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Binary black-hole problem at the third post-Newtonian approximation in the orbital motion:
Static part

Piotr Jaranowski*
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Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist solutions of the time-symmetric
two-black-hole initial value problem are derived. The static Hamiltonians related to the expanded solutions,
after identifying the bare masses in both solutions, are found to differ from each other at the third post-
Newtonian approximation. By shifting the position variables of the black holes the post-Newtonian expansions
of the three metrics can be made to coincide up to the fifth post-Newtonian order resulting in identical static
Hamiltonians up the third post-Newtonian approximation. The calculations shed light on previously performed
binary point-mass calculations at the third post-Newtonian approximation.@S0556-2821~99!01922-0#
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I. INTRODUCTION AND SUMMARY

In a recent paper by the authors@1# the claim was put
forward that at the third post-Newtonian~3PN! approxima-
tion of general relativity point-mass models for binary sy
tems have to be replaced by black-hole models to bec
unique. To confirm the claim that binary point-mass mod
are incomplete at the 3PN approximation, in the present
per the Brill-Lindquist~BL! @2# and Misner-Lindquist~ML !
@3,4# solutions of the time-symmetric initial value proble
for binary black holes are expanded into post-Newtonian
ries and post-Newtonian Hamiltonians related to these
pansions are calculated.

The BL and ML solutions are known to differ from eac
other topologically as well as geometrically@5,6#. The inter-
esting question therefore arises if at the 3PN order of
proximation in the relative motion differences show up. T
remarkable outcome of our calculations from Sec. II is t
the two solutions have different Hamiltonians starting at
3PN order, but also that these Hamiltonians can be mad
coincide by shifting the centers of the black holes. Especi
interesting shifts are those where the two black holes of
ML solution obtain vanishing dipole moments so as to p
sibly coincide with the monopolar black-hole potentials
the BL solution to higher orders.

It is evident that at the 3PN order of approximation poi
mass models in many-body systems are no longer applica
In Sec. III we perform static~i.e., with linear momenta of the
bodies and transverse-traceless part of the three metric
equal to zero! binary point-mass calculations using differe
regularization methods which lead to different metric coe
cients and Hamiltonians, i.e., we end up with a static po
mass ambiguity. Section IV is devoted to some consiste
calculations for the regularization procedures of Sec. III a
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to the comparison with previous results. Some details of
calculations are given in two appendixes.

Although it holds that through the postulate of vanishi
black-hole dipole moments in isotropic coordinates a uniq
static Hamiltonian can be obtained at the 3PN order of
proximation, the problem of finding a similar unique tot
Hamiltonian is more complicated because the point-m
ambiguity detected in the previous paper@1# is a dynamical
one which includes the momenta of the objects as well as
radiation degrees of freedom of the gravitational fie
~transverse-traceless part of the three metric!. This ambiguity
lies far beyond any known exact or approximate solutions
the Einstein field equations and thus, it cannot be resolve
a way the BL and ML solutions for the constraint equatio
allow for a clear identification of the ambiguous static co
tributions. The static ambiguity has not been mentioned
the paper@1#.

We use units in which 16pG5c51, whereG is the New-
tonian gravitational constant andc the velocity of light. We
employ the following notation:x5(xi)( i 51,2,3) denotes a
point in the three-dimensional Euclidean space endow
with a standard Euclidean metric and a scalar product~de-
noted by a dot!. Letters a and b are body labels (a,b
51,2), soxa denotes the position of theath body, andma
denotes its mass parameter. We also defineraªx2xa , r a
ªurau, naªra /r a ; and for aÞb, rabªxa2xb , r ab
ªurabu, nabªrab /r ab ; u•u stands here for the Euclidea
length of a vector. Indices with round brackets, like inf (2) ,
give the order of the object in inverse powers of the veloc
of light, in this case, 1/c2. We abbreviated(x2xa) by da .

II. PN EXPANDED BRILL-LINDQUIST
AND MISNER-LINDQUIST SOLUTIONS

In the static case, as defined above, the three metric
be put into conformally flat form@cf. Eq. ~3! in @1# #

gi j 5S 11
1

8
f D 4

d i j . ~1!
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We use the representation of the BL and ML solutions
given in Ref.@6#. For the BL solution the functionf from
Eq. ~1! equals@cf. Eq. ~3! in @6##

fBL58S a1

r 1
1

a2

r 2
D . ~2!

Here the positive parametersa1 anda2 can be expressed i
terms of the bare massesm1 andm2 of the black holes and
the coordinate distancer 12 between them. The relations a
given in Appendix A. The ML solution is described by th
function @cf. Eq. ~4! in @6# #

fML58S a

r 1
1

b

r 2
D18(

n52

` S an

ux2dnu
1

bn

ux2enu D , ~3!

wherex1 in r 15ux2x1u is the position of the center of th
black hole 1 of radiusa andx2 in r 25ux2x2u is the position
of the center of the black hole 2 of radiusb, relative to a
given origin in the flat space;dn(n>2) are the positions o
the image poles of black hole 1,en(n>2) are the positions
of the image poles of black hole 2,an andbn(n>2) are the
corresponding weights. For the ML solution the choice of
bare masses is not as obvious as in the case of the BL s
tion @6#. We use the definition of the bare masses introdu
by Lindquist in @4#. Then the solution~3! can be iteratively
expressed in terms of the bare massesm1 , m2 and the vec-
tor r12 connecting the centers of the black holes, cf. App
dix B. In the following we identify the bare masses of bo
solutions.

The post-Newtonian expansions of the functionsfBL and
fML can be written as follows

fBL5f (2)
BL 1f (4)

BL 1f (6)
BL 1f (8)

BL 1f (10)
BL 1OS 1

c12D , ~4!

fML5f (2)
ML1f (4)

ML1f (6)
ML1f (8)

ML1f (10)
ML 1OS 1

c12D , ~5!

wheref (n) are functions of (n/2)PN order, as they belong t
the three metric. The details of the expansions are give
Appendixes A and B. The results read

f (2)
BL 5f (2)

ML5
1

4p S m1

r 1
1

m2

r 2
D , ~6!

f (4)
BL 5f (4)

ML52
2

~16p!2

m1m2

r 12
S 1

r 1
1

1

r 2
D , ~7!

f (6)
BL 5f (6)

ML5
1

~16p!3
m1m2~m11m2!

1

r 12
2 S 1

r 1
1

1

r 2
D , ~8!
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f (8)
BL 52

1

2~16p!4
m1m2~m1

213m1m21m2
2!

3
1

r 12
3 S 1

r 1
1

1

r 2
D , ~9!

f (10)
BL 5

1

4~16p!5
m1m2~m11m2!~m1

215m1m21m2
2!

3
1

r 12
4 S 1

r 1
1

1

r 2
D , ~10!

f (8)
ML5f (8)

BL 1
1

2~16p!4

m1m2

r 12
2 S m2

2 n2•n12

r 2
2

2m1
2 n1•n12

r 1
2 D ,

~11!

f (10)
ML 5f (10)

BL 1
1

4~16p!5

m1m2

r 12
3 Fm1

2~m116m2!
n1•n12

r 1
2

2m2
2~m216m1!

n2•n12

r 2
2

2m1m2~m11m2!

3
1

r 12
S 1

r 1
1

1

r 2
D G . ~12!

The equations~6!–~12! show that the ML solution at the
4PN order of approximation attributes a dipole moment
each black hole whereas the BL solution, as it is alrea
evident from the exact expression~2!, shows monopoles
only. In shifting the centers of the black holes one can
range that also in case of the ML solution the dipole m
ments do vanish. To show this let us introduce

f<5PN
BL ~x;x1 ,x2!:5f (2)

BL 1f (4)
BL 1f (6)

BL 1f (8)
BL 1f (10)

BL ,
~13!

f<5PN
ML ~x;x1 ,x2!:5f (2)

ML1f (4)
ML1f (6)

ML1f (8)
ML1f (10)

ML .
~14!

Then the shifted ML solution can be defined as

f<5PN
ML shifted~x;x1 ,x2!ªf<5PN

ML ~x;x11ar12,x21br21!,
~15!

wherea andb are some dimensionless parameters. We h
found that for

a5
1

~16p!3

m1
2m2

8r 12
3

2
1

~16p!4

m1
2~m1m215m2

2!

16r 12
4

, ~16!

b5
1

~16p!3

m1m2
2

8r 12
3

2
1

~16p!4

m2
2~m1m215m1

2!

16r 12
4

, ~17!

the shifted ML solution coincides with the BL solution up
the 5PN order of approximation:
3-2
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f<5PN
ML shifted~x;x1 ,x2!5f<5PN

BL ~x;x1 ,x2!1OS 1

c12D . ~18!

The Hamiltonian we calculate by means of formula

H52 lim
R→`

R
S(0,R)

ds if ,i , ~19!

whereS(0,R) is a sphere of radiusR centered at the origin o
the coordinate system. Making use of Eqs.~2! and ~3! we
obtain that the BL and ML solutions lead to the Hamilt
nians

HBL532p~a11a2!, ~20!

HML532p~a1b!132p (
n52

`

~an1bn!. ~21!

Using Eqs.~20! and ~21! @or Eqs.~6!–~12! together with
Eq. ~19!# we calculate the static Hamiltonian up to the 3P
order of approximation@notice: thenPN Hamiltonian is de-
termined by the (n12)PN three metric#. We obtain, drop-
ping the total massm11m2 contribution ~in the reduced
variables@7#!

Ĥ<3PN
BL 52 lim

R→`
R

S(0,R)
ds i~f<5PN

BL ! ,i

52
1

r
1

1

2r 2
2

1

4
~11n!

1

r 3
1

1

8
~113n!

1

r 4
,

~22!

Ĥ<3PN
ML 52 lim

R→`
R

S(0,R)
ds i~f<5PN

ML ! ,i

52
1

r
1

1

2r 2
2

1

4
~11n!

1

r 3
1

1

8
~112n!

1

r 4
.

~23!

Obviously, both 3PN Hamiltonians are different. The diffe
ence vanishes, however, if in the case of the ML solution
shifted solution for the potential functionf is used in the
calculation of the Hamiltonian. Therefore, the postulate
vanishing black-hole dipole moments in isotropic coor
nates yields a unique static 3PN Hamiltonian for bina
black holes. The condition of vanishing dipole momen
needs the metric coefficients; it cannot be formulated on
Hamiltonian level alone.

III. BINARY POINT-MASS CALCULATIONS

In this section we show the results of the static bina
point-mass calculations. In the static case the Hamilton
constraint equation for the two-body point-mass system
the canonical formalism of Arnowitt-Deser-Misner~ADM !
reads
12400
e

f
-

s
e

y
n
n

S 11
1

8
f DDf52(

a
mada ~24!

~for binary systems all sums run overa51,2). Equation~24!
yields the following formal expansion

Df52S 11
1

8
f D 21

(
a

mada

52S (
a

madaD (
n50

` S 2
1

8
f D n

. ~25!

Using Eq.~25! we obtain the Hamiltonian constraint equ
tions valid at individual orders in 1/c. They read

Df (2)52(
a

mada , ~26!

Df (4)5
1

8
f (2)(

a
mada , ~27!

Df (6)5S 2
1

64
f (2)

2 1
1

8
f (4)D(

a
mada , ~28!

Df (8)5S 1

512
f (2)

3 2
1

32
f (2)f (4)1

1

8
f (6)D(

a
mada ,

~29!

Df (10)5S 2
1

4096
f (2)

4 1
3

512
f (2)

2 f (4)2
1

64
f (4)

2

2
1

32
f (2)f (6)1

1

8
f (8)D(

a
mada . ~30!

All Poisson equations~26!–~30! are of the form

Df5(
a

f ~x!da , ~31!

where the functionf is usually singular atx5xa . One can
propose three different ways of solving equations of ty
~31!. The first two ways are based on the following sequen
of equalities:

f5D21S (
a

f ~x!daD 5D21S (
a

f reg~xa!daD
5(

a
f reg~xa!D21da52

1

4p (
a

f reg~xa!
1

r a
, ~32!

where f reg(xa) is the regularized value of the functionf at
x5xa , defined by means of the Hadamard’s ‘‘partie finie
procedure@8#. The difference between the two first metho
relies on different evaluating the regular value of the pro
ucts of singular functions. In the first method we use

„f 1~x! f 2~x!…da5 f 1reg~xa! f 2reg~xa!da , ~33!
3-3
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whereas in the second method instead of the rule~33! we
apply

„f 1~x! f 2~x!…da5~ f 1f 2!reg~xa!da . ~34!

For the developments in the book by Infeld and Pleban´ski
@9#, it was crucial that the both regularization procedu
coincided, i.e., (f 1f 2)reg5 f 1regf 2reg ~‘‘tweedling of prod-
ucts’’!. In the third method we regularize the Poisson in
gral rather than the source function:

f52
1

4p (
a
E d3x8

f ~x8!d~x82xa!

ux82xu

52
1

4p (
a

S f ~x8!

ux82xu
D

reg

~x85xa!. ~35!

Let us denote the results of applying the regularizat
method based on Eqs.~32! and~33! by primes, the results o
the method based on Eqs.~32! and ~34! by double primes,
and the results of the method based on Eq.~35! by triple
primes. It turns out that up to 1/c6 the results of the three
methods coincide and, moreover, they are identical with
results of the expansions of the BL and ML solutions:

f (n)8 5f (n)9 5f (n)- 5f (n)
BL 5f (n)

ML , n52,4,6. ~36!

The results of the first method coincide with the expansion
the BL solution, what we have checked up to the 5PN ord

f (n)8 5f (n)
BL , n52,4,6,8,10. ~37!

The functionf (8)9 calculated by means of the second meth
coincides withf (8)8 ~andf (8)

BL ), and the functionf (10)9 reads

f (10)9 5f (10)
BL 1

1

2~16p!5

m1
2m2

2

r 12
4 S m1

r 1
1

m2

r 2
D . ~38!

The functionsf (8)- andf (10)- are equal to

f (8)- 5f (8)
BL 1

1

2~16p!4

m1m2

r 12
2 S m1

2 n1•n12

r 1
2

2m2
2 n2•n12

r 2
2 D ,

~39!

f (10)- 5f (10)
BL 1

1

4~16p!5

m1m2

r 12
3 H m2

2~m216m1!
n2•n12

r 2
2

2m1
2~m116m2!

n1•n12

r 1
2

1
m1m2

r 12
F ~2m11m2!

1

r 1

1~2m21m1!
1

r 2
G J . ~40!

Notice, the mass parametersm1 and m2 in Eqs. ~36!–~40!
denote total rest masses of infinitely separated bo
whereas the mass parameters in Eqs.~24!–~30! denote some
formal rest masses only; the former results from the latter
12400
s

-

n

e
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our regularization procedures. The total rest-mass parame
we identify with the bare masses of the BL and ML sol
tions.

By means of Eq.~19! we calculate the static Hamiltonia
up to the 3PN order applying the functionsf (n)8 , f (n)9 , and
f (n)- . The results are~dropping the total massm11m2 con-
tribution!

Ĥ8<3PN
static 52 lim

R→`
R

S(0,R)
ds i~f<5PN8 ! ,i

52
1

r
1

1

2r 2
2

1

4
~11n!

1

r 3
1

1

8
~113n!

1

r 4
,

~41!

Ĥ9<3PN
static 52 lim

R→`
R

S(0,R)
ds i~f<5PN9 ! ,i

52
1

r
1

1

2r 2
2

1

4
~11n!

1

r 3
1

1

8
~114n!

1

r 4
,

~42!

Ĥ-<3PN
static 52 lim

R→`
R

S(0,R)
ds i~f<5PN- ! ,i

52
1

r
1

1

2r 2
2

1

4
~11n!

1

r 3
1

1

8 S 11
9

2
n D 1

r 4
.

~43!

Obviously, at the 3PN order of approximation, the thr
Hamiltonians differ from each other and from the Ham
tonian ~23! obtained from the expanded ML solution. Th
Hamiltonian ~41! coincides with the Hamiltonian~22! ob-
tained using the PN expansion of the BL solution, what o
viously follows from Eq.~37!.

IV. CONSISTENCY CALCULATIONS AND COMPARISON
WITH THE PREVIOUS RESULTS

In the regionVªB(0,R)\@B(x1 ,«1)øB(x2 ,«2)# @where
B(xa ,«a)(a51,2) is a ball of radius«a around the position
xa of theath body andB(0,R) is a ball of radiusR centered
at the origin of the coordinate system# the right-hand sides o
the Eqs.~26!–~30! vanish, so the functionsf (n) fulfil the
Laplace equation in this region. Applying Gauss’s theor
we thus obtain

05E
V

d3xDf (n)5 R
]B(x1 ,«1)

ds if (n),i1 R
]B(x2 ,«2)

ds if (n),i

1 R
]B(0,R)

ds if (n),i , ~44!

with the normal vectors pointing inwards the spher
]B(xa ,«a) and outwards the sphere]B(0,R). From Eq.~44!
it follows that
3-4
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lim
R→`

R
]B(0,R)

ds if (n),i52 lim
«1→0

R
]B(x1 ,«1)

ds if (n),i

2 lim
«2→0

R
]B(x2 ,«2)

ds if (n),i ,

~45!

so the HamiltonianHnPN at thenPN order, according to Eq
~19!, can be calulated as

HnPN52 lim
«1→0

R
]B(x1 ,«1)

ds if (2n14),i

2 lim
«2→0

R
]B(x2 ,«2)

ds if (2n14),i . ~46!

We have used Eq.~46! and the functionsf (n)8 , f (n)9 , and
f (n)- , to calculate the static Hamiltonian up to the 3PN ord
The integrals over the spheres]B(xa ,«a) diverge as«a
→0, so to calculate them we have used the Hadamard’s
cedure@8#. The results coincide with those given by Eq
~41!–~43!.

ThenPN Hamiltonian can also be written in the form of
volume integral

HnPN52E d3x Df (2n14) , ~47!

so still another way of calculating it relies on direct integr
tion of the~minus! right-hand sides of Eqs.~26!–~30!. To do
this one must use the Hadamard’s regularization@8# together
with the rule ~33! or ~34!. For the functionsf (n)8 we have
used the rule~33! ~as in deriving the functionsf (n)8 ),
whereas for the functionsf (n)9 andf (n)- we have applied the
rule ~34!. The results coincide again with those given by E
~41!–~43!.

In the paper@1# we applied the ‘‘double prime’’ regular
ization procedure and had thus obtained the Hamilton
~42!; see Sec. VI in Ref.@1#. The same result we had ob
tained from the staticn-body Hamiltonian of Ref.@10# by
applying some expansion-and-limiting procedure. If we ta
the n-body static Hamiltonian of@10# but specialize it to the
two-body case adapting only those terms which are dire
finite, we get the BL result of Eq.~22!. It corresponds to our
‘‘single prime’’ regularization procedure described above
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APPENDIX A: BRILL-LINDQUIST SOLUTION

We use the representation of the Brill-Lindquist~BL! so-
lution taken from Appendix A of@6#. The BL solution can be
written in the form@cf. Eq. ~3! in @6# #
12400
.

o-
.

-

.

n

e

ly

.
ft

fBL58S a1

r 1
1

a2

r 2
D . ~A1!

The bare massesm1 andm2 of the black holes depend on th
parametersa1 , a2 and the coordinate distancer 12 between
the black holes@cf. Eqs.~A7! and ~A8! in @6# #:

m1532pa1S 11
a2

r 12
D , m2532pa2S 11

a1

r 12
D . ~A2!

The unique positive solutions of Eqs.~A2! for a1 and a2
read

a152
1

4 S 2r 121
m22m1

16p D
1

1

4
r 12A41

m11m2

4pr 12
1S m12m2

16pr 12
D 2

, ~A3!

a252
1

4 S 2r 121
m12m2

16p D
1

1

4
r 12A41

m11m2

4pr 12
1S m12m2

16pr 12
D 2

. ~A4!

We expand the right-hand sides of Eqs.~A3! and~A4! in
powers of 1/c taking into account that the massesm1 andm2
can be regarded as being of order 1/c2. The results we sub-
stitute into Eq.~A1! to obtain the post-Newtonian expansio
of the function fBL. Such obtained functionsf (n)

BL for n
52,4,6,8,10 are given in Eqs.~6!, ~7!, ~8!, ~9!, and ~10!,
respectively.

APPENDIX B: MISNER-LINDQUIST SOLUTION

The form of the Misner-Lindquist~ML ! solution we use is
taken from Appendix B of@6#. The ML solution we write in
the form @cf. Eq. ~4! in @6# #

fML58S a

r 1
1

b

r 2
D18(

n52

` S an

ux2dnu
1

bn

ux2enu D , ~B1!

where r a5ux2xau (a51,2) andxa is the position of the
center of theath black hole relative to a given origin in th
flat space,a and b are the radii of the black hole 1 and 2
respectively;dn(n>2) are the positions of the image pole
of black hole 1,en(n>2) are the positions of the imag
poles of black hole 2,an andbn(n>2) are the corresponding
weights.

The black hole 1 together with its odd images and
even images of the black hole 2 are located on the positivz
axis, whereas the black hole 2 together with its odd ima
and the even images of the black hole 1 lie on the negatiz
axis. The relative distancesux2dnu and ux2enu entering Eq.
~B1! can be expressed by radiia andb of the black holes and
their relative position vectorr12 as follows~heren>2)
3-5
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ux2dnu5Ar 1
21Dn

212r 1Dn~n1•n12! for n odd,

ux2dnu5Ar 2
21Dn8

222r 2Dn8~n2•n12! for n even,
~B2!

ux2enu5Ar 2
21En8

222r 2En8~n2•n12! for n odd,

ux2enu5Ar 1
21En

212r 1En~n1•n12! for n even,

where

Dn5r 12S 12
sinh@~n11!m0#

sinh@~n11!m0#1~a/b!sinh@~n21!m0# D
for n odd,

Dn85r 12S 12
ab sinh@~n12!m0#1a2sinhnm0

r 12
2 sinhnm0

D
for n even,

~B3!

En5r 12S 12
ab sinh@~n12!m0#1b2sinhnm0

r 12
2 sinhnm0

D
for n even,

En85r 12S 12
sinh@~n11!m0#

sinh@~n11!m0#1~b/a!sinh@~n21!m0# D
for n odd.
12400
The quantitym0 entering Eqs.~B3! is given by

cosh 2m05
r 12

2 2a22b2

2ab
. ~B4!

The weightsan andbn(n>2) of the image poles depend o
the radii a and b of the black holes and the distancer 12
between them:

an5
ab sinh 2m0

r 12sinhnm0
for n even,

an5
ab sinh 2m0

b sinh@~n11!m0#1a sinh@~n21!m0#
for n odd,

~B5!

bn5
ab sinh 2m0

r 12sinhnm0
for n even,

bn5
ab sinh 2m0

a sinh@~n11!m0#1b sinh@~n21!m0#
for n odd.

To obtain the post-Newtonian expansion of the ML so
tion we expand the right-hand side of Eq.~B1! in powers of
1/c taking into account that the radiia and b are of order
1/c2. To do this we use Eqs.~B2!–~B5!. We have found that
only the first five terms from the sum on the right-hand s
of Eq. ~B1! contributes to the 5PN order. The result of th
expansion reads
n,
1

8
fML5

a

r 1
1

b

r 2
1

ab

r 12
S 1

r 1
1

1

r 2
D1

ab

r 12
2 S a

r 1
1

b

r 2
D1

a2b2

r 12
3 S 1

r 1
1

1

r 2
D1

ab

r 12
2 S b2~n2•n12!

r 2
2

2
a2~n1•n12!

r 1
2 D

1
a2b2~a1b!

r 12
4 S 1

r 1
1

1

r 2
D1

ab

r 12
3 S b3~n2•n12!

r 2
2

2
a3~n1•n12!

r 1
2 D 1OS 1

c12D . ~B6!

For the ML solution we use the definition of the bare massesm1 andm2 introduced by Lindquist in@4#. The massesm1 and
m2 depend on the radiia andb of the black holes and the distancer 12 between the centers of the black holes@cf. Eqs.~B19!
and ~B20! in Ref. @6# #:

m15
32pab

r 12
sinh 2m0(

n51

`

nH 2

sinh 2nm0
1

1

sinh~2nm02m2!
1

1

sinh~2nm01m2!J , ~B7!

m25
32pab

r 12
sinh 2m0(

n51

`

nH 2

sinh 2nm0
1

1

sinh@2~n11!m02m2#
1

1

sinh@2~n21!m02m2#J , ~B8!

wherem2 is given by

sinhm25
a

r 12
sinh 2m0 . ~B9!

We have iteratively solved Eqs.~B7! and~B8! with respect toa andb. The result, valid up to the 5PN order of approximatio
reads
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a5
1

16p

m1

2
2

1

~16p!2

m1m2

2r 12
1

1

~16p!3

m1m2~2m113m2!

8r 12
2

2
1

~16p!4

m1m2~m1
214m1m212m2

2!

8r 12
3

1
1

~16p!5

m1m2~2m1
3114m1

2m2118m1m2
215m2

3!

32r 12
4

1OS 1

c12D , ~B10!

the equation forb can be obtained from the above one by replacementsm1→m2 andm2→m1 .
To obtain the PN expansion of the ML solution we substitute Eqs.~B10! into Eq. ~B6!. Such obtained functionsf (n)

ML for
n52,4,6,8,10 are given in Eqs.~6!, ~7!, ~8!, ~11!, and~12!, respectively.
re

r
d

n.

-

n,
-
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