
PHYSICAL REVIEW D, VOLUME 60, 124012
Remarks on conserved quantities and entropy of BTZ black hole solutions.
I. The general setting
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~Received 1 March 1999; published 24 November 1999!

The Bañados-Teitelboim-Zanelli~BTZ! stationary black hole solution is considered and its mass and angular
momentum are calculated by means of the No¨ther theorem. In particular, relative conserved quantities with
respect to a suitably fixed background are discussed. Entropy is then computed in a geometric and macroscopic
framework, so that it satisfies the first principle of thermodynamics. In order to compare this more general
framework to the prescription of Wald and co-workers, we construct the maximal extension of the BTZ
horizon by means of Kruskal-like coordinates. A discussion about the different features of the two methods for
computing entropy is finally developed.@S0556-2821~99!01420-4#

PACS number~s!: 04.70.2s, 03.50.2z
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I. INTRODUCTION

Since its discovery in 1992, the so-called Ban˜ados-
Teitelboim-Zanelli~BTZ! black hole solution has often bee
used in current literature as a simple but realistic model
black hole physics~see @1–5#, and references quote
therein!. Specifically, it has been assumed as atest modelfor
both quantum gravity and for problems related to black h
entropy. Recently, the BTZ solution has been shown to
the effective solutionin a dimensional reduced model an
many black holes ensuing from string theory are describe
terms of the BTZ solution, at least near the horizon.

Certainly, many facts about entropy remain to be und
stood from both a statistical and a geometrical viewpoint
recent investigations of ours we, therefore, aimed to rev
what is known from a geometrical macroscopic viewpo
and to add some considerations which, as far as we kn
are new in the literature.

The results of our investigations will be presented in t
papers, whereby the material has been divided on the bas
coherence and shortness considerations. We shall refe
them as paper I~the present paper! and paper II~forthcom-
ing!. In paper I we consider the standard BTZ solution, se
as a vacuum solution for standard (211) general relativity
with ~negative! cosmological constant. We review and app
to the specific example some methods for defining conse
quantities~as is well known, there are several methods
literature and it is almost impossible to review all of them
a single paper; hereafter, we shall follow the covariant
proach to conserved quantities based on the No¨ther
theorem—see@6–11#!. Moreover a proposal for fixing a
background spacetime is suggested in order to correct
called anomalous factors~see@12#! and to produce the ex
pected values of conserved quantities.

Then we calculate the entropy by relying on a geometr
and global framework presented in@11#. As it was already
discussed there, our general method contains the propos
Wald and co-workers as a particular case~see@13–15#, and
references quoted therein!. Here we apply also the origina
Wald’s recipe to show that it allows us to obtain the sa
results but by a much longer route. We believe, in fact, t
0556-2821/99/60~12!/124012~7!/$15.00 60 1240
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a serious comparison between the two methods is impor
also because from a theoretical viewpoint Wald’s framew
requires additional hypotheses with respect to ours: basic
involving the surface gravityk which in our more genera
framework is not required to be nonvanishing in order
ensure the horizon to be abifurcate Killing horizon ~see
@13,14#!. In the BTZ solution these additional requiremen
of Wald hold true~with the exception of the extremal cas
r 15r 2). Then the entropy calculated by using Wald
recipe necessarily agrees with our computation. Other
amples in which Wald’s additional hypotheses do not h
@such as the Taub-NUT~Newman-Unti-Tamburino! solu-
tions# will be considered elsewhere~see@16#!, whereby we
shall show that our method works also when Wald’s rec
fails for lack of properties of the concerned solution~thus
providing a geometrical recipe for the correct entropy, wh
can be calculated on a statistical basis as in@17#!.

In paper II we shall analyze a triad-affine theory wi
topological matter but no cosmological constant, which
calledBCEAand describes the BTZ spacetimes. This the
has already appeared in the literature~see@5,18#!. It has been
shown that it exhibits an ‘‘exchange behavior’’ between co
served quantities~the total mass, i.e., the No¨ther conserved
quantity associated to a timelike vector is the parameteJ
which should correspond to the angular momentum of B
spacetimes when described in standard general relativ!.
For what concerns the entropy, an exchange of inner
outer horizons has also been noticed~see@5#!. In paper II we
shall first obtain the same results in a geometrical and glo
formalism. Then we shall explicitly build a purely metri
~natural! theory, which we shall callBCG theory, equivalent
to the triad-affineBCEA. The BCG theory can be obtained
through a generalized ‘‘dual’’ Legendre transformatio
which may be viewed as a generalization of the Palatini fi
order variational approach to general relativity. Starting fro
the BCG Lagrangian conserved quantities and entropy w
be again calculated for BTZ spacetime. The results so
tained, in our opinion, will enlighten some of the ambiguiti
present in theBCEA theory. In particular they allow one to
truly isolate the ‘‘matter’’ contributions to conserved qua
tities from the purely gravitational contribution, so as to b
©1999 The American Physical Society12-1
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ter explain the calculation previously performed by others
BCEA theory ~see@5#!.

II. THE BTZ SOLUTION

Let us consider a spacetime manifoldM @for the moment
of arbitrary dimensionn5dim(M )# and the bundle Lor(M )
of Lorentzian metrics overM. Let us fix a trivialization and
denote bygmn the coefficients of the metric field@used as
coordinates on the fibers of Lor(M )#, by gmn

l the Christoffel
symbols~i.e., the coefficients of the Levi-Civita connectio
of the metricg!, by r mn the Ricci tensor, and byr the scalar
curvature~of the metricg!.

The Hilbert-Einstein Lagrangian with negative cosm
logical constantL521/l 2 is

L5L ds5a~r 22L!Ag ds, ~2.1!

where ds5dx1∧dx2∧...∧dxn is the standard basis forn
forms overM andaÞ0 is a coupling constant. To compa
with results in@5# one has to seta5 1

2 . Let us denote the
covariant naive momentaby

pmn5
]L

]gmn 5aAgS r mn2
1

2
rgmn1LgmnD ,

~2.2!

pmn5
]L

]r mn
5aAggmn,

so that for the variation of the Lagrangian~2.1! we have

dL5pmndgmn1pmndr mn . ~2.3!

As is well known,pmn50 are the Euler-Lagrange equ
tions for the Lagrangian~2.1!, i.e., Einstein field equations.

In dimension 3 there is a two-parameter family of bla
hole solutions~called BTZ black holes! given by ~see@1#!

gBTZ52N2dt21N22dr21r 2~Nfdt1df!2, ~2.4!

where we set

N252m1
r 2

l 2 1
J2

4r 2 , m5
r 1

2 1r 2
2

l 2 ,

Nf52
J

2r 2 , J52
r 1r 2

l
. ~2.5!

We recall that it has been shown in@2# that m and J are,
respectively, the Arnowitt-Deser-Misner~ADM ! mass and
angular momentum at infinity. One can then apply vario
methods to compute the conserved quantities and the ent
via Nöther’s theorem. In the present paper, we shall sum
rize and compare various approaches.

III. NÖ THER THEOREM

The Lagrangian~2.1! is covariant with respect to the ac
tion of diffeomorphisms of spacetimeM. Infinitesimally this
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is expressed by the following identity which holds for an
vector fieldj over M:

d~ i jL !5pmn£jg
mn1pmn£jr mn , ~3.1!

where £j denotes the Lie derivative operator andi j is the
contraction~or inner product! of forms alongj. By expand-
ing the Lie derivative of the Ricci tensor both field equatio
and the No¨ther conserved current can be found. In fact,
defining

umn
l
ªgmn

l 2d (m
l gn) , gmªgem

e , ~3.2!

the Lie derivative of the Ricci tensor can be expressed
follows:

£jr mn5¹l£j~umn
l !. ~3.3!

Then we can recast Eq.~3.1! as follows:

Div E~L,j!5W~L,j! ~3.4!

with

E~L,j!5~pmn£jumn
l 2Ljl!dsl ,

W~L,j!52~pmn£jg
mn!ds. ~3.5!

Heredsm5 i ]m
ds is the standard basis for (n21)-forms; Div

denotes the formal divergence operator which acts on fo
depending onk derivatives of fields according to the gener
rule

~ j k11s!* Div~v!5d„~ j ks!* v…, ~3.6!

whered is the standard differential of forms overM, j k de-
notes derivation up to orderk ands denotes any section o
the configuration bundle@in our case the bundle is Lor(M ),
while k is usually 1 or 2, depending on how many derivativ
of g enter v; recall that g enters the Lagrangian and th
theory through its second-order derivatives appearing in
curvature tensor#. For functions one has DivF5(dmF)dxm,
where the differential operatorsdm are calledtotal formal
derivatives.

Following the general prescription of@7# and @19#, by
computing Eq.~3.5! along any configurations, we can de-
fine the currents E(L,j,g) and W(L,j,g) on M. If g is a
solution thenW(L,j,g)50 andE(L,j,g) is conserved, i.e.,
it is a closed form onM. Using Bianchi identities in Eq.~3.4!
and integrating by parts, we can~algorithmically! recast~see
@7,11,19#! the currentE(L,j) as

E~L,j!5 Ẽ~L,j!1Div U~L,j!,

Ẽ~L,j!52aAgS r mn2
1

2
rgmn1LgmnDgmljn dsl ,

U~L,j!5aAg¹mjn dsnm , ~3.7!

wheredsnm5 i ]m
dsn is the standard basis for (n22)-forms

over M. Again the currentẼ(L,j,g)5( j 2g)* Ẽ(L,j) van-
2-2
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REMARKS ON CONSERVED . . . . I. . . . PHYSICAL REVIEW D60 124012
ishes along solutions of field equations, whileE(L,j,g)
2 Ẽ(L,j,g)5dU(L,j,g)5( j 2g)* Div U(L,j) ~being exact!
is strongly conserved, i.e., it is conserved along any configu
ration g ~not necessarily a solution of field equations!. For a
generic Lagrangian currentU(L,j) is known as asuperpo-
tential; for the Lagrangian~2.1! ~with or without cosmologi-
cal constant!, its value ~3.7! is also known as the Koma
potential~see@20#!. Once we specify a covariant Lagrangia
L and a vector fieldj on M, a conserved currentE(L,j) and
a superpotentialU(L,j) are defined; moreover, once w
specify a configurationg, we can compute them ong obtain-
ing E(L,j,g) andU(L,j,g). Now, let a regionD be a com-
pact submanifold with a boundary]D which is again a com-
pact submanifold ofM; if g is a solution of field equations
the conserved quantityQD(L,j,g) is defined as the integra
over a regionD of codimension 1 of the currentE(L,j,g), or
equivalently as the integral ofU(L,j,g) over the boundary
]D of D because of Eq.~3.7!. In applications one usually
choosesD to be a spacelike slice of the ADM splitting suc
that]D is ~a branch of! the spatial infinity. We stress that a
quantities defined in Eq.~3.7! areR-linear with respect to the
vector fieldj. We also stress thatj is by no means required
to be a Killing vector of the metricg.

Reverting to the BTZ solution~2.4!, notice that the inte-
gral over the ‘‘sphere’’Sr

1 of radiusr of the superpotentia
~3.7! for the vector fields] t and]f gives, respectively:

Q~L,] t ,gBTZ!5E
Sr

1
U~L,] t ,gBTZ!54pa

r 2

l 2 ,

Q~L,]f ,gBTZ!5E
Sr

1
U~L,]f ,gBTZ!522paJ.

~3.8!

The mass Q(L,] t ,gBTZ) diverges as one considers the lim
r→`; this is a problem analogous to the well-know
anomalous factor problemwhich the Komar potential is
known to be affected by~see@12#!. In other words the inte-
gral of the superpotential does not give the correct ma
though it gives the expectedangular momentum
Q(L,]f ,gBTZ). Here the anomalous factor problem is ev
worse than for Kerr-Newman metrics or for other asympto
cally flat stationary solutions~see @8–10#!. In fact, while
there it was just a matter of a wrong factor to be correct
here it is primarily a divergence to be cured. This divergen
is typically due to the fact that the BTZ solution is an a
ymptotically anti–de Sitter spacetime and the magnitude
the timelike vector field] t diverges as it approaches infinity

There are~at least! two different possibilities for over-
coming this situation. First, one may define thetotal con-
served quantitieswithout any reference to theirdensities. On
the other hand, one can define the conserved quantityin a
region D as the integral overD of its density; then the tota
conserved quantity is obtained by taking the limit to t
whole spacelike slice, provided that the method converge
a finite result.
12401
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IV. THE TOTAL CONSERVED QUANTITIES

Let us associate to any vertical vector fieldX
5(dgmn)]/]gmn over the bundle Lor(M ), i.e., for any varia-
tion dgmn of the ~inverse! metric, an (n21)-form:

F~L,g!@X#5a~glrgmn2d (m
l dn)

r !¹r~dgmn!Ag dsl ,
~4.1!

where the sectiong of Lor(M ), i.e., a Lorentzian metric, is
not required to be a solution of field equations. The cor
spondenceF(L,g) is calledPoincaré-Cartan morphism. Re-
calling ~see@21#, and references quoted therein! that Lie de-
rivatives £jg of sectionsg can be interpreted as vertica
vectors over Lor(M )

£jg5~¹mjn1¹njm!
]

]gmn , ~4.2!

one can rewrite the current~3.5! as

E~L,j,g!5F~L,g!@£jg#2 i jL. ~4.3!

The formF(L,g) is irrelevant to field equations, becaus
it enters a divergence once one integrates by parts Eq.~2.3!
and uses Eq.~3.1!. However, it is tightly related to conserve
quantities and the No¨ther theorem. These are in fact gene
features of any field theory~see@7,11#, and references quote
therein for the general framework!.

The variation of the total conserved quantity is

dXQD~L,j,g!5E
D

dXE~L,j,g!

5E
D

dX„F~L,g!@£jg#…2E
D

£j„F~L,g!@X#…

1E
]D

i j„F~L,g!@X#…, ~4.4!

which suggests to us to define the variation of the correc
conserved quantities by the prescription

dXQ̂D~L,j,g!5E
]D

$dXU~L,j,g!2 i j„F~L,g!@X#…%.

~4.5!

For the example under investigation, using expressions~3.1!
and ~4.1!, we get

dXQ̂D~L,] t ,gBTZ!52padm,
~4.6!

dXQ̂D~L,]f ,gBTZ!522padJ,

which can be integrated to give the total conserved quant

Q̂D~L,] t ,gBTZ!52pam, Q̂D~L,]f ,gBTZ!522paJ.
~4.7!
2-3
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We see that this method provides directly the total conser
quantities~as already calculated in@1#! and no extra data ar
needed other than the solution and the Lagrangian.

In other words, the relevant quantity to replace the Kom
potential is dXU(L,j,g)2 i j„F(L,g)@X#…. This quantity is
uneffected by the addition of divergences to the Lagrang
In fact, if one considers a LagrangianL85Div(b), which is
a total divergence, one easily obtainsdXU(L8,j,g)
2 i j„F(L8,g)@X#…50 identically.

As a second alternative approach, one can instead loo
a (n22) form over M which can be integrated over th
boundary of a regionD to give directly the conserved quan
tity in that region. This approach relies on the formal in
gration of Eq.~4.5!. To perform this task one has to speci
some extra information. First, one fixes some boundary c
ditions, e.g., usually one requires that field variations van
on the boundary]D. Then one seeks for a currentB(L,j)
such that, once we set, as usual,B(L,j,g) for the pullback of
B(L,j) along a sectiong, the following holds:

dXB~L,j,g!u]D5 i j„F~L,g!@X#…u]D . ~4.8!

Usually there is no such~global and covariant! current
B(L,j). For example, for standard general relativity one h

i j„F~L,g!@X#…5d~pmnumn
l jsdsls!, ~4.9!

which does not lead to a possible choice forB(L,j) because
pmnumn

l jsdsls is not covariant, i.e., it is not a form on th
bundle sinceumn

l is not a tensor. To overcome this proble
one has to fix some ‘‘coherent’’ background connectionGmn

l

~which is assumed to be uneffected by deformations! and
define

B~L,j!5pmnwmn
l js dsls , H wmn

l 5umn
l 2Umn

l ,

Umn
l 5Gmn

l 2d (m
l Gn) ,

Gn5Gnl
l .

~4.10!

In this way the correction termB(L,j) is covariant; one can
recast Eq.~4.5! as

dXQ̂D~L,j,g!5E
]D

$dXU~L,j,g!2 i j„F~L,g!@X#…%

5E
]D

dX@U~L,j,g!2B~L,j,g!#, ~4.11!

that can be formally integrated giving

Q̂D~L,j,g!5E
]D

@U~L,j,g!2B~L,j,g!#. ~4.12!

We stress that in order to construct a formula like Eq.~4.12!
a background connection is needed~or some other ‘‘global-
izing’’ tool !. The new conserved quantitiesQ̂D(L,j,g) de-
pend both on the solutiongmn and on the background con
nection Gmn

l . Then, they have to be interpreted as t
relativeconserved quantities with respect toGmn

l . The physi-
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cal importance of some background for the theory of co
served quantities was already recognized in the literat
see, for example,@3,17,22#. As an example, it has bee
proved~see@10,23#! that if one analyzes the~charged! Kerr-
Newmann solutions, there exist suitable backgrounds wh
providereasonablemass densities which when integrated
the boundary of a spacelike slice~i.e., on spatial infinity!
give the correct total mass.

Of course the choice ofB(L,j) is not unique. In particu-
lar, and for the sake of simplicity, the backgroundGmn

l can
be assumed to be the Levi-Civita connection of some ba
ground metrichmn ~also considered to remain unchanged u
der deformations!. Then one can add a term which depen
just on the background (hmn ,Gmn

l ), which, being unchanged
under deformations, does not effect Eq.~4.8!. To fix such a
term one can reasonably require that, ifhmn is also a solution
of field equations~as it seems physically and mathematica
reasonable to require!, the relative conserved quantities o
the background with respect to itself vanish. This amounts
redefining the correction as follows:

B̃~L,j!5@pmnwmn
l jr1aAhhar ¹

~h!

ajl#dslr , ~4.13!

where¹ (h) denotes the covariant derivative induced by t
backgroundh. Generally speaking, the correction~4.13! may
be used also in asymptotically flat solutions when, howev
there is a preferred vacuum (h5h5Minkowski metric!
which, being flat, reduces Eq.~4.13! to the simpler correction
~4.10!.

One can alsoderiveboth the corrected superpotentialsU
2B andU2B̃ as~uncorrected! superpotentials of some sui
able Lagrangian. In particularU2B is the superpotential for
thefirst-order Lagrangianfor standard general relativity~see
@10#!

L15@a~r 22L!Ag2dl~pmnwmn
l !#ds, ~4.14!

wheredl denotes the formal divergence whileU2B̃ is the
superpotential for the equivalent Lagrangian

L̃15@a~r 22L!Ag2dl~pmnwmn
l !2a~R22L!Ah#ds,

~4.15!

whereR is the scalar curvature of the backgroundh. In both
cases the background has to be considered as aparameterso
thatj has to be a Killing vector of the background~see@10#!.
We remark that both Lagrangians~4.14! and~4.15! induce a
well-defined action functional for a variational princip
based on fixing the metric on the boundary. We stress tha
general, these actions differ for surface terms from that u
in @3#.

For the Lagrangian~2.1! and the solution~2.4! one can
obviously choose as a background another metric of
same type~2.4! with fixed values (m0 ,J0) as parameters. By
a direct computation we find for the corrected superpoten
U2B̃ the conserved quantity
2-4
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Q̂~L,] t ,gBTZ!52pa~m2m0!,
~4.16!

Q̂~L,]f ,gBTZ!522pa~J2J0!.

Here the Komar potential of the background in Eq.~4.13! is
essential in order tocure the quadratic divergence of th
Komar potential of the solution. This background fixing co
tains, as particular cases, the backgrounds usually adopt
the literature~see, for example,@1–3#!. In particular, the
limit ( m0→0, J0→0) corresponds to the vacuum state
which the black hole disappears. Another allowed cho
analyzed in the literature~see@3#! is the anti–de Sitter space
time which corresponds to the different limit (m0→21,
J0→0).

V. ENTROPY

The entropy of a~black hole! solution is defined to be a
quantity that satisfies the first principle of thermodynamic

dXm5TdXS1VdXJ ~5.1!

for any variationX tangent to the space of solutions, i.e.,X
has to satisfy linearized field equations. HereT and V are
constant quantities with respect to variationsdX ~namely
they are related to the unperturbed solution!. Usually they
are assumed to represent the temperature and angular v
ity of the horizon of the black hole, so thatS can be inter-
preted as the physical entropy of the system. The phys
value of these parameters has to be provided by phys
arguments, since they are almost undetermined in the pre
context~see@1,4,5,24,25#!. Of course, one can compute on
of them out of the others by requiring that Eq.~5.1! is inte-
grable so that there exists a state functionS to fulfill the first
principle of thermodynamics. However, other paramet
have to be provided by physical arguments~e.g.,T has to be
the temperature of Hawking radiation!. The ultimate mean-
ing of the work terms in Eq.~5.1! is that, for example,VdJ
is the change in the total mass along an isoentropic trans
mation. It has been shown elsewhere~see @1,4,5#! that, in
order to make this true,V has to be the angular velocity o
the horizon. Further terms may in general appear in Eq.~5.1!
due to gauge charges. Since the example which is here u
consideration has no further gauge symmetries, we do
consider these further contributions.

Of course, entropy should also satisfy further requi
ments~e.g., the second principle of thermodynamics!. How-
ever, these additional requirements are generally out of c
trol so that the first principle is what one usually requir
with the hope of checking the second principle afterward

By solving Eq.~5.1! with respect todXS and by setting
j5] t1V]f one finds~see@11#!

dXS5
1

T
@dXm2VdXJ#

5
1

T È ~dXU~L,j,g!2 i j„F~L,g!@X#…!, ~5.2!
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where` denotes the spatial infinity of a spacelike slice. No
one can prove under quite general hypotheses~basically just
requiringj to be a Killing vector of the solutiong! that the
integrand quantitydXU(L,j,g)2 i j„F(L,g)@X#… is a closed
form, so that its integral does not depend on the integra
domain but just on its homology.

Then one can define the following quantity:

dXS5
1

T E
S
~dXU~L,j,g!2 i j„F~L,g!@X#…!, ~5.3!

whereS is any spatial surface such that`2S does not en-
close any singularity~in homological notation it is a bound
ary!. Then Eq.~5.3! can be integrated to give a quantityS
which @because of Eq.~5.2!# satisfies the first principle o
thermodynamics and which is then a natural candidate to
interpreted as the entropy. We remark that we do not n
anything but a one-parameter family of solutionsgmn

e and a
Killing vector j for the unperturbed solutiongmn

0 ~here and
everywhere we denote byX the infinitesimal generator of the
family, which is a solution of the linearized field equations!.
In particular, differently from@13,14#, and @15#, we do not
require anything about the maximality of the solution und
consideration, anything about horizons, and anything ab
the vanishing ofj on horizons~see@11,13#!. This latter re-
mark is particularly important for the actual calculations b
cause, as we shall see, it simplifies considerably~both con-
ceptually and computationally! the expressions involved.

Let now k denote the surface gravity so thatT5k/(2p)
is the temperature of the Hawking radiation of BTZ,
shown in@4,24# by means of Euclidean path integrals. Let
set V52Nf(r 1) which can be shown to be the angul
velocity of the BTZ horizon. We remark that because of t
value ofV the Killing vectorj becomes null on the horizon
N:(r 5r 1). We then easily get

dXS58p2adr 1 , ~5.4!

which in turn gives

S58p2ar 1 ~5.5!

for the entropy.
The original Wald’s recipe for the entropy needs

choose a particularS̄ ~the bifurcation surface! on which the
Killing vector j, and then the whole termi j„F(L,g)@X#… in
Eq. ~5.3!, vanishes. Of course the existence of such a surf
is ensured just in the maximal extension of the solution.@For

example, for the Schwarzschild solution this surfaceS̄ cor-
responds to the surfaceU50, V50 in Kruskal coordinates.
Notice that the two-sphereU5V50 is not covered by
spherical coordinates (t,r ,u,f) or outgoing ~nor ingoing!
coordinates. To be more precise, if one considers any c
sectiont5t0 and r 52m of the horizon, thenj vanishes on
none of it for any value oft0 . Thus Kruskal coordinates ar
needed in a somehow ‘‘essential’’ way to apply Wald
recipe.#

In order to apply the original Wald’s recipe to the BT
solution, one should first build Kruskal-type coordinates
2-5
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shown in@26#. Once one has verified thatk is a nonvanishing
constant on the horizon~which is false in the extreme case!,
this can be done in two steps. First of all we defi
Eddington-Finkelstein coordinates (u,r,w) which are the pa-
rameters along the flows of the vector fields (j,z,X) we are
going to define. The vector fieldj5] t1V]f is the Killing
vector whose Killing horizonN has to be extended;u is the
parameter along its flow;X is a vector field tangent toN such
that Xl¹lu50. Finally, z is a vector field such that the fol
lowing conditions have to be satisfied:

jl¹lu51,

g~z,j!51 uzu250 on N,
~5.6!

g~z,X!50.

In these new coordinates the vector fields (j,z,X) read as

j5
]

]u
,

z5
]

]r
, ~5.7!

X5
]

]w
.

Notice that even in Eddington-Finkelstein coordinates
vector fieldj does not vanish anywhere in the chart doma
The BTZ metric reads as

gBTZ52 f „r ~r!…du212 du dr1F„r ~r!…du dw

1C„r ~r!…dw2, ~5.8!

where we set

f ~r !5N22r 2~Nf1V!2,

F~r !5
N22r 2~Nf

2 2V2!

V
, ~5.9!

C~r !52
N22r 2~Nf2V!2

4V2 .

Herer (r) is obtained by inverting the change of coordinat
namely

r~r !5E
r 1

r dr

F~r !
,

~5.10!

F~r !5AC~r !

r 2 .

We remark thatF(r ) is well defined in a neighborhood o
the horizonN. Now we can define Kruskal-type coordinat
(U,V,w) as
12401
e
.

,

U5eku,

V52re2ku expS 2kE
0

r

H~r!dr D ,

~5.11!

H~r!5
1

f „r ~r!…
2

1

2kr
.

The productUV depends just onr and can be regarded as a
implicit definition of r as a functionr̃(UV). Then the BTZ
metric reads as

gBTZ5G~UV!dU dV1
F„r ~ r̃ !…

kU
dU dw

1C„r ~ r̃ !…dw2,

G~UV!5
f „r ~ r̃ !…

k2UV
. ~5.12!

In these coordinates the Killing vectorj reads as

j52kS V
]

]V
2U

]

]U D , ~5.13!

which finally vanishes forS̄:(U5V50).
Thus we have extended the Killing horizonN to a bifur-

cate Killing horizon and we have identified the bifurcate s

face S̄. Now one can ‘‘easily’’ compute the entropy:

dXS5
1

T E dXU @j#3dw ⇒
U5V50

r50

dXS58p2adr 1

⇒S58p2ar 1 , ~5.14!

whereU @j#3 dw is the angular part of the superpotential
form U @j#.

We stress that the first expression in Eq.~5.14! for dXS is
meaningful just on the bifurcate surface where we can ign
the contribution of the termi j„F(L,g)@X#…. We stress more-
over that the above method fails in the extreme case. In f
in this casek50 and the derivation of the Kruskal-type co
ordinates fails at Eqs.~5.11! and ~5.12! @notice that in this
case f (r ) identically vanishes#. On the contrary, as we
proved@see Eq.~5.4!# the second expression in Eq.~5.14! for
dXS is correct on any surfaceS. In this way the entropy is
not related directly to a quantity computed on the horiz
~see @17# for a discussion of entropy of Taub-NUT solu
tions!. The computations of this section have been carr
out by using theMAPLE V andTENSORpackage.

VI. CONCLUSION AND PERSPECTIVES

We have determined and discussed the entropy of B
solutions. In our framework the entropy~5.2! is clearly re-
lated, by its own definition, to No¨ther charges by the firs
principle of thermodynamics; actually our proposal is to d
termine a priori exactly the quantity that satisfies the fir
2-6
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principle of thermodynamics, so that it can be,a posteriori,
physically interpreted as the entropy.

At first, entropy is a quantity computed at spatial infini
~5.2!, as all conserved quantities are. Then one can com
it also by an integral on the finite regions, provided that t
Nöther generatorj is a Killing vector of the solution unde
consideration@see Eq.~5.3!#. Finally, if the surface gravityk
does not vanish on the horizon, one can extend such a h
zon to a bifurcate Killing horizon and compute integrals
the bifurcate Killing surface on whichj vanishes@see Eq.
~5.14!#. This latter step is completely useless and compu
tionally boring in applications as well as in the theoretic
framework, as we hope to have shown in the present pa
Furthermore, our framework, being intrinsically and ge
metrically formulated in a global setting, is in fact valid for
much larger class of theories, namely all field theories wit
gauge invariance, the so-calledgauge-natural theories~see
@11#!. For the same reasons, no requirements on signa
and/or dimension of spacetime are needed, as our framew
relies only on globality and covariance of the Lagrangia
We remark that in the original Wald’s procedure,kÞ0 is
used for two different purposes, namely to compute the te
perature and to prove the existence of the bifurcation s
faces. Nonextremality is essential to the second issue. S
in the extreme case, the construction of Kruskal-like coor
nates and bifurcation surfaces break down~as Wald himself
noticed!, we believe that because of this there is little hope
treat the extreme case through any approaches based o
furcation surfaces. We instead believe that our approa
which does not use a bifurcation surface, is in a good p
J

-

v

B

n
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tion to treat the extremal cases, too. Clearly, the extre
cases have to be discussed separately and we hope to ad
the problem in a forthcoming paper. As we already noted
the Introduction, paper II will revisit the above results in th
light of BCEA theories~see@5# and @18#!.

Future investigations will be devoted to those cases~e.g.,
Taub-NUT solutions! in which Wald’s prescription for en-
tropy cannot apply at all, as noticed by Wald himself~see
@26#! and other authors~see also@17#!. In these cases, Wald’
prescription fails because of various reasons, e.g., bec
the orbits of timelike vectors are closed and extra contri
tions to the entropy are due to singularities other than th
enclosed in Killing horizons~in particular theMisner string!.
Both these reasons prevent the application of the latter
scription. Since our general prescription does not require
existence of a bifurcate Killing surface, it allows us to ove
come these problems, in Taub-NUT solutions. Results w
be published in@16#, where they will be shown to agree wit
those found in@17# by another formalism.

We finally remark that our formalism is hopefully in
good position to be generalized to nonstationary black ho
since extra contributions due to nonstationarity seem to
under control.
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