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Binary black-hole problem at the third post-Newtonian approximation in the orbital motion:
Static part
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Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist solutions of the time-symmetric
two-black-hole initial value problem are derived. The static Hamiltonians related to the expanded solutions,
after identifying the bare masses in both solutions, are found to differ from each other at the third post-
Newtonian approximation. By shifting the position variables of the black holes the post-Newtonian expansions
of the three metrics can be made to coincide up to the fifth post-Newtonian order resulting in identical static
Hamiltonians up the third post-Newtonian approximation. The calculations shed light on previously performed
binary point-mass calculations at the third post-Newtonian approximd&h56-282(199)01922-¢

PACS numbes): 04.25.Nx, 04.70.Bw, 04.20.Ex, 04.20.Fy

I. INTRODUCTION AND SUMMARY to the comparison with previous results. Some details of the
calculations are given in two appendixes.

In a recent paper by the authdr| the claim was put Although it holds that through the postulate of vanishing
forward that at the third post-NewtonidBPN) approxima-  black-hole dipole moments in isotropic coordinates a unique
tion of general relativity point-mass models for binary sys-static Hamiltonian can be obtained at the 3PN order of ap-
tems have to be replaced by black-hole models to becomeroximation, the problem of finding a similar unique total
unique. To confirm the claim that binary point-mass modeldiamiltonian is more complicated because the point-mass
are incomplete at the 3PN approximation, in the present ps2Mbiguity detected in the previous pajét is a dynamical
per the Brill-Lindquist(BL) [2] and Misner-LindquistML) ~ ©N€ which includes the momenta of the objects as well as the

[3,4] solutions of the time-symmetric initial value problem radiation degrees of freedom of the gravitational field

for binary black holes are expanded into post-Newtonian Se(__transverse-traceless part of the three metilibis ambiguity

ries and post-Newtonian Hamiltonians related to these ex.c> far beyond any known exact or approximate solutions of
: P he Einstein field equations and thus, it cannot be resolved in
pansions are calculated.

The BL and ML solutions are known to differ from each a way the BL and ML solutions for the constraint equations

. . . allow for a clear identification of the ambiguous static con-
other topologically as well as geometrically,6]. The inter- i, tions The static ambiguity has not been mentioned in
esting question therefore arises if at the 3PN order of apg,q papef1].
proximation in the relative motion differences show up. The  \ye yse units in which 166G =c= 1, whereG is the New-
remarkable outcome of our calculations from Sec. Il is thakonian gravitational constant andthe velocity of light. We
the two solutions have different Hamiltonians starting at thesmpjoy the following notationx=(x')(i = 1,2,3) denotes a
3PN order, but also that these Hamiltonians can be made tgoint in the three-dimensional Euclidean space endowed
coincide by shifting the centers of the black holes. Especiallywith a standard Euclidean metric and a scalar proddet
interesting shifts are those where the two black holes of th@oted by a dot Lettersa and b are body labels &,b
ML solution obtain vanishing dipole moments so as to pos—=1,2), sox, denotes the position of thath body, andm,
sibly coincide with the monopolar black-hole potentials of denotes its mass parameter. We also definex—x,, I,
the BL solution to higher orders. =|ral, Nna=ralry; and  for a#b, ryp=Xa—Xp, lap

It is evident that at the 3PN order of approximation point-:=|r,.|, N,y:=rap/rap; |-| Stands here for the Euclidean
mass models in many-body systems are no longer applicablfsngth of a vector. Indices with round brackets, likedif, ,
In Sec. Il we perform stati@.e., with linear momenta of the  give the order of the object in inverse powers of the velocity
bodies and transverse-traceless part of the three metric sef light, in this case, ?. We abbreviated(x—x,) by &,.
equal to zerpbinary point-mass calculations using different
regularization methods which lead to different metric coeffi- Il. PN EXPANDED BRILL-LINDQUIST
cients and Hamiltonians, i.e., we end up with a static point- AND MISNER-LINDQUIST SOLUTIONS
mass ambiguity. Section IV is devoted to some consistency
calculations for the regularization procedures of Sec. lll and In the static case, as defined above, the three metric can
be put into conformally flat fornficf. Eq. (3) in [1] ]
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We use the representation of the BL and ML solutions as

1
given in Ref.[6]. For the BL solution the functiob from  ¢fg=— ———— mmy(mZ+3m;m,+m3)
Eq. (1) equals[cf. Eq. (3) in [6]] 2(16m)
« 1 ( 1 N 1 ©
a a - - 1
$B=8 ( +—2>. 2 r3\r I
r I
" . BL 1 2 2
Here the positive parametess and a, can be expressed in ¢ = —smlmz(m1+ m,)(m3+5mym,+ms3)
terms of the bare masses;, andm, of the black holes and 4(16m)
the coordinate distanag, between them. The relations are 1/1 1
given in Appendix A. The ML solution is described by the X—| —+ _), (10)
function[cf. Eq. (4) in [6] ] ri,\r ra
b 1 mlmz( o N2 Ny 5 N1 Ny
ML— n bisy= D) - :
A P *82 et |x—en|>’ @ OO a1, T 30
11
wherex; in ry=|x—x,| is the position of the center of the mym,
black hole 1 of radiug andx, in r,=|x—Xx,| is the position Bls)= dbioy+ L2 m2(m, + 6m2) 12
of the center of the black hole 2 of radilss relative to a 4(16m )5 rfz ra
given origin in the flat spaced,(n=2) are the positions of
the image poles of black hole &,(n=2) are the positions 2- N2
of the image poles of black hole &, andb,(n=2) are the m2(m2+6m1) r2 MyMa(My + M)
corresponding weights. For the ML solution the choice of the
bare masses is not as obvious as in the case of the BL solu- 1/1 1
tion [6]. We use the definition of the bare masses introduced ><r—12 a + E 12

by Lindquist in[4]. Then the solutior(3) can be iteratively
expressed in terms of the bare massgs m, and the vec-
tor r1, connecting the centers of the black holes, cf. Appen-
dix B. In the following we identify the bare masses of both
solutions.

The post-Newtonian expansions of the functigft& and
oMt can be written as follows

The equationg6)—(12) show that the ML solution at the
4PN order of approximation attributes a dipole moment to
each black hole whereas the BL solution, as it is already
evident from the exact expressid@), shows monopoles
only. In shifting the centers of the black holes one can ar-
range that also in case of the ML solution the dipole mo-
ments do vanish. To show this let us introduce

1
$B-= bzt ey T Doyt bigy+ iyt O 12>, (4) PN X1, X2): = izt biay+ bieyt bigy+ bioy 3
1 ¢!I§PN(X;X1!X2):=¢(2) ¢(4) ¢(6) ¢(8) ¢(10)
M= pilyy + Uy Bley T blgy T+ blioyT O 5 (14
Then the shifted ML solution can be defined as
whered,, are functions of (/2) PN order, as they belong to ML shiftedy oy Voo AML iy oo X0+ Br
the three metric. The details of the expansions are given in > " (X% %) 3= d<gpn XXyt al 1z, X B 21)’(15)

Appendixes A and B. The results read
wherea andB are some dimensionless parameters. We have

1(m m found that for
b= b2y = (r_ + r_) : (6)
voe 1 mlmz 1 mi(mym,+5m3) 16
~ (16m)° 8r3, (16m)* 161, '
5L g 2 mm, ( 1 1) @
@~ Pw= T (16m)2 12 \r1 1) . 1 mlm2 1 m3(mym,+5m?) an
(16m)° 8rd, (16m)* 16r1, ’
1 1/1 1 . . - . .
¢>(6) ¢(e) ————mymy(my+ mz) —+—, (8)  the shifted ML solution coincides with the BL solution up to
(16m)° SALERE: the 5PN order of approximation:
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_ 1 1
Mean <06 X1, X0) = E5pN(X; X1 Xp) + O c_lz) - 19 T §¢)A¢: 2 M 4
The Hamiltonian we calculate by means of formula (for binary systems all sums run over1,2). Equation(24)
yields the following formal expansion
H=—lim fﬁ doio;, (19 1 \71
a
whereS(0,R) is a sphere of radiuR centered at the origin of o 1 \n
the coordinate system. Making use of E¢®) and (3) we — _(E ma5a) > (_ _¢) _ (25)
obtain that the BL and ML solutions lead to the Hamilto- a = 8
nians
Using Eq.(25) we obtain the Hamiltonian constraint equa-
HBL=32m(ay+ ay), (20)  tions valid at individual orders in &/ They read
HML =327 (a+b)+327 D (a,+by). 1) Ady= ‘E Mada, (26)
n=2

Using Eqs.(20) and (21) [or Egs.(6)—(12) together with
Eqg. (19)] we calculate the static Hamiltonian up to the 3PN
order of approximatiorinotice: thenPN Hamiltonian is de-
termined by the 1G+2)PN three metrit We obtain, drop- 1, 1
ping the total massn;+m, contribution (in the reduced A¢(6):( TAOM §¢(4))2 My 6a, (28)
variables[7]) 2

1
Aday= 8 d’(z)é M, 35, (27)

R | 1
ABL, = — lim fﬁ doi( % py) Ade)=|512%@~ 32@%@ g e ; Mada,
R J S(OR) (29)
1+ ! l(1+ )1+1(1+3)1 1 3 1
= — — —_——— V) — oy 14 — _ 4 2 2
r o2 4 (3 8 r4 A<l>(10)—( - K%¢(2)+ 5_12¢(2)¢(4)_ a¢(4)
(22 1 1
BELCILON §¢(8)) ; Mg 6y - (30
HMS o= — lim jg doi(p¥5pn)
R /S(OR) All Poisson equation$26)—(30) are of the form
_ 1 1 1
=ity gt stgran o A¢=§ f(X) 84, (3D
(23

where the functiorf is usually singular ak=x,. One can
Obviously, both 3PN Hamiltonians are different. The differ- propose three different ways of solving equations of type
ence vanishes, however, if in the case of the ML solution thé31). The first two ways are based on the following sequence
shifted solution for the potential functios is used in the Of equalities:
calculation of the Hamiltonian. Therefore, the postulate of
vanishing black-hole dipole moments in isotropic coordi- —A-L fx)65. | =A 1 f xS
nates yields a unique static 3PN Hamiltonian for binary ¢ ; (X) % ; redXa) %a
black holes. The condition of vanishing dipole moments 1 1
needs the metric coefficients; it cannot be formulated on the _ -1s _

A ' = f A6, f —, 2

Hamiltonian level alone. g redXa) a é reg(Xa)ra (32

A

IIl. BINARY POINT-MASS CALCULATIONS Wherefreg(xa) is the regularized value of the functidnat
X=X,, defined by means of the Hadamard'’s “partie finie”
In this section we show the results of the static binaryprocedure8]. The difference between the two first methods
point-mass calculations. In the static case the Hamiltoniamelies on different evaluating the regular value of the prod-
constraint equation for the two-body point-mass system inicts of singular functions. In the first method we use
the canonical formalism of Arnowitt-Deser-MisnéADM)

reads (F1()f2(x)) 8= flreg(xa)ereg(Xa) Oas (33
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whereas in the second method instead of the (B& we
apply

(F1()f2(x)) 0a (34

:(flf2)reg(xa)5a-

For the developments in the book by Infeld and Plefian
[9], it was crucial that the both regularization procedure

coincided, i.e., {1f2)reg=f1red2reg (“tweedling of prod-

ucts”). In the third method we regularize the Poisson inte-

P -
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our regularization procedures. The total rest-mass parameters
we identify with the bare masses of the BL and ML solu-
tions.
By means of Eq(19) we calculate the static Hamiltonian
up to the 3PN order applying the functiogs,, , ¢(, , and
7'y . The results arédropping the total mass, +m, con-
tribution)

gral rather than the source function: H'sale = — lim i(o R)dUi(¢%5PN),i
R— )
f(x")o(x"—x
zfsl( : ! —1+1 11+ 1+11+31
X" =X =Tyt 2! V)r—3 gl V)r—4,
1 f(x") , (41
=22 (lx’—xl) (X' =Xg). (35
reg
) ) ) HNS<tatIC _ li % "
Let us denote the results of applying the regularization PN Rlinw SOR) doi(dzsen).
method based on Eg&2) and(33) by primes, the results of
the method based on Eg®82) and (34) by double primes, 1 1 1 1 1
and the results of the method based on EB%) by triple ==t o7 21 V)r—3+ §(1+4V)r—4,
primes. It turns out that up to df the results of the three
methods coincide and, moreover, they are identical with the (42
results of the expansions of the BL and ML solutions:
Cymstatic s o .
d’(n) ¢(n) C”({q) d’(n) d’(n) , n=246. (36 H" Z3pn= R'”;“@ éS(O’R)d‘Tl(d’ssP i
The results of the first method coincide with the expansion of 1 1 1 1 9 \1
the BL solution, what we have checked up to the 5PN order: ==t - Zr(1+ v) -+ g 1+ i
r
1 _ 4BL _
b= Py, N=2,4,68,10. (37 43)

The functiondys, calculat%(ﬂ by means of the second methodgppyiously, at the 3PN order of approximation, the three
coincides withé g (and ¢g)), and the functionp(o) reads  Hamiltonians differ from each other and from the Hamil-
tonian (23) obtained from the expanded ML solution. The
Hamiltonian (41) coincides with the Hamiltoniari22) ob-
tained using the PN expansion of the BL solution, what ob-
viously follows from Eq.(37).

1 mim3
2(16m)° r1,

L @) (39

r. 1

BL
$(10)= P10yt

The functionsg(s and ¢}, are equal to
IV. CONSISTENCY CALCULATIONS AND COMPARISON
,No- nlz) WITH THE PREVIOUS RESULTS

1 m;my ( 5, N1 Ny
1

ORCN 2(16m)* r2, r2 M2 ra In the regionQ:=B(0,R)\[B(x1,&1) UB(X,,85)] [where
(39 B(Xa,e5)(2=1,2) is a ball of radiug, around the position
X, of the ath body andB(0,R) is a ball of radiusR centered
" 1 mm, | n,-Ny,p at the origin of the coordinate systéihe right-hand sides of
b10)= blaoy 21605 13 ma(My+6my)——— the Egs.(26)—(30) vanish, so the functions, fulfil the
(16m)° 1 r2 Laplace equation in this region. Applying Gauss’s theorem
we thus obtain
—m2(my+ 6m2)nl—2n12 LU [(2m1+ m2)i
ri V) r

OZJ’ d3XA ¢y = é doidm,it jg doidmy.i
Q JdB(Xq,€1) dB(Xp,€9)

+ § doidn),is (44)
9B(0,R)
Notice, the mass parametems; and m, in Egs. (36)—(40)
denote total rest masses of infinitely separated bodiewith the normal vectors pointing inwards the spheres
whereas the mass parameters in E84)—(30) denote some JB(X,,e,) and outwards the sphes®(0,R). From Eq.(44)
formal rest masses only; the former results from the latter byt follows that

1
+(2m,+ ml)EH . (40
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— lim é d0i¢(n),i
£1—0 9B(xq,£1)
— lim

i jg doidm),is
£5,—0 B(x2,£2)

(49)

lim

R—®

é do; ¢(n),i =
9B(OR)

so the HamiltoniarH ,p at thenPN order, according to Eq.

(19), can be calulated as

Hppn=— lim fj; doid(an+a),
£1—0 9B(xq,£1)

§ doid(an+ay, -
B(x3,e7)

We have used Eq46) and the functionsp, , ¢(,, and

— lim (46)

g,—0

®(n)» to calculate the static Hamiltonian up to the 3PN order.

The integrals over the sphere®(x,,e,) diverge ase,

—0, so to calculate them we have used the Hadamard’s pro-
cedure[8]. The results coincide with those given by Egs.

(41)—(43.

ThenPN Hamiltonian can also be written in the form of a

volume integral

HnPN:_f d®X A dan+ 4y, (47)

PHYSICAL REVIEW D60 124003

ap @y

4+ —

¢BL:8
r+ ra

(A1)

The bare massen; andm, of the black holes depend on the
parametersy;, a, and the coordinate distance, between
the black holegcf. Eqgs.(A7) and(A8) in [6] ]:

ml = 32’776(1 (AZ)

ar ay
1+ —|, my=327ma,| 1+ —|.
BV} 2

The unique positive solutions of EqeA2) for a; and a;,
read

1 my,—my
“T |2 e
1
+ Zrlz 4+
1 ml_ m2
o= — Z( 2r12+ W)
1 \/ m1+ m2 ml_ m2 2
+ = + +
4r12 4 4’7Tr12 ( 1677!’12
We expand the right-hand sides of E¢a3) and(A4) in

powers of 1¢ taking into account that the massags andm,
can be regarded as being of ordec?1/The results we sub-

m,\?

) . (A3)

m,+m, (ml—

4’7Tr12 167r 12

(A4)

so still another way of calculating it relies on direct integra-stitute into Eq.(A1) to obtain the post-Newtonian expansion

tion of the(minug right-hand sides of Eq$26)—(30). To do
this one must use the Hadamard’s regularizaf®jrtogether
with the rule (33) or (34). For the function&f;(’n) we have
used the rule(33) (as in deriving the functionsp,),
whereas for the functiong(,, and ¢(;,) we have applied the

rule (34). The results coincide again Wlth those given by Egs.

(42)—(43).
In the papef1] we applied the “double prime” regular-

of the function ¢B-. Such obtained functionggy for n
=2,4,6,8,10 are given in Eqg$6), (7), (8), (9), and (10),
respectively.

APPENDIX B: MISNER-LINDQUIST SOLUTION

The form of the Misner-LindquistML ) solution we use is

ization procedure and had thus obtained the Hamiltoniataken from Appendix B of6]. The ML solution we write in
(42); see Sec. VI in Ref[1]. The same result we had ob- the form[cf. Eq. (4) in [6] ]

tained from the stati-body Hamiltonian of Ref[10] by

applying some expansion-and-limiting procedure. If we take

the n-body static Hamiltonian of10] but specialize it to the

two-body case adapting only those terms which are directly

finite, we get the BL result of Eq22). It corresponds to our
“single prime” regularization procedure described above.
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wherer,=|x—X,] (a=1,2) andx, is the position of the
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APPENDIX A: BRILL-LINDQUIST SOLUTION

We use the representation of the Brill-LindquiBt) so-
lution taken from Appendix A of6]. The BL solution can be
written in the form[cf. Eq. (3) in [6]]

weights.

The black hole 1 together with its odd images and the
even images of the black hole 2 are located on the positive
axis, whereas the black hole 2 together with its odd images
and the even images of the black hole 1 lie on the negative
axis. The relative distancéz—d,| and|x—e,| entering Eq.
(B1) can be expressed by radiandb of the black holes and
their relative position vector;, as follows(heren=2)
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|x—dy|=r2+D2+2r,D,(n;-ny,) for n odd, The quantityu, entering Eqs(B3) is given by
2 _ N2 K2
|x—dpy|=\r3+D,?—2r,D/(n;-ny,) for n even, Cosh%zu_ (B4)

2 12 1
X—e,|=\rs+E/ “=2r,E/(n,-n for n odd,
X =+ E, 2En(N2- i) The weightsa, andb,(n=2) of the image poles depend on

_ (2.2 the radiia and b of the black holes and the distance,
X—e,|=~ri+E:+2r,E(ny-n for n even,
[x—enl = Vri+ B +2raEn(ny- nao) between them:

where )
absinh 2u ‘
; a,= ————— for n even,
S PR (L 7NN N P
" sin (n+ 1) o]+ (a/b)sin (n—1) o]
absinh
for n odd, ap=— 2’% for n odd,
bsinf(n+1)ug]+asinf (n—1)ug]
absinH (n+2) 1] +a?sinhn , (BS)
D,’1=r12< 1- il 5 ?MO] Ho _absinh2u, ¢
risinhnug n= —rlzsinhn,uo or n even,
for n even,
absinh
. 2 (B3) b,=— 2'%0 for n odd.
£ ( 1 absinH (n+2) ug]+b“sinhnug asinf (n+21)ug]+bsin (n—1) ue]
n=lig 1= >
rizsinhngg To obtain the post-Newtonian expansion of the ML solu-
for n even, tion we expand the right-hand side of E&1) in powers of
1/c taking into account that the radii and b are of order
( sinff (n+1) uo] ) 1/c2. To do this we use Eq$B2)—(B5). We have found that
Ef=ri 1- < : only the first five terms from the sum on the right-hand side
sinf(n+1 +(b/a)sinf (n—1
InkL( Yol + (ba)sinf( Jisol of Eq. (B1) contributes to the 5PN order. The result of the
for n odd. expansion reads

1 a b ab/1 1\ ab/a b} a%?/1 1\ ab{b%n,-n a%(ny-n
) [ ] i B D . ( 22 1) @ 12 12)
8 v fz2 T\l 2/ i\ T2 ri, \ft 2/ rg, rs ri
212 3 3
a‘b“(a+b)/1 1 ab/ b°(ny-n a‘(ng-n 1
(4 T L2 ( 2 ) a¥ 5 1) +O(—12)- .
r12 rl r2 r12 r2 rl c

For the ML solution we use the definition of the bare massgandm, introduced by Lindquist if4]. The massem; and

m, depend on the rada andb of the black holes and the distancg between the centers of the black holek Eqgs.(B19)
and (B20) in Ref.[6]]:

327ab | . i ( 2 . 1 . 1 -
m,= sin n{ — . . ,
Yo, 2,u0n:1 sinh2npg  sinh(2nuwg—uy)  SiNN(2Nuo+ up)
327ab . i ( . 1 . 1 ] @8
m,= sin n{ — . . ,
2= Ty, M2 M Sinh g SN2+ Do az]  SNH2(n— Do piz]
where u, is given by
. a |
sinhu,=-—sinh 2u,. (B9)
12

We have iteratively solved Eq&B7) and(B8) with respect ta andb. The result, valid up to the 5PN order of approximation,
reads
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1 m 1 mm, 1 mymy(2m;+3m,) 1 mmy(mi+4mm,+2m3)
A= 16w 2 + 2 - 4 3
16w 2 (167)? 212 (16m)° 8r2, (16m) 8ri,
1 mymy(2m3+14m2m,+ 18m;m3+5m3) 1
- 5 Z Ol 5 (B10)
(1677) 32 12 Cc

the equation fob can be obtained from the above one by replacements m, andm,—m; .
To obtain the PN expansion of the ML solution we substitute Eg$0) into Eq. (B6). Such obtained function$?f'1§ for
n=2,4,6,8,10 are given in Eq#6), (7), (8), (11), and(12), respectively.
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