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Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies

Sergei M. Kopeikin* and Gerhard Scha¨fer
FSU Jena, TPI, Max-Wien-Platz 1, D-07743 Jena, Germany
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The Lorentz covariant theory of the propagation of light in the~weak! gravitational fields ofN-body systems
consisting of arbitrarily moving pointlike bodies with constant massesma (a51,2,. . . ,N) is constructed. The
theory is based on the Lie´nard-Wiechert representation of the metric tensor which describes a retarded type
solution of the gravitational field equations. A new approach for integrating the equations of motion of light
particles ~photons! depending on the retarded time argument is invented. Its application in the first post-
Minkowskian approximation, which is linear with respect to the universal gravitational constantG makes it
evident that the equations of light propagation admit to be integrated straightforwardly by quadratures. Explicit
expressions for the trajectory of a light ray and its tangent vector are obtained in algebraically closed form in
terms of functionals of retarded time. General expressions for the relativistic time delay, the angle of light
deflection, and the gravitational shift of electromagnetic frequency are derived in the form of instantaneous
functions of retarded time. They generalize previously known results for the case of static or uniformly moving
bodies. The most important applications of the theory to relativistic astrophysics and astrometry are given.
They include a discussion of the velocity-dependent terms in the gravitational lens equation, the Shapiro time
delay in binary pulsars, gravitational Doppler shift, and a precise theoretical formulation of the general rela-
tivistic algorithms of data processing of radio and optical astrometric measurements made in the nonstationary
gravitational field of the solar system. Finally, proposals for future theoretical work being important for
astrophysical applications are formulated.@S0556-2821~99!07218-5#

PACS number~s!: 04.20.Cv, 04.25.2g, 04.80.2y, 11.80.2m
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I. INTRODUCTION AND SUMMARY

The exact solution of the problem of the propagation
electromagnetic waves in nonstationary gravitational field
extremely important for modern relativistic astrophysics a
fundamental astrometry. Until now it has been electrom
netic signals coming from various astronomical obje
which have delivered the most exhaustive and accu
physical information about numerous intriguing phenome
going on in the surrounding universe. Present day techno
has achieved a level at which the extremely high precision
current ground-based radio interferometric astronomical
servations approaches 1marcsec. This requires a better th
oretical treatment of secondary effects in the propagation
electromagnetic signals in variable gravitational fields of
cillating and precessing stars, stationary and coalescing
nary systems, and colliding galaxies@1#. Future space astro
metric missions such as GAIA@2# or SIM @3# will also have
precision of about 1–10marcsec on positions and parallax
of stars, and about 1–10marcsec per year for their prope
motion. At this level of accuracy we are not allowed an
more to treat the gravitational field of the solar system
static and spherically symmetric. The rotation and oblaten
of the Sun and large planets as well as time variability of
gravitational field should be seriously taken into account@4#.

As far as we know, all approaches developed for integ
ing equations of propagation of electromagnetic signals
gravitational fields were based on the usage of the p

*On leave from ASC FIAN, Leninskii Prospect, 53, Mosco
117924, Russia.
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Newtonian presentation of the metric tensor of the grav
tional field. It is well known~see, for instance, Refs.@5,6#!
that the post-Newtonian approximation for the metric ten
is valid only within the so-called ‘‘near zone.’’ Hence, th
post-Newtonian metric can be used for the calculation
light propagation only from the sources lying inside the ne
zone of a gravitating system of bodies. The near zone
restricted by the distance comparable to the wavelength
the gravitational radiation emitted from the system. For e
ample, Jupiter orbiting the Sun emits gravitational wav
with wavelength of about 0.3 parsecs, and the binary pu
PSR B1913116 radiates gravitational waves with wav
length of around 4.4 astronomical units. It is obvious that
majority of stars, quasars, and other sources of electrom
netic radiation are usually far beyond the boundary of
near zone of the gravitating system of bodies and ano
method of solving the problem of propagation of light fro
these sources to the observer at the Earth should be app
Unfortunately, such an advanced technique has not yet b
developed and researches relied upon the post-Newto
approximation of the metric tensor assuming implicitly th
perturbations from the gravitational-wave part of the met
are small and may be neglected in the data processing a
rithms @5,7–9#. However, neither this assumption was ev
scrutinized nor the magnitude of the neglected residual te
was estimated. An attempt to clarify this question has b
undertaken in the paper@4# where the matching of asympto
ics of the internal near zone and external Schwarzschild
lutions of equations of light propagation in the gravitation
field of the solar system has been employed. Nevertheles
rigorous solution of the equations of light propagation be
simultaneously valid both far outside and inside the so
system was not found.
©1999 The American Physical Society02-1
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SERGEI M. KOPEIKIN AND GERHARD SCHA¨ FER PHYSICAL REVIEW D60 124002
One additional problem to be enlightened relates to h
to treat the motion of gravitating bodies during the time
propagation of light from the point of emission to the po
of observation. The post-Newtonian metric of a gravitati
system of bodies is not static and the bodies move while l
is propagating. Usually, it was presupposed that the big
influence on the light ray the body exerts when the pho
passes nearest to it. For this reason, coordinates of grav
ing bodies in the post-Newtonian metric were assumed to
fixed at a specific instant of timeta ~see, for instance, Refs
@8–10#! being close to that of the closest approach of
photon to the body. Nonetheless, it was never fully clear h
to specify the momentta precisely and what magnitude o
error in the calculation of relativistic time delay and/or t
light deflection angle one makes if one chooses a slig
different moment of time. Previous research gave us dif
ent conceivable prescriptions for choosingta which might be
used in practice. Perhaps the most fruitful suggestion
that given by Hellings@10# and discussed later in Ref.@4# in
more detail. This was just to accept thatta is exactly the time
of the closest approach of the photon to the gravitating b
deflecting the light. Klioner and Kopeikin@4# have shown
that such a choice minimizes residual terms in the solution
equation of propagation of light rays obtained by t
asymptotic matching technique. We note, however, that
ther Hellings@10# nor Klioner and Kopeikin@4# have justi-
fied that the choice forta they made is unique.

Quite recently we started the reconsideration of the pr
lem of propagation of light rays in variable gravitation
fields of gravitating system of bodies. First of all, a profoun
systematic approach to integration of light geodesic eq
tions in arbitrary time-dependent gravitational fields posse
ing a multipole decomposition@1,11# has been worked out. A
special technique of integration of the equation of lig
propagation with a retarded time argument has been de
oped which allowed us to discover a rigorous solution of
equations everywhere outside a localized source emit
gravitational waves. The present paper continues the el
ration of the technique and makes it clear how to constru
Lorentz covariant solution of equations of propagation
light rays both outside and inside a gravitating system
massive pointlike particles moving along arbitrary wor
lines. In finding the solution we used the Lie´nard-Wiechert
presentation for the metric tensor which accounts for all p
sible effects in the description of the gravitational field and
valid everywhere outside the world lines of the bodies. T
solution, we have found, allows us to give an unambigu
theoretical prescription for choosing the timeta . In addition,
by a straightforward calculation we obtain the complete
pressions for the angle of light deflection, relativistic tim
delay ~Shapiro effect!, and gravitational shift of observe
electromagnetic frequency of the emitted photons. These
pressions are exact at the linear approximation with res
to the universal gravitational constantG and at arbitrary or-
der of magnitude with respect to the parameterva /c, where
va is a characteristic velocity of theath light-deflecting body,
andc is the speed of light@12#. We devote a large part of th
paper to the discussion of practical applications of the n
solution of the equations of light propagation including mo
12400
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ing gravitational lenses, timing of binary pulsars, the cons
sus model of very long baseline interferometry, and the re
tivistic reduction of astrometric observations in the so
system.

The formalism of the present paper can be also use
astrometric experiments for testing alternative scalar-ten
theories of gravity after formal replacing in all subseque
formulas the universal gravitational constantG by the prod-
uct G(g* 11)/2, whereg* is the effective light-deflection
parameter which is slightly different from its weak-field lim
iting value g of the standard parametrized post-Newtoni
~PPN! formalism @13–15#. This statement is a direct conse
quence of a conformal invariance of equations of light ra
@16# and can be immediately proved by straightforward c
culations. Solar system experiments have not been sens
enough to detect the difference between the two parame
However, it may play a role in the binary pulsars analy
@14#.

The paper is organized as follows. Section II present
short description of the energy-momentum tensor of
light-deflecting bodies and the metric tensor given in t
form of the Liénard-Wiechert potential. Section III is de
voted to the development of a mathematical technique
integrating equations of propagation of electromagne
waves in the geometric optics approximation. Solution
these equations and relativistic perturbations of a photon
jectory are given in Sec. IV. We briefly outline equations
motion for slowly moving observers and sources of light
Sec. V. Section VI deals with a general treatment of obse
able relativistic effects—the integrated time delay, the d
flection angle, and gravitational shift of frequency. Particu
cases are presented in Sec. VII. They include the Sha
time delay in binary pulsars, moving gravitational lens
and general relativistic astrometry in the solar system.

II. ENERGY-MOMENTUM AND METRIC TENSORS

The tensor of energy-momentum of a system of mass
particles is given in covariant form, for example, by Land
and Lifshitz @17#:

Tab~ t,x!5 (
a51

N

T̂a
ab~ t !d@x2xa~ t !#, ~1!

T̂a
ab~ t !5maga

21~ t !ua
a~ t !ua

b~ t !, ~2!

where t is the coordinate time,x5xi5(x1,x2,x3) denotes
spatial coordinates of a current point in space,ma is the
constant~relativistic! rest mass of theath particle,xa(t) are
spatial coordinates of theath massive particle which depen
on time t, va(t)5dxa(t)/dt is velocity of theath particle,
ga(t)5@12va

2(t)#21/2 is the ~time-dependent! Lorentz fac-
tor, ua

a(t)5$ga(t), ga(t)va(t)% is the four-velocity of the
2-2
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LORENTZ COVARIANT THEORY OF LIGHT . . . PHYSICAL REVIEW D 60 124002
ath particle, andd(x) is the usual three-dimensional Dira
delta function. In particular, we have

T̂a
00~ t !5

ma

A12va
2~ t !

, T̂a
0i~ t !5

mava
i ~ t !

A12va
2~ t !

,

T̂a
i j ~ t !5

mava
i ~ t !va

j ~ t !

A12va
2~ t !

. ~3!

The metric tensor in the linear approximation reads

gab~ t,x!5hab1hab~ t,x! , ~4!

wherehab5diag(21,11,11,11) is the Minkowski metric
of flat space-time and the metric perturbationhab(t,x) is a
function of time and spatial coordinates@18#. It can be found
by solving the Einstein field equations which read in the fi
post-Minkowskian approximation and in the harmonic gau
@19# as follows~Ref. @20#, Chap. 10!:

hhab~ t,x!5216pSab~ t,x! , ~5!

where

Sab~ t,x!5Tab~ t,x!2
1

2
hab T l

l ~ t,x! . ~6!

The solution of these equations has the form of the Lie´nard-
Wiechert potential@21#. In order to see how it looks we
represent the tensor of energy-momentum in a form wh
all time dependence is included in a one-dimensional d
function:

Tab~ t,x!5E
2`

1`

dt8d~ t82t !Tab~ t8,x! . ~7!

Heret8 is an independent parameter along the world lines
the particles which does not depend on timet. The solution
of Eq. ~5! can be found using the retarded Green funct
@22–25#, and after integration with respect to spatial coor
nates, using the three-dimensional delta function, it is gi
in the form of a one-dimensional retarded-time integral:

hab~ t,x!5 (
a51

N E
2`

1`

ĥa
ab~ t8,t,x!dt8 , ~8!

ĥa
ab~ t8,t,x!54F T̂a

ab~ t8!2
1

2
habT̂al

l ~ t8!Gd@ t82t1r a~ t8!#

r a~ t8!
,

~9!

where ra(t8)5x2xa(t8), and r a(t8)5ura(t8)u is the usual
Euclidean length of the vector.

The integral~8! can be performed explicitly as describe
in, e.g., Ref.@21#, Sec. 14. The result is the retarded Lie´nard-
Wiechert tensor potential

hab~ t,x!54(
a51

N T̂a
ab~s!2~1/2! habT̂al

l ~s!

r a~s!2va~s!•ra~s!
, ~10!
12400
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where the retarded times5s(t,x) for the ath body is a so-
lution of the light-cone equation@26#

s1ux2xa~s!u5t . ~11!

Here it is assumed that the field is measured at timet and at
the pointx. We shall use this form of the metric perturbatio
hab(t,x) for the integration of the equations of light geod
sics in the next section. It is worth emphasizing that t
expression for the metric tensor~10! is Lorentz covariant and
is valid in any harmonic coordinate system admitting
smooth transition to the asymptotically flat space-time at
finity and relating to each other by the Lorentz transform
tions of theory of special relativity@6,27–30#. A treatment of
post-linear corrections to the Lie´nard-Wiechert potentials
~10! is given, for example, in a series of papers by Thor
and collaborators@28,31–33#.

III. MATHEMATICAL TECHNIQUE
FOR INTEGRATING EQUATIONS
OF PROPAGATION OF PHOTONS

We consider the motion of a light particle~photon! in the
background gravitational field described by the metric~10!.
No back action of the photon on the gravitational field
assumed. Hence, we are allowed to use equations of
geodesics directly applying the metric tensor in question.
the motion of the photon be defined by fixing the mix
initial-boundary conditions~see Fig. 1!

x~ t0!5x0 ,
dx~2`!

dt
5k , ~12!

wherek251 and, henceforth, the spatial components of v
tors are denoted by bold letters. These conditions define
coordinatesx0 of the photon at the moment of emission
light t0 and its velocity at the infinite past and infinite di
tance from the origin of the spatial coordinates~that is, at
the, so-called, past null infinity!.

The original equations of propagation of light rays a
rather complicated@1#. They can be simplified and reduce
to the form which will be shown later in this section. In ord
to integrate them we shall have to resort to a special appr
mation method. In the Minkowskian approximation of th
flat space-time the unperturbed trajectory of the light ray i
straight line

xi~ t !5xN
i ~ t !5x0

i 1ki ~ t2t0! , ~13!

where t0 , x0
i , andki5k have been defined in Eq.~12!. In

this approximation, the coordinate speed of the photon isẋi

5ki and is considered as a constant in the expression for
light-ray-perturbing force.

It is convenient to introduce a new independent param
t along the photon’s trajectory according to the rule@1,11#

t5k•xN~ t !5t2t01k•x0 , ~14!

where here and in the following the center dot between t
spatial vectors denotes the Euclidean dot product. The t
2-3
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FIG. 1. Illustration of the light ray’s propagation history. The light ray is emitted at the instant of timet0 at the pointx0 and arrives at
the point of observationx at the instant of timet. Light-deflecting bodies move along accelerated world lines during the time of propag
of the light ray; their velocities at some intermediate instant of time are shown by black arrows. In the absence of the light-ray-d
bodies the light ray would propagate along an unperturbed path~dashed line! which is a straight line passing through the points of emiss
x0 and observationx. The direction of the unperturbed path is determined by the unit vectorK52(x2x0)/ux2x0u. In the presence of the
light-ray-deflecting bodies the light ray propagates along the perturbed path~solid line!. The perturbed trajectory of the light ray is bent an
twisted due to the gravitoelectric~mass-induced! and gravitomagnetic~velocity-induced! fields of the bodies. The initial boundary conditio
for the equation of light propagation is determined by the unit vectork defined at past null infinity by means of a dynamical backward-
time prolongation~dotted line! of the perturbed trajectory of light from the point of emissionx0 in such a way that the tangent vector of th
prolongated trajectory coincides with that of the perturbed light-ray’s trajectory at the point of emission. The relationship betwe
vectorsk andK includes relativistic bending of light and is given in the text by Eq.~37!.
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t0 of the light signal’s emission corresponds to the numer
value of the parametert05k•x0, and the numerical value o
the parametert50 corresponds to the time

t* 5t02k•x0 , ~15!

which is the time of the closest approach of the unpertur
trajectory of the photon to the origin of an asymptotically fl
harmonic coordinate system. We emphasize that the num
cal value of the momentt* is constant for a chosen trajecto
of light ray and depends only on the space-time coordina
of the point of emission of the photon and the point of
observation. Thus, we find the relationships

t[t2t* , t05t02t* , ~16!

which reveals that the variablet is negative from the point o
emission up to the point of the closest approachxi(t* )5 ĵ i ,
and is positive otherwise@34#. The differential identitydt
5dt is valid and, for this reason, the integration along t
light ray’s path with respect to timet can be always replace
by the integration with respect to variablet.

Making use of the parametert, the equation of the unper
turbed trajectory of the light ray can be represented as

xi~t!5xN
i ~t!5kit1 ĵ i , ~17!

and the distance,r (t)5uxN(t)u, of the photon from the ori-
gin of the coordinate system reads

r ~t!5At21d2 . ~18!

The constant vectorĵ i5 ĵ5k3(x03k)5k3@xN(t)3k# is
called the impact parameter of the unperturbed trajectror
the light ray,d5uĵu is the length of the impact paramete
and the multiplication symbol between two vectors deno
the usual Euclidean cross product of two vectors. We n
12400
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that the vectorĵ is transverse to the vectork. It is worth
emphasizing once again that the vectorĵ i is directed from
the origin of the coordinate system towards the point of
closest approach of the unperturbed path of the light ray
the origin. This vector plays an auxiliary role in our discu
sion and, in general, has no essential physical meaning
can be easily changed by the shift of the origin of the co
dinates@35#.

Implementing the two new parameterst, ĵ and introduc-
ing the four-dimensional isotropic vectorka5(1,ki) one can
write the equations of light geodesics as follows~for more
details see Ref.@1# and Ref.@36#!:

ẍi~t!5
1

2
kakb]̂ ih

ab~t,ĵ!

2 ]̂ tFkaha i~t,ĵ!1
1

2
kih00~t,ĵ!2

1

2
kikpkqhpq~t,ĵ!G ,

~19!

where dots over the coordinates denote differentiation w
respect to time,]̂ t[]/]t, ]̂ i[Pi j ]/]ĵ j , and Pi j 5d i j 2kikj
is the operator of projection onto the plane being orthogo
to the vectorki , and all quantities on the right hand side
Eq. ~19! are taken along the light trajectory at the point co
responding to a numerical value of the running parametet

while the parameterĵ is assumed as constant. Hence, the E
~19! should be considered as an ordinary, second order
ferential equation in variablet @37–44#. The given form of
Eq. ~19! already shows that only the first term on the rig
hand side of it can contribute to the deflection of light if th
observer and the source of light are at spatial infinity. Inde
a first integration of the right hand side of the Eq.~19! with
2-4
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LORENTZ COVARIANT THEORY OF LIGHT . . . PHYSICAL REVIEW D 60 124002
respect to time from2` to 1` brings all terms showing
time derivatives to zero due to the asymptotic flatness of
metric tensor which proves our statement~for more details
see the next section!.

However, if the observer and the source of light are
cated at finite distances from the origin of coordinate syst
we need to know how to perform the integrals from the m
ric perturbations~10! with respect to the parametert along
the unperturbed trajectory of light ray. Let us denote tho
integrals as

Bab~t,ĵ!5E
2`

t

hab@s,x~s!#ds , ~20!

Dab~t,ĵ!5E
2`

t

Bab~s,ĵ!ds , ~21!

where the metric perturbationhab@s,x(s)# is defined by the
Liénard-Wiechert potential~10! ands is a parameter along
the light ray having the same meaning as the parametert in
Eq. ~14!. In order to calculate the integrals~20!, ~21! it is
useful to change in the integrands the time arguments, to
the new onez, defined by the light-cone equation~11! which
after substitution forx the unperturbed light trajectory~17!
reads as follows@45#:

s1t* 5z1uĵ1ks2xa~z!u . ~22!

The differentiation of this equation yields a relationship b
tween differentials of the time variabless andz, and param-
eterst* , j i , ki :

dz~r a2va•ra!5ds~r a2k•ra!1r adt* 2ra•dĵ2sra•dk ,
~23!

where the coordinates,xa , and the velocityva of the ath
body are taken at the retarded timez, and coordinates of the
photon x are taken at the times(z). From Eq. ~23! we
immediately obtain the partial derivatives with respect to
parameters

]z

]t*
5

r a

r a2va•ra
,

]z

]ĵ i
52

Pi j r a
j

r a2va•ra
,

]z

]ki
52

sr a
i

r a2va•ra
, ~24!

and have the relationship between the time different
along the world line of the photon which reads

ds5dz
r a2va•ra

r a2k•ra
. ~25!

If the parameters runs from2` to 1`, the new paramete
z runs from z2`52` to z1`5t* 1k•xa(z1`) provided
the motion of each body is restricted inside a bounded
main of space, as in the case of a binary system. In case
bodies move along straight lines with constant velocities,
parameters runs from2` to 1`, and the parameterz runs
12400
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from 2` to 1` as well. In addition, we note that when th
numerical value of the parameters is equal to the time of
observationt, the numerical value of the parameterz equals
s(t), which is found from the equation of the light cone~11!
in which the pointx denotes spatial coordinates of observ

After transforming time arguments the integrals~20!, ~21!
take the form

Bab~s!5 (
a51

N

Ba
ab~s! ,

Ba
ab~s!54E

2`

s T̂a
ab~z!2 ~1/2! habT̂al

l ~z!

r a~s,z!2k•ra~s,z!
dz , ~26!

Dab~s!5 (
a51

N E
2`

t

Ba
ab@z~s!#ds , ~27!

where retarded times in the upper limits of integration d
pend on the index of each body as it has already been m
tioned in the previous text. Now we give a remarkable, ex
relationship

r a~s,z!2k•ra~s,z!5t* 1k•xa~z!2z , ~28!

which can be proven by direct use of the light-cone equat
~11! and the expression~17! for the unperturbed trajectory o
the light ray. It is important to note that in the given relatio
ship t* is a constant time corresponding to the moment
the closest approach of the photon to the origin of coordin
system. Equation~28! shows that the integrand on the le
hand side of the second of Eqs.~26! does not depend on th
parameters at all, and the integration is performed only wit
respect to the retarded time variablez. Thus, just as the law
of motion of the bodiesxa(t) is known, the integral~26! can
be calculated either analytically or numerically without so
ing the complicated light-cone equation~11! to establish the
relationship between the ordinary and retarded time ar
ments. This statement is not applicable to the integral~27!
because transformation to the new variable~25! does not
eliminate from the integrand of this integral the explicit d
pendence on the argument of timet. Fortunately, as is evi-
dent from the structure of Eq.~19!, we do not need to calcu
late this integral.

Instead of that, we need to know the first spatial deriv
tive of Dab(s) with respect toĵ i . In order to find it we note
that the integrand ofBab(s) does not depend on the variab
ĵ i . This dependence manifests itself only indirectly throu
the upper limits(t,j) of the integral because of the structu
of the light-cone equation which assumes at the point
observation the following form:

t1t* 5s1uĵ1kt2xa~s!u . ~29!

For this reason, a straightforward differentiation ofBab(s)
with respect to the retarded times and the implementation o
formula ~24! for the calculation of the derivative]s/]ĵ i at
the point of observation yields@46#
2-5
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]̂ iB
ab~s!524(

a51

N T̂a
ab~s!2~1/2! habT̂al

l ~s!

r a~s!2k•ra~s!

3
P j

i r a
j ~s!

r a~s!2va~s!•ra~s!
. ~30!

This result elucidates that]̂ iB
ab(s) is not an integral but

instantaneous function of time and, that it can be calcula
directly if the motion of the gravitating bodies is give
While calculating]̂ iD

ab(s) we use, first, the formula~30!
and, then, replacement of variables~25!. Proceeding in this
way we arrive at the result

]̂ iD
ab~s!5 (

a51

N E
2`

t

]̂ iBa
ab@z~s!#ds

524(
a51

N E
2`

s T̂a
ab~z!2 ~1/2! habT̂al

l ~z!

@r a~s,z!2k•ra~s,z!#2

3P j
i r a

j ~s,z!dz

524(
a51

N H ĵ iE
2`

s T̂a
ab~z!2 ~1/2! habT̂al

l ~z!

@ t* 1k•xa~z!2z#2
dz

2P j
i E

2`

s T̂a
ab~z!2 ~1/2! habT̂al

l ~z!

@ t* 1k•xa~z!2z#2

3xa
j ~z!dzJ , ~31!

where the numerical value of the parameters in the upper
limit of the integral is calculated by solving the light-con
equation~11!. Going back to Eq.~28! we find that the inte-
grand of the integral~31! depends only on the retarded tim
argumentz. Hence, again, as it has been proven forBab(s),
the integral~31! admits a direct calculation as soon as t
motion of the gravitating bodies is prescribed@47#.

IV. RELATIVISTIC PERTURBATIONS
OF A PHOTON TRAJECTORY

Perturbations of the trajectory of the photon are found
straightforward integration of the equations of light geod
sics ~19! using the expressions~20!, ~21!. Performing the
calculations we find

ẋi~t!5ki1J̇ i~t! , ~32!

xi~t!5xN
i ~t!1J i~t!2J i~t0! , ~33!

wheret and t0 correspond, respectively, to the moment

observation and emission of the photon. The functionsJ̇ i(t)
andJ i(t) are given as follows:
12400
d

y
-

f

J̇ i~t!5
1

2
kakb]̂ iB

ab~t!2kaha i~t!

2
1

2
kih00~t!1

1

2
kikpkqhpq~t! , ~34!

J i~t!5
1

2
kakb]̂ iD

ab~t!2kaBa i~t!

2
1

2
kiB00~t!1

1

2
kikpkqBpq~t! , ~35!

where the functionshab(t), Bab(t), ]̂ iB
ab(t), and

]̂ iD
ab(t) are defined by the relationships~10!, ~26!, ~30!,

and ~31!, respectively.
The latter equation can be used for the formulation of

boundary value problem for the equation of light geodes
In this case the initial positionx05x(t0) and final position
x5x(t) of the photon are given instead of the initial positio
x0 of the photon and the direction of light propagationk
given at past null infinity. All we need for the formulation o
the boundary value problem is the relationship between
unit vectork and the unit vector

K52
x2x0

ux2x0u
, ~36!

which defines a geometric direction of the light propagat
from observer to the source of light in flat space-time~see
Fig 1!. Formulas~33! and ~35! yield

ki52Ki2b i~t,ĵ!1b i~t0 ,ĵ! , ~37!

where relativistic corrections to the vectorKi are defined as
follows:

b i~t,ĵ!5

1

2
kakb]̂ iD

ab~t!2kaP j
i Ba j~t!

ux2x0u
, ~38!

b i~t0 ,ĵ!5

1

2
kakb]̂ iD

ab~t0!2kaP j
i Ba j~t0!

ux2x0u
. ~39!

We emphasize that the vectorsb i(t,ĵ)[b and b i(t0 ,ĵ)
[b0 are orthogonal to the vectork and are taken at the
points of observation and emission of the photon, resp
tively. The relationships obtained in this section are used
the discussion of observable relativistic effects in the follo
ing section.

V. EQUATIONS OF MOTION FOR MOVING OBSERVERS
AND SOURCES OF LIGHT

The knowledge of trajectory of motion of photons in th
gravitational field formed by anN-body system of arbitrary-
moving point masses is necessary but not enough for
unambiguous physical interpretation of observational effe
2-6
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We also need to know how observers and sources of l
move in the gravitational field of this system. Let us assu
that the observer and the source of light are pointlike ma
less particles which move along timelike geodesic wo
lines. Then, in the post-Minkowskian approximation equ
tions of motion of the particles, assuming no restriction
their velocities except for thatv,c ~see, however, the dis
cussion in Ref.@30#!, read

ẍi~ t !5
1

2
h00,i2h0i ,t2

1

2
h00,tẋ

i2hik,tẋ
k

2~h0i ,k2h0k,i !ẋ
k2h00,kẋ

kẋi2S hik, j2
1

2
hk j ,i D ẋkẋ j

1S 1

2
hk j ,t2h0k, j D ẋkẋ j ẋi1OS G2

c4 D . ~40!

In the given coordinate system for velocities much sma
than the speed of light, Eq.~40! reduces to

ẍi~ t !5
1

2
h00,i1OS G

c2D 1OS G2

c4 D . ~41!

Regarding specific physical conditions either the po
Minkowskian equation~40! or the post-Newtonian equatio
~41! should be integrated with respect to time to give t
coordinates of an observerx(t) and a source of lightx0(t0)
as a function of time of observationt and of time of emission
of light t0, respectively. We do not treat this problem in t
present paper as its solution has been developed with ne
sary accuracy by a number of previous authors. In particu
the post-Minkowskian approach for solving equations of m
tion of massive particles is thoroughly treated in Re
@43,44,48#, and references therein. The post-Newtonian
proach is outlined in detail, for instance, in Refs.@6,8,49–
51#, and references therein. In what follows, we assume
motions of observerx(t) and source of lightx0(t0) to be
known with the required precision.

VI. OBSERVABLE RELATIVISTIC EFFECTS

A. Shapiro time delay

The relativistic time delay in propagation of electroma
netic signals passing through the static, spherically symm
ric gravitational field of the Sun was discovered by Irw
Shapiro@52#. We shall give in this paragraph the generaliz
tion of his idea for the case of the propagation of lig
through thenonstationarygravitational field formed by an
ensemble ofN arbitrary-movingbodies. The result, which
we shall obtain, is valid not only when the light ray prop
gates outside the system of the bodies but also when
goes through the system. In this sense we extend our ca
lations made in a previous paper@1# which treated relativistic
effects in propagation of light raysonly outsidethe gravitat-
ing system having a time-dependent quadrupole momen

The total time of propagation of an electromagnetic sig
from the point x0 to the point x is derived from Eqs.
12400
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~33!,~35!. First, we use Eq.~33! to express the differencex
2x0 through the other terms of the equation. Then, we m
tiply this difference by itself using the properties of the E
clidean dot product. Finally, we find the total time of prop
gation of light, t2t0, extracting the square root from th
product, and using the expansion with respect to the rela
istic parameter (Gma)/(c2r a) which is assumed to be smal
This results in

t2t05ux2x0u2k•J~t!1k•J~t0! , ~42!

or

t2t05ux2x0u1D~ t,t0! , ~43!

where ux2x0u is the usual Euclidean distance between
points of emissionx0 and observationx of the photon, and
D(t,t0) is the generalized Shapiro time delay produced
the gravitational field of moving bodies

D~ t,t0!5
1

2
kakbBab~t!2

1

2
kakbBab~t0!

5 2(
a51

N

ma Ba~s,s0! . ~44!

In the integral

Ba~s,s0!5E
s0

s @12k•va~z!#2

A12va
2~z!

dz

t* 1k•xa~z!2z
, ~45!

the retarded times is obtained by solving Eq.~11! for the
time of observation of the photon, ands0 is found by solving
the same equation written down for the time of emission
the photon@53#

s01ux02xa~s0!u5t0 . ~46!

The relationships~43!, ~44! for the time delay have bee
derived with respect to the coordinate timet. The transfor-
mation from the coordinate time to the proper timeT of the
observer is made by integrating the infinitesimal increm
of the proper time along the world linex(t) of the observer
@17#

T5E
t i

t

$12v2~ t !2h00@ t,x~ t !#22h0i@ t,x~ t !#v i~ t !

2hi j @ t,x~ t !#v i~ t !v j~ t !%1/2dt , ~47!

wheret i is the initial epoch of observation, andt is a time of
observation.

The calculation of the integral~45! is performed by means
of using a new variable

y5t* 1k•xa~z!2z , dy52@12k•va~z!#dz , ~48!

so that the above integral~45! reads
2-7
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Ba~s,s0!52E
s0

s 12k•va~z!

A12va
2~z!

d~ ln y!

dz
dz . ~49!

Integration by parts results in

Ba~s,s0!52
12k•va~s!

A12va
2~s!

ln@r a~s!2k•ra~s!#

1
12k•va~s0!

A12va
2~s0!

ln@r a~s0!2k•ra~s0!#

2E
s0

s ln~r a2k•ra!

~12va
2!3/2

@k2va

2va3~k3va!#• v̇a dz . ~50!

The first and second terms describe the generalized form
the Shapiro time delay for the case of arbitrary movi
~weakly! gravitating bodies. The last term in the right ha
side of Eq.~50! depends on the body’s acceleration and i
relativistic correction comparable, in the general case, to
main terms of the Shapiro time delay. This correction
identically zero if the bodies move along straight lines w
constant velocities. Otherwise, we have to know the law
motion of the bodies for its calculation. Neglecting all term
of orderva

2/c2 for the Shapiro time delay we obtain the sim
plified expression

D~ t,t0!522(
a51

N

maH ln
r a2k•ra

r 0a2k•r0a
2~k•va!ln~r a2k•ra!

1~k•va0!ln~r 0a2k•r0a!

1E
s0

s

ln@ t* 1k•xa~z!2z#@k• v̇a~z!#dzJ , ~51!

where ra5x2xa(s), r0a5x02xa(s0), r a5urau, r 0a5ur0au,
va5 ẋa(s), va05 ẋa(s0), and the retarded timess and s0
should be calculated from the light-cone equations~11! and
~46!, respectively. The first term on the right hand side
expression~51! for the Shapiro delay has been known for
long time~see, e.g., Refs.@7–9#, and references therein!. Our
expressions~50!,~51! vastly extend previously known resul
for they are applicable to the case of arbitrary-moving bod
whereas the calculations of all previous authors were
verely restricted by the assumption that either the gravita
bodies are fixed in space or move uniformly with const
velocities. In addition, there was no reasonable theoret
prescription for the definition of the body’s positions. Th
rigorous theoretical derivation of the formulas~50! and ~51!
has made a significant progress in clarifying this quest
and proved for the first time that in calculating the Shap
delay the positions of the gravitating bodies must be take
the retarded times corresponding to the instants of emis
and observation of electromagnetic signal. It is interesting
note that in the right hand side of Eq.~51! the terms being
linearly dependent on velocities of bodies can be forma
12400
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obtained in the post-Newtonian approximate analysis as w
as under the assumption that gravitating bodies move
formly along straight lines@54–56#. We emphasize once
again that this assumption works well enough only if t
light travel time does not exceed the characteristic Kepler
period of the gravitating system. Previous authors were ne
able to prove that the assumption of uniform motion of bo
ies can be applied, e.g., for treatment of the Shapiro t
delay in binary pulsars. We discuss this problem mo
deeply in the next sections of this paper.

B. Bending of light and deflection angle

The coordinate direction to the source of light measu
at the point of observationx is defined by the four-vecto
pa5(1,pi), wherepi52 ẋi or

pi52ki2J̇ i~t,ĵ! , ~52!

and where we have put the minus sign to make the vectopi

directed from the observer to the source of light. Howev
the coordinate directionpi is not a directly observable quan
tity. A real observable vector towards the source of lightsa

5(1,si) is defined with respect to the local inertial frame
the observer. In this framesi52dX i /dT, where T is the
observer’s proper time andX i are spatial coordinates of th
local inertial frame. We shall assume for simplicity that t
observer is at rest@57# with respect to the~global! harmonic
coordinate system (t,xi). Then the infinitesimal transforma
tion from (t,xi) to (T,X i) is given by the formula

dT5L 0
0 dt1L j

0 dxj , dX i5L 0
i dt1L j

i dxj , ~53!

where the matrix of transformationL b
a depends on the

space-time coordinates of the point of observation and
defined by the requirement of orthonormality

gab5hmnLa
mLb

n . ~54!

In particular, the orthonormality condition~54! preassumes
that spatial angles and lengths at the point of observat
are measured with the help of the Euclidean metricd i j . For
this reason, as the vectorsa is isotropic, we conclude that th
Euclidean lengthusu of the vectorsi is equal to 1. Indeed, one
has

habsasb5211s250 . ~55!

Hence, usu51, and the vectors points out the astrometric
position of the source of light on the unit celestial sphe
attached to the point of observation.

In linear approximation with respect toG, the matrix of
transformation is as follows@1#:

L 0
0 512

1

2
h00~ t,x! , ~56!

L i
0 52h0i~ t,x! ,

L 0
i 50 ,
2-8
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L j
i 5d i j 1

1

2
hi j ~ t,x! .

Using the transformation~53! we obtain the relationship be
tween the observable unit vectorsi and the coordinate direc
tion pi :

si5
L j

i pj2L 0
i

L 0
0 2L j

0 pj
. ~57!

In linear approximation it takes the form

si5S 11
1

2
h002h0 j p

j D pi1
1

2
hi j p

j . ~58!

Remembering thatusu51, we obtain for the Euclidean norm
of the vectorpi

upu512
1

2
h001h0 j p

j2
1

2
hi j p

ipj , ~59!

which brings Eq.~58! to the form@58#

si5mi1
1

2
Pi j mqhjq~ t,x! , ~60!

with the Euclidean unit vectormi5pi /upu.
Let us now denote bya i the dimensionless vector de

scribing the angle of total deflection of the light ray me
sured at the point of observation and calculated with resp
to vectorki given at past null infinity. It is defined accordin
to the relationship@1#

a i~t,ĵ!5ki@k•J̇~t,ĵ!#2J̇ i~t,ĵ! ~61!

or

a i~t,ĵ!52P j
i J̇ j~t,ĵ! . ~62!

As a consequence of the definitions~52! and ~62! we con-
clude that

mi52ki1a i~t,j! . ~63!

Taking into account expressions~57!, ~59!, ~62!, and~37! we
obtain for the observed direction to the source of light

si~t,ĵ!5Ki1a i~t,ĵ!1b i~t,ĵ!2b i~t0 ,ĵ!1g i~t,ĵ! ,
~64!

where the relativistic correctionsb i are defined by Eq.~38!
and where

g i~t,ĵ!52
1

2
Pi j kqhjq~ t,x! ~65!

describes the light deflection caused by the deformation
space at the point of observations. If two sources of light
12400
-
ct

of
e

observed along the directionss1
i and s2

i , correspondingly,
the measured anglec between them is defined in the loc
inertial frame as follows:

cosc5s1•s2 , ~66!

where the center dot denotes the usual Euclidean scalar p
uct. It is worth emphasizing that the observed direction to
source of light~64! includes the relativistic deflection of th
light ray which depends not only on quantities taken at
point of observation but also on thoseb i(t0 ,j) taken at the
point of emission of light. Usually this term is rather sma
and can be neglected. However, it becomes important in
problem of propagation of light in the field of gravitation
waves@1# or for a proper treatment of high-precision astr
metric observations of objects being within the boundary
the solar system.

Without going into further details of the observation
procedure we, first of all, give an explicit expression for t
anglea i(t):

a i~t!52
1

2
kakb]̂ iB

ab~t!1ka P j
i ha j~t! . ~67!

The relationships~10!,~30! along with the definition of the
tensor of energy-momentum~3! allow us to recast the previ
ous expression into the form

a i~t!52(
a51

N
ma

A12va
2

~12k•va!2

r a2k•ra

P j
i r a

j

r a2va•ra

24(
a51

N
ma

A12va
2

12k•va

r a2va•ra
P j

i va
j , ~68!

where all the quantities describing the motion of theath
body have to be taken at the retarded times which relates to
t5t2t* by the light-cone equation~11!. Neglecting all
terms of the orderva /c we obtain a simplified form of the
previous expression

a i~t!52(
a51

N
ma

r a

P j
i r a

j

~r a2k•ra!
, ~69!

which may be compared to the analogous expression for
deflection angle obtained previously by many other auth
in the framework of the post-Newtonian approximation~see
Ref. @8#, and references therein!. We note that all previous
authors fixed the moment of time, at which the coordina
xa of the gravitating bodies were to be calculated rather
bitrarily, without having rigorous justification for thei
choice. Our approach gives a unique answer to this ques
and makes it obvious that the coordinatesxa should be fixed
at the moment of retarded times relating to the time of
observationt by the light-cone equation~11!.

The next step in finding the explicit expression for t
observed coordinate directionsi is the computation of the
quantity b i(t) given in Eq. ~38!. We have from formulas
~26!, ~31! the following result for the numerator ofb i(t):
2-9
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1

2
kakb]̂ iD

ab~t!2kaP j
i Ba j~t!

522(
a51

N

ma @ ĵ iCa~s!2P j
i Da

j ~s!#

14(
a51

N

ma P j
i Ea

j ~s! , ~70!

where the integralsCa(s), Da
j (s), andEa

j (s) read

Ca~s!5E
2`

s F 12k•va~z!

t* 1k•xa~z!2z
G 2

dz

A12va
2~z!

, ~71!

Da
j ~s!5E

2`

s F 12k•va~z!

t* 1k•xa~z!2z
G 2

xa
j ~z!

A12va
2~z!

dz , ~72!

Ea
j ~s!5E

2`

s 12k•va~z!

t* 1k•xa~z!2z

va
j ~z!

A12va
2~z!

dz . ~73!

Making use of the new variabley introduced in Eq.~48! and
integrating by parts yields

Ca~s!5
1

A12va
2

12k•va

r a2k•ra

1E
2`

s @k2va2va3~k3va!#• v̇a

r a2k•ra

dz

~12va
2!3/2

,

~74!

Da
j ~s!5

12k•va

A12va
2

xa
j

r a2k•ra

1E
2`

s @k2va2va3~k3va!#• v̇a

r a2k•ra

xa
j dz

~12va
2!3/2

2Ea
j ~s! , ~75!

Ea
j ~s!52

va
j

A12va
2

ln~r a2k•ra!

1E
2`

s

ln~r a2k•ra! Pk
j v̇a

k dz

~12va
2!1/2

, ~76!

wherePk
j (z)5dk

j 1ui(z)uk(z) is the spatial part of the op
erator of projection onto the plane being perpendicular to
world line of theath body, and the bodies’ coordinates a
velocities in all terms, being outside the signs of integral,
taken at the moment of the retarded times. Equations~74!–
~76! will be used in Sec. VII for the discussion of the grav
tational lens equation with taking into account the velocity
the body deflecting the light rays.

Finally, the quantityg i(t) can be explicitly given by the
following expression:
12400
e

e

f

g i~t!522(
a51

N
ma

A12va
2

~k•va! ~P j
i va

j !

r a2va•ra
, ~77!

where coordinates and velocities of the bodies must be ta
at the retarded times according to Eq.~11!. We note thatg i

is a very small quantity being proportional to the produ
(Gma /c2r a)(va /c).

C. Gravitational shift of frequency

The exact calculation of the gravitational shift of electr
magnetic frequency between emitted and observed pho
plays a crucial role for the adequate interpretation of m
surements of radial velocities of astronomical objects, anis
ropy of electromagnetic cosmic background radiati
~CMB!, and other spectral astronomical investigations. In
last several years, for instance, the radial velocity measu
technique has reached unprecedented accuracy and is
proaching a precision of about 10 cm/sec@59#. In the near
future there is hope to improve the accuracy up to 1 cm/
@60# when the measurement of the post-Newtonian relativ
tic effects in optical binary and/or multiple star systems w
be possible@61#.

Let a source of light move with respect to the harmon
coordinate system (t,xi) with velocity v0(t0)5dx0(t0)/dt0
and emit electromagnetic radiation with frequencyn0
51/(dT0), wheret0 and T0 are coordinate time and prope
time of the source of light, respectively. We denote byn
51/(dT) the observed frequency of the electromagnetic
diation measured at the point of observation by an obse
moving with velocityv(t)5dx/dt with respect to the har-
monic coordinate system (t,xi). We can consider the incre
mentsdT0 and dT as infinitesimally small. Therefore, th
observed gravitational shift of frequency 11z5n/n0 can be
defined through the consecutive differentiation of the pro
time of the source of lightT0 with respect to the proper time
of the observerT @62–64#:

11z5
dT0

dT 5
dT0

dt0

dt0
dt

dt

dT , ~78!

where the derivative

dT0

dt0
5@12v0

2~ t0!2h00~ t0 ,x0!22h0i~ t0 ,x0! v0
i ~ t0!

2hi j ~ t0 ,x0! v0
i ~ t0! v0

j ~ t0!#1/2, ~79!

is taken at the point of emission of light and the derivativ

dt

dT 5@12v2~ t !2h00~ t,x!22h0i~ t,x! v i~ t !

2hi j ~ t,x! v i~ t ! v j~ t !#21/2 ~80!

is calculated at the point of observation.
The time derivative along the light-ray trajectory is calc

lated from Eq.~43! where we have to take into account th
the functionBa(s,s0) depends on timest0 and t not only
through the retarded timess0 and s in the upper and lower
2-10
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limits of the integral~45! but through the timet* and the
vector k both being considered in its integrand as tim
dependent parameters. Indeed, the infinitesimal incremen
times t0 and/or t causes variations in the positions of th
n
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source of light and/or observer and, consequently, to the
responding change in the trajectory of the light ray, that is
t* andk. Hence, the derivative along the light ray reads
follows:
dt0
dt

5

11K•v22(
a51

N

ma@~]s/]t ! ~]/]s! 1 ~]s0 /]t ! ~]/]s0! 1 ~]t* /]t ! ~]/]t* ! 1 ~]ki /]t ! ~]/]ki !#Ba~s,s0 ,t* ,k!

11K•v012(
a51

N

ma@~]s/]t0! ~]/]s! 1 ~]s0 /]t0! ~]/]s0! 1 ~]t* /]t0! ~]/]t* ! 1 ~]ki /]t0! ~]/]ki !#Ba~s,s0 ,t* ,k!

, ~81!
the
ve-
the

s-
where the unit vectorK is defined in Eq.~36! and where we
explicitly show the dependence of functionBa on all param-
eters which implicitly depend on time@65#.

The time derivative of the vectork is calculated using the
approximationk52K and formula~36! where the coordi-
nates of the source of lightx0(t0) and of the observerx(t)
are functions of time. It holds that

]ki

]t
5

@k3~v3k!# i

R
,

]ki

]t0
52

@k3~v03k!# i

R
, ~82!

whereR5ux2x0u is the distance between the observer a
the source of light. The derivatives of retarded timess ands0
with respect tot andt0 are calculated from the formulas~11!
and~46! where we have to take into account that the spa
position of the point of observation is connected to the po
of emission of light by the unperturbed trajectory of lig
x(t)5x0(t0)1k (t2t0). More explicitly, we use for the
calculations the following relationships@66#:

s1ux0~ t0!1k~ t,t0!~ t2t0!2xa~s!u5t

and

s01ux0~ t0!2xa~s0!u5t0 , ~83!

where the unit vectork must be considered as a two-poi
function of timest, t0 with derivatives being taken from~82!.
The physical meaning of relationships~83! and those in@66#
is the preservation of the intersection at the point of obs
vation x(t) of two of the lines forming light cones which
relate to propagation of the gravitational field and elect
magnetic signals and having vertices at pointsxa(s) and
x0(t0), respectively. A calculation of infinitesimal variation
of equations~83! immediately gives

]s

]t
5

r a2k•ra

r a2va•ra
2

~k3v!•~k3ra!

r a2va•ra
, ~84!

]s

]t0
5

~12k•v0!~k•ra!

r a2va•ra
, ~85!

]s0

]t0
5

r 0a2v0•r0a

r 0a2va0•r0a
, ~86!
d

l
t

r-

-

]s0

]t
50 . ~87!

Time derivatives of the parametert* are calculated from its
original definitiont* 5t02k•x0(t0), which naturally appears
in integrands of all integrals, and read

]t*

]t0
512k•v01

v0• ĵ

R
,

]t*

]t
52

v• ĵ

R
, ~88!

where the terms of orderĵ/R in both formulas relate to the
time derivatives of the vectork.

Partial derivatives of the functionBa(s,s0 ,t* ,k) defined
by the integral~45! read

]Ba

]s
5

1

A12va
2

~12k•va!2

r a2k•ra
, ~89!

]Ba

]s0
52

1

A12va0
2

~12k•va0!2

r 0a2k•r0a
, ~90!

]Ba

]t*
5Ca~s0!2Ca~s! , ~91!

]Ba

]ki
5Da

i ~s0!2Da
i ~s!12@Ea

i ~s0!2Ea
i ~s!#. ~92!

The partial derivative]Ba /]t* is found with the help of
relationships~71!, ~74!. Calculation of the partial derivative
]Ba /]ki is realized by making use of Eqs.~72!, ~73! and
~75!, ~76! respectively. The integrals in Eqs.~74!–~76! are
not calculable analytically in general. If we assume that
accelerations of gravitating bodies are small so that the
locity of each body can be considered as a constant,
derivatives~91!, ~92! are approximated by simpler expre
sions

]Ba

]t*
52

1

A12va
2

12k•va

r a2k•ra
1

1

A12va0
2

12k•va0

r 0a2k•r0a
1•••,

~93!
2-11
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]Ba

]ki
52

12k•va

A12va
2

xa
j ~s!

r a2k•ra
1

12k•va0

A12va0
2

xa
j ~s0!

r 0a2k•r0a

1
2va

j

A12va
2

ln~r a2k•ra!

2
2va0

j

A12va0
2

ln~r 0a2k•r0a!1••• . ~94!

Residual terms, denoted by ellipses, can be calculated f
the integrals in Eqs.~74!–~76! if one knows the explicit
functional dependence of the bodies’ velocities on time. O
expects the magnitude of the residual term to be so small
it is unimportant for the following discussion@67#. The ex-
pressions~93!, ~94! will be explicitly used in Sec. VII B for
discussion of the gravitational shift of frequency by a mo
ing gravitational lens.

VII. APPLICATIONS TO RELATIVISTIC ASTROPHYSICS
AND ASTROMETRY

A. Shapiro time delay in binary pulsars

1. Approximation scheme for calculation of the effect

Timing of binary pulsars is one of the most importa
methods of testing general relativity in the strong gravi
tional field regime~@68–72#, and references therein!. Such an
opportunity exists because of the possibility to measure
some binary pulsars the so-called post-Keplerian~PK! pa-
rameters of the pulsar’s orbital motion. The PK paramet
quantify different relativistic effects and can be analyzed
ing a theory-independent procedure in which the masse
the two stars are the only dynamic unknowns@73#. Each of
the PK parameters depends on the masses of orbiting sta
a different functional way. Consequently, if three or mo
PK parameters can be measured, the overdetermined sy
of the equations can be used to test the gravitational the

Especially important for this test are binary pulsars
relativistic orbits visible nearly edge-on. In such systems
servers can easily determine masses of orbiting stars me
ing the ‘‘range’’ and ‘‘shape’’ of the Shapiro time delay i
the propagation of the radio pulses from the pulsar to
observer independently of other relativistic effects. Perh
the most famous examples of the nearly edge-on binary
sars are PSR B1855109 and PSR B1534112. The sine of
inclination anglei of the orbit of PSR B1855109 to the line
of sight makes up a value of about 0.9992 and the ra
parameter of the Shapiro effect reaches 1.27ms @74#. The
corresponding quantities for PSR B1534112 are 0.982 and
6.7 ms @75#. All binary pulsars emit gravitational waves,
fact which was confirmed with the precision of about 0.3
by Taylor and collaborators@76#. New achievements in tech
nological development and continuous upgrading the larg
radio telescopes extend our potential to measure wit
higher precision the static part of the gravitational field of t
binary system as well as the influence of the veloci
dependent terms in the metric tensor, generated by the m
ing stars, on propagation of radio signals from the pulsa
12400
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the observer. These terms produce an additional effec
timing observations which will reveal itself as a small exce
to the range and shape of the known Shapiro delay mak
its representation more intricative. The effect under disc
sion cannot be investigated thoroughly and self-consiste
within the post-Newtonian approximation~PNA! scheme
even if the velocity-dependent terms in the metric tensor
taken into account@54–56#. This is because the PNA schem
does not treat all retardation effects in the propagation of
gravitational field properly.

In this section we present the exact Lorentz covari
theory of the Shapiro effect which includes, in addition to t
well known logarithm, all corrections for the velocities of th
pulsar and its companion. However, later on we shall rest
ourselves to terms which are linear with respect to the
locities. The problem is that due to the validity of the viri
theorem in gravitational bound systems the terms being q
dratic with respect to velocities are proportional to the gra
tational potential of the system. This means that a pro
treatment of the quadratic with respect to velocity terms c
be achieved only within the second post-Minkowskian a
proximation for the metric tensor which is not considered
the present paper.

The original idea of the derivation of the relativistic tim
delay in the static and spherically symmetric field of a se
gravitating body belongs to Irwin Shapiro@52#. Regarding
binary pulsars thestatic part of the Shapiro time delay ha
been computed by Blandford and Teukolsky@77# under the
assumption of everywhere weak andstatic gravitational
fields. Nordtvedt@54#, Klioner @55#, and Wex@56# calculated
the Shapiro time delay in the gravitational field of uniform
moving bodies but without accounting for the retardation
the propagation of the gravitational field. The mathemati
technique of the present paper allows us to treat the rela
istic time delay rigorously and account for all effects caus
by thenonstationarypart of the gravitational field of a binary
pulsar, that is, to find in the first post-Minkowskian approx
mation all special-relativistic corrections of orde
va /c, va

2/c2, etc., to the static part of the Shapiro effe
whereva denotes characteristic velocity of bodies in the
nary pulsar.

Let us assume that the origin of the coordinate system
at the barycenter of the binary pulsar. Radio pulses are e
ted rather close to the surface of the pulsar and the coo
nates of the point of emissionx0 can be given by the equa
tion

x05xp~ t0!1X~ t0! , ~95!

wherexp are the barycentric coordinates of the pulsar’s c
ter of mass andX are the barycentric coordinates of the po
of emission both taken at the moment of emission of
radio pulset0. At the moment of emission the spatial orie
tation of the pulsar’s radio beam is almost the same w
respect to the observer on Earth. Hence, we are allowe
assume that the vectorX is constant at every ‘‘time’’ when
an emission of a radio pulse takes place@78–83#. In what
follows the formula~51! plays the key role. However, befor
performing the integral in this formula it is useful to deriv
2-12
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FIG. 2. Schematic illustration of the Shapir
time delay in a binary pulsar. The pulsar emi
radio signal at the timet0 which reaches the ob
server at the timet. For calculation of the Shapiro
time delay positions of the pulsar and its compa
ion must be taken at the retarded instants of tim
s0 ands corresponding to thoset0 andt. See Fig.
3 for further explanations.
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the relationship between retarded timess ands0 given by the
expressions~11! and~46!, respectively. Subtracting Eq.~46!
from Eq. ~11! and taking into account the relationship~43!,
we obtain

s2s05R2r a1r 0a1D~ t,t0! , ~96!

where R5uRu, R5x2x0 , r a5ux2xa(s)u, and r 0a5ux0
2xa(s0)u. We note that the point of the observationx is
separated from the binary system by a very large dista
approximately equal toR. On the other hand, the size of th
binary system cannot exceed the distancer 0a . Thus, the
Taylor expansion ofr a with respect to the small paramet
r 0a /R is admissible. This yields

r a5uR1x02xa~s!u5R2K•@x02xa~s!#1OS r 0a

R D ,

~97!

where the unit vectorK is defined in Eq.~36!. Using the
approximationK52k1O(G), formula ~96! is reduced to
the form

s2s05r 0a2k•r0a1k•@xa~s!2xa~s0!#1OS r 0a

R D1O~G! ,

~98!

which explicitly shows that the difference between the
tarded timess and s0 is of the order of time interval being
required for light to cross the binary system. It is this interv
which is characteristic in the problem of propagation of lig
rays from the binary~or any other gravitationally bound!
system to the observer on Earth. Therefore, the retarded
s taken along the light ray trajectory changes only a lit
during the entire process of propagation of light from t
pulsar to the observer while the coordinate timet changes
enormously. This remarkable fact was never noted in an
previous works devoted to study of propagation of elect
magnetic signals from remote astronomical systems to
observer on Earth.

In addition to the expression~98!, we can show that time
differencess02t0 and s2t0 are also of the same order o
12400
ce

-

l
t

e
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-
e

magnitude ass2s0. Indeed, assuming that the velocities
pulsar and its companion are small compared to the spee
light, we get from Eqs.~46! and ~98! for these increments,

s02t052ux02xa~s0!u52r0a2r0a•ya1O~ya
2!1O~G! ,

~99!

s2t052~k•r0a!~12k•ya!1O~ya
2!1O~G! , ~100!

wherer0a5x02xa(t0), r0a5ur0au, andya[va(t0). The re-
lationships~99!, ~100! prove our previous statement and r
veal that coordinates of bodies comprising the system
their time derivatives can be expanded in Taylor ser
around the time of emission of the radio signalt0 in powers
of s2t0 and/ors02t0. Figure 2 illustrates the geometry o
the mutual positions of the binary pulsar and the obser
and Fig. 3 explains relationships between position of pho
on the light trajectory and retarded positions of pulsar and
companion.

In what follows we concentrate our efforts on the deriv
tion of the linear with respect to velocity of moving bodie
corrections to the static part of the Shapiro delay. Calcu
tions are realized using expression~51! where the integral is
already proportional to the ratiova /c. Hence, in order to
perform the integration we take into account only first ter
in the expansion of the integrand with respect tot0. Then,
the integral reads

E
s0

s

ln~r a2k•ra!~k• v̇a!dz

5k• v̇a~ t0! E
s0

s

ln@ t* 1k•xa~ t0!2z#dz .

~101!

After this transformation the integral acquires table form a
its calculation is rather trivial. Accounting for Eqs.~98!–
~100!, the result of integration yields
2-13
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FIG. 3. Schematic space-time diagram showing the relationship between positions of a photon taken at different instants oft0 ,
t1, . . . , t6 ~events 0,1, . . . ,6 on thephoton’s null world line! and positions of the light-ray-deflecting bodies~marked by the black circles!
taken at the instants of the retarded time corresponding to the instantst0 , t1, . . . ,t6. For simplicity only the two-body system is considere
The photon is deflected by the retarded gravitational field of the bodies expressed through the Lie´nard-Wiechert potentials. Also shown ar
positions of the bodies~marked by the unfilled circles! taken on the spacelike hypersurfaces~dashed lines! of the time instantst0 , t1, . . . , t6.
As the photon approaches the system~events 0,1! it moves in the variable gravitational field of two bodies. After crossing the system~events
5,6! the gravitational field at the photon’s position is ‘‘frozen’’ since the photon moves along the same light cone as the gravitatio
propagates. The ‘‘freezing’’ of gravitational field takes place during propagation of the photon inside the system~events 2,3,4!. Spatial
positions of gravitating bodies taken at the retarded instants of time are very close to those taken at the hypersurfaces of constant
photon moves near or inside the system. It explains why the post-Newtonian solution for the metric tensor can be applied in this
as well as the post-Minkowskian one for calculation of the photon’s propagation. Retarded and instantaneous spatial positio
gravitating bodies are drastically different when photon is at large distance from the system~far outside the near zone!. In this case only the
post-Minkowskin retarded solution for the metric tensor can be applied for an adequate description of the gravitational perturbatio
photon’s trajectory.
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ln@ t* 1k•xa~ t0!2z#dz

5~r 0a2k•r0a!@ ln~r 0a2k•r0a!21#

2~r a2k•ra!ln~r a2k•ra!1O~ya! , ~102!

wherer a andr 0a have the same meaning as in Eq.~96!. The
result ~102! is multiplied by the radial acceleration of th
gravitating body according to Eq.~101!. Terms forming such
a product can reach in a binary pulsar the maximal mag
tude of order (Gma /c3)(x/Pb)(y/c)ln(12sin i), wherex is
the projected semimajor axis of the binary system expres
in light seconds,Pb is its orbital period, andi is the angle of
inclination of the orbital plane of the binary system to t
line of sight. For a binary pulsar such as PSR B1534112 the
terms under discussion are about 1025 ms which is too small
to be measured. For this reason, all terms depending on
acceleration of the pulsar and its companion will be omit
from the following considerations.
12400
i-

ed

he
d

Let us note that coordinates of theath body taken at the
retarded times can be expanded in Taylor series in th
neighborhood of times0 ,

xa~s!5xa~s0!1va~s0!~s2s0!1O@~s2s0!2# ~103!

or, accounting for Eq.~98!,

xa~s!5xa~s0!1ya ~r0a2k•r0a!1O~ya
2! . ~104!

Making use of this expansion one can prove that the la
distancer a relates to the small oner 0a by the important
relationship

r a
22~k•ra!25r 0a

2 2~k•r0a!222~r0a2k•r0a!@ya•r0a

2~k•r0a!~k•ya!#1O~ya
2! . ~105!

Moreover,
2-14
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r 0a1k•r0a5r0a1k•r0a1ya•r0a1~k•ya!r0a1O~ya
2! .
~106!

As a consequence of simple algebra we obtain

r a2k•ra

r 0a2k•r0a
5

r a
22~k•ra!2

r 0a
2 2~k•r0a!2

r 0a1k•r0a

r a1k•ra
, ~107!

which gives, after making use of Eqs.~105!, ~106!, the fol-
lowing result:

r a2k•ra

r 0a2k•r0a
5

11k•ya

r a1k•ra
@r0a1k•r0a2ya•r0a

1~k•r0a!~k•ya!#1O~ya
2! . ~108!

It is straightforward to prove that

r a1k•ra52~R1k•r0a!1OS r 0a
2

R D , ~109!

whereR5uRu is the distance from the point of emission
the point of observation. This distance is expanded as

R5R1xE1w2xp2X , ~110!

whereR is the distance between the barycenters of the
nary pulsar and the solar system,xE is the distance from the
barycenter of the solar system to the center of mass of
Earth,w is the geocentric position of the radio telescope,xp
are coordinates of the center of mass of the pulsar with
spect to the barycenter of the binary system, andX are co-
ordinates of the point of emission of radio pulses with
spect to the pulsar proper reference frame. The distanceR is
gradually changing because of the proper motion of the
nary system in the sky. It is well known that the prop
motion of any star is small and, hence, can be neglecte
the time delay relativistic corrections. All other distances
formula ~110! are of order of either diurnal, or annual, o
pulsar’s orbital parallax with respect to the distanceR.
Hence, when considering relativistic corrections in the S
piro time delay, the distanceR can be taken as a constan
Such an approximation is more than enough to put

ln~r a1k•ra!5 ln~2R!1OS r 0a

R D.const, ~111!

whereR5uRu. Constant terms are not directly observable
pulsar timing because they are absorbed in the initial ro
tional phase of the pulsar. For this reason, we shall omit
simplicity the term ln(ra1k•ra) from the final expression fo
the Shapiro time delay.

Accounting for all approximations having been develop
in this section we obtain from Eqs.~51!, ~108!, and~111!,
12400
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D~ t,t0!522(
a51

N

ma$~12k•ya!ln@r0a1k•r0a2ya•r0a

1~k•r0a!~k•ya!#1k•ya%1OS Gma

c3

ya
2

c2D
1OS Gma

c3

ya

c

x

Pb
D 1OS Gma

c3

x

RD . ~112!

This formula completes our analytic derivation of th
velocity-dependent corrections to the Shapiro time delay
binary systems. It also includes residual terms which h
not been deduced by other authors@84#.

2. Post-Newtonian versus post-Minkowskian calculations
of the Shapiro time delay in binary systems

Our approach clarifies the principal question why t
post-Newtonian approximation was efficient for the corre
calculation of the main~velocity-independent! term in the
formula ~112! for the Shapiro time delay in binary system
We recall that the post-Newtonian theory operates with
instantaneous values of the gravitational potentials in
near zone of the gravitating system. In the post-Newton
scheme coordinates and velocities of gravitating bodies,
ing arguments of the metric tensor, depend on the coordin
time t. Thus, if we expand these coordinates and veloci
around the time of emission of lightt0 we get for the com-
ponents of metric tensorgab@ t,x(t),xa(t),va(t)# a Taylor
expansion which reads

gab@ t,x~ t !,xa~ t !,va~ t !#

5gab@ t,x~ t !,xa~ t0!,va~ t0!#

1H ]gab@ t,x~ t !,xa~ t0!,va~ t0!#

]xa
i

va
i ~ t0!

1
]gab@ t,x~ t !,xa~ t0!,va~ t0!#

]va
i

v̇a
i ~ t0!J ~ t2t0!1••• .

~113!

This expansion is divergent if the time intervalt2t0 exceeds
the orbital periodPb of the gravitating system. This is th
reason why the post-Newtonian scheme does not work if
time of integration of the equations of light propagation
bigger than the orbital period.

On the other hand, the post-Minkowskian scheme gi
components of the metric tensor in terms of the Lie´nard-
Wiechert potentials being functions of retarded times. We
have shown that in terms of the retarded time argument
characteristic time for the process of propagation of lig
rays from the pulsar to observer corresponds to the inte
of time being required for light to cross the system. Duri
this time gravitational potentials cannot change their num
cal values too much because of the slow motion of the gra
tating bodies. Hence, if we expand coordinates of the bod
2-15
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aroundt0 we get for the metric tensor expressed in terms
the Liénard-Wiechert potentials the following expansion:

gab@ t,x~ t !,xa~s!,va~s!#

5gab@ t,x~ t !,xa~ t0!,va~ t0!#

1H ]gab@ t,x~ t !,xa~ t0!,va~ t0!#

]xa
i

va
i ~ t0!

1
]gab@ t,x~ t !,xa~ t0!,va~ t0!#

]va
i

v̇a
i ~ t0!J ~s2t0!1••• ,

~114!

which always converges because the time differences2t0
never exceeds the orbital period@see Eq.~100!#.

Nevertheless, as one can easily see, the leading term
the expansions~113! and~114! coincide exactly which indi-
cates that the terms in the solution of the equations of li
propagation depending only on the static part of gravitatio
field should be identical independently on what kind of a
proximation scheme is used for finding the metric tens
Thus, the post-Newtonian approximation works fairly w
for finding theleadingpart of the solution of the equations o
light geodesics. However, it cannot be used for taking i
account perturbations of the light trajectory caused by
motion of massive bodies in the light-deflecting, gravitatio
ally bounded astronomical systems@86#. It is worth empha-
sizing once again that our approach is based on the p
Minkowskian approximation scheme for the calculation
gravitational potentials which properly accounts for all ret
dation effects in the motion of bodies by means of t
Liénard-Wiechert potentials.

3. Shapiro effect in the parametrized post-Keplerian formalism

The parametrized post-Keplerian~PPK! formalism was
introduced by Damour and Deruelle@85# and partially im-
proved by Damour and Taylor@73#. It parametrizes the tim-
ing formula for binary pulsars in a general phenomenolog
way @87,88#. In order to update the PPK presentation of t
Shapiro delay we use expression~112!. A binary pulsar con-
sists of two bodies, the pulsar~subindexp! and its compan-
ion ~subindexc!. The emission of a radio pulse takes pla
very near to the surface of the pulsar and, according to
~95! and the related discussion, we can approximateX5Xk
whereX is the distance from the center of mass of the pul
to the pulse-emitting point. In this approximation we g
r0p5Xk and, as a consequence,

ln@r0p1k•r0p2yp•r0p1~k•r0p!~k•yp!#5 ln~2X!5const.
~115!

Hence, the formula~112! for the Shapiro time delay can b
displayed in the form
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D~ t,t0!522mc$~12k•yc!

3 ln@r0c1k•r0c2yc•r0c1~k•r0c!~k•yc!#

1k•yc%22mp@~12k•yp!ln~2X!1k•yp#,

~116!

where we have omitted residual terms for simplicity. It w
shown in Ref.@89# that any constant term multiplied by th
dot productk•yp or k•yc is absorbed into the epoch of th
first pulsar’s passage through the periastron. Thus, we c
clude that terms relating to the pulsar in the formula~116!
and the very last term in the curly brackets are not direc
observable. For this reason, we shall omit them in what
lows and consider only the logarithmic contribution to t
Shapiro effect caused by the pulsar’s companion. Accord
to formula ~95! we have

r0c5r1Xk, r0c5r 1
X

r
k•r1•••, ~117!

wherer5xp(t0)2xc(t0) is the vector of relative position o
the pulsar with respect to its companion,r 5ur u, and dots
denote residual terms of higher order. Taking into accoun
previous remarks and omitting directly unobservable ter
we conclude that the Shapiro delay assumes the form

D~ t,t0!522mc~12k•yc!

3 lnF S 11
X

r D ~r 1k•r !2yc•r1~k•r !~k•yc!G .
~118!

If the pulsar’s orbit is not nearly edgewise and the ratioX/r
is negligibly small the time delay can be decomposed i
three terms:

D~ t,t0!522mcln~r 1k•r !12mc~k•yc!

3 ln~r 1k•r !12mc

yc•r2~k•r !~k•yc!

r 1k•r
.

~119!

The first term on the right hand side of Eq.~119! is the
standard expression for the Shapiro time delay. The sec
and third terms on the right hand side were discovered
Nordtvedt@54# and Wex@56# under the assumption of uni
form and rectilinear motion of pulsar and companion in t
expression for the post-Newtonian metric tensor of the
nary system. One understands now that this assumption
equivalent to taking into account primary terms of retard
tion effects in propagation of gravitational field of pulsar a
its companion. Nevertheless, the approximation used by N
dtvedt and Wex works fairly well only for terms linear wit
respect to velocities of bodies. Had one tried to take i
account quadratic terms with respect to velocities using
post-Newtonian approach an inconsistent result would h
been obtained, at least under certain circumstances@90#.

In what follows only the case of the elliptic motion of th
pulsar with respect to its companion is of importance. Mo
2-16
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over, we do not use the expansion~119! keeping in mind the
case of the nearly edgewise orbits for which the magnit
of r 1k•r term can be pretty small near the event of t
superior conjunction of pulsar and companion. The size
the shape of an elliptic orbit of the pulsar with respect to
companion are characterized by the semimajor axisaR and
the eccentricitye (0<e,1). The orientation in space of th
plane of the pulsar’s motion is defined with respect to
plane of the sky by the inclination anglei and the longitude
of the ascending nodeV. For orientation of the pulsar’s
position in the plane of motion one uses the argument of
pericenterv. More precisely, the orientation of the orbit
defined by three unit vectors (l,m,n) having coordinates
@8,85#,

l5~cosV,sinV,0! , ~120!

m5~2cosi sinV,cosi cosV,sini ! ,

n5~sin i sinV,2sin i cosV,cosi ! .

In this coordinate system we have the unit vectork to bek
52K5(0,0,21) @91#. The coordinates of the pulsar in th
orbital plane are the radius vectorr and the true anomalyf.
In terms ofr and f one has according to@85# ~see also Ref.
@8#, Chap. 1!

r5r ~Pcosf 1Q sin f ! , ~121!

where the unit vectorsP, Q are defined by

P5 l cosv1m sinv, Q52 l sinv1m cosv . ~122!

The coordinate velocity of the pulsar’s companion is giv
by

yc52
mp

M
ṙ , ~123!

ṙ5S GM

p D 1/2

@2Psin f 1Q~cosf 1e!# , ~124!

whereM5mp1mc ; p5aR(12e2)1/2 is the focal param-
eter of the elliptic orbit, andmp andmc are the masses of th
pulsar and its companion. Accounting for relationships

r 5aR~12e cosu! , r cosf 5aR~cosu2e!,

r sin f 5aR~12e2!1/2sinu , ~125!

whereu is the eccentric anomaly relating to the time of em
sion,t0[T, and the moment of the first passage of the pul
through the periastronT0, by the Kepler transcendental equ
tion

u2e sinu5nb~T2T0!, ~126!

we obtain

k•r52aR sin i @~cosu2e!sinv1~12e2!1/2cosv sinu# ,
~127!
12400
e

d
s

e

e

-
r

r•yc52acaRnbe sinu , ~128!

k•yc5acnb~12e2!21/2sin i Fe cosv

1
~cosu2e!cosv2~12e2!1/2sinv sinu

12e cosu G .

~129!

Here ac5aRmp /M , andnb5(GM/aR
3)1/2 is the orbital fre-

quency related to the orbital periodPb by the equationnb
52p/Pb .

Ignoring all constant factors, the set of equations given
this section allows us to write down the Shapiro delay~118!
in the form

DS~T!52
2Gmc

c3
lnH 12e cosu2sin i @sinv~cosu2e!

1~12e2!1/2cosv sinu#1
2p

sin i

x

Pb

mp

mc
e sinu

2
2p sin i

~12e2!1/2

x

Pb

mp

mc
@sinv~cosu2e!

1~12e2!1/2cosv sinu#Fe cosv

1
~cosu2e!cosv2~12e2!1/2sin v sinu

12e cosu G J ,

~130!

where in front of the logarithmic function we have omitte
the term of order (Gm/c3)(yc /c) which is small and hardly
be detectable in future. The term of orderX/r in the argu-
ment of the logarithm is also too small and is omitted. T
magnitude of the velocity-dependent terms in the argum
of the logarithm is of order 1023– 1024. These terms can be
comparable with the main terms in the argument of the lo
rithm when the pulsar is near the superior conjunction w
the companion and the orbit is nearly edge-on. The veloc
dependent terms cause a small surplus distortion in the s
of the Shapiro effect which may be measurable in futu
timing observations when better precision and time reso
tion will be achieved. Unfortunately, existence of the, s
called, bending time delay@83# may make observation of th
velocity-dependent terms in the Shapiro time delay a rat
hard problem.

B. Moving gravitational lenses

The theoretical study of astrophysical phenomena cau
by a moving gravitational lens certainly deserves a fixed
tention. Though effects produced by the motion of the le
are difficult to measure, they can give us an additional va
able information on the lens parameters. In particular, a le
ing object moving across the line of sight should caus
redshift difference between multiple images of a backgrou
2-17
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FIG. 4. Relative configuration of observe
source of light, and a moving gravitational len
deflecting light rays which are emitted at the m
ment t0 at the pointx0 and received at the mo
ment t at the point x. The lens moves along
straight line with constant velocity from the re
tarded positionxa(s0) through thatxa(s) and ar-
rives to the pointxa(t) at the moment of obser
vation. The characteristic time of the proce
corresponds to the time of propagation of lig
from the point of emission up to the point of ob
servation.
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object like a quasar lensed by a galaxy, and a brightn
anisotropy in the microwave background radiation@92#.
Moreover, velocity-dependent terms in the equation of gra
tational lens along with proper motion of the deflector c
distort the shape and the amplitude of magnification cu
observed in a microlensing event. Slowly moving gravi
tional lenses are ‘‘conventional’’ astrophysical objects a
effects caused by their motion are small and hardly det
able. However, a cosmic string, for example, may produc
noticeable observable effect if it has sufficient mass per
length. Gradually increasing precision of spectral and pho
metric astronomical observations will make it possible
measure all these and other effects in the foreseeable fu

1. Gravitational lens equation

In this section we derive the equation of a moving gra
tational lens for the case that the velocityva of theath light-
ray-deflecting mass is constant but without any other res
tions on its magnitude. This assumption simplifi
calculations of all required integrals allowing to bring the
to a manageable form. In what follows it is convenient
introduce two vectors§a5x(s)2xa(s) and§0a5x(2t02s0)
2xa(s0) ~see Fig. 4 for more details on the geometry
lens!. We also shall suppose that the length of vector§a is
small compared to any of the distancesR5ux2x0u, r a5ux
2xa(s)u, or r 0a5ux02xa(s0)u. It is not difficult to prove by
straightforward calculations, taking account of the light-co
equation, that
12400
ss
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e
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e

§a5ra2kr a , §0a5r0a1kr 0a , ~131!

where, as in the other parts of the present paper, we h
ra5x2xa(s) and r0a5x02xa(s0). From these equalities i
follows that

k•§a52
da

2

2r a
, k•§0a5

d0a
2

2r 0a
, ~132!

and

r 0a2k•r0a52r 0a2
d0a

2

2r 0a
, ~133!

where distancesda5u§au and d0a5u§0auare Euclidean
lengths of corresponding vectors. We can see as well
making use of the relationships~131! yields

r a2va•ra5r a~12k•va!2§a•va5r a~12k•va!1O~vada! ,

~134!

and the residual term can be neglected because of its sm
ness compared to the first one.

It is worth noting that the vector§a is approximately equa
to the impact parameter of the light ray trajectory with r
spect to the position of the deflector at the retarded tims.
Indeed, let us introduce the vectorsĵ i5P j

i xj and ĵa
i

5P j
i xa

j (s) which are lying in the plane being orthogonal
2-18
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the unperturbed trajectory of light ray. Then, from the de
nitions ~131!, ~132! one immediately derives the exact rel
tionship

ĵ2 ĵa5§a1k
da

2

2r a
, ~135!

from which follows

§a5 ĵ2 ĵa2k
da

2

2r a
. ~136!

A similar relationship may be derived for§0a . It is worth-
while to note that

Pj
i r a

j 5Pj
i § j5 ĵ i2 ĵa

i ~137!

and

FIG. 5. The gravitational lens geometry for a moving lensM
5(a51

N ma being at the distancer from the point of observationO
with coordinatesxi(t). A source of lightS with coordinatesx0(t0)
is at the distanceR from O. Vectorj is the impact parameter of th
unperturbed path of photon in the observer plane. VectorjL denotes
position of the center of mass of the lensing object in the lens pla

Vector h5BEW is the observed image position of the backgrou
source of lightS shifted in the lens plane from its true position b
the gravitational field of the lens to the pointE. Coordinates of the
lens areXi(l* )5M 21(a51

N maxa
i (l* ), and coordinates of the

point E arexi(l* )5xi(t)1si(l* 2t).
12400
-

r a2k•ra5
da

2

2r a
5

uĵ2 ĵau2

2r a
1

da
4

8r a
3

. ~138!

Let us denote the total angle of light deflection caused by
ath body as@use Eqs.~68! and ~134!–~138!#

aa
i ~t!54ma

12k•va

A12va
2

ĵ i2 ĵa
i

uĵ2 ĵau2
. ~139!

Thus, for the vectorsa i andb i introduced in Eqs.~68!, ~38!
and from the formulas~74!–~76! one obtains@93#

a i~t!5 (
a51

N

aa
i ~t!1OS Gma

c2r a

va

c D 1OS Gma

c2r a

da

r a
D ,

~140!

b i~t!52
1

R (
a51

N

r aaa
i ~t!2

2

R (
a51

N mavaT
i

A12va
2

lnS uĵ2 ĵau2

2r a
D

1OS Gma

c2r a

va

c D 1OS Gma

c2r a

da

r a
D , ~141!

b i~t0!52
2

R (
a51

N mavaT
i

A12va
2

ln~2r 0a!1OS Gma

c2r a

va

c D
1OS Gma

c2r a

da

r a
D , ~142!

g i~t!5OS Gma

c2r a

va
2

c2D , ~143!

where ~by definition! the transverse velocityvaT
i 5P j

i va
j is

the projection of the velocity of theath body onto the plane
being orthogonal to the unperturbed light trajectory.

Let us introduce the new operator of projection onto t
plane which is orthogonal to the vectorK :

P i j 5d i j 2KiK j . ~144!

It is worth emphasizing that the operatorP i j differs from
Pi j 5d i j 2kikj by relativistic corrections because of the rel
tion ~37! between the vectorsk and K . We define a new
impact parameterj i5P j

i xj5P j
i x0

j of the unperturbed light
trajectory with respect to the direction defined by the vec
K . The old impact parameterĵ differs from the new onej by
relativistic corrections. The direction of the perturbed lig
trajectory at the point of observation is determined by
unit vectors according to Eq.~64!. We use that definition to
draw a straight line originating from the point of observati
and directed along the vectors up to the point of its inter-
section with the lens plane~see Fig. 5!. The line is param-
etrized through the parameterl and its equation is given by

xi~l!5xi~ t !1si ~l2t !, ~145!

e.
2-19
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wherel should be understood as the running parameter,t is
the value of the parameterl fixed at the moment of obser
vation, andxi(t) are the spatial coordinates of the point
observation. On the other hand, the coordinates of the p
xi(l) at the instant of timel* when the line~145! intersects
the lens plane, can also be defined as

xi~l* !5Xi~l* !1h i2jL
i , ~146!

where h i5P j
i xi(l* ) is the perturbed value of the impa

parameterj i caused by the influence of the combined gra
tational fields of the ~micro! lenses ma , Xi(l* )
5M 21(a51

N maxa
i (l* ) are coordinates of the center of ma

of the lens at the momentl* . When the line~145! intersects
the lens plane the numerical value ofl up to corrections of
orderO(d/r ) is equal to that of the retarded times defined
by an equation similar to Eq.~11! in which r a is replaced by
r, the distance from observer to the lens. It means that at
lens planel* 2t.2r . Accounting for this note, and apply
ing the operator of projectionPi j to Eq. ~145!, we obtain

h i5j i2@a i~t!1b i~t!2b i~t0!1g i~t!# r . ~147!

Finally, making use of the relationships~140!–~142! and ex-
panding distancesr a , r 0a around the valuesr, r 0, respec-
tively ~see Fig. 5 for the meaning of these distances!, the
equation of gravitational lens in vectorial notations reads
follows:

h5j2
rr 0

R
a~j!1

r

R
k~j! , ~148!

where

a~j!54(
a51

N

ma

12k•va

A12va
2

j i2ja
i

uj2jau2
, ~149!

k~j!52(
a51

N mavaT
i

A12va
2

lnS uj2jau2

2r a r 0a
D . ~150!

It is not difficult to realize that the third term on the righ
hand side of Eq.~148! is (da /r 0)(va /c) times smaller than
the second one. For this reason we are allowed to negle
and represent the equation of gravitational lensing in its c
ventional form@94,95#

h5j2
rr 0

R
a~j! , ~151!

wherea(j) is given by Eq.~149!. It is worthwhile empha-
sizing that although the assumption of constant velocities
particlesva was made, Eq.~151! is actually valid for arbi-
trary velocities under the condition that the accelerations
the bodies are small and can be neglected.

It is useful to compare the expression for the angle
deflection a i given in Eq. ~149! with that derived in our
previous work@1#. In that paper we considered different a
pects of astrometric and timing effects of gravitational wav
from localized sources. The gravitational field of the sou
12400
nt

-

he

s

t it
-

f

f

f
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was described in terms of static monopole, spin dipole,
time-dependent quadrupole moments. The time delay and
angle of light deflectiona i in case of gravitational lensing
were obtained in the following form@1#:

t2t05ux2x0u24c12M ln~4rr 0! , a i54]̂ ic ,

~152!

where the partial ~‘‘projective’’ ! derivative reads ]̂ i

[P i
j ]/]j j , andr and r 0 are distances from the lens to ob

server and the source of light, respectively. The quantityc is
the, so-called, gravitational lens potential@94,95# having the
form @1#

c5FM1e jpqkpS q]̂ j1
1

2
I pq~ t* !]̂pqG lnuju , ~153!

ande jpq is the fully antisymmetric Levi-Civita symbol. Ex
pression~153! includes the explicit dependence on the sta
massM, spin S i , and time-dependent quadrupole mome
I i j of the deflector taken at the momentt* of the closest
approach of the light ray to the origin of the coordinate s
tem which was chosen at the center of mass of the defle
emitting gravitational waves so that the dipole momentI i of
the system equals to zero identically. This generalizes
result obtained independently in Ref.@11# for the case of a
stationary gravitational field of the deflector for the gravit
tional lens potential which is a function of time. In the ca
of the isolated astronomical system ofN bodies the multipole
moments are defined in the Newtonian approximation

M5 (
a51

N

ma , I i5 (
a51

N

maxa
i ,

S i5 (
a51

N

ma~xa3va! i , Ii j 5 (
a51

N

maS xa
i xa

j 2
1

3
xa

2d i j D ,

~154!

where the multiplication symbol denotes the usual Euclide
cross product and, what is more important, coordinates
velocities ofall bodies are taken atone and the same instan
of time. In the rest of this section we assume that velocity
light-ray-deflecting bodies are small and the origin of co
dinate frame is chosen at the barycenter of the gravitatio
lens system. This means that

I i~ t !5 (
a51

N

maxa
i ~ t !50 and İ i~ t !5 (

a51

N

mava
i ~ t !50 .

~155!

Now it is worthwhile to note that coordinates of gravita
ing bodies in Eq.~149! are taken at different instants o
retarded time defined for each body by Eq.~11!. In the case
of gravitational lensing all these retarded times are close
the moment of the closest approacht* and we are allowed to
use the Taylor expansion of the quantity
2-20
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(
a51

N

maxa
i ~s!5 (

a51

N

maxa
i ~ t* !

1 (
a51

N

mava
i ~ t* !~s2t* !1O~s2t* !2 .

~156!

Remembering that retarded times is defined by Eq.~11! and
the moment of the closest approach is given by the relat
ship

t* 5t2k•x5t2k•ra2k•xa~s! , ~157!

we obtain, accounting for Eq.~138!,

s2t* 5k•xa~s!2
da

2

2r a
.k•xa~ t* !1OS da

2

r a
D 1OS va

c
xaD .

~158!

Finally, we conclude that

(
a51

N

maxa
i ~s!5 (

a51

N

mava
i ~ t* !@k•xa~ t* !#1•••, ~159!

where the ellipses denote terms of higher order of mag
tude, and where Eq.~155! has been used.

Let us assume that the impact parameterj i is always
larger than the distanceja

i . Then making use of the Taylo
expansion of the right hand side of Eq.~149! with respect to
ja

i and va /c one can prove that the deflection anglea i is
represented in the form

a i54]̂ iC , ~160!

where the potentialC is given as follows:

C5H (
a51

N

ma2k•(
a51

N

mava~s!

2 (
a51

N

maxa
j ~s!]̂ j1k•(

a51

N

mava~s! xa
j ~s! ]̂ j

1
1

2 (
a51

N

maxa
p~s! xa

q~s! ]̂pqJ lnuju1•••, ~161!
12400
n-

i-

and ellipses again denote residual terms of higher orde
magnitude. Expanding all terms depending on retarded t
in this formula with respect to the timet* , noting that the

second ‘‘projective’’ derivative]̂pq is traceless, and taking
into account the relationship~159!, the center-of-mass con
ditions ~155!, the definitions of multipole moments~154!,
and the vector equality

xa
j ~k•va!2va

j ~k•xa!5@k3~xa3va!# j , ~162!

we find out that with necessary accuracy the gravitatio
lens potential is given byC5c @96–99#. Hence, the gravi-
tational lens formalism elaborated in this paper gives
same result for the angle of deflection of light as it is sho
in formulas~152!,~153!.

2. Gravitational shift of frequency
by a moving gravitational lens

We assume that the velocityva of each body comprising
the lens is almost constant so that we can neglect the bod
acceleration as it was assumed in the previous section.
calculation of the gravitational shift of frequency by a mo
ing gravitational lens is performed by making use of a ge
eral equation~78!. As we are primarily interested in gravita
tional lensing, derivatives of proper times of the source
light T0 and observerT with respect to coordinate timet can
be calculated neglecting contributions from the metric te
sor. This yields

dT0

dt0
5A12v0

2 , ~163!

dt

dT 5
1

A12v2
. ~164!

Accounting for the identity~87!, we obtain from Eq.~81!,
dt0

dt
5

11K•v22(
a51

N

ma@~]s/]t ! ~]/]s! 1~]t* /]t ! ~]/]t* ! 1~]ki /]t ! ~]/]ki !#Ba~s,s0 ,t* ,k!

11K•v012(
a51

N

ma@~]s/]t0! ~]/]s! 1~]s0 /]t0! ~]/]s0! 1~]t* /]t0! ~]/]t* ! 1~]ki /]t0! ~]/]ki !#Ba~s,s0 ,t* ,k!

. ~165!

After taking partial derivatives with the help of relationships~84!–~93!, using the expansions~133!, ~134!, ~138!, neglecting
terms of orderda /r a , ma /r a , ma /r 0a , and reducing similar terms, one gets
2-21
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11z5S 12v0
2

12v2D 1/2 11~K1b2b0!•v14(
a51

N

ma @~12k•va!/A12va
2# ~k3v!•~k3ra!/uj2jau2

11~K1b2b0!•v014(
a51

N

ma @~12k•v0!/A12va
2# ~k3va!•~k3ra!/uj2jau2

, ~166!

where the relativistic correctionsb5b(t,ĵ), b05b(t0 ,ĵ) are given by means of expressions~38!, ~39!, ~70!–~73!. Making
use of relationship~37! between the unit vectorsK andk, the previous formula can be displayed as follows:

11z5S 12v0
2

12v2D 1/2 12k•v14(
a51

N

ma @~12k•va!/A12va
2# ~k3v!•~k3ra!/uj2jau2

12k•v014(
a51

N

ma @~12k•v0!/A12va
2# ~k3va!•~k3ra!/uj2jau2

. ~167!
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This formula is gauge invariant with respect to small co
dinate transformations in the first post-Minkowskian a
proximation which leave the coordinates asymptotica
Minkowskian. Moreover, the formula~167! is invariant with
respect to Lorentz transformations and can be applied
arbitrary large velocities of observer, source of light, a
gravitational lens. In case of slow motion of the source
light, Eq. ~166! can be further simplified by expansion wit
respect to powers ofv0 /c, v/c, andva /c. Neglecting terms
of orderv4/c4, v0

4/c4, (ma /da)(v2/c2), etc., this yields for
the frequency shift

dn

n0
5k•~v02v!F11k•v01~k•v0!22

v0
2

2
1

v2

2 G2
v0

2

2
1

v2

2

1 4(
a51

N

ma

12k•va

A12va
2

@k3~v2va!#•~k3ra!

uj2jau2
, ~168!

wheredn5n2n0. The terms on the right hand side of th
formula depending only on the velocities of the source
light and observer are the part of the special relativistic D
pler shift of frequency caused by the motion of the obser
and the source of light. The last term on the right hand s
of Eq. ~168! describes the gravitational shift of frequen
caused by the time-dependent gravitational deflection of l
rays due to relative motion of lens with respect to obser
@100#. It shows that the static gravitational lens being at r
with respect to observer does not lead to the gravitatio
shift of frequency which appears only if there is a relati
transverse velocity of the lens with respect to the obse
which brings in the dependence of the impact parameter
the ath body, j2ja , on time @101#. By expanding the las
term in expression~168! with respect to powersj/ja the
gravitational shift of frequency reads

S dn

n0
D

gr

54
]c

]t*
1v•a~j! , ~169!
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where the deflection anglea is displayed in Eq.~152!. It is
remarkable that the formula~169! is a direct consequence o
Eq. ~152! for the time delay in gravitational lensing.

Indeed, let us assume that the lens is comprised of
ensemble ofN pointlike bodies each moving with~time-
dependent! velocity va with respect to the origin of the co
ordinate system chosen near the~moving! barycenter of the
lensing object. The velocityV of the center-of-mass of the
gravitational lens is defined as the first time derivative of
dipole momentI i of the lens shown in Eq.~154!, that is,

Vi5
dXi

dt
5

1

M (
a51

N

mava
i 5

İ i

M . ~170!

Using this definition and assuming that at the initial epo
the barycenter of the lens is at the origin of the coordin
system, we find out that the time derivatives of the le
gravitational potential Ref.@96# reads~see the remarks in
Refs.@101,102#, which clarify calculation of the derivatives!

]c

]t*
5S 2MVi ]̂ i1

1

2
İi j ]̂ i j D lnuju ,

]c

]t
50 ,

]c

]t0
5v0

i ]̂ ic5
1

4
~v0•a! . ~171!

The formulas given in Eq.~171! allow us to find out the total
differential of Eq.~152! in terms of the increments of timedt
and dt0. While finding the total differential of the gravita
tional lens equation, it should be also kept in mind that
ymptotically in the limit r 0→1`, r 5const, the following
relationship@see formulas~37!, ~141!, ~142!#:

K52k1a , ~172!

between vectorsK and k holds. Taking differential of Eq.
~152!, using the results of Eqs.~171! and~172!, one confirms
the validity of the presentation~169! for the gravitational
shift of frequency in gravitational lensing. Formula~169!
2-22
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reflects the fact that the gravitational shift of frequency c
be induced if and only if the gravitational lens potential is
function of time.

One sees that, in general, not only the translational mo
of the lens with respect to observer generates the gra
tional shift of frequency but also the time-dependent par
the quadrupole moment of the lens. In addition to this,
emphasize that the motion of observer with respect to
solar system barycenter should produce periodic ann
changes in the observed spectra of images of backgro
sources in cosmological gravitational lenses. This is beca
of the presence of the solar system time-periodic part of
locity v of observer in Eq.~169!. The effect of the frequency
shift may reveal the small scale variations of the tempera
of the CMB radiation in the sky caused by the tim
dependent gravitational lens effect on clusters of galax
having peculiar motion with respect to the cosmological
pansion. However, it will be technically challenging to o
serve this effect because of its smallness.

The simple relationship~169! can be compared to the re
sult of the calculations by Birkinshaw and Gull@Ref. @103#,
Eq. ~9!#. We have checked that the derivation of the cor
sponding formula for the gravitational shift of frequen
given by Birkinshaw and Gull@103# on the ground of a pure
phenomenological approach and cited in Ref.@92# is consis-
tent, at least, in the first order approximation with respec
the velocity of lens@104,105#. Preliminary numerical simu-
lations of the CMB anisotropies by moving gravitation
lenses carried out in Ref.@106# on the premise of formula
~169! under assumptionv50, confirm the significance of the
effect for future space experiments being designed for de
tion of the small scale temperature fluctuations of the CM

However, we would like to make it clear that in practic
the gravitational shift of frequency caused by a movi
gravitational lens must be calculated on the basis of a for
lation different than Eq.~169!. The problem is that the gravi
tational lens is not at infinity but at a finite distance. For th
reason, the calculation and subtraction of the special rela
istic Doppler shift of frequency in Eq.~168! should be done
using the unit vectorK related tok by the transformation
~37!. Using the given transformation for replacement ofk by
K in Eq. ~169!, remembering@see Eqs.~141!,~142!# that
b(t)52r /Ra, and the angleb(t0) is negligibly small, we
obtain for the observable shift of frequency in gravitation
lensing

S dn

n0
D

gr

obs

54
]c

]t*
1

r 0

R
~v•a!1

r

R
~v0•a! , ~173!

where r and r 0 are distances from observer to the le
and from the lens to the source of light respective
R5ux2x0u.r 1r 0. In the limit r 0→1`, r 5const, Eq.
~173! goes over to Eq.~169!.

The last two terms on the right hand side of Eq.~173!
have been derived by Bertotti and Giampieri@107# who used
a different mathematical technique assuming that the len
static. Hence, they missed the first term in the right hand s
of Eq. ~173! discovered by Birkinshaw and Gull@103# who,
in their own turn, neglected the contributions due to the m
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tion of source of light and observer. It is also useful to no
that Eq.~22! in Ref. @107# for the Doppler shift in gravita-
tional lensing contains a misprint of algebraic sign in front
the term depending on the velocity of observer. The error
been corrected in Ref.@108# by Iesset al. @see Eq.~8! in Ref.
@108## so that their result coincides precisely with the la
two terms in the right hand side of our Eq.~173!.

C. General relativistic astrometry in the solar system

1. Theoretical background

For a long time the basic theoretical principles of gene
relativistic astrometry in the solar system were based on
ing the post-Newtoninan approximate solution of the E
stein field equations@7–9,63,109#. The metric tensor of the
post-Newtonian solution is an instantaneous function of
ordinate timet. It depends on the field pointx, the coordi-
natesxa(t), and velocitiesva(t) of the gravitating bodies and
is valid only inside the near zone of the solar system beca
of the expansion of retarded integrals with respect to
small parameterva /c @6#. This expansion restricts the do
main of validity for which the propagation of light rays ca
be considered from the mathematical point of view in a se
consistent manner by the boundary of the near zone. Find
a solution of the equations of light propagation~19! in the
near zone of the, for instance, solar system can be achie
by means of expanding positions and velocities of the so
system bodies in Taylor series around some fixed instan
time, their substitution into the equations of motion of ph
tons ~19!, and their subsequent integration with respect
time. Such an approach is theoretically well justified for
proper description of radar@110# and lunar laser@111# rang-
ing experiments, and the interpretation of the Doppler tra
ing of satellites@107,108,112–114#. The only problem which
arises in the approach under discussion is how to determ
that fiducial instant of time to which coordinates and velo
ties of gravitating bodies should be anchored. Actually,
answer to this question is more vague if one works in
framework of the post-Newtonian approximation sche
which disguises the hyperbolic character of the Einst
equations for the gravitational field and does not allow us
distinguish between advanced and retarded solutions of
field equations@80#. For this reason, propagation of ligh
rays, which always takes place along the isotropic charac
istics of a light cone, is different in the post-Newtonia
scheme from the gravitational-field propagation because
latter propagates in that framework instantaneously and w
infinite speed. Thus, the true causal relationship between
position of the light particle and location of the light-ray
deflecting bodies in the system is violated which leads to
necessity to use some artificial assumptions about the in
values of positions and velocities of the bodies for integ
tion of equations of light propagation~see Fig. 3 for more
details!. One of the reasonable choices is to fix the coor
nates and velocities of the body at the moment of the clo
approach of the light ray to it. Such an assumption was u
by Hellings@10# and put on more firm ground by Klioner an
2-23
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Kopeikin @4# revealing that it minimizes the magnitude
residual terms of the post-Newtonian solution of the eq
tions of light propagation.

As has been explained above, the post-Newtonian
proach has stringent limitations when applied to the integ
tion of equations of light propagation in the case when
light-ray-perturbing gravitating system is not in a stea
state and the points of emissionx0 and observationx of light
are separated by the distance which is much larger than
characteristic~Keplerian! time of the system. The first limi-
tation comes from the fact that the general post-Newton
expansion of the metric tensor diverges as the distancr
from the system increases~see, for instance, Refs.@115–
117#!. Usually this fact has been ignored by previous
searches who used for the integration of the equations
light rays the following truncated form of the metric tenso

g00~ t,x!5211
2U~ t,x!

c2
1O~c24! , ~174!

g0i~ t,x!52
4Ui~ t,x!

c3
1O~c25! , ~175!

gi j ~ t,x!5d i j F11
2U~ t,x!

c2 G1O~c24! , ~176!

where the instantaneous, Newtonian-like potentials are g
by the expressions

U~ t,x!5 (
a51

N
ma

ux2xa~ t !u
, ~177!

Ui~ t,x!5 (
a51

N mava
i ~ t !

ux2xa~ t !u
, ~178!

and all terms describing high-order multipoles have be
omitted @118#. From a purely formal point of view expres
sions~174!–~176! are not divergent when the distancer ap-
proaches infinity but residual terms in the metric tensor a
This means that the post-Newtonian metric cannot be u
for finding solutions of equations of light propagation if th
distancer is larger than some specific valuer 0. This spatial
divergency of the metric tensor is related to the fact that
y

e
na
ds
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expressions~174!–~176! represent only the first terms in th
near-zone expansionof the metric and say nothing about th
behavior of the metric in thefar zone@6,117,119#. The dis-
tancer 0 bounding the near zone is about the characteri
wavelengthlgr of the gravitational radiation emitted by th
system @lgr.(cPb)/(4p), where Pb is the characteristic
Keplerian time of the system#. If we assume, for example
that the main bulk of the gravitational radiation emitted
the solar system is produced by the orbital motion of Jupi
the distancer 0 does not exceed 0.3 pc. Almost all extraso
luminous objects visible in the sky lie far beyond this d
tance. From this point of view, the results of integration
the equations of light propagation from stars of our gala
and extragalactic objects which were performed previou
by different authors on the premise of the implementation
metric tensor~174!–~176! cannot be considered as rigorou
and conclusive for residual terms of such an integration w
never discussed.

The second limitation for the application of the near-zo
expansion of the metric tensor is related to the retarded c
acter of the propagation of the gravitational interaction. T
expressions~174!–~176! are instantaneous functions of tim
and do not show this property of retardation at all. At t
same time the post-Newtonian metric~174!–~176! can still
be used for integration of equations of light rays, at le
from the formal point of view, because the integration w
give a convergent result. However, we may expect that
trajectory of light ray obtained by solving the equations
propagation of light using the instantaneous potentials w
deviate from that obtained using the metric perturbations
pressed as the Lie´nard-Wiechert potentials. Such a deviatio
can be, in principle, so large that the error might be com
rable with the main term of relativistic deflection of ligh
and/or time delay. None of the methods of integration
tempted so far contains error estimates in a precise m
ematical sense; at best, errors have been roughly estim
using matched asymptotic technique@4#. None of the previ-
ous authors have ever tried to develop a self-consistent
proach for calculation of the errors.

One more problem relates to the method of perform
time integration of the instantaneous potentials along the
perturbed trajectory of the light ray. This is because coor
nates and velocities of bodies are functions of time. Even
the case of circular orbits we have a problem of solvi
integrals of the type
E
t0

t

U~ t,x!dt5 (
a51

N

maE
t0

t dt

ux01k ~ t2t0!2Aa@e1 sin~vat1wa!1e2 cos~vat1wa!#u
, ~179!
en
the

dy
on
whereAa , va , andwa are the radius, the angular frequenc
and the initial phase of the orbit of theath body, respec-
tively, ande1 , e2 are the unit orthogonal vectors lying in th
orbital plane. The given integral cannot be performed a
lytically and requires the application of numerical metho
,

-
.

In the case of elliptical motion, the calculations will be ev
more complicated. Implicitly, it was usually assumed that
main contribution to the integral~179! comes from that part
of the trajectory of the light ray which passes near the bo
deflecting light rays so that one is allowed to fix the positi
2-24
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of the body at some instant of time which is close to t
moment of the closest approach of the light ray to the bo
However, errors of such an approximation usually we
never disclosed except for the attempt made by Klioner
Kopeikin @4#. Nevertheless, it is not obvious so far that t
error analysis fulfilled in Ref.@4# is complete and that the us
of the Taylor expansion of coordinates and velocities of
solar system bodies with respect to time, made in the ne
borhood of the instant of the closest approach of photon
the light-deflecting body in order to perform the integrati
in Eq. ~179!, minimizes errors of calculations and allows
to solve light ray equations with better precision. Moreov
such an expansion is allowed only if the photon moves n
or inside the gravitating system. Far outside the system
other method of solving the integral~179! is required@120#.

Regarding this difficulty Klioner and Kopeikin@4# used a
matched asymptotic technique for finding the perturbed
jectory of the light ray going to the solar system from a ve
remote source of light such as a pulsar or a quasar.
whole space-time was separated in two domains, the
and far zones lying correspondingly inside and outside of
distancer 0 being approximately equal to the characteris
length of gravitational waves emitted by the solar syste
The internal solution of the equations of light rays within t
near zone have been obtained by expanding coordinates
velocities of the bodies in the Taylor time series and th
integrating the equations. The external solution of the eq
tions was found by decomposing the metric tensor in gra
tational multipoles and accounting only for the first mon
pole term which corresponds mainly to the static, spheric
symmetric field of the Sun. A global solution was obtain
by matching of the internal and external solutions at
buffer region in order to reach the required astrometric ac
racy of 1marcsec. The approach we have used sounds
sonable and may be used in theoretical calculations. H
ever, it does not help very much to give a final answer to
question at which moment of time one has to fix positio
and velocities of bodies when integrating equations of li
propagation inside the near zone. In addition, the appro
under consideration does not give any recipe how to in
grate equations of light propagation in the external domain
space~beyondr 0) if the higher, time-dependent gravitation
multipoles should be taken into account and what magnit
of the perturbative effects one might expect. In any case,
global solution obtained by the matched asymptotic te
nique consists of two pieces making the visualization of
light ray trajectory obscure and the astrometric implemen
tion of the method impractical.

For these reasons we do not rely in this section upon
technique developed in Ref.@4# but resort to the method o
integration of light ray equations based on the usage of
Liénard-Wiechert potentials. This method allows us to co
struct a smooth and unique global solution of the light pro
gation equations from arbitrary distant source of light to
observer located in the solar system. We are able to ha
the integration of the equations more easily and can ea
estimate the magnitude of all residual terms. Proceedin
this way we also get a unique prediction for that moment
time at which coordinates and positions of gravitating bod
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should be fixed just as the location of the observer is kno
We shall consider three kinds of observations: pulsar timi
very long baseline interferometry~VLBI ! of quasars, and
optical astrometric observations of stars.

2. Pulsar timing

The description of the timing formula is based on t
usage of Eqs.~43! and ~44!. Taking in Eq. ~44!, which
should be compared with its post-Newtonian analogue~179!,
terms up to the orderva /c inclusively, we obtain

Ba~s,s0!52 lnF r a~s!2k•ra~s!

r a~s0!2k•ra~s0!G
2E

s0

s k•va~z! dz

t* 1k•xa~z!2z
1OS va

2

c2D , ~180!

where the retarded timess ands0 should be calculated from
Eqs. ~11! and ~46!, respectively,ra(s)5x2xa(s), ra(s0)
5x02xa(s0), and we assume that the observation is mad
the point with spatial barycentric coordinatesx at the instant
of time t, and the pulsar’s pulse is emitted at the moment0
from the pointx0 which is at the distance of the pulsar fro
the solar system, typically more than 100 pc.

In principle, the first term in this formula is enough t
treat the timing data for any pulsar with accuracy requir
for practical purposes. The denominator in the argumen
the logarithmic function isr a(s0)2k•ra(s0).2R, whereR
is the distance between the barycenter of the solar sys
and the pulsar. The logarithm of 2R is a function which is
nearly constant but may have a secular change because o
slow relative motion of the pulsar with respect to the so
system. All such terms are absorbed in the pulsar’s rotatio
phase and cannot be observed directly. For this reason
what follows, we shall omit the denominator in the logarit
mic term of Eq.~180!. We emphasize that positions of th
solar system bodies in the numerator of the logarithmic te
are taken at the moment of retarded time which is found
iterations of the equations5t2ux2xa(s)u. This makes cal-
culation of the Shapiro time delay in the solar system th
retically consistent and practically more precise.

There is a difference between the logarithmic term in E
~180! and the corresponding logarithmic terms in timing fo
mulas suggested by Hellings@10# and Doroshenko and
Kopeikin @121# where the position of theath body is fixed at
the moment of the closest approach of the pulse to the bo
It is, however, not so important in practice as timin
observations are not yet precise enough to distinguish
Shapiro delay when positions of bodies are taken at
retarded time or at any other one, being close to it. Inde
the maximal difference is expected to be of order
(4GM( /c3)(v( /c)(11cosu)21, where M ( and v( are
mass of the Sun and its barycentric velocity respectively,
u is the angle between directions towards the Sun and
pulsar. Forv( is less than 20 m/s andu cannot exceed 0.25°
the error in the timing formula relating to various definition
of the Sun’s barycentric coordinates in the expression for
Shapiro time delay is less than 200 nanoseconds. Altho
2-25
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this value is beyond the observational limit it would be d
sirable to update existing timing data processing progra
such asTEMPO @122# and TIMAPR @83,121# to make their
functional structure agree with the latest theoretical deve
ments.

The integral in Eq.~180! cannot be calculated analyticall
if the trajectory of motion of the bodies is not simple. Th
problem is that in the case when light propagates from
remote source to the gravitating system the time interval
tweens and s0 is not as small as it was in the case of t
derivation of timing formula for binary pulsars in Sec. VII A
@see Eq.~96! and the related discussion as well as the cap
of Fig. 3#. This was because light propagates from the bin
system in the same direction as gravitational waves emi
by it, so that the gravitational field of the binary system
almost ‘‘frozen’’ as seen by the outgoing photon. When
consider propagation of light towards the solar system
infalling photon moves in the direction being opposite to th
of propagation of gravitational field generated by the mov
solar system bodies. For this reason, the differences2s0
.2R and is very large. Thus, we are not allowed, as in
case of the derivation of a timing formula for binary pulsa
to use the expansion of coordinates and velocities of
solar system bodies in Taylor series with respect to tim
Moreover, integrals, such as that in Eq.~180!, should also be
calculated without any expansion using the known law
motion of gravitating bodies, that is, solar system ephem
des such as DE200, DE245, or an equivalent one. Let us
an idea of what kind of result we can get proceeding in t
way.

First of all, we note that the orbital plane of any of th
solar system bodies lies very close to the ecliptic and can
approximated fairly good by circular motion up to the fir
order correction with respect to the orbital eccentricity wh
is usually small. The motion of the Sun with respect to t
barycenter of the solar system may be described as a su
harmonics corresponding to gravitational perturbations fr
Jupiter, Saturn, and other smaller bodies. Thus, we ass
that xa is given in the ecliptic plane as follows:

xa~ t !5A@cos~nt!e11sin~nt!e2# , ~181!

whereA and n are the amplitude and frequency of the co
responding harmonic in the Fourier decomposition of
orbital motion of theath body,e1 is directed to the point of
the vernal equinox,e2 is orthogonal toe1 and lies in the
ecliptic plane. The vectork is defined in ecliptic coordinate
as

k52cosb cosl e12cosb sin l e22sinb e3 , ~182!

whereb andl are ecliptic spherical coordinates of the puls
Substituting these definitions into the integral of Eq.~180!
and performing calculations using approximate relations
z5t* 2y1k•xa(y), wherey is the new variable defined in
Eq. ~48!, we get
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E
s0

s k•va~z! dz

t* 1k•xa~z!2z

52k•va~ t* !$Ci@n~r a2k•ra!#2Ci@n~r 0a2k•r0a!#%

2k•xa~ t* !$Si@n~r a2k•ra!#2Si@n~r 0a2k•r0a!#% ,
~183!

wheret* 5t2k•x is the time of the closest approach of th
light ray to the barycenter of the solar system. Taking in
account the asymptotic behavior of sine and cosine integ
for large and small values of their arguments in relations
~183! we arrive at the approximate formula for the Shap
delay:

D~ t !52 (
a51

N

ma@12k•va~ t* !# ln@r a~s!2k•ra~s!#

1OS Gma

c3

va

c D , ~184!

where the residual term denotes all contributions which
simple products of the gravitational radiusGma /c3 of the
ath body, expressed in time units, by the ratiova /c up to a
constant factor. If one takes numerical values of masses
velocities of the solar system bodies one finds that such
sidual terms are extremely much smaller than the leve
errors in timing measurements. We conclude that these
sidual terms cannot be detected by the present day pu
timing techniques.

3. Very long baseline interferometry

VLBI measures the time differences in the arrival of m
crowave signals from extragalactic radio sources receive
two or more radio observatories@123#. Generally, geodetic
observing sessions run for 24 h and observe a numbe
different radio sources distributed across the sky. The ob
vatories can be widely separated; the sensitivity of the ob
vations to variations in the orientation of the Earth increa
with the size of the very long baseline interferometry~VLBI !
network. VLBI is the only technique capable of measuri
all components of the Earth’s orientation accurately and
multaneously. Currently, VLBI determinations of Eart
rotation variations, and of the coordinates of terrestrial s
and celestial objects are made routinely and regularly w
estimated accuracies of about1/20.2 milliarcsecond or bet-
ter @123,124#. Such a high precision of observations requir
an extremely accurate accounting for different physical
fects in propagation of light from radio sources to obser
including relativistic gravitational time delay.

There have been many papers dealing with relativistic
fects which must be accounted for in VLBI data process
~see, e.g., Refs.@109,125,126#, and references therein!. The
common efforts of many researches in this area have resu
in the creation of what is commonly believed now to be a
‘‘standard’’ model of VLBI data processing which is called
consensus model@126# emerged from a workshop held i
1990 @125#. The accuracy limit chosen for the consens
2-26
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FIG. 6. Geodetic very long baseline interfe
ometry measures delayt ~the light travel time
between points 2 and 3! in times of arrival of
radio signal from a quasar at the first and seco
radio antennas,t5t22t1, located on the Earth’s
surface. Diurnal rotation and orbital motion of th
Earth makes the delay to be dependent on tim
This allows to determine the baselineb between
two antennas, astrometric coordinates of the q
sar, motion of the Earth’s pole, parameters of p
cession and nutations, and many others. Mod
data processing of VLBI observations is full
based on the relativistic conceptions and was s
posed to be accurate up to 1 ps.
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VLBI relativistic time delay model is 10212 s ~one picosec-
ond! of differential VLBI delay for baselines less than tw
Earth radii in length. As it was stated, in the model all ter
of order 10213 s or larger were included to ensure that t
final result was accurate at the picosecond level. By defi
tion, extragalactic source coordinates derived from the c
sensus model should have no apparent motions due to
system relativistic effects at the picosecond level. Our p
pose in this section is to analyze critically this statement
to show that the consensus model is not enough elabora
at least theoretically, in accounting for relativistic effects
propagation of light at the picosecond level. For this reas
we propose necessary modification of the consensus m
to make it applicable at the level of accuracy approach
10213 s without any restrictions.

In what follows we work for simplicity with the barycen
tric coordinate time of the solar system only. Precise defi
tion of the measuring procedure applied in VLBI require
however, derivation of relativistic relationship between t
proper time of observer and the barycentric coordinate ti
It is given, e.g., in Ref.@127#, and can be added to the fo
malism of the present section for adapting it to practical
plications. A complete description of such an extended f
malism will be given elsewhere.

The VLBI time delay~see Fig. 6! to be calculated is the
time of arrival of electromagnetic signalt2 at station 2 minus
the time of arrival of the same signal,t1, at station 1. The
time of arrival at station 1 serves as the time reference for
measurement. In what follows, unless explicitly stated oth
wise, all vectors and scalar quantities are assumed to be
culated att1 except for position of the source of lightx0
which is always calculated at the time of light emissiont0.
We use for calculation of the VLBI time delay equatio
~43!, ~44! referred to the barycentric coordinate frame of t
solar system. The equations give us

t22t15ux2~ t2!2x0u2ux12x0u1D~ t2 ,t0!2D~ t1 ,t0! ,
~185!
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wherex0 are coordinates of the source of light,x2(t2) are
coordinates of the station 2 at the momentt2 , and x1 are
coordinates of the station 1 at the momentt1. The differen-
tial relativistic time delay is given in the form

D~ t2 ,t0!2D~ t1 ,t0!52(
a51

N

@Ba~s2 ,s0!2Ba~s1 ,s0!# ,

~186!

where the difference of theBa’s up to the linear with respec
to velocities of the solar system bodies reads@see Eq.~51!#

Ba~s2 ,s0!2Ba~s1 ,s0!

5 ln
r 1a2k1•r1a

r 2a2k2•r2a
2 ln

r 0a2k1•r0a

r 0a2k2•r0a
1k2•va~s2!

3 ln~r 2a2k2•r2a!2k1•va~s1!ln~r 1a2k1•r1a!

1E
s0

s1
ln@ t1* 1k1•xa~z!2z#k1• v̇a~z!dz

2E
s0

s2
ln@ t2* 1k2•xa~z!2z#k2• v̇a~z!dz . ~187!

Herein s1 and s2 are retarded times determined iterative
from the equations

s15t12ux12xa~s1!u , ~188!

s25t22ux2~ t2!2xa~s2!u , ~189!

the quantityr1a5x12xa(s1) is the vector from theath body
to the station 1,r2a5x2(t2)2xa(s2) is the vector from the
ath body to the station 2,r 1a5ur1au, r 2a5ur2au and

t1* 5t12k1•x1 , ~190!

t2* 5t22k2•x2~ t2! , ~191!
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are the moments of the closest approach of the light ray
and 2 to the barycenter of the solar system. It will be a
helpful in comparing our approach with the consensus mo
to use the moments of the closest approach of the light
1 and 2 to theath body which we will define according to th
rule

t1* a5t12k1•r1a , ~192!

t2* a5t22k2•r2a . ~193!

It is worth emphasizing that our definitions of timest1* a and
t2* a are slightly different from the definitions of similar quan
tities given in the ‘‘standard’’ consensus model. This rela
to the definition of positions of bodies in the vectorsr1a and
r2a . In our case we refer the coordinates of the bodies to
retarded timess1 ands2, respectively, while in the consensu
model they are taken at the timest1 and t2. This introduces
some uncertainty into the notion of the instant of the clos
approach of the light ray to the body or barycenter of
solar system which appears due to the noncovariant for
lation of the relativistic time delay in the consensus mod
There is no such uncertainty in our approach which is fu
covariant in the first post-Minkowskian approximation.

The unit vectorsk1 andk2 are defined as

k15
x12x0

ux12x0u
, k25

x2~ t2!2x0

ux2~ t2!2x0u
, ~194!

which shows that they have slightly different orientations
space. Let us introduce the barycentric baseline vector a
time of arrival t1 through the definitionB5x2(t1)2x1(t1).
Let us stress that the baseline vector lies on the hypersur
of constant timet1. The original version of the relativistic
relationship of the barycentric baseline vector to the geoc
tric one b can be found in Ref.@127# or later publications
@109,126#. We shall neglect this relativistic difference in th
expression for the Shapiro time delay because it is inesse
in our present discussion. Thus, we assumeB5b. The dif-
ference between the vectorsk1 and k2 may be found using
the expansion with respect to powers of the small param
b/R whereR is the distance between the barycenter of
solar system and source of light. We have

x22x05x12x01b1v2~ t22t1!1OS v2

c2
bD , ~195!

ux22x0u5ux12x0u1b•k11v2•k1 ~ t22t1!1OS v2

c2
bD

1OS b2

R D , ~196!

wherev2 is the velocity of station 2 with respect to the bar
center of the solar system. These expansions yield

k25k11
k13~b3k1!

R
1OS v

c

b

RD 1OS b2

R2D , ~197!
12400
1
o
el
ys

s

e

st
e
u-
l.

he

ce

n-

ial

er
e

and for the time delay~185!,

t22t15k1•bF11v2•k11OS v2

c2D 1OS b

RD G
1D~ t2 ,t0!2D~ t1 ,t0! . ~198!

As a consequence of the previous expansions we also
the following equalities:

t2* 2t1* 5
~b3k1!~k13x2!

R
1OS bv2

c2 D 1OS b2

R D ,

~199!

t2* a2t1* a5~k1•b!~k1•va!2~r 2a2r 1a!~k1•va!

1
~b3k1!~k13r2a!

R
1OS bv2

c2 D 1OS b2

R D ,

~200!

which evidently shows that, e.g., for the Jupiter and for
source of light at infinity, the time differencet2* (2t1* ( is of
the order (R% /c)(vJ /c).75 ns, that is, rather small but sti
may be important in the analysis of observational errors.
VLBI observations of the solar system objects the time d
ference t2* (2t1* ( can approach the valueR% /c.30 ms
which cannot be ignored at all. The time differencet2* 2t1*
can be considered for extrasolar objects as negligibly sm
since it is of the order (R% /c) by the annual parallax of the
source of light which makes it much less than 1 ps. In
case of VLBI observations of the solar system objects
time differencet2* 2t1* cannot be ignored anymore but we d
not elaborate it here. Now we can simplify formula~187!.

First of all, taking into account the relationship~197!, we
obtain

ln
r 0a2k1•r0a

r 0a2k2•r0a
52

~b3k1!~k13r0a!

R~r 0a2k1•r0a!
.OS b

RD , ~201!

which is of the order of the annual parallax of the source
light. This term can be neglected in the delay formula~187!
since it gives a contribution to the delay for extrasolar s
tem objects much less than 1 ps@128#. After noting that in
the expression for the difference of the two integrals in~187!
one can equatek25k1 and t2* 5t1* , we state that the differ-
ence reads

E
s2

s1
ln@ t1* 1k1•xa~z!2z#k1• v̇a~z!dz

5k1• v̇a~s1!$~r 2a2k1•r2a!ln~r 2a2k1•r2a!

2~r 1a2k1•r1a!ln~r 1a2k1•r1a!1r 1a2r 2a2k1•r1a

1k1•r2a% , ~202!
2-28
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and after multiplication by the factor 2Gma /c3 is much less
than 1 picoarcsecond. Hence, we neglect those two integ
from the expression for the VLBI delayD(t1 ,t2)
5D(t2 ,t0)2D(t1 ,t0).

Finally, taking into account thatk152K , up to the cor-
rections of order of the annual parallax, we get for the ti
delay

D~ t1 ,t2!52(
a51

N

ma~11K•va! ln
r 1a1K•r1a

r 2a1K•r2a
, ~203!

whereva5va(s1), r 1a5ur1au, r 2a5ur2au, and

r1a5x1~ t1!2xa~s1! , r2a5x2~ t2!2xa~s2! . ~204!

We emphasize that our formula~203! includes the first cor-
rection for the velocity of the bodies deflecting light ray
Moreover, there is a difference between the definitions of
vectorsr1a , r2a in our model~203! and the consensus mod
@see Ref.@126#, Chap. 12, formula~1!#. In our case the co-
ordinates of stationsx1 , x2 are taken at the instantst1 , t2,
respectively, and the coordinates of the light-deflecting b
ies are calculated at the retarded timess1 , s2 defined in Eqs.
~188!, ~189! which is a direct consequence of our rigoro
approach of the integration of equations of light propagati
On the other hand, in the consensus model coordinate
stations are taken also at the instantst1 , t2 but coordinates of
theath body are calculated only at the timet1a* defined in Eq.
~192!. Strictly speaking, this prescription can be justifi
only for VLBI observations of the distant, extrasolar objec
and is only marginally correct for VLBI observations of th
solar sytem objects. The prescription to obtain the position
the gravitating body at the time of closest approach of the
path to the body was based on an intuitive guess~see, for
instance, Ref.@10#!. Such a guess gives a rather good a
proximation but cannot be adopted as a self-consistent t
retical recommendation in doing practically important n
merical processing of VLBI observations and, especially
the dedicated experiments specifically designed to test gr
tational deflection of light in the solar system@129#.

If we denote byDtgrav the VLBI delay in the consensu
model, as it is described in the IERS Conventions@see Ref.
@126#, formulas~1!, ~2! of Chap. 12, or formula~5! from Ref.
@109##, and put the PPN parameterg51, we get in the
framework of general relativity the following relationsh
between the Lorentz-covariant expression for the time de
in our model andDtgrav:

D~ t1 ,t2!5Dtgrav12(
a51

N
Gma

c4
~K•va!ln

r 1a1K•r1a

r 2a1K•r2a

22(
a51

N
Gma

c4

~va3r1a!~b3r1a!

r 1a
3

1•••,

~205!

where ellipses denote residual terms, and we have rest
the universal gravitational constantG and speed of lightc for
convenience. One can see that the Shapiro time delay in
12400
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consensus model was not properly defined although it had
consequences for practical observations in the recent p
Indeed, the third term in the right hand side of Eq.~205! is so
small that it can be neglected for any observational confi
ration of the source of light and the deflecting body includi
the Earth. Expansion of the second term in the right ha
side of Eq.~205! with respect to powersb/da , whereda is
the impact parameter of the light ray with respect to theath
light-deflecting body, gives

2
Gma

c4
~K•va!ln

r 1a1K•r1a

r 2a1K•r2a

52 2
Gma

c4
~K•va!

b•~n1a1K !

r 1a1K•r1a

52 4
Gma

c4
~K•va!

b•~n1a1K !

da

r 1a

da
, ~206!

where the unit vectorn1a5r1a /r 1a . For the light ray graz-
ing, for example, the limb of the Sun the term under cons
eration can reach a few picoseconds. The effect amoun
picosecond for radio source being at the angular distance
arcmin from the Jupiter if Jupiter is at the distance 5 A
from the Earth. This may well have real impact in near futu
on the treatment of the gravitational deflection of light
massive solar system planets in the specialized h
precision VLBI experiments.

We would like to note that relativistic perturbations
light propagation caused by velocities of moving gravitati
bodies were considered by Klioner@130# in order to find
corresponding corrections to the consensus model of V
data processing. That author approached the problem d
calculations on the base of the post-Newtonian metric ten
As we have shown in the present paper, such an approx
tion is not exact enough to take properly into account
effects of retardation in the metric which contribute to velo
ity dependent terms in the propagation of light. Neverthele
at least formally, the result published in Ref.@130#, Eq.~4.9!,
coincides with our Eq.~203! but the coordinates and veloc
ties of the light-ray-deflecting bodies are taken at the time
the closest approach of photon to theath body. This pro-
duces errors of the order comparable with the last te
shown in the right hand side of Eq.~205! which are negligi-
bly small. Hence, we conclude that the relativistic model
VLBI data processing proposed in Ref.@130# is although
theoretically incomplete but practically good enough for a
plications at the level of accuracy about one picosecond
astronomical objects with negligibly small parallaxes.

4. Relativistic space astrometry

Space astrometry is a new branch of fundamental astr
etry. Ground-based telescopes may reach the angular re
tion not better than 0.01 arcsec. This limits our ability
create a fundamental inertial system on the sky@131# with
the accuracy required for a much better understanding
laws of translational and rotational motions of celestial bo
ies both inside and outside of the solar system. The epoc
2-29
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the space astrometry began in 1989 when the HIPPARC
satellite was successfully launched by Ariane 4 of the Eu
pean Space Agency on 8 August 1989. Despite the failur
put the satellite on the intended geostationary orbit at 36
Km from Earth the astrometric program has been comple
fulfilled @132#. As a result the new astrometric catalog of
stars up to 13th stellar magnitude was obtained. This
cludes about 120 000 stars and has a precision of aro
0.002 arcsec. Unfortunately, such high precision canno
retained longer than 10 yr because of errors in determina
of proper motions of stars. For this reason the second an
gous mission having the same or better astrometric accu
should be launched in the near future.

The rapid industrial development of space technology
lows us to hope that in the next several years the precisio
astrometric satellites will reach a few microarcseconds
even better in the determination of positions, proper motio
and parallaxes of celestial objects. All together, the pho
metric sensitivity of measuring devices will be substantia
improved. As an example, we refer to a new space projec
the European Space Agency named GAIA~Galactic Astro-
metric Interferometer for Astrophysics!. In the framework of
this project@2# positions, proper motion, and parallaxes
about 1000 million stars up to 20 stellar magnitude are to
measured with an accuracy of better than 10 microarc
onds. This means that practically all stars in our Galaxy w
be observed and registered.

Such extremely difficult observations cannot be proces
adequately if numerous relativistic corrections are not ta
into account in a proper way@109#. Indeed, the relativistic
deflection of light caused by the Sun is not less than 1 m
liarcsecond throughout all of the sky. Major planets produ
a relativistic deflection of light about 1 microarcsecond
angular distances from 1° to 90° outside the planet@133#. It
is worth emphasizing that the relativistic deflection of lig
produced by the Earth reaches a maximal value of about
microarcseconds and should be accounted for any positio
a star with respect to the Earth. In addition, the reduction
astrometric observations made on the moving platform w
require an extremely careful consideration of relativistic a
erration @134# and classic parallax terms in order to redu
the measurements to the solar system barycenter, the po
which the origin of the fundamental inertial system is
tached. Perhaps, it would be more proper to say that
processing of observations from modern space astrom
satellites should be fully based on general relativistic c
ceptions rather than on a classical approach in which
relativistic corrections are considered as additive and
taken into account at the very last stage of the reduction
observations.

As far as we know, the first attempt to construct such
self-consistent theory of astrometric observations was p
posed by Brumberg and Kopeikin@135# and further explored
in Refs.@127# and@4#. The main idea of the formalism is t
exploit to a full extent a relativistic theory of referenc
frames in the solar system developed in Refs.@136–139,79#,
and references therein. An independent, but similar appro
with more emphasis on mathematical details was prese
in papers@80,140,141#. One global and several local refe
12400
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ence frames have been constructed by solving in a spe
way the Einstein equations for gravitational field. The glob
frame is the barycentric reference frame of the solar sys
with origin at the barycenter. Among the local frames t
most important for us is the geocentric frame with origin
the geocenter and the proper reference frame of
observer~or the satellite in case of a space mission such
HIPPARCOS or GAIA!. All reference frames are harmoni
@142# and were constructed in such a way to reduce to m
mum all fictitious coordinate perturbations which may
caused by unsophisticated technique in using coordin
transformations from one frame to another. We have disc
ered and outlined corresponding relativistic transformatio
between the frames which generalize the well-known L
entz transformation in the special theory of relativity a
minimize the magnitude of unphysical coordinate depend
terms. Proceeding in this way we have achieved a signific
progress in describing relativistic aberration, classic paral
and proper motion corrections@4#. However, the problem of
propagation of light rays from distant sources of light to
observer in the nonstationary gravitational field of the so
system was not treated thoroughly enough. This section
fines the problem and gives its final solution.

The quantity which we are specifically interested in is t
direction towards the source of light~star, quasar! measured
by a fictitious observer being at rest at the point with t
solar system barycentric coordinates (t,x). This direction is
given, actually, by Eq.~64! and can explicitly be written as
follows:

si~t,ĵ!5Ki12(
a51

N
ma

A12va
2

~12k•va!2

r a2k•ra

P j
i r a

j

r a2va•ra

22(
a51

N
ma

A12va
2

22k•va

r a2va•ra
P j

i va
j

2
2

R (
a51

N
ma

A12va
2

12k•va

r a2k•ra
P j

i r a
j

2
4

R (
a51

N
ma

A12va
2

lnS r a2k•ra

2R D P j
i va

j 1•••,

~207!

where positions and velocities of the solar system lig
deflecting bodies are calculated at the retarded times5t
2ux2xau, R5ux2xau is the distance from the source of ligh
to observer, and ellipses denote residual terms dependin
accelerations of the bodies given by the retarded integ
~74!–~76!. We have neglected all terms depending on acc
erations of the bodies because of their insignificant num
cal value. Further simplification of Eq.~207! is possible if
we remember that the velocities of bodiesva comprising the
solar system are small in comparison with the speed of lig
and distancesR to stars are very large compared to the s
of the solar system. This makes it possible to omit all ter
2-30
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being quadratic with respect tova as well as fifth term in the
right hand side of Eq.~207! being inversely proportional to
R. This yields

si~t,ĵ!5Ki12(
a51

N
Gma

c2 S 12
2

c
k•va1

1

c
va•na2

r a

R D
3

k3~na3k!

r a2k•ra
24(

a51

N
Gma

c3

k3~va3k!

r a
, ~208!

wherena5ra /r a , the multiplication sign denotes the usu
Euclidean vector product, and we restored the fundame
constantsG and c for convenience. Equation~208! elimi-
nates incompleteness in the derivation of the similar form
given by Klioner @55# which was obtained using the pos
Newtonian expression for the metric tensor and under
assumption of rectilinear and uniform motion of the ligh
deflecting bodies. As we have already noted many time
the present paper, the post-Newtonian approximation for
metric tensor does not take into account all necessary eff
of retardation@143# which are essential in the derivation o
the Eq.~208!. Klioner and Kopeikin@4# have simply copied
the result of Ref.@55# due to the absence at that time of
better theoretical treatment of influence of body’s velocit
on the propagation of light rays. With the mathematical te
nique invented in the present paper Eq.~208! gives the cor-
rect answer to this question and closes the problem.

The leading order term in Eq.~208! gives the well-known
expression for the angle of deflection of light rays in t
gravitational field of a static, spherically symmetric bod
The velocity dependent terms in Eq.~208! describe small
corrections which may be important in data analysis of fut
space missions. The very last term in the large parenthes
Eq. ~208! may slightly change magnitude of the angle
gravitational deflection for some nearby stars or obje
within the solar system if the impact parameter of the lig
ray is small and the deflection angle is expected to be ra
large. Parallactic corrections to the directionsi are extracted
from the unit vectorK by its expansion in powers of the rati
~the barycentric distance to observer!/~the barycentric dis-
tance to a star!. Account for aberrational corrections is mad
by means of relating the direction to the starsi observed by
a fixed fictitious observer, to the direction observed by
moving real observer, with the help of the matrix of relati
istic transformation displayed in Sec. VII of Ref.@4#. It is
worth emphasizing that the correction for aberration mus
done first before account for parallax. Complete analysis
the relativistic algorithm of processing observations of cel
tial objects made from a board of a space observatory wil
given elsewhere.

D. Doppler tracking of interplanetary spacecrafts

1. Approximation scheme for calculation of the Doppler shift

The Doppler tracking of interplanetary spacecra
@144,145,112# is the only method presently available
search for gravitational waves in the low frequency regi
12400
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(1025–1 Hz!. Several experiments have been carried out
far, for instance, VOYAGER, PIONEER, ULYSSES
GALILEO, and MARS-OBSERVER. The space-prob
CASSINI represents the next step in such gravitational w
Doppler experiments@113#. Its primary target is to study the
Saturn system. However, the spacecraft carries on bo
much improved instrumentation and will perform three lo
~40 days each! dedicated data acquisition runs in 2002, 200
and 2004 to search for gravitational waves with expec
sensitivity about twenty times better than that achieved
far. The detection of gravitational waves requires the prec
knowledge of the Doppler frequency shift caused by the
lar system’s bodies lying near the line of sight of observer
spacecraft~see Fig. 7!.

Another important implementation of the Doppler trac
ing is the Global Positioning System~GPS! which uses ac-
curate, stable atomic clocks in satellites and on Earth to p
vide world-wide position and time determination. The
clocks have relativistic frequency shifts which are so lar
that, without accounting for numerous relativistic effects, t
system would not function~Ref. @146#, and references
therein!. Quite recently, the European Space Agency~ESA!
has adopted a new program aimed at achieving an even
ter precision in measuring time and frequency in space-t
observations. The program is called the Atomic Clock E
semble in Space~ACES! and will be carried out on board th
International Space Station~ISS!. The principal idea is to use
a cold atom clock in absence of gravity which will outpe
form the fountains clock on the ground with the potent
accuracy of 5310217 @147#.

An adequate treatment of such gravitational wave a
time-metrology high-precision experiments require advan
theoretical development of the corresponding analytic al
rithm which properly accounts for all terms of order 10216

and higher in the classic Doppler and gravitational sh
between transmitted and received electromagnetic frequ
cies caused by the relative motion of the spacecraft w
respect to observer and time-dependent gravitational fiel
the solar system bodies. In this section we discuss basic p
ciples of the Doppler tracking observations and give the m
important relationships for calculation of the relevant effec
However, the complete theory involves so many specific
tails that it would be unreasonable to give all of them in t
present paper. Therefore, only basic elements of the Dop
tracking theory are given here and particular details will
published somewhere else.

Let us assume~see Fig. 7! that an electromagnetic signa
is being transmitted from the point with barycentric coord
natesx0 located on the Earth with frequencyn0 at the bary-
centric timet0. It travels to the interplanetary spacecraft,
received on its board at the point with barycentric coor
natesx1 with frequencyn1 at the barycentric timet1, and is
transponded back to the Earth~on exactly the same fre
quencyn1) where one observes this signal at the point w
barycentric coordinatesx2 with frequencyn2 at the barycen-
tric time t2. It is worthwhile to emphasize that because of t
motion of the receiver with respect to the transmitter dur
the light travel time of the signal the observed frequencyn2
is different than the emitted frequencyn0 even if the signal is
2-31
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FIG. 7. Spacecraft Doppler tracking experiment in deep space. Radio signal is transmitted at the timet0 and at the point 0 on the Eart
along the unit vectork1. The radio signal reaches the spacecraft at the momentt1 and at the point 1 somewhere in the solar system
responds back to the Earth exactly at the same timet1 along the unit vectork2 which has a different orientation fromk1. The responded
signal arrives at the reception point 2 on the Earth at the timet2. During the round-trip time of the radio signal the Earth rotates around
own axis and moves along the orbit. Hence, the barycentric position and velocity of the transmitter is different from the barycentric
and velocity of the receiver despite of that their topocentric positions on the Earth can coincide. When the impact parameter of
signal’s trajectory is small the gravitational Doppler shift of the transmitted frequency with respect to the received frequency is e
approximately asdn/n252a(v! /c)cosw, wherea is the deflection angle of the light ray,v! is velocity of the Earth, andw is the angle
betweenv! and the impact parameter.
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transponded from the spacecraft being momentarily at
with respect to the barycentric coordinates of the solar s
tem.

The proper time of the transmitter at the instant of signa
emission is denoted byT0 and at the instant of the signal’
reception byT2. The proper time of the spacecraft’s tra
sponder is denoted asT1. The barycentric time at the emis
sion point ist0, at the point of receptiont2, and at the space
craft’s position t1. We follow arguments similar to thos
used in Sec. VI C. The spectral shift of electromagnetic f
quencyn0 with respect ton1 is given by the equation

11z15
n0

n1
5

dT1

dt1

dt1
dt0

dt0
dT0

, ~209!

and the shift of the frequencyn1 with respect ton2 is de-
scribed by the similar relationship

11z15
n1

n2
5

dt1
dT1

dt2
dt1

dT2

dt2
. ~210!

Here the time derivativesdT1 /dt1 and dt1 /dT1 are calcu-
lated at the spacecraft’s position,dt0 /dT0 is calculated at the
point of emission, anddT2 /dt2 at the point of reception
Time derivativesdt1 /dt0 anddt2 /dt1 are obtained from the
solution of equation of propagation of electromagnetic sig
12400
st
s-

s

-

l

in time-dependent gravitational field of the solar system~43!
establishing theoretical description of the transmitt
spacecraft~up-! and spacecraft-receiver~down-! radio links.

In practice, when Doppler tracking observations a
made, the frequencyn2 of the receiver is kept fixed. This is
related to the fact that the frequency band of the rece
must be rather narrow to decrease the level of stocha
noise fluctuations and to increase the sensitivity of the
ceiver to detect a very weak radio signal transponded to
Earth from the spacecraft. On the other hand, technical li
tations on the range of the transmitted frequency are no
restrictive and it can be changed smoothly in a very bro
band according to a prescribed frequency modulation l
This law of modulation is chosen in such a way to ensure
receiving of the transponded signal from the spacecraft
actly at the frequencyn2. It requires to know precisely the
ephemerides of transmitter, observer, and spacecraft as
as the law of propagation of electromagnetic signal on
round-trip journey. Hence, one needs to know the Dopp
shift dn/n2 wheredn5n02n2. From Eqs.~209!, ~210! we
have

dn

n2
5

n0

n2
215

dt0
dT0

dt1
dt0

dt2
dt1

dT2

dt2
21 . ~211!

As one can see from Eq.~211! there is no need to know
2-32



he

LORENTZ COVARIANT THEORY OF LIGHT . . . PHYSICAL REVIEW D 60 124002
explicitly the transformation between the proper time of t
spacecraftT1 and the barycentric time of the solar systemt1.
This remark simplifies calculations.

Accounting for relationship~80! and expression~10! for
the metric tensor yields at the point of emission

dt0
dT0

5F ~12v0
2!S 112(

a51

N maA12va0
2

r 0a2va0•r0a
D

24(
a51

N
ma

A12va0
2

~12v0•va0!2

r 0a2va0•r0a
G21/2

, ~212!

where v0(t0) is the barycentric velocity of emitter,va0
5va(s0) is the barycentric velocity of theath gravitating
body, r 0a5ur0au, r0a5x0(t0)2xa(s0), and s05t02r 0a is
the retarded time corresponding to the time of emission,t0,
of the radio signal.
o
an

th
up

12400
Similar arguments give

dT2

dt2
5F ~12v2

2!S 112(
a51

N maA12va2
2

r 2a2va2•r2a
D

24(
a51

N
ma

A12va2
2

~12v2•va2!2

r 2a2va2•r2a
G 1/2

, ~213!

where v2(t2) is the barycentric velocity of emitter,va2
5va(s2) is the barycentric velocity of theath gravitating
body,r 2a5ur2au, r2a5x2(t2)2xa(s2), ands25t22r 2a is re-
tarded time corresponding to the timet2 of the signal’s re-
ception.

For up- and down-radio links the relationship~81! yields,
respectively,
dt1
dt0

5

11K1•v012(
a51

N

ma@~]s1 /]t0! ~]/]s1! 1 ~]s0 /]t0! ~]/]s0! 1 ~]t1* /]t0! ~]/]t1* ! 1 ~]k1
i /]t0! ~]/]k1

i !#Ba~s1 ,s0 ,t1* ,k1!

11K1•v122(
a51

N

ma@~]s1 /]t1! ~]/]s1! 1~]s0 /]t1! ~]/]s0! 1~]t1* /]t1! ~]/]t1* ! 1 ~]k1
i /]t1! ~]/]k1

i !#Ba~s1 ,s0 ,t1* ,k1!

~214!

and

dt2
dt1

5

11K2•v112(
a51

N

ma@~]s2 /]t1! ~]/]s2! 1 ~]s1 /]t1! ~]/]s1! 1 ~]t2* /]t1! ~]/]t2* ! 1 ~]k2
i /]t1! ~]/]k2

i !#Ba~s2 ,s1 ,t2* ,k2!

11K2•v222(
a51

N

ma@~]s2 /]t2! ~]/]s2! 1~]s1 /]t2! ~]/]s1! 1~]t2* /]t2! ~]/]t2* ! 1 ~]k2
i /]t2! ~]/]k2

i !#Ba~s2 ,s1 ,t2* ,k2!

.

~215!
Here the retarded times1 comes out from the relations1
5t12ux12xa(s1)u, and

k152K15
x1~ t1!2x0~ t0!

ux1~ t1!2x0~ t0!u
,

k252K25
x2~ t2!2x1~ t1!

ux2~ t2!2x1~ t1!u
, ~216!

are the unit vectors which define direction of propagation
transmitted and transponded radio signals, respectively,

t1* 5t02k1•x0 , t2* 5t12k2•x1 . ~217!

2. Auxiliary partial derivatives

The relationships~84!–~87! allow us to write down cor-
responding expressions for the retarded timess0 , s1, ands2.
One has to carefully distinguish between derivatives for
up- and down-radio links. For the transmitter-spacecraft
radio link we have
f
d

e
-

]s1

]t1
5

r 1a2k1•r1a

r 1a2va1•r1a
2

~k13v1!•~k13r1a!

r 1a2va1•r1a
, ~218!

]s1

]t0
5

~12k1•v0!~k1•r1a!

r 1a2va1•r1a
, ~219!

]s0

]t0
5

r 0a2v0•r0a

r 0a2va0•r0a
, ~220!

]s0

]t1
50 . ~221!

These formulas must be used in Eq.~214!. For the
spacecraft-receiver down-radio link we obtain

]s2

]t2
5

r 2a2k2•r2a

r 2a2va2•r2a
2

~k23v2!•~k23r2a!

r 2a2va2•r2a
, ~222!

]s2

]t0
5

~12k2•v1!~k2•r2a!

r 2a2va2•r2a
, ~223!
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]s1

]t1
5

r 1a2v1•r1a

r 1a2va1•r1a
, ~224!

]s1

]t2
50 . ~225!

These formulas must be used in Eq.~215!. We point out that
the meaning of the time derivative~218! is completely dif-
ferent than that of the time derivative~224! although they are
calculated at one and the same point of transponding of
radio signal. At the first sight it may look surprising. How
ever, if one remembers that the derivative~218! is calculated
along the transmitter-spacecraft light path and that Eq.~224!
is calculated along the spacecraft-receiver light path, wh
have opposite directions and different parametrizations,
difference becomes evident.

The other set of time derivatives required in subsequ
calculations reads as follows:

]k1
i

]t1
5

@k13~v13k1!# i

R01
,

]k1
i

]t0
52

@k13~v03k1!# i

R01
,

~226!

]k2
i

]t2
5

@k23~v23k2!# i

R21
,

]k2
i

]t1
52

@k23~v13k2!# i

R21
,

~227!

]t1*

]t0
512k1•v01

v0•j1

R01
,

]t1*

]t1
52

v1•j1

R01
, ~228!

]t2*

]t1
512k2•v11

v1•j2

R21
,

]t2*

]t2
52

v2•j2

R21
, ~229!

whereR015ux02x1u is the radial distance between emitt
on the Earth and spacecraft,R215ux22x1u is the radial dis-
tance between receiver on the Earth and spacecraft, an
the impact parametersj15k13(x13k1) and j25k23(x1
3k2) hold.

Partial derivatives of functionsBa(s1 ,s0 ,t1* ,k1
i ) and

Ba(s2 ,s1 ,t2* ,k2
i ) can be found by making use of relation

ships~89!–~94!. This yields

]Ba~s1 ,s0 ,t1* ,k1
i !

]s1
5

1

A12va1
2

~12k1•va1!2

r 1a2k1•r1a
, ~230!

]Ba~s1 ,s0 ,t1* ,k1
i !

]s0
52

1

A12va0
2

~12k1•va0!2

r 0a2k1•r0a
,

~231!

]Ba~s1 ,s0 ,t1* ,k1
i !

]t1*

52
1

A12va1
2

12k1•va1

r 1a2k1•r1a
1

1

A12va0
2

12k1•va0

r 0a2k1•r0a
,

~232!
12400
e
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]Ba~s1 ,s0 ,t1* ,k1
i !

]k1
i

52
12k1•va1

A12va1
2

xa
j ~s1!

r 1a2k1•r1a
1

12k1•va0

A12va0
2

xa
j ~s0!

r 0a2k1•r0a

1
2va1

j

A12va1
2

ln~r 1a2k1•r1a!2
2va0

j

A12va0
2

ln~r 0a2k1•r0a!

~233!

and

]Ba~s2 ,s1 ,t2* ,k2
i !

]s2
5

1

A12va2
2

~12k2•va2!2

r 2a2k2•r2a
, ~234!

]Ba~s2 ,s1 ,t2* ,k2
i !

]s1
52

1

A12va1
2

~12k2•va1!2

r 1a2k2•r1a
,

~235!

]Ba~s2 ,s1 ,t2* ,k2
i !

]t2*

52
1

A12va2
2

12k2•va2

r 2a2k2•r2a
1

1

A12va1
2

12k2•va1

r 1a2k2•r1a
,

~236!

]Ba~s2 ,s1 ,t2* ,k2
i !

]k2
i

52
12k2•va2

A12va2
2

xa
j ~s2!

r 2a2k2•r2a
1

12k2•va1

A12va1
2

xa
j ~s1!

r 1a2k2•r1a

1
2va2

j

A12va2
2

ln~r 2a2k2•r2a!

2
2va1

j

A12va1
2

ln~r 1a2k2•r1a! . ~237!

We have neglected in formulas~232!,~233! and~236!, ~237!
all terms depending on accelerations of the solar system b
ies.

3. Relativistic effect for Doppler measurement near solar and
planetary conjunctions

The relationships~211!–~237! constitute the basic ele
ments of the post-Minkowskian~Lorentz-covariant! Doppler
tracking theory. They are sufficient to calculate the Dopp
response for any conceivable relative configuration of tra
mitter, spacecraft, and the solar system bodies. We shall
sider in this section only the case when the spacecraf
beyond a massive solar system body such as the Sun, Ju
or Saturn when the impact parameters of up- and down-ra
links are small compared with distances from the body
transmitter, receiver, and spacecraft. We shall also res
ourselves to the consideration of gravitational shift of fr
2-34
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quency only. Actually, this case is similar to gravitation
lens. Thus, we neglect all terms of orderma /r 0a , ma /r 1a ,
ma /r 2a , ma /R01, ma /R21 as well as terms being quadrat
with respect to the velocityva . It is worthwhile to point out
that the round trip travel time of the transmitted radio sig
is much shorter than orbital period of any of the solar syst
body. For this reason, all functions with the retarded ti
argument entering the equations can be expanded aroun
time of transmission of the signal which is precisely det
mined by atomic clocks. Taking into account these rema
and making use of relationship~169! we obtain

S dn

n2
D

gr

obs

5
2

c S va2
r 1

R
v02

r 0

R
v1D •a~ja! ,

a i~ja!5
4Gma

c2da
2

ja
i , ~238!

wherev0 is velocity of transmitter,v1 is velocity of space-
craft, va is velocity of theath gravitating body deflecting
trajectory of the emitted radio signal at the anglea i , da
5ujau is the length of the impact parameter of the light r
with respect to theath body,r 1 is the distance between th
transmitter and the light-deflecting body,r 0 is the distance
between the spacecraft and light-deflecting body, andR
5ux02x21u.r 01r 1. Formula~238! for the Doppler shift
by gravitational lensing depends on velocities of transmit
spacecraft, and the light-deflecting body and generalizes
obtained independently by Bertotti and Giampieri@107# who
considered only a static gravitational lens. In case, of D
pler tracking observations of spacecraft in the field of S
the difference between the two formulas is negligible, but
motion of the lensing body may be important in the case
Doppler observations of spacecrafts in the field of giant pl
ets such as Jupiter or Saturn.

Approximate value of the Doppler shift is determined
the expressiondn/n252a(v % /c)cosw, wherea is the de-
flection angle of the light ray,v % is velocity of the Earth, and
w is the angle betweenv % and the impact parameter. For th
Sun the deflection angle over the whole sky is not less tha
n-
d
-

12400
l

l

e
the
-
s

r,
at

-
n
e
f
-

1

milliarcsecond or.4.8531029 rad. The relative velocity of
the Earth with respect to speed of light is about 1024. These
simple estimates applied to the Doppler shift’s formula e
cidate that the gravitational shift of frequency in Doppl
tracking of interplanetary spacecraft caused by the Sun is
less than.4.85310213 for any location of the spacecraft i
the sky. If the path of the radio link grazes the Sun’s surfa
the Doppler shift will be about 8.47310210 —a quantity
which can be measured rather easily. The same kind of e
mates gives for radio signals grazing Jupiter and Saturn
Doppler shifts about 7.76310212 and 2.91310212, respec-
tively, which can be also measured in practice.

Our formalism for derivation of corresponding relatio
ships for the description of high-precise Doppler tracking
interplanetary spacecrafts can be compared with approa
based on the post-Newtonian approximation scheme~see,
e.g., Refs. @107,127#!. The advantage of the pos
Minkowskian approach used in this paper is that it autom
cally accounts for all effects related to velocities of gravit
ing bodies through the expressions of the Lie´nard-Wiechert
potentials. The post-Newtonian scheme makes calculat
much longer and not so evident.

4. Comparison of two mathematical techniques for calculation
of the Doppler effect

It is worthy from the methodological point of view to
compare calculation of theDoppler effect in terms of fre-
quency, used throughout the present paper, with thatin terms
of energy~see Ref.@64# for definition! used, e.g., by Bertott
and Giampieri@107#. Let us introduce definitions of the four
velocity of observerua5u0(1,v i), the four-velocity of
source of lightu0

a5u0
0(1,v0

i ), the four-momenta of photon a

the point of emissionK 0
a5K 0

0@1,ẋi(t0)#, and the point of

observation K a5K 0@1,ẋi(t)#, where u05dt/dT, u0
0

5dt0 /dT0 , K 0
05dt0 /dl0, andK 05dt/dl with l and l0

being values of the affine parameter along the light geod
at the points of emission and observation. Then, using
definition of theDoppler effect in terms of energy@64# it is
not difficult to show that the first equation in Ref.@64# can be
recast into the form
n

n0
5

u0K 0$g00~ t,x!1g0i~ t,x!@ ẋi~ t !1v i #1gi j ~ t,x!ẋi~ t !v i%

u0
0K 0

0$g00~ t0 ,x0!1g0i~ t0 ,x0!@ ẋi~ t0!1v0
i #1gi j ~ t0 ,x0!ẋi~ t0!v0

i %
. ~239!
i-
Calculation of time componentK 0 of the four-momentum of
photon in Eq.~239! can be done if one knows the relatio
ship of the affine parameterl along the light geodesic an
coordinate timet. This is found by solution of the time com
ponent of the equation for the light geodesic (G5c51)

d2t

dl2
52~G00

0 12G0i
0 ẋi1G i j

0 ẋi ẋ j !S dt

dl D 2

. ~240!
Using decomposition~4! of the metric tensor and parametr
zation~17! along the unperturbed light ray, Eq.~240! may be
written:

d2t

dl2
52F1

2
kakb] thab2ka]̂th0aG S dt

dl D 2

, ~241!

where the constant vectorka5(1,ki)5(1,k), and the substi-
tution for the unperturbed trajectory of light ray inhab is
2-35
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done after taking a partial derivative with respect to coor
nate timet. The solution of Eq.~241! can be found by itera-
tions using expansion

l5E21@ t1F~ t !# , ~242!

whereE is the constant photon’s energy at past null infin
measured by a fictitious observer being at rest, and the fu
tion F(t) is of the orderO(hab). It is obtained by solving
the equation

d2F
dt2

5
1

2
kakb] thab2ka]̂th0a . ~243!

Solving the differential equation~243! one finds

K 0~t!5E21@12Ḟ~t!# , K 0
0[K 0~t0!5E21@12Ḟ~t0!# ,

~244!

and

Ḟ~t!5
1

2
kakbE

2`

t F]hab~ t,x!

]t G
t5s1t* ; x5ks1 ĵ

3ds2kah0a~t! , ~245!

Ḟ~t0!5
1

2
kakbE

2`

t0 F]hab~ t,x!

]t G
t5s1t* ; x5ks1 ĵ

3ds2kah0a~t0! . ~246!

After examination of structure of integrands in the integr
of the expressions~245!, ~246! one notes that

F]hab~ t,x!

]t G
t5s1t* ; x5ks1 ĵ

5
]hab~s1t* ,ks1 ĵ!

]t*
.

~247!

A remarkable property of equality~247! is that the paramete
t* is independent from the arguments of the integrand in
Eqs. ~245!, ~246! and, for this reason, the derivative wit
respect tot* can be taken out of the sign of the integra
This allows us to transform, e.g., the integral~245! into the
form

E
2`

t F]hab~ t,x!

]t G
t5s1t* ; x5ks1 ĵ

ds

5
]

]t*
E

2`

t

hab~s1t* ,ks1 ĵ!ds. ~248!

Using solution~10! for hab and relationship~25! relating
total differentials of coordinate times and retarded timez
one obtains
12400
-

c-

s

.

]

]t*
E

2`

t

hab~s1t* ,ks1 ĵ!ds

54(
a51

N F ]

]t*
E

2`

s(t,t* )T̂ab
a ~z!2~1/2! habT̂al

l ~z!

t* 1k•xa~z!2z
dzG ,

~249!

where the upper limits(t,t* ) of the integral on the right
hand side is calculated by means of solution of equati

s1uks1 ĵ2xa(s)u5t1t* , and depends on timet and in-
stant of the closest approacht* considered as a paramet
@148#. For the upper limit depends ont* the derivative]/]t*
of the integral in square brackets is taken both from the
tegrand of the integral and its upper limit. It is possible
eliminate dependence of the upper limit of the integral on
parametert* . It will be achieved if one takes timet as inde-
pendent variable instead oft and finds the upper limit of the
integral from Eq.~83! as we have done previously whil
calculating the Doppler effect in terms of frequency. Such
procedure gives us

4(
a51

N F ]

]t*
E

2`

s(t,t* )T̂ab
a ~z!2~1/2! habT̂al

l ~z!

t* 1k•xa~z!2z
dzG

54(
a51

N F ]

]t*
E

2`

s(t)T̂ab
a ~z!2~1/2! habT̂al

l ~z!

t* 1k•xa~z!2z
dzG

14 (
a51

N T̂ab
a ~s!2~1/2! habT̂al

l ~s!

r a~s!2k•ra~s!

r a

r a~s!2va~s!•ra~s!
,

~250!

where the second term in the right hand side is a par
derivative of the upper limit of integral in Eq.~249! with
respect tot* @149# and the upper limits(t) of the last inte-
gral is treated as independent fromt* @150#. Finally, one has

1

2
kakbE

2`

t F]hab~ t,x!

]t G
t5s1t* ; x5ks1 ĵ

ds

5
1

2
kakbhab~t!22(

a51

N FmaCa~s!

2
ma

A12va
2

~12k•va!2

r a2k•ra

k•ra

r a2va•ra
G , ~251!

where the functionCa(s) is displayed in Eq.~71!. Similar
arguments give
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1

2
kakbE

2`

t0 F]hab~ t,x!

]t G
t5s1t* ; x5ks1 ĵ

ds

5
1

2
kakbhab~t0!22(

a51

N FmaCa~s0!

2
ma

A12va0
2

~12k•va0!2

r 0a2k•r0a

k•r0a

r 0a2va0•r0a
G . ~252!

Going back to the formula~239! of the Doppler effect in
terms of energyone can see that it can be factorized in thr
terms:

n

n0
5S1•S2•S3 , ~253!

where

S1[
u0

u0
0

5
12v0

22h00~ t,x0!22h0i~ t0 ,x0!v0
i 2hi j ~ t0 ,x0!v0

i v0
j

12v22h00~ t,x!22h0i~ t,x!v i2hi j ~ t,x!v iv j
,

~254!

S2[
K 0

K 0
0

5
12Ḟ~t!

12Ḟ~t0!
, ~255!

S35
12k•v2v•J̇~t!2kah0a~ t,x!2kav jha j~ t,x!

12k•v02v0•J̇~t0!2kah0a~ t0 ,x0!2kav0
j ha j~ t0 ,x0!

.

~256!
Here J̇(t) is given in Eq.~34! and J̇(t0) is obtained from
Eq. ~34! by means of calculation of all functions involved
the instantt0.

On the other hand, our previous result for calculation
theDoppler shift in terms of frequencyobtained in Sec. VI C
had the following form:

n

n0
5S1

dt

dt0
. ~257!

Thus, in order to have an agreement with calculation of
Doppler shift in terms of energyone must prove that

dt

dt0
5S2•S3 . ~258!

One can recast the product on the right hand side of
~258! accounting for Eqs.~245!, ~246!, ~251!, ~252! into the
form

S2•S35
A~t!

A~t0!

B~t!

B~t0!
, ~259!

where

A~t!512k•v2
1

2
v ikakb]̂ iBab~t!2

1

2
kakbhab~t! ,

~260!
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A~t0!512k•v02
1

2
v0

i kakb]̂ iBab~t0!2
1

2
kakbhab~t0! ,

~261!

B~t!5112(
a51

N FmaCa~s!

2
ma

A12va
2

~12k•va!2

r a2k•ra

k•ra

r a2va•ra
G , ~262!

B~t0!5112(
a51

N FmaCa~s0!

2
ma

A12va0
2

~12k•va0!2

r 0a2k•r0a

k•r0a

r 0a2va0•r0a
G ,

~263!

where the partial derivatives]̂ iBab(t) and ]̂ iBab(t0) are
calculated on the ground of Eq.~30!. With Eqs.~259!–~263!
it is straightforward to confirm the validity of Eq.~258! if
one notes that up to the second order of the po
Minkowskian approximation scheme it holds that

B 21~t!5122(
a51

N FmaCa~s!

2
ma

A12va
2

~12k•va!2

r a2k•ra

k•ra

r a2va•ra
G , ~264!

so that Eq.~259! can be rewritten as follows:

S2•S35
A~t!

A~t0!B 21~t!B~t0!
. ~265!

It is easy to confirm that the numerator and denominato
Eq. ~265! coincide exactly with those of Eq.~81! used for
calculation of the Doppler shift in terms of frequency an
for this reason, Eq.~258! is valid. This finalizes the proof of
equivalence of using two different mathematical techniqu
for calculation of the Doppler effect.

In conclusion of this section we would like to point ou
that the method of calculation of integrals in formulas~245!,
~246! exposed in the sequence of Eqs.~247!–~251! signifi-
cantly simplifies and reduces the amount of calculatio
which have been performed, e.g., in Ref.@151# for studying
anisotropies of CMB radiation due to cosmic strings, whe
rather complicated transformations of variables were u
for performing of the integrals under discussion. As we ha
shown in the present section such transformations are a
ally unnecessary.

5. The explicit Doppler tracking formula

In view of practical applications it is useful to give th
explicit formula for Doppler tracking of satellites. We sha
derive it in the present section for one-way propagation
electromagnetic signals emitted from the pointx0 at time t0
and received at the pointx at timet. The Doppler shift of the
2-37
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observed frequencyn with respect to the emitted frequenc
n0 is given by Eq.~253! which is to be transformed to sepa
rate the special relativistic Doppler effect from general re
tivistic corrections. Thus, we have

n

n0
5

12k•v

12k•v0
F12v0

2

12v2G 1/2 Fa~t0!

a~t! G 1/2
b~t!

b~t0!
, ~266!

where the first two factors out of four describe the spec
relativistic Doppler effect, and the next terms are gene
relativistic corrections. The unit vectork given at past null
infinity relates to the unit vectorK @see Eq.~36! for its defi-
nition# of the boundary value problem through the relatio
ship ~37! which, for the particular case under discussio
reads

ki52Ki1
2

R (
a51

N

maF12k•va

A12va
2

r a
i 2ki~k•ra!

r a2k•ra

2
12k•va0

A12va0
2

r 0a
i 2ki~k•r0a!

r 0a2k•r0a
G

1
4

R (
a51

N F ma

A12va
2 @va

i 2ki~k•va!# ln~r a2k•ra!

2
ma

A12va0
2 @va0

i 2ki~k•va0!# ln~r 0a2k•r0a!G ,

~267!
e
h

th
o
th
th
dy
dy

n
sig
e
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whereR5ux2x0u.
The explicit formulas for the functions a(t) and a(t0) are

derived using Eq.~212! which leads to

a~t!5112(
a51

N maA12va
2

r a2va•ra

2
4

12v2 (
a51

N
ma

A12va
2

~12v•va!2

r a2va•ra
, ~268!

a~t0!5112(
a51

N maA12va0
2

r 0a2va0•r0a

2
4

12v0
2 (

a51

N
ma

A12va0
2

~12v0•va0!2

r 0a2va0•r0a
. ~269!

We recall thatv0(t0) is the barycentric velocity of emitter
va05va(s0) is the barycentric velocity of theath gravitating
body at the instants0 , r 0a5ur0au, r0a5x0(t0)2xa(s0), and
s05t02r 0a is the retarded time corresponding to the time
emission,t0, of the radio signal. In addition to this,v(t) is
the barycentric velocity of receiver,va5va(s) is the bary-
centric velocity of theath gravitating body at the instants,
r a5urau, ra5x(t)2xa(s), ands5t2r a is the retarded time
corresponding to the time of receptiont of the radio signal.

Omitting all terms in Eq.~74! for the integralCa depend-
ing on accelerations of the bodies’ center of mass, and
ducing similar terms, we obtain for the functions in the la
factor of the basic relationship~266! the following explicit
result:
b~t!5112(
a51

N
ma

A12va
2

12k•va

r a2va•ra
F ~12k•va!~k3v!•~k3ra!

r a2k•ra
2

~k3va!•~k3ra!

r a2k•ra
1k•vaG , ~270!

b~t0!5112(
a51

N
ma

A12va0
2

12k•va0

r 0a2va0•r0a
F ~12k•va0!~k3v0!•~k3r0a!

r 0a2k•r0a
2

~k3va0!•~k3r0a!

r 0a2k•r0a
1k•va0G . ~271!
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The formulas~266!–~271! describe the Doppler shift of th
radio signal transmitted from observer to spacecraft. T
Doppler shift of the radio signal transponded back to
observer is described by a similar set of equations with c
responding attachment of all quantities to the instant of
signal’s reflection from the spacecraft and to the one of
signal’s reception. In case of light grazing a gravitating bo
the formula~266! gives, of course, the result shown alrea
in Eq. ~238!.

VIII. DISCUSSION

A. Basic results

The long-standing problem of relativistic astrophysics a
astrometry concerning propagation of electromagnetic
nals in the weak but arbitrarily fast changing, time-depend
e
e
r-
e
e
,

d
-

nt

gravitational field of an astronomicalN-body system was
analytically solved in the present paper in the first po
Minkowskian approximation of general relativity. The grav
tational field, described by the perturbationhab of the
Minkowski metric tensorhab of the flat space-time, was
presented in the form of Lie´nard-Wiechert potentials and de
pends on coordinatesxa (a51,2,. . . ,N) and velocitiesva

of the bodies taken at the retarded instants of time. Ther
not any restriction on the motion of the bodies except for t
va,c ~speed of light!. The relativistic equations of ligh
propagation were integrated in the field of the Lie´nard-
Wiechert potentials and their solutions were found in alg
braically closed form. Exact analytic expressions for the
tegrated time delay, the angle of light deflection, and
gravitational shift of electromagnetic frequency caused
the gravitational fields of arbitrary moving bodies were d
2-38
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rived and all possible residual terms were shown explici
One can compare the theoretical elegance and complete
of the Lorentz-covariant formalism of the present paper w
various approaches of other authors to the same proble
light propagation in time-dependent gravitational fields~see,
for example, Refs.@151–154#!.

The applications of the Lorentz-covariant theory of lig
propagation, developed in the present paper, to relativ
astrophysics and astrometry are as follows.

A general theory of the Shapiro time delay in binary p
sars is developed and all corrections with respect to vel
ties of pulsar and its companion to the standard logarith
expression of the time delay in static gravitational field we
found. Particular attention was paid to the terms which
linear in velocities which generalize the formula for the Sh
piro time delay which existed in the parametrized po
Keplerian formalism discussed by Damour and Taylor@73#.
A Lorentz-covariant post-Minkowskian approach to the tim
delay calculations was compared with the post-Newton
approach the enigmatic efficiency of which remained p
zling for a long time, was fully explained both in terms of th
analytic mathematical technique and in the visual langu
of Minkowski diagrams.

An equation of gravitational lens, moving arbitrarily fa
and possessing spin-dipole and quadrupole components
derived. Gravitational shift of spectral lines of the lens
source of light is worked out and its influence on the anis
ropy of cosmic microwave background radiation was d
cussed.

The expression for the Shapiro time delay, caused by
solar system bodies, was reanalyzed to improve accurac
pulsar timing data processing programs and of the conse
model of very long baseline interferometry.

The relativistic deflection of light in the solar syste
gravitational field was obtained with accounting for a
velocity-dependent terms in the first post-Minkowskian a
proximation. This result will be important in future spac
astrometric missions such as GAIA~ESA!, SIM ~NASA!,
etc.

The theoretical formulation of the Doppler tracking
interplanetary spacecrafts was achieved at the level of
sidual terms of order 10216.

We could not elaborate in the present paper all poss
aspects of the Lorentz-covariant approach to the problem
propagation of light rays in time-dependent gravitation
fields of isolated astronomical systems. Some of the m
important theoretical developments which can be done
future are outlined in the following section.

B. Future prospects

The clear mathematical formulation of the Lorent
covariant theory of light propagation in gravitational fields
arbitrary-moving bodies and the elegant method for solv
related problems coming up in this framework and be
based on the proper account for all retardation effects, de
ers new fascinating opportunities for a much deeper ex
ration of the following open problems of modern relativis
astrophysics and astrometry.
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The propagation of light rays in the field of arbitrary
moving bodies endowed with spin-dipole and quadrup
moments. This requires the knowledge of the expression
the singular tensor of energy-momentum of pointlike p
ticles with spin and quadrupole moments. The spin contri
tion to the tensor can be found, for example, in Ref.@48# but
the structure of the tensor with the quadrupole~and higher!
multipole seems to be unknown. Solution of the given pro
lem will admit a precise mathematical treatment of timi
observations of a pulsar orbiting a Kerr black hole, as wel
a unique interpretation of those x-ray andg-ray sources
which are assumed to have a Kerr black hole at the cente
their accretion disks related.

The extension of the Lorentz-covariant theory presen
in this paper to the event of strong gravitational fields. T
will require finding solutions of the equations of light prop
gation in the second post-Minkowskian approximation
general relativity or another alternative theory of gravi
Here one can expect to find differences between predict
of two gravity theories which may be used for suggest
new observational tests of the theories. It is also interes
to note@30# that if the light-deflecting body or/and observ
move too fast in a specific direction even the weak and he
linear gravitational field can become strong in a chosen
ordinate frame. In such a case the linear post-Minkowsk
approximation is not enough to give unambiguous obser
tional predictions of relativistic gravitational effects i
propagation of light rays and a second iteration of the E
stein equations is required.

An elaboration of the formalism of the present paper
the case of polarized electromagnetic wave to calculate
rotation angle of the plane of polarization along the n
geodesic path of the wave—the Skrotskii effect@155#; see
also Ref.@151#.

The inclusion in the formalism of the given paper of rel
tivistic effects of gravitational waves from localized sourc
such as a supernova explosion, massive binary black hole
nuclei of active galaxies, cataclysmic and ordinary bina
stars in our galaxy, etc. The first decisive step towards
adequate interpretation of these gravitational wave effe
has been done in our paper@1#. However, a more involved
technique is required to take into account motion of t
sources of gravitational waves with respect to observer.
expect that new interesting effects may be found along
line.

The calculation of the response of space gravitatio
wave interferometers such as LISA to the signals emitted
gravitationally induced oscillations of the Sun~so-calledg
modes!. The combined technique of this and our previo
paper@1# is undoubtedly enough for getting the answer
that problem.

The application of the formalism of the present paper
the case of small-angle scattering problem of fast-mov
self-gravitating bodies and calculation of gravitational wa
forms ~see, e.g., Ref.@29#!.

The development of physically adequate, high-precis
algorithms for data processing of observations of space
trometric satellites and navigation systems such as GPS
well as very long baseline interferometry. The practical n
2-39
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cessity in such algorithms is already strongly felt and w
permanently grow following achievements in the rapid d
velopment of advanced space technology.

We could continue the list of subjects for future work. F
example, we did not touch upon cosmological applications
the formalism of the present paper. This will require so
modifications of equations of light propagation to accou
for the cosmological expansion of the universe. No dou
the interpretation of observations of anisotropy of cosm
microwave background radiation induced by, e.g., cos
strings@151#, can be made more theoretically adequate in
framework of the presented new scheme.
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