as the limit of zero frequenc
Viscosity and dissipation arise from the transfer of energy
the bubble wall to other excitations~mesons! and the growth
slows down because of these processes. An important
tinction arises in this case as compared to the familiar si
tion in field theory in which complex poles determine t
renormalization to the mass from thereal part of the self-
energy on shell and the decay width from theimaginarypart
of the self-energy on shell. In this case, however, because
frequency associated with the unstable mode isimaginary,
the real part of the self-energy will renormalize thegrowth
rate whereas the imaginary part~if any! at the position of the
~purely imaginary pole! will provide oscillatory contribu-
tions to the bubble dynamics. Therefore, we emphasize
viscosityeffects that will diminish the growth rate are dete
mined by thereal part of the self-energyat the position of
the pole. This is a striking difference from the usual case
which damping and viscosity are associated with the ima
nary part of the self-energy on shell.

The real time dynamics of the bubble growth,Q(t) is
given by the inverse Laplace transform

Q~ t !5
1

2p i EC
estQ̃~s!ds, ~2.55!

whereQ̃(s) is given by Eq.~2.54! andC refers to the Bro-
mwich contour running along the imaginary axis to the rig
of all the singularities ofQ̃(s) in the complexs plane. The
analytic structure ofQ̃(s) consists of cuts along the imag
nary axis in thes-plane and poles. The two different pro
cesses of decay into meson pairs~and recombination! and
Landau damping discussed above yield two different
structures.

The first term in Eq.~2.53! gives a two-meson cut and th
contribution from Landau damping determines a cut str
ture that includes the origin in thes plane. The structure o
these cuts depend on the matrix elements of the interac
as well as the full spectrum of excitations and will be inve
tigated in detail for particular cases in the next sections.

The growth rate of the bubble with the quantum fluctu
tion effects included is given by the polesp of Q̃(s), Eq.
~2.54!, which satisfies the following relation:

sp
22V21lG̃~sp!50. ~2.56!

To first order inl, the pole ofQ̃(s) which corresponds to a
growing bubble is given to lowest order@O(l)# by
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sp56~V1dV!, ~2.57!

where the first order quantum and thermal fluctuation corr
tion dV to the bubble growth is given by

dV52l
G̃~V!

2V

52
l

2 (
p,p8

uBp,p8u
2

vpvp8
H ~11np1np8!

~vp1vp8!

3S V

V21~vp1vp8!
2D 2

np2np8

vp2vp8

3S V

V21~vp2vp8!
2D J . ~2.58!

We note that both terms inside bracket in Eq.~2.58! are
positivesincenp,np8 for vp.vp8 , we recall again that the
term 1/(vp2vp8)[P@1/(vp2vp8)# from the discussion
following Eq. ~2.53!. Therefore we conclude that the corre
tion to the growth rate isnegative, i.e., the dissipative effects
of the coupling to mesons results in a smaller growth rate
supercritical bubbles.

Neither the frequencies of oscillations around the stati
ary bubble nor the matrix elements are quantum mechan
in origin. However, the one loop contributionO(l) to the
self-energy is of quantum origin.

If we restore\ in the expression above, this results inl
→l\; T→T/\. Obviously neither the eigenvalues of th
fluctuation operator nor the matrix elements depend on\ but
the one loop contribution to the self-energy includes the\
from the coupling~one loop! as well as from the temperatur
factors.

H. Classical limit

In the next sections we will see that the correction to
growth rate is dominated by low lying excitations and f
high temperatures these will be such thatvp!T. In this case
we can invoke the classical limit which is best understood
restoring\ as mentioned above

nk5
1

e\bvk21
'

T

\vk
@1. ~2.59!

In this form,

nk2nk8'
T

\ S 1

vk
2

1

vk8
D 52

T

\

vk2vk8

vkvk8

~2.60!

and in the high temperature limit we further approximate

11nk1nk8'11
T

\

vk1vk8

vkvk8

'
T

\

vk1vk8

vkvk8

. ~2.61!

These approximations lead to a simplified expression for
lowest order correction to the growth rate
3-11
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dV52
lT

2 (
p,p8

uBp,p8u
2

vp
2vp8

2

3H V

V21~vp1vp8!
2

1
V

V21~vp2vp8!
2J ,

~2.62!

where the productlT is independent of\ and displays
clearly the classical limit.

The classical limit will be justified in each particular ca
in the next sections. The expression~2.62! is the final form
of the one loopO(l) correction to the growth rate arisin
from dynamical viscositysince all of the static contribution
had been absorbed by the counterterms. This is as far a
can pursue in a general manner without addressing the
tails of the spectrum of fluctuations around the bubble so
tion. In the next two sections we study the details of t
model determined by the Lagrangian~2.1! with the potential
~2.2! for the cases of 111 and 311 dimensions.

III. THE „111…-DIMENSIONAL CASE

As mentioned in the Introduction, the~111!-dimensional
case is relevant in statistical and condensed matter phy
Quantum field theory models based on the Lagrangian~2.1!
with potentials with a stable and metastable state are
posed to describe the low energy phenomenology of qu
one-dimensional charge density wave systems@12#, and
therefore their relevance in these physical situations warr
the study of this case.

For V(f) given by Eq.~2.2!, the solution to the static
classical equation of motion~2.9! for one spatial dimension
can be found exactly@13,19#. The critical bubble is found to
be given by@13,19#

fb~x,s0!5f21
m

2A2l
H tanhFx

j
1s0G2tanhFx

j
2s0G J ;

j5
2

m
, ~3.1!

wherej is the width of the bubble wall ands0 is given in
terms of the critical radiusRc by

s0[
Rc

j
[

1

2
cosh21S e11

e21D ~3.2!

with e given by Eq.~2.5!. The above solution corresponds
a kink-antikink pair centered atx50, and separated by
distanceRc , and is displayed in Fig. 2. This is the on
dimensional bubble that starts at the false vacuumf2 almost
reaches the true vacuumf1 and returns tof2 and it is
similar to the polaron solution found in quasi-on
dimensional polymers@13#. The total energy of the bubble
given by Eq.~2.11!, as a function of its dimensionless radiu
s can be calculated from the fieldfb(x,s0) by replacings0
5Rc /j→s5R/j in Eq. ~3.1!.
12500
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The gradient term (dfb /dx)2 contributes to the surface
energy whileV(fb) has two contributions; surface contribu
tion and volume contribution. SubstitutingV(fb) in Eq.
~2.11! and evaluating the integral, one finds that the to
energy of the bubble is given by

Evar~s!5Esur~s!1Evol~s! ~3.3!

with

Esur~s!5
24m3

3l
1

4m3s

~211e4s!l

1
3m3~211e8s28e4ss!~21h!

4~211e4s!2l

1
4e4sm3@12e4s12~11e4s!s#

~211e4s!3l
, ~3.4!

Evol~s!52
hm3

l
s, ~3.5!

whereh is defined as

h[Ae1
1

Ae
22. ~3.6!

The volume contribution grows linearly with the radius
the bubble while the surface contribution saturates at ab
the critical radius of the bubbles0 and attains the following
asymptotic value:

lim
s→`

Esur~s!→ m3~219h!

12l
.

In the thin wall limit (h→0), the surface energy is simpl
twice the kink mass@35#, as the kink-antikink pair becam
widely separated and the exponential interaction betw
kink and antikink becomes negligible.

FIG. 2. fb(x)/uf2u for a critical bubble in 111 dimensions.e
51.001.
3-12
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The total energy of the bubble is depicted in Fig. 3.
attains its maximumEc , at the critical radiuss0 where

Ec5
m3

24l
@4112h13h223s0h~816h1h2!# ~3.7!

with

s05
1

2
cosh21S e11

e21D5
1

4
lnF41h

h G . ~3.8!

In the thin wall limit, the above expressions simplify and w
find

h.
~e21!2

4
1O@~e21!3#

and

Ec5
m3

6l
1O@~e21!2#. ~3.9!

To study the fluctuations around the bubble solution
need the complete set of eigenfunctions$Un% satisfying

F2
d2

dx2
1V9~fb!GUn~x!5vn

2Un~x!, ~3.10!

with

V9~fb!5m22
3m2

2
sech2Fx

j
1s0G2

3m2

2
sech2Fx

j
2s0G .

Although the spectrum of eigenfunctions and eigenvalue
known exactly in the case of one kink or antikink@35#, for
the case of the kink-antikink pair there are not known res
that we are aware of. Solving for the eigenfunctions$Un% in
this case is a difficult task but in the thin wall limit, th
above potential consists of two identical and widely se
rated wells centered atx56Rc . The spectrum of each po
tential well is known in the literature@35#. It consists of a
zero frequency mode localized in the well, an excited bou

FIG. 3. The total energy of the one dimensional bubble a
function of its dimensionless radiuss for e51.2, l50.1, andf2

52.0.
12500
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state with frequency 3m2/4 that is also localized in the wel
and a continuum of scattering states.

We can use approximate methods such as the linear c
bination of atomic orbitals approximation~LCAO! ~available
in elementary textbooks! to provide a reliable estimate fo
low lying bound states of the above potential from the sp
trum of the single potential well. In this method, the grou
state of the potentialV9(fb) is thesymmetriclinear combi-
nation of the ground states of the single well located atx5
6Rc while the first excited state ofV9(fb) is the antisym-
metric linear combination.

In the thin wall limit, these two states are given by

U21~x,s0!5
m

2AEc

dfb

ds0
~x,s0!

with

v21
2 [2V2.224m2e24s0526hm2 ~3.11!

and

U0~x,s0!5
1

AEc

dfb

dx
~x,s0! with v0

250.

~3.12!

These are the unstableU21 and the zeroU0 modes which we
discussed earlier, see Eqs.~2.19! and ~2.21!. Obviously
U0(x) is associated with translations since it is the spa
derivative of the bubble solution and must correspond t
vanishing eigenvalue by translational invariance. Since i
antisymmetric there has to be a nodeless eigenfunction
smaller frequency. The symmetric combination isU21(x)
and since the two combinations will be split off in energy
a tunneling amplitude that is exponentially small in the d
tance between the kink and the antikink, the unstable
quency must be negative and exponentially small in t
separation as is clearly displayed in Eq.~3.11!.

In addition to the unstable and the zero modes, there
two bound states that have energies;(3m2/4)6DE(s0)
with energy difference which is again exponentially small
s0 and correspond to the symmetric and antisymmetric lin
combinations of the bound states of the kink inf4 theory
@35# localized atx56Rc . SinceV9(fb) does not exactly
reachm2 near the center of the bubble, the potential in t
Schrödinger equation could allow for shallow bound stat
near the scattering continuum with binding energies that
exponentially small in the variables0 . These bound states i
present are extremely difficult to obtain.

Finally there is the scattering continuum region of t
spectrum characterized by functionsUk , whose eigenfunc-
tions are asymptotically phase shifted plane waves with
genvaluesvk

25k21m2.
In order to compute the matrix elements that enter in

expression for the correction to the growth rate~2.62! we
need either the exact form of the eigenfunctions or an ex
lent approximation to them. Whereas we are confident of
analysis regarding the low lying bound states, we lack a
understanding of shallow bound and continuum states. S

a

3-13
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an understanding requires a detailed study of the spec
which certainly lies beyond the scope of this article. A
though we do not have a complete understanding of the s
trum of eigenfunctions and therefore we do not have eve
good approximation to the matrix elements, we can, ho
ever, provide some physically reasonable assumpt
complemented with dimensional arguments to provide an
timate for the corrections in this case. We begin by not
that in the one kink case, the potential that enters in
Schrödinger equation for the fluctuation is reflectionless@35#
and the scattering states for the one kink~or antikink! case
have a transmission amplitude which is a pure phase.

Thus we expect that in the thin wall limit when the kin
antikink pair separation is much larger than the width of
isolated kink the wave functions of the scattering states
acquire a phase shift that is at least twice as large as th
the one kink case and will have a rather smooth depende
on the kink-antikink separation. Because the potentials
each kink are reflectionless@35# we assumethat in the thin
wall limit the reflection coefficients of each potential well a
very small and therefore there are no substantial interfere
effects in the region between the kink and the antikink. U
der these assumptions the matrix elementsBp,p8 will be simi-
lar to those calculated in Ref.@41# for a single kink case and
fall off very fast at large momenta justifying the classic
limit @41#. Hence, under these suitable assumptions the
trix elements are smooth functions ofs05Rc /j. The contri-
bution from the two-meson cut, i.e., the first term in t
bracket in Eq.~2.62! is proportional toV because theV in
the denominator can be neglected in comparison with
frequencies for the meson statesvp'O(m). Since in 111
dimensions the couplingl has dimensions of (mass)2 the
correction to the growth rate arising from the two meson
is of the form

dV2mes'2
lT

m3
VF@s0# ~3.13!

with F@s0# a dimensionless slowly varying function ofs0
5Rc /j which is rather difficult to calculate and can only b
obtained from a detailed knowledge of the eigenfunction

The contribution from the Landau damping cut is mo
complicated to extract. The second term in the bracket in
~2.62! has the form of a Lorentzian and sinceV is exponen-
tially small it is a function that is strongly peaked atvp
5vp8 and the sum~integral! over p,p8 is dominated by a
region of widthV nearvp5vp8 . Assuming that the matrix
elements are smooth functions of momentum, in this o
dimensional case the integral over a small regionvp2vp8
'V can be done by taking a narrow Lorentzian and integ
ing over the relative momentum within this region@42#, lead-
ing to a contribution of the form2(lT/m2)C@s0#, where
C@s0# is a smooth function of its argument that can only
calculated from a detailed knowledge of the scattering w
functions. Hence

dVLD'2S lT

m2D C@s0# ~3.14!
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and the total shift in the frequency is given bydV
5dV2mes1dVLD .

Thus we conclude that although we do not have a co
plete knowledge of the eigenfunctions and therefore can
provide a complete calculation of the correction to t
growth rate, suitable assumptions based on the propertie
the spectrum of the one kink case combined with dim
sional arguments suggest that to lowest order in the coup
and in the thin wall approximation the growth rate of
slightly supercritical bubble is given by

V'
4A6

j
e2 2Rc /jF12

lTj3

8
FFRc

j G G2 lT2j2

4
CFRc

j G1•••

~3.15!

with F@Rc /j#,C@Rc /j# slowly varying dimensionless func
tions of their argument. Obviously a full calculation o
F@Rc /j#,C@Rc /j# requires a detailed understanding of t
spectrum, in particular the scattering states. However i
clear from Eq.~3.15! that the validity of a perturbative ex
pansion places a severe constrain on the coupling cons
and the value of the temperature, in particular the sec
contribution in Eq. ~3.15! arising from Landau damping
gives the leading correction in the thin wall approximati
and signals a potential breakdown of perturbation theory
this limit. A more detailed understanding of this possibili
requires a better knowledge of the scattering matrix e
ments, this is an extremely difficult problem that depends
the details of the potential and lies outside the scope of
article.

IV. THE „311…-DIMENSIONAL CASE

A. General aspects

We now study the~311!-dimensional case which is mor
relevant from the point of view of particle physics, howeve
before focusing on a particular form of the potential a
bubble profile, we can study fundamental model independ
properties of the~311!-dimensional case that will determin
very robust predictions for the corrections to the bub
growth.

The static bubble configurationfb(r ,Rc) is radially sym-
metric and satisfies the static equation~2.10!. To study quan-
tum fluctuations around the critical bubble configuration,
need to find the spectrum of the fluctuation operatorM
which in 3 spatial dimensions is given by

M52¹21
]2V~f!

]f2 U
fb(r ,Rc)

. ~4.1!

Since the critical bubble solution is radially symmetric, w
write the eigenfunctionsUnlm(r ,u,w) of the differential op-
eratorM as a product of spherical harmonicsYlm(u,w) and
radial functionscnl(r ) that satisfy

H 2
d2

dr2
2

2

r

d

dr
1

l ~ l 11!

r 2
1

]2V~fb!

]f2 J cnl~r !5vn
2cnl~r !.

~4.2!
3-14
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Because of the translational invariance of the Lagrang
~2.1!, there is a three-fold degenerate zero mode given by
eigenfunction }¹fb(xW ,Rc)}Y1;61,0dfb /dr which corre-
spond to translations of the bubble in three dimensions w
no energy cost. These are the Goldstone modes of the s
taneously broken translational invariance. This can be ea
seen by taking the derivative of Eq.~2.10! with respect tor
which results in the following equation:

H 2
d2

dr2
2

2

r

d

dr
1

2

r 2
1

]2V~fb!

]f2 J dfb

dr
50. ~4.3!

In addition to the Goldstone mode, there are other lo
lying excitations corresponding to different values oflÞ1.
The eigenfunctions of these excitations and their eigenva
can be obtained by writing thel 51 term in the above equa
tion as

2

r 2
5

l ~ l 11!

r 2
2

~ l 21!~ l 12!

r 2
~4.4!

and we rewrite Eq.~4.3! in the following form:

H 2
d2

dr2
2

2

r

d

dr
1

l ~ l 11!

r 2
1

]2V~fb!

]f2 J dfb

dr

5
~ l 21!~ l 12!

Rc
2

dfb

dr
1dV~r !

dfb

dr
, ~4.5!

where

dV~r !5~ l 21!~ l 12!F 1

r 2
2

1

Rc
2G . ~4.6!

Since the functiondfb /dr is strongly localized atr 5Rc in
the thin wall limit, the second term on the right hand side
a small localized perturbation. Therefore the unperturbe
lowest lying eigenvalues are given by

v0l
2 5

~ l 21!~ l 12!

Rc
2

. ~4.7!

In the thin wall limit, j/Rc!1 we find that the lowes
order correction~in dV) to these eigenvalues is of orde
O(j2/Rc

2). For details see Refs.@14,43# and Appendix A.
This analysis reveals that there is a band of low lying mo
with eigenfunctions

U0lm~r ,u,w!5AN0lYlm~u,w!
dfb~r ,Rc!

dr
~4.8!

with N0l the normalization constants, corresponding to
(2l 11)-fold degenerate eigenvalues given by Eq.~4.7!. Us-
ing Eqs. ~2.16!, ~2.26!, ~2.21!, and ~4.7! with l 50 ~corre-
sponding to the unstable mode! we find the normalization to
be given by
12500
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N0l5
1

Rc
2s

~4.9!

in terms of the critical radius and the surface tension. W
summarize several noteworthy features of these low-ly
solutions:

~1! These excitations become Goldstone modes in
limit as Rc→`, i.e., in the limit in which the radius of cur
vature of the bubble goes to infinity. This statement will
understood in detail below in connection with the case of
interfaces in 311 dimensions.

~2! The eigenfunction with the lowest eigenvalue, corr
sponds tol 50, i.e., a spherically symmetric solution with
negative eigenvalue given by@14,3,43#

v00
2 [2V252

2

Rc
2

. ~4.10!

This is the unstable mode which corresponds to a spheric
symmetric expansion or contraction of the bubble and the
fore corresponds to the unstable functional direction. T
coordinate associated with this mode is the displacem
from the critical radius.

~3! The three Goldstone modesU0,1,0;U0,1,61 are the
translation modes.

~4! The higher energy modes withl>2 are excitations on
the surface of the bubble, or surface waves with energ
given by

v0l
2 5

~ l 21!~ l 12!

Rc
2

5
V2

2
~ l 21!~ l 12!; l>2.

~4.11!

These low lying modes will play a dominant role and w
will refer to them collectively asU0lm with eigenvalues given
by Eq. ~4.7! and whose normalized eigenfunctions Eq.~4.8!
are simple functions of the bubble configuration which f
the potential~2.2! in the thin wall approximation are given
by Eq. ~4.27! below.

That the modes withl>2 can be identified as wiggles o
the bubble surface, or surface waves, can be seen from
following expansion@43,44# where as discussed before th
translational modes is not included because it is ‘‘clampe

f~r ,t !5fb~r 2Rc!1q21~ t !U000~r ,u,w!

1 (
l>2;m

alm~ t !Ylm~u,w!
dfb

dr U
Rc

1•••

.fb„r 2R~u,w,t !…1q21~ t !U000~r ,u,w!

1••• , ~4.12!

where

R~u,w,t !5Rc2 (
l>2;m

alm~ t !Ylm~u,w!.
3-15
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This is an important identification that we emphasize: t
band of low-lying modes describes fluctuations of the s
face of the bubble. We will argue below that these exc
tions dominate the infrared behavior of the viscosity corr
tion and will provide the largest contribution to the viscos
coefficient.

The low lying spectrum described above is fairly gene
and only depends on the existence of a thin wall bubb
Depending on the form of potentialV(f), there might be
other bound states.

An analysis similar to that leading to the band of low
lying excitations reveals that for the potential~2.2! there is
another band of rotational bound state excitations that s
nearv10

2 .3m2/4. In the thin wall limit the radial wave func
tion for the lowest state in this band is given by the bou
state of energy 3m2/4 of the f4 theory in 111 dimensions
@35# which is also localized at the wall. The eigenfunctio
and eigenvalues for this rotational band of excitations
given by ~see Appendix A!

U1lm~r ,u,w!5AN1lYlm~u,w!c1~r !;

v1l
2 '

3m2

4
1

l ~ l 11!

Rc
2

1OS j

Rc
D , ~4.13!

wherec1(r ) is given by the bound state of the theory wi
potential and~2.2! in one spatial dimension@35#, the eigen-
functions in this band are given in Eq.~4.28! below.

Finally there is a continuum of scattering eigenstates w
eigenvaluesvk

25k21m2. As will be discussed later, th
contribution to the growth rate from the rotational ba
~4.13! and of the scattering states is subleading in the t
wall limit. The maximum value of angular momentum ava
able for the low-lying part of the spectrum~4.7! is limited by
the edge of the continuum spectrum or the presence of hi
bound states, hencel max

2 /Rc
2<m2 or l max

2 <(mRc)
25(Rc /j)2.

Therefore in the thin wall limit the maximum value of th
angular momentuml max@1.

B. Planar interfaces, surface waves, and„quasi… Goldstone
bosons

The low lying spectrum of eigenfunctions given by E
~4.8! with eigenvalues~4.7! has a simple physical origin
which can be understood by noticing that in the limitRc
→` the discrete spectrum becomes a continuum. In the l
when the radius of the critical bubble is very largeRc→`,
the interface between the two phasesf1 and f2 becomes
planar and the two phases become degenerate.

Let us consider a static planar interface configuration c
responding to a domain wall along thez axis in three spatia
dimensions. Such a configuration satisfies the follow
equation@35,43#:

2
d2fw~z!

dz2
1

]V~fw!

]f
50, ~4.14!
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wherefw(z) satisfies the boundary conditionfw(z)→f6 as
z→7` and z is the coordinate perpendicular to the plan
interface.

The quantum fluctuations around the classical static w
solutionfw(z) are given by the spectrum of the differenti
operator

M52¹21
]2V@fw~z!#

]f2
. ~4.15!

Since the domain wall only depends on the coordinatez,
the differential operator for the fluctuations is separable
terms of eigenfunctionscqW'

(z,xW')5eiqW'•xW'cn(z), wherexW'

denotes the transverse coordinates toz, namelyx andy, and
qW' the transverse momentum. The functionscn(z) are solu-
tion of the following eigenvalue problem:

F2
d2

dz2
1qW'

2 1
]2V„fw~z!…

]f2 Gcn~z!5vn
2~qW'!cn~z!.

~4.16!

Taking the derivative of Eq.~4.14! with respect toz, i.e.,

F2
d2

dz2
1

]2V~fw!

]f2 G dfw

dz
50 ~4.17!

and comparing to Eq.~4.15! we see thatdfw /dz is the zero
mode which corresponds to the translational invariance@35#.
Therefore the eigenfunctions

cqW'
5exp~ iqW'•xW'!

dfw

dz
~4.18!

have eigenvaluesqW'
2 . These are Goldstone modes associa

with translational invariance and represent excitations of
surface of the planar interfacefw(z) since

f~rW !5fw~z2z0!1(
q'

aq'
exp~ iq' .x'!

dfw

dz

.fw@z2z'~x'!#,

wherez0 is the position of the planar interface and

z'~x'!5z02(
q'

aq'
exp~ iq' .x'!.

This is clearly similar to the case of the spherical bub
Eq. ~4.12! and describes the same physics, i.e., fluctuati
of the surface. In the case of a planar interface these sur
waves are also called capillary waves, and describe thehy-
drodynamicmodes of long-wavelength fluctuations of inte
faces in systems with two degenerate phases separated
interface@44#. In the case of degenerate phases, such as
example, a liquid-gas or an Ising system, these surface w
are Goldstone modes associated with the breakdown
translational invariance by the presence of the interface.
3-16
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For a spherical bubble in the thin wall limit these surfa
waves acquire a gap given by the inverse radius~propor-
tional to the Gaussian curvature of the surface!. Therefore in
analogy with the case of interfaces for degenerate separ
phases, we identify these surface fluctuations as quasiG
stone modes. Since, as argued before the maximum
quency of the surface waves is,m they areclassicalin the
high temperature limitT@m. Hence the surface waves a
identified as classical hydrodynamic fluctuations of t
bubble shape and quasiGoldstone modes in the thin
limit.

We want to emphasize that these low energy excitati
are a robust feature of the thin wall approximation and
model independent. Having studied in detail thegeneralas-
pects of fluctuations around a thin wall bubble, we now foc
on the specific details of the theory with a potential given
Eq. ~2.2! so as to be able to compute the matrix elements
provide a quantitative analysis of the viscosity effects.

C. f4 theory: specifics

The critical bubble solution that satisfies Eq.~2.10! with
the potential~2.2! is not in general an elementary functio
but in the thin wall limit the critical radius of the bubbl
mRc;Rc /j@1 and the functiondfb /dr is localized near
Rc which makes the ‘‘friction’’ term, r 21dfb /dr
}1/(mRc);j/Rc!1. In this limit, the critical bubble solu-
tion is found to be

fb~r ,Rc!5f21
m

2A2l
H 12tanhF r 2Rc

j G J ; j5
2

m
.

~4.19!

It corresponds to a field configuration that starts arou
r 50 at the true vacuumf1 , given by Eq.~2.6!, and goes to
the false vacuumf2 as r→` with a surface widthj
5m/2 and a critical radiusRc . Having specified the critica
bubble solutionfb , we now go back and determine expli
itly the general expressions which we discussed in the
vious sections.

The total energy of the bubble as a function of its rad
R, given by Eq. ~2.11!, can be calculated from the fiel

FIG. 4. The total energy of the three dimensional bubble a
function of its dimensionless radiuss for e51.2, l50.1, andf2

52.0.
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fb(r ,Rc) by replacingRc in Eq. ~4.19! by R. The gradient
term (¹fb)2 contributes to the surface energy whileV(fb)
has two contributions: a surface contributionVs(fb) and
volume contributionVv(fb) given by

Vs~fb!5
1

2
@¹fb~r !#21

hm4

32l

3H sech2F r 2R

j G S 32tanhF r 2R

j G D J ,

~4.20!

Vv~fb!52
hm4

8l S 12tanhF r 2R

j G D , ~4.21!

whereh is defined by Eq.~3.6!. Substituting the above ex
pressions in Eq.~2.11! and evaluating the integral, we fin
that the total energy of the bubble is given by

Evar~R!5
4p

3
V~f1!R31

4pR2m3

12l F11
9h

2
2

3h

2

j

R

1S p226

12
1

3p2h

8 D j2

R2G , ~4.22!

where in the thin wall limit

V~f1!.2
hm4

4l
1O@~e21!3#.

The total energy of the bubble is depicted in Fig. 4.
attains its maximum at

Rc5
1

12jh
@219h1A4136h145h2#. ~4.23!

Using the fact thath is small in the thin wall limit, we find
that the critical radiusRc is given by

Rc5
1

3hj
$11O@~e21!2#%→ j

Rc
.3h ~4.24!

and the total critical energy is given by

Ec5
4pm

81lh2
$11O@~e21!2#% ~4.25!

which is equivalent to Eqs.~2.13! and~2.14! with the surface
tension given by

s5
m3

12l
. ~4.26!

The low-lying fluctuation modesU0lm(u,w,r ) Eq. ~4.8!
are given by

U0lm~r ,u,w!5
A6m

4Rc
sech2F r 2Rc

j GYlm~u,w!

a

3-17
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with

v0l
2 5

~ l 21!~ l 12!

Rc
2 F11OS j2

Rc
2D G ~4.27!

and the next rotational band of bound states is given by~for
details see Appendix A!

U1lm~r ,u,w!.AN1lsechF r 2Rc

j G
3tanhF r 2Rc

j GYlm~u,w!

with

v1l
2 5

3m2

4
1

l ~ l 11!

Rc
2

1OS j

Rc
D . ~4.28!

D. Corrections to the bubble growth rate

From Eq.~2.62!, the corrections from quantum and the
mal fluctuations to the bubble growth in the present case
the following form in the classical limit:

dV52
lT

2 (
qlm,q8 l 8m8

uBqlm,q8 l 8m8u
2

vql
2 vq8 l 8

2

3H V

V21~vql1vq8 l 8!
2

1
V

V21~vql2vq8 l 8!
2J ,

~4.29!

where the indexq runs over bound and scattering states a

Bqlm,q8 l 8m8[
1

2Al
E d3rV-~fb!U21~r !Uqlm~r !Uq8 l 8m8~r !

~4.30!

with

V-~fb!526mA2ltanhF r 2Rc

j G . ~4.31!

SinceV- is spherically symmetric, the angular integral lea
to

Bqlm,q8,l 8,m85Bq,q8,ld l ,l 8dm,m8 ~4.32!

with

Bq,q8,l[
~3m!3/2

4ApRc

ANqlANq8 lE r 2dr

3tanhF r 2Rc

j Gsech2F r 2Rc

j Gcql~r !cq8 l~r !.

~4.33!
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We now note that the bound state energies only depen
l, and that the energy of the scattering states is indepen
of l. Therefore there isno Landau damping contribution
from the bound states as consequence of the principal
prescription which subtracts the contribution fromvp5vp8
in the Landau damping term as discussed in detail be
Eqs. ~2.53!,~2.58!. Therefore the correction to the growt
rate can be written asdV5dVb1dVs with the correction
from the bound states given by

dVb52
lT

2 (
n,n850,1

(
l

~2l 11!uBn,n8,l u2

vnl
2 vn8 l

2

3
V

V21~vnl1vn8 l !
2

~4.34!

and that from the scattering states given by

dVs52
lT

2 (
k,k8Þ0,1

(
l

~2l 11!uBk,k8,l u2

vk
2vk8

2

3H V

V21~vk1vk8!
2

1
V

V21~vk2vk8!
2J .

~4.35!

The bound state correction has three contributions;
quasiGoldstone modes contribution corresponding to sur
waves withv0l

2 5V2( l 21)(l 11)/2; l>2, the contribution
from the higher energy rotational band of bound states n
v2>3m2/4, and the mixed contribution from the quasiGol
stone and the higher energy bound states modes. The
nominators indVb are of orderV6 for the quasiGoldstone
modes contribution as compared tom6 for the mixed and the
higher energy bound states contributions. Since in the
wall approximationm/V}Rc /j@1, the largest contribution
arises from the quasiGoldstone surface modes with the l
est energy denominators. It can be easily seen that the m
elements cannot compensate for the difference in power
Rc and that in fact for the higher energy bound states th
matrix elements aresmallerthan those for the surface mode
because the wave functionsU1lm actually vanish at the posi
tion of the bubble wall@see Eq.~4.28!#.

The contribution from the scattering states is also see
be much smaller than that from the surface waves. The
quencies for the continuum statesvk>m@V and the two
meson cut give a contribution of orderV ~since in the de-
nominators theV can be neglected as compared tom). For
the Landau damping cut, the argument is similar to that
the case of one space dimension.

For V!m this contribution has a Lorentzian shape
width 'V, and the integral over the momenta can be p
formed in the narrow width approximation. The subtracti
of the static contribution guarantees that the integral is do
nated by the Lorentzian@42# and the regionvk'vk8 can be
integrated by changing to relative variables and now in th
spatial dimensions the phase space in the regionvk2vk8
'V give extra powers ofV as compared to the one
3-18
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dimensional case. Furthermore, the matrix elements
smooth functions of the radius of the bubble as can be
derstood simply by a scattering argument from a shar
peaked potential in three spatial dimensions. These ma
elements do not introduce any singularity in the limitRc /j
@1, hence the contribution of the scattering states is at l
proportional toV and is therefore subleading in the thin wa
limit.

This analysis leads to the conclusion that the largest c
tribution to the correction to the growth rate is given by t
quasiGoldstone modes, i.e., the surface waves, since the
are the lowest lying excitations and hence provide the sm
est energy denominators.

The matrix elementB0,0,l for the surface waves can b
calculated easily and we find

B0,0,l5A3m

p

2

5Rc
2

5A3m

p

V2

5
~4.36!

leading to the following correction:

dVsw52
6la

25p

mT

V
, ~4.37!

where

a[ (
l 50

Rc /j
2l 15

~ l 11!2~ l 14!2@112~ l 11!~ l 14!#
.0.039.

~4.38!

The above series converges rapidly and only the first
terms contribute to the sum, we have evaluated the sum
merically with Rc /j510.

Hence we summarize one of the main results of this
ticle: the lowest order correction to the bubble growth
three dimensional bubbles is dominated by viscosity effe
arising from the excitation of long-wavelength surface wav
and is given by

dV520.003lVTjS Rc

j D 2

. ~4.39!

Therefore to lowest order inl ~one-loop! and to leading
order in the thin wall approximation we find that the grow
rate of slightly supercritical bubbles is given by

V5
A2

Rc
F120.003lTjS Rc

j D 2G ~4.40!

with j andRc are the width and radius of the critical bubbl
This is one of the important results of our study. The valid
of perturbation theory places a very stringent constraint
the quartic coupling constant in the thin wall limitRc /j@1
and in the classical limitT/m;Tj@1. The validity of the
classical limit in this case is warranted: we are studying
dynamics of nucleation via thermal activation for tempe
tures below the critical temperatureT,Tc'm/Al but for
temperatures much larger than the energy of the low ly
excitations, the relevant regime for thermal activation
12500
re
n-
ly
ix

st

n-

ll-

w
u-

r-
r
ts
s

n

e
-

g
s

m/Al.T@m in the weak coupling limit. Furthermore th
low-lying excitations with frequencies!m are obviously
classical.

V. CONCLUSIONS AND DISCUSSION

The focus of this article is to provide a microscopic ca
culation of the growth rate of slightly supercritical nucleatio
bubbles. The model under consideration is af4 scalar theory
with an explicitly symmetry breaking term that produces
metastable and a stable ground state, we studied the ca
nucleation in 111 dimensions as well as 311 dimensions.
The former is relevant in the case of quasi-one-dimensio
charge density wave systems and organic conductors.
begin our analysis by obtaining the critical bubble soluti
by including finite temperature effects in the potential th
enters in the classical equation of motion, counterterms
added to the Lagrangian to compensate for the finite te
perature corrections consistently in a perturbative expans

Our approach to obtaining the growth rate is very diffe
ent from previous treatments in that we begin by expand
the quantum field around the critical bubble in terms of t
quadratic fluctuations around the critical bubble configu
tion. These fluctuations describe an unstable direction a
ciated with small departures from the critical radius, trans
tional zero modes, and stable fluctuations. The translatio
modes are anchored by fixing the center of the bubbles
we treat explicitly the interaction between the coordinate
sociated with the growth~or collapse! of the bubble with
those associated with the stable fluctuations. We obtain
growth rate by obtaining the effective linearized equation
motion for the unstable coordinate by integrating out t
coordinates associated with the stable fluctuations. Two
ferent approximations are involved;~i! a weak coupling ex-
pansion in terms ofl the quartic self-coupling and~ii ! the
thin wall approximation in terms ofj/Rc with j the width of
the bubble wall andRc the critical radius. The first approxi
mation allows a consistent perturbative expansion of the s
energy of the unstable coordinate, the second allows a q
titative calculation of the relevant matrix element
furthermore our analysis reveals that the important fluct
tions areclassical for temperaturesTc.T@m, with Tc the
critical temperature andm the mass of quanta in the meta
stable phase.

In the one-dimensional case we are able to provide
estimate for the growth rate given by Eq.~3.15! where the
functions F@Rc /j#,C@Rc /j# depend in a detailed manne
upon the scattering states solutions of the eigenvalue p
lem for the quadratic fluctuations, and clearly will depend
the details of the potential. This estimate points out the
tential breakdown of perturbation theory in the thin wa
limit.

In the case of three dimensions we are able to ext
some robust features that transcend the form of the pote
and are solely a consequence of the thin wall limit. In p
ticular we identify a rotational band of low lying excitation
which describesurface waves, i.e., ripples on the surface o
the bubble. We establish the connection of these surf
waves to the capillary waves of flat interfaces in the case
3-19
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degenerate but phase separated thermodynamic states~such
as the Ising or liquid-gas at coexistence!, the surface waves
are then identified asclassical long-wavelength hydrody
namic fluctuations. The unstable coordinate couples to the
hydrodynamic fluctuations and as a result the friction te
arising from the self-energy is dominated by the coupling
these hydrodynamic modes. Clearly thecouplingof the un-
stable coordinate to these hydrodynamic modes depend
the model, and in the case under consideration we find in
thin wall limit and to lowest order in perturbation theory th
following expression for the growth rate:

V5
A2

Rc
F120.003lTjS Rc

j D 2G . ~5.1!

We also obtain the effectivenon-MarkovianLangevin
equation for the coordinate describing small departures f
the critical radius and establish the generalized fluctua
dissipation relation between the viscosity and the noise
nel. The noise is correlated on time scales comparabl
V21 precisely as a consequence of the coupling to the
drodynamic modes and cannot be treated simply with w
~delta function! correlations.

Discussion.Although we have studied a specific micr
scopic model, in the case of 311 dimensions we have bee
able to identify some robust features that transcend the
ticular model. These are the existence and dominance of
drodynamic fluctuations associated with surface waves in
thin wall limit. The coupling of the coordinate associat
with small departures from the critical radius to these l
energy fluctuations induces friction or viscosity correctio
to the growth rate of slightly supercritical bubbles and in t
weak coupling and thin wall limit these fluctuations give t
largest contribution to the friction corrections.

One of our original motivations is to make contact wi
previous studies of nucleation as applied to the quark-had
phase transition. In particular Csernai and Kapusta@3# have
parametrized the coarse grained free energy that describ
quark-hadron first order phase transition in terms of a lo
energy variable that can be identified with our scalar fieldf.
The form of the potential taken by these authors coinci
with our potentialV(f) ~2.2!, with coefficients that depend
on temperature, just as we have argued in this article. T
form of the critical bubble solution and the variational e
ergy as a function of the radius of a bubble are very sim
to those studied in this article. These authors have es
lished that for about 1% supercooling the critical radius
such a model is aboutRc'12 fm, the width of the wall is
about j'0.7 fm, and the thin wall approximation must b
reliable in this regime.

We can obtain the quartic self-couplingl in Eq. ~2.2!
from the parameters used in Ref.@3# by relating the width of
the bubblej52/m and the surface tensions to l via Eq.
~4.26!. In Ref. @3# the value of the surface tension for th
particular quark-hadron model iss550 MeV/fm2 for T
'200 MeV, yielding a valuel'6 which leads to a very
large correction to the growth rate. Certainly the large va
of the coupling invalidates the perturbative scheme and
cannot draw a definite conclusion as to the relevance of
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lowest order estimate for the quark-hadron transition bey
the statement that the viscosity induced by the hydrodyna
fluctuationscould result in a very large~negative! correction
to the growth rate and therefore a rather small nuclea
rate.

For larger supercooling the critical radius becom
smaller and the thin wall approximation breaks down, but
this case nucleation and spinodal decomposition will be
distinguishable and homogenous nucleation theory may
be the proper description.

However, despite the limitations of the perturbative e
pansion and the thin wall approximation, we have provide
consistent approach to obtain friction or viscosity correctio
to the growth rate from amicroscopicperspective without
invoking a phenomenological description. The observat
that in the thin wall limit the most important corrections ari
from the coupling toclassical hydrodynamic fluctuations
could perhaps pave the way to a systematic hydrodyna
treatment that would circumvent the weak coupling exp
sion and allow us to extract nonperturbative physics.
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APPENDIX A: CORRECTIONS
TO THE QUASIGOLDSTONE MODES

In this appendix we calculate the corrections to the eig
values of the quasiGoldstone modes that obey the Eq.~4.5!
using first order perturbation theory. First we write

~ l 21!~ l 12!

r 2
5

~ l 21!~ l 12!

Rc
2

1dV ~A1!

with

dV5~ l 21!~ l 12!S 1

r 2
2

1

Rc
2D .

The first order energy correctionEl
(1) is given by

El
(1)52^U0lmudVuU0lm&

52
~ l 21!~ l 12!

Rc
2 E

0

`

r 2drN0l S dfb

dr D 2S Rc
2

r 2
21D ,

~A2!

where we have integrated out the angular degrees of f
dom.

For thef4 potential given by Eq.~2.2!, the normalized
wave functions are given by Eq.~4.27! and when it is sub-
stituted in Eq.~A2! one finds that
3-20
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El
(1)5

~ l 21!~ l 12!

Rc
2

~p226!

12

j2

Rc
2

; j5
2

m
. ~A3!

Thus to first order in perturbation theory, the eigenvalues
given by

v0l
2 5

~ l 21!~ l 12!

Rc
2 F11OS j2

Rc
2D G .

A similar treatment can be used for the next rotatio
band based on the bound state of thef4 theory in one spatia
dimension. For this we treat the term

dV(1)52
2

r

d

dr
1 l ~ l 11!F 1

Rc
2

2
1

r 2G ~A4!

as a perturbation. The unperturbed wave function is the p
tive energy bound state of the one-dimensionalf4 theory
@35# and the first order correction is obtained as before an
l ( l 11)/Rc

21O(j/Rc).

APPENDIX B: LANGEVIN EQUATION AND
FLUCTUATION DISSIPATION RELATION

The semiclassical Langevin equation is obtained by p
forming the path integrals over the bath degrees of freed
i.e., the stable modes, thus obtaining a nonequilibrium ef
tive functional for the unstable mode. This is achieved c
sistently in perturbation theory@39,41#, and to lowest order
we find

Z@ j 15 j 250#

5E Dq21
1 Dq21

2 ei *2`
` dt8(L0[q21

1 ] 2L0[q21
2 ])F@q21

1 ,q21
2 #,

~B1!

where the LagrangiansL0@q21
6 # are given by Eq.~2.30! and

F@q21
1 ,q21

2 # is the influence functional@45,46# which to one
loop order and neglecting the tadpole contributions is giv
by

F@q21
1 ,q21

2 #

5expH 2 i 2l (
p,p8

uBpp8u
2E dtdt8

3@q21
1 ~ t !Gp

11~ t,t8!Gp8
11

~ t,t8!q21
1 ~ t8!

1q21
2 ~ t !Gp

22~ t,t8!Gp8
22

~ t,t8!q21
2 ~ t8!

2q21
1 ~ t !Gp

12~ t,t8!Gp8
12

~ t,t8!q21
2 ~ t8!

2q21
2 ~ t !Gp

21~ t,t8!Gp8
21

~ t,t8!q21
1 ~ t8!#J , ~B2!

where the Green’s functions are given by Eq.~2.43!.
Introducing the Wigner coordinates or center of mass

relative coordinates,x(t) and r (t), respectively, given by
12500
re

l

i-

is

r-
,

c-
-

n

d

x~ t !5
1

2
@q21

1 ~ t !1q21
2 ~ t !#, r ~ t !5q21

1 ~ t !2q21
2 ~ t !,

the generating functional becomes@46–50#

Z@0#5E DxDreiS[x,r ] ~B3!

with the nonequilibrium effective action given by

S@x,r #5E dtr~ t !F2 ẍ~ t !1V2x~ t !1lE dt8

3S S ret~ t2t8!x~ t8!1
i

2
K~ t2t8!r ~ t8! D G ,

~B4!

where for clarity we have neglected the counterterms as w
as the tadpoles arising in the computation of the influe
functional. The kernelsS ret(t2t8) and K(t2t8) are given
by

S ret~ t2t8!5S~ t2t8!Q~ t2t8!,

K~ t2t8!52 (
p1 ,p2

uBp1p2
u2$Gp1

. ~ t,t8!Gp2

. ~ t,t8!

1Gp1

, ~ t,t8!Gp2

, ~ t,t8!%

5 (
p,p8

uBpp8u
2

2vpvp8

$~11np1np812npnp8!

3cos@~vp1vp8!~ t2t8!#

1~np1np812npnp8!cos@~vp2vp8!~ t2t8!#%,

~B5!

with S(t2t8) given by Eq.~2.48!.
At this stage it proves convenient to introduce the iden

e2 ~1/2! *dtdt8r (t)K(t2t8)r (t8)

5C~ t !E Dje2 ~1/2! *dtdt8j(t)K21(t2t8)j(t8)1 i Edtj(t)r (t)

with C~t! being an inessential normalization factor, to ca
the nonequilibrium effective action of the unstable mode
terms of a stochastic noise variable with a definite proba
ity distribution, @46–50#. Using the above relation, the gen
erating functional becomes

Z@0#5E DxDrDjP@j#expH i E dtr~ t !F2 ẍ~ t !1V2x~ t !

1lE
2`

t

dt8S~ t2t8!x~ t8!1j~ t !G J , ~B6!

where the probability distribution of the stochastic noi
P@j# is given by
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P@j#5E DjexpH 2
1

2lE dtdt8j~ t !K21~ t2t8!j~ t8!J .

~B7!

In this approximation we find that the noise-noise correlat
function is given by

^^j~ t !j~ t8!&&5K~ t2t8!, ~B8!

which is in general colored, i.e., it is not a delta functi
d(t2t8).

The semiclassical Langevin equation is obtained by
tremizing the effective action in Eq.~B6! with respect tor (t)

ẍ~ t !2V2x~ t !2lE
2`

t

dt8S~ t2t8!x~ t8!5j~ t !. ~B9!

Taking the average of the above equation with the no
probability distribution P@j# and identifying ^^x(t)&&
5Q(t) yields the equation of motion for the expectatio
value of the unstable mode, Eq.~2.47!.

The relationship between the kernelsS ret(t2t8) andK(t
2t8) constitutes a generalized quantum fluctuation diss
tion relation. This relation is established by considering
time Fourier transforms of the functionsG p

.(t,t8)Gp8
. (t,t8)

and G p
,(t,t8)Gp8

, (t,t8) which are denoted byGpp8
. (v) and

Gpp8
, (v), respectively. These Fourier transforms obey

KMS condition @51#

Gpp8
,

~v!5e2bvGpp8
.

~v!. ~B10!

Using the above relation we find thatS ret(v), the Fourier
transform in time of the retarded self-energyS ret(t2t8) is
given by

S ret~v!52(
p,p8

uBpp8u
2E dv8

2p

Gpp8
.

~v8!@12e2bv8#

v2v81 i e
,

~B11!

leading to the imaginary part
s

ra

v.

12500
n

-

e

-
e

e

Im@S ret~v!#52~12e2bv!(
p,p8

uBpp8u
2Gpp8

.
~v!.

~B12!

On the other hand the kernel that determines the noise-n
correlation functionK(t2t8) has a Fourier transform give
by k(v) with

k~v!5~11e2bv!(
p,p8

uBpp8u
2Gpp8

.
~v!

52cothFbv

2 G Im@S ret~v!#. ~B13!

The above relation between the Fourier transform of
noise-noise correlation function and the imaginary part of
self-energy is the generalized fluctuation-dissipation relati

In particular the contribution from the surface waves
the kernelK(t2t8) is given by

Ksw~t!5
12mT2

25p (
l>2

Rc /j
~2l 11!

~ l 21!2~ l 12!2

3H 11cosF2A~ l 21!~ l 12!
t

Rc
G J . ~B14!

This function oscillates with constant amplitude on a tim
scale;Rc which is the same time scale for growth of
supercritical bubble. Therefore the noise termcannot be
taken to be uncorrelated over the time scales associated
the growth of a bubble, i.e., the noise iscoloredand a Lange-
vin description based on a white noise would miss the lo
time correlations. The contribution of the scattering sta
could lead to a short range part of the kernel, but the lo
time behavior of the kernel will be dominated by the lo
energy surface waves. The reason that a Markovian Lan
vin equation with white noise fails to describe the dynam
of the unstable coordinate is that there are slow hydro
namic fluctuations with time scales comparable to the gro
rate that couple to the unstable coordinate, precisely
same type of fluctuations that dominate the viscosity or fr
tion.
D
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