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Non-Archimedean character of quantum buoyancy
and the generalized second law of thermodynamics
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Quantum buoyancy has been proposed as the mechanism protecting the generalized second law when an
entropy-bearing object is slowly lowered towards a black hole and then dropped in. We point out that the
original derivation of the buoyant force from a fluid picture of the acceleration radiation is invalid unless the
object is almost at the horizon, because otherwise typical wavelengths in the radiation are larger than the
object. The buoyant force is here calculated from the diffractive scattering of waves off the object, and found
to be weaker than in the original theory. As a consequence, the argument justifying the generalized second law
from buoyancy cannot be completed unless the optimal drop point is next to the horizon. The universal bound
on entropy is always a sufficient condition for operation of the generalized second law, and can be derived
from that law when the optimal drop point is close to the horizon. We also compute the quantum buoyancy of
an elementary charged particle; it turns out to be negligible for energetic considerations. Finally, we speculate
on the significance of the absence from the bound of any mention of the number of particle species in nature.
[S0556-282(99)02824-9

PACS numbsg(s): 04.70.Dy, 04.70.Bw, 05.36.d, 97.60.Lf

I. INTRODUCTION an antecedent of 't Hooft's and Susskind’s holographic prin-
ciple[6,7], which can be deduced from the bound for weakly
An observer accelerating in flat and empty spacetime witlgravitating system§8,9].

accelerationa detects isotropic thermal radiation with tem-  UW questioned the black hole derivation of bouig on
peratureT=fia/2w, the celebrated Unruh radianfE]. An  the grounds that the quantum buoyancy allows a free lower-
object suspended in the vicinity of a black hole is accelerate¢hg of the object only down to the floating point, and modi-
by virtue of its being prevented from following a geodesic. fies the naive energetics of the problem. They developed a
Unruh and Wald(UW) [2] suggested that this object will three-step argumen®] suggesting that buoyancy is the only
I|keW|sel see .Unru'h radiance. Since its accelera(iumnc.e mechanism required for the GSL to work, and that bo(id
Ty) varies with distance from the horizon, UW surmized yqed not be invokedand cannot thus be derived from the
that the object will be subject to a buoyant force, just as arGSL). The steps are the following:
object submerged in fluid in a gravitational field is buoyed (1) Calculation of the full energy of the object at the float-

up b.y the non-uniformity of Fhe ambient pressure. Two Ir"ing point, an energy which determines the minimum increase
triguing consequences were inferred: the buoyancy can cause

an object sufficiently near the horizon to “float,” and the I black hole entropyA Sgy ogcasioned vyhen the object is
buoyancy affects the energetics of a process whereby an Oq;ropped into the hole. L_JW claim thatSBH_'s never smaller
ject is lowered from afar towards a black hole while doing a0 Saisp: the entropy in the Unruh radiance displaced by
work on the lowering mechanisfiz]. the object at the floating point. o

Both these effects bear on the important issue of what is (2) Demonstration that Archimedes' principle is obeyed:
the mechanism enforcing the generalized second(@gt)  at the floating point the energy of the displaced radiation
[3] when an entropy-bearing object is lowered slowly to-eduals the object's proper energy.
wards a black hole, and then dropped in. Our initial inquiry ~ (3) Proposition that the object’s entrocannot possibly
[4], carried out before the quantum buoyancy was put irexceedSgs, because unconfined thermal radiation is maxi-
evidence, assumed that it is possible to lower the object amally entropic for given volume and energy W'’s entropy
most to the horizon, and inferred from the GSL that its en-bound.

tropy, S, must be bounded in terms of its radiBsand mass- Combination of the three steps givASg>S: the GSL
energyE (units withc=1 throughout by works because the black hole entropy overcompensates for
the loss of the object’s entropy. Other arguments that quan-
S<27RE/. (1)  tum buoyancy is sufficient by itself to protect the GSL have

been offered by Li and Liji10], Zaslavskii[11] and Pelath
This is to be regarded as a universal bound on the entropy eind Wald(PW) [12].
matter(radiatior) calculated to the deepest level of structure.  Following UW’s original paper we noted that, provided
Bound (1) is now backed by much independent evidencethe object is macroscopitechnically#/E<R), and that the
from flat space physicfor a review see Ref5]), and was numberN of species present in the Unruh radiance is mod-
erate, the floating point is necessarily very near the horizon
[13-15. As a consequence the lowering process is almost
*Email address: bekenste@vms.huji.ac.il unchanged by quantum buoyancy, with buoyant corrections
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to its energetics showing up late in the lowering processcannot be completed over a certain regime; the entropy

This has allowed boundl) to be rederived from the GSL bound remains a sufficient condition for the GSL to work.

applied to the described gedanken experiment even in the In Sec. VI we consider the buoyancy of an elementary

face of buoyancy10,15,1]. charged particle, finding it to be negligible under all circum-
PW [12] have kindled the controversy anew by assertingstances. This is important for one of the arguments support-

that this feat is made possible only because the same alld the uniformly spaced black hole area quantum spectrum

sumptions whose outcome is to put the floating point veryl16—18.

near the horizon will cause bour(d) to be satisfied auto-

matically without any recourse to black hole physics. PW IIl. FLUID vs WAVE PICTURE

base their argument on UW's bound on entrdstep (3) All mentioned works follow UW in assuming that the
abovd. Exceptions to UW's bound have been demonstrategpject is impervious to the radiation, and that the buoyant
in flat spacetim¢14]: an object's entropy can exceed that of force, as measured at infinity, can be calculated by integrat-
an equal energy and volume of unconfined thermal radiatiofhg the radiance pressugemultiplied by the local redshift
if one (or two) of the object’s dimensions i¢aré much  factor y and by the inward normal to the surface all around
larger than the third. In the present paper we mostly focus ofhe object’s surface. UW2] relied on a thermodynamic de-
a spherical object for which the UW bound may well hold; scription of the radiance as a fluid obeyieg p—Ts=0,
this allows us to shift attention to the first two steps of UW’s wheree denotes the proper energy densiyhe proper en-
argument. tropy density, and the local temperature. They todkin the

So is bound1) a condition for the GSL to work in accre- vicinity of the horizon to obey
tion by a black hole? Or is quantum buoyancy the sole pro-
tector of that law, so that the bound cannot be inferred from

it? Given the importance of the GSL as an extension of thg, here T denotes the Hawking temperature. One can justify
very pervasive second law, and as giving operational meanps form by noting it is a good approximation to the formal
ing to the concept of black hole entropy, it is obviously im- -y temperature corresponding to the acceleration felt by
portant to elucidate the questions raised. In addition, ong point suspended at rest in a Schwarzschild metric at dis-
would like to clarify how allowing for the existence of an tances from the horizon small compared to the size of the
arbitrary number of species in the radiation bears on all earpjack hole[15,11].

lier conclusions. Both UW and PW are of the opinion that  While there is little doubt about the cogency of the ther-
the GSL should be shown to be upheld by a single mechamodynamic description of thpropertiesof the radiation, it
nism for arbitraryN. The present paper provides substantialseems to have gone unnoticed in the past that the conditions
clarification of all these issues. encountered by a small object near the horizon may make the

In Sec. Il we point out that buoyancy away from the ho- calculation of the buoyant force from the fluid point of view
rizon has been calculated incorrectly in all extant works. Deinappropriate. LeR denote the typical size of said object; we
partures from the fluid description of the Unruh radianceshall assum&<GM (M is the hole’s magsn order that the
result because wavelenghts in the radiance are typicallfull object may be able to approach the horizon. For a
longer than the object’s size. Section Ill deals with a spheri-Schwarzschild black hole’s exterior the exact metriuisits
cal object always removed from the horizon by a propermwith c=1)
distance larger than its own size. In Sec. Il B we calculate —— s oo 5
the buoyancy on it, and find it to be weaker and more rapidly ds*= — x?dt?+dZ*+r?(d 6>+ sir’ 0d ¢%) (€)
falling with distance from the horizon than would be ex-
pected from UW'’s approach. In Sec. Ill C we make it clear
that Archimedes’ principle fails in this far region, and also
that UW’s “GSL from buoyancy” argument cannot be com-
pleted. By contrast, the entropy boufd is found to be a
sufficient condition for the GSL to function.

In Sec. IV we consider an object whose floating point is
much closer to the horizon than its own size. This case i¥/
relevant for a macroscopic object and a moderate number of - -1

. . . . . x~z(4GM) ™", (4)
radiance species. UW's fluid estimate of the buoyancy force
is correct in this near region; however, their energetics argn the Schwarzschild cas&,=#(87GM) !, so we have
slightly changed because the object has to pass through thes 11|
far region on its way down. Overall the UW argument that
the GSL is protected by the buoyancy is upheld in the near T~h(2mz) L. (5
region. On the other hand, in spite of the buoyancy, the en- _ )
tropy bound(1) is derivable from the GSL. In Sec. V we Thus we expect that the predominant local wavelength in
treat the intermediate region where the object’s proper disthe radiation,\, at proper distance from the horizon is
tance from the horizon is comparable to its size, and confirmoughly of orderz. In fact, distribution(16) to be obtained
the conclusion that the argument for the GSL from buoyancypelow peaks a\~7.97z and gives the mean wavelength as

T=Tox %, 2

wherez= [5c,,(1—2GM/r)~Ydr is the proper radial dis-
tance from the horizon whilg=(1—2GM/r)'?is the red-
shift factor mentioned earlier. Our calculations will be done
in the regionr—2GM<GM (equivalentlyz<GM); it is
only in it that we may approximate Unruh’s temperature by
Eqg. (2), and at the same time ignore Hawking's radiance
hich is not manifest so near the horizf®]. We then get

124010-2



NON-ARCHIMEDEAN CHARACTER OF QUANTUM . .. PHYSICAL REVIEW D60 124010

(N)=14.62. So if the object is near the horizoe€GM)  The factor 1-n-n’ takes into account extra momentum
but not nearly touching itZ=R), we haveR<z~\<GM. given to the object when a wave backscatters.

At a fundamental level the buoyant force is due to the mo- Because characteristics of the scattering are insensitive to
mentum jolts the object receives as successive waves scattitie object’s shape, we may narrow attention to a spherically
off it. Waves withA =R have difficulty matching specified symmetric object. Results for objects not too far from spheri-
boundary conditions on the object’s surface; hence they tendal should be quite similar. In what followR shall denote

to scatter poorly and convey little momentum to the objectthe object’s radius. The scattering cross section now depends
Waves withh <R can match the boundary conditions better,only on the angle of scatteringi=F(n-n’). The integral

and scatter and convey momentum effectively. Howevery, o e solid angl@’ is then equivalent to # times the one
since these short waves are a minority in the Unruh radiation AaL . .
vern-n'; it is thus just a numbeg, most likely of order

(A<<R=\), we expect the true buoyant force to be Sma_"unity (for electromagnetic waves= 14m/3). Thus
compared to that we would calculate by means of the radia-

tion pressuréwhich comes from all wavelengths indiscrimi- o .

nately; in other words, the buoyancy should be non- dP/dt:ff dkf dnnl(x,mR?(R/N)*. 8
Archimedean. The detailed calculation in Sec. Il B confirms
this expectation. Since the object being lowered must pass
through the region wittle=R—we call it thefar region or
FR—the energy accreted by the black hole and its entropy In curved spacetime, particularly in the vicinity of a black
increase when the object is finally dropped in must be influhole, we may take over Eq8) to an orthonormal frame
enced by the suppression of buoyancy just mentioned. Onassociated with metri€3) in which the object is at rest. As
purpose in this paper is to correct UW's treatment of theusual, many quantities, such as field strengths, fluxes, wave-
lowering process for the suppression, and to reexamine qualengths, etc., will take on the same values in the orthonormal

B. Buoyant force in curved spacetime

tum buoyancy’s role in the GSL'’s operation. frame and in a comoving inertial frame; such an inertial
frame can be large enough to contain the object and its im-
Ill. BUOYANCY IN THE FAR REGION mediate surroundings because by assumption the radius of

We first concentrate on the situation where the object’scurvature at the horizorGM, is much larger thaiR. This

. . , . ; allows us to use flat spacetime results about the scattering.
bottom is at no time closém proper distanceto the horizon .
o . . - . . We should reinterprete®, N andt above as momentum,
than the object’'s height. The opposite situation will be

treated in Sec. IV wavelength and time measured in the orthonormal frame.
B And this time must be proper time of the object, while
dP/d7 stands for the force as measured by a local observer

_ _ in the orthonormal frame. With this in mind we may rewrite
Obviously, a force calculation from wave momentum gq, (8) as

transfer is bound to be complex as compared to one based on

the fluid picture, so we start by discussing the scattering in 6 ~n -

flat spacetime. It is well known that wave scattering by an dP/d7=¢R f d)‘f dnnl(x,mr—". ©)
object in the long wavelength limit is indifferent to details . o _ . o _
(target’'s shape, efc.The differential cross section has the  Since the region including the object and its immediate

A. Momentum transfer in flat spacetime

form surroundings is small on scal&M, and close to the horizon,
o r~=2GM there. It proves more convenient to rewrite the
do/dQ=R?*(R/\N)*F(n,n’) (6)  metric (3) in the said region in the approximate form
whereR? is a typical geometric cross section of the object, ds?=—(zZ/4AGM)2dt?+ d 22+ dx?+ dy? (10)

F some dimensionless function, ancandn’ a pair of unit s _

vectors denoting the incidence and scattering directions, revheredx”+dy* is the metric on the almost planar small cap
spectively. The fourth order dependence on wavelengt®f the sphere =const=2GM which has fixedz. The direc-
comes from the dipole part of the scattering, which predomitions n andn’ have the same components in appropriately
nates at long wavelengths. As an exanfd@], electromag- oriented inertial and orthonormal frames as with respect to
netic scattering from a conducting sphere Hagn,n’)  the spacelike coordinate lines of met(itn).
=16m2{3[1+cog(n-n")]—cosfi-n")}. If the incident flux We proceed to calculaté(),n) starting in the global

of momentum carried in the ambient radiation by wave-frame defined by Eq(10). Becz_ause that metric is static, the
lengths in the vicinity of\ and in the vicinity of the direction 9lobal frequencywg of a wave is conservejbeing the same

A N A . . . over the full black hole exterior described by met(®].
nisnl(x,n)dA dn, the object will gain momentum at a rate And because the system is described by a single global tem-
A . perature,T,, one can describe the thermal spectrum by say-
dP/dtzf d)\f dnnl(\,n)R*(R/N)* ing that each global mode of a boson field with frequeagy
is occupied by[expfiw,/Te)—1] ! quanta on average. To
A, A, A A, find the flux of momentum at a given point we have to enu-
XJ dn’F(n,n")(1-n-n’). @) merate all contributing modes in a small region surrounding
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the spherical object. To make things as simple as possible We should not be fooled by the similarity of this expres-

consider the scalar equatidn ,'“=0 on the metriq10): sion to the Planckian distribution in textbooks. Because of
. 5 the variation of the redshifty, A of a particular mode
® yy+ (ZF/AGM)“exp(U/2GM) (P y+ P yy) =P =0. changegredshift3 as the wave propagatéand thus passes

(1)  from one orthonormal frame to a neighboring bn&lterna-
tively, if we ask how much momentum is carried by the
radiation in (\,\ +dX\), we must be aware thatin Eq. (16)
varies with position according to Eq). This has implica-

Hereu=4GMIn(zZ"), andz* is a reference value of the
coordinate. The symmetries i)y andt permit a solution of

the form "
tions for the integral oven in Eq. (9). The temperatur& to
O=U(u)exd 1(kX+ kyy—wot)], (12 be used therein is not isotropic because it is not meant to be
taken at a fixed point. Aplane wavefront incident on the
0=U yyt[w§—(2*/4GM)? sphere with directiom first meets its surface at coordinate
X eXHU/2GM) (k24 k2)]U (13 2=2—2:NR, (zis a unit vector in the positive direction

and z. is the sphere center's coordinat¢. Therefore, it is
wherek,, k, andw, are constants, the last identical to the reasonable to evaluate the temperature governing the inci-
global frequency mentioned above. dent radiance’s intensity at thisIn view of Eq.(2), we must
For givenk, and«, there are oscillatory solutions of Eq. take
(13) for sufficiently largewgy. In the WKB approximation .
they take the form T=(hl2m)(z;—2-nR) ~* 17

, 5 in Eq. (16) when evaluating the integral in E¢P).
U%exp[ 'f [wo— (2" /1AGM) We do the\ integral first. Of course, the dependence’
assumed for the cross section is not valid foER. But
according to Eq(2), the exponential appearing in E{.6),
exp(4mz/\), is large wherh <R because by assumptid®
<z: the Planckian distribution suppresses contributions to
dP/d7 from short wavelengths. Thus we may extend the
=exp[ 'j [03(4GM/2)? = (k5 + Ki)]llzdz]' integration range down ta=0 while incurring only a small
(15  error. After rescaling and using the identitygx’(e*

—1)"*dx=87%/15 we get
From the last form, which ig* independent, we infer the ) i g

X exp(u/l2GM) (k% + k5)]Md u} (14)

effective wave vector component in the direction: «, dp ehRO Adn
=[w§(4GM/2)?— (k5+x])]¥2 Although the accelerated e - J . (18)
character of the global coordinates causes this component to T 30720r") (z.—z-nR)

vary, over the shor interval encompassed by the sphere we ) .
can think of{«y,x, .} as a wave vector. ObV|oust the By symmetry the integral must be proportionalzoit is
corresponding wavelength isA= 27T(KX+ K2+ ) V2 easily evaluated by going over to the variabl@. To get the
=m2(2GMuwg) "1, which is just what we would have gotten total FR buoyant force as measured at infinity, one must
had we corrected the global frequensy for the redshifty. multiply dP/dr, the buoyant force measured locally, by
\ thus coincides with the locally measured wavelength wed7/dt of the sphere, which equalg~z (4GM) ™~ 1 We also
have been using intuitively. multiply by N, the effective number of species of quanta in
Now according to Eq(10), x, y and z measure proper the radiation, assuming the object scattergitiotons con-
length; therefore, per unit proper volume, the number of aliribute unity; because radiations of different kinds scatter dif-
lowed values ofk,, x, and, in an intervaldx,, d«, and  ferently, N is not necessarily an exact integefhus,
dk, is given by (2m)~ 3dKXdedKZ or, equwalently, by A
A ~*dnd\, wheredn is the solid angle spanned by the vari- _ INERRT 22+ 2RPZ(+3R'Z/7
ous wave vectors. Taking two helicities for each wave vector ~ 115207%G M (Z2-R?)7
(here we pass from scalar waves to electromagnedied
remembering that the momentum carried by a singly occuAlthough we have carried out all integrals exactly, it must be
pied mode, as measured in the orthonormal frame, isinderstood that Eq19) may already become inaccurate for
27hN "1, we obtain the momentum flux densityx,n) in  z.=2R because in that region the conditibe-R is satisfied

(19

the orthonormal frame, only marginally(as mentioned we expe&t~10z.). The re-
5 gion z.< 2R will be examined in Sec. IV.
LR = Amh\~ (16) We have just found that far,>R, f-z_ 2. By contrast,
@2mhINT _ 9" the force calculated in the manner of UW’s fluid approach,

Eq. (31) below, would behave in that region as*. The
Here we have used Eq(2) to replace iwo/Tg by  corrections to the fluid approach’s results are traugriori,
2mh(NT) L. nontrivial in the FR.
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C. Energetics in the far region and GSL N# fchr RW[RZ—(Z—ZC)Z] NZRS3

Following UW we calculate the energy of the object as it 24072 ), _r z* & 180m(Z5— R?)?"
is slowly lowered from infinity. As in many previous papers (23
[2,4,12—-15, we assume that the object's proper enekyy
and its entropyS are unaffected by the descent. The object'sThis equalskE at z,=R+/1+ ¢ which is distinct fromRI:
gravitational energy at any stage isEy,~Ex  contrary to UW's step2), here the equal-energies point is
~Ez,(4GM) L. The contribution to the energy from the distinct from the floating point, and Archimedes’ principle is

. . . Archimedean.
course our expressidi9) is not reliable forz;=GM; how- . . .
ever, the buoyant force drops off so fast with that we This setback does not by itself disable the UW program.

make a small error if we use E6L9) all the way to infinity. The overall argument might still work if one could prove that

Doing the integration exactly we find the total energy func-1'¢_MiNimum ASgy exceeds the entropy contained in a
g 9 y 9y spherical volume of Unruh radiance equal to the object’'s and

tion centered at.=R+/1+ o where it has the same proper energy
Ez ENAR'Z3(Z2+R?) as the object. We call this last the displaced entray,,
E-(z0)= IGM + 80640r°G M (22— R2)®” (20 and evaluate it by integratirg~= (4e/3T) over said spherical
¢ volume. In terms oh(x)=In(y1+x+1)—In(y1+x—1),
As UW point out, the most stringent test of the GSL is Saisg= (N/90)[ 20~ 11+ —h(a)]. (24)
had by dropping the object from the floating point whére _ _ _ _
reaches its minimum. This point is situatedzat IR with | Now in terms ofl anda?, £-(IR) is easily rewritten as
the positive root of
e (Ry= ER [}y &7 P+ o5
(12— 1)7 £02 ~(IR)= 4GM 1127° (1°=1)° | (25
= : (21
1°+21%+31%/7 " 167 ExpressingER by means of Eq(22) and é0? inside the
square brackets by means of EQ1), and dividing byT,
o=(N#/1807ER)Y2, (22)  gives the minimum increase in black hole entropy:
, _ o _ N [(81%+142+2)
We shall findo to be the main parameter delimiting various AS (26)

H™ 2 4 2
buoyancy regimes. The following flat spacetime intuition of 900 71°+14%+3

it is useful. Consider an object of radil® and energykE A plot of both ASg,, and Sy, as functions ofl with o

immersed in thermal radiation comprisiiyspecies whose determined by Eq(21) shows that actuallygy< Sysp al-

. T S 3
energy density equals the object's energy densily/R". ready forl >1.24(we took&= 10 but the results change little
The usual Boltzmaﬂn formulas allow us to conclude that theOver a large range af). Thus the inequality required by UW
typical wavelengthi is of order oR. Thus a fluid(con- g violated over the whole FR where buoyancy has to be
tinuum) description of the radiation’s interaction with the {reated as due to wave scattering.
object will be a good one for<1. If the object is macro-  Thjs being the case, the only way one could establish the
scopic or even mesoscopic, its Compton length must be G| 's validity from the effect of the buoyancy would be to
much smaller tharR, so the requirement oo will hold  show thatSy,,is not just as large a8 but sufficiently larger
nicely providedN is not large. _ _ . so as to compensate for the failure/oBg > Syisp Whenever
In black hole spacetime, for the roayng point to be inthe; is not small. This can no longer follow from a general
FR means =2. According to Eq(21) this requiress=1C*,  principle such as UW's entropy bound, but would entail
definitely not the fluid regime as we have realized already|ooking into details of the object, something quite opposite to
This large ao requiresN of the Unruh radiance to be very yws intent to establish the GSL in general. We conclude
large (10 at leas}. Although we are only aware of relatively that in the FR UW's argument that buoyancy automatically
few particle species in nature, it is of interest, as stressed bynforces the GSL for any cannotbe completed.
UW, to check whether the GSL would continue to work in o, the other hand, if we substitut€ from Eq.(22) into
the face of a proliferation of radiance species. ~ Eq.(26), and observe that the function bappearing in this
UW proposg[step 2 in Sec. | hellghat the floating point |55t one exceeds unity for>1, we conclude that
occurs precisely wher& equals the proper energy of the

displaced radiatiorie dx dy dz The energy density of radia- ASg>27ER/. (27
tion corresponding to spectrufi6) has the textbook form

e=(N#2T4/154%). We substitute Eq(2) and integrate over It follows from bound(1) that the GSL is satisfied as the
a spherical volume equal to the sphere’s and at the samzbject falls into the hole: the decrease of entropy $is
height above the horizon. Since the horizontal crossection afompensated by the gaihSgy. Bound (1) is thus asuffi-
the sphere at height is #[ R>—(z.—2)?], the integral be- cientcondition for the operation of the GSL when the float-
comes ing point is in the FR.
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IV. BUOYANCY IN THE NEAR-HORIZON REGION B. Energetics in the near-horizon region and GSL

We now look at the situation where the object’s bottom The contribution to the energy of the sphere from the
eventually comes much closer to the horizon than the obwork done against the buoyancy is formalffcz-fdzc,
ject's radius, so that it is in theear-horizon regiolNHR).  \yheref denotes thexactbuoyant force. If we add and sub-
Becausen for waves hitting the bottom is of order 1£)( stractf - to f, perform the integraffci~f<dzc, and then take

—R), and we shall want to keep it small comparedatis . o .
convenient to define the NHR &< z.<1.01R. into account the gravitational energy as in E20), we get

Ez N7% 2Rz, z.+R
A. Buoyant force E(ze)= AGM + 28807GM [ZZ—RZ —In ZC—R) —C,
C
With the sphere so positioned the wavelengths of waves (32
hitting a cap at the sphere’s bottomn {z.—R) are short
compared to the cap’s transversal siz®. In this case the (7
fluid model can be used to compute the force on the cap. As c= LCZ' (f<=fdz. (33

we go up the sphere’s surface, the waves hitting it get longer

and eventually are no longer short compared to the scale ®ecausd_—f in the NHR,C is actually constant as long as

the surface. Somewhere along the side of the sphere the fluid is taken in the NHR.

model fails. Simultaneously, as we go up the surface, the Because outside the NHR part of the the buoyancy is best

radiation(fluid) pressure described by wave scattering, and should be weaker than
N 2T N7 when calculated entirely from the fluid model, we may infer

p= T (28) thatC>0. A fair approximation ta& can be had by replacing

45h°  720m°Z" f in Eq. (33) by f, over the range of, for whichf_=f,, and

- . . settingf=f_ in the domain wheré_<f,. By comparing Eqs.

drops precipitously asgrows. Thus if we formally lrjtegratg (19) and(31) numerically one finds that the transition occurs

t_he pressure force all around the sphere, the main contribu 2.=1.1982@ for £= 10, with almost no change d@svar-

tion comes from the cap of about a steradian in size at th?es by factors of 10 either way. Using these values a numeri-

bottom which is almost horizontal and very close to the ho-, integration gives'=0.00661< (N#/87GM), confirming
rizon everywhere. And this is precisely the part of the forceOur hunch about the sign 6t but also showiné that in natu-
which is well described by the fluid model. The force shouldral units C is small. Hence, the fact that has only been
be corrected for the contribution from the rest of the Spher%pproximated shou.ld not ubset the following arguments
which is in the wave scattering regime. However, we know The floating point, determined by the minimum .of
that the wave scattering force tends to be weaker than thg (z.), is unaffected t;y the value @F it now occurs atz
fluid force. Hence, our integral must give a close approxima—:lR‘:W’ith ' ¢
tion to the true force. The preceding comments amount to a

justification, wherz,— R<R, of UW’s method for calculat- =1t o (34)

ing the buoyant force.

As UW mention, the pressure has to be multiplied)oy ang & still defined by Eq.(22). For self-consistency this
before integration, so that the force will be “as measured athqy|q fall within the NHR:1<1.01. By Eq.(34) we thus
infinity.” Therefore, working in metrio10), the force inthe  yequire <0.02. This condition is fulfilled by all macro-
NHR is scopic or mesoscopic objectd/E<R) unless the number

of radiance speciedy, is very large. Positiolt34) coincides

fo=— %Xpdsz—f V(xp)dx dy dz (290  with that at which the object displaces its own energy’s
worth of radiation, as we saw in Sec. lll C. Thus in the NHR

We have used Gauss' theorem to convert the integral intd1€® buoyancy is Archimedean, and st@p of UW's argu-
one over the volume the radiation would have occupied buf€nt is upheld.

for the sphere’s presence. As in H83) we rewrite this as The growth in black hole entropy when the sphere is
dropped from the floating point, namely £ (\/1+ oR),

IS

- [ Vo Re- (227102
z.—R

ASg=(N/90)[ o~ %(1+ 0/2) 1+ o—h(0)/4—0.595.
~ [Z.tR (35)
=—-27z xp(z—z.)dz (30
Ze—R The displaced entropy is given by E@4). It is easy to see
hat for 0<<0.02, ASgy> Syisp- We thus confirm stejpl) of

W’s argument.
Step(3) in UW’s procedure maintains thal;s,> S on the

where we have done an integration by parts. Substitutin
Egs.(28) and(4) gives

SN R3 grounds that unconfined thermal radiation is the most en-
fo= . (31  tropic form of matter for given volume and energy. This
720mGM (z5—R?) generic entropy bound has been questidiied] because the
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two entities compared here, unconfined thermal radiation angthis interpolation for€ is completely smooth, and obviously
matter confined to the object, are subject to different boundhas the correct asymptotics fap— R<R and z;>R. Nu-
ary conditions. Although violations afys,>S are rampant  merically we find that— d&/ 9z, agrees withf_ to at least
for systems whose various dimensions are very differenty.001% forR<z.<1.01R, and withf.. to at least 0.05% for
they have not been found for spherical ones. Accepting thg >2R. Equation(38) should thus be a reasonable good ap-
inequality in the spirit of this paper’s scope, we find with proximation to€ in the intermediate region.

UW that if the floating point lies in the NHRASg,>S. The interpolatecE can be cast into the form

This, of course, guarantees that the GSL will work as the

spherical object falls in. &(z.)=ER(4GM) 1F(&,02,2.IR) (39
In the above argument it is the quantum buoyancy which

protects the GSL. However, it does not follow, as U®] ) E¥(v+v°)g(v)

would have it, that one cannot derive the entropy botbd  7&,0% V)= v o s s 58 50 2 175G ()]

from the GSL, nor as PW12] would have it, that the en- (40)

tropy bound holds only because of additional assumptions

about the magnitude df and%(RE) 1. In this section we

only assume thatr<1, and this in order that—1<1, so g(v)=2v—(v*-1)In
that the fluid method is accurate.

Let us now replace th& in Eq. (35 in terms of ®  r a5 4 function ofv=z,/R has a single minimum in the
according to Eq(22). We find physical rangev>1. Thus £ is minimal at a value of
B _ 2 z./R—we again denote it—which depends only oar and
ASgu=(27REA)[(1+0/2)V1+ o= (1/4h(o)o £. Taking £=10 we find numerically thak increases mono-
—0.5952]. (36)  tonically with o. In particular, it grows from 1.01 to 2 as
varies from 0.02 to 105. In light of previous findings, the
Since the last two terms in the square brackets are negativeprresponding range af bridges the gap between NHR and
the GSL will fail upon infall of the object unless at least  FR.
ReplacingER in Eg. (39) by means of Eq(22) and di-
S<(2mRE/h)(1+a/2)y1+o. (37 viding by T, gives the minimum increase in black hole en-
ropy:

v+1
v—1

. (41

For the smallec we are assuming this is equivalent to thet
entropy bound1), which is thereby seen to bersecessary N
condition for the GSL. We further discuss this derivation of ASBH:WF(S,02,|(§,U))- (42)
the bound in Sec. V. Since it is carried out in the face of

buoyancy, it serves as justification for several recent extenris pas to be compared iy, of Eq. (24). Numerically
sions of the bound to spinning20] and charged[21] | e find (again for £=10) thatKSBHgsdis for 0=1.42,
entropy-bearing objects whose derivations ignored buoyyhich contradicts stefl) of UW's argumen’ta. The transition

ancy. i ) point A Sgy= Sy;sp OCCUrs here at=1.275, a position close
We also note that the function of in the square brackets 1, the|=1.24 that we computed for the switch in Sec. Il C

in Eq. (36) is positive foro<0.02. Thus the entropy bound sing FR formulas. As already discussed there, under the

(1) guarantees thak Sg>S: when the floating point is in - jrcymstances one cannot naturally redesign the buoyancy
the NHR, the entropy bound is alscsafficientcondition for argument to understand why the GSL works. That argument

operation of the GSL. is of no help wherN is large enough to make somewhat
larger than unity.
V. INTERMEDIATE REGION How does the entropy bour{d) fare? Evaluatingr in the

In the intermediate region 1.BEz.<2R neither of the prefactor of Eq(42) we get

revious calculations of the buoyant force is expected to be _ 2
gccurate. To calculate the buoy;nt force directl?/ from scat- ASen=(2mERR) F(§,0%1(£,0)). “3
tering without benefit of the approximation>R or A<R Numerically F(¢,02,1(£,0))>1 for |>1. Hence, also in the
would be very difficult. Thus we propose to substitét®  jytermediates regime (1.0&1=<2), bound(1) implies the
the intermediate region by an interpolation betwéerand  nequalityA Sg,>S, and is thus sufficientcondition for the
f-. Specifically, we interpolate harmonically between thegperation of the GSL when the object is dropped in.

two versions of the buoyancy energy, to wit To what extent is the entropy bound also a necessary con-
~ ~ dition for the GSL? Can the bound be derived from the GSL?
£(z) = Ez . E(20)E-(2c) Fog Ez Numerically we findF(€,02,1(£,0))<1.1 for ¢<0.1. Ap-
¢ AGM  Z_(z)+E.(z) ' ' AGMT plying the GSL to our gedanken experiment allows us to

(39 derive bound1) for ¢<<0.1, apart from a<10% correction.
We may reach the same conclusion from BY). Bound(1)
The &’s here are as defined by EqR0) and(32), the last can also be derived for arbitrafy, apart from an overall
with C set to zero since we found it to be relatively small. constant of crudely order unity, by considering the free-fall
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of the object into a black holgL6]. Since in all cases where R is the characteristic radius of scattering here, it replétes
Scan be computed explicitly for non-black-hole systd®s  in the expression fof, Eq. (17), which we substitute in Eq.
one finds the trué& to always fall at least an order of mag- (47). The integral oven is performed as in Sec. Ill B. Mul-
nitude below boundl), there is no point in introducing cor- tiplying the result bydr/dt=y~z.(4GM)~* we get the

rections to the canonical forifl) on the basis of the above buoyant force as measured at infinity:
comments.
VI. BUOYANCY OF A CHARGED ELEMENTARY f 2 Rrize (48)
PARTICLE 210mGM (- R.?)°

All our previous considerations referred to macroscopicBecausaczﬁ/E> Ry, this force is of the same form as Eq.
spherical objects. Fd not large these have very smailso (31 for a macroscopic sphere in the NHR, if we repldte
that only the NHR case is importatif we exclude the issue —R;.
of calculating the offseC). It is, however, interesting to  Several caveats about this derivation are in order. We
enquire into the buoyancy of an elementary particle, ongave neglected quantum corrections to the Thomson cross
whose radius is of order of its Compton lengfl’E. The section(44) which are given by the Klein-Nishina formula.
particle can no longer be regarded as a sphere with reflectinghese corrections become important whes 274 /E. As

walls; wave scattering from it must be described by a COUve saw in Sec. I~ 10z, and so as the particle approaches

pling of the waves with the particle’s interaction Hamll-_ the horizon ¢,~#/E), neglect of these corrections is no

tonian. This is obviously detail dependent and complicated ”fonger entirely justified. However, further out Ed48)

¥hould be accurate in this respect. We have also neglected
quantum corrections arising from the fact that by the uncer-
tainty principle, the particle cannot be at rest and well local-
ed at once, as we assume implicitly when we appeal to
buoyancy. Further, the foro@8) can only represent an av-
erage: the particle should be subject to buffeting originating
in thermal fluctuations of the Unruh radiance.
5 Because.>Rr= a(%/E), we can recast Eq48) into the
rm

charged particle, théCompton scattering is well under-
stood.

The characteristic length associated with a singly charge
particle is the Thomson radilR;=e?/E. Becausex=e?/1,
~1/137,R{<h/E, so if it were possible to lower the particle
down to the horizon, its center’s positiap~#/E would still
be a few length®; away from it. In this sense the particle is
always in the FR. But, as we shall see, the buoyant force i
of NHR form. The point is that for wavelengths>7%/E, and
ggﬁr;ged over the two polarizations, the scattering crossec- f~(2/135m) a®(h/E2)*f grays (49)
wherefg,,~ ZE(4GM) ! is the gravitational force as mea-
sured at infinity. Obviously|f|<|fy,) over the physical
rangez.>#/E. Hence buoyancy is negligible for our par-
ticle; there is no floating point, and buoyancy corrections to
the energetics are entirely negligible. The neglected quantum
corrections are unlikely to change this extreme state of af-
fairs. In recent arguments supporting the uniformly spaced

. R black hole area quantum spectr{if6—1§, the buoyancy of
dP/dt=(RT2/2)f d)\f dnnl(A\,n) an elementary particle was ignored. The present work sup-
plies a basis for that neglect.

do/dQ=(R3/2)[1+(n-n")?], (44)

wheren andn’ are the incidence and scattering directions
respectively. This form is missing th&(\)* of Eq. (6); this
explains why FR behavior does not set in.

Instead of Eq(7) we have

X o + n. 72 _A.n
Jdn [1+(n-n7)7](1=n-n") (45) VIl. DISCUSSION
L ~ The effects of quantum buoyancy are parametrizedrby
=(87R7°I3) f d7\J' dnni(\,n). (46)  defined in Eq.(22). In a world with few radiation species,
o~10"2, 10 °, and 108 for an average nucleus, an aver-
Substituting Eq(16) for |, doing first the\ integral by res- age atom, and a grain of salt, respectively. All these objects
caling and use of the identitf;x3(e*— 1) ~*dx= #*/15, and would thus have floating points almost at the horizag (
identifying t with the proper timer in the orthonormal frame —R<R). The results of Secs. IV B and V then tell us that

leads us to Ill=1 here by assumption: the particle interactsPuoyancy protects the GSL upon infall of these or larger
only with electromagnetic waves objects into a black hole. They also allow us to derive the

universal entropy boun¢l) from the GSL, apart from a tiny
s o 2 an 4 correction which can probably be neglected. For macro-
dP/d7=(327"ARy /45)J d)\f dnn(T/2mh)". (47)  scopic and mesoscopic objects, the entropy bound is thus a
necessancondition for the operation of the GSL, provided
As explained at the end of Sec. Il B, one must tdkes the number of radiant specidy, is not very large.
anisotropic, depending on the direction of incidence; since As the number of radiation speciel, is increasedgo
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scales as/N, and will eventually get to be a few tenths of the end of Sec. Il C and at the end of Sec. V showing that
unity for any specified object. The entropy bound for thatthe entropy bound guarantees that the generalized entropy
object cannot then be derived from the GSL as done previgrows upon accretion of the object by a black hole could fail.
ously. It stops being a necessary condition for the GSL, but We thus retain the standard forh) of the bound. In our
remains a sufficient condition for the law to function, this for opinion, the absence dfil from the bound, from the holo-
arbitraryN or o. Although it seems highly unlikely that the graphic principle, and from the formula for black hole en-
world’s particle spectrum contains very many species, UWMropy can have two possible origins. One is that the deep
and PW have urged consideration of what keeps the GSl|ggic of physical theory requires a specific particle spectrum
working in such a hypothetical eventuality. Their suggestionand a definite—not too largeN-for which the black hole
that buoyancy does the job for ayis overturned by our entropy attains its accepted value, and for which entropy
finding (Sec. j that for o exceeding 1.42N>10° for an  pound and holographic principle are still respected, growth
atomic sized systenbuoyancy becomes insufficient to pro- of entropy withN notwithstanding. The second possibility is
tect the GSL. _ _ that a proliferation of particle species would entail interac-
The fact that the universal entropy bound remains a suftions between them to such an extent that it would change
ficient Cpndition for the GSL wheN getS Iarge motivate-s U.S the Way in Wh|Ch entropy Scales up WN’]for noninteracting
to consider the bound as the more fundamental principlespecies, causing it to saturate at lahgat a value consistent
Th|S iS in the Splrlt Of tOday'S 0ut|00k that h0|OgraphiC-type with entropy bound and ho'ographic princip|e_
principles are very deep. For weakly gravitating systems the
entropy bound implies the standard holographic principle
[8,9]. Neither the entropy bound nor holographic principle ACKNOWLEDGMENTS
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