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Zero modes of the Dirac operator in three dimensions
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We investigate zero modes of the Dirac operator coupled to an Abelian gauge field in three dimensions. We
find that the existence of a certain class of zero modes is related to a specific topological property precisely
when the requirement of finite Chern-Simons action is imposed.@S0556-2821~99!03720-0#

PACS number~s!: 11.15.2q, 02.40.2k
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I. INTRODUCTION

Zero modes for fermions for the Dirac operatorD” A5]”
2iA” are of importance in many places in quantum fie
theory. They are the ingredients for the computation of
index of the Dirac operator and play a key role in und
standing anomalies@1–3#. In Abelian gauge theories, whic
is what we are concerned with here, they affect crucially
behavior of the fermion determinant det(D” A) in quantum
electrodynamics~QED!. The nature of the QED functiona
integral depends strongly on the degeneracy of the bo
zero modes. In three dimensions little is known about s
fermion bound states, the first examples being only obtai
in 1986 in Ref.@4#. In our paper we want to further invest
gate this problem of zero modes of the Abelian-Dirac ope
tor in three-dimensional Euclidean space~i.e., the Pauli op-
erator!.

It should be emphasized here that the problem of z
modes of the Pauli operator, in addition to being interest
in its own right, has some deep physical implications. T
authors of@4# were mainly interested in these zero mod
because in an accompanying paper@5# it was proven that
one-electron atoms with sufficiently high nuclear charge
an external magnetic field are unstable if such zero mode
the Pauli operator exist.

Further, there is an intimate connection between the e
tence and number of zero modes of the Pauli operator
strong magnetic fields on the one hand, and the nonpertu
tive behavior of the three-dimensional fermionic determin
~for massive Fermions! in strong external magnetic fields o
the other hand. The behavior of this determinant, in turn
related to the paramagnetism of charged fermions, see@6,7#.
So, a thorough understanding of the zero modes of the P
operator is of utmost importance for the understanding
some deep physical problems, as well.

In addition, it is speculated in@7# that the existence an
degeneracy of zero modes for three-dimensional Q
(QED3) may have a topological origin as it does in QED2,
cf. @7# for details and an account of the situation f
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QED2,3,4. The results of the present paper tend to supp
such a point of view.

Our paper is organized as follows. In Sec. II, we revie
the simple example of a zero mode that was given in@4#, and
we provide some more examples of zero modes of a sim
type. In Sec. III, we show, for a whole class of zero mod
that their existence is related to a specific, associated ‘‘to
logical number’’ being an odd integer. This result will follow
from the conditions of square integrability of the zero mo
and finiteness of the Chern-Simons action. If only the wea
condition of square integrable zero modes and magn
fields is imposed, we find a broader class of possible z
modes. In Sec. IV, a generalization to higher angular m
mentum is discussed.

II. SOME EXAMPLES

First we want to briefly review a specific solution that w
given in @4#. Let C be a two-component, square integrab
spinor onR3 and Ai a gauge field leading to a square int
grable field strengthFi j 5Aj ,i2Ai , j @further x5(x1 ,x2 ,x3),
r 5uxu, and s i are the Pauli matrices#. The authors of@4#
observed that a solution of the Dirac equation

2 i ]”C~x![2 is i] iC~x!5Ai~x!s iC~x! ~1!

could be easily obtained from a solution of the simpler eq
tion

2 i ]” C5hC ~2!

for some scalar functionh(x). In this case the correspondin
gauge field that obeys the Dirac equation~1! together with
the spinor~2! is given by

Ai5h
C†s iC

C†C
. ~3!

In addition, they gave the following explicit example:

C5~11r 2!23/2~11 ixs!F0 , ~4!

whereF0 is the constant unit spinorF05(1,0)T. The spinor
~4! obeys
©1999 The American Physical Society01-1
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FIG. 1. Integral curves of the vector fieldA(0) linking exactly once for different parameter values.
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2 i ]”C5
3

11r 2 C, ~5!

and is, therefore, a zero mode for the gauge field

A5
3

11r 2

C†sC

C†C
5

3

~11r 2!2 S 2x1x322x2

2x2x312x1

12x1
22x2

21x3
2
D . ~6!

„The geometrical behavior of the gauge field~6! is shown in
Figs. 1, 2. The integral curves of this gauge field are clo
circles that lie on tori, and they wrap once around each
rection of the torus@Fig. 1~a!#. Any two different curves are
linked exactly once@see Fig. 1~b! for two curves on different
tori#.…

Next we want to give some more examples of solutions
the type~2!, ~3!, that may be obtained by simple generaliz
tions of the solution~4!, ~6!. From these examples we wi
find that a zero mode exists when a certain ‘‘topologi
number’’ is an odd integer, and we will show in the ne
section that this feature holds true for a whole class of z
modes.
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Some first examples of solutions may be constructed fr
the following ansatz:

C~ l !5~11r 2!2~3/21 l !

3F S 11 (
n51

l

anr 2nD 11 (
n50

l

bnr 2nXGF0 , ~7!

where

X[ ix js j . ~8!

The sums are restricted by square integrability ofC ( l ), and
the choicea051 just fixes an arbitrary normalization. Wit
the help of the relations

X252r 21, xj] jX5X, is j] jX523•1, ~9!
FIG. 2. Cross sections (x250) and (x350) of the vector fieldA(0).
1-2
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FIG. 3. Cross sections (x250) and (x350) of the vector fieldA(1).
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one easily finds, e.g., forl 51

2 i ]”C~1!52 i ]” ~11r 2!25/2@~11a1r 2!11~b01b1r 2!X#F0
~10!

5
3b0

~11r 2!7/2F S 11
5b122b0

3b0

r 2D 1

1S 522a1

3b0

1
a1

b0

r 2DXGF0 , ~11!

and the proportionality condition~2! can be met by compar
ing coefficients of powers ofr 2. The resulting system o
equations is linear in all coefficients exceptb0 , for which it
is of fourth order. Actually, it is of second order inb0

2, be-
cause the sign flipbi→2bi just corresponds to a parit
transformationxi→2xi . One of the two solutions forb0

2 just
reproduces the simplest solutionl 50, Eq.~4!, by producing
a common factor 11r 2 in the numerator of Eq.~10!, the
other solution is new:

C~1!5~11r 2!25/2F S 12
5

3
r 2D 11S 5

3
2r 2DXGF0 ~12!

2 i ]”C~1!5
5

11r 2 C~1!. ~13!

This pattern repeats itself for higherl. Condition~2! always
leads to a system of equations for theai , bi with l 11 dif-
ferent solutions~up to parity!. l of these solutions just repro
12500
duce the lowerC (k), k, l , whereas one solution produces
new zero mode,C ( l ). Explicitly, the coefficientsai , bi for
C ( l ) read

ai5~21! lbu i 2 l u

S )
j 50

i

~2 j 13!D ~ i ! !bi5~21! iS )
k50

i 21

~ l 2k!D
3S )

h50

i

~2l 1322h!D , ~14!

and, with the abbreviationsA5(n50
l anr 2n, (a0[1), andB

5(n50
l bnr 2n the corresponding gauge field reads

A~ l !5
2l 13

~11r 2!~A21B2r 2! S 2B2x1x322ABx2

2B2x2x312ABx1

A21B2~x3
22x1

22x2
2!
D

~15!

~for the behavior ofA(1), see Fig. 3!. All these zero modes
behave likeC†C;r 24 for r→`, as well as the correspond
ing gauge fields,A2;h2;r 24.

Some more examples of zero modes of the type~2! may
be found by the following observation. The simplest ze
mode~4! may be expressed as

C5g~r !UF0 , g~r !5
1

11r 2 , U5
1

~11r 2!1/2~11X!,

~16!

whereg is a scalar function~depending only onr! andU is
an SU~2! matrix. So one may wonder whether there are z
modes for higher powers ofU,

C~n!5gUnF0 , ~17!
1-3
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C. ADAM, B. MURATORI, AND C. NASH PHYSICAL REVIEW D60 125001
where g is a scalar that has to be determined. E.g., fon
52 one finds

C~2!5gU2F05g~11r 2!21@~12r 2!112X#F0 ~18!

and, with a little bit of algebra (8[]/]r 2)

2 i ]”g~r 2!~11r 2!21@~12r 2!112X#F0

5
2

~11r 2!2 @„2r 2~11r 2!g81~31r 2!g…1

1„2g2~11r 2!~12r 2!g8…X#F0

5
!

hg~11r 2!21@~12r 2!112X#F0 . ~19!

Comparison of the coefficients of1 andX leads to two first-
order linear differential equations for the functiong, which
have to be proportional. This determinesh and, in turn,g ~we
abbreviateu[r 2)

~1! g85
~12u!~11u!h22~31u!

4u~11u!
g,

~2! g85
22~11u!h

~12u!~11u!
g,

⇒h5
2~32u!

~11u!2 ,

g85
24

~11u!2 g, g5expS 4

11u
D ,

and we find

C~2!5
e4/~11r 2!

11r 2 @~12r 2!112X#F0 , ~20!

2 i ]”C~2!5
2~32r 2!

~11r 2!2 C~2!. ~21!

This formal solutionC (2) is not square integrable and, ther
fore, is not an acceptable zero mode. However, the s
ansatz for the third power ofU,

C~3!5gU3F05
g

~11r 2!3/2@~123r 2!11~32r 2!X#F0

~22!

leads to a square integrable zero mode,

C~3!5
e8/~11r 2!228/~11r 2!

~11r 2!5/2 @~123r 2!11~32r 2!X#F0 ,

~23!

2 i ]”C~3!5
9r 4214r 219

~11r 2!3 C~3!. ~24!
12500
e

Zero modes for higher powersUn (n54,5,...) ofU may be
computed in an analogous fashion, and one again finds
for odd powers ofU there exist square integrable ze
modes, whereas for even powers the formal solutions are
square integrable. This may lead to the conjecture that th
a general property, i.e., odd powers ofU in Eq. ~17! always
lead to square integrable zero modes, whereas even po
do not. In the next section we will show that this is inde
the case.

Further, one might speculate that this different behavio
related to different geometrical or topological properties
even and odd powers ofU. So, let us briefly discuss th
geometry of the matricesUn. The first power

U5~11r 2!21/2~11 ir ns!, ~25!

nj5
xj

r
, n251, ~26!

has the following properties:

U~r 50!51, U~r 5`!5 ins, ~27!

i.e., it behaves similarly to an SU~2! monopole and tends to
the ‘‘hedgehog’’ shapeins for r→` @actually this hedge-
hog corresponds to the identity mapS2(r 5`)→S2 ~unit
vectorn! with winding number 1#. The matrixU2

U25~11r 2!21@~12r 2!112ir ns# ~28!

has the properties

U2~r 50!51, U2~r 51!5 ins, U2~r 5`!521,
~29!

i.e., it is defined onR3 compactified toS3 ~actually, it cor-
responds to a mapS3→S3 with winding number 1!, and,
therefore, it is similar to a Skyrmion. In addition, it is equ
to the hedgehog at the sphere of radius 1.

For higher powers ofU this pattern repeats itself. A
limr→` Un5( ins)n, odd powers ofU tend to the hedgehog
6 ins for r→`, i.e., they are of the monopole type. Eve
powers tend to61, i.e., they are of the Skyrmion type.

III. A GENERAL CLASS OF SOLUTIONS

Here we want to study a class of SU~2! matrices, and we
want to show that, depending on the imposed integrabi
conditions~see below!, these SU~2! matrices do provide zero
modes precisely when they are of the monopole type~i.e.,
they tend to the hedgehog configuration forr→`). For this
purpose we use a parametrization of SU~2! matrices that was
used, e.g., in@8,9#. They use the ansatz for a class of SU~2!
matricesU ~in polar coordinatesr ,u,f)

U5exp„i f ~r !n~u,f!s…. ~30!
1-4
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Here the profile functionf depends onr, and the unit vector
n depends onu,f. Therefore,n defines a mapS2→S2 with
integer winding number.

Via a stereographic projection, the coordinate two-sph
~u,f! may be mapped onto the complex planeC with coor-
dinatez. Explicitly, the map isz5tan(u/2)eif. In this new
coordinate, a class of unit vectorsn~u,f! may be expressed
by rational maps z→R(z)5p(z)/q(z), where p,q are
coprime polynomials, and the degree of the map~the degree
of p or q, whichever is higher! equals the winding number o
the map (u,f)→n(u,f). Explicitly, n„R(z)… is

n„R~z!…5
1

11uRu2 S 2 ReR~z!

2 ImR~z!

12uR~z!u2
D . ~31!

In the sequel we will restrict to the simplest rational m
R(z)5z ~the identity mapS2→S2)

n~z!5
1

11uzu2 S 2 Rez
2 Imz
12uzu2

D 5S sinu cosf
sinu sinf

cosu
D 5

1

r S x1

x2

x3

D .

~32!

In the ansatz~30! for U we further assume, without restric
tion, that f (0)50, i.e., U(r 50)51. Then f (`)
52k(p/2) , kPZ corresponds to a Skyrmion-type SU~2!
field with baryon number~i.e., S3→S3 winding number! k.
Further,f (`)5(2k11)p/2 corresponds to a monopole-typ
SU~2! field.

Therefore, we now want to prove that the ansatz

C5g~r !exp„i f ~r !n~z!s…F0

5g~r !@cosf ~r !11 i sin f ~r !n~z!s#F0

5:@C~r !11 iS~r !n~z!s#F0 , ~33!

C~r !ªg~r !cosf ~r !, S~r !ªg~r !sin f ~r ! ~34!

may provide square integrable zero modes of the t
2 i ]”C5h(r )C for monopole-typeU but not for Skyrmion-
type U.

Remark. Before continuing, we want to point out that a
our examples in Sec. II belong to this ansatz~33! @with n
given by Eq.~32!#. Indeed, all examples@e.g., Eqs.~7! and
~17!# may be written likeC5@a(r )11b(r )X#F0 , where
a(r ),b(r ) are some rational functions@for Eq. ~17! this is
true becauseX252r 21]. Using X5 ir ns, this is equal to
ansatz~33! with a(r )5C(r ), rb(r )5S(r ). Further, higher
powersUk of an SU~2! matrix U @as we used in Eq.~17!# are
of the type of Eq. ~30! if U is, because Uk

5exp„ik f (r )n(z)s…. That is,Uk is computed by substituting
k f(r ) instead off (r ) for the profile function in Eq.~30!.

To simplify the computation, we use the fact that the m
trix U acts on the spinorF05(1,0)T, i.e., not all components
of U actually occur inC. This is best achieved by introduc
ing the matrices
12500
re

e

-

P05
1

2
~11s3!5S 1

0
0
0D , P0S 1

0D5S 1
0D ,

P15
1

2
~s12 is2!5S 0

1
0
0D , P1S 1

0D5S 0
1D ,

s1P05P1 , s2P05 iP1 , s3P05P0 ,

s1P15P0 , s2P152 iP0 , s3P152P1 . ~35!

The spinor~33! may be rewritten as

C5@„C~r !1 iS~r !n3~z!…P01 iS~r !n1~z!P1#F0 ,
~36!

where

n15n11 in2 , x15x11 ix2 , ]15
1

2
~]12 i ]2!.

~37!

Acting with 2 i ]” on C gives

2 i ]”C5@]3~2 iC1Sn3!12]1~Sn1!#P0F0

1@2]2~2 iC1Sn3!2]3~Sn1!#P1F0 . ~38!

Now we have to introduce polar coordinates (r ,z,z̄),

x15
2rz

11zz̄
, ]15

z̄

11zz̄
] r1

1

2r
~]z2 z̄2] z̄!,

x35
r ~12zz̄!

11zz̄
, ]35

12zz̄

11zz̄
] r2

1

r
~z]z1 z̄] z̄!, ~39!

and use Eq.~32! for our simple choice ofn(z),

n15
2z

11zz̄
, n35

12zz̄

11zz̄
~40!

to find, after some algebra~here the prime denotes the d
rivative with respect tor, not r2),

2 i ]”C5F2 iC8n31S81
2

r
SGP0F02 in1C8P1F0

5

!

h~r !@~C1 iSn3!P01 iSn1P1#F0 . ~41!

This leads to the two differential equations

S81
2

r
S5hC, ~42!

2C85hS, ~43!

which we rewrite in terms of the functions
1-5
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C. ADAM, B. MURATORI, AND C. NASH PHYSICAL REVIEW D60 125001
t~r !ªtanf ~r !5
S~r !

C~r !
, ~44!

g~r !5AC2~r !1S2~r !. ~45!

We arrive at

t85h~11t2!2
2

r
t⇒h5~11t2!21S t81

2

r
t D , ~46!

g852
2

r

t2

11t2 g. ~47!

Now we assume that a functiont is given with the properties

lim
r→

t~r !;r a0, lim
r→`

t~r !;r a`. ~48!

Regularity ofh and the corresponding magnetic fieldB5­
3A at r 50 requires

lim
r→0

t~r !;cr1O~r 21e!, e>0⇒a051 or a0>2.

~49!

Concerning the behavior forr→`, we want to discuss two
conditions separately. As a stronger condition, we requ
that the Chern-Simons action shall be finite~i.e., the Chern-
Simons density integrable!, in addition to square integrability
of the magnetic field and of the zero mode. Explicitly, t
Chern-Simons density for our ansatz~33! is, after some com-
putation~we use the notation of differential forms here, i.
A5Aidxi , etc.!

AdA5
2h2

11t2 S t

r
~11n3

2!1t8n1n2D r 2dr
4

~11a2!2 dadf,

~50!

where

aªzz̄, sinudu5
4

~11a2!2 da ~51!

and

E AdA54p~2p24!E
0

`

dr
rh2t

11t2

14p~22p18!E
0

`

dr
r 2h2t8

11t2 , ~52!

whereh is given by Eq.~46!. Integrability of AdA requires
a`Þ0, as may be checked easily. In addition, square in
grability of g ~i.e., of the zero mode! requiresa`>0 and,
therefore, we end up with the condition

a`.0. ~53!
12500
e

,

-

Next, we have to relate this asymptotic behavior oft to the
properties of the matrixU, Eq. ~30!. For illustrative pur-
poses, let us first do it for the explicit example~22! @the third
powerU3 of the specific simplest matrixU, Eq. ~16!#. There
we find

t~r !5tanf ~r !5
r ~32r 2!

123r 2 , ~54!

and, therefore,

tanf ~0!50...f ~0!50, tanf S 1

)
D 5`...f S 1

)
D 5

p

2
,

tanf ~) !50...f ~) !5p, tanf ~`!5`...f ~`!5
3p

2
,

~55!

showing that the ‘‘topological number’’

Nª„f ~`!2 f ~0!…
2

p
53 ~56!

is an odd integer in this case, and, therefore, the corresp
ing SU~2! matrix is of the monopole type. Now this consid
eration may be immediately generalized to generalt with the
behavior~49!, ~53!. From Eq.~49! it follows that

t~0!5tanf ~0!50...f ~0!50. ~57!

From Eq.~53! we conclude

t~`!5tanf ~`!5`...f ~`!5~2k11!
p

2
, kPZ ~58!

showing that square integrable zero modes have odd ‘‘to
logical number’’N52k11 and are, therefore, of the mono
pole type, if the additional condition of finite Chern-Simon
action is imposed. On the other hand, whena`,0 ~leading
to a nonsquare integrable zero mode!, then

t~`!5tanf ~`!50...f ~`!52k
p

2
, kPZ. ~59!

Therefore, Skyrmion-type SU~2! matrices with even ‘‘topo-
logical number’’ lead to nonsquare integrable, formal so
tions of the Pauli equation.

This is what we wanted to prove.
Now we want to impose the weaker condition that t

magnetic fieldB be square integrable. This does not give
condition ona` at all. Further, square integrability ofg just
requiresa`>0, where we have already discussed the c
a`.0. So let us investigate the case

a`50, t~`!5t`5const ~60!

a little bit closer. Square integrability ofg requires
1-6



e

ca
-

-

n

,

t

c-
.

um

-

o a

-
ing
l

it
eld

the
ical

ue,

-

d

atz
ge
re

ter-

ZERO MODES OF THE DIRAC OPERATOR IN THREE DIMENSIONS PHYSICAL REVIEW D60 125001
2
t `

2

11t`
2 .

3

2
⇒t`

2 .3⇒ f `PS p

3
1kp,

2p

3
1kp D , kPZ.

~61!

Therefore, now a broader class of zero modes is allow
where the SU~2! matrix U, Eq.~30!, may tend to a mixture of
monopole and Skyrmion forr→`,

U~r 5`!;cosf `11sin f `ins, sin2 f `.3 cos2 f ` .
~62!

In this case, a quantity that generalizes the ‘‘topologi
number’’ N, Eq. ~56!, to noninteger values, may be com
puted from the matrixU, Eq. ~30!,

N~ f `!ª
1

12p2 E tr~U†dU!35
4

p
E

0

`

sin2 f ~r ! f 8~r !dr

5
4

p
E

0

f `
sin2 f d f5

2

p
S f `2

1

2
sin 2 f `D , ~63!

@ f (0)50#. Obviously, it reduces to the integer (2/p) f ` for
pure monopoles and Skyrmions.

IV. HIGHER ANGULAR MOMENTUM

The authors of@4# observed that, in addition to their sim
plest solution~4!, they could find similar solutions to Eq.~2!
with higher angular momentum. Using instead of the co
stant spinorF05(1,0)T the spinor

F l ,m5S Al 1m11/2Yl ,m21/2

2Al 2m11/2Yl ,m11/2
D , ~64!

wheremP@2 l 21/2,l 11/2# andY are spherical harmonics
they found the solutions

C l ,m5r l~11r 2!2 l 23/2~11X!F l ,m , ~65!

A l ,m5~2l 13!~11r 2!21
C l ,m

† sC l ,m

C l ,m
† C l ,m

. ~66!

This may be immediately generalized to our ansatz~33!. For
the spinor

C l ,m5@C~r !11 iS~r !ns#F l ,m , ~67!

we find, by a computation that is similar to the one leading
Eqs.~42!, ~43!

S81
21 l

r
S5hC, ~68!

C82
l

r
C52hS ~69!

or
12500
d,

l

-

o

h5~11t2!21S t81
2~11 l !

r
t D , ~70!

g85S 2
21 l

r

t2

11t2 1
l

r

1

11t2D g. ~71!

Again, we discuss the condition of finite Chern-Simons a
tion first. There, the conditions ont remain the same, Eqs
~49!, ~53!. Further,g behaves like

lim
r→0

g~r !;r l , lim
r→`

g~r !;r 2 l 22, ~72!

where the first condition is just the usual angular moment
barrier.

If only square integrability of the magnetic field is re
quired, then againa`50, t(`)5t` is possible, and we find
as the condition for square integrability ofg

t`
2 .

312l

112l
. ~73!

V. SUMMARY

For a whole class of zero modes@ansatz~33! with condi-
tion ~47!#, we have shown that their existence is related t
topological quantization condition@the topological number
~63! is an odd integer# precisely when the additional require
ment of finite Chern-Simons action of the correspond
gauge field~74! is imposed@geometrically, this topologica
quantization condition implies that the associated SU~2! ma-
trix ~30! is of the monopole type#. This result clearly points
towards a topological origin of the whole problem, and
may also be of some interest to Chern-Simons quantum fi
theory.

From the above construction it seems that we related
existence of a square integrable zero mode to a topolog
property of this zero mode@i.e., of the SU~2! matrix U#
rather than of the gauge field. This is not necessarily tr
however. Remember that all our zero modes~33! are of the
specific type

C5gUF0 , 2 i ]”C5hC, Ai5
h

2
tr U†s iUs3 ,

~74!

i.e., Ai is related to the matrixU in a simple algebraic man
ner. This is true even for the scalar functionh, which is
determined algebraically byt ~and t8) and does not depen
on g, see Eq.~46!. Therefore, the SU~2! matrix U of ansatz
~30! uniquely determines the gauge fieldAi Eqs.~46!, ~74!,
and it may well be that it is ultimately the topology ofAi that
determines the existence of zero modes.

Still, there remain many open questions. E.g., our ans
~33! @or Eq. ~67!# only provides one zero mode per gau
field, and it would be interesting to find examples with mo
than one zero mode~if they exist!. Further, one would, of
course, like to understand, which topological property de
1-7
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mines the number and existence of zero modes in the gen
case. These questions are subject to further investigatio

It should be mentioned here that there is an index theo
for odd-dimensional open spaces likeR3, however, for a
slightly different field contents. The Callias index theore
@10# was formulated for a Dirac operatorD” A,F in a space of
odd dimensions in a Yang-Mills-Higgs background (A,F),
and there it is actually the nontrivial, monopolelike behav
of the Higgs fieldF for r→` that accounts for a nonzer
index ~i.e., the difference of the number of zero modes
D” A,F and D” A,F

† ). Whether this index theorem may be
some relevance in the present context is not yet clear.

Finally, we want to remark that an apparently obvio
generalization to Eq.~33! does not work. In Eq.~33! the
simplest possible unit vectorn~u,f!, Eq. ~32!, is used@cor-
responding to the rational mapR(z)5z]. One may wonder
whether new solutions may be obtained by allowing for ot
12500
ral

m

r

f

r

unit vectors in Eq.~33!, e.g., the ones with winding numbe
m corresponding to the rational mapsR(z)5zm, m>2. The
answer is no. The point is that every zero mode has to o
the condition

­C†sC50. ~75!

If one inserts ansatz~33! with a higher windingn into this
condition, one immediately realizes that it cannot be fulfill
as long as bothf andg only depend onr.
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