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Remarks on conserved quantities and entropy of BTZ black hole solutions.
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The Bamados-Teitelboim-ZanellBTZ) stationary black hole solution is considered and its mass and angular
momentum are calculated by means of théhéo theorem. In particular, relative conserved quantities with
respect to a suitably fixed background are discussed. Entropy is then computed in a geometric and macroscopic
framework, so that it satisfies the first principle of thermodynamics. In order to compare this more general
framework to the prescription of Wald and co-workers, we construct the maximal extension of the BTZ
horizon by means of Kruskal-like coordinates. A discussion about the different features of the two methods for
computing entropy is finally develope50556-282(199)01420-4

PACS numbeg(s): 04.70—s, 03.50--z

[. INTRODUCTION a serious comparison between the two methods is important
also because from a theoretical viewpoint Wald’s framework
Since its discovery in 1992, the so-called "Bdons- requires additional hypotheses with respect to ours: basically
Teitelboim-Zanelli(BTZ) black hole solution has often been involving the surface gravity which in our more general
used in current literature as a simple but realistic model foframework is not required to be nonvanishing in order to
black hole physics(see [1-5], and references quoted ensure the horizon to be kifurcate Killing horizon (see
therein. Specifically, it has been assumed asst modefor [13,14). In the BTZ solution these additional requirements
both quantum gravity and for problems related to black holeof Wald hold true(with the exception of the extremal case
entropy. Recently, the BTZ solution has been shown to be , =r_). Then the entropy calculated by using Wald's
the effective solutionn a dimensional reduced model and recipe necessarily agrees with our computation. Other ex-
many black holes ensuing from string theory are described immples in which Wald’s additional hypotheses do not hold
terms of the BTZ solution, at least near the horizon. [such as the Taub-NUTNewman-Unti-Tamburinp solu-
Certainly, many facts about entropy remain to be undertions| will be considered elsewheirsee[16]), whereby we
stood from both a statistical and a geometrical viewpoint. Inshall show that our method works also when Wald’s recipe
recent investigations of ours we, therefore, aimed to reviewails for lack of properties of the concerned solutitthus
what is known from a geometrical macroscopic viewpointproviding a geometrical recipe for the correct entropy, which
and to add some considerations which, as far as we knovgan be calculated on a statistical basis aglLif).
are new in the literature. In paper Il we shall analyze a triad-affine theory with
The results of our investigations will be presented in twotopological matter but no cosmological constant, which is
papers, whereby the material has been divided on the basis calledBCEAand describes the BTZ spacetimes. This theory
coherence and shortness considerations. We shall refer tms already appeared in the literat(see[5,18]). It has been
them as paper (the present papeand paper ll(forthcom-  shown that it exhibits an “exchange behavior” between con-
ing). In paper | we consider the standard BTZ solution, seerserved quantitiegthe total mass, i.e., the Nwer conserved
as a vacuum solution for standard{2) general relativity —quantity associated to a timelike vector is the paraméter
with (negative cosmological constant. We review and apply which should correspond to the angular momentum of BTZ
to the specific example some methods for defining conservespacetimes when described in standard general relativity
guantities(as is well known, there are several methods inFor what concerns the entropy, an exchange of inner and
literature and it is almost impossible to review all of them in outer horizons has also been noti¢ede[5]). In paper Il we
a single paper; hereafter, we shall follow the covariant apshall first obtain the same results in a geometrical and global
proach to conserved quantities based on théthdlo formalism. Then we shall explicitly build a purely metric
theorem—sed 6—11]). Moreover a proposal for fixing a (natura) theory, which we shall caBCG theory equivalent
background spacetime is suggested in order to correct ste the triad-affineBCEA The BCG theory can be obtained
called anomalous factorgsee[12]) and to produce the ex- through a generalized “dual” Legendre transformation,
pected values of conserved quantities. which may be viewed as a generalization of the Palatini first-
Then we calculate the entropy by relying on a geometricabrder variational approach to general relativity. Starting from
and global framework presented [iil]. As it was already the BCG Lagrangian conserved quantities and entropy will
discussed there, our general method contains the proposal bé again calculated for BTZ spacetime. The results so ob-
Wald and co-workers as a particular cdsee[13—15, and  tained, in our opinion, will enlighten some of the ambiguities
references quoted thergirHere we apply also the original present in theBCEAtheory. In particular they allow one to
Wald’s recipe to show that it allows us to obtain the sametruly isolate the “matter” contributions to conserved quan-
results but by a much longer route. We believe, in fact, thatities from the purely gravitational contribution, so as to bet-
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ter explain the calculation previously performed by others inis expressed by the following identity which holds for any
BCEAtheory (see[5)). vector field£ over M:

Il. THE BTZ SOLUTION A0el) =g+ P @D

Let us consider a spacetime manifoti[for the moment Where £ denotes the Lie derivative operator andis the
of arbitrary dimensiom=dim(M)] and the bundle Lof)  contraction(or inner product of forms alongé. By expand-
of Lorentzian metrics oveM. Let us fix a trivialization and iNd the Lie derivative of the Ricci tensor both field equations
denote byg,, the coefficients of the metric fielfused as and the Nther conserved current can be found. In fact, by

coordinates on the fibers of Lav{)], by ¥}, the Christoffel defining

symbols(i.e., the coefficients of the Levi-Civita connection . yx _s y y =y 3.2
of the metricg), by r ,, the Ricci tensor, and by the scalar pr P STy T e ’
curvature(of the metricg). the Lie derivative of the Ricci tensor can be expressed as

The Hilbert-Einstein Lagrangian with negative cosmo-fg|lows:

logical constant\ = — 1/ is

£, =V Eg(U),). (3.3

L=Lds=a(r—2A)gds, (2.1
Then we can recast E3.1) as follows:

where ds=dx'0dx?0...0dx" is the standard basis fam
forms overM anda#0 is a coupling constant. To compare
with results in[5] one has to setr=3. Let us denote the

Div &(L,&)=WI(L,&) (3.9

. . with
covariant naive momentay
E(L,&)=(p*"E),,— LEN s, ,
w o L (L&) =(p"Egu),— LEMds,
Tuv= 2wy~ & M= 5190 v v
wrggrr ~ NI T R T8 T RS WIL,6)=—(,,Eg"")ds (35
2.2
oL 23 HeredsM=iHM dsis the standard basis fon{- 1)-forms; Div
P == . =a\gg", denotes the formal divergence operator which acts on forms
. depending ork derivatives of fields according to the general
so that for the variation of the Lagrangié®.1) we have rule
v " ik+t1 _\x i — ik V%
SL=m,,89""+pH*or,,. (2.3 (j*"o)* Div(w)=d((j 0)* ), (3.9

As is well known,r,,=0 are the Euler-Lagrange equa- whered is the standard differential of forms ovat, j* de-
tions for the Lagrangiaf2.1), i.e., Einstein field equations. NOtes derivation up to ordérand o denotes any section of
In dimension 3 there is a two-parameter family of blackth® configuration bundigin our case the bundle is Ldw(),

hole solutions(called BTZ black holesgiven by (see[1]) while kis usually 1 or 2, depending on how many derivatives
of g enter w; recall thatg enters the Lagrangian and the

Ogrz=— N2dt?+ N‘2dr2+r2(N¢dt+ d¢)2, (2.4  theory through its second-order derivatives appearing in the
curvature tensdr For functions one has D= (d,F)dx*,

where we set where the differential operators, are calledtotal formal
derivatives

. r2 g2 r2+r2 Following the general prescription 7] and [19], by

N°=—p+ |—2+ a2 KTz computing Eq.(3.5) along any configuratiorr, we can de-

fine the currents &(L,&,9) and W(L,&,9) on M. If g is a
J solution thenW(L,§,9)=0 and&(L,&,9) is conserved, i.e.,
Ny=—5>, J=2 : (2.5 itis aclosed form oM. Using Bianchi identities in E(3.4)
and integrating by parts, we caalgorithmically) recast(see
[7,11,19) the currentg(L,¢) as

We recall that it has been shown [&] that u and J are,
respectively, the Arnowitt-Deser-MisnédADM) mass and &L §)=?(L &)+ DivIU(L, &)

angular momentum at infinity. One can then apply various ' ' e

methods to compute the conserved quantities and the entropy 1

via Nother’s theorem. In the present paper, we shall summa-  &(L,&)=2a\/g Fuv™ 579t Ag,, |9 ¢ ds,
rize and compare various approaches.

UL, &) =a\gVrerds,,, (3.7)

Wheredsw=i(.,ﬂ ds, is the standard basis fon{ 2)-forms

ll. NO THER THEOREM

The Lagrangian(2.1) is covariant with respect to the ac- > -
tion of diffeomorphisms of spacetim. Infinitesimally this  over M. Again the current&(L,&,9)=(j%g)*&(L,¢) van-
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ishes along solutions of field equations, whif¢éL,&,q) IV. THE TOTAL CONSERVED QUANTITIES

—&(L,&,9)=dU(L,&,9)=(j%g)* DivU(L,¢) (being exact Let us associate to any vertical vector field

is strongly conserved.e., it is conserved along any configu- = (5g#*)9/ag** over the bundle Loi), i.e., for any varia-
rationg (not necessarily a solution of field equationSor a  tjon §g~” of the (inverse metric, an (— 1)-form:

generic Lagrangian curredf(L,£) is known as asuperpo-

tential; for the Lagrangiarf2.1) (with or without cosmologi- =a(aMg -5 §° mv

cal constant its value (3.7) is also known as the Komar F(LQIIXI= (978, 0u ) V(59 )\/ﬁdsA,(Ahl)
potential(see[20]). Once we specify a covariant Lagrangian

L and a vector field on M, a conserved curref(L,§) and  where the sectiog of Lor(M), i.e., a Lorentzian metric, is
a superpotential/(L,&) are defined; moreover, once we not required to be a solution of field equations. The corre-
specify a configuratiog, we can compute them apobtain-  spondencd’(L,g) is calledPoincareCartan morphismRe-
ing &(L,€,9) andU(L,£,9). Now, let a regiorD be a com-  calling (see[21], and references quoted therethat Lie de-
pact submanifold with a bounda#p which is again a com-  rivatives £:g of sectionsg can be interpreted as vertical
pact submanifold oM; if g is a solution of field equations, vectors over Lori!)

the conserved quantit®y(L,£,9) is defined as the integral

over a regiorD of codimension 1 of the curres(L,£,g), or K

equivalently as the integral @f(L,¢,g) over the boundary E£g=(VHE'+V"EH) g (4.2
dD of D because of Eq(3.7). In applications one usually

choosedD to be a spacelike slice of the ADM splitting such e can rewrite the currex8.5) as

thatdD is (a branch ofthe spatial infinity. We stress that all

quantities defined in Eq3.7) areR-linear with respect to the E(L,&9)=T(L,g)[£.g]—i.L. 4.3
vector fieldé We also stress thatis by no means required ¢ ¢
to be a Killing vector of the metrig. The formF(L,q) is irrelevant to field equations, because

Reverting to the BTlequtio@2.4), notice that the intg- it enters a divergence once one integrates by partsZE8.
gral over the “sphere”S; of radiusr of the superpotential 54 yses Eq3.1). However, it is tightly related to conserved

(3.7) for the vector fields); andd, gives, respectively: quantities and the Nber theorem. These are in fact general
features of any field theorfgee]7,11], and references quoted
r2 therein for the general framewaork
Q(L,d;,9812) = fslu(L’a‘ ,gBTZ):47m|—2, The variation of the total conserved quantity is

T

5XQD(Li§!g): fD 5X5(Li§!g)
Q(L,d4.,9812) = Llu(l-y% ,O872) = —27ad.

(3.9 =fDéx(F(L,g)[Egg])—fD£§(F(L,g)[X])
The mass QL,d;,0g17) diverges as one considers the limit +f H(F(L,@)[XD), 4.4
r—oo; this is a problem analogous to the well-known )

anomalous factor problenwhich the Komar potential is

known to be affected bysee[12]). In other words the inte- which suggests to us to define the variation of the corrected
gral of the superpotential does not give the correct masgonserved quantities by the prescription

though it gives the expectedangular momentum

Q(L,d4,9817). Here the anomalous factor problem is even N o

worse than for Kerr-Newman metrics or for other asymptoti- ~ 9xQp(L,£,9)= LD{5><U(L,§.9)—Ig(ﬂ“(L,g)[X])}.
cally flat stationary solutiongsee[8-10]). In fact, while (4.5
there it was just a matter of a wrong factor to be corrected,

here it iS primarily a diVergence to be Cured. Th|S diVergenC¢0r the examp'e under investigation, using expresgienB
is typically due to the fact that the BTZ solution is an as-and(4.1), we get

ymptotically anti—de Sitter spacetime and the magnitude of

the timelike vector field); diverges as it approaches infinity. A _

There are(at least two different possibilities for over- oxQo(L, 01, Gerz) = 2madp,
coming this situation. First, one may define ttwtal con- . (4.6
served quantitiesvithout any reference to theifensities On oxQp(L,d4,98712) = — 2madd,
the other hand, one can define the conserved quaintity
region D as the integral oveD of its density; then the total Which can be integrated to give the total conserved quantities
conserved quantity is obtained by taking the limit to the
whole spacelike slice, provided that the method converges to Qp(L,d;,dg12) =2mau, QD(L,ad) ,0p12)=—27ad.

a finite result. 4.7
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We see that this method provides directly the total conservedal importance of some background for the theory of con-

guantities(as already calculated [i]) and no extra data are served quantities was already recognized in the literature;

needed other than the solution and the Lagrangian. see, for example[3,17,23. As an example, it has been
In other words, the relevant quantity to replace the Komaiproved(see[10,23) that if one analyzes theharged Kerr-

potential is SxU(L,&,9)—i(F(L,9)[X]). This quantity is Newmann solutions, there exist suitable backgrounds which

uneffected by the addition of divergences to the Lagrangianprovidereasonablemass densities which when integrated on

In fact, if one considers a Lagrangiari=Div(B), whichis  the boundary of a spacelike slidee., on spatial infinity

a total divergence, one easily obtaind4(L’, E,Q) give the correct total mass.

—ig(IF(L",9)[X])=0 identically. Of course the choice dB(L,¢£) is not unique. In particu-
As a second alternative approach, one can instead look fdar, and for the sake of simplicity, the backgrouﬁgv can

a (h—2) form over M which can be integrated over the be assumed to be the Levi-Civita connection of some back-

boundary of a regio to give directly the conserved quan- ground metrich,,, (also considered to remain unchanged un-

tity in that region. This approach relies on the formal inte-der deformations Then one can add a term which depends

gration of Eq.(4.5. To perform this task one has to specify just on the backgrounmgy,rzy), which, being unchanged

some extra information. First, one fixes some boundary conunder deformations, does not effect E4.8). To fix such a

ditions, e.g., usually one requires that field variations vanisherm one can reasonably require thahllfv is also a solution

on the boundaryD. Then one seeks for a curreB(L,§)  of field equationgas it seems physically and mathematically

such that, once we set, as usug(l.,¢,g) for the pullback of  reasonable to requirethe relative conserved quantities of

B(L,¢) along a sectior, the following holds: the background with respect to itself vanish. This amounts to
) redefining the correction as follows:
SxB(L,&9)|sp=1:F(L,)[XD|sp - (4.9
. . 5 (h)
Usually there is no sucliglobal and covariantcurrent B(L,g)z[p"”wzygmra\/ﬁh“”vafx]dsxp, 4.13

B(L,&). For example, for standard general relativity one has

i(F(L,g)[X])=8(p*u}, £7ds,,), 4.9  whereV(" denotes the covariant derivative induced by the
backgrounch. Generally speaking, the correcti¢h13 may
which does not lead to a possible choice Rit_,¢) because be used also in asymptotically flat solutions when, however,
prrul, £7ds,,, is not covariant, i.e., it is not a form on the there is a preferred vacuumh¢ 7= Minkowski metrig
bundle sincau’,,, is not a tensor. To overcome this problem Which, being flat, reduces E(#.13 to the simpler correction
one has to fix some “coherent” background connectib:n (4.10.

(which is assumed to be uneffected by deformaticasd One can alsalerive both the corrected superpotentidls
define — B and/— B as(uncorrectefisuperpotentials of some suit-
able Lagrangian. In particuldf— B is the superpotential for
wh,=uy,—U),, thefirst-order Lagrangiarfor standard general relativitgee
B(L,&)=p"'W) £ ds,,, szf,ﬁy— LAY (10D
r,=ri,.
(4.10 Li=[a(r—2A)\g—d\(p**w),)]ds,  (4.19
In this way the correction terr3(L, &) is covariant; one can ) ~
recast Eq(4.5) as whered, denotes the formal divergence while- 15 is the

superpotential for the equivalent Lagrangian

5XQD(L!§19):f(yD{éxu(ngag)_Ig(F(Lig)[X])} 'I:lz[a(r_zA)@_dx(puvwzy)_a(R_zA)\/ﬁ]ds’

(4.15
LD HulL.£9-BL.Eg)l @11 whereR is the scalar curvature of the backgroumdn both
cases the background has to be consideredpasameterso
that can be formally integrated giving that£ has to be a Killing vector of the backgroufsee[10]).
We remark that both Lagrangiaié.14) and(4.15 induce a
A — _ well-defined action functional for a variational principle
Q(L.£9) J;D[LI(L,g,g) L&) (412 based on fixing the metric on the boundary. We stress that, in
general, these actions differ for surface terms from that used
We stress that in order to construct a formula like Eg12) in [3].
a background connection is needed some other “global- For the Lagrangiar{2.1) and the solutior(2.4) one can
izing” tool). The new conserved quantiti€¥,(L,&,g) de-  obviously choose as a background another metric of the
pend both on the solutiog,,, and on the background con- same type2.4) with fixed values f4,Jo) as parameters. By
nection Ffw. Then, they have to be interpreted as thea direct computation we find for the corrected superpotential

relative conserved quantities with respect[tg,,. The physi-  #/— B the conserved quantity
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whereo denotes the spatial infinity of a spacelike slice. Now
(4.16 one can prove under quite general hypothdbasically just
. ' requiring ¢ to be a Killing vector of the solutiog) that the
Q(L,dy,9812) = —27a(I=Jo). integrand quantitysy(L,£,9) —i(F(L,g)[X]) is a closed

) ) ] form, so that its integral does not depend on the integration
Here the Komar potential of the background in B413 is  gomain but just on its homology.

essential in order t@ure the quadratic divergence of the  Then one can define the following quantity:

Komar potential of the solution. This background fixing con-

tains, as particular cases, the backgrounds usually adopted in 1 )

the literature(see, for example[1—3]). In particular, the 5x3=fL(5XU(|—-§,9)—lg(F(L,g)[X])), (5.3

limit (ug—0, Jp—0) corresponds to the vacuum state in

which the black hole disappears. Another allowed choicgyneres is any spatial surface such that-3 does not en-

analyzed in the literaturesee{3]) is the anti—de Sitter space- ¢jose any singularitfin homological notation it is a bound-

time which corresponds to the different limifug— —1, ary). Then Eq.(5.3) can be integrated to give a quantiy

Jo—0). which [because of Eq(5.2)] satisfies the first principle of

thermodynamics and which is then a natural candidate to be

V. ENTROPY interpreted as the entropy. We remark that we do not need

anything but a one-parameter family of solutiagfs, and a

Killing vector ¢ for the unperturbed solutiogﬁv (here and

everywhere we denote Bythe infinitesimal generator of the

family, which is a solution of the linearized field equatipns

In particular, differently from[13,14], and[15], we do not

. i ) require anything about the maximality of the solution under

for any variationX tangent to the space of solutions, iX.,  consideration, anything about horizons, and anything about

has to satisfy linearized field equations. H&r@nd () are g \anishing of¢ on horizons(see[11,13). This latter re-

constant quantities with respect to variatioig (namely  mary is particularly important for the actual calculations be-

they are related to the unperturbed solutiodsually they cause, as we shall see, it simplifies considerdbbth con-

are assumed to represent the temperature and angular Ve'Qfe‘ptually and computationa)lghe expressions involved.

ity of the horizon of the black hole, so th&tcan be inter- Let now « denote the surface gravity so tHRt «/(27)

preted as the physical entropy of the system. The physical (e temperature of the Hawking radiation of BTZ, as

value of these parameters has to be provided by physicalqwn in[4,24] by means of Euclidean path integrals. Let us

arguments, since they are almost undetermined in the preseéth:_N¢(r+) which can be shown to be the angular

context(see[1,4,5,24,29). Of course, one can compute one |ty of the BTZ horizon. We remark that because of the
of them out of the others by requiring that B§.1) is inte- 56 of() the Killing vector & becomes null on the horizon
grable so that there exists a state functioto fulfill the first N:(r=r,). We then easily get

principle of thermodynamics. However, other parameters
have to be provided by physical argume(gsy., T has to be 5S=8m2adr ., (5.4
the temperature of Hawking radiatiprirhe ultimate mean-
ing of the work terms in Eq(5.1) is that, for example$267  which in turn gives
is the change in the total mass along an isoentropic transfor-
mation. It has been shown elsewhéeee[1,4,5) that, in S=8nlar, (5.9
order to make this truef) has to be the angular velocity of
the horizon. Further terms may in general appear in(gq) ~ for the entropy. .
due to gauge charges. Since the example which is here under The original Wald's recipe for the entropy needs to
consideration has no further gauge symmetries, we do nathoose a particulat, (the bifurcation surfageon which the
consider these further contributions. Killing vector &, and then the whole teri(I'(L,g)[ X]) in
Of course, entropy should also satisfy further require-Eq. (5.3), vanishes. Of course the existence of such a surface
ments(e.g., the second principle of thermodynamiddow- is ensured just in the maximal extension of the solutjéor
ever, these additional requirements are generally out of Coqéxample for the Schwarzschild solution this surfaceor-
trol so that the first principle is what one usually requ"esrespondé to the surfadé=0 V=0 in Kruskal coordinates.
with the hope of checking the second principle afterwards. \jiice that the t\No-spher’eJ=V=O is not covered by
By solving Eq.(5.1) with respect t05xS and by setting  ghparical coordinatest.f,6,¢) or outgoing (nor ingoing

£=0,+Qd, one finds(see[11]) coordinates. To be more precise, if one considers any cross
sectiont=t, andr =2m of the horizon, ther¢ vanishes on

Q(L,d;,98712) =2ma(u— po),

The entropy of ablack holg solution is defined to be a
guantity that satisfies the first principle of thermodynamics:

1 . .
SvS= [ Sv— 08 none of it for any value of,. Thu§ Kruskal coordinates are
xS=gloxm xJ] needed in a somehow “essential” way to apply Wald's
1 recipe]
_ : In order to apply the original Wald’s recipe to the BTZ
== | (oxU(L,EQ)—iF(L,9)[X]), (5.2 PPy 9 P
T L( UL, £,9) T H(L.g)X]) ®2 solution, one should first build Kruskal-type coordinates as
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shown in[26]. Once one has verified thatis a nonvanishing U=e"Y,

constant on the horizofwhich is false in the extreme case

this can be done in two steps. First of all we define B P
Eddington-Finkelstein coordinates,p, ¢) which are the pa- V=-—pe ™ ex;{ ZKJO H(P)dp> ,

rameters along the flows of the vector fields{, X) we are (5.11)
going to define. The vector field=d,+ 4, is the Killing

vector whose Killing horizonV has to be extended; is the 1 1

parameter along its flovX is a vector field tangent t& such H(p)= m— 5np’

that XV, u=0. Finally, { is a vector field such that the fol- P P

lowing conditions have to be satisfied: The productUV depends just op and can be regarded as an
implicit definition of p as a functiorip(UV). Then the BTZ

N —
V=1, metric reads as
9(£,6)=1 [{*=0 on N, d(r(p))
9(¢£,X)=0. +W(r(p))de?,
In these new coordinates the vector fields{(X) read as f(r(p))
G(UV)= ——. (5.12
KUV
&= au’ In these coordinates the Killing vect@rreads as
J = Vv i u i 5.1
J which finally vanishes fol:(U=V=0).
X= @- Thus we have extended the Killing horizévito a bifur-

cate Killing horizon and we have identified the bifurcate sur-

Notice that even in Eddington-FinkeIStein coordinates thqaceg_ Now one can “easi]y” compute the entropy:
vector field¢ does not vanish anywhere in the chart domain.

The BTZ metric reads as 1 p=0 5
5)(82 ?f 5XL{[§]3d(p = 5)(S=87T a5r+
gerz=—f(r(p))du?+2dudp+®(r(p))du de vmv=o
+W(r(p))de?, (5.9 =S=8n’ar ., (5.14
where we set wherel/[ £];de is the angular part of the superpotential 1
form U[ £].
f(r)=N?—r%(N,+Q)?, We stress that the first expression in E8114) for 84S is
meaningful just on the bifurcate surface where we can ignore
NZ—r2(N5—Q?) the contribution of the term.(I"(L,g)[ X]). We stress more-
®(r)= QO ' (3.9 over that the above method fails in the extreme case. In fact,
in this casex=0 and the derivation of the Kruskal-type co-
N2_r2(N¢_Q)2 ordinates fails at Eqg5.11) and (5.12 [notice that in this
W(r)=-— 2072 : case f(r) identically vanishes On the contrary, as we

proved[see Eq(5.4)] the second expression in E&.14) for
Herer (p) is obtained by inverting the change of coordinates,%xS IS correct on any surfack. In this way the entropy is

namely not related directly to a quantity computed on the horizon
(see[17] for a discussion of entropy of Taub-NUT solu-
rodr tions). The computations of this section have been carried
p(r)= fr m out by using themAPLE v and TENSOR package.
+
W (r) (510 VI. CONCLUSION AND PERSPECTIVES
F(r)= re - We have determined and discussed the entropy of BTZ

solutions. In our framework the entrof$.2) is clearly re-
We remark that=(r) is well defined in a neighborhood of lated, by its own definition, to Ntber charges by the first
the horizonV. Now we can define Kruskal-type coordinates principle of thermodynamics; actually our proposal is to de-
(U,V,¢) as terminea priori exactly the quantity that satisfies the first
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principle of thermodynamics, so that it can laeposteriori  tion to treat the extremal cases, too. Clearly, the extreme
physically interpreted as the entropy. cases have to be discussed separately and we hope to address
At first, entropy is a quantity computed at spatial infinity the problem in a forthcoming paper. As we already noted in
(5.2), as all conserved quantities are. Then one can computie Introduction, paper Il will revisit the above results in the
it also by an integral on the finite regions, provided that thelight of BCEA theoriegsee[5] and[18]).
Nother generatok is a Killing vector of the solution under Future investigations will be devoted to those cageg.,
consideratioisee Eq(5.3)]. Finally, if the surface gravitk ~ Taub-NUT solutions in which Wald’s prescription for en-
does not vanish on the horizon, one can extend such a hottropy cannot apply at all, as noticed by Wald hims@lée
zon to a bifurcate Killing horizon and compute integrals on[26]) and other author&see als¢17]). In these cases, Wald's
the bifurcate Killing surface on whicl§ vanishes[see Eq. prescription fails because of various reasons, e.g., because
(5.14]. This latter step is completely useless and computathe orbits of timelike vectors are closed and extra contribu-
tionally boring in applications as well as in the theoreticaltions to the entropy are due to singularities other than those
framework, as we hope to have shown in the present papeenclosed in Killing horizongin particular theMisner string.
Furthermore, our framework, being intrinsically and geo-Both these reasons prevent the application of the latter pre-
metrically formulated in a global setting, is in fact valid for a scription. Since our general prescription does not require the
much larger class of theories, namely all field theories with axistence of a bifurcate Killing surface, it allows us to over-
gauge invariance, the so-callgauge-natural theoriegsee  come these problems, in Taub-NUT solutions. Results will
[11]). For the same reasons, no requirements on signatutee published in16], where they will be shown to agree with
and/or dimension of spacetime are needed, as our framewotkose found if17] by another formalism.
relies only on globality and covariance of the Lagrangian. We finally remark that our formalism is hopefully in a
We remark that in the original Wald's procedure#0 is  good position to be generalized to nonstationary black holes,
used for two different purposes, namely to compute the temsince extra contributions due to nonstationarity seem to be
perature and to prove the existence of the bifurcation surunder control.
faces. Nonextremality is essential to the second issue. Since,
in the extreme case, the construction of Kruskal-like coordi-
nates and bifurcation surfaces break dolaa Wald himself ACKNOWLEDGMENTS
noticed, we believe that because of this there is little hope to  We are grateful to I. Volovich for having long ago drawn
treat the extreme case through any approaches based on biir attention to the entropy formula of Wald, as well as to R.
furcation surfaces. We instead believe that our approachylann for having directed our attention to the BTZ solution
which does not use a bifurcation surface, is in a good posiand for useful discussions about it.
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