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Late-time decay of gravitational and electromagnetic perturbations along the event horizon

Leor Barack and Amos Ori
Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel

~Received 11 May 1999; published 15 November 1999!

We study analytically, via the Newman-Penrose formalism, the late-time decay of linear electromagnetic and
gravitational perturbations along the event horizon~EH! of black holes. We first analyze in detail the case of
a Schwarzschild black hole. Using a straightforward local analysis near the EH, we show that, generically, the
‘‘ingoing’’ ( s.0) component of the perturbing field dies off along the EH more rapidly than its ‘‘outgoing’’
(s,0) counterpart. Thus, while alongr 5const.2M lines both components of the perturbation admit the
well-known t22l 23 decay rate, one finds that along the EH thes,0 component dies off in advanced timev as
v22l 23, whereas thes.0 component dies off asv22l 24. We then describe the extension of this analysis to a
Kerr black hole. We conclude that for axially symmetric modes the situation is analogous to the Schwarzschild
case. However, for non-axially symmetric modes boths.0 ands,0 fields decay at the same rate~unlike in
the Schwarzschild case!. @S0556-2821~99!03422-0#

PACS number~s!: 04.70.Bw, 04.25.Nx
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I. INTRODUCTION

When a gravitational collapse results in the formation o
black hole~BH!, the gravitational field outside the event h
rizon ~EH! relaxes at late time to the stationary Ker
Newman geometry. Also, when the~pure! Kerr-Newman
field external to a BH is perturbed by gravitational or ele
tromagnetic waves, the perturbing field dies off at late ti
everywhere outside the BH, and along its EH. In both s
narios, it is implied by the ‘‘no hair’’ principle that when the
BH geometry settles down into its stationary state, all ch
acteristics of the initial state~or initial perturbation! must
somehow be lost, except for the conserved quantities ass
ated with it: its total mass, electric charge, and angular m
mentum.~For a detailed review of the ‘‘no hair’’ theorem
by Hawking, Israel, Carter, and Robinson, see@1#.!

Remarkable as the ‘‘no-hair’’ principle is, it still gives n
information about the mechanism through which this ‘‘co
pulsory’’ relaxation process occurs. For example, it tells
nothing about the rate of the decay process. Clearly, su
detailed description of the late time decay is important
only for gaining more insight into the ‘‘no hair’’ principle
but, more practically, by virtue of the recent prospects
detecting gravitational radiation from astrophysical bla
hole systems. Also, the characteristics of the decay along
event horizon has an impact on the nature of the singula
along the inner horizon of charged@2# and rotating@3# black
holes.

A detailed description of the late time decay outsi
Schwarzschild black holes was first given by Price~for scalar
and metric perturbations@4#, and for all integer-spin fields in
the Newman-Penrose formalism@5#!. Price found that any
radiative multipole model ,m of an initially compact linear
perturbation dies off at late time ast22l 23 ~where t is the
Schwarzschild time coordinate!. If a static multipole mode
existed prior to the formation of the BH, then this mode w
decay ast22l 22. Price found these power law decay tails
be the same for all kinds of perturbations, whether sca
electromagnetic or gravitational~and in this respect, the sca
0556-2821/99/60~12!/124005~16!/$15.00 60 1240
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lar field model proved a useful toy model for the more re
istic fields!.

Price’s results were later confirmed using several differ
approaches, both analytic and numerical@6–11#, and where
generalized to other spherically symmetric spacetim
@7,12–17#. The validity of the perturbative~linear! approach
was supported by numerical analyses of the fully nonlin
dynamics@18,14#, indicating virtually the same power law
indices for the late-time decay.

Recently, several authors addressed the issue of the
time decay of fields outside rotating black holes. First
numerical simulation of the evolution of linear scalar@19#
and gravitational@20# waves on the background of a Ke
black hole was carried out by Krivanet al. Later, an analytic
treatment of this problem~in the time domain! was presented
by Barack and Ori@21–23# ~following a preliminary analysis
by Ori @24#!. Then, a study of the late-time decay in Ke
using a frequency-domain approach has been carried ou
Hod, both for a scalar field@25# and for nonzero-spin
Newman-Penrose fields@26# ~following preliminary consid-
erations by Andersson@9#!.

The above analyses all indicate that power law tails ch
acterize the decay in the Kerr background as well. In t
case, however, the lack of spherical symmetry causes
pling between various multipoles. As a result of this co
pling, the power-law indices of specific spherical-harmon
multipoles are found to be different, in general, from t
ones obtained in spherically symmetric black holes. Anot
phenomenon caused by rotation~first observed in@24#! is the
oscillatory nature of the late time tails along the null gene
tors of the EH of the Kerr BH for nonaxially symmetri
perturbation modes.~See@22,23# for details.!

As we just mentioned, power law tails are observed
only at timelike infinity, but also at future null infinity and
along the~future! event horizon. Several authors have an
lyzed the late time behavior of a scalar field along the EH
a Schwarzschild BH@7,11# and a Kerr BH@22,25#. In both
cases, the power law indices of the late-time decay along
EH were found to be the same as along any fixed-r world
line outside the BH~apart from the above mentioned osc
©1999 The American Physical Society05-1
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D60 124005
lations along the EH in the Kerr case!. Thus, in the
Schwarzschild case, anl ,m scalar perturbation mode i
found to decay along the EH asv22l 23 ~or v22l 22 for an
initially static mode!. ~Here,v is an advanced-time coord
nate, which we define in the sequel.!

Quite surprisingly, a careful and thorough study of t
behavior of realistic physical fields~electromagnetic and
gravitational! along the EH has not been carried out so far~to
the best of our knowledge!, even in the Schwarzschild cas
@27#. One would expect the scalar-field model to provid
again, a reliable picture of the actual behavior of realis
physical fields; however, a careful analysis of the behavio
such realistic fields at the EH reveals several interesting
features, uncovered by the scalar-field case. These fea
arise already in the Schwarzschild case, and thus we fin
instructive to study and explain this simpler case first. A
cordingly, in this paper we first explore in detail the behav
of electromagnetic and gravitational perturbations at the
of a Schwarzschild BH. Then we describe the extension
this analysis to the Kerr case, and derive the power-law
dices at the EH. Full detail of the analysis of the Kerr ca
will be given in a forthcoming paper@23# ~as part of a com-
prehensive analysis of the late time decay of perturbation
the Kerr spacetime!.

We shall apply a linear perturbation analysis, based on
Newman-Penrose formalism. In this framework, a sin
master equation governs the~gauge-invariant! radiative parts
of the linear perturbations of both the Maxwell tensor a
the Weyl tensor. For both fields, our analysis reveals that
‘‘ingoing’’ ( s.0) part of the perturbing field dies off at lat
time along the EH of the Schwarzschild BHfaster than its
‘‘outgoing’’ ( s,0) counterpart: Whereas thes,0 fields ad-
mit the usualv22l 23 law, the s.0 fields decay at the EH
like v22l 24. In the Kerr case, the above difference in t
behavior of thes.0 ands,0 fields occurs only for axially
symmetric (m50) modes; for non-axially symmetric mode
one finds the same decay rates for boths.0 and s,0.
These results are summarized in Eqs.~95!, ~96!, and ~97!
below, in the concluding section. We also comment th
about the significance of our results to the study of the in
rior of spinning black holes, and discuss the relation of o
analysis to previous works@27#.

An important role in our analysis is played by the sta
solutions of the field equation. These turn out to show
peculiarity: As in the scalar field case, there is a static so
tion regular at the horizon, and a second, independent, s
tion which is irregular there. However, fors.0 fields, regu-
larity of a static solution cannot be judged merely from
leading-order behavior at the EH. Rather, the distinction
tween the regular and irregular solutions involves the ide
fication of a certain, sub-dominant, logarithmic term in t
latter. Another peculiarity has to do with the relation b
tween static solutions and monochromatic solutions~i.e.,
modes of a single Fourier frequencyv). For s.0 fields,
unlike the scalar field~and unlike thes,0 case!, the EH-
regular static solution cannot be approached from an E
regular monochromatic solution by naively taking the lim
v→0. One finds that fors.0 this naive limit leads to a
static solutionirregular at the EH. We study these unex
12400
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pected features, and then qualitatively explain them usin
simple ~scalar-field based! toy model.

The paper is arranged as follows: In Sec. II we give so
definitions and notations, and briefly review the Newma
Penrose formalism for perturbations of the Schwarzsch
geometry. In Sec. III we introduce thelate time expansion, to
be employed in our analysis. The static solutions to the fi
equation, central to our analysis, are obtained in Sec.
followed ~in Sec. V! by a formulation of regularity criteria
for physical fields at the EH. This puts us in position
analyze~in Sec. VI! the late time behavior of physical field
along the EH. This analysis yields the power index for bo
s,0 ands.0 fields. Another perspective on the subject
obtained in Sec. VII, where we consider the behavior of m
mochromatic modes. In Sec. VIII we then introduce a sim
toy model, which yields further insight into our results. Th
extension of our analysis to the case of a Kerr BH is d
scribed in Sec. IX. In the concluding section~Sec. X! we
summarize the results and discuss their physical significa
and their relation to other works.

II. DEFINITIONS AND NOTATIONS

The line element in the Schwarzschild spacetime reads
the standard Schwarzschild coordinatest,r ,u,w,

ds252~D/r 2!dt21~r 2/D!dr21r 2~du21sin2udw2!,
~1!

whereM is the mass of the BH, and

D~r ![r 222Mr ~2!

is a function which vanishes at the EH,r 52M . Here, and
throughout this paper, we use relativistic units,c5G51.

As this paper is concerned with the behavior near
event horizon~EH!, we shall find it convenient in the seque
to introduce a new~dimensionless! radial coordinate,

z[
r 22M

2M
, ~3!

which vanishes at the horizon.
We shall also need the EH-regular~Kruskal! null coordi-

nates

V[ev/(4M ), U[2e2u/(4M ), ~4!

wherev[t1r * andu[t2r * are the Eddington-Finkelstein
null coordinates, with

r * [r 12M ln z. ~5!

To discuss perturbations of the Schwarzschild BH via
Newman-Penrose formalism, we introduce the tetrad bas
null vectors (l m,nm,mm,m* m), defined in the (t,r ,u,w) co-
ordinate system by@5,29#

l m5@r 2/D,1,0,0#

nm5@1,2D/r 2,0,0#/2 ~6!
5-2
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LATE-TIME DECAY OF GRAVITATIONAL AND . . . PHYSICAL REVIEW D 60 124005
mm5@0,0,1,i /sinu#/~21/2r !.

~The components of the fourth tetrad leg,m* m, are obtained
from the components ofmm by complex conjugation.!

In the framework of the Newman–Penrose formalis
@30# the gravitational field in vacuum is completely d
scribed by five complex scalars,C0 . . . C4, constructed
from the Weyl tensor by projecting it on the above tetr
basis. Likewise, the electromagnetic field is completely
scribed by the three complex scalarsw0 ,w1 ,w2, constructed
by similarly projecting the Maxwell tensor. In particular,

C0[2Cabgdl ambl gmd,
~7!

C4[2Cabgdnam* bngm* d

represent the ingoing and outgoing radiative parts, resp
tively, of the Weyl tensor, and

w0[Fmnl mmn, w2[Fmnm* mnn ~8!

represent the ingoing and outgoing radiative parts of
electromagnetic field.

In the Schwarzschild~unperturbed! background all Weyl
scalars butC2 vanish~as directly implied by the Goldberg
Sachs theorem, in view of the Schwarzschild spacetime
ing of Petrov type D; see Sec. 9b,c in@31#!. In the framework
of a linear perturbation analysis, the symbo
C0 ,C1 ,dC2 ,C3 ,C4 andw0 ,dw1 ,w2 are thus used to rep
resent first-order perturbations of the corresponding fie
~with dC2[C22C2

background, etc.!. One can show~see Sec.
29b in @31#! that C0 and C4, and alsow0 and w2, are in-
variant under gauge transformations~namely, under infini-
tesimal rotations of the null basis and infinitesimal coor
nate transformations!. The scalarsC1 andC3 are not gauge
invariant, and may be nullified by a suitable rotation of t
null frame. The entitiesdC2 anddw1 represent perturbation
of the ‘‘Coulomb-like,’’ non-radiative, part of the fields~in
fact, one can also nullifydC2 by a suitable infinitesima
coordinate transformation.! It is therefore only the scalar
defined in Eqs.~7! and ~8! which carry significant informa-
tion about the radiative part of the fields.~Note, however,
that gauge invariance of the radiative fields is guarant
only within the framework of linear perturbation theory.!

There is a single master equation governing linear per
bations of both the gravitational and the electromagnetic
diative fields defined in Eqs.~7!, ~8! @32#. In vacuum, this
master perturbation equation reads

r 4D21C ,tt
s 2D2s~Ds11C ,r

s ! ,r2
1

sinu
~C ,u

s sinu! ,u

2
1

sin2u
C ,ww

s 2
2is cosu

sin2u
C ,w

s 22s@Mr 2/D2r #C ,t
s

1~s2cot2u2s!Cs50, ~9!

whereCs(t,r ,u,w) represents the various radiative fields a
cording to the following substitutions:
12400
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w05Cs511

w25r 22Cs521

~10!

C05Cs512

C45r 24Cs522.

In Eq. ~9!, the angular dependence ofCs is separable
through a decomposition inspin-weighted spherical harmon
ics @33#,

Cs~r ,t,u,w!5 (
l 5usu

`

(
m52 l

l

c slm~r ,t !Yslm~u,w!. ~11!

The time-radial functionsc slm(r ,t) then satisfy the field
equation

r 4c ,tt
slm2D2s11~Ds11c ,r

slm! ,r12sr2~r 23M !c ,t
slm

1~ l 2s!~ l 1s11!Dc slm50. ~12!

III. THE LATE-TIME EXPANSION

In order to analyze the power-law decay of perturbatio
at late time, we decompose the field in the form

cslm~r ,t !5 (
k50

`

Fk
slm~r !v2k02k, ~13!

to which we refer as thelate-time expansion@34#. Substitu-
tion in Eq.~12! yields an ordinary equation for each functio
Fk

slm :

Dsl~Fk
slm!5Sk

slm , ~14!

whereDsl is a differential operator defined by

Dsl[Dd2/dr212~s11!~r 2M !d/dr2~ l 2s!~ l 1s11!,
~15!

and the source termSk
slm is given by

Sk
slm[2~k01k21!r Fd~rF k21

slm !

dr
12srMD21Fk21

slm G .
~16!

~We takeFk,0
slm [0.!

The dominant late-time decay at world lines of fixedr is
described by the termk50 in Eq.~13!. To the leading order
in 1/v, we have

cslm~r ,t !>Fk50
slm ~r !v2k0. ~17!

Substitutingv5t1r * , we also find, to the leading order i
1/t,

cslm~r ,t !>Fk50
slm ~r !t2k0, ~18!
5-3
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D60 124005
which, using the well-known result by Price@5#, implies
k052l 13 ~or k052l 12 if a static model is initially
present!.1

SinceSk
slm vanishes fork50, the termFk50

slm (r ) satisfies
the homogeneous differential equation

Dsl~F0
slm!50. ~19!

This is just the field equation of astatic mode l ,m. Thus,
Fk50

slm (r ) must be a static solution of the field equation. In t
next section we shall study the static solutions forCs, fo-
cusing attention on their asymptotic behavior at the EH.

IV. STATIC SOLUTIONS

Since Eq.~19! is a second-order differential equation, i
general solution is spanned by two basis solutions. We s
primarily be interested in the asymptotic behavior of the
tic

12400
all
e

solutions near the EH. The leading-order asymptotic beh
ior can be easily obtained from the asymptotic form of E
~19! near the EH: One finds that for boths.0 ands,0, the
two asymptotic solutions behave there like

c slm>D0 and c slm>D2s ~20!

~to the leading order inD). However, it is also possible to
write an exact, global, basis of solutions to the static eq
tion, as we do now.

In terms of the radial variablez, Eq. ~19! takes the form

~2z!~11z!F091@2~s11!22~s11!z#F08

1~ l 2s!~ l 1s11!F050, ~21!

where a prime denotesd/dz. This is the hypergeometric
equation@35# for F0(2z). One solution for Eq.~21! is given
by ~see Sec. 2.1.1 in@35#!
e,
s

f r~z!5H F~2 l 1s,l 1s11;s11;2z![f r
1 ~ for s.0!,

~4M2z!2sF~2 l ,l 11;2s11;2z![f r
2 ~ for s,0!,

~22!

whereF denotes the hypergeometric function.~Hereafter we often omit the indicesslm for brevity.! Note that since in both
cases the first index is a non-positive integer,F is simply apolynomialin z, and so isf r . ~We choose this notation becaus
as we shall see below,f r is physically regular at the EH, whereas the other static solution, to which we shall later refer af ir ,
is irregular there.! The normalization in Eq.~22! was chosen so as to conform with Eq.~20! @recall that atz50, the
hypergeometric functionF51, and note also the relationD54M2z(z11)#. Thus, to the leading order inD, f r is given by

f r~r !>H D0 ~ for s.0!,

D2s ~ for s,0!.
~23!

A second, independent, static solution is given by~see Sec. 2.2.2, case 21, in@35#!

f ir ~z!5Als3H ~4M2z!2s~11z!2 l 21F@ l 2s11,l 11;2l 12;~11z!21#[f ir
1 ~ for s.0!,

~11z!2 l 2s21F@ l 1s11,l 11;2l 12;~11z!21#[f ir
2 ~ for s,0!,

~24!
o

ge-

nte-
whereAsl is a normalization factor,

Asl51/F~ l 2usu11,l 11;2l 12;1!5
l ! ~ l 1usu!!

~2l 11!! ~ usu21!!
~25!

@cf. Eq. ~46! in Sec. 2.8 of@35##, chosen such thatf ir takes
the simple leading-order asymptotic form~20! at the EH,
namely

f ir ~r !>H D2s ~ for s.0!,

D0 ~ for s,0!.
~26!

1For brevity, we hereafter consider modes without initial sta
multipoles.
A careful study of the asymptotic behavior off ir at the
EH reveals that it includes a~sub-dominant! logarithmic
term.2 To analyze this logarithmic term, it is instructive t
express the irregular solution in terms off r via the Wronsk-
ian method. The Wronskian associated with the homo
neous equation~19! is

W5D2s21, ~27!

and thus a static solution independent off r may be ex-
pressed as

2Such a logarithmic term is to be anticipated, because of the i
ger difference,usu, between the leading powers ofz in the two
asymptotic solutions~20! near the regular-singular pointz50 @36#.
5-4
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f̃ ir 52f r~r !E r

f r
22~r 8!W~r 8!dr8

52f r~r !E r

f r
22~r 8!@D~r 8!#2s21dr8. ~28!

This solution, of course, does not necessarily coincide w
f ir , but is, in general, a linear combination of the two ba
functionsf r andf ir . It is easy to verify that the integrand i
Eq. ~28! is z2usu21 times a rational function which is regula
~and nonvanishing! at z50. The integrand can therefore b
expanded as

z2usu21~g01g1z1g2z21••• !, ~29!

whereg i are constants, withg05(4M2)2usu21Þ0. By sub-
stituting the leading-order term of this expansion in Eq.~28!
and comparing to Eq.~26!, we find
h

io

(

e

re

12400
h
s

f̃ ir 5~2M usu!21f ir 1const3f r . ~30!

@Here, the coefficient off r depends on the specific choice
the lower integration limit in Eq.~28!.# Substitution of the
full expansion~29! in Eq. ~28! yields

f̃ ir 52f r@g usuln z1z2usu~ ĝ01ĝ1z1••• !#, ~31!

whereĝ i52Mg i /( i 2usu) for iÞusu ~and ĝ usu is an arbitrary
integration constant!. We now use Eq.~30! to extractf ir :

f ir 52M usu~f̃ ir 2const3f r !

522M usuf r@g usuln z1z2usu~ ĝ01ĝ1z1••• !1const#.

~32!

It is straightforward to expand this expression aboutz50.
This expansion yields
f ir ~r !5H D2s~11a1
1z1a2

1z21••• !1bslf r
1ln z ~ for s.0!,

~11a1
2z1a2

2z21••• !1bslf r
2ln z ~ for s,0!,

~33!
:

to

-

ba-

er-
wherea i
6 andbsl522M usug usu are constants.

The above analysis, based on Eq.~28!, explains the origin
of the logarithmic term and determines its exact form. T
calculation ofg usu ~and hence ofbsl) for generall ,s is te-
dious, however. It is easier to derive the explicit express
for bsl directly from the exact expression~24! for f ir . The
series expansion of the hypergeometric function around
1z)2151 ~corresponding toz50) may be obtained from a
generating function through the formula

F~ l 2usu11,l 11,2l 12,y!

5
~21! usu11~2l 11!!

~ l ! !2~ l 2usu!! ~ l 1usu!!

3
dl

dyl F ~12y! l 1usu dl

dyl S ln~12y!

y D G ~34!

@cf. Eq. ~4! in Sec. 2.2.2 of@35##. Note that in our casey
51/(11z), so ln(12y)5ln z2ln(11z). The logarithmic
term in Eq.~33! ~which comes from the first of the abov
two ln terms! is only obtained when none of the 2l derivative
operatorsd/dy in Eq. ~34! acts on ln(12y). Thus, for the
sake of calculating the logarithmic coefficient, we can
place the second factor in the right-hand side of Eq.~34! by

dl

dyl F ~12y! l 1usu dl

dyl
~y21!G ln z

5~21! l~ l !!
dl

dyl
@~12y! l 1usuy212 l # ln z. ~35!
e

n

1

-

Evaluating this expression aty51, to the leading order in
z>12y, we obtain

~ l !! ~ l 1usu!!
~ usu!!

zusuln z. ~36!

Substituting this in Eq.~34!, and recalling Eq.~25!, we ob-
tain the desired expression for the logarithmic coefficient

bsl5
~21!s11~ l 1usu!!

~ usu21!! ~ usu!! ~ l 2usu!! ~4M2!2usuÞ0. ~37!

In summary, we have constructed a basis of solutions
the static field equation. One of the basis solutions (f r) is
simply a polynomial inz, but the other (f ir ) contains a
logarithmic term. This logarithmic term will play an impor
tant role in the analysis below. Note also that for boths.0
and s,0, f r is smaller thanf ir in the leading order by a
factor D usu.

V. REGULARITY AT THE EH

By general considerations, we expect physical pertur
tions to be regular and smooth at the EH. The functionCs

represents a perturbation in the Maxwell field tensorFab for
s561 and in the Weyl tensorCabgd for s562. When this
perturbation is expressed in Kruskal coordinates~4! ~or in
any other coordinates which are regular at the EH!, all com-
ponents of these Maxwell or Weyl tensors must take a p
fectly regular form at the EH.

To discuss the regularity ofCs at the EH, it is useful to
define
5-5
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D60 124005
Ĉs[DsCs, ~38!

and correspondingly,

ĉ slm[Dsc slm and F̂k
slm[DsFk

slm . ~39!

It is straightforward to show, via Eqs.~7! and ~8!, that for
any s, Ĉs directly represents a physical perturbation fie
which must be regular at the EH: Fors52, Ĉs is a linear
combination of Weyl componentsCVaVb, where the indices
a,b represent the two angular coordinatesu,w. For s5

22, Ĉs is a linear combination of Weyl componen
CUaUb . Similarly, for s51 ands521 Ĉs is a linear com-
bination of Maxwell componentsFVa andFaU , respectively.
Therefore, a necessary condition for regularity at the EH
that Ĉs be regular~i.e., finite and smooth!. Since the spin-
weighted spherical harmonics are smooth,ĉ slm must be
smooth too.

We point out that the regularity ofĈs is also dictated by
mathematical considerations, as follows: If one transfor
the master equation~9! from Cs to Ĉs, and from the original
coordinates to the Kruskal coordinates~4!, the field equation
becomes perfectly regular at the EH~whereas with the origi-
nal dependent variableCs the equation is singular at the EH
even in Kruskal coordinates!. Therefore, from the hyperbolic
nature of the field equation, if the initial data forĈs are
regular~which we assume!, no irregularity may evolve at the
EH.

Consider next the regularity of the static solutions. W
assume that for anys and anyl ,m, there exists~at least! one
static solution which is physically regular at the EH. For,
there is an external static source of a multipolel ,m ~and no
incoming waves from past null infinity!, the field outside the
BH will be static; and we do expect this static field to
regular at the EH. The presence of two independent reg
static solutions~for a givens,l ,m) at the EH would violate
the no-hair principle, because thenall static solutions would
be regular at the EH, including the one which is regular
infinity. We shall now show, however, that for anys, one of
the static solutions~the solutionf ir ) is irregular.

For s,0, the irregularity off ir is obvious, because th
corresponding fieldf̂ ir [Dsf ir diverges likeDs. For s.0
the field f̂ ir is finite (>D0) at the EH. Yet, the logarithmic
term implies that the solution is not smooth: The derivat
of order usu with respect tor ~which itself is a regular coor-
dinate! diverges. On the other hand, for boths.0 and s

,0, the fieldf̂ r[Dsf r is a polynomial inz @which is pro-
portional to (r 22M )s for s.0 and to (r 22M )0 for s,0#,
so it is perfectly smooth.

We conclude that for both positive and negatives, f ir is
physically irregular, whereasf r is physically regular.

VI. LATE-TIME BEHAVIOR

The demand for regularity ofĉ slm at the EH has imme-
diate implications to the late-time expansion~13!. Since r
12400
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and v form a regular coordinate system for the Schwar
child background~the so-called ‘‘ingoing Eddington coordi
nates’’!, ĉ slm must be a perfectly smooth function ofr andv
at the EH~recall thatr andv are related toU andV by an
invertible analytic transformation!. Therefore, for anyk ~and
anys), F̂k

slm(r )[DsFk
slm(r ) must be a smooth function ofr:

F̂k
slm~r !PC`~R! for k. ~40!

In Sec. III we have shown thatFk50
slm must be a static

solution. The regularity ofF̂k50
slm (r ) then implies thatFk50

slm

must coincide~up to some multiplicative constant! with the
regular static solutionf r . Hence, to the leading order i
1/v, we obtain

cslm~ t,r !5c0f r~r !v22l 231O~v22l 24!, ~41!

where c0 is constant. For the description of the late-tim
behavior along world lines of fixedr .2M , it is useful to
re-write this expression in terms of powers of 1/t:3

c slm~r ,t !5c0f r~r !t22l 231O~ t22l 24!. ~42!

From this point on we discuss the casess,0 ands.0
separately.

A. The cases<0

In this case,Fk50
slm is proportional tof r

2 . We shall denote
the proportionality constant byc0

2 , that is,

Fk50
slm 5c0

2f r
2 ~s,0!. ~43!

@Recall that the parameterk0 in Eq. ~13! is so defined such
that the termFk50

slm does not vanish identically. Therefore, b
definition, the constantc0

2 is non-zero.# Note thatf r
2>D usu

near the EH.
Consider next the contribution from the termsk.0. From

Eq. ~40! it is obvious that fors,0 and for allk.0, Fk
slm

must be a regular function ofr, which vanishes at least like
D usu at the EH~like for k50). Hence, at late time the term
k.0 are negligible compared to the termk50, due to their
higher negative powers of 1/v. Therefore, Eq.~41!, which
now reads

c slm~r ,t !>c0
2f r

2~r !v22l 23 ~s,0!, ~44!

provides a useful description of the late-time behavior
only at r .2M but also at the EH. To the leading order inD,
the asymptotic behavior at the EH is

c slm~r ,t !>c0
2D2sv22l 23 ~s,0!. ~45!

3It should be stressed here that in this paper weassumethe power
index 2l 13 derived by Price@5# for the tail at fixedr .2M . The
new information in Eq.~42! @or in Eq. ~41!# concerns the explicit
form of the radial function multiplying the inverse-power factor.
5-6
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B. The cases>0

In this case,Fk50
slm ~which must coincide with the regula

static solution! is proportional tof r
1 , i.e., Fk50

slm 5c0
1f r

1

with c0
1Þ0; henceFk50

slm }D0 near the EH. However, fork
.0 ~for which Fk

slm is not the static solution!, the only ob-
vious constraint on the functionsFk

slm is the regularity of

F̂k
slm(r ), Eq. ~40!. This regularity criterion allows the term

k.0 to be proportional toD2s ~and, as we show below, a
least the termk51 is indeed proportional toD2s). Due to
this D2s factor, at the EH theO(v22l 24) term in Eq.~41!
dominates theO(v22l 23) term, which is only proportional to
D0. Therefore, fors.0, Eq. ~41! does not provide a usefu
description of the asymptotic behavior at the EH as it d
for r .2M . A correct description of the late-time behavi
there must include both termsk50 andk51:

c slm~r ,t !5c0
1f r

1~r !v22l 231Fk51
slm ~r !v22l 24

1O~v22l 25! ~s.0!. ~46!

To the leading order inD, the asymptotic behavior at the E
is

c slm~r ,t !>c0
1v22l 231c1

1D2sv22l 24 ~s.0!, ~47!

wherec1
1 is the coefficient ofD2s in Fk51

slm . Note that Eqs.
~41! and~42! still provide a correct and useful description
the late-time behavior along any line of fixedr .2M .

It is important to verify that the coefficientc1
1 in Eq. ~47!

is non-vanishing. This coefficient is to be obtained from t
function Fk51

slm (r ) in Eq. ~46!. Fk51
slm satisfies the inhomoge

neous equation~14!, subject to the regularity condition~40!.
The general inhomogeneous solution takes the form

Fk51
slm ~r !5a1

1f r
1~r !1b1

1f ir
1~r !1f ih~r !, ~48!

wherea1
1 and b1

1 are constants andf ih is a specific inho-
mogeneous solution. Using the Wronskian functionW(r )
given in Eq.~27!, we can expressf ih as

f ih~r !5f r~r !E r f̃ ir ~r 8!S1~r 8!/D~r 8!

W~r 8!
dr8

2f̃ ir ~r !E r f r~r 8!S1~r 8!/D~r 8!

W~r 8!
dr8. ~49!

For s.0 it is convenient to re-express this inhomogeneo
solution in the form

f ih~r !5E r

dr8E
2M

r 8
dr9

f r
1~r !f r

1~r 9!

@f r
1~r 8!#2

W~r 8!

W~r 9!

S1~r 9!

D~r 9!
,

~50!

which is easily obtained from Eq.~49! by first substituting
for f̃ ir , using Eq.~28!, and then integrating the resultin
expression by parts. The form~50! is advantageous as it onl
involves the homogeneous solutionf r

1 , which has a simple
12400
s

e
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polynomial form.4 The source termS1 is to be calculated
from Eq.~16! with Fk21(r )5F0(r )5c0

1f r
1(r ). This yields,

to the leading order inD,

S1~r !>16M3sk0c0
1D21. ~51!

In view of Eqs.~23!, ~27!, and ~51!, we find that the inte-
grand in Eq.~50! is given, to the leading order inD, by
16M3sk0c0

1Ds21(r 9)/Ds11(r 8). Performing the double in-
tegration, we obtain~to the leading order inD)5

f ih~r !>4Mk0c0
1ln z1O~D0!. ~52!

By substitution in the inhomogeneous equation~14!, one eas-
ily verifies that the term lnz in f ih must be multiplied by a
homogeneous solution~otherwise the homogeneous opera
Dsl, acting on the logarithmic part off ih , would yield a
term proportional to lnz—which cannot be balanced by th
logarithmic-free source term!; and from Eq.~52! and Eqs.
~23!, ~26! it follows that this homogeneous solution must
proportional tof r

1 . Therefore,

f ih~r !>4Mk0c0
1f r

1ln z1O~D0! ~53!

@in which theO(D0) term is logarithmic-free#. We now sub-
stitute this expression in Eq.~48!, using the asymptotic forms
~23! and ~33!, and keeping only the leading order~propor-
tional to D2s) of the non-logarithmic part:

Fk51
slm ~r !>b1

1@D2s1bslf r
1ln z#14Mk0c0

1f r
1ln z.

~54!

Note that the coefficienta1
1 in Eq. ~48! ~which, in principle,

is to be obtained by matching the solution to the late-ti
field at null infinity @11#! does not enter Eq.~54!, as f r

1

includes neitherD2s terms nor logarithmic terms.
Now, F1(r ) must satisfy the regularity condition~40!, so

it cannot contain a logarithmic term. This dictates the va
of the constantb1

1 :

b1
1524Mk0c0

1bsl
21Þ0. ~55!

One can now identify the non-vanishing coefficientb1
1 with

the above leading order coefficientc1
1 of F1(r ) at the EH.

We conclude that the coefficientc1
1 in Eq. ~47! is non-

vanishing. As a consequence, we find thaton the EH itself

4In Eq. ~50! we have not specified the lower limit of the integr
tion over r 8. Changing the value of this limit amounts to adding
regular solution}f r

1 , which is equivalent to re-defining the coe
ficient a1

1 in Eq. ~48!. Note, however, that the choicer 852M as
the lower integration limit is forbidden, as the integral is not defin
in this case.

5Note that no ln2z,ln3z . . . terms arise from the integration in Eq
~50!: For s.0 the integrand is actually a rational function ofr 9,
analytic atr 952M . Hence, the integration overr 9 cannot produce
a lnz8 term. A term} ln z arises only from the subsequent integr
tion over r 8.
5-7
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the perturbation is dominated by the second term in Eq.~47!,
and hence it decays there likev22l 24.

In this section we have obtained the asymptotic form~47!
~and proved that the coefficientc1

1 is non-vanishing! by a
direct analysis ofc slm in the cases.0. There is yet anothe
way to obtain Eq.~47!, which, being somewhat outside th
main course of this paper, we describe in detail in the A
pendix: It is well known that each single one of the pert
bation fieldss51 and s521 determines the full electro
magnetic perturbation, i.e., the full Maxwell tensorFab ~up
to a trivial addition of the static Coulomb solution!. Simi-
larly, each of the perturbation fieldss52 ands522 deter-
mines the full gravitational perturbation, i.e., the perturbat
in the Weyl tensor~up to gauge, and up to a trivial additio
of the static multipoles withl 50 andl 51). In particular,w2
determinesw0, andC4 determinesC0, and vice versa. We
use this fact in the Appendix, where we obtain t
asymptotic behavior fors.0 from that of s,0 ~as we
showed above, the latter is relatively simple, because fos
,0 the termk50 in the late-time expansion complete
describes the late-time behavior at the EH!. To that end, we
shall use in the Appendix the well knownTeukolsky-
Starobinsky identities.

VII. SINGLE FOURIER MODES

Consider a solution to the field equation~12!, having the
form

c~r ,t !5cv~r !e2 ivt. ~56!

~The indicess,l ,m, which, in fact, characterize both func
tions c and cv , are omitted here and below for brevity!
Each Fourier modecv(r ) then satisfies an ordinary equatio
which may be written as

d2

dr
*
2 ~rDs/2cv!1@v21 ivsR~r !1Vls~r !#~rDs/2cv!50,

~57!

in which R(r ) and Vls(r ) are certain radial functions. Th
asymptotic form of this equation near the horizon is

d2

dr
*
2 ~Ds/2cv!>~s/4M1 iv!2~Ds/2cv!. ~58!

The two asymptotic solutions at the EH are

cv
a >D0eivr

* and cv
b >D2se2 ivr

* ~59!

~where use has been made of the asymptotic rela
er

*
/(4M )}D1/2). At the limit v→0, these two asymptotic

solutions approach the two asymptotic static solutions,
~20!—just as one would expect. We shall now show, ho
ever, that fors.0 the role of regular and irregular solution
is interchanged as the limitv→0 is approached.

In the casevÞ0, too, we expect one of the two solution
to be regular and the other one to be singular~for the same
reasons as in the static case!. We now substituteca andcb in
12400
-
-

n

n

q.
-

Eq. ~56!, and construct the corresponding physical fieldsĉ
[Dsc ~which, as was discussed in Sec. V, should be regu
functions at the EH!. We denote the functionsĉ obtained
from cv

a andcv
b by ĉa and ĉb, respectively, and find

ĉa[Dscv
a e2 ivt>Dse2 ivu,

ĉb[Dscv
b e2 ivt>e2 ivv. ~60!

Recall thatv is regular at the EH, butu is not ~as the EH is
a surface of finitev but infinite u). This implies thatĉb is
regular, butĉa is irregular. ~For s,0, ĉa diverges at the
EH. For s.0, ĉa is finite, but its s-order derivative with
respect toU is indeterminate at the EH, and higher-ord
derivatives diverge there.! We conclude that forvÞ0 ~and
for both s.0 ands,0), cv

b is regular andcv
a is singular.

~This is a well known result; see@37#.!
Let us now compare this situation to the static case, E

~23! and ~26!. For s,0, the classification into regular an
irregular solutions is preserved at the limitv→0. However,
for s.0, the regular and irregular solutions switch role
this static limit.

VIII. SCALAR-FIELD TOY MODEL

To better understand the exchange of regular and sing
solutions at the limitv→0 ~for s.0), it is instructive to
consider a simple scalar-field toy model. LetF be a mini-
mally coupled, massless, Klein-Gordon test field on
Schwarzschild background. We make here the assump
that, in an appropriate gauge, the late-time behavior of
electromagnetic four-potentialAa and of the linear metric
perturbationhab is qualitatively the same as that of a sca
field ~this assumption is somewhat vague, especially beca
of the gauge ambiguity. Note, however, that at least for
behavior of metric perturbations alongr 5const.2M lines,
this assumption is verified in@4#!. Correspondingly, we
would expect that the componentsFaV of the Maxwell
tensor—which are made of terms likeAa,V—will qualita-
tively behave at the EH likeF ,V . For the same reason, w
would expectFaU to behave at the EH likeF ,U . Recalling
the wayCs561 is constructed fromFab by projection on the
tetrad ~6! @see Eq.~8!#, one intuitively expects thatCs561

will qualitatively behave as follows:

Cs51}D21F ,v[C̃s51,

Cs521}F ,u[C̃s521. ~61!

Similarly, for the caseusu52, one expects@in view of Eq.
~7!# that

Cs52}D22F ;vv[C̃s52,

Cs522}F ;uu[C̃s522. ~62!
5-8
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~For brevity, we shall focus the following discussion on t
caseusu51. Similar arguments apply tousu52 as well.!6

For any model ,m of F, the two static solutions take th
asymptotic forms

F r>11O~D! and F ir >r * ~63!

near the EH~cf. @4#!. Clearly,F r is the regular mode, while
F ir is singular~as r * →2` at the EH!. Let us denote the

functions C̃s which correspond to the regular and singu

modes byC̃ r
s and C̃ ir

s , respectively. Recalling that in th
static case]v52]u5(1/2)d/dr* 5@D/(2r 2)#d/dr, we find
for usu51:7

C̃ r
s}H D0, s511,

D1, s521,
C̃ ir

s }H D21, s511,

D0, s521.
~64!

Consider next a single Fourier mode~of a given l ,m,v)
F5Fv(r )e2 ivt. The two asymptotic solutions of the radi
function at the EH are obtained by substitutings50 in Eq.
~59!:

Fv
a >eivr* @11O~D!#, Fv

b >e2 ivr* @11O~D!#.
~65!

These two radial functions correspond to the field configu
tions

Fa[e2 ivtFv
a >e2 ivu@11O~D!#,

Fb[e2 ivtFv
b >e2 ivv@11O~D!#. ~66!

Sinceu diverges at the EH~but v is regular!, it is obvious
that Fb is the regular solution, whileFa is singular. We

shall denote the functionsC̃s which correspond to the regu

lar and singular modes in Eq.~66! by C̃a and C̃b, respec-
tively. Using Eq.~61!, we find for usu51:

C̃a}H e2 ivu@11O~D!#, s511,

e2 ivu@11O~D!#, s521,

C̃b}H D21e2 ivv@11O~D!#, s511,

De2 ivv@11O~D!#, s521.
~67!

6A more sophisticated toy model would be obtained by replac
Fab or Cabgd in the definitions of the Newman-Penrose fields
F ;ab or F ;abgd , respectively. Here we adopt a simpler toy mod
which is easier to calculate.

7In deriving the asymptotic form forC̃ r
s it has been assumed tha

dF r /dr does not vanish at the EH. This assumption is justified
it is known @11,38# that the EH-regular static scalar fieldF r is
nothing butPl@(r 2M )/M #, the Legendre polynomial of orderl ~up
to a multiplicative constant!. At the EH we then havedF r /dr
}dPl /dr5 l ( l 11)/2, which does not vanish~except forl 50).
12400
r

-

@It is assumed here that the termsO(D) in Eq. ~66! are
non-vanishing, and, moreover, that their derivatives with

spect tor do not vanish at the EH.# The construction ofC̃a

and C̃b ensures that thet dependence of both functions
simply e2 ivt. Let us denote the radial parts of these tw

functions byC̃v
a (r ) andC̃v

b (r ), respectively; that is,

C̃a~r ,t ![e2 ivtC̃v
a ~r !,

C̃b~r ,t ![e2 ivtC̃v
b ~r !. ~68!

For both casess51 ands521, one thus finds

C̃v
a }eivr

* @11O~D!#,

C̃v
b }D2se2 ivr

* @11O~D!#. ~69!

A comparison of Eq.~64! to Eqs.~23!, ~26!, and of Eq.
~69! to Eq. ~59!, reveals that for both casesv50 and v
Þ0, and for boths51 and s521, the actual asymptotic
form of both the regular and singular solutions agree w
that obtained from the scalar-field toy model. In particular,
the cases521, at the limitv→0 the regularvÞ0 solution

C̃v
b approaches the regular static solutionC̃ r

s521 ~and the

singular vÞ0 solution C̃v
a approaches the singular stat

static solutionC̃ ir
s521), whereas in the cases511 the regu-

lar and singular solutions interchange at the limitv→0.
Our toy model provides a simple intuitive explanation f

the difference in the role of the regular and singular solutio
in the static andvÞ0 cases. The key point is the relatio
between the two basis solutions of the scalar field itself, i
Eqs.~63! and~65!, ~66!. In the static case, there is a ‘‘sma
solution’’ F r and a ‘‘large solution’’ F ir . Naturally, the
‘‘small solution’’ is the regular one, and the ‘‘large solu
tion’’ is singular. On the other hand, in the casevÞ0 both
radial solutions in Eq.~65! are of the same magnitude. In th
case, the fundamental difference between the two basis s
tions is that, at the leading order, one of them (Fa) depends
solely onu, and the other one (Fb) depends solely onv. We
can therefore refer to the two radial functionsFv

a andFv
b as

the ‘‘u solution’’ and the ‘‘v solution,’’ respectively. Sincev
is regular at the EH andu diverges, the ‘‘v solution’’ Fv

b is
regular and the ‘‘u solution’’ is singular.

Now, the functionsC̃s ~which presumably represent th
functionsCs) are obtained in our toy model by differentia
ing F with respect tou or v ~depending on the sign ofs).
Consider first thevÞ0 case~in which the two basis solu-
tions are classified as a ‘‘v solution’’ and a ‘‘u solution’’!.
When the operator]v acts onF, it naturally yields a large
outcome for the ‘‘v solution,’’ and a small outcome for the
‘‘ u solution.’’ On the other hand, when the operator]u is
applied, it yields a small outcome for the ‘‘v solution,’’ and
a large outcome for the ‘‘u solution.’’ Since the ‘‘v solu-
tion’’ is regular and the ‘‘u solution’’ is singular, we arrive

at the following conclusion: ForC̃s521 ~which is associated

g

l

s
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with F ,u), the regular solution is the smaller of the two bas

solutions. However, forC̃s51 ~which is associated with
F ,v), the regular solution is thelarger of the two basic so-
lutions.

On the other hand, in the static case we have a ‘‘la
solution’’ and a ‘‘small solution’’~instead of a ‘‘v solution’’
and a ‘‘u solution’’!. The differentiation of the ‘‘large solu-

tion’’ with respect to eitheru or v yields a functionC̃s

which is larger than that obtained from the differentiation
the ‘‘small solution.’’ Therefore, in the static case, for bo
s.0 ands,0 the regular solution is the smaller of the tw
basis solutions.

The interchange of the regular and singulars.0 solutions
in the transition fromvÞ0 to v50 may still look somewhat
mysterious, because the limitv→0 is a perfectly regular
limit of the differential equation~57!. The mystery may
again be resolved with the aid of our scalar-field toy mod
Let us re-write the regularvÞ0 solution forF @Eq. ~66!# in
a somewhat more explicit form,

Fb>e2 ivv@11c~v!D1O~D2!#. ~70!

We assume thatc(v) is continuous and non-vanishing at th

limit v→0. We now calculateC̃v
s51 from this regular solu-

tion, via Eq.~61!, keeping the leading order inD separately
for terms proportional tov and for terms proportional tov0:

C̃s51>e2 ivv@2 ivD211~4M !21c~v!#@11O~D!#.
~71!

Restricting attention to the limitv→0 and to the leading
order inD, we obtain

C̃s51>e2 ivv~2 ivD211c0!, ~72!

wherec05(4M )21limv→0c(v). Equation~72! explains the
change in the asymptotic form of the regulars51 solution
from D21 in the casevÞ0 to D0 in the casev50.

On the other hand, when the same calculation is car
out for s521, one obtains from Eq.~61!

C̃s521>2c0De2 ivv ~73!

for the regular solution~for small v). Thus, the regular so
lution for s521 is proportional toD for both vÞ0 andv
50.

Our toy model also allows us to obtain the late-time b
havior for boths.0 ands,0 directly from that of the scala
field. The late-time behavior for~a model ,m of! F near the
EH is known to be@7,11#

F l>F r
l ~r !v22l 23, ~74!

where the radial functionF r
l (r ) is the regular static solution

for the model ,m. Equation~61! now yields at the EH

C̃s521>2DF1v22l 23 ~75!

and
12400
e

f

l.

d

-

C̃s51>F1v22l 232~2l 13!F0D21v22l 24, ~76!

where F05F r
l (r 52M ), and F15(8M2)21(dF r

l /
dr) r 52M . Compare these results to Eqs.~45! and ~47!.

So far we have implemented the toy model for the ca
usu51 only. The calculations in the caseusu52 are straight-
forward too, though they are somewhat more tedious.
shall merely point out here that all the expressions we h

derived for C̃s561 are extendible toC̃s562, and may be
used to explain the various features ofCs562—e.g., the
asymptotic behavior of the regular and singular solutions
both vÞ0 andv50, and the late-time behavior at the EH
It should be emphasized that the late-time power index

C̃s52 at the EH is 2l 14 ~and not 2l 15, which might na-
ively be anticipated due to the twov-derivatives in the defi-
nition of this function!. The reason is that, the second-ord
covariant differentiation in Eq.~62! involves the differentia-
tion of the affine connection. The easiest way to evalu

C̃s52 is via the Kruskal coordinates~which at the EH mini-
mize the connection’s effect!. One then finds thatF ;V
}v22l 24/V, and the next differentiation with respect toV
then yields, at the leading order,F ;VV}v22l 24/V2, i.e.
F ;vv}v22l 24.

Finally, we point out that Eq.~72!, which was derived
within the framework of the scalar field toy model, may al
be derived for the realistic fieldCs51, if Eq. ~73! is as-
sumed, using the Teukolsky-Starobinsky identities~the ap-
plication of which is described in the Appendix!. More ex-
plicitly, let us write the asymptotic behavior of th
monochromatics521 field at the EH, to the leading orde
in D, as

Cs521>a~v!De2 ivv, ~77!

and assume thata(v) is non-vanishing at the limitv→0.
Then, applying the Teukolsky-Starobinsky identities, o
can easily obtain for the correspondings511 field

Cs51}e2 ivv~2 ivD211const3D0! ~78!

~for small v).

IX. A KERR BLACK HOLE

The above analysis of the Schwarzschild case has im
diate implications to rotating black holes as well. In a fort
coming paper@23# the late time expansion will systemat
cally be applied to the Kerr case, in order to determine
late-time behavior of external perturbations. Here, we sh
use the above methods and considerations to derive the
cay rate ofsÞ0 fields along the Kerr EH~many of the de-
tails are left to Ref.@23#!.

In the Kerr case, the Master equation is fully separa
only in the frequency domain, by writing

Cvslm~ t,r ,u,w!5Sv
slm~u!eimwe2 ivtcvslm~r !, ~79!

where (t,r ,u,w) are the Boyer-Lindquist coordinates, an
Sv

slm(u)eimw are the spin-weighted spheroidal harmon
5-10
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@37#. The behavior of the radial functioncvslm(r ) is then
governed by the well known Teukolsky equation@37#. The
two asymptotic solutions of this equation at the EH are

ca
vslm~r !>D0ei (v2mV1)r

* , cb
vslm~r !>D2se2 i (v2mV1)r

* ,
~80!

where

D[r 222Mr 1a2, ~81!

M anda are respectively the mass and specific angular m
mentum of the black hole,r * is defined bydr* /dr5(r 2

1a2)/D, and

V1[
a

2Mr 1
, ~82!

with r 1[M1(M22a2)1/2 being the r value of the EH.
@Compare the asymptotic solutions~80! and~59! in the case
a50.# We shall consider only a BH background with
,uau,M ~the extremal case,uau5M , requires a separat
treatment!.

In the Kerr case, the coordinatew goes singular at the EH
Transforming to the regularized azimuthal coordinate

w̃1[w2V1t ~83!

~see Sec. 58 in@31#!, and substituting the solutions~80! in
Eq. ~79!, we obtain the field configurations associated w
the two asymptotic solutions:

Ca
vslm~ t,r ,u,w̃1!>Sv

slm~u!eimw̃1D0e2 i (v2mV1)u,
~84a!

Cb
vslm~ t,r ,u,w̃1!>Sv

slm~u!eimw̃1D2se2 i (v2mV1)v,
~84b!

where

Ca,b
vslm[Sv

slm~u!eimwe2 ivtca,b
vslm~r !. ~85!

It is straightforward to extend the regularity criterion
Sec. V to the Kerr case: Here, too, one finds that at the
the variable

Ĉs[DsCs ~86!

must be a perfectly smooth function of the~regularized! co-
ordinates~exactly for the same reasons described in Sec
for the Schwarzschild case; see also@37#!.

For the application of the late-time expansion we m
verify which of the above two asymptotic solutions is phy
cally regular at the EH. Teukolsky@37# asserted that the
regular solution isCb . This is obvious from the oscillatory
dependence ofCa on u ~and of Cb on v)—as we have
discussed in the Schwarzschild (wÞ0) case. One must re
call, however, that this simple classification breaks do
wheneverw2mV150 ~in which case the above oscillator
factors inu andv degenerate to 1). In this case the class
cation is more involved.
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We shall now restrict attention to the static8 casew50
~the casewÞ0 is not required for the analysis below!. In this
case, the asymptotic solutions~84a!, ~84b! become

Ca
v50,slm~r ,u,w̃1!>Yslm~u,w̃1!D0eimV1u, ~87a!

Cb
v50,slm~r ,u,w̃1!>Yslm~u,w̃1!D2seimV1v,

~87b!

whereYslm denotes the spin-weighted spherical harmoni
Teukolsky’s assertion concerning the regularity ofcb is now
valid for mÞ0 only, and we still need to find out what is th
regular asymptotic behavior at the EH form50.

Fortunately, at this point we can directly apply the resu
from the above analysis of the Schwarzschild case, for
following reason. Let us define

z[
r 2r 1

2AM22a2
. ~88!

The relation betweenD and z is D54(M22a2)z(z11)
~note that asa→0 both D and z coincide with their above
Schwarzschild definitions!. One can now verify that form
50,v50 the master equation takes exactly the form of E
~21! @23#. Therefore, the two static solutions in the Kerr ca
are exactlyf r andf ir defined above~viewed as functions of
z). We already know that the solutionf r ~like Dsf r) is a
perfectly regular polynomial ofz ~and hence ofr ), whereas
the solutionf ir ~like Dsf ir ) includes a term proportional to
ln z and is hence irregular at the EH.

Let us summarize the above results concerning the re
larity of static ~i.e., w50) modes:~i! The case mÞ0: For
boths,0 ands.0, the regular solution iscb ~just as in the
wÞ0 Schwarzschild case!. The field associated with this
regular asymptotic solution is given in Eq.~87b!.

~ii ! The case m50: For boths,0 ands.0, the regular
solution isf r—just as in the static Schwarzschild case. T
field associated with this regular solution is

Ys,l ,m50~u!f r~z!, ~89!

with the functionf r(z) given in Eq.~22!, and its asymptotic
behavior~for both positive and negatives) given in Eq.~23!.
@Note that in terms of the limitm50 of Eqs.~87a!, ~87b!,
Eq. ~89! conforms with Ca for s.0 and with Cb for s
,0.#

The above results~whose detailed derivation is given i
@23#! are summarized in Table I. This table displays t
asymptotic form of the regular and irregular static modes
the various possible values ofs,m.

After we have discussed the regularity features of
static solutions, we are in a position to analyze the decay

8Throughout this section, which deals with a Kerr background,
refer to thet-independent solutions as ‘‘static,’’ in a slight abuse
the usual terminology.~We prefer to use here the term ‘‘static
instead of ‘‘stationary’’ in order to simplify the terminology an
preserve the semantic analogy with the Schwarzschild case.!
5-11
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TABLE I. The asymptotic forms of the physically regular and physically irregular static solutions a
EH in the Kerr case. Presented are the results for the axially symmetric (m50) modes of the fields, as wel
as for its nonaxially symmetric (mÞ0) modes.@The Schwarzschild case (a50) can be read from this table
by referring only to the results in the first two lines~which then apply to allm).#

Irregular static solution Regular static solution

am50, s.0 D2s D0

am50, s,0 D0 D2s

amÞ0, s,0 ands.0 D0eimV1u D2seimV1v
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of the late time tails along the EH, using the late-time exp
sion. As we mentioned above, the master equation for
Kerr background is only separable in the frequency dom
Since the late-time expansion is carried out in the time
main, we cannot take advantage of the full separability of
field equation. The dependence onw is still separable via
eimw, however, and without loss of generality we shall co
sider a fieldCsm of a singlem ~the overall perturbation field
will be obtained by a superposition of allm values!. To deal
with the dependence onu, we proceed as follows: We firs
perform the late-time expansion of the full perturbation fie
Csm, and then, for each termk in this expansion, we separa
the angular dependence by decomposing into spin-weig
sphericalharmonics. The full decomposition thus takes t
form

Csm5 (
k50

` F (
l 5 l 0

`

Yslm~u,w!Fk
slm~r !Gv2k02k, ~90!

wherel 0 is the minimal value ofl allowed for the modem,s
in question, that is,l 05max(umu,usu). The parameterk0 is
defined here to be the dominant late-time power index
Csm along lines of constantr .r 1 ; Namely, it is determined
by the multipolel which has the slowest decay atr 5const
.r 1 . Note that by this definition,k0 is independent ofl
~unlike the Schwarzschild case, in which the late-time exp
sion was implemented for each model ,m in separate!. An
investigation of the late-time decay at fixedr @23,26# indi-
cates that generically the dominant multipole is the one w
the smallestl allowed, i.e.,l 5 l 0, and its decay rate~at fixed
r .r 1) is v22l 023, with all other multipoles decaying faste
This means that genericallyk052l 013, and also, the term
k50 includes only one multipole,l 5 l 0 ~that is,Fk50

slm van-
ishes for alll . l 0).

When the expression~90! is substituted in the maste
equation@37#, one finds that the radial functionsFk

slm still
admit equations of the form~14!. However, in the Kerr case
the source termSk

slm involves also contributions from othe
values ofl. ~Actually, the source termSk

slm couples a multi-
pole l to multipolesl 61,l 62.! Still, one finds that, as in the
Schwarzschild case,Sk

slm depends only on functionsFk8 with
k8,k @23#. In particular, the functionFk50

slm has no source
term, so it satisfies a closed homogeneous equation, whi
just the static field equation. This structure allows one to
solve for all unknownsFk

slm in an inductive manner, startin
12400
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with the functionsFk50
slm . ~The situation here is analogous

that of a scalar field in a Kerr spacetime, analyzed in R
@22#.!

As we have just explained, the functionFk50 must be a
static solution of the master equation. Furthermore, the re
larity arguments discussed in Sec. VI~for the Schwarzschild
case! are applicable to the Kerr case as well, and imply th
Fk50 must be theregular static solution. The decay rate o
the late-time tail along the Kerr EH now follows immed
ately from the above discussion of the regular static so
tions, as we now describe.

For mÞ0, the regular static solution iscb . Sincecb(r )
has the maximal amplitude allowed by the regularity cri
rion, the termsk>1 ~being proportional tov2k02k) will be
negligible. Therefore, the late-time tail at the EH will b
proportional tocb(r )v2k0, and for boths,0 ands.0 we
shall have~to the leading order inD and 1/v)

Csm}Ys,l 0 ,m~u,w̃1!eimV1vD2s@v2k01O~v2k021!#,

for mÞ0. ~91!

~The oscillatory factoreimV1v has already been observed
the scalar-field case@24,22#.! Note that the angular depen
dence in this expression, as well as in Eqs.~92!, ~93! below,
only includes the multipolel 0: As was mentioned above
genericallyFk50

slm vanishes for alll . l 0.
For m50, the situation is just as in the Schwarzsch

case: In the cases,0, the regular static solutionf r is pro-
portional to D2s. Since this is the maximal magnitude a
lowed by the regularity criterion, the termsk>1 will be
negligible in this case too~just as in the casemÞ0 above!.
The late-time tail at the EH will therefore be proportional
f r(r )v2k0, and we obtain

Csm}Ys,l 0 ,m50~u!D2s@v2k01O~v2k021!#,

for m50,s,0. ~92!

However, in the cases.0 ~yet with m50), thek50 term is
proportional to the regular static solutionf r}D0, whereas
the k51 term diverges likeD2s. Therefore, at the EH the
k51 term dominates, and the late-time asymptotic behav
near the EH is given by

Csm}Ys,l 0 ,m50~u!@v2k01 c̄D2sv2k0211O~v2k022!#,

for m50,s.0. ~93!
5-12
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In Ref. @23# we verify ~by calculatingFk51) that the coeffi-
cient c̄ is non-vanishing, and also that the term proportio
to D2sv2k021 includes the multipolel 5 l 0 only. Note that
for m50,s.0, the decay rate along the EH isv2k021,
whereas in all other cases it isv2k0. ~The decay rate along
lines of constantr .r 1 is v2k0 in all cases.!

As was mentioned above, genericallyk052l 013. Thus,
the most dominantm modes are those withumu<usu. For
thesem modes l 05usu, so k052usu13. Therefore, in the
overall perturbation fieldCs, made of the superposition o
all m modes, the decay rate along the EH is generica
v22usu23. Recall, however, that fors.0 fields the axially
symmetric component (m50) decays faster along the EH
like v22usu24.

Note that the discussion is this section only deals w
non-extremal,uau,M , Kerr BHs: the extremal case needs
e

e

12400
l

y

h

be considered separately.@Note, for example, that Eq.~88! is
not valid in the casea5M .#

X. CONCLUSIONS

To summarize our results, it is most useful to refer to t

physical variablesĈs5DsCs defined above. These variable
are natural, because, as we mentioned above, at the EH
are proportional to the regular Maxwell componentsFaV or
FaU , or to the regular Weyl componentsCaVbV or CaUbU
~for s51, s521, s52, ands522, respectively; here,a,b
stand for the two regular angular coordinates, i.e.,u,w in the
Schwarzschild case andu,w̃1 in the Kerr case!.

For the Schwarzschild case, we find from Eqs.~45! and
~47! that along the EH, each model ,m of the physical field

Ĉs decays at late time with the leading-order tail
ĉslm~v !>const3v22l 231p, for s,0

ĉslm~v !>const3v22l 241p, for s.0
J Schwarzschild BH, ~94!

where the constants are generically non-vanishing. Here,p51 if there exists an initial static multipolel, or p50 in the
absence of such a multipole.~In the calculations above we assumedp50, but the extension to thep51 case is trivial.! For
the comparison with the Kerr case below~in which a full angular separability of the late-time tails is not possible!, it is useful

to re-write Eq.~94! in terms of the fieldĈsm, which is the part ofĈs including all multipolesl for a given m. Ĉsm is
dominated by the minimal multipolel allowed for the valuess,m, i.e., l 0[max(umu,usu). Equation~94! yields

Ĉsm>const3Ys,l 0 ,m~u,w!v22l 0231p, for s,0

Ĉsm>const3Ys,l 0 ,m~u,w!v22l 0241p, for s.0
J Schwarzschild BH. ~95!

This holds for both axially symmetric and nonaxially symmetric modes.

For the (nonextremal) Kerr case, we find from Eqs.~91!–~93! that the physical fieldĈsm for a given value ofm decays
along the EH according to

Ĉsm>const3Ys,l 0 ,m~u,w̃1!eimV1vv22l 0231p, Kerr BH, mÞ0, ~96!

for nonaxially symmetric modes, and

Ĉsm>const3Ys,l 0 ,m50~u!v22l 0231p, for s,0

Ĉsm>const3Ys,l 0 ,m50~u!v22l 0241p, for s.0
J Kerr BH, m50, ~97!
e-
ric

o

the

,

for axially symmetric modes.

The overall late-time behavior of the fieldĈs is domi-
nated by them values which yield the minimal possibl
value of l 0, i.e., the values2usu<m<usu, for which l 0

5usu. Thus, the overall decay rate ofĈs is obtained from
Eqs.~95!, ~96!, ~97! by substitutingl 0→usu. Note, however,
that the angular dependence of the overall late-time fi
~and, in the Kerr case, also the oscillations inv) will be
obtained by a superposition over allm values in the range
2usu<m<usu.

The late-time behavior of ans.0 field along the EH of
ld

the Kerr black hole displays two important differences b
tween the axially symmetric and nonaxially symmet
modes. First, the modesmÞ0 oscillate along the horizon’s
generators according toeimV1v, whereas the modem50
decays monotonically. Second, the modesmÞ0 ~with umu
<s) decay like v22s23, whereas the modem50 decays
along the EH likev22s24. ~The first difference applies als
for s<0 fields, but the second one is special tos.0.! These
two differences lead to an interesting consequence: Theover-
all s.0 late-time field oscillates along the generators of
Kerr EH ~because the non-oscillatory modem50 decays
faster than the oscillatory modesmÞ0). On the other hand
5-13
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D60 124005
for s,0 fields the overall late-time tail at the Kerr EH is
superposition of oscillatorymÞ0 tails and a monotonicm
50 tail ~which decays at the same rate!.

The above difference between thes,0 and thes.0
fields in the power-law indices of the tails along the EH h
never been reported before~as far as we know!, even in the
Schwarzschild case. In Ref.@26# Hod attempts to calculate
these tails in the Kerr case, but his analysis yields no dif
ence between thes,0 ands.0 fields, even form50 ~see,
however, the note added!. In what follows we briefly explain
what seems to be the reason for the incorrect result in R
@26#.

Hod uses the correct asymptotic radial solution forvÞ0
modes near the EH, which form50 reads cv(r )
>C(v)D2se2 ivr

* @see Eq.~39! in @26#9#. He then continues
by assuming thatC(v) is v independent. This assumptio
however, is invalid in the caseam50,s.0, whereC(v)
}v. In the Schwarzschild case~for any m), this result was
demonstrated in the framework of our toy model in Sec. V
@see Eq.~72!#, and can also be verified for the actuals.0
fields by using the Teukolsky-Starobinsky identities@see
Eqs. ~77!, ~78!#. In the Kerr case~for m50), the situation
seems to be the same.10 If the correct form,C(v)}v, is
used in the casem50,s.0, then, Eq.~40! in @26# correctly
yields a tail smaller by 1/v than thes,0 tail.

The asymptotic behavior of the various physical fie
along the EH is important for understanding the dynamics
these fieldsinsidethe black hole: One can naturally view th
field value at the EH as initial data for the black-hole’s in
rior. ~This is most naturally implemented within the fram
work of the characteristic initial-value formulation.! Of spe-
cial importance is the case of gravitational perturbationss
562) of the Kerr background. In this case, evolving t
perturbation from the EH to the future, determines the gra
tational field~and hence the spacetime geometry! inside the
black hole, up to the inner horizon. The infinite blue-shift
the gravitational perturbations leads to a curvature singu
ity at the inner horizon@3#. Knowing the late-time behavio
of the perturbation along the Kerr EH enables one to ana
in detail the structure of this singularity@39#.

Note added. After this paper was submitted, Hod pr
sented the correct result fors.0 fields ~the one derived in
Sec. IX above!, in a recent manuscript@28#.

9Note that in @26# a different dependent field variable is use
which is Ds/2 times the Newman-Penrose fields that we use in
present paper.

10As was shown in Sec. IX, form50,s.0 ~in Kerr! the regular
solution switches fromcb to ca asv vanishes~just like for s.0 in
the Schwarzschild case!. This switching seems to indicate the va
ishing of C(v) asv→0, as discussed in Sec. VIII.@Note that for
mÞ0,s.0, the regular solution iscb for bothv50 andvÞ0 ~we
are only interested here in smallv values nearv50, so we can
now assumev2mV1Þ0), indicating that in this caseC(v) is
non-vanishing asv→0. The same holds fors,0 ~and anym).#
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APPENDIX: DERIVATION OF Cs>0 FROM Cs<0 USING
THE TEUKOLSKY-STAROBINSKY IDENTITIES

In this appendix we obtain the asymptotic form ofCs.0

at the EH of a Schwarzschild BH from that ofCs,0, using
the Starobinsky-Teukolsky identities. By this we shall r
cover Eq.~47!, and show that the leading-order coefficie
c1

1 does not vanish.~This was already verified in Sec. VI b
a direct calculation ofCs.0 from the field equation fors
.0.!

The Teukolsky-Starobinsky identities@40# relate the per-
turbation fields Cs.0 and Cs,0. In the case of the
Schwarzschild background, these identities take the form

~as2 ivbs] t!cv
s ~r !5D 0

2s@cv
2s~r !# ~s.0!, ~A1!

where cv
s (r ) is the radial Fourier mode introduced in E

~56!, as is a non-vanishing constant,bs is a constant which
vanishes fors51 but not fors52, andD0 is a differential
operator given by

D0~r ![] r2 ivr 2D21. ~A2!

~There also is an analogous identity for transforming fro
s.0 to s,0.! If we now apply the inverse Fourier transform
to Eq. ~A1!, we obtain for the time domain function
cslm(r ,t) @the one introduced in Eq.~11!#

~as1bs] t!c
slm5D̂s@c2s,lm# ~s.0!, ~A3!

whereD̂s is the differential operator

D̂s~r ,t ![~] r1r 2D21] t!
2s5~2r 2D21]v!2s. ~A4!

Here, thev derivative is taken with fixedu, and thet deriva-
tive is taken with fixedr.

Before making use of this identity to study the late-tim
tails, let us briefly discuss its application to the static so
tions. In the static case, Eq.~A3! reduces to

asc
slm5~] r !

2sc2s,lm ~s.0, static!. ~A5!

Consider first the application of this identity to the regu
static solution f r

2 ~namely, we takes.0 and c2s,lm

5f r
2). Sincef r

2 is a polynomial inr, the right-hand side
must be a polynomial too. Since the outcome must be a s
solution fors.0, it must be the polynomial static solution
i.e., f r

1 ~up to some constant!. This confirms our previous
conclusion, namely, that fors.0 the regular static solution
is f r

1 and notf ir
1 ~i.e., the one proportional toD0 and not to

D2s).
Next, consider the application of the identity~A5! to the

other, irregular, static solutionf ir
2 . When the differential

operator (] r)
2s acts on the logarithmic-free terms in th

right-hand side of Eq.~33! ~2nd row!, it yields a regular
polynomial, as before. However, when applied to the log
rithmic term, it yields two types of terms:~i! logarithmic
terms, proportional toD0—these are obtained if the deriva
tive operator never acts on the factor ln(z). ~ii ! Non-
logarithmic terms proportional to negative~as well as posi-

e
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tive! powers ofD: These terms are obtained when one of
operators] r acts on the factor ln(z). The most dominant
negative power is obtained when] r acts on ln(z) on its usu
11 operation, which yields a contribution proportional
D2s ~all other contribution are of less negative powers
D). One can identify the terms~i! and ~ii ! with the second
and first terms, respectively, in the 1st row on the right-ha
side of Eq.~33!. Note the crucial role played by the logarith
mic term in f ir

2 ~despite the fact that it only appears in
sub-dominant term proportional toD usu): Without this loga-
rithmic term, the operation in Eq.~A5! would have yielded a
perfectly smooth function ofr, proportional toD0.

We shall now apply the~time-domain! Teukolsky-
Starobinsky identity~A3! to thes,0 late-time field~44!. For
the consistency of the notation, we shall assume thats.0 @as
dictated by the notation of Eq.~A3!#, and therefore re-write
Eq. ~44! as

c2s,lm~ t,r !>c0
2f r

2~r !v22l 23 ~s.0!. ~A6!

Applying the differential operatorD̂s to the right-hand side
of Eq. ~A6!, we obtain three types of terms:

~i! a term in which the derivative operator]v never acts
on v22l 23,

~ii ! a term in which the derivative operator]v acts on
v22l 23 once, and

~iii ! terms in which the derivative operator]v acts on
v22l 23 more than once.

Consider first the term~i!. As was discussed above, th
operatorD̂s transformsf r

2 into f r
1 . Hence the term~i! is

nothing but

c0
2v22l 23D̂s~f r

2!5const3v22l 23
•f r

1 ~A7!

~with a non-vanishing constant!.
The term ~ii ! is proportional tov22l 24. We must keep

this term, however, because its radial function will appea
diverges at the EH@whereas the radial function in the ter
~i! is regular#. The regular static solutionf r

2 is, at the lead-
ing order, proportional toDs ~recall that nows.0). The
most divergent contribution is obtained when the differen
operator]v acts onv22l 23 on its usu11 application~with the
other contributions smaller by factors ofD). This contribu-
tion yields

]v~v22l 23!~] r !
s21@2r 2D21~] r !

s~Ds!#

>@2~2l 13!~21!ss! ~s21!! ~2M !2s11#

3D2sv22l 24@11O~D!#. ~A8!

~Recall that when acted on a purely radial functio
2r 2D21]v5r 2D21] r* 5] r .)

The terms~iii ! decay asv22l 25 or faster. The radial func-
tions involved in these terms do not diverge faster thanD2s

~in fact, they diverge even slower!. Therefore, these term
may be neglected. We find that
12400
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D̂s~c2s,lm!>~ i !1~ i i !5~ c̃0v22l 231 c̃1D2sv22l 24!

3@11O~D!1O~1/v !#, ~A9!

where both constantsc̃0 ,c̃1 are nonvanishing and propor
tional to c0

2 .

So far we considered the contribution toD̂s(c
2s,lm) from

the term ofc2s,lm proportional tov22l 23, which is given in
Eq. ~A6!. This leading-order term corresponds to the te
k50 in Eq. ~13!. We now consider the contribution of th
k.0 terms. From Eq.~40! we learn that fors,0 all func-
tions Fk

slm are smooth functions ofr, which vanish at least
like D usu at the EH. One can now easily analyze the con
bution of each termk.0 in the same way the dominantk
50 contribution was analyzed above. Again one obta
contributions which are analogous to the terms~i!, ~ii !, or
~iii ! below, except that these contributions are now mu
plied by an extra factorv2k. The contributions from allk
.0 terms ofc2s,lm can therefore be neglected, and we a
left with Eq. ~A9!.

OnceD̂s(c
2s,lm) is known, we can calculatecslm via Eq.

~A3!. For s51, the coefficient bs vanishes, socslm

5D̂s(c
2s,lm)/as . For s52, the left-hand side of Eq.~A3!

includes the derivative operator] t . To extractcslm in this
case, we apply the differential operatoras1bs] t to the right-
hand side of Eq.~13! ~recalling] t→]v), and solve forFk

slm

term by term by matching the powers of 1/v to Eq.~A9!. For
k50, this matching yields

asFk50
slm 5 c̃01O~D!. ~A10!

For k51 we obtain

asFk51
slm 2~2l 13!bsFk50

slm 5 c̃1D2s@11O~D!#, ~A11!

which, in view of Eq.~A10!, we simply write as

asFk51
slm 5 c̃1D2s@11O~D!#. ~A12!

We thus obtain

cslm5~c0
1v22l 231c1

1D2sv22l 24!@11O~D!1O~1/v !#

~s.0!, ~A13!

with c0,1
1 [ c̃0,1/as .

Thus, relying on the late-time behavior~44! for s,0, and
using the Teukolsky-Starobinsky identities, we have rec
ered Eq.~47! for s.0—with non-vanishing coefficientsc0

1

andc1
1 .
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