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Non-Archimedean character of quantum buoyancy
and the generalized second law of thermodynamics

Jacob D. Bekenstein*
The Racah Institute of Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

~Received 14 June 1999; published 22 November 1999!

Quantum buoyancy has been proposed as the mechanism protecting the generalized second law when an
entropy-bearing object is slowly lowered towards a black hole and then dropped in. We point out that the
original derivation of the buoyant force from a fluid picture of the acceleration radiation is invalid unless the
object is almost at the horizon, because otherwise typical wavelengths in the radiation are larger than the
object. The buoyant force is here calculated from the diffractive scattering of waves off the object, and found
to be weaker than in the original theory. As a consequence, the argument justifying the generalized second law
from buoyancy cannot be completed unless the optimal drop point is next to the horizon. The universal bound
on entropy is always a sufficient condition for operation of the generalized second law, and can be derived
from that law when the optimal drop point is close to the horizon. We also compute the quantum buoyancy of
an elementary charged particle; it turns out to be negligible for energetic considerations. Finally, we speculate
on the significance of the absence from the bound of any mention of the number of particle species in nature.
@S0556-2821~99!02824-6#

PACS number~s!: 04.70.Dy, 04.70.Bw, 05.30.2d, 97.60.Lf
it
-

te
ic
ll

d
a

ed
in
au
e
o

ng

t

to
iry
i

t a
n

y
re
c

in-
ly

er-
i-
d a
ly

e

t-
ase
is

by

d:
ion

xi-

for
an-
ve

d

d-
zon
ost
ons
I. INTRODUCTION

An observer accelerating in flat and empty spacetime w
accelerationa detects isotropic thermal radiation with tem
peratureTU5\a/2p, the celebrated Unruh radiance@1#. An
object suspended in the vicinity of a black hole is accelera
by virtue of its being prevented from following a geodes
Unruh and Wald~UW! @2# suggested that this object wi
likewise see Unruh radiance. Since its acceleration~hence
TU) varies with distance from the horizon, UW surmize
that the object will be subject to a buoyant force, just as
object submerged in fluid in a gravitational field is buoy
up by the non-uniformity of the ambient pressure. Two
triguing consequences were inferred: the buoyancy can c
an object sufficiently near the horizon to ‘‘float,’’ and th
buoyancy affects the energetics of a process whereby an
ject is lowered from afar towards a black hole while doi
work on the lowering mechanism@2#.

Both these effects bear on the important issue of wha
the mechanism enforcing the generalized second law~GSL!
@3# when an entropy-bearing object is lowered slowly
wards a black hole, and then dropped in. Our initial inqu
@4#, carried out before the quantum buoyancy was put
evidence, assumed that it is possible to lower the objec
most to the horizon, and inferred from the GSL that its e
tropy, S, must be bounded in terms of its radiusR and mass-
energyE ~units with c51 throughout! by

S<2pRE/\. ~1!

This is to be regarded as a universal bound on the entrop
matter~radiation! calculated to the deepest level of structu
Bound ~1! is now backed by much independent eviden
from flat space physics~for a review see Ref.@5#!, and was
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an antecedent of ’t Hooft’s and Susskind’s holographic pr
ciple @6,7#, which can be deduced from the bound for weak
gravitating systems@8,9#.

UW questioned the black hole derivation of bound~1! on
the grounds that the quantum buoyancy allows a free low
ing of the object only down to the floating point, and mod
fies the naive energetics of the problem. They develope
three-step argument@2# suggesting that buoyancy is the on
mechanism required for the GSL to work, and that bound~1!
need not be invoked~and cannot thus be derived from th
GSL!. The steps are the following:

~1! Calculation of the full energy of the object at the floa
ing point, an energy which determines the minimum incre
in black hole entropy,DSBH , occasioned when the object
dropped into the hole. UW claim thatDSBH is never smaller
than Sdisp, the entropy in the Unruh radiance displaced
the object at the floating point.

~2! Demonstration that Archimedes’ principle is obeye
at the floating point the energy of the displaced radiat
equals the object’s proper energy.

~3! Proposition that the object’s entropyScannot possibly
exceedSdisp because unconfined thermal radiation is ma
mally entropic for given volume and energy~UW’s entropy
bound!.

Combination of the three steps givesDSBH.S: the GSL
works because the black hole entropy overcompensates
the loss of the object’s entropy. Other arguments that qu
tum buoyancy is sufficient by itself to protect the GSL ha
been offered by Li and Liu@10#, Zaslavskii@11# and Pelath
and Wald~PW! @12#.

Following UW’s original paper we noted that, provide
the object is macroscopic~technically\/E!R), and that the
numberN of species present in the Unruh radiance is mo
erate, the floating point is necessarily very near the hori
@13–15#. As a consequence the lowering process is alm
unchanged by quantum buoyancy, with buoyant correcti
©1999 The American Physical Society10-1
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JACOB D. BEKENSTEIN PHYSICAL REVIEW D60 124010
to its energetics showing up late in the lowering proce
This has allowed bound~1! to be rederived from the GSL
applied to the described gedanken experiment even in
face of buoyancy@10,15,11#.

PW @12# have kindled the controversy anew by assert
that this feat is made possible only because the same
sumptions whose outcome is to put the floating point v
near the horizon will cause bound~1! to be satisfied auto
matically without any recourse to black hole physics. P
base their argument on UW’s bound on entropy@step ~3!
above#. Exceptions to UW’s bound have been demonstra
in flat spacetime@14#: an object’s entropy can exceed that
an equal energy and volume of unconfined thermal radia
if one ~or two! of the object’s dimensions is~are! much
larger than the third. In the present paper we mostly focus
a spherical object for which the UW bound may well ho
this allows us to shift attention to the first two steps of UW
argument.

So is bound~1! a condition for the GSL to work in accre
tion by a black hole? Or is quantum buoyancy the sole p
tector of that law, so that the bound cannot be inferred fr
it? Given the importance of the GSL as an extension of
very pervasive second law, and as giving operational me
ing to the concept of black hole entropy, it is obviously im
portant to elucidate the questions raised. In addition,
would like to clarify how allowing for the existence of a
arbitrary number of species in the radiation bears on all e
lier conclusions. Both UW and PW are of the opinion th
the GSL should be shown to be upheld by a single mec
nism for arbitraryN. The present paper provides substan
clarification of all these issues.

In Sec. II we point out that buoyancy away from the h
rizon has been calculated incorrectly in all extant works. D
partures from the fluid description of the Unruh radian
result because wavelenghts in the radiance are typic
longer than the object’s size. Section III deals with a sph
cal object always removed from the horizon by a prop
distance larger than its own size. In Sec. III B we calcul
the buoyancy on it, and find it to be weaker and more rapi
falling with distance from the horizon than would be e
pected from UW’s approach. In Sec. III C we make it cle
that Archimedes’ principle fails in this far region, and al
that UW’s ‘‘GSL from buoyancy’’ argument cannot be com
pleted. By contrast, the entropy bound~1! is found to be a
sufficient condition for the GSL to function.

In Sec. IV we consider an object whose floating point
much closer to the horizon than its own size. This case
relevant for a macroscopic object and a moderate numbe
radiance species. UW’s fluid estimate of the buoyancy fo
is correct in this near region; however, their energetics
slightly changed because the object has to pass through
far region on its way down. Overall the UW argument th
the GSL is protected by the buoyancy is upheld in the n
region. On the other hand, in spite of the buoyancy, the
tropy bound~1! is derivable from the GSL. In Sec. V w
treat the intermediate region where the object’s proper
tance from the horizon is comparable to its size, and confi
the conclusion that the argument for the GSL from buoya
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cannot be completed over a certain regime; the entr
bound remains a sufficient condition for the GSL to work

In Sec. VI we consider the buoyancy of an elementa
charged particle, finding it to be negligible under all circum
stances. This is important for one of the arguments supp
ing the uniformly spaced black hole area quantum spect
@16–18#.

II. FLUID vs WAVE PICTURE

All mentioned works follow UW in assuming that th
object is impervious to the radiation, and that the buoy
force, as measured at infinity, can be calculated by integ
ing the radiance pressurep multiplied by the local redshift
factor x and by the inward normal to the surface all arou
the object’s surface. UW@2# relied on a thermodynamic de
scription of the radiance as a fluid obeyinge1p2Ts50,
wheree denotes the proper energy density,s the proper en-
tropy density, andT the local temperature. They tookT in the
vicinity of the horizon to obey

T5T0x21, ~2!

whereT0 denotes the Hawking temperature. One can jus
this form by noting it is a good approximation to the form
Unruh temperature corresponding to the acceleration fel
a point suspended at rest in a Schwarzschild metric at
tances from the horizon small compared to the size of
black hole@15,11#.

While there is little doubt about the cogency of the the
modynamic description of thepropertiesof the radiation, it
seems to have gone unnoticed in the past that the condit
encountered by a small object near the horizon may make
calculation of the buoyant force from the fluid point of vie
inappropriate. LetR denote the typical size of said object; w
shall assumeR!GM (M is the hole’s mass! in order that the
full object may be able to approach the horizon. For
Schwarzschild black hole’s exterior the exact metric is~units
with c51)

ds252x2dt21dz21r 2~du21sin2udf2! ~3!

wherez5*2GM
r (122GM/r )21/2dr is the proper radial dis-

tance from the horizon whilex5(122GM/r )1/2 is the red-
shift factor mentioned earlier. Our calculations will be do
in the regionr 22GM!GM ~equivalentlyz!GM); it is
only in it that we may approximate Unruh’s temperature
Eq. ~2!, and at the same time ignore Hawking’s radian
which is not manifest so near the horizon@2#. We then get

x'z~4GM!21. ~4!

In the Schwarzschild caseT05\(8pGM)21, so we have
@15,11#

T'\~2pz!21. ~5!

Thus we expect that the predominant local wavelength
the radiation,l̄, at proper distancez from the horizon is
roughly of orderz. In fact, distribution~16! to be obtained
below peaks al'7.97z and gives the mean wavelength
0-2
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NON-ARCHIMEDEAN CHARACTER OF QUANTUM . . . PHYSICAL REVIEW D60 124010
^l&514.62z. So if the object is near the horizon (z!GM)
but not nearly touching it (z*R), we haveR&z;l̄!GM.
At a fundamental level the buoyant force is due to the m
mentum jolts the object receives as successive waves sc
off it. Waves withl*R have difficulty matching specified
boundary conditions on the object’s surface; hence they t
to scatter poorly and convey little momentum to the obje
Waves withl!R can match the boundary conditions bett
and scatter and convey momentum effectively. Howev
since these short waves are a minority in the Unruh radia
(l!R&l̄), we expect the true buoyant force to be sm
compared to that we would calculate by means of the ra
tion pressure~which comes from all wavelengths indiscrim
nately!; in other words, the buoyancy should be no
Archimedean. The detailed calculation in Sec. III B confirm
this expectation. Since the object being lowered must p
through the region withz*R—we call it the far region or
FR—the energy accreted by the black hole and its entr
increase when the object is finally dropped in must be in
enced by the suppression of buoyancy just mentioned.
purpose in this paper is to correct UW’s treatment of
lowering process for the suppression, and to reexamine q
tum buoyancy’s role in the GSL’s operation.

III. BUOYANCY IN THE FAR REGION

We first concentrate on the situation where the obje
bottom is at no time closer~in proper distance! to the horizon
than the object’s height. The opposite situation will
treated in Sec. IV.

A. Momentum transfer in flat spacetime

Obviously, a force calculation from wave momentu
transfer is bound to be complex as compared to one base
the fluid picture, so we start by discussing the scattering
flat spacetime. It is well known that wave scattering by
object in the long wavelength limit is indifferent to detai
~target’s shape, etc.!. The differential cross section has th
form

ds/dV5R2~R/l!4F~ n̂,n̂8! ~6!

wherepR2 is a typical geometric cross section of the obje
F some dimensionless function, andn̂ and n̂8 a pair of unit
vectors denoting the incidence and scattering directions
spectively. The fourth order dependence on wavelen
comes from the dipole part of the scattering, which predo
nates at long wavelengths. As an example@19#, electromag-
netic scattering from a conducting sphere hasF(n̂,n̂8)

516p2$ 5
8 @11cos2(n̂•n̂8)#2cos(n̂•n̂8)%. If the incident flux

of momentum carried in the ambient radiation by wav
lengths in the vicinity ofl and in the vicinity of the direction
n̂ is n̂ I (l,n̂)dl dn̂, the object will gain momentum at a rat

dP/dt5E dlE dn̂n̂I ~l,n̂!R2~R/l!4

3E dn̂8F~ n̂,n̂8!~12n̂•n̂8!. ~7!
12401
-
tter

d
t.
,
r,
n
l
a-

-

ss

y
-
ne
e
n-

s

on
in
n

,

e-
th
i-

-

The factor 12n̂•n̂8 takes into account extra momentu
given to the object when a wave backscatters.

Because characteristics of the scattering are insensitiv
the object’s shape, we may narrow attention to a spheric
symmetric object. Results for objects not too far from sphe
cal should be quite similar. In what followsR shall denote
the object’s radius. The scattering cross section now depe
only on the angle of scattering:F5F(n̂•n̂8). The integral
over the solid anglen̂8 is then equivalent to 2p times the one
over n̂•n̂8; it is thus just a numberj, most likely of order
unity ~for electromagnetic wavesj514p/3). Thus

dP/dt5jE dlE dn̂n̂ I ~l,n̂!R2~R/l!4. ~8!

B. Buoyant force in curved spacetime

In curved spacetime, particularly in the vicinity of a blac
hole, we may take over Eq.~8! to an orthonormal frame
associated with metric~3! in which the object is at rest. As
usual, many quantities, such as field strengths, fluxes, w
lengths, etc., will take on the same values in the orthonor
frame and in a comoving inertial frame; such an inert
frame can be large enough to contain the object and its
mediate surroundings because by assumption the radiu
curvature at the horizon,GM, is much larger thanR. This
allows us to use flat spacetime results about the scatte
We should reinterpretedP, l and t above as momentum
wavelength and time measured in the orthonormal fram
And this time must be proper timet of the object, while
dP/dt stands for the force as measured by a local obse
in the orthonormal frame. With this in mind we may rewri
Eq. ~8! as

dP/dt5jR6E dlE dn̂n̂I ~l,n̂!l24. ~9!

Since the region including the object and its immedia
surroundings is small on scaleGM, and close to the horizon
r'2GM there. It proves more convenient to rewrite th
metric ~3! in the said region in the approximate form

ds252~z/4GM!2dt21dz21dx21dy2 ~10!

wheredx21dy2 is the metric on the almost planar small ca
of the spherer 5const'2GM which has fixedz. The direc-
tions n̂ and n̂8 have the same components in appropriat
oriented inertial and orthonormal frames as with respec
the spacelike coordinate lines of metric~10!.

We proceed to calculateI (l,n̂) starting in the global
frame defined by Eq.~10!. Because that metric is static, th
global frequencyv0 of a wave is conserved@being the same
over the full black hole exterior described by metric~3!#.
And because the system is described by a single global t
perature,T0, one can describe the thermal spectrum by s
ing that each global mode of a boson field with frequencyv0
is occupied by@exp(\v0 /T0)21#21 quanta on average. To
find the flux of momentum at a given point we have to en
merate all contributing modes in a small region surround
0-3
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JACOB D. BEKENSTEIN PHYSICAL REVIEW D60 124010
the spherical object. To make things as simple as poss
consider the scalar equationF ,a

;a50 on the metric~10!:

F ,uu1~z* /4GM!2exp~u/2GM!~F ,xx1F ,yy!2F ,tt50.

~11!

Hereu[4GMln(z/z* ), andz* is a reference value of thez
coordinate. The symmetries inx, y andt permit a solution of
the form

F5U~u!exp@ ı~kxx1kyy2v0t !#, ~12!

05U ,uu1@v0
22~z* /4GM!2

3exp~u/2GM!~kx
21ky

2!#U ~13!

wherekx , ky andv0 are constants, the last identical to th
global frequency mentioned above.

For givenkx andky there are oscillatory solutions of Eq
~13! for sufficiently largev0. In the WKB approximation
they take the form

U'expH ıE @v0
22~z* /4GM!2

3exp~u/2GM!~kx
21ky

2!#1/2duJ ~14!

5expH ıE @v0
2~4GM/z!22~kx

21ky
2!#1/2dzJ .

~15!

From the last form, which isz* independent, we infer the
effective wave vector component in thez direction: kz

5@v0
2(4GM/z)22(kx

21ky
2)#1/2. Although the accelerated

character of the global coordinates causes this compone
vary, over the shortz interval encompassed by the sphere
can think of $kx ,ky ,kz% as a wave vector. Obviously th
corresponding wavelength isl52p(kx

21ky
21kz

2)21/2

5pz(2GMv0)21, which is just what we would have gotte
had we corrected the global frequencyv0 for the redshiftx.
l thus coincides with the locally measured wavelength
have been using intuitively.

Now according to Eq.~10!, x, y and z measure prope
length; therefore, per unit proper volume, the number of
lowed values ofkx , ky andkz in an intervaldkx , dky and
dkz is given by (2p)23dkxdkydkz or, equivalently, by
l24dn̂dl, wheredn̂ is the solid angle spanned by the va
ous wave vectors. Taking two helicities for each wave vec
~here we pass from scalar waves to electromagnetic!, and
remembering that the momentum carried by a singly oc
pied mode, as measured in the orthonormal frame,
2p\l21, we obtain the momentum flux densityI (l,n̂) in
the orthonormal frame,

I ~l,n̂!5
4p\l25

e2p\/lT21
. ~16!

Here we have used Eq.~2! to replace \v0 /T0 by
2p\(lT)21.
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We should not be fooled by the similarity of this expre
sion to the Planckian distribution in textbooks. Because
the variation of the redshiftx, l of a particular mode
changes~redshifts! as the wave propagates~and thus passe
from one orthonormal frame to a neighboring one!. Alterna-
tively, if we ask how much momentum is carried by th
radiation in (l,l1dl), we must be aware thatT in Eq. ~16!
varies with position according to Eq.~2!. This has implica-
tions for the integral overn̂ in Eq. ~9!. The temperatureT to
be used therein is not isotropic because it is not meant to
taken at a fixed point. A~plane! wavefront incident on the
sphere with directionn̂ first meets its surface at coordina
z5zc2 ẑ•n̂R, (ẑ is a unit vector in the positivez direction
and zc is the sphere center’sz coordinate!. Therefore, it is
reasonable to evaluate the temperature governing the
dent radiance’s intensity at thisz. In view of Eq.~2!, we must
take

T5~\/2p!~zc2 ẑ•n̂R!21 ~17!

in Eq. ~16! when evaluating the integral in Eq.~9!.
We do thel integral first. Of course, the dependencel24

assumed for the cross section is not valid forl&R. But
according to Eq.~2!, the exponential appearing in Eq.~16!,
exp(4p2z/l), is large whenl,R because by assumptionR
,z: the Planckian distribution suppresses contributions
dP/dt from short wavelengths. Thus we may extend t
integration range down tol50 while incurring only a small
error. After rescaling and using the identity*0

`x7(ex

21)21dx58p8/15 we get

dP

dt
5

j\R6

30720p7E n̂dn̂

~zc2 ẑ•n̂R!8
. ~18!

By symmetry the integral must be proportional toẑ; it is
easily evaluated by going over to the variableẑ•n̂. To get the
total FR buoyant force as measured at infinity,f. , one must
multiply dP/dt, the buoyant force measured locally, b
dt/dt of the sphere, which equalsx'zc(4GM)21. We also
multiply by N, the effective number of species of quanta
the radiation, assuming the object scatters all~photons con-
tribute unity; because radiations of different kinds scatter d
ferently,N is not necessarily an exact integer!. Thus,

f.5
ẑNj\R7

11520p6GM

zc
612R2zc

413R4zc
2/7

~zc
22R2!7

. ~19!

Although we have carried out all integrals exactly, it must
understood that Eq.~19! may already become inaccurate f
zc&2R because in that region the conditionl@R is satisfied
only marginally~as mentioned we expectl̄;10zc). The re-
gion zc&2R will be examined in Sec. IV.

We have just found that forzc@R, f.}zc
28 . By contrast,

the force calculated in the manner of UW’s fluid approac
Eq. ~31! below, would behave in that region aszc

24 . The
corrections to the fluid approach’s results are thus,a priori,
nontrivial in the FR.
0-4



i
rs

t’

e

c

is

s
o

th

e

he

dy
y
y

in

e
-

am
n

is
is
n-

m.
at
a
nd

gy

l

e

be

the
to

al
ail
to

de
lly

e

t-

NON-ARCHIMEDEAN CHARACTER OF QUANTUM . . . PHYSICAL REVIEW D60 124010
C. Energetics in the far region and GSL

Following UW we calculate the energy of the object as
is slowly lowered from infinity. As in many previous pape
@2,4,12–15#, we assume that the object’s proper energyE
and its entropySare unaffected by the descent. The objec
gravitational energy at any stage isEgrav5Ex
'Ezc(4GM)21. The contribution to the energy from th
work done to overcome the buoyancy is*zc

` ẑ•f.dzc . Of

course our expression~19! is not reliable forzc*GM; how-
ever, the buoyant force drops off so fast withzc that we
make a small error if we use Eq.~19! all the way to infinity.
Doing the integration exactly we find the total energy fun
tion

E.~zc!5
Ezc

4GM
1

jN\R7zc
3~zc

21R2!

80640p6GM~zc
22R2!6 . ~20!

As UW point out, the most stringent test of the GSL
had by dropping the object from the floating point whereE.

reaches its minimum. This point is situated atzc5 lR with l
the positive root of

~ l 221!7

l 612l 413l 2/7
5

js2

16p5 , ~21!

s[~N\/180pER!1/2. ~22!

We shall finds to be the main parameter delimiting variou
buoyancy regimes. The following flat spacetime intuition
it is useful. Consider an object of radiusR and energyE
immersed in thermal radiation comprisingN species whose
energy density equals the object’s energy density;E/R3.
The usual Boltzmann formulas allow us to conclude that
typical wavelengthl̄ is of order AsR. Thus a fluid~con-
tinuum! description of the radiation’s interaction with th
object will be a good one fors!1. If the object is macro-
scopic or even mesoscopic, its Compton length\/E must be
much smaller thanR, so the requirement ons will hold
nicely providedN is not large.

In black hole spacetime, for the floating point to be in t
FR meansl *2. According to Eq.~21! this requiress*102,
definitely not the fluid regime as we have realized alrea
This large as requiresN of the Unruh radiance to be ver
large (106 at least!. Although we are only aware of relativel
few particle species in nature, it is of interest, as stressed
UW, to check whether the GSL would continue to work
the face of a proliferation of radiance species.

UW propose@step 2 in Sec. I here# that the floating point
occurs precisely whereE equals the proper energy of th
displaced radiation*e dx dy dz. The energy density of radia
tion corresponding to spectrum~16! has the textbook form
e5(Np2T4/15\3). We substitute Eq.~2! and integrate over
a spherical volume equal to the sphere’s and at the s
height above the horizon. Since the horizontal crossectio
the sphere at heightz is p@R22(zc2z)2#, the integral be-
comes
12401
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240p2E
zc2R

zc1Rp@R22~z2zc!
2#

z4 dz5
N\R3

180p~zc
22R2!2 .

~23!

This equalsE at zc5RA11s which is distinct fromRl:
contrary to UW’s step~2!, here the equal-energies point
distinct from the floating point, and Archimedes’ principle
invalid. Thus the buoyancy in the FR may be termed no
Archimedean.

This setback does not by itself disable the UW progra
The overall argument might still work if one could prove th
the minimum DSBH exceeds the entropy contained in
spherical volume of Unruh radiance equal to the object’s a
centered atzc5RA11s where it has the same proper ener
as the object. We call this last the displaced entropy,Sdisp,
and evaluate it by integratings5(4e/3T) over said spherica
volume. In terms ofh(x)[ ln(A11x11)2 ln(A11x21),

Sdisp5~N/90!@2s21A11s2h~s!#. ~24!

Now in terms ofl ands2, E.( lR) is easily rewritten as

E.~ lR!5
ER

4GM F l 1
js2

112p5

l 3~ l 211!

~ l 221!6 G . ~25!

ExpressingER by means of Eq.~22! and js2 inside the
square brackets by means of Eq.~21!, and dividing byT0
gives the minimum increase in black hole entropy:

DSBH5
N

90s2

l ~8l 4114l 212!

7l 4114l 213
. ~26!

A plot of both DSBH and Sdisp as functions ofl with s
determined by Eq.~21! shows that actuallySBH,Sdisp al-
ready forl .1.24~we tookj510 but the results change littl
over a large range ofj). Thus the inequality required by UW
is violated over the whole FR where buoyancy has to
treated as due to wave scattering.

This being the case, the only way one could establish
GSL’s validity from the effect of the buoyancy would be
show thatSdisp is not just as large asS, but sufficiently larger
so as to compensate for the failure ofDSBH.Sdisp whenever
s is not small. This can no longer follow from a gener
principle such as UW’s entropy bound, but would ent
looking into details of the object, something quite opposite
UW’s intent to establish the GSL in general. We conclu
that in the FR UW’s argument that buoyancy automatica
enforces the GSL for anyN cannotbe completed.

On the other hand, if we substitutes2 from Eq. ~22! into
Eq. ~26!, and observe that the function ofl appearing in this
last one exceeds unity forl .1, we conclude that

DSBH.2pER/\. ~27!

It follows from bound~1! that the GSL is satisfied as th
object falls into the hole: the decrease of entropy byS is
compensated by the gainDSBH . Bound ~1! is thus asuffi-
cient condition for the operation of the GSL when the floa
ing point is in the FR.
0-5



m
ob

ve

. A
g
e
flu
th

ib
th
o
c
ld

er
ow
t
a

to

a

in
bu

tin

he

-

s

est
han
er

rs

eri-

-

f

-
r

y’s
R

is

en-
is

JACOB D. BEKENSTEIN PHYSICAL REVIEW D60 124010
IV. BUOYANCY IN THE NEAR-HORIZON REGION

We now look at the situation where the object’s botto
eventually comes much closer to the horizon than the
ject’s radius, so that it is in thenear-horizon region~NHR!.
Becausel̄ for waves hitting the bottom is of order 10(zc
2R), and we shall want to keep it small compared toR, it is
convenient to define the NHR asR,zc&1.01R.

A. Buoyant force

With the sphere so positioned the wavelengths of wa
hitting a cap at the sphere’s bottom (l;zc2R) are short
compared to the cap’s transversal size;R. In this case the
fluid model can be used to compute the force on the cap
we go up the sphere’s surface, the waves hitting it get lon
and eventually are no longer short compared to the scal
the surface. Somewhere along the side of the sphere the
model fails. Simultaneously, as we go up the surface,
radiation~fluid! pressure

p5
Np2T4

45\3 5
N\

720p2z4 ~28!

drops precipitously asz grows. Thus if we formally integrate
the pressure force all around the sphere, the main contr
tion comes from the cap of about a steradian in size at
bottom which is almost horizontal and very close to the h
rizon everywhere. And this is precisely the part of the for
which is well described by the fluid model. The force shou
be corrected for the contribution from the rest of the sph
which is in the wave scattering regime. However, we kn
that the wave scattering force tends to be weaker than
fluid force. Hence, our integral must give a close approxim
tion to the true force. The preceding comments amount
justification, whenzc2R!R, of UW’s method for calculat-
ing the buoyant force.

As UW mention, the pressure has to be multiplied byx
before integration, so that the force will be ‘‘as measured
infinity.’’ Therefore, working in metric~10!, the force in the
NHR is

f,52 R xpdS52E ¹~xp!dx dy dz. ~29!

We have used Gauss’ theorem to convert the integral
one over the volume the radiation would have occupied
for the sphere’s presence. As in Eq.~23! we rewrite this as

2E
zc2R

zc1R

¹~xp!p@R22~z2zc!
2#dz

522p ẑE
zc2R

zc1R

xp~z2zc!dz ~30!

where we have done an integration by parts. Substitu
Eqs.~28! and ~4! gives

f,5
ẑN\

720pGM

R3

~zc
22R2!2 . ~31!
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B. Energetics in the near-horizon region and GSL

The contribution to the energy of the sphere from t
work done against the buoyancy is formally*zc

` ẑ•fdzc ,

wheref denotes theexactbuoyant force. If we add and sub
stractf, to f, perform the integral*zc

` ẑ•f,dzc , and then take

into account the gravitational energy as in Eq.~20!, we get

E,~zc!5
Ezc

4GM
1

N\

2880pGM F 2Rzc

zc
22R2 2 lnS zc1R

zc2RD G2C,

~32!

C[E
zc

`

ẑ•~ f,2f!dzc. ~33!

Becausef,→f in the NHR,C is actually constant as long a
zc is taken in the NHR.

Because outside the NHR part of the the buoyancy is b
described by wave scattering, and should be weaker t
when calculated entirely from the fluid model, we may inf
thatC.0. A fair approximation toC can be had by replacing
f in Eq. ~33! by f> over the range ofzc for which f<>f>, and
settingf5f< in the domain wheref<,f>. By comparing Eqs.
~19! and~31! numerically one finds that the transition occu
at zc51.19826R for j510, with almost no change asj var-
ies by factors of 10 either way. Using these values a num
cal integration givesC50.006613(N\/8pGM), confirming
our hunch about the sign ofC, but also showing that in natu
ral units C is small. Hence, the fact thatC has only been
approximated should not upset the following arguments.

The floating point, determined by the minimum o
E,(zc), is unaffected by the value ofC; it now occurs atzc
5 lR with

l 5A11s ~34!

and s still defined by Eq.~22!. For self-consistency this
should fall within the NHR:l ,1.01. By Eq.~34! we thus
require s,0.02. This condition is fulfilled by all macro
scopic or mesoscopic objects (\/E!R) unless the numbe
of radiance species,N, is very large. Position~34! coincides
with that at which the object displaces its own energ
worth of radiation, as we saw in Sec. III C. Thus in the NH
the buoyancy is Archimedean, and step~2! of UW’s argu-
ment is upheld.

The growth in black hole entropy when the sphere
dropped from the floating point, namelyT0

21E,(A11sR),
is

DSBH5~N/90!@s22~11s/2!A11s2h~s!/420.595#.

~35!

The displaced entropy is given by Eq.~24!. It is easy to see
that for s,0.02, DSBH.Sdisp. We thus confirm step~1! of
UW’s argument.

Step~3! in UW’s procedure maintains thatSdisp.S on the
grounds that unconfined thermal radiation is the most
tropic form of matter for given volume and energy. Th
generic entropy bound has been questioned@14# because the
0-6
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two entities compared here, unconfined thermal radiation
matter confined to the object, are subject to different bou
ary conditions. Although violations ofSdisp.S are rampant
for systems whose various dimensions are very differe
they have not been found for spherical ones. Accepting
inequality in the spirit of this paper’s scope, we find wi
UW that if the floating point lies in the NHR,DSBH.S.
This, of course, guarantees that the GSL will work as
spherical object falls in.

In the above argument it is the quantum buoyancy wh
protects the GSL. However, it does not follow, as UW@2#
would have it, that one cannot derive the entropy bound~1!
from the GSL, nor as PW@12# would have it, that the en
tropy bound holds only because of additional assumpti
about the magnitude ofN and\(RE)21. In this section we
only assume thats!1, and this in order thatl 21!1, so
that the fluid method is accurate.

Let us now replace theN in Eq. ~35! in terms of s2

according to Eq.~22!. We find

DSBH5~2pRE/\!@~11s/2!A11s2~1/4!h~s!s2

20.595s2#. ~36!

Since the last two terms in the square brackets are nega
the GSL will fail upon infall of the object unless at least

S,~2pRE/\!~11s/2!A11s. ~37!

For the smalls we are assuming this is equivalent to t
entropy bound~1!, which is thereby seen to be anecessary
condition for the GSL. We further discuss this derivation
the bound in Sec. V. Since it is carried out in the face
buoyancy, it serves as justification for several recent ex
sions of the bound to spinning@20# and charged@21#
entropy-bearing objects whose derivations ignored bu
ancy.

We also note that the function ofs in the square bracket
in Eq. ~36! is positive fors,0.02. Thus the entropy boun
~1! guarantees thatDSBH.S: when the floating point is in
the NHR, the entropy bound is also asufficientcondition for
operation of the GSL.

V. INTERMEDIATE REGION

In the intermediate region 1.01R&zc&2R neither of the
previous calculations of the buoyant force is expected to
accurate. To calculate the buoyant force directly from sc
tering without benefit of the approximationl@R or l!R
would be very difficult. Thus we propose to substitutef in
the intermediate region by an interpolation betweenf. and
f, . Specifically, we interpolate harmonically between t
two versions of the buoyancy energy, to wit

E~zc!5
Ezc

4GM
1

Ẽ,~zc!Ẽ.~zc!

Ẽ,~zc!1 Ẽ.~zc!
, Ẽj[Ej2

Ezc

4GM
.

~38!

The Ej ’s here are as defined by Eqs.~20! and ~32!, the last
with C set to zero since we found it to be relatively sma
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This interpolation forE is completely smooth, and obviousl
has the correct asymptotics forzc2R!R and zc@R. Nu-
merically we find that2]E/]zc agrees withf, to at least
0.001% forR,zc,1.01R, and withf. to at least 0.05% for
zc.2R. Equation~38! should thus be a reasonable good a
proximation toE in the intermediate region.

The interpolatedE can be cast into the form

E~zc!5ER~4GM!21F~j,s2,zc /R! ~39!

F~j,s2,y![y1
js2~y51y3!g~y!

4~y221!@j~y51y3!128p5~y221!5g~y!#
~40!

g~y![2y2~y221!lnS y11

y21D . ~41!

F as a function ofy5zc /R has a single minimum in the
physical rangey.1. Thus E is minimal at a value of
zc /R—we again denote itl—which depends only ons and
j. Taking j510 we find numerically thatl increases mono-
tonically with s. In particular, it grows from 1.01 to 2 ass
varies from 0.02 to 105. In light of previous findings, th
corresponding range ofzc bridges the gap between NHR an
FR.

ReplacingER in Eq. ~39! by means of Eq.~22! and di-
viding by T0 gives the minimum increase in black hole e
tropy:

DSBH5
N

90s2F„j,s2,l ~j,s!…. ~42!

This has to be compared withSdisp of Eq. ~24!. Numerically
we find ~again for j510) that DSBH<Sdisp for s>1.42,
which contradicts step~1! of UW’s argument. The transition
point DSBH5Sdisp occurs here atl 51.275, a position close
to the l 51.24 that we computed for the switch in Sec. III
using FR formulas. As already discussed there, under
circumstances one cannot naturally redesign the buoya
argument to understand why the GSL works. That argum
is of no help whenN is large enough to makes somewhat
larger than unity.

How does the entropy bound~1! fare? Evaluatings in the
prefactor of Eq.~42! we get

DSBH5~2pER/\!F„j,s2,l ~j,s!…. ~43!

NumericallyF„j,s2,l (j,s)….1 for l .1. Hence, also in the
intermediates regime (1.01& l &2), bound~1! implies the
inequalityDSBH.S, and is thus asufficientcondition for the
operation of the GSL when the object is dropped in.

To what extent is the entropy bound also a necessary c
dition for the GSL? Can the bound be derived from the GS
Numerically we findF„j,s2,l (j,s)…,1.1 for s,0.1. Ap-
plying the GSL to our gedanken experiment allows us
derive bound~1! for s,0.1, apart from a,10% correction.
We may reach the same conclusion from Eq.~37!. Bound~1!
can also be derived for arbitraryN, apart from an overall
constant of crudely order unity, by considering the free-f
0-7
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of the object into a black hole@16#. Since in all cases wher
S can be computed explicitly for non-black-hole systems@5#
one finds the trueS to always fall at least an order of mag
nitude below bound~1!, there is no point in introducing cor
rections to the canonical form~1! on the basis of the abov
comments.

VI. BUOYANCY OF A CHARGED ELEMENTARY
PARTICLE

All our previous considerations referred to macrosco
spherical objects. ForN not large these have very smalls, so
that only the NHR case is important~if we exclude the issue
of calculating the offsetC). It is, however, interesting to
enquire into the buoyancy of an elementary particle, o
whose radius is of order of its Compton length,\/E. The
particle can no longer be regarded as a sphere with reflec
walls; wave scattering from it must be described by a c
pling of the waves with the particle’s interaction Ham
tonian. This is obviously detail dependent and complicate
general. But in the special case of a structureless electric
charged particle, the~Compton! scattering is well under-
stood.

The characteristic length associated with a singly char
particle is the Thomson radiusRT5e2/E. Becausea[e2/\
'1/137,RT!\/E, so if it were possible to lower the particl
down to the horizon, its center’s positionzc'\/E would still
be a few lengthsRT away from it. In this sense the particle
always in the FR. But, as we shall see, the buoyant forc
of NHR form. The point is that for wavelengthsl@\/E, and
averaged over the two polarizations, the scattering cros
tion is

ds/dV5~RT
2/2!@11~ n̂•n̂8!2#, ~44!

where n̂ and n̂8 are the incidence and scattering direction
respectively. This form is missing the (R/l)4 of Eq. ~6!; this
explains why FR behavior does not set in.

Instead of Eq.~7! we have

dP/dt5~RT
2/2!E dlE dn̂n̂I ~l,n̂!

3E dn̂8@11~ n̂•n̂8!2#~12n̂•n̂8! ~45!

5~8pRT
2/3! E dlE dn̂n̂I ~l,n̂!. ~46!

Substituting Eq.~16! for I, doing first thel integral by res-
caling and use of the identity*0

`x3(ex21)21dx5p4/15, and
identifying t with the proper timet in the orthonormal frame
leads us to (N51 here by assumption: the particle interac
only with electromagnetic waves!

dP/dt5~32p6\RT
2/45!E dlE dn̂n̂~T/2p\!4. ~47!

As explained at the end of Sec. III B, one must takeT as
anisotropic, depending on the direction of incidence; sin
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RT is the characteristic radius of scattering here, it replaceR
in the expression forT, Eq. ~17!, which we substitute in Eq
~47!. The integral overn̂ is performed as in Sec. III B. Mul-
tiplying the result bydt/dt5x'zc(4GM)21 we get the
buoyant force as measured at infinity:

f5
ẑ\

270pGM

RT
3zc

2

~zc
22RT

2!3
. ~48!

Becausezc*\/E@RT , this force is of the same form as Eq
~31! for a macroscopic sphere in the NHR, if we replaceR
→RT .

Several caveats about this derivation are in order.
have neglected quantum corrections to the Thomson c
section~44! which are given by the Klein-Nishina formula
These corrections become important whenl&2p\/E. As
we saw in Sec. II,l̄;10z, and so as the particle approach
the horizon (zc;\/E), neglect of these corrections is n
longer entirely justified. However, further out Eq.~48!
should be accurate in this respect. We have also negle
quantum corrections arising from the fact that by the unc
tainty principle, the particle cannot be at rest and well loc
ized at once, as we assume implicitly when we appea
buoyancy. Further, the force~48! can only represent an av
erage: the particle should be subject to buffeting originat
in thermal fluctuations of the Unruh radiance.

Becausezc@RT5a(\/E), we can recast Eq.~48! into the
form

f'~2/135p!a3~\/Ez!4fgrav, ~49!

wherefgrav5 ẑE(4GM)21 is the gravitational force as mea
sured at infinity. Obviously,ufu!ufgravu over the physical
rangezc.\/E. Hence buoyancy is negligible for our pa
ticle; there is no floating point, and buoyancy corrections
the energetics are entirely negligible. The neglected quan
corrections are unlikely to change this extreme state of
fairs. In recent arguments supporting the uniformly spac
black hole area quantum spectrum@16–18#, the buoyancy of
an elementary particle was ignored. The present work s
plies a basis for that neglect.

VII. DISCUSSION

The effects of quantum buoyancy are parametrized bs
defined in Eq.~22!. In a world with few radiation species
s'1022, 1025, and 10218 for an average nucleus, an ave
age atom, and a grain of salt, respectively. All these obje
would thus have floating points almost at the horizon (zc
2R!R). The results of Secs. IV B and V then tell us th
buoyancy protects the GSL upon infall of these or larg
objects into a black hole. They also allow us to derive t
universal entropy bound~1! from the GSL, apart from a tiny
correction which can probably be neglected. For mac
scopic and mesoscopic objects, the entropy bound is th
necessarycondition for the operation of the GSL, provide
the number of radiant species,N, is not very large.

As the number of radiation species,N, is increased,s
0-8
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scales asAN, and will eventually get to be a few tenths o
unity for any specified object. The entropy bound for th
object cannot then be derived from the GSL as done pr
ously. It stops being a necessary condition for the GSL,
remains a sufficient condition for the law to function, this f
arbitraryN or s. Although it seems highly unlikely that th
world’s particle spectrum contains very many species, U
and PW have urged consideration of what keeps the G
working in such a hypothetical eventuality. Their suggest
that buoyancy does the job for anyN is overturned by our
finding ~Sec. V! that for s exceeding 1.42 (N.109 for an
atomic sized system!, buoyancy becomes insufficient to pro
tect the GSL.

The fact that the universal entropy bound remains a s
ficient condition for the GSL whenN gets large motivates u
to consider the bound as the more fundamental princi
This is in the spirit of today’s outlook that holographic-typ
principles are very deep. For weakly gravitating systems
entropy bound implies the standard holographic princi
@8,9#. Neither the entropy bound nor holographic princip
refers to the number of particle species in nature. One m
worry that this is wrong: if one has more species to spli
fixed energy among, should not the possible entropy
higher the higherN? But if this were true, the arguments
n
.
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the end of Sec. III C and at the end of Sec. V showing t
the entropy bound guarantees that the generalized ent
grows upon accretion of the object by a black hole could f

We thus retain the standard form~1! of the bound. In our
opinion, the absence ofN from the bound, from the holo-
graphic principle, and from the formula for black hole e
tropy can have two possible origins. One is that the de
logic of physical theory requires a specific particle spectr
and a definite—not too large—N for which the black hole
entropy attains its accepted value, and for which entro
bound and holographic principle are still respected, grow
of entropy withN notwithstanding. The second possibility
that a proliferation of particle species would entail intera
tions between them to such an extent that it would cha
the way in which entropy scales up withN for noninteracting
species, causing it to saturate at largeN at a value consisten
with entropy bound and holographic principle.
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