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Late-time decay of gravitational and electromagnetic perturbations along the event horizon
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We study analytically, via the Newman-Penrose formalism, the late-time decay of linear electromagnetic and
gravitational perturbations along the event horiz&i) of black holes. We first analyze in detail the case of
a Schwarzschild black hole. Using a straightforward local analysis near the EH, we show that, generically, the
“ingoing” ( s>0) component of the perturbing field dies off along the EH more rapidly than its “outgoing”
(s<0) counterpart. Thus, while along=const-2M lines both components of the perturbation admit the
well-knownt~2'~3 decay rate, one finds that along the EH $k€0 component dies off in advanced timeas
v~2 73 whereas the>0 component dies off ag~2'~*. We then describe the extension of this analysis to a
Kerr black hole. We conclude that for axially symmetric modes the situation is analogous to the Schwarzschild
case. However, for non-axially symmetric modes beth0 ands<0 fields decay at the same rdtelike in
the Schwarzschild casd S0556-282(99)03422-(

PACS numbegs): 04.70.Bw, 04.25.Nx

[. INTRODUCTION lar field model proved a useful toy model for the more real-
istic fields.

When a gravitational collapse results in the formation of a Price’s results were later confirmed using several different
black hole(BH), the gravitational field outside the event ho- approaches, both analytic and numerid+11], and where
rizon (EH) relaxes at late time to the stationary Kerr- generalized to other spherically symmetric spacetimes
Newman geometry. Also, when th@ure Kerr-Newman [7,12—17. The validity of the perturbativéinear approach
field external to a BH is perturbed by gravitational or elec-was supported by numerical analyses of the fully nonlinear
tromagnetic waves, the perturbing field dies off at late timedynamics[18,14], indicating virtually the same power law
everywhere outside the BH, and along its EH. In both sceindices for the late-time decay.
narios, it is implied by the 1o hair’ principle that when the Recently, several authors addressed the issue of the late-
BH geometry settles down into its stationary state, all charfime decay of fields outside rotating black holes. First, a
acteristics of the initial statéor initial perturbation must ~numerical simulation of the evolution of linear scafas]
somehow be lost, except for the conserved quantities asso@Nd gravitationa[20] waves on the background of a Kerr
ated with it: its total mass, electric charge, and angular mos lack hole was carried O.Ut by K'nvaet al Lgter, an analytic
mentum.(For a detailed review of the “no hair” theorems treatment of this probler(in the tw_ne domal_invyas presentgd
by Hawking, Israel, Carter, and Robinson, $&&) by Ba_rack and Orj21-23 (following a pre_llmlnary anz_ilyS|s

Remarkable as the “no-hair” principle is, it still gives no by. ori [%4])' Then,da stu_dy of the Lathe-twge decay.md Kerrb
information about the mechanism through which this ,,Com_usmg a frequency-domain approach has been carried out by

. X . Hod, both for a scalar field25] and for nonzero-spin
pulsory” relaxation process occurs. For example, it tells US\ewman-Penrose field6] (following preliminary consid-

nothing about the rate of the decay process. Clearly, such &ations by Anderssof9]).

detailed description of the late time decay is important not  The above analyses all indicate that power law tails char-
only for gaining more insight into the “no hair” principle, acterize the decay in the Kerr background as well. In this
but, more practically, by virtue of the recent prospects ofcase, however, the lack of spherical symmetry causes cou-
detecting gravitational radiation from astrophysical blackpling between various multipoles. As a result of this cou-
hole systems. Also, the characteristics of the decay along thsling, the power-law indices of specific spherical-harmonics
event horizon has an impact on the nature of the singularitynultipoles are found to be different, in general, from the
along the inner horizon of charg¢d] and rotating 3] black  ones obtained in spherically symmetric black holes. Another
holes. phenomenon caused by rotatidinst observed iri24]) is the

A detailed description of the late time decay outsideoscillatory nature of the late time tails along the null genera-
Schwarzschild black holes was first given by Pi(fcg scalar  tors of the EH of the Kerr BH for nonaxially symmetric
and metric perturbationigl], and for all integer-spin fields in perturbation modegSee[22,23 for details)
the Newman-Penrose formalisfg]). Price found that any As we just mentioned, power law tails are observed not
radiative multipole modé, m of an initially compact linear only at timelike infinity, but also at future null infinity and
perturbation dies off at late time as2'~° (wheret is the  along the(future) event horizon. Several authors have ana-
Schwarzschild time coordinatelf a static multipole mode lyzed the late time behavior of a scalar field along the EH of
existed prior to the formation of the BH, then this mode will a Schwarzschild BH7,11] and a Kerr BH[22,25. In both
decay ag~?'~2. Price found these power law decay tails to cases, the power law indices of the late-time decay along the
be the same for all kinds of perturbations, whether scalarEH were found to be the same as along any fixederld
electromagnetic or gravitationénd in this respect, the sca- line outside the BHapart from the above mentioned oscil-
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lations along the EH in the Kerr cgseThus, in the pected features, and then qualitatively explain them using a
Schwarzschild case, ahm scalar perturbation mode is simple(scalar-field basgdoy model.

found to decay along the EH as 22 (or v=2'2 for an The paper is arranged as follows: In Sec. Il we give some
initially static mod¢. (Here,v is an advanced-time coordi- definitions and notations, and briefly review the Newman-
nate, which we define in the sequel. Penrose formalism for perturbations of the Schwarzschild

Quite surprisingly, a careful and thorough study of thegeometry. In Sec. lll we introduce thte time expansiarto
behavior of realistic physica| fie|d$e|ectr0magnetic and be employed in our analysis. The static solutions to the field
gravitationa) along the EH has not been carried out so(far ~ €quation, central to our analysis, are obtained in Sec. IV,
the best of our knowledgeeven in the Schwarzschild case followed (in Sec. V} by a formulation of regularity criteria
[27]. One would expect the scalar-field model to provide,for physical fields at the EH. This puts us in position to
again, a reliable picture of the actual behavior of realisticanalyze(in Sec. V) the late time behavior of physical fields
physical fields; however, a careful analysis of the behavior oflong the EH. This analysis yields the power index for both
such realistic fields at the EH reveals several interesting new<0 ands>0 fields. Another perspective on the subject is
features, uncovered by the scalar-field case. These featureébtained in Sec. VII, where we consider the behavior of mo-
arise already in the Schwarzschild case, and thus we find mochromatic modes. In Sec. VIl we then introduce a simple
instructive to study and explain this simpler case first. Ac-toy model, which yields further insight into our results. The
cordingly, in this paper we first explore in detail the behaviorextension of our analysis to the case of a Kerr BH is de-
of electromagnetic and gravitational perturbations at the Ercribed in Sec. IX. In the concluding secti¢Bec. X we
of a Schwarzschild BH. Then we describe the extension ofummarize the results and discuss their physical significance
this analysis to the Kerr case, and derive the power-law inand their relation to other works.
dices at the EH. Full detail of the analysis of the Kerr case
will be given in a forthcoming papd£23] (as part of a com- [l. DEFINITIONS AND NOTATIONS
prehensive analysis of the late time decay of perturbations in
the Kerr spacetime

We shall apply a linear perturbation analysis, based on th
Newman—Penrose formalism. In 'this framevx{or_k, a single ds2= — (A/r2)dt2+ (r2/A)dr2+r2(d 62+ sirfod o?),
master equation governs tkgauge-invariantradiative parts 1)
of the linear perturbations of both the Maxwell tensor and
the Weyl tensor. For both fields, our analysis reveals that thgyhereM is the mass of the BH, and
“ingoing” ( s>0) part of the perturbing field dies off at late
time along the EH of the Schwarzschild Bfsterthan its A(r)=r?—2Mr 2
“outgoing” (s<0) counterpart: Whereas tlse<0 fields ad-
mit the usualv 2 2 law, thes>0 fields decay at the EH is & function which vanishes at the EH=2M. Here, and
like v=2'%. In the Kerr case, the above difference in thethroughout this paper, we use relativistic units; G=1.
behavior of thes>0 ands<0 fields occurs only for axially As this paper is concerned with the behavior near the
Symmetric m:o) modes; for non_axia”y Symmetric modes, event horizonEH), we shall find it convenient in the sequel
one finds the same decay rates for beth0 and s<O. to introduce a newdimensionlessradial coordinate,

These results are summarized in E¢5), (96), and (97)

The line element in the Schwarzschild spacetime reads, in
Ehe standard Schwarzschild coordinatgsé, ¢,

below, in the concluding section. We also comment there 7= r—2m 3)
about the significance of our results to the study of the inte- 2M

rior of spinning black holes, and discuss the relation of our ) ]

analysis to previous work7]. which vanishes at the horizon.

An important role in our analysis is played by the static We shall also need the EH-reguldtruska) null coordi-
solutions of the field equation. These turn out to show &'at€s
peculiarity: As in the scalar field case, there is a static solu-
tion regular at the horizon, and a second, independent, solu-
tion which is w_regular_there. However, fec>0 fields, regu-. wherev=t+r, andu=t—r, are the Eddington-Finkelstein
larity of a static solution cannot be judged merely from |tsnuII coordinates. with
leading-order behavior at the EH. Rather, the distinction be- '
tween the regular and irregular solutions involves the identi- -
fication of a certain, sub-dominant, logarithmic term in the fo=r+2Minz. ©
latter. Another peculiarity has to do with the relation be-  To discuss perturbations of the Schwarzschild BH via the
tween static solutions and monochromatic solutiéns.,  Newman-Penrose formalism, we introduce the tetrad basis of
modes of a single Fourier frequeney). For s>0 fields,  null vectors (#,n*,m*,m*#), defined in the r,6,¢) co-
unlike the scalar fieldand unlike thes<O casg, the EH-  ordinate system b§5,29|
regular static solution cannot be approached from an EH-

VEev/(4M), U= _efu/(4M), (4)

regular monochromatic solution by naively taking the limit 1#=[r?/A,1,0,0
w—0. One finds that fos>0 this naive limit leads to a
static solutionirregular at the EH. We study these unex- n*=[1,—A/r2,0,0]/2 (6)
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m*=[0,0,1j/sin8]/(2Y%r). po=Ps="1
(The components of the fourth tetrad leg* #, are obtained py=r"2ps="1
from the components ah* by complex conjugation. (10)
In the framework of the Newman—Penrose formalism
[30] the gravitational field in vacuum is completely de- Po=ps=+2
scribed by five complex scalarsb,...W¥,, constructed
from the Weyl tensor by projecting it on the above tetrad P,=r 4Ps=-2
basis. Likewise, the electromagnetic field is completely de-
scribed by the three complex scalars, ¢4, ¢,, constructed In Eqg. (9), the angular dependence & is separable
by similarly projecting the Maxwell tensor. In particular,  through a decomposition ispin-weighted spherical harmon-
ics [33],
\I’OE—CQ3V5|amB| ymé, w |
7
\1’45 —Caﬁyan“m*ﬁn“/m*‘s ( ) ‘Ps(r!tieisp):I;SI m227| lr//SIm(rvt)YS|m( ea(P) (11)

represent the ingoing and outgoing radiative parts, respeérne time-radial functionsyS'™(r t) then satisfy the field
tively, of the Weyl tensor, and equation

Qo= FILV”LmV, Qo= Fl“,m*:“nV (8) r41//i|tm—A75+1(As+lz//?rlm)’r+23r2(r—3M) ,Stlm

represent the ingoing and outgoing radiative parts of the +(1—s)(I+s+1)AyS'M=0. 12
electromagnetic field.

In the Schwarzschildunperturbed background all Weyl
scalars but¥, vanish(as directly implied by the Goldberg-
Sachs theorem, in view of the Schwarzschild spacetime be- In order to analyze the power-law decay of perturbations
ing of Petrov type D; see Sec. 9b,c[B1]). In the framework at late time, we decompose the field in the form
of a linear perturbation analysis, the symbols
Vo, ¥,,0¥,, V3, W, and ey, S¢1,¢, are thus used to rep- :
regent first-ordér perturba(t)ions of the corresponding fields !#S'm(f,t)zgo FRM(r)v koK, (13
(with sW,=W,—whackaound atcy One can showsee Sec. -

29b in[31]) that ¥y and ¥y, and alsopy and ¢,, arein- 5 which we refer as théate-time expansiofid4]. Substitu-

variant under gauge transformatiorisamely, under infini- tjon in Eq.(12) yields an ordinary equation for each function
tesimal rotations of the null basis and infinitesimal coord|-Fs|m:

nate transformationsThe scalargl; andW; are not gauge
invariant, and may be nullified by a suitable rotation of the DS(FsIM=gsm, (14)
null frame. The entitie$¥, and S¢, represent perturbations
of the “Coulomb'”ke,” non'radiative, part of the f|e|d\$n WhereDSI is a differential operator defined by
fact, one can also nullifys¥, by a suitable infinitesimal
coordinate transformationlit is therefore only the scalars DS'=Ad?%dr?+2(s+1)(r—M)d/dr—(I—s)(l+s+1),
defined in Eqs(7) and(8) which carry significant informa- (15
tion about the radiative part of the fieldé\ote, however,
that gauge invariance of the radiative fields is guaranteednd the source ter& ™ is given by
only within the framework of linear perturbation theary.
There is a single master equation governing linear pertur k-1 +23rMA1F§'"‘1}.

lll. THE LATE-TIME EXPANSION

[

(I’FSIm

bations of both the gravitational and the electromagnetic ra- 3§'m52(k0+ k=1)r dr
diative fields defined in Eq47), (8) [32]. In vacuum, this (16)
master perturbation equation reads
(We takeF§"™=0.)
The dominant late-time decay at world lines of fixets

A4A—1\yS _ A —SAASTI\rSY _ S i
AW L= AT AR Sine(\lf’(,sm 0).0 described by the terrk=0 in Eq.(13). To the leading order
in 1, we have
1 2iscosf _ ) s |
_%‘I’,cpfsi—nzg‘l’,fzs['\/” [A=r]¥ SM(r ) =FIM (v ko, (17)
+(s2cofh—s)Ws=0, (9)  Substitutingv=t+r, , we also find, to the leading order in
1k,
whereWs(t,r, 6, ¢) represents the various radiative fields ac- <im sIm i
cording to the following substitutions: () =F=o(r)t ", (18
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which, using the well-known result by Prid&], implies  solutions near the EH. The leading-order asymptotic behav-
ko=2l+3 (or kg=21+2 if a static model is initially ior can be easily obtained from the asymptotic form of Eq.
present? (19) near the EH: One finds that for bogh>0 ands<0, the
SinceSy'™ vanishes fok=0, the termF{'™(r) satisfies  two asymptotic solutions behave there like

the homogeneous differential equation

g q ¢5|mzA0 and szImEA_S (20)

sl Esimy _
D¥(Fo™)=0. (19 (to the leading order id\). However, it is also possible to

This is just the field equation of static model,m. Thus, Write an exact, global, basis of solutions to the static equa-

F3m () must be a static solution of the field equation. In thetion. as we do now. _
next section we shall study the static solutions 6%, fo- In terms of the radial variable Eq. (19) takes the form

cusing attention on their asymptotic behavior at the EH. (—2)(1+2)Fi+[—(s+1)—2(s+1)Z]F}
IV. STATIC SOLUTIONS +(I=s)(I+s+1)F;=0, (21)

Since Eq.(19) is a second-order differential equation, its where a prime denoted/dz. This is the hypergeometric
general solution is spanned by two basis solutions. We sha#iquation[35] for Fy(—z). One solution for Eq(21) is given
primarily be interested in the asymptotic behavior of theseby (see Sec. 2.1.1 i[85])

F(—l+sl+s+1;s+1;—2)=¢, (for s>0),

(4M?2) SF(= 1,1+ 1;-s+1;—-2)=¢, (for s<0), “

¢r(z) =

whereF denotes the hypergeometric functidhlereafter we often omit the indicedm for brevity.) Note that since in both
cases the first index is a non-positive inteders simply apolynomialin z, and so is¢, . (We choose this notation because,
as we shall see belows, is physically regular at the EH, whereas the other static solution, to which we shall later refer, as
is irregular therg. The normalization in Eq(22) was chosen so as to conform with EQO) [recall that atz=0, the
hypergeometric functioff =1, and note also the relatiah=4M?z(z+ 1)]. Thus, to the leading order i, ¢, is given by

A°  (for s>0),
@(UE(A_S (23

(for s<<0).
A second, independent, static solution is given(bge Sec. 2.2.2, case 21,[Bb])

(4M2?2) S(1+2) " F[l—-s+1)+1;20+2;(1+2) Y=¢; (for s>0),

(1+2) "SR +s+1)+1;20+2;(1+2) H]=¢;, (for s<0), (24)

Dir(2) =A;sX

whereAg, is a hormalization factor, A careful study of the asymptotic behavior @f, at the

EH reveals that it includes #&sub-dominant logarithmic

term? To analyze this logarithmic term, it is instructive to

express the irregular solution in terms@f via the Wronsk-

21+ D!([s|-1)! ian method. The Wronskian associated with the homoge-
(29) neous equatiol19) is

IEIEN

Ag=1/F(—|s|+1]+1;21+2;1)=

[cf. Eq.(46) in Sec. 2.8 of 35]], chosen such thap;, takes
the simple leading-order asymptotic for(20) at the EH, w=A"5"1 (27
namely

s and thus a static solution independent ¢f may be ex-
A (for s>0), (26) pressed as

Pir(1)= A°  (for s<0).

2Such a logarithmic term is to be anticipated, because of the inte-
For brevity, we hereafter consider modes without initial staticger difference,|s|, between the leading powers afin the two
multipoles. asymptotic solution$20) near the regular-singular point=0 [36].
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¢ir:_¢r(r)Jrd)r_z(r,)w(r,)dr, air:(2M|S|)_l¢ir+ConSD<¢r. (30)
[Here, the coefficient o, depends on the specific choice of

ro_ e the lower integration limit in Eq(28).] Substitution of the
_ 2001 ’ 14,7
a d’f(r)f ¢ “(rLA(r) ] dr. (28) full expansion(29) in Eq. (28) yields

This solution, of course, does not necessarily coincide with bii=—dlyginz+z ¥+ yiz+--)], (3D
¢ , but is, in general, a linear combination of the two basis ~ .

functions¢, andé;, . Itis easy to verify that the integrand in wherey;=2My;/(i—|s]) for i #|s| (andyq is an arbitrary
Eq. (28) is z~ '8~ times a rational function which is regular integration constaitWe now use Eq(30) to extracte;, :
(and nonvanishingat z=0. The integrand can therefore be

expanded as ¢ir:2M|S|(a’ir_ConSD< ér)
7718yt yy 2+ v 22t - ), (29) = —2M]s| /[ ygInz+2 18 (yo+ y12+ - - -)+consi.
wherey; are constants, withy,=(4M?)~I8=10. By sub- (32)

stituting the leading-order term of this expansion in E29) It is straightforward to expand this expression abpsat0.
and comparing to Eq26), we find This expansion yields

A1+ afz+a, 2%+ - )+ Bgd, Inz  (for s>0),

Pir(1) (1+a;z+a,Z%+-- )+ Bgd, Inz (for s<0), 33
|
wherea;” and Bg=—2M|s]| Y|s| @re constants. Evaluating this expression =1, to the leading order in
The above analysis, based on E2g), explains the origin  z=1-y, we obtain
of the logarithmic term and determines its exact form. The
calculation ofyg (and hence of3s)) for generall,s is te- (HI(T+]s])! s
dious, however. It is easier to derive the explicit expression Wz Inz. (36)

for B, directly from the exact expressid@4) for ¢;, . The

serie_sl expansion of th_e hypergeometric funct_ion around (%ubstituting this in Eq(34), and recalling Eq(25), we ob-
+2) "=1 (corresponding ta=0) may be obtained from a {4 the desired expression for the logarithmic coefficient:
generating function through the formula

(—1)ST X1 +]|s|)!

B Is
" (|S|_1)!(|5|)!(|—|s|)!(4M2) +#0. (37

F(l—|s|+1]+1,2+2y) B

(—Dls* 21+ 1)

=2 : | In summary, we have constructed a basis of solutions to
(I =[Pt +]s])! the static field equation. One of the basis solutions) (is

| d' (In(1-y) simply a polynomial inz, but the other ;) contains a
X — (1_y)l+|s_(—y) (34)  logarithmic term. This logarithmic term will play an impor-
dy' dy' y tant role in the analysis below. Note also that for bsth0

ands<0, ¢, is smaller thang,, in the leading order by a
[cf. Eq. (4) in Sec. 2.2.2 of35]]. Note that in our casg  factorAlsl.
=1/(1+2), so In(l-y)=Inz—In(1+2). The logarithmic

term in Eq.(33) (which comes from the first of the above V. REGULARITY AT THE EH
two In termg is only obtained when none of the 8erivative
operatorsd/dy in Eq. (34) acts on In(ty). Thus, for the By general considerations, we expect physical perturba-

sake of calculating the logarithmic coefficient, we can re-tions to be regular and smooth at the EH. The functioth
place the second factor in the right-hand side of B4) by  represents a perturbation in the Maxwell field tensg, for
s==*1 and in the Weyl tenscC, 4, for s= =2. When this

I I perturbation is expressed in Kruskal coordinatés (or in
d
— (1—y)'*‘5|—|(y*1) Inz any other coordinates which are regular at the) B com-
dy dy ponents of these Maxwell or Weyl tensors must take a per-
g fectly regular form at the EH.
=(—1)'(IN—[(1—-y)*sly=1""Inz. (35 To discuss the regularity oF® at the EH, it is useful to
dy' define
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PS=ASPS, (38)
and correspondingly,
I’ZISImEAswsIm and ﬁEImEASFiIm. (39)

It is straightforward to show, via Eq$7) and (8), that for

any s, WS directly represents a physical perturbation field

which must be regular at the EH: Fer 2, WS is a linear
combination of Weyl components,, v, Where the indices
a,b represent the two angular coordinatésp. For s=

PHYSICAL REVIEW D60 124005

andv form a regular coordinate system for the Schwarzs-
child backgroundthe so-called “ingoing Eddington coordi-

nates”), ¢ '™ must be a perfectly smooth function oéndv
at the EH(recall thatr andv are related tdJ andV by an
invertible analytic transformationTherefore, for ank (and

anys), F'™(r)=ASF$'"™(r) must be a smooth function of

Fi'M(ryeC”(R) for k. (40)

Im

In Sec. lll we have shown thaE,, must be a static

solution. The regularity of§"™,(r) then implies thafF;'™

—2, %S is a linear combination of Weyl components must coincide(up to some multiplicative constantvith the

Cuaub- Similarly, fors=1 ands=—1 W¥3is a linear com-
bination of Maxwell components,,, andF ., respectively.

Therefore, a necessary condition for regularity at the EH is

that 'S be regular(i.e., finite and smooth Since the spin-

weighted spherical harmonics are smoof/ns,'m must be
smooth too.

We point out that the regularity 6¥'S is also dictated by

regular static solution¢, . Hence, to the leading order in
1N, we obtain

(L, 1) =cop (r)v 23+ 0(v 274, (41)
where ¢, is constant. For the description of the late-time

behavior along world lines of fixed>2M, it is useful to
re-write this expression in terms of powers of:3/

mathematical considerations, as follows: If one transforms

the master equatiof®) from ¥s to ¥, and from the original
coordinates to the Kruskal coordinat@s, the field equation
becomes perfectly regular at the EWhereas with the origi-

nal dependent variabM® the equation is singular at the EH,
even in Kruskal coordinat@sTherefore, from the hyperbolic

nature of the field equation, if the initial data fdrs are

regular(which we assumeno irregularity may evolve at the

EH.

YN =cog (Nt~ 273+0(t™ 274, (42
From this point on we discuss the cases0 ands>0
separately.

A. The cases<0

In this caseF " is proportional tog, . We shall denote

the proportionality constant by, , that is,

Consider next the regularity of the static solutions. We
assume that for anyand anyl,m, there existgat least one
static solution which is physically regular at the EH. For, if
there is an external static source of a multipl® (and no  [Recall that the parametég in Eq. (13) is so defined such
incoming waves from past null infinilythe field outside the that the ternF§'™) does not vanish identically. Therefore, by
BH will be static; and we do expect this static field to be definition, the constant, is non-zero Note thate =Als!
regular at the EH. The presence of two independent regulafear the EH.
static solutiongfor a givens,I,m) at the EH would violate Consider next the contribution from the terfis 0. From
the no-hair principle, because thel static solutions would  Eq. (40) it is obvious that fors<0 and for allk>0, F§'™
be regular at the EH, including the one which is regular aimyst be a regular function af which vanishes at least like
|nf|n|ty. We Sha” now ShOW, hOWeVer, that f0r aB,yOI"Ie Of A‘Sl at the EH(hke for k:O) Hence’ at |ate Ume the terms
the static solutiongthe solutiong;;) is irregular. k>0 are negligible compared to the tekw 0, due to their

For s<0, the irrggularity of¢;; is obvious, because the pigher negative powers of I/ Therefore, Eq(41), which
corresponding fieldp;, =A%¢;, diverges likeAS. Fors>0  now reads
the field ¢;, is finite (=A°) at the EH. Yet, the logarithmic
term implies that the solution is not smooth: The derivative
of order|s| with respect tar (which itself is a regular coor-
dinate diverges. On the other hand, for both~0 ands

FiM=cy . (s<O). (43)

YoM =co @y (v 272 (s<0), (44)

provides a useful description of the late-time behavior not

<0, the field,=A3¢, is a polynomial inz [which is pro-
portional to ¢ —2M)S for s>0 and to ¢ —2M)° for s<0],
so it is perfectly smooth.

We conclude that for both positive and negatsyep;, is
physically irregular, whereas, is physically regular.

VI. LATE-TIME BEHAVIOR

The demand for regularity of '™ at the EH has imme-
diate implications to the late-time expansi@h3). Sincer

only atr>2M but also at the EH. To the leading orderAn
the asymptotic behavior at the EH is
(45

M t)y=co A Sv 273 (s<0).

31t should be stressed here that in this paperassumehe power
index 2 +3 derived by Pricg5] for the tail at fixedr>2M. The
new information in Eq(42) [or in Eq. (41)] concerns the explicit
form of the radial function multiplying the inverse-power factor.
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B. The cases>0 polynomial form? The source ternS, is to be calculated

In this caseF$'™ (which must coincide with the regular 1OM Eq.(16) with Fy_4(r) = Fo(r)=cg ¢, (r). This yields,
static solution is proportional tog;" , ie., FiMm=ci 4+ 10 the leading order i,

with ¢j #0; henceF§™<A° near the EH. However, fok

>0 (for which F$'™ is not the static solution the only ob-

vious constraint on the functions™ is the regularity of |n view of Egs.(23), (27), and (51), we find that the inte-
Iiﬁ'm(r), Eq. (40). This regularity criterion allows the terms grand in Eq.(50) is given, to the leading order id, by
k>0 to be proportional ta\ ~* (and, as we show below, at 16M3skycs AS~(r")/AS*(r"). Performing the double in-
least the termk=1 is indeed proportional t& ~%). Due to  tegration, we obtairito the leading order i )°®

this A S factor, at the EH thed(v 2 ~%) term in Eq.(41)

dominates th©(v~2'~3) term, which is only proportional to din(r)=4Mkocg Inz+O(A°). (52)
A°. Therefore, fors>0, Eq.(41) does not provide a useful

description of the asymptotic behavior at the EH as it doe$y substitution in the inhomogeneous equatib#), one eas-
for r>2M. A correct description of the late-time behavior ily verifies that the term lz in ¢;, must be multiplied by a

Si(r)=16M3skocg AL, (51)

there must include both termks=0 andk=1: homogeneous solutioftherwise the homogeneous operator
| DS!, acting on the logarithmic part of;,, would yield a

oMty =cg ¢ (v 23RN (v term proportional to lz—which cannot be balanced by the
+O(v-2-5)  (s>0). (46) logarithmic-free source termand from Eq.(52) and Egs.

(23), (26) it follows that this homogeneous solution must be

; +
To the leading order id, the asymptotic behavior at the EH proportional to¢,” . Therefore,

'S bin(1)=4AMKoCq ¢ Inz+O(A°) (53
sim et —21-3, At A—s,—21-4

g D=cov oAt (s>0), (47) [in which theO(A%) term is logarithmic-free We now sub-
stitute this expression in E48), using the asymptotic forms

f (23) and (33), and keeping only the leading ordgsropor-
tional to A ~%) of the non-logarithmic part:

wherec; is the coefficient ofA % in F{'™, . Note that Egs.
(41) and(42) still provide a correct and useful description o
the late-time behavior along any line of fixed>2M.

It is important to verify that the coefficient, in Eq. (47) ESIM () =p TA S+ 1n 21+ AMkect &7 In z
is non-vanishing. This coefficient is to be obtained from the =1(=by [ Ba¢r Inz] oCo brInz. (54
slm

function F$'™ (r) in Eq. (46). F§'™ satisfies the inhomoge-
neous equatioil4), subject to the regularity conditio@0).  Note that the coefficiers; in Eq. (48) (which, in principle,

The general inhomogeneous solution takes the form is to be obtained by matching the solution to the late-time
field at null infinity [11]) does not enter Eq(54), as ¢,
slm At gt + 4+ r
Fi=1(r)=a; ¢, (r)+by ¢y (1) + ¢in(r), (48 includes neithetr S terms nor logarithmic terms.

Now, F,(r) must satisfy the regularity conditia@0), so
it cannot contain a logarithmic term. This dictates the value
of the constanb; :

wherea; andb; are constants ang;, is a specific inho-
mogeneous solution. Using the Wronskian functifgr)
given in Eq.(27), we can expresg;;, as

by =—4Mkqcg Bs #0. (55)

(r’)Sl(r’)/A(r’)d ,
W(r') ' One can now identify the non-vanishing coefficiégt with
the above leading order coefficieaf of F,(r) at the EH.
r¢r(f’)31(f')/A(f')d 49 We conclude that the coefficient; in Eq. (47) is non-
W(r') r. vanishing. As a consequence, we find tbatthe EH itself

¢ih<r>=¢>r<r>f¢”

_air(r)

For s>0 it is convenient to re-express this inhomogeneous
solution in the form “In Eq. (50) we have not specified the lower limit of the integra-
tion overr’. Changing the value of this limit amounts to adding a
r r b (N, (r")y W(r') Sy(r") regular solution= ¢, , which is equivalent to re-defining the coef-
¢ih(r):f df'j dr”
2M

, ficienta; in Eq. (48). Note, however, that the choicd=2M as
AN " " 1 ’ ’

[ (r)]1% W) A(r") the lower integration limit is forbidden, as the integral is not defined

(50 in this case.

5 3 : . Lo
N . . . T Note that no 18z,In%z. . . terms arise from the integration in Eq.
which is easily obtained from Eq49) by first substituting (50): For s>0 the integrand is actually a rational function 1df,

for & , using Eq.(28), and then integrating the resulting analytic atr”=2M. Hence, the integration ovef cannot produce
expression by parts. The for(B0) is advantageous as itonly a Inz’ term. A termecin z arises only from the subsequent integra-
involves the homogeneous solutigi , which has a simple tion overr’.
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the perturbation is dominated by the second term in(E@),  Eq. (56), and construct the corresponding physical fiejes

and hence it decays there like *~*. _ = ASy (which, as was discussed in Sec. V, should be regular
In this section we have o_b_ta|n+eq the asymptotic 40 functions at the EW We denote the functiong obtained

(and proved that the coefficienf is non-vanishing by a ¢ 2 andu® by 52 and i° ivel d find

direct analysis ofs*'™in the cases>0. There is yet another rom ¢, and¢,, by ¢~ and 7, respectively, and fin

way to obtain Eq(47), which, being somewhat outside the

main course of this paper, we describe in detail in the Ap- PrA=ASyLe =A%,

pendix: It is well known that each single one of the pertur-

bation fieldss=1 ands=—1 determines the full electro- [ngASlpze—iwt;e—in_ (60)
magnetic perturbation, i.e., the full Maxwell tendey; (up

to a trivial addition of the static Coulomb Solutﬁ)rSimi- Recall thatv is regu'ar at the EH, but is not (as the EH is

larly, each of the perturbation fields=2 ands=—2 deter- g, ta0e of finitev but infinite u). This implies thatj® is

mines the full gravitational perturbation, i.e., the perturbation lar. butd® is i | 2 di h
in the Weyl tensofup to gauge, and up to a trivial addition regular, buty® is irregular. (For s<0, * diverges at the

of the static multipoles with=0 andl =1). In particularp, EH. Fors>0, ¥ is finite, but itss-order derivative with
determinesp,, and ¥, determines¥,, and vice versa. We respect toU is indeterminate at the EH, and higher-order
use this fact in the Appendix, where we obtain thederivatives diverge theneWe conclude that for#0 (and
asymptotic behavior fos>0 from that of s<O (as we for boths>0 ands<0), ¢? is regular and)?, is singular.
showed above, the latter is relatively simple, becausesfor (This is a well known result; sef&7].)
<0 the termk=0 in the late-time expansion completely  Let us now compare this situation to the static case, Egs.
describes the late-time behavior at the)EFo that end, we (23) and (26). For s<0, the classification into regular and
shall use in the Appendix the well knowfeukolsky- irregular solutions is preserved at the limit-0. However,
Starobinsky identities for s>0, the regular and irregular solutions switch role in
this static limit.

VII. SINGLE FOURIER MODES

. . . . . VIll. SCALAR-FIELD TOY MODEL
Consider a solution to the field equati¢t?), having the

form To better understand the exchange of regular and singular
_ solutions at the limitw—0 (for s>0), it is instructive to
Y(r,)=,(re ' (56)  consider a simple scalar-field toy model. ldtbe a mini-
mally coupled, massless, Klein-Gordon test field on the
Schwarzschild background. We make here the assumption
that, in an appropriate gauge, the late-time behavior of the
electromagnetic four-potentigh, and of the linear metric
perturbationh,,; is qualitatively the same as that of a scalar
42 field (this assumption is somewhat vague, especially because
(A2 2. sI2 of the gauge ambiguity. Note, however, that at least for the
z (FA79w) o H0SRIOTViS(N](rA™Y,) =0, behavior of metric perturbations alomg-const>2M lines,
(57)  this assumption is verified if4]). Correspondingly, we
would expect that the components,, of the Maxwell
in which R(r) andV(r) are certain radial functions. The tensor—which are made of terms like, ,—will qualita-
asymptotic form of this equation near the horizon is tively behave at the EH like ,,. For the same reason, we
would expectF,|, to behave at the EH like ;. Recalling
the wayWs=*1 is constructed fronk , ; by projection on the
tetrad (6) [see EQ.(8)], one intuitively expects thas=*1
will qualitatively behave as follows:

(The indicess,|,m, which, in fact, characterize both func-
tions ¢ and ¢, are omitted here and below for brevity.

Each Fourier mod ,(r) then satisfies an ordinary equation
which may be written as

*

2

d
d—z(AS’%)E(SMM +iw)?(AY%y,). (58)
r*

The two asymptotic solutions at the EH are

| | N e
YA=A%"x and Y°=A"Se '« (59 v

(where use has been made of the asymptotic relation ‘I’SZ_loccbqu\Ifs:‘l. (62
e+ /Mo A12) At the limit w—0, these two asymptotic
solutions approach the two asymptotic static solutions, EqgSimilarly, for the casds|=2, one expectin view of Eq.
(20)—just as one would expect. We shall now show, how-(7)] that
ever, that fors>0 the role of regular and irregular solutions
is interchanged as the limié— 0 is approached. PS=20c A 2. =pS=2
In the casaw# 0, too, we expect one of the two solutions v '
to be regular and the other one to be singufar the same -
reasons as in the static casé/e now substitute/® and ¢ in ps= ‘ZocQD;UUE\IfSZ‘Z. (62)
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(For brevity, we shall focus the following discussion on the[lt is assumed here that the termi{A) in Eq. (66) are
case|s|=1. Similar arguments apply ts|=2 as well)® non-vanishing, and, moreover, that their derivatives with re-
For any modd,m of &, the two static solutions take the spect tor do not vanish at the EfiThe construction offr2

asymptotic forms ~ ) ,
and ¥® ensures that thé dependence of both functions is

®,=1+0(A) and D, =r, (63  simply e '“!. Let us denote the radial parts of these two

functions byﬁfj)(r) and\nff?u(r), respectively; that is,
near the EHcf. [4]). Clearly, ®, is the regular mode, while

d;, is singular(as r,— —c at the EH. Let us denote the ﬁfa(r,t)se*‘“’t(fff)(r),
functions ¥* which correspond to the regular and singular 5 B
modes byW?$ and ¥ , respectively. Recalling that in the Vo(r,ty=e 'tWh(r). (68)
static case), = — d,= (1/2)d/dr* =[A/(2r?)]d/dr, we find ]
for |s|=17 For both cases=1 ands=—1, one thus finds

L [A% s=+1, ~_ (AT s=+1, Waxel e [1+0(A)],

S S
Ve A, s=-1, Wiree A®,  s=-1. 64) - _
WP A7Se 1T [1+0(A)]. (69

Consider next a single Fourier modef a givenl,m, ) ]
d=d ,(r)e”'“!, The two asymptotic solutions of the radial A comparison of Eq(64) to Egs.(23), (26), and of Eq.

function at the EH are obtained by substitutisg 0 in Eq. (69 to Eq. (59), reveals that for both cases=0 and
(59): #0, and for boths=1 ands=—1, the actual asymptotic

form of both the regular and singular solutions agree with
dA=e ™ [1+0(A)], D =e “*[1+0O(A)]. that obtained from the scalar-field toy model. In particular, in
¢ ¢ (65) the cass=—1, atthe limitw— 0 the regulaw # 0 solution

WP approaches the regular static soluti@r?:’1 (and the

These two radial functions correspond to the field configura- . = . .
singular w #0 solution ¥, approaches the singular static

tions
_ . static solutior?3~~1), whereas in the case= + 1 the regu-
=g @'Ppi=e '?U[14+0(A)], lar and singular solutions interchange at the limit-0.
Our toy model provides a simple intuitive explanation for
PP=e PP = TV[1+0O(A)]. (66)  the difference in the role of the regular and singular solutions

in the static andw#0 cases. The key point is the relation
Sinceu diverges at the EHbut v is regulay, it is obvious between the two basis solutions of the scalar field itself, i.e.,

that ®° is the regular solution, whileb? is singular. We Egs.(63) and(65), (66). In the static case, there is a “small
o= solution” ®, and a “large solution” ®;, . Naturally, the
shall denote the functiori¥® which correspond to the regu- «gm a1 solution” is the regular one, and the “large solu-

lar and singular modes in E@66) by V2 and ﬁfb, respec- tion” is singular. On the other hand, in the case: 0 both

tively. Using Eq.(61), we find for|s|=1: radial solutions in Eq(65) are of the same magnitude. In this
. case, the fundamental difference between the two basis solu-
~ e 'YU14+0(A)], s=+1, tions is that, at the leading order, one of thed®?| depends
* e i1+0(A)], s=-1, solely onu, and the other oned®) depends solely on. We

can therefore refer to the two radial functioh§ and®® as
the “u solution” and the ‘v solution,” respectively. Since
) is regular at the EH and diverges, the V solution” @2 is
Ae '"[1+0(4)],  s=-1. regular and the U solution” is singular.

(67)

~ {Alei“"’[lJrO(A)], s=+1,

Now, the functions¥*® (which presumably represent the
functionsW®) are obtained in our toy model by differentiat-
o o ) ~ing @ with respect tou or v (depending on the sign ).

A more sophisticated toy model would be obtained by replacingconsider first thew 0 case(in which the two basis solu-
Fag Or Cupys in the definitions of the Newman-Penrose fields by tions are classified as av“solution” and a “u solution™).
Diap OF g5, respectively. Here we adopt a simpler toy model \yhen the operatos, acts ond, it naturally yields a large
W?'Ch 'S_e_as'er o CaICUIate,' <. outcome for the Vv solution,” and a small outcome for the

In deriving the asymptotic form foW; it has been assumed that « u solution.” On the other hand, when the operatoyris
d®d, /dr does not vanish at the EH. This assumption is justified, asapplied, it yields a small outcome for thev“solution,” and

it is _known [11,38 that the EH-regular static sqalar fiel, is a large outcome for the U solution.” Since the % solu-
nothing butP,[ (r —M)/M], the Legendre polynomial of ordefup tion” i | d the % solution” is si | .
to a multiplicative constant At the EH we then haveld, /dr lon" IS reguiar an € U solution™ IS singular, we arrive

«dP, /dr=1(1+1)/2, which does not vanisexcept forl =0). at the following conclusion: Foﬁfs:‘1 (which is associated

124005-9



LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D60 124005

with @ ), the regular solution is the smaller of the two basic {I}S=1E<I>1v*2'*3— (204 3) DALy 24, (76)

solutions. However, forps=1 (which is associated with
@), the regular solution is thearger of the two basic so- Wwhere ®o=®|(r=2M), and &;=(8M?) *(d®,/

lutions. dr),—oy . Compare these results to E@45) and (47).
On the other hand, in the static case we have a “large So far we have implemented the toy model for the case
solution” and a “small solution”(instead of a v solution” |s|=1 only. The calculations in the cag =2 are straight-

and a ‘u solution”). The differentiation of the “large solu- forward too, though they are somewhat more tedious. We

tion” with respect to eitheru or v yields a functions shall merely point out here that all the expressions we have

which is larger than that obtained from the differentiation ofderived for ¥S==! are extendible to¥=*2, and may be
the “small solution.” Therefore, in the static case, for both used to explain the various features ¥~ ~%2—e.g., the
s>0 ands<0 the regular solution is the smaller of the two asymptotic behavior of the regular and singular solutions for
basis solutions. both w#0 andw=0, and the late-time behavior at the EH.

The interchange of the regular and singudzar0 solutions It should be emphasized that the late-time power index of
in the transition fromw # 0 to @ =0 may still look somewhat s=2 4t the EH is 2+ 4 (and not 2+5, which might na-

mysterious, because the limi#—0 is a perfectly regular jyely be anticipated due to the twoderivatives in the defi-
limit of the differential equation(57). The mystery may pition of this function. The reason is that, the second-order
again be resolved with the aid of our scalar-field toy model¢qyariant differentiation in Eq62) involves the differentia-

Let us re-write the regulan#0 solution for® [Eq.(66)]in {jon of the affine connection. The easiest way to evaluate

a somewhat more explicit form, P . . .
¥s=< s via the Kruskal coordinatesvhich at the EH mini-

dP=e 1V[1+c(w)A+O(A?)]. (700  mize the connection’s effect One then finds thatb.,
«v =274V, and the next differentiation with respect %
We assume that(w) is continuous and non-vanishing at the then yields, at the leading ordef).,xv 2 "4/V?, i.e.

L 3 s= . -21-4
limit —0. We now calculate?$~* from this regular solu-  ®.,w*V :

tion, via Eq.(61), keeping the leading order it separately ~ Finally, we point out that Eq(72), which was derived
for terms proportiona' t@ and for terms proportiona' too: W|th|n the framework Of the Sca|al’ f|e|d toy mOde|, may aISO
be derived for the realistic fields=2, if Eq. (73) is as-

\'i',s:l;e—in[_iwA—l+(4M)—lc(w)][1+O(A)]. sqme_d, using Fhe _Teukols_ky—St.arobinsky ider_ltitﬁﬁrse ap-
(72) plication of which is described in the AppendiMore ex-
plicitly, let us write the asymptotic behavior of the
Restricting attention to the limitv—0 and to the leading monochromatis=—1 field at the EH, to the leading order
order inA, we obtain in A, as

Vo l=e oV~ iwA 14 cy), (72) Ve i=a(o)ae, 7

and assume tha(w) is non-vanishing at the limitv—0.
Then, applying the Teukolsky-Starobinsky identities, one
can easily obtain for the correspondiag + 1 field

wherecy=(4M) ~lim,_ oc(w). Equation(72) explains the
change in the asymptotic form of the reguss 1 solution
from A~ in the casew+0 to A® in the casaw=0.
On the other hand, when the same calculation is carried =1, oo FoA—1 0
' WS~ e ' Y(—iwA T+ constx A 78
out fors= —1, one obtains from Eq61) * (Zle ) (78

- A (for small w).
\I’SZ_J‘E—COAE_""V (73)
. IX. A KERR BLACK HOLE
for the regular solutiorifor small w). Thus, the regular so-
lution for s= —1 is proportional toA for both w# 0 andw The above analysis of the Schwarzschild case has imme-
=0. diate implications to rotating black holes as well. In a forth-

Our toy model also allows us to obtain the late-time be-coming papef{23] the late time expansion will systemati-
havior for boths>0 ands< 0 directly from that of the scalar cally be applied to the Kerr case, in order to determine the
field. The late-time behavior fdia model,m of) ® near the late-time behavior of external perturbations. Here, we shall

EH is known to bg7,11] use the above methods and considerations to derive the de-
| | cay rate ofs#0 fields along the Kerr EHmany of the de-
P'=d(r)v 23, (74)  tails are left to Ref[23]).

) R . . In the Kerr case, the Master equation is fully separable
where the radial functio,(r) is the regular static solution only in the frequency domain, by writing

for the model,m. Equation(61) now yields at the EH
~ \I,wslm(t,r’a,(P):SiJm( 9)eim<pe—iwt¢,wslm(r), (79)
WS l=—AQy 3 (75)
where ¢,r,60,¢) are the Boyer-Lindquist coordinates, and
and Sf;'m(a)eim‘P are the spin-weighted spheroidal harmonics
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[37]. The behavior of the radial functiofs'™(r) is then We shall now restrict attention to the st&ticasew=0
governed by the well known Teukolsky equatif8v]. The (the casew#O0 is not required for the analysis belpvin this
two asymptotic solutions of this equation at the EH are  case, the asymptotic solutio®4a), (84b) become

¢;’S|m(r)EAoei(w_mQ+)r*, lﬂﬁ)slm(r)EA—se—i(w—m(h()r*; \If;":O'SIm(r,0,;+)EYS|m(6’,;+)Aoeimﬂ+u, (87@
80
qu‘zo'5|m(r'0’;+)zYS|m( 0';+)A—seim0+v'

where 87b

A=r2-2Mr+a? (81) | N : :
where Y*'™ denotes the spin-weighted spherical harmonics.

M anda are respectively the mass and specific angular moTeukolsky’s assertion concerning the regularity/gfis now
mentum of the black holer, is defined bydr, /dr=(r? valid for m# 0 only, and we still need to find out what is the

+a?)/A, and regular asymptotic behavior at the EH for=0.
Fortunately, at this point we can directly apply the results
_a from the above analysis of the Schwarzschild case, for the
Q.= 2Mr .’ (82 following reason. Let us define
with r,=M+(M?—a?)*2 being ther value of the EH. ey -
[Compare the asymptotic solutiof®0) and (59) in the case Z= m' (88)

a=0.] We shall consider only a BH background with 0
<|a|<M (the extremal casda|=M, requires a separate The relation betweem\ and z is A=4(M?—a?)z(z+1)

treatment _ _ (note that asa—0 both A and z coincide with their above
In the Kerr case, the coordinagegoes singular at the EH. - schwarzschild definitions One can now verify that fom
Transforming to the regularized azimuthal coordinate =0,0=0 the master equation takes exactly the form of Eq.
~ (21) [23]. Therefore, the two static solutions in the Kerr case
pr=¢— 0t @83  are exactlyp, and ¢,;, defined abovéviewed as functions of

z). We already know that the solutiog, (like A3¢,) is a
perfectly regular polynomial of (and hence of), whereas
the solutiong;, (like AS¢;,) includes a term proportional to
Inz and is hence irregular at the EH.

Let us summarize the above results concerning the regu-
larity of static (i.e., w=0) modes:(i) The case n#0: For
boths<0 ands>0, the regular solution ig, (just as in the

wslm ~ | oslm Mo A =S —i(0—mQ .V w#0 Schwarzschild cageThe field associated with this
PRI 0,04) =S, T(B)eM A S ? (é4b) regular asymptotic solution is given in E@7b).
(ii) The case i+ 0: For boths<0 ands>0, the regular
where solution is¢,—just as in the static Schwarzschild case. The
field associated with this regular solution is

(see Sec. 58 iM31]), and substituting the solution($0) in
Eq. (79), we obtain the field configurations associated with
the two asymptotic solutions:

\I,;uslm(t,r , 9,ZD+)ES‘Z|m( H)eim?MAoe—i(w—mm)u,
(843

\I,wslm5§wlm( 0)eim(pefiwtlpwslm(r). (85)
" . YoIm=9(9) g (2), (89)
It is straightforward to extend the regularity criterion of . ) . ) )

Sec. V to the Kerr case: Here, too, one finds that at the ERyith the functioné,(z) given in Eq.(22), and its asymptotic

the variable behavior(for both positive and negativs given in Eq.(23).
[Note that in terms of the limim=0 of Eqgs.(873, (87b),
PS= ASPS (86) qu. 589) conforms withW, for s>0 and with ¥, for s
<0.
must be a perfectly smooth function of thregularized co- The above result$whose detailed derivation is given in
ordinates(exactly for the same reasons described in Sec. \23]) are summarized in Table I. This table displays the
for the Schwarzschild case; see a]83)). asymptotic form of the regular and irregular static modes for

For the application of the late-time expansion we mustthe various possible values sfm.
verify which of the above two asymptotic solutions is physi- After we have discussed the regularity features of the
cally regular at the EH. Teukolskj37] asserted that the static solutions, we are in a position to analyze the decay rate
regular solution is¥,. This is obvious from the oscillatory
dependence ofF', on u (and of ¥, on v)—as we have
discussed in the Schwarzschild/¢0) case. One must re-  &rhroughout this section, which deals with a Kerr background, we
call, however, that this simple classification breaks downefer to thet-independent solutions as “static,” in a slight abuse of
whenevew—m() =0 (in which case the above oscillatory the usual terminology(We prefer to use here the term “static”
factors inu andv degenerate to 1). In this case the classifi-instead of “stationary” in order to simplify the terminology and
cation is more involved. preserve the semantic analogy with the Schwarzschild case.
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TABLE I. The asymptotic forms of the physically regular and physically irregular static solutions at the
EH in the Kerr case. Presented are the results for the axially symmets#d) modes of the fields, as well
as for its nonaxially symmetricng#0) modes|[The Schwarzschild case€0) can be read from this table
by referring only to the results in the first two linéshich then apply to alm).]

Irregular static solution Regular static solution
am=0, s>0 A~S A0
am=0, s<0 A° AS
am#0, s<0 ands>0 AOgim@.u A~ Seim2sv

of the late time tails along the EH, using the late-time expanwith the functionsFﬁ':mo. (The situation here is analogous to
sion. As we mentioned above, the master equation for thénhat of a scalar field in a Kerr spacetime, analyzed in Ref.
Kerr background is only separable in the frequency domain[22].)

Since the late-time expansion is carried out in the time do- As we have just explained, the functiéi_, must be a
main, we cannot take advantage of the full separability of thestatic solution of the master equation. Furthermore, the regu-
field equation. The dependence ¢nis still separable via larity arguments discussed in Sec. {fr the Schwarzschild
e'™?, however, and without loss of generality we shall con-casg are applicable to the Kerr case as well, and imply that
sider a field¥*™ of a singlem (the overall perturbation field F,_, must be theregular static solution. The decay rate of
will be obtained by a superposition of ali values. To deal  the late-time tail along the Kerr EH now follows immedi-
with the dependence ofl, we proceed as follows: We first ately from the above discussion of the regular static solu-
perform the late-time expansion of the full perturbation fieldtions, as we now describe.

WM and then, for each terinin this expansion, we separate ~ For m#0, the regular static solution ig,. Since ,,(r)

the angular dependence by decomposing into spin-weightegas the maximal amplitude allowed by the regularity crite-
sphericalharmonics. The full decomposition thus takes therion, the termsk=1 (being proportional tos %o~ *) will be
form negligible. Therefore, the late-time tail at the EH will be
proportional toy,(r)v o, and for boths<0 ands>0 we
shall have(to the leading order iA and 1¥)

[ ©

wEr= 3| 3 Y0, o) RN [y, (90

=1 WETe Y3109, )@ VA Sy o O(v Y],

for m#0. (91
wherel, is the minimal value of allowed for the moden,s _
in question, that islo=max(|m|,|s|). The parametek, is  (The oscillatory factoe'™?+V has already been observed in
defined here to be the dominant late-time power index othe scalar-field casf24,22.) Note that the angular depen-
WSMalong lines of constant>r . ; Namely, it is determined dence in this expression, as well as in E@2), (93) below,
by the multipolel which has the slowest decay mtconst  only includes the multipold,: As was mentioned above,
>r, . Note that by this definitionk, is independent of genericallyF§™, vanishes for all > 1.
(unlike the Schwarzschild case, in which the late-time expan- For m=0, the situation is just as in the Schwarzschild
sion was implemented for each moblen in separate An  case: In the case<O0, the regular static solutiog, is pro-
investigation of the late-time decay at fixed23,2q indi-  portional toA 5. Since this is the maximal magnitude al-
cates that generically the dominant multipole is the one witHowed by the regularity criterion, the terms=1 will be
the smallest allowed, i.e.| =1y, and its decay ratéat fixed  negligible in this case togust as in the case#0 above.
r>r,) isv 2073 with all other multipoles decaying faster. The late-time tail at the EH will therefore be proportional to
This means that genericalky=2l,+3, and also, the term ¢,(r)v %o, and we obtain
k=0 includes only one multipold,=I, (that is,FﬁL’“O van-
ishes for alll>1;).

When the expressioi90) is substituted in the master
equation[37], one finds that the radial functioris;™ still
admit equations olfnthe forrlL4). Howeve_r, ir_1 the Kerr case However, in the case>0 (yet withm=0), thek=0 term is
the source terng; " involves also contributions from other proportional to the regular static solutigh<A°, whereas
values ofl. (Actually, the source terrs; ™ couples a multi-  the k=1 term diverges likeA ~S. Therefore, at the EH the

polel to multipoles + 1,/ +2.) Still, one finds that, as in the k=1 term dominates, and the late-time asymptotic behavior
Schwarzschild cas&'™ depends only on functiors,: with  near the EH is given by

k'’ <k [23]. In particular, the functionzﬁ':”‘0 has no source o

term, so it satisfies a closed homogeneous equation, which is WsMec YSlo:m=0( g)[y ~*o+ cA =Sy ko~ 14O (v *0=2)],

just the static field equationThis structure allows one to

solve for all unknownszﬁ'm in an inductive manner, starting for m=0,s>0. (93

q,smocYS,Io,mZO( a)Afs[vka_i_ O(kaofl)],

for m=0,5<0. (92
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In Ref.[23] we verify (by calculatingF,_,) that the coeffi- be considered separate[{Note, for example, that E¢88) is

C|entc is I[lorl vanishing, and also that the term proportionainot valid in the casa=M.]

to A7 S 0"+ includes the multipold =1, only. Note that

for m= Os>0 the decay rate along '?he EH is ko1, X. CONCLUSIONS

whereas in all other cases itis 0. (The decay rate anng To summarize our results, it is most useful to refer to the
lines of constant >r , is v %o in all cases.

As was mentioned above, generically=2l,+3. Thus,
the most dominanm modes are those withm|<|s|. For
thesem modesly=|s|, so ky=2|s|+3. Therefore, in the
overall perturbation field¥®, made of the superposition of
all m modes, the decay rate along the EH is genericall

v~ 2513 Recall, however, that fos>0 fields the axially

symmetrlc componentni=0) decays faster along the EH, Schwarzschild case antle,. in the Kerr casp
like v—2s—4 For the Schwarzschild caseve find from Eqgs.(45) and

Note that the discussion is this section only deals with(47) that along the EH, each modiem of the physical field
non-extremal|a| <M, Kerr BHs: the extremal case needs to ¥* decays at late time with the leading-order tail

physical variableal’$= AS¥* defined above. These variables
are natural, because, as we mentioned above, at the EH they
are proportional to the regular Maxwell componehts, or

F.u, or to the regular Weyl componen€,y,y or C.upu
fors=1,s=-1,s=2, ands= —2, respectively; here,b

stand for the two regular angular coordinates, eg in the

#*'™(v)=constxv~273TP  for s<0 - - 9
. chwarzschi ,
J'M(v)=constxv 24P for s>0

where the constants are generically non-vanishing. Hetel if there exists an initial static multipole or p=0 in the
absence of such a multipolén the calculations above we assumed 0, but the extension to the=1 case is trivial. For
the comparison with the Kerr case belajw which a full angular separablllty of the late-time tails is not possjbtes useful

to re-write Eq.(94) in terms of the fleld‘lfsm, which is the part of s including all multipolesl for a givenm. TS s
dominated by the minimal multipoleallowed for the values,m, i.e.,|,=max(|m|,|s|). Equation(94) yields

WSM=constk YS'0M( g, o)y ~20"3+P for s<0

. Schwarzschild BH. (95
PSM=constx YS'o:M( 9, o)y 20" 4P for s>0

This holds for both axially symmetric and nonaxially symmetric modes.

For the (nonextremal) Kerr casave find from Eqs(91)—(93) that the physical fieldrs™ for a given value oim decays
along the EH according to

PSM=consi YS'0:M( 9,5, )eiM2+Vy~20=3+P Kerr BH, m#0, (96)

for nonaxially symmetric modes, and

YSM=const< YS10m=0(g)y~20=3+P  for s<0
) Kerr BH, m=0, 97
WSM=constx YS'oM=0( g)y 2o~ 4*P  for s>0

for axially symmetric modes. the Kerr black hole displays two important differences be-
tween the axially symmetric and nonaxially symmetric
modes. First, the modes+# 0 oscillate along the horizon’s
generators according t6™?+V, whereas the moden=0
decays monotonically. Second, the modeg 0 (with |m|
=|s|. Thus, the overall decay rate &f® is obtained from <s) decay likev 25"3 whereas the moden=0 decays
Egs.(95), (96), (97) by substituting ,— |s|. Note, however, along the EH likev ~25~4. (The first difference applies also
that the angular dependence of the overall late-time fieldor s<O fields, but the second one is speciabte0.) These
(and, in the Kerr case, also the oscillationsvip will be  two differences lead to an interesting consequence oliee
obtained by a superposition over afl values in the range all s>0 late-time field oscillates along the generators of the
—|s|=m=]|s|. Kerr EH (because the non-oscillatory mode=0 decays
The late-time behavior of ag>0 field along the EH of faster than the oscillatory modes#0). On the other hand,

The overall late-time behavior of the fields is domi-
nated by them values which yield the minimal possible
value of |, i.e., the values—|s|<ms=]|s|, for which I,
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for s<0 fields the overall late-time tail at the Kerr EH is a APPENDIX: DERIVATION OF W% FROM Ws<° USING
superposition of oscillatoryn#0 tails and a monotonim THE TEUKOLSKY-STAROBINSKY IDENTITIES

=0 tail (which decays at the same rate In this appendix we obtain the asymptotic formbf~°
The above difference between tlse<0 and thes>0 at the EH of a Schwarzschild BH from that ¥5<°, using

fields in the power-law indices of the tails along the EH hasyhe starobinsky-Teukolsky identities. By this we shall re-
never been reported befofas far as we knoyyeven in the  coyer Eq.(47), and show that the leading-order coefficient

Schwarzschild case. In Rell26] Hod attempts to calculate ¢+ goes not vanish(This was already verified in Sec. VI by
these tails in the Kerr case, but his analysis yields no differy girect calculation of?S>° from the field equation fos

ence between the<0 ands>0 fields, even fom=0 (see, )

hOWeVer, the note addbdn what follows we br|eﬂy eXplain The Teuko'sky_starobinsky |dent|t|¢g0] relate the per-

what seems to be the reason for the incorrect result in Refyrpation fields ¥>° and ¥S<°. In the case of the

[26]. Schwarzschild background, these identities take the form
Hod uses the correct asymptotic radial solution do# 0 _ e

modes near the EH, which fom=0 reads ¢ (r) (as—iwhgd) 5 (1) =D5T ¢, ()] (s>0), (Al

=C(w)A Se '“'x [see Eq(39) in [26]°]. He then continues
by assuming tha€(w) is w independent. This assumption,
however, is invalid in the casam=0,5>0, whereC(w)
«w. In the Schwarzschild cagéor any m), this result was
demonstrated in the framework of our toy model in Sec. VI
[_see Eq.(72)]_, and can also be venﬂed_ for th_e act_@O Do(r)=0,—iwr?A~1, (A2)
fields by using the Teukolsky-Starobinsky identitiesee

Eqgs. (77), (78)]. In the Kerr casdfor m=0), the situation (There also is an analogous identity for transforming from
seems to be the sam®If the correct form,C(w)*w, is >0 tos<0.) If we now apply the inverse Fourier transform
used in the cassm=0,5>0, then, Eq(40) in [26] correctly ~ to Eqg. (Al), we obtain for the time domain function

where 2 (r) is the radial Fourier mode introduced in Eq.
(56), ag is a non-vanishing constartig is a constant which
vanishes fors=1 but not fors=2, andD, is a differential
operator given by

yields a tail smaller by 1/ than thes<0 tail. #°'™(r,t) [the one introduced in Eq11)]
The asymptotic behavior of the various physical fields A e
along the EH is important for understanding the dynamics of (astbsd) > "=D p~>"] (s>0), (A3)

these fieldsnsidethe black hole: One can naturally view the . . ]

field value at the EH as initial data for the black-hole’s inte-WhereD; is the differential operator

rior. (This is most naturally implemented within the frame- . B o 128 moe 1. o5

work of the characteristic initial-value formulatiorOf spe- Dy(r,t)=(d,+r°A" )= (2r*A"%9,)*.  (A4)

cial importance is the case of gravitational perturbatiohs ( Here. they derivative is taken with fixed. and thet deriva-
==+2) of the Kerr background. In this case, evolving the i '

bation f he EH to the f q . h “tive is taken with fixed.
perturbation from the EH to the future, determines the gravi- - gagre making use of this identity to study the late-time

tational field(and hence the spacetime geomginside the i jet us briefly discuss its application to the static solu-
black hole, up to the inner horizon. The infinite blue-shift of ;5,5 1n the static case EGA3) reduces to

the gravitational perturbations leads to a curvature singular-

ity at the inner horizorf3]. Knowing the late-time behavior agyS'M=(g,)%y M  (s>0, statig. (A5)
of the perturbation along the Kerr EH enables one to analyze
in detail the structure of this singularifg9]. Consider first the application of this identity to the regular

Note added After this paper was submitted, Hod pre- static solution ¢, (namely, we takes>0 and i '™
sented the correct result fet>0 fields (the one derived in  =¢, ). Since¢, is a polynomial inr, the right-hand side
Sec. IX abovg in a recent manuscrip8]. must be a polynomial too. Since the outcome must be a static

solution fors>0, it must be the polynomial static solution,
i.e., ¢, (up to some constantThis confirms our previous
conclusion, namely, that fag>0 the regular static solution

. _ _ _ _ _ is ¢, and note;; (i.e., the one proportional tA° and not to
Note that in[26] a different dependent field variable is used, A~S

which is A2 times the Newman-Penrose fields that we use in the

present paper Next, consider the application of the identit#5) to the

10As was shown in Sec. IX, fom=0s>0 (in Kerr) the regular other, wregul;;\r, static solutiop;, . When the dlffere_ntlal
solution switches frony, to i, asw vanishesjust like fors>0 in ~ OPerator ;)= acts on the logarithmic-free terms in the
the Schwarzschild caseThis switching seems to indicate the van- fight-hand side of Eq(33) (2nd row), it yields a regular
ishing of C(w) asw—0, as discussed in Sec. VIfiNote that for ~ Polynomial, as before. However, when applied to the loga-
m+0,s>0, the regular solution ig, for bothw=0 andw=0 (we  rithmic term, it yields two types of termdi) logarithmic
are only interested here in smal values neaw=0, so we can terms, proportional ta\°>—these are obtained if the deriva-
now assumew—m(), #0), indicating that in this cas€(w) is  tive operator never acts on the factor Zn((ii) Non-
non-vanishing as— 0. The same holds fa<0 (and anym).] logarithmic terms proportional to negativas well as posi-
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tive) powers ofA: These terms are obtained when one of the

operatorsd, acts on the factor lzf. The most dominant

negative power is obtained wheh acts on Ing) on its |s|

+1 operation, which yields a contribution proportional to
~S (all other contribution are of less negative powers of

A) One can identify the term@) and (i) with the second where both constantso,cl are nonvanishing and propor-

and first terms, respectively, in the 1st row on the right-handional toc .

side of Eq.(33). Note the crucial role played by the logarith-  So far we considered the contributionf(~%'™) from
mic term in ¢;, (despite the fact that it only appears in athe term ofyy~>'™ proportional tov =2 ~3, which is given in

Dy > =(i)+ (i) = (Gov 2 S+T,A % 29
X[1+O(A)+O(1N)], (A9)

sub-dominant term proportional sz's‘) Without this loga-
rithmic term, the operation in EGA5) would have yielded a
perfectly smooth function of, proportional toA°.

We shall now apply the(time-domain Teukolsky-
Starobinsky identitfA3) to thes<0 late-time field(44). For
the consistency of the notation, we shall assumeghdi [as
dictated by the notation of E4A3)], and therefore re-write
Eq. (44) as

-21-3

{/,fs,lm(t,r)zcaq{);(r)v (s>0). (AB)

Applying the differential operatoD; to the right-hand side
of Eq. (A6), we obtain three types of terms:

(i) a term in which the derivative operatéy never acts
on V—2I —3’

(i) a term in which the derivative operat@l, acts on
v 2?73 once, and

(iii) terms in which the derivative operat@x, acts on
v 273 more than once.

Consider first the ternti). As was discussed above, the

operatorD, transforms¢, into ¢, . Hence the ternti) is
nothing but
cov 273Dy, )=consiky 2 3. ¢ (A7)
(with a non-vanishing constant
The term(ii) is proportional tov~ 2 "4, We must keep

g. (A6). This leading-order term corresponds to the term
k=0 in Eq. (13). We now consider the contribution of the
k>0 terms. From Eq(40) we learn that fors<O all func-
tions F§'™ are smooth functions af, which vanish at least
like AlS' at the EH. One can now easily analyze the contri-
bution of each ternk>0 in the same way the dominakt
=0 contribution was analyzed above. Again one obtains
contributions which are analogous to the ters (ii), or
(iii) below, except that these contributions are now multi-
plied by an extra factov . The contributions from alk
>0 terms ofy~>'™ can therefore be neglected, and we are
left with Eq. (A9).

onceDy(y~%'™) is known, we can calculatg®'™ via Eq.
(A3). For s=1, the coefficientbs vanishes, soys'™
=Dy~ %'™/ag. Fors=2, the left-hand side of EqA3)
includes the derivative operatgf. To extractys'™ in this
case, we apply the differential operatrt+ b, to the right-
hand side of Eq(13) (recallingd;— d,), and solve forF;'™
term by term by matching the powers of/1tb Eq.(A9). For
k=0, this matching yields

aFiMm="co+0(A). (A10)
For k=1 we obtain
asFi™ —(21+3)bFiM=c,A 1+ 0(A)], (A1l

this term, however, because its radial function will appear to

diverges at the EHwhereas the radial function in the term
(i) is regulal. The regular static solutiogh, is, at the lead-
ing order, proportional ta\® (recall that nows>0). The

most divergent contribution is obtained when the differential

operatord, acts onv~?' "2 onits|s| + 1 application(with the

other contributions smaller by factors 4f). This contribu-
tion yields
3 (V727395 2r2A T H(d) (A
=[2(21+3)(—1)Ss!(s—1)!(2M)>"1]

XA~V 2 14+0(A)]. (A8)

(Recall that when acted on a purely radial function,

2r’A~19,=r?A"%9,, =4, .)

The termg(iii ) decay as/~ or faster. The radial func-
tions involved in these terms do not diverge faster thart
(in fact, they diverge even slowerTherefore, these terms
may be neglected. We find that

21-5

which, in view of Eq.(A10), we simply write as

aFSm=c,A 1+ 0(A)]. (A12)

We thus obtain
PSM=(cgv A 3+l ATSV A TH[1+0(A) + O(1N)]

(s>0), (A13)

with ¢4 ;=Co1/as.

Thus, relying on the late-time behavi@4) for s<0, and
using the Teukolsky-Starobinsky identities, we have recov-
ered Eq.(47) for s>0—uwith non-vanishing coefficients;
andc; .
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