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Zero modes of the Dirac operator in three dimensions
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We investigate zero modes of the Dirac operator coupled to an Abelian gauge field in three dimensions. We
find that the existence of a certain class of zero modes is related to a specific topological property precisely
when the requirement of finite Chern-Simons action is impog®@556-282(199)03720-(

PACS numbds): 11.15~-q, 02.40-k

. INTRODUCTION QED, 3,4 The results of the present paper tend to support
such a point of view.
Zero modes for fermions for the Dirac operafdp=4 Our paper is organized as follows. In Sec. Il, we review

—iA are of importance in many places in quantum fieldthe simple example of a zero mode that was giveldinand
theory. They are the ingredients for the computation of theve provide some more examples of zero modes of a similar
index of the Dirac operator and play a key role in under-type. In Sec. lll, we show, for a whole class of zero modes,
standing anomaliegl—3]. In Abelian gauge theories, which that their existence is related to a specific, associated “topo-
is what we are concerned with here, they affect crucially thdogical number” being an odd integer. This result will follow
behavior of the fermion determinant d&x) in quantum from the conditions of square integrability of the zero mode
electrodynamicgQED). The nature of the QED functional and finiteness of the Chern-Simons action. If only the weaker
integral depends strongly on the degeneracy of the boundondition of square integrable zero modes and magnetic
zero modes. In three dimensions little is known about sucliields is imposed, we find a broader class of possible zero
fermion bound states, the first examples being only obtainedhodes. In Sec. IV, a generalization to higher angular mo-
in 1986 in Ref[4]. In our paper we want to further investi- mentum is discussed.

gate this problem of zero modes of the Abelian-Dirac opera-

tor in three-dimensional Euclidean spage., the Pauli op- Il. SOME EXAMPLES

eratoy.

It ghomd be emphasized here that the problem of zero Firstwe wantto briefly review a specific solution that was
modes of the Pauli operator, in addition to being interestingiven in[4]. Let ¥ be a two-component, square integrable
in its own right, has some deep physical implications. Thespinor onR® andA; a gauge field leading to a square inte-
authors of[4] were mainly interested in these zero modesgrable field strengthir;j=A; ;—A; ; [further x=(X;,X2,X3),
because in an accompanying papsf it was proven that r=|x|, and o; are the Pauli matricésThe authors of4]
one-electron atoms with sufficiently high nuclear charge inobserved that a solution of the Dirac equation
an external magnetic field are unstable if such zero modes of
the Pauli operator exist. — 10V (x)=—i0i0,¥(x)=Ai(x) 0¥ (X) 1)

Further, there is an intimate connection between the exis- ) _ ) )
tence and number of zero modes of the Pauli operator fogould be easily obtained from a solution of the simpler equa-
strong magnetic fields on the one hand, and the nonperturb&0nN
tive behavior of the three-dimensional fermionic determinant )

(for massive Fermionsn strong external magnetic fields on —id¥r=hv 2

the other hand. The behavior of this determinant, in turn, is ) ) )
related to the paramagnetism of charged fermions[&4& for some scalar functioh(x). Ir_] this case the correspon.dmg
So, a thorough understanding of the zero modes of the Pa#iduge field that obeys the Dirac equatidn together with
operator is of utmost importance for the understanding of1'€ SPInor(2) is given by
some deep physical problems, as well.

In addition, it is speculated ifi7] that the existence and A:hqﬁ"iq’ 3)
degeneracy of zero modes for three-dimensional QED ! vy -
(QED;) may have a topological origin as it does in QED
cf. [7] for details and an account of the situation for In addition, they gave the following explicit example:
Y=(1+r?)"*(1+ix0) Dy, (4
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FIG. 1. Integral curves of the vector fiel(? linking exactly once for different parameter values.

3 Some first examples of solutions may be constructed from

—igv= v, (5)  the following ansatz:

1+r?

and is, therefore, a zero mode for the gauge field W= (14r2)- 20D

3 wlew 3 2X1X3 ™ 2Xp ' !
A= - 2XoX3+2X; |, (6 X[ 14+ 2, ar®™ |1+ D, b r2"X |®,, (7)
1+r2 WM (14122 2" 2,02 © ,Z% " 2% n 0
1 2 3

(The geometrical behavior of the gauge fiéfdl is shown in
Figs. 1, 2. The integral curves of this gauge field are closed/here
circles that lie on tori, and they wrap once around each di-
rection of the torugFig. 1(a)]. Any two different curves are )
linked exactly onc¢see Fig. 1b) for two curves on different X=ixjoj. ()
tori].)
Next we want to give some more examples of solutions of
the type(2), (3), that may be obtained by simple generaliza- The sums are restricted by square integrabilitytdf), and
tions of the solution(4), (6). From these examples we will the choiceap=1 just fixes an arbitrary normalization. With
find that a zero mode exists when a certain “topologicalthe help of the relations
number” is an odd integer, and we will show in the next
section that this feature holds true for a whole class of zero

modes. X?=—r?1, xd X=X, i0j3;X=-3-1, (9
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FIG. 2. Cross sectionsg=0) and ;=0) of the vector fieldA(©®,
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FIG. 3. Cross sectionsxg=0) and {;=0) of the vector fieldA(®.

one easily finds, e.g., fdr=1 duce the lowef (W, k<, whereas one solution produces a
new zero modeW¥ (). Explicitly, the coefficientsa;, b; for
v read
—ip¥V=—ip(1+r?) ¥ (1+a;r?)1+(by+bir>)X]®,
(10 ai=(—1'bj_

i—1
(i!)bi=<—1>‘(H <|—k>)

k=0

3b, [

|
5b;—2b, [T 2j+3)
= — - y2 l j=0
(1+r2)7/2

r
3b,

x| T1 (2I+3—2h)), (14)
h=0

X | Py, (11)

and, with the abbreviatioerZEL:Oaan“, (ap=1), andB

_v! 2n H ;
and the proportionality conditiof2) can be met by compar- = Zp=obnr ™" the corresponding gauge field reads

ing coefficients of powers of?. The resulting system of )
equations is linear in all coefficients excdpf, for which it 21+3 282X1X3_2ABX2

is of fourth order. Actually, it is of second order bf, be- AD= 55| 2BXXs+2ABX

cause the sign flippj— —b; just corresponds to a parity (L+rHATHBT | a2+ B2(x5— X5 —X3)
transformationx,— — x; . One of the two solutions fdw3 just (15
reproduces the simplest solutibs 0, Eq.(4), by producing

other solution is new: behave like¥ "W ~r ~4 for r -, as well as the correspond-
ing gauge fieldsA?~h2~r 4.
Some more examples of zero modes of the t{)emay

be found by the following observation. The simplest zero

5 5
vh=(1+ r2)—5/2[(1_ §r2 1+ §_r2)x}q)o (12  mode(4) may be expressed as
1 1
T=g(r)Ud,, = , U= 1+X),
: g(r)Udy, g(r) 1412 (1+r2)1’2( )
—iw V= p®, (13) (16

1+r
whereg is a scalar functioidepending only om) andU is
an SU2) matrix. So one may wonder whether there are zero
This pattern repeats itself for highkrCondition(2) always ~ modes for higher powers df,
leads to a system of equations for the b; with | +1 dif-
ferent solutiongup to parity. | of these solutions just repro- ¥(W=gU"d,, (17
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whereg is a scalar that has to be determined. E.g., rfor
=2 one finds

V@ =gU?dy=g(1+r?) [(1-r?)1+2X]D, (18
and, with a little bit of algebra’& d/dr?)

—ibg(r2)(1+r3) " (1-r?1+2X]P,

=—(1+r2)2[(2r2(1+ r?)g’ +(3+r?)g)1

+(29—(1+r?3)(1-r?)g")X]d,

=hg(1+r2) Y (1-r2)1+2X]d,. (19)

Comparison of the coefficients dfand X leads to two first-
order linear differential equations for the functignwhich
have to be proportional. This determirteand, in turng (we
abbreviateu=r?)

, (1-=w)(1+u)h—2(3+u)

]_ y
bg 4u(1tu) ’
2—(1+u)h
2) g'=——""0,
(2) 9 (1—u)(1+u)g
2(3—u)
:>h:—5
(1+u)?
—4 4
g —mg, g=ex 1+u)’
and we find
e4/(1+r2)
e 1+r? [(1-1?)1+2X]Dy, (20)
@ 2087 ) 2
—ipw REETErAAE (21)

This formal solution®(?) is not square integrable and, there-

fore, is not an acceptable zero mode. However, the sam

ansatz for the third power af,

g
PO =gU3dy=——5—=[(1—3r?)1+(3—-r?)X]D
g 0 (1+r2)3/2[( ) ( ) ] 0
(22)
leads to a square integrable zero mode,

2,2 2
e8I(1+1)?=8/(1+r?)

PO = [(1-3r?)1+(3—r?)X]D,,

(23

(1+r2)5/2

R ort—142+9 )
iy ZW‘I’ . (24)

PHYSICAL REVIEW D60 125001

Zero modes for higher powets" (n=4,5,...) ofU may be
computed in an analogous fashion, and one again finds that
for odd powers ofU there exist square integrable zero
modes, whereas for even powers the formal solutions are not
square integrable. This may lead to the conjecture that this is
a general property, i.e., odd powersWwfin Eq. (17) always

lead to square integrable zero modes, whereas even powers
do not. In the next section we will show that this is indeed
the case.

Further, one might speculate that this different behavior is
related to different geometrical or topological properties of
even and odd powers dfi. So, let us briefly discuss the
geometry of the matriced". The first power

U=(1+r?)"YA1+irno), (25)
X]
nj=—, n’=1, (26)
r
has the following properties:
U(r=0)=1, U(r=«)=ino, (27)

i.e., it behaves similarly to an §B) monopole and tends to
the “hedgehog” shapeéno for r—o [actually this hedge-
hog corresponds to the identity maf(r=o)—S? (unit
vectorn) with winding number 1. The matrixU?

U2=(1+r?) " (1-r?1+2irno] (29
has the properties
U2(r=0)=1, U?(r=1)=ino, U?(r=«)=-1,
(29)

i.e., it is defined orR® compactified taS® (actually, it cor-
responds to a mag®—S® with winding number 1}, and,
therefore, it is similar to a Skyrmion. In addition, it is equal
to the hedgehog at the sphere of radius 1.

For higher powers olU this pattern repeats itself. As
lim,_., U"=(ino)", odd powers otJ tend to the hedgehog
€ino for r—w, ie., they are of the monopole type. Even
powers tend ta+1, i.e., they are of the Skyrmion type.

Ill. A GENERAL CLASS OF SOLUTIONS

Here we want to study a class of &) matrices, and we
want to show that, depending on the imposed integrability
conditions(see belowy, these S(2) matrices do provide zero
modes precisely when they are of the monopole t{ipe,
they tend to the hedgehog configuration fer ). For this
purpose we use a parametrization of(3Jumatrices that was
used, e.g., in8,9]. They use the ansatz for a class of(8U
matricesU (in polar coordinates, 6, ¢)

U=expif(r)n(6,)o). (30

125001-4
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Here the profile functiori depends om, and the unit vector 1 1 0 1 1
n depends ord,¢. Thereforen defines a mas’— S with Po=—(1+ 03):(0 0)’ P0<0) =<0),
integer winding number. 2
Via a stereographic projection, the coordinate two-sphere
(6,¢) may be mapped onto the complex pla@evith coor- P :E( i ):(O O) b (1) :(0)
dinatez. Explicitly, the map isz=tan(@/2)e'?. In this new 1751179227 o) Ttlo) i)
coordinate, a class of unit vecton$d,¢) may be expressed
by rational mapsz—R(z)=p(z)/q(z), where p,q are 01Po=P;, 0,Py=iP;, 03Py=Py,
coprime polynomials, and the degree of the nidye degree
of p or g, whichever is highgrequals the winding number of o,P,=Py, o,P;=—iPy, o3P;=—P;. (35
the map 0, ®)—n(6,¢). Explicitly, n(R(z2)) is
The spinor(33) may be rewritten as
1 2 ReR(2) . i
R2)=— | 2mR(2) |. @ P LCOISION(@)PoHSON, (@PuIPo,
R\ 1- R
where
In the sequel we will restrict to the simplest rational map
R(z) =z (the identity mapS*— S?) _ . 1 _
N,.=n;+in,, X,=X;+iXy, dy==(d1—1d,).
2 Rez sinfd cos¢ 1% (37)
n(z)= 5| 2Imz | =| sindsing | =—{ Xz |.
1+[7%\ 1= |22 cosf M\ xs Acting with —i4 on ¥ gives
(32

— 0¥ =[0d3(—IC+Smg)+29.(Sn; )PP,
In the ansat430) for U we further assume, without restric- 1729 (—iC+Sm)—d-(S P.® 38
tion, that f(0)=0, ie., U(r=0)=1 Then f(x) [29-( ")~ 95(SM)IP1bo. (39

=2k(m/2), keZ corresponds to a Skyrmion-type &)  Now we have to introduce polar coordinateszz),
field with baryon numbefi.e., S*— S® winding numbey k.

Further,f ()= (2k+ 1) /2 corresponds to a monopole-type 2rz z 1
SU(2) field. x+=F a+=1+ —J,+ 2—(32—?&;),
Therefore, we now want to prove that the ansatz zz 2z r
_ . r(l—-zz 1-zz 1
W =g(r)expif(r)n(z) o), Xg=————  da=——d— — (20,4293, (39
1+zz 1+zz r

=g(r)[cosf(r)1+isinf(r)n(z) o]®,

and use Eq(32) for our simple choice ofh(z),
=:[C(r)1+iS(r)n(z)o]Py, (33 o
2z 1-2zz

C(r):=g(r)cosf(r), S(r):=g(r)sinf(r) (34 iz T iezz

(40)

may provide square integrable zero modes of the typdo find, after some algebréhere the prime denotes the de-
— 6V =h(r)¥ for monopole-typel but not for Skyrmion-  rivative with respect ta, not r?),
type U.

Remark. Before continuing, we want to point out that alll
our examples in Sec. Il belong to this ansé&3) [with n
given by Eq.(32)]. Indeed, all examplege.g., Egs(7) and
(17)] may be written likeW =[a(r)1+b(r)X]®,, where
a(r),b(r) are some rational functiongor Eq. (17) this is !
true becaus&?=—r?1]. Using X=irne, this is equal to =h(r)[(C+iSng)Py+iSn, P, ]®y. (41)
ansatz(33) with a(r)=C(r), rb(r)=S(r). Further, higher
powersuk of an Suz) matrix U [as we used in qu?)] are This leads to the two differential equations
of the type of Eq. (30) if U is, because U¥

2

—I¢9‘~P={—IC'I’13+S’+—S P0®o_in+C,P1q)0
r

=exp(ikf(r)n(z) o). Thatis,U¥ is computed by substituting S+ ES: hC 42)
kf(r) instead off(r) for the profile function in Eq(30). r '

To simplify the computation, we use the fact that the ma-
trix U acts on the spinab,=(1,0)", i.e., not all components —C’'=hS§, (43
of U actually occur in¥. This is best achieved by introduc-
ing the matrices which we rewrite in terms of the functions

125001-5
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S(r) Next, we have to relate this asymptotic behaviott &b the
t(r):=tanf(r)= ——, (44) properties of the matriXJ, Eq. (30). For illustrative pur-
C(r) poses, let us first do it for the explicit examp@®?) [the third

powerU? of the specific simplest matrid, Eq. (16)]. There

g(r)=VCA(r)+S(r). (45 we find

We arrive at r(3—r?

t(r)=tanf(r)= ———-, 54
, , (N=tanf(r)=—— (54)
t'=h(1+t?)— —t=h=(1+t>) " t'+-t|, (46)
r r and, therefore,
2 t? 1 1\ =«
r— . 4 — — | = | ==
g el (47) tanf(0)=0..f(0)=0, tanf = o, f 577
Now we assume that a functians given with the properties 37
. . tanf(v3)=0..f(v3)=m, tanf(w)=co,. f(x0)=—,
limt(r)~re, lim t(r)~r-. (48) anf(v3) (V3)=m, tanf(@)=c...1(x) 2
o re (55)
Regularity ofh and the corresponding magnetic fidd&=@  showing that the “topological number”
XA atr=0 requires
2
lim t(r)~cr+0(r?*¢), e=0=ay=1 or ay=2. N==(f(°°)—f(0));=3 (56)

r—0

49 is an odd integer in this case, and, therefore, the correspond-

Concerning the behavior far—x, we want to discuss two N9 SU2) matrix is of the monopole type. Now this consid-
conditions separately. As a stronger condition, we requirération may be immediately generalized to geneveith the
that the Chern-Simons action shall be finiie., the Chern- behavior(49), (53). From Eq.(49) it follows that

Simons density integrablein addition to square integrability

of the magnetic field and of the zero mode. Explicitly, the t(0)=tanf(0)=0..1(0)=0. (57)
Chern-Simons density for our ans4®8) is, after some com-
putation(we use the notation of differential forms here, i.e.,
A=A, dX, etc)

From Eq.(53) we conclude

T
oh2 [t 4 t(oo)=tanf(oo)=oo...f(oo):(2k+1)E, kez (59

AdA= —(14+n%+t'n.n_|radr
1+1t2 r( ) -

—szad¢,

(1+a% 50 showing that square integrable zero modes have odd “topo-
(50 logical number’N=2k+1 and are, therefore, of the mono-

pole type, if the additional condition of finite Chern-Simons

action is imposed. On the other hand, when<0 (leading

4 to a nonsquare integrable zero mpdben

a (51

where

a:=zz, singdf=——-d
(1+a) T
t(w)=tanf(x»)=0..f(»)=2k—, keZ. (59
and 2

rh2t Therefore, Skyrmion-type S@) matrices with even “topo-

logical number” lead to nonsquare integrable, formal solu-

1+t tions of the Pauli equation.

. r2h This is what we wf';mted to prove. N
+47T(—27T+8)f dr ’ (52) Now we want to impose the weaker condition that the

0 1+1t2 magnetic fieldB be square integrable. This does not give a
condition one.,, at all. Further, square integrability gfjust

whereh is given by Eq.(46). Integrability of AdA requires  requiresa,,=0, where we have already discussed the case

a.,,#0, as may be checked easily. In addition, square intex,.>0. So let us investigate the case

grability of g (i.e., of the zero moderequiresa.,,=0 and,

therefore, we end up with the condition a,=0, t(»)=t,=const (60)

jAdAI47T(27T—4)f dr
0

a,>0. (53  a little bit closer. Square integrability @f requires

125001-6
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t2 T 2m 2(1+1)
2——>—=t2>3=f.e| —+km,—+km|, keZ. h=(1+t3) " t'+ t], (70)
1+t 2 3 3
(61
241 2 1 1
Theref I f is all "=| - + - . 71
erefore, now a broader class of zero modes is allowed, g i T 1re g (71

where the S(R) matrix U, Eq.(30), may tend to a mixture of

monopole and Skyrmion far—ce, Again, we discuss the condition of finite Chern-Simons ac-

=00 )~ + . 1 . il q
U(r ) COSfocl Slnfocllla', Sin fw>3 co§fm( ) (19)1 (53) F |rther,g behaves ||ke

limg(r)~r', limg(r)~r~'"2, (72)

r—0 r—o

In this case, a quantity that generalizes the “topological
number” N, Eq. (56), to noninteger values, may be com-

puted from the matrbU, Eq. (30), where the first condition is just the usual angular momentum

barrier.
N(f.,):= ftr(UTdU)3:ifm sir? f(r)f'(r)dr If only square integrability of the magnetic field is re-
1272 mJo quired, then agaim.,=0, t(«)=t,, is possible, and we find
A 5 1 as the condition for square integrability of
foe
=—f sinzfdf=—<fw——sin2fw>, (63 349
™o m 2 2> (73
_ ) ] 1+2l
[f(0)=0]. Obviously, it reduces to the integer /.. for
pure monopoles and Skyrmions.
V. SUMMARY
IV. HIGHER ANGULAR MOMENTUM For a whole class of zero modpsnsatz(33) with condi-

. . o tion (47)], we have shown that their existence is related to a
plezt]go?gttigzzsl)ogs(]a;téf)irl\éi?n(tjhzitr;wlirlla?(igllﬂ(t)igrfg ,fg%'?é;m topological quantization conditiofthe topological number
with hiaher an ’ular momentum. Using instead of th (63) is an odd integdrprecisely when the additional require-
g’ E T S g Instead ot th€ CONvant of finite Chern-Simons action of the corresponding
stant spinorbo=(1,0)" the spinor gauge field(74) is imposed geometrically, this topological

quantization condition implies that the associated 3 ha-
| +m+ 1/2Y| m—1/2

®, = , (64) trix (30) is of the monopole typle This result clearly points
’ —NI=m+12Y mip towards a topological origin of the whole problem, and it
may also be of some interest to Chern-Simons quantum field
whereme[ —1—1/2]+1/2] andY are spherical harmonics, theory.
they found the solutions From the above construction it seems that we related the
| o |3 existence of a square integrable zero mode to a topological
W m=r(1+r%) (1+X)Dy m, (65  property of this zero modéi.e., of the SW2) matrix U]
rather than of the gauge field. This is not necessarily true,
‘I’;r,mﬂ"l’l,m however. Remember that all our zero mo@@3) are of the
Alm=(21+3)(1+r?) . (66)  specific type
\I,I,mwl,m
This may be immediately generalized to our an¢ag. For V=gUd,, —id¥=h¥, A :Etr Ute,Uas,
the spinor 2
(74)
¥ =[C(r)1+iS(r)nc]P ., (67

i.e., A is related to the matrixJ in a simple algebraic man-
we find, by a computation that is similar to the one leading toner. This is true even for the scalar functibn which is

Egs.(42), (43 determined algebraically biy(andt’) and does not depend
on g, see Eq(46). Therefore, the S(2) matrix U of ansatz
) 2+1 (30) uniquely determines the gauge fiedd Eqs. (46), (74),
S'+ TSZ hC, 68 andit may well be that it is ultimately the topology Af that

determines the existence of zero modes.
Still, there remain many open questions. E.g., our ansatz
C'—-C=-hS (69) (33) [or Eq. (67)] only provides one zero mode per gauge
r field, and it would be interesting to find examples with more
than one zero modéf they exish. Further, one would, of
or course, like to understand, which topological property deter-
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mines the number and existence of zero modes in the genenanhit vectors in Eq(33), e.g., the ones with winding number
case. These questions are subject to further investigation. m corresponding to the rational map¢z) =z", m=2. The

It should be mentioned here that there is an index theoreranswer is no. The point is that every zero mode has to obey
for odd-dimensional open spaces liR?, however, for a the condition
slightly different field contents. The Callias index theorem
[10] was formulated for a Dirac operatf, ¢ in a space of
odd dimensions in a Yang-Mills-Higgs backgroundl,®),
and there it is actually the nontrivial, monopolelike behavior
of the Higgs field® for r —o that accounts for a nonzero
index (i.e., the difference of the number of zero modes of
D¢ and DL@). Whether this index theorem may be of
some relevance in the present context is not yet clear.

Finally, we want to remark that an apparently obvious The authors gratefully acknowledge useful conversations
generalization to Eq(33) does not work. In Eq(33) the  with M. Fry. C.A. is supported by a Forbairt Basic Re-
simplest possible unit vectar(6,¢), Eq. (32), is used[cor-  search Grant. B.M. gratefully acknowledges financial sup-
responding to the rational m&p(z) =z]. One may wonder port from the Training and Mobility of Researchers scheme
whether new solutions may be obtained by allowing for othef TMR No. ERBFMBICT98347%

VTV =0. (75)

If one inserts ansat@33) with a higher windingn into this
condition, one immediately realizes that it cannot be fulfilled
as long as botfi andg only depend om.
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