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The Lorentz covariant theory of the propagation of light in fiveak gravitational fields oN-body systems
consisting of arbitrarily moving pointlike bodies with constant massg¢a=1,2,. .. ,N) is constructed. The
theory is based on the nard-Wiechert representation of the metric tensor which describes a retarded type
solution of the gravitational field equations. A new approach for integrating the equations of motion of light
particles (photong depending on the retarded time argument is invented. Its application in the first post-
Minkowskian approximation, which is linear with respect to the universal gravitational corGtardkes it
evident that the equations of light propagation admit to be integrated straightforwardly by quadratures. Explicit
expressions for the trajectory of a light ray and its tangent vector are obtained in algebraically closed form in
terms of functionals of retarded time. General expressions for the relativistic time delay, the angle of light
deflection, and the gravitational shift of electromagnetic frequency are derived in the form of instantaneous
functions of retarded time. They generalize previously known results for the case of static or uniformly moving
bodies. The most important applications of the theory to relativistic astrophysics and astrometry are given.
They include a discussion of the velocity-dependent terms in the gravitational lens equation, the Shapiro time
delay in binary pulsars, gravitational Doppler shift, and a precise theoretical formulation of the general rela-
tivistic algorithms of data processing of radio and optical astrometric measurements made in the nonstationary
gravitational field of the solar system. Finally, proposals for future theoretical work being important for
astrophysical applications are formulat¢80556-2820199)07218-3

PACS numbd(s): 04.20.Cv, 04.25-g, 04.80-y, 11.80—m

I. INTRODUCTION AND SUMMARY Newtonian presentation of the metric tensor of the gravita-
tional field. It is well known(see, for instance, Ref§5,6])
The exact solution of the problem of the propagation ofthat the post-Newtonian approximation for the metric tensor
electromagnetic waves in nonstationary gravitational fields i¢s valid only within the so-called “near zone.” Hence, the
extremely important for modern relativistic astrophysics and?©St-Newtonian metric can be used for the calculation of

fundamental astrometry. Until now it has been electromag-Ight propagation only from the sources lying inside the near

o ; . . . ~2zone of a gravitating system of bodies. The near zone is
netic signals coming from various astronomical objects

hich h deli 4 th h . d restricted by the distance comparable to the wavelength of
which have delivered the most exhaustive and accuratg,, gravitational radiation emitted from the system. For ex-

physical information about numerous intriguing phenomenaampka, Jupiter orbiting the Sun emits gravitational waves
going on in the surrounding universe. Present day technologyjiip, wavelength of about 0.3 parsecs, and the binary pulsar
has achieved a level at which the extremely high precision opsr B1913-16 radiates gravitational waves with wave-
current ground-based radio interferometric astronomical obfength of around 4.4 astronomical units. It is obvious that the
servations approaches;darcsec. This requires a better the- majority of stars, quasars, and other sources of electromag-
oretical treatment of secondary effects in the propagation ofietic radiation are usually far beyond the boundary of the
electromagnetic signals in variable gravitational fields of osnear zone of the gravitating system of bodies and another
cillating and precessing stars, stationary and coalescing bimethod of solving the problem of propagation of light from
nary systems, and colliding galaxigk|. Future space astro- these sources to the observer at the Earth should be applied.
metric missions such as GAIf] or SIM [3] will also have  Unfortunately, such an advanced technique has not yet been
precision of about 1-1@.arcsec on positions and parallaxes developed and researches relied upon the post-Newtonian
of stars, and about 1-1@arcsec per year for their proper approximation of the metric tensor assuming implicitly that
motion. At this level of accuracy we are not allowed any- perturbations from the gravitational-wave part of the metric
more to treat the gravitational field of the solar system asre small and may be neglected in the data processing algo-
static and spherically symmetric. The rotation and oblatenessthms [5,7—9. However, neither this assumption was ever
of the Sun and large planets as well as time variability of thescrutinized nor the magnitude of the neglected residual terms
gravitational field should be seriously taken into accddiit ~ was estimated. An attempt to clarify this question has been
As far as we know, all approaches developed for integratundertaken in the papg4] where the matching of asymptot-

ing equations of propagation of electromagnetic signals irics of the internal near zone and external Schwarzschild so-
gravitational fields were based on the usage of the postutions of equations of light propagation in the gravitational

field of the solar system has been employed. Nevertheless, a

rigorous solution of the equations of light propagation being

*On leave from ASC FIAN, Leninskii Prospect, 53, Moscow simultaneously valid both far outside and inside the solar

117924, Russia. system was not found.
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One additional problem to be enlightened relates to howng gravitational lenses, timing of binary pulsars, the consen-
to treat the motion of gravitating bodies during the time ofsus model of very long baseline interferometry, and the rela-
propagation of light from the point of emission to the pointtivistic reduction of astrometric observations in the solar
of observation. The post-Newtonian metric of a gravitatingsystem.
system of bodies is not static and the bodies move while light The formalism of the present paper can be also used in
is propagating. Usually, it was presupposed that the biggeststrometric experiments for testing alternative scalar-tensor
influence on the light ray the body exerts when the photortheories of gravity after formal replacing in all subsequent
passes nearest to it. For this reason, coordinates of gravitafsrmulas the universal gravitational const&hby the prod-
ing bodies in the post-Newtonian metric were assumed to bgct G(* +1)/2, wherey* is the effective light-deflection
fixed at a specific instant of timg, (see, for instance, Refs. parameter which is slightly different from its weak-field lim-
[8-10]) being close to that of the closest approach of theiting value y of the standard parametrized post-Newtonian
photon 'Fo the body. Nonethelt_ess, it was never fully plear hOV\(PpM formalism[13—15. This statement is a direct conse-
to specify the moment, precisely and what magnitude of 4yence of a conformal invariance of equations of light rays
error in the_calculatlon of relat|V|st_|c time delay and/or_ the [16] and can be immediately proved by straightforward cal-
light deflection angle one makes if one chooses a slightly, ,ations. Solar system experiments have not been sensitive

different rT‘Ome”t of “”.‘e: Previous research gave us dlffer'enough to detect the difference between the two parameters.
ent co_ncelvablle prescriptions for chooslr%gchh mlghF be However, it may play a role in the binary pulsars analysis
used in practice. Perhaps the most fruitful suggestion waf1 4] '

that given by Hellingg10] and discussed later in Ré#] in Th . ized foll Section Il
more detail. This was just to accept thais exactly the time € Paper IS organized as Tolows. ection Il presents a
of the closest approach of the photon to the gravitating bod _hort descr_lptlon O_f the energy-momentum ter_150r 0 f the
deflecting the light. Klioner and Kopeikif4] have shown |ght-deflect|ng_, bodles_and the metr_lc tenso_r given in the
that such a choice minimizes residual terms in the solution ofo'™M Of the Lienard-Wiechert potential. Section Il is de-
equation of propagation of light rays obtained by theyoted t(_) the devglopment of a mat_hematlcal technique f<_)r
asymptotic matching technique. We note, however, that neilntegrating equations of propagation of electromagnetic
ther Hellings[10] nor Klioner and Kopeikin4] have justi- ~Wwaves in the geometric optics approximation. Solution of
fied that the choice for, they made is unique. these equations and relativistic perturbations of a photon tra-
Quite recently we started the reconsideration of the probjectory are given in Sec. IV. We briefly outline equations of
lem of propagation of light rays in variable gravitational motion for slowly moving observers and sources of light in
fields of gravitating system of bodies. First of all, a profound,Sec. V. Section VI deals with a general treatment of observ-
systematic approach to integration of light geodesic equaable relativistic effects—the integrated time delay, the de-
tions in arbitrary time-dependent gravitational fields possesdiection angle, and gravitational shift of frequency. Particular
ing a multipole decompositioji,11] has been worked out. A cases are presented in Sec. VII. They include the Shapiro
special technique of integration of the equation of lighttime delay in binary pulsars, moving gravitational lenses,
propagation with a retarded time argument has been deveind general relativistic astrometry in the solar system.
oped which allowed us to discover a rigorous solution of the
equations everywhere outside a localized source emitting
gravitational waves. The present paper continues the elabo- |I. ENERGY-MOMENTUM AND METRIC TENSORS

ration of the technique and makes it clear how to construct a ]
Lorentz covariant solution of equations of propagation of 1Nne tensor of energy-momentum of a system of massive

light rays both outside and inside a gravitating system 0partlclles is given in covariant form, for example, by Landau
massive pointiike particles moving along arbitrary world @nd Lifshitz[17]:
lines. In finding the solution we used the” hard-Wiechert

presentation for the metric tensor which accounts for all pos-

sible effects in the description of the gravitational field and is " A
valid everywhere outside the world lines of the bodies. The T B(t,x):a}::l TaPD Ax—xa(D)], @)
solution, we have found, allows us to give an unambiguous

theoretical prescription for choosing the tie In addition,

by a straightforward calculation we obtain the complete ex- g Sl e B

pressions for the angle of light deflection, relativistic time TaR () =myay, (Hua(tug(t), (2
delay (Shapiro effegt and gravitational shift of observed

electromagnetic frequency of the emitted photons. These ex- )

pressions are exact at the linear approximation with resped¥heret is the coordinate timex=x'=(x",x*,x%) denotes
to the universal gravitational consta@tand at arbitrary or- spatial coordinates of a current point in spaog, is the
der of magnitude with respect to the parametgtc, where ~ constant(relativistic) rest mass of thath particle,x,(t) are
v, is a characteristic velocity of theh light-deflecting body, —spatial coordinates of thath massive particle which depend
andc is the speed of light12]. We devote a large part of the On timet, v,(t) =dx,(t)/dt is velocity of theath particle,
paper to the discussion of practical applications of the newya(t)=[1—vi(t)] Y2 is the (time-dependentLorentz fac-
solution of the equations of light propagation including mov-tor, uz(t) ={y4(t), va(t)va(t)} is the four-velocity of the

N
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ath particle, ands(x) is the usual three-dimensional Dirac where the retarded time=s(t,x) for the ath body is a so-

delta function. In particular, we have lution of the light-cone equatiof26]
F90— s F900) Mavi(t) st|x—xa(s)[=t. (11
: Vi-vin' ® Vi-vi)' Here it is assumed that the field is measured at timed at
_ _ the pointx. We shall use this form of the metric perturbation
S mavL (Hv(t) h,s(t,x) for the integration of the equations of light geode-
Tal(t :W- 3 sics in the next section. It is worth emphasizing that the
a

expression for the metric tens@O) is Lorentz covariant and

is valid in any harmonic coordinate system admitting a

smooth transition to the asymptotically flat space-time at in-
Uap(1,X) = 70p+hop(t,X), (4) finity and relating to each other by the Lorentz transforma-

tions of theory of special relativit}6,27—30. A treatment of

where n,,=diag(—1,+1,+1,+1) is the Minkowski metric  post-linear corrections to the riard-Wiechert potentials

of flat space-time and the metric perturbatiog,(t,x) is a  (10) is given, for example, in a series of papers by Thorne

function of time and spatial coordinatgk3]. It can be found and collaborator$28,31-33.

by solving the Einstein field equations which read in the first

The metric tensor in the linear approximation reads

post-Minkowskian approximation and in the harmonic gauge 1. MATHEMATICAL TECHNIQUE
[19] as follows(Ref.[20], Chap. 10 FOR INTEGRATING EQUATIONS
OF PROPAGATION OF PHOTONS
Dhaﬁ(t,x):_16’7TSaB(t,X) y (5)
We consider the motion of a light partic{photon in the
where background gravitational field described by the me(ti).
No back action of the photon on the gravitational field is
Sup(tX)=Tos(t,X) — EnaﬁT)\}\(tiX)' (6) assumgd. H'ence, we are allowed to use equations_ of light
2 geodesics directly applying the metric tensor in question. Let

. . . the motion of the photon be defined by fixing the mixed
The solution of these equations has the form of theafd-  jyjtial-boundary conditiongsee Fig. 1

Wiechert potential[21]. In order to see how it looks we

represent the tensor of energy-momentum in a form where dx(—=)

all time dependence is included in a one-dimensional delta X(to) =Xo, T:k’ (12
function:

. wherek?=1 and, henceforth, the spatial components of vec-
T“ﬁ(t,x)=f dt’ s(t’ —t) T*A(t’ ,x) . (7) torsare denoted by bold letters. These conditions.de.fine the
—o coordinatest, of the photon at the moment of emission of
. . ) light ty and its velocity at the infinite past and infinite dis-
Heret’ is an independent parameter along the world lines ot3nce from the origin of the spatial coordinat@sat is, at
the particles which does not depend on tim&he solution  {he so-called past null infinity
of Eq. (5) can be found using the retarded Green function  The griginal equations of propagation of light rays are
[22-23, and after integration with respect to spatial coordi-ather complicated1]. They can be simplified and reduced
nates, using the three-dimensional delta function, it is giveRq the form which will be shown later in this section. In order
in the form of a one-dimensional retarded-time integral: {5 jntegrate them we shall have to resort to a special approxi-
mation method. In the Minkowskian approximation of the

N
heB(t,x) = 2 f+wﬁaﬁ(tr t,x)dt’ ®) flat space-time the unperturbed trajectory of the light ray is a
= S ’ straight line
A ) 1 Vot (U X(D)=xy(=xp+K (t—to), (13)
hsﬁ<t',t,x>=4[T§ﬁ<t'>—Enaﬂm(t')ﬁ—,a(”, 4 .
ra(t’) wherety, Xy, andk'=k have been defined in Eg12). In
©) this approximation, the coordinate speed of the photdd is

wherera(t')=x—x,(t'), andra(t')=|ra(t")| is the usual =k' and is considered as a constant in the expression for the
Euclidean length of the vector. light-ray-perturbing force.

The integral(8) can be performed explicitly as described It is convenient to intrpduce a new independent parameter
in, e.g., Ref[21], Sec. 14. The result is the retardednaed- 7 @long the photon’s trajectory according to the riel1]

Wiechert tensor potential =k xy() =t— to+ K- Xo, (14)

N

TeP(s)— (112) 9T}
haﬁ(t’x):“'Zl a (s)—( ) 17 ax(s)

(10) where here and in the following the center dot between two
ra(s)—va(s)~ra(s) '

spatial vectors denotes the Euclidean dot product. The time
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J Unperturbed path of light ray

; Te 0\
\T-\ ‘ /

Point of observation of light ray, x

Point of emission of light ray, x,
Perturbed path of light ray

FIG. 1. lllustration of the light ray’s propagation history. The light ray is emitted at the instant oftgimethe pointx, and arrives at
the point of observatior at the instant of timé. Light-deflecting bodies move along accelerated world lines during the time of propagation
of the light ray; their velocities at some intermediate instant of time are shown by black arrows. In the absence of the light-ray-deflecting
bodies the light ray would propagate along an unperturbed (gashed lingwhich is a straight line passing through the points of emission
Xo and observatiox. The direction of the unperturbed path is determined by the unit véctor- (x—Xg)/|X—X,|. In the presence of the
light-ray-deflecting bodies the light ray propagates along the perturbedgmith line). The perturbed trajectory of the light ray is bent and
twisted due to the gravitoelectrimass-inducedand gravitomagnetitvelocity-induced fields of the bodies. The initial boundary condition
for the equation of light propagation is determined by the unit velctdefined at past null infinity by means of a dynamical backward-in-
time prolongation(dotted ling of the perturbed trajectory of light from the point of emissignin such a way that the tangent vector of the
prolongated trajectory coincides with that of the perturbed light-ray’s trajectory at the point of emission. The relationship between unit
vectorsk andK includes relativistic bending of light and is given in the text by EY).

to of the light signal’s emission corresponds to the numericajjat the vector& is transverse to the vectdr It is worth
value of the parametet,=k- Xq, and the numerical value of

the parameter=0 corresponds to the time emphasizing once again that the vecfbris directed from

the origin of the coordinate system towards the point of the

t* =ty—K-Xg, (15) closest approach of the unperturbed path of the light ray to
the origin. This vector plays an auxiliary role in our discus-

which is the time of the closest approach of the unperturbe@ion and, in general, has no essential physical meaning as it

trajectory of the photon to the origin of an asymptotically flatcan be easily changed by the shift of the origin of the coor-

harmonic coordinate system. We emphasize that the numeglinates]35].

cal value of the momert is constant for a chosen trajectory  Implementing the two new parameters& and introduc-

of light ray and depends only on the space-time coordinatefhg the four-dimensional isotropic vectkf=(1k') one can

of the point of emission of the photon and the point of itswrite the equations of light geodesics as follofisr more

observation. Thus, we find the relationships details see Ref.1] and Ref.[36]):

TEt_t*, Tozto_t* y (16)

1 A -
which reveals that the variabteis negative from the point of x'(7)= Ekakﬂaihaﬁ(q-, 3l
emission up to the point of the closest approalft* )= &,

and is positive otherwisg34]. The differential identitydt R S e T R
=dr is valid and, for this reason, the integration along the =4, kaha'(7,§)+§k'h (T,§)—§k'kpkthq( 7,6 |,
light ray’s path with respect to timecan be always replaced

by the integration with respect to variabte (19

Making use of the parameter the equation of the unper-

turbed trajectory of the light ray can be represented as . . . .
! y g y P where dots over the coordinates denote differentiation with

xi(r)=x\(r)=kir+&, (17)  respect to timeg,=dldr, g;=P;;ald&, and P;; = &; —kik;
is the operator of projection onto the plane being orthogonal
and the distance,(7)=|xy(t)|, of the photon from the ori- to the vectork', and all quantities on the right hand side of

gin of the coordinate system reads Eq. (19 are taken along the light trajectory at the point cor-
. responding to a numerical value of the running parameter
r(r)=v7"+d°. (18 while the parametef is assumed as constant. Hence, the Eq.

A (19) should be considered as an ordinary, second order dif-
The constant vectog'= §=kx (xoX k) =kXx[xy(t) XK] is  ferential equation in variable [37—44. The given form of
called the impact parameter of the unperturbed trajectrory ofq. (19) already shows that only the first term on the right
the light ray,d=|§ is the length of the impact parameter, hand side of it can contribute to the deflection of light if the
and the multiplication symbol between two vectors denote®bserver and the source of light are at spatial infinity. Indeed,
the usual Euclidean cross product of two vectors. We note first integration of the right hand side of the Ef9) with
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respect to time from—o to +o brings all terms showing from —« to +o0 as well. In addition, we note that when the

time derivatives to zero due to the asymptotic flatness of theumerical value of the parameteris equal to the time of

metric tensor which proves our stateméftr more details observationr, the numerical value of the parameteequals

see the next section s(7), which is found from the equation of the light cofiel)
However, if the observer and the source of light are lo-in which the pointx denotes spatial coordinates of observer.

cated at finite distances from the origin of coordinate system, After transforming time arguments the integré2§), (21)

we need to know how to perform the integrals from the mettake the form

ric perturbationg10) with respect to the parameteralong

the unperturbed trajectory of light ray. Let us denote those N

integrals as E’f“B(S):‘g1 B5(s),
B“'B(T,g:)zfr h*[ o, x(o)]do, (20 s 'AI'”‘B(é’)— (1/2) naﬁﬁ'% ()
—o aB _ a a
Bi(s)= (oD —k (o0 06 (29
D47 = | BB, 2 .
D(s)=2, | B[L(o)]do, 27

where the metric perturbatidif?[ o-,x(o)] is defined by the
Liénard-Wiechert potentiall0) and o is a parameter along
the light ray having the same meaning as the parameier
Eqg. (14). In order to calculate the integral®0), (21) it is
useful to change in the integrands the time argumgnto
the new ong, defined by the light-cone equati¢hl) which
after substitution fox the unperturbed light trajectorfi?) (0, 0) =Ko, O)=t* +k-x(O)— ¢ (28)
reads as follow$45]: e ar é ’

where retarded times in the upper limits of integration de-
pend on the index of each body as it has already been men-
tioned in the previous text. Now we give a remarkable, exact
relationship

which can be proven by direct use of the light-cone equation
(11) and the expressiofl7) for the unperturbed trajectory of
the light ray. It is important to note that in the given relation-
shipt* is a constant time corresponding to the moment of
the closest approach of the photon to the origin of coordinate
system. Equatior{28) shows that the integrand on the left
—vo.r )= k. * o AE_ o . hand side of the second of Eq26) does not depend on the
d2(Fa=Va-Ta)=do(fa—k-ra) +radt" ~ra-d&— oty 01(23) parameterr at all, and the integration is performed only with
respect to the retarded time varialfleThus, just as the law
where the coordinates,, and the velocityv, of the ath  of motion of the bodiex,(t) is known, the integral26) can
body are taken at the retarded tifeand coordinates of the be calculated either analytically or numerically without solv-
photon x are taken at the timer(Z). From Eq.(23) we ing the complicated light-cone equati¢hl) to establish the
immediately obtain the partial derivatives with respect to therelationship between the ordinary and retarded time argu-

o+t =+ |EHko—x,(0)] . (22

The differentiation of this equation yields a relationship be-
tween differentials of the time variablesand{, and param-
eterst*, &', k'

parameters ments. This statement is not applicable to the inte(@a)
_ because transformation to the new variaki®) does not
L la L Pijrh eliminate from the integrand of this integral the explicit de-
at_*: Fa—Valy' &_%i_ Vet pendence on the argument of tine Fortunately, as is evi-

dent from the structure of E¢19), we do not need to calcu-
i late this integral.

&_gz __Ta (24) Instead of that, we need to know the first spatial deriva-

K’ Fa=™Va'Ta tive of D*#(s) with respect to¢'. In order to find it we note

- aB .
and have the relationship between the time differentialéhat the integrand dB*(s) does not depend on the variable

along the world line of the photon which reads &'. This dependence manifests itself only indirectly through
the upper limits( 7, &) of the integral because of the structure

Fa—Va-la of the light-cone equation which assumes at the point of

do=d{ (25  observation the following form:

ra—k-ry’
If the parametet runs from— to + o, the new parameter T =S+ |EHKT—Xa(5)] . (29

Z runs from{_,=—x to {,..=t*+k-x,({;.) provided

the motion of each body is restricted inside a bounded doFor this reason, a straightforward differentiation Bf*(s)
main of space, as in the case of a binary system. In case thth respect to the retarded tinseand the implementation of
bodies move along straight lines with constant velocities, théormula (24) for the calculation of the derivatives/d& at
parametewr runs from—o to + o, and the parametérruns  the point of observation yieldgi6]
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N Teh(s)—(1/2) n*BT(s)

> 1 - .
2 na __ =i :_kak iBaﬂ —kahal
2,BYB(s) 42:1 K0S (7)= 5 KakgdiB(7) (7)

i ' 1. 1
P'j ra(s) 30 — SKR%(n)+ o KkkgtPir), (39
Fa(S)=Va(s)-ra(s)’
) 1 “ )
This result elucidates that,B“A(s) is not an integral but EI(T):EkakﬂaiDaﬁ(T)_kaBm(T)

instantaneous function of time and, that it can be calculated
directly if the motion of the gravitating bodies is given.

While calculatingd;D“#(s) we use, first, the formul430)
and, then, replacement of variablgzb). Proceeding in this R
way we arrive at the result where the functionsh®?(7), B®f(7), ¢B*?(7), and
2,D*P(7) are defined by the relationshig&0), (26), (30),
N and (31), respectively.
D*(s)= >, biBgﬁ[g(a)]da The latter equation can be used for the formulation of the
a=1J-e boundary value problem for the equation of light geodesics.
In this case the initial positiomg=X(ty) and final position

1 i 00, 1 i pq
— 5 KBY(7)+ 5KkpkaBPY(7), (35)

N >af _ aBIN

——4 F T2 ()~ (1712) n*Tar(d) x=X(t) of the photon are given instead of the initial position
a=1 J-= [ry(o,0)—k-ry(o,0)]? Xo of the photon and the direction of light propagatikn
o given at past null infinity. All we need for the formulation of

XPra(o,0)dg the boundary value problem is the relationship between the
A A unit vectork and the unit vector

S [gi [ T - W2 0

a=1 —e [t ke xa(0) — {17 K= X7Xo (36)

- [x—Xo| ’

(s TERO) — (112) 7PTA (D) _ , o , ,
-P " 2 which defines a geometric direction of the light propagation
—e o [T Hkexa(8) = {] from observer to the source of light in flat space-tifsee

Fig 1). Formulas(33) and (35) yield
xx()dg |, (31 . N,

: K=—K-g(r.5+B (10,8, (37)
where the numerical value of the paramesein the upper where relativistic corrections to the vectiét are defined as
limit of the integral is calculated by solving the light-cone follows:
equation(11). Going back to Eq(28) we find that the inte- 1 _
grand of the integra(31) depends only on the retarded time zkakﬁgpiDaﬁ( 1)~k P BY(7)
argument,. Hence, again, as it has been provenB6f(s), Bi(7&= (38)
the integral(31) admits a direct calculation as soon as the ' |X—Xol '

motion of the gravitating bodies is prescribt¥].

1 . -
EkakﬁﬁiDaﬁ(To)_kaPI B (7o)

IV. RELATIVISTIC PERTURBATIONS Bi(70.8)=
OF A PHOTON TRAJECTORY ’ |X—Xol

Perturbations of the trajectory of the photon are found by emphasize that the vectogi(r,&=8 and 8'(7o,8)
straightforward integration of the equations of light geode-— B, are orthogonal to the vectde ,and are taken a,t the
sics (19) using the expression&20), (21). Performing the  oints of observation and emission of the photon, respec-

(39

calculations we find tively. The relationships obtained in this section are used for
the discussion of observable relativistic effects in the follow-
ki(T) _ ki + EI( T) ' (32) Ing section.

i i i _ V. EQUATIONS OF MOTION FOR MOVING OBSERVERS
X(m)=xy(1)+E' (1) —E'(79), (33 AND SOURCES OF LIGHT

) The knowledge of trajectory of motion of photons in the
where 7 and 7, correspond, respectively, to the moment of 5 itational field formed by ahi-body system of arbitrary-
observation and emission of the photon. The functighgr) moving point masses is necessary but not enough for the
andE'(7) are given as follows: unambiguous physical interpretation of observational effects.
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We also need to know how observers and sources of light33) (35). First, we use Eq(33) to express the difference
move in the gravitational field of this system. Let us assume- x, through the other terms of the equation. Then, we mul-
that the observer and the source of light are pointlike massiply this difference by itself using the properties of the Eu-
less particles which move along timelike geodesic worldclidean dot product. Finally, we find the total time of propa-
lines. Then, in the post-Minkowskian approximation equa-gation of light, t—t,, extracting the square root from the
tions of motion of the particles, assuming no restriction onproduct, and using the expansion with respect to the relativ-
their velocities except for that<c (see, hOWGVGr, the dis- istic parameter@ma)/(czra) which is assumed to be small.

cussion in Ref[30]), read This results in
1 1 .. . t_toz|X_X0|_k'E(T)+k'E(To), (42)
X!(t)= 5 hoo; —Noi 1 = 5 hoorX' = hik X
or
ot P )X~ hoosdd — [ P = hi 3%
— (Poi k= Pok i) X~ hooyX"X' — ik,j ~ 5 Mij,i | XX t—to=|X—Xo| + A(t,to), (43
1 oy G? where |x—Xo| is the usual Euclidean distance between the
15 hkjt~ hoij | XXX+ 0 ek (400 points of emissiork, and observatiox of the photon, and

A(t,tg) is the generalized Shapiro time delay produced by

In the given coordinate system for velocities much smallelIhe gravitational field of moving bodies
than the speed of light, Eq40) reduces to

1 1
A(tto) = 5 KaksB™E(7) — 5 KaksB( 7o)

o1 2
X'(t):§h00J+o 02 +0 iR (41)

N
= 221 m, B,(S,Sp) - (44)
Regarding specific physical conditions either the post- :
Minkowskian equatior{40) or the post-Newtonian equation | ihe integral
(41) should be integrated with respect to time to give the
coordinates of an observ&(t) and a source of lighky(tp) S[1—K-vy(O)]2 d¢
as a function of time of observatidgrand of time of emission B4(S,Sp) = f a ,
of light ty, respectively. We do not treat this problem in the So \/1—v§(§) t* +k-x(0)—¢
present paper as its solution has been developed with neces-
sary accuracy by a number of previous authors. In particulatthe retarded times is obtained by solving Eq(11) for the
the post-Minkowskian approach for solving equations of mo-time of observation of the photon, asglis found by solving
tion of massive particles is thoroughly treated in Refs.the same equation written down for the time of emission of
[43,44,48, and references therein. The post-Newtonian apthe photon53]
proach is outlined in detail, for instance, in Ref6,8,49—

(45

51], and references therein. In what follows, we assume the So+ |Xo— Xa(So)| =to - (46)
motions of observex(t) and source of lightxy(ty) to be
known with the required precision. The relationshipg43), (44) for the time delay have been
derived with respect to the coordinate timeThe transfor-
VI. OBSERVABLE RELATIVISTIC EFFECTS mation from the coordinate time to the proper tifief the
o observer is made by integrating the infinitesimal increment
A. Shapiro time delay of the proper time along the world lingt) of the observer

The relativistic time delay in propagation of electromag-[17]
netic signals passing through the static, spherically symmet-
ric gravitational field of the Sun was discovered by Irwin
Shapiro[52]. We shall give in this paragraph the generaliza-
tion of his idea for the case of the propagation of light _ ,
through thenonstationarygravitational field formed by an —h;;[tx(D ]V (DI (1)}, (47)
ensemble ofN arbitrary-movingbodies. The result, which
we shall obtain, is valid not only when the light ray propa- wheret; is the initial epoch of observation, amds a time of
gates outside the system of the bodies but also when lighabservation.
goes through the system. In this sense we extend our calcu- The calculation of the integr&l5) is performed by means
lations made in a previous paddd which treated relativistic of using a new variable
effects in propagation of light rayenly outsidethe gravitat-
ing system having a time-dependent quadrupole moment. y=t*+k-x(0)—¢, dy=—[1—-k-vu({)]dl, (48

The total time of propagation of an electromagnetic signal
from the point x, to the pointx is derived from Egs. so that the above integréd5) reads

7= ft{l—vz(t) —hod t,x(t)] = 2hg[t,x(t) Jv'(t)
15
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s1—k-vy(Z) d(Iny) obtained in the post-Ne_wtonian appr_oxi_mate ar)alysis as we]l
Ba(s,s0)= —f > d d¢. (49)  as under the assumption that gravitating bodies move uni-
So \/1_Va(§) ¢ formly along straight line§54-56. We emphasize once
_ ) again that this assumption works well enough only if the
Integration by parts results in light travel time does not exceed the characteristic Keplerian
period of the gravitating system. Previous authors were never
—k-vy(s) able to prove that the assumption of uniform motion of bod-
Ba(s,S0) =~ m In[ra(s)—k-ra(s)] ies can be applied, e.g., for treatment of the Shapiro time
@ delay in binary pulsars. We discuss this problem more
—K-V,(Sp) deeply in the next sections of this paper.
vy (S0 K Ta(so)]
1=va(so) B. Bending of light and deflection angle
sin(ra—Kk-ry) The coordinate direction to the source of light measured
- Jso(l——vi)‘*’z[ ~Va at the point of observation is defined by the four-vector

p®=(1,p"), wherep'= —x or
— VX (kXvy)]-vadl. (50

p'=-k-E(79), (52

The first and second terms describe the generalized form of
the Shapiro time delay for the case of arbitrary moving@nd where we have put the minus sign to make the veztor
(weakly) gravitating bodies. The last term in the right hand directed from the observer to the source of light. However,
side of Eq.(50) depends on the body’s acceleration and is dhe coordinate directiop' is not a directly observable quan-
relativistic correction comparable, in the general case, to théty. A real observable vector towards the source of light
main terms of the Shapiro time delay. This correction is=(1s) is defined with respect to the local inertial frame of
identically zero if the bodies move along straight lines withthe observer. In this frame'= —dX'/d7, where 7T is the
constant velocities. Otherwise, we have to know the law oPbserver's proper time andi’ are spatial coordinates of the
motion of the bodies for its calculation. Neglecting all termslocal inertial frame. We shall assume for simplicity that the
of orderv2/c? for the Shapiro time delay we obtain the sim- Observer is at reg67] with respect to thegloba) harmonic
plified expression coordinate systemt(x) Then the infinitesimal transforma-

tion from (t,x') to (7,X") is given by the formula

At, to)——ZE ma[m—k (k-v)In(r,—k-ry) d7=Adt+A%dx, dx'=A'dt+A"dxX, (53

where the matrix of transformation“; depends on the
space-time coordinates of the point of observation and is
defined by the requirement of orthonormality

gaﬁ: nMVA,ZAZ' (54)

wherer,=x—Xy(S), roa=Xo—Xa(S0): ra=|ral, foa=Iroal,  In particular, the orthonormality conditiof54) preassumes
V,=X,(S), Vao=Xa(So), and the retarded times and's,  that spatial angles and lengths at the point of observations
should be calculated from the light-cone equati¢hh and  are measured with the help of the Euclidean medyjc For

(46), respectively. The first term on the right hand side ofthis reason, as the vectsf is isotropic, we conclude that the
expression51) for the Shapiro delay has been known for a Euclidean lengths of the vectors' is equal to 1. Indeed, one
long time(see, e.g., Ref$7—-9], and references thergirOur  has

expression$50),(51) vastly extend previously known results

for they are applicable to the case of arbitrary-moving bodies NapS*s’=—1+8=0. (55
whereas the calculations of all previous authors were se- . .
verely restricted by the assumption that either the gravitatingen(fe’bl =1, and the vegtos points out.the astrometnc
bodies are fixed in space or move uniformly with constan osition of the source of light on the unit celestial sphere
velocities. In addition, there was no reasonable theoretica‘"iltta(:h_ed to the point Of obse_rvanon. .
prescription for the definition of the body’s positions. The In linear approximation W'Fh respect 18, the matrix of
rigorous theoretical derivation of the formulg0) and(51) ~ tansformation is as followfl]:

has made a significant progress in clarifying this question 1

and proved for the first time that in calculating the Shapiro A%=1—Zhgyt,x), (56)
delay the positions of the gravitating bodies must be taken at 2

the retarded times corresponding to the instants of emission

+(k'VaO)|n(rOa_k' rOa)

# I ko - lk-v(onag s
So

0 _
and observation of electromagnetic signal. It is interesting to A%=—hei(t,x),
note that in the right hand side of EG1) the terms being :
linearly dependent on velocities of bodies can be formally A'p=0,
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. 1
AI J: 5” + Eh”(t,x) .

Using the transformatiofb3) we obtain the relationship be-
tween the observable unit vectsrand the coordinate direc-

tion p':
A pI=A
s'=—ojp 5 ° (57)

In linear approximation it takes the form

. 1 .
s'= p'+§hijp1. (58

1 .

Remembering thds| =1, we obtain for the Euclidean norm

of the vectorp'
1 1 "
|p|:1_§h00+h0jpj_§hijp p', (59
which brings Eq.(58) to the form[58]
i i Lo g
s'=m'+ EP mAhiq(t,x), (60)

with the Euclidean unit vectam'=p'/|p|.

Let us now denote by' the dimensionless vector de-
scribing the angle of total deflection of the light ray mea-
sured at the point of observation and calculated with respect
to vectork' given at past null infinity. It is defined according

to the relationshig1]
(. H=K[k-E(r.H]-E (1.9 (61)
or
d(r,=-P El(rd. (62)

As a consequence of the definitiof&2) and (62) we con-
clude that

m=—k+a(ré. (63)

Taking into account expressiofs7), (59), (62), and(37) we
obtain for the observed direction to the source of light

S(r,H=K+a (1,8 +B(1,& B (10, +7 (1,9,
(64)

where the relativistic correction8' are defined by Eq(38)
and where

LA 1 .
Y (1,8)=— EP” k9hijq(t,%) (65)

PHYSICAL REVIEW D 60 124002

observed along the directiomﬁé and siz, correspondingly,
the measured angl¢ between them is defined in the local
inertial frame as follows:

COSY=5,-S,, (66)

where the center dot denotes the usual Euclidean scalar prod-
uct. It is worth emphasizing that the observed direction to the
source of light(64) includes the relativistic deflection of the
light ray which depends not only on quantities taken at the
point of observation but also on thog&( 7y, &) taken at the
point of emission of light. Usually this term is rather small
and can be neglected. However, it becomes important in the
problem of propagation of light in the field of gravitational
waves[1] or for a proper treatment of high-precision astro-
metric observations of objects being within the boundary of
the solar system.

Without going into further details of the observational
procedure we, first of all, give an explicit expression for the
anglea'(7):

al(r)=- ;kakﬁéisaﬁ( 7)+k, P h¥(7r). (67

The relationshipg10),(30) along with the definition of the
tensor of energy-momentu(B) allow us to recast the previ-
ous expression into the form

N 2 i
_ m 1-k-v P .r
01'(7')=22 a . ( — a) _J a
a=1 \/1—va Fa=K-Tq Ta=Vala
N m, 1-k-v,

—4 P v, 68
azl \/1—V§ra_va'ra e (8

where all the quantities describing the motion of &
body have to be taken at the retarded tisnghich relates to
r=t—t* by the light-cone equatiorill). Neglecting all
terms of the order,/c we obtain a simplified form of the
previous expression

) m, P.r
(1"(7')222 2 L@

az1 ry (ra—=k-rp)’ (69)
which may be compared to the analogous expression for the
deflection angle obtained previously by many other authors
in the framework of the post-Newtonian approximaticee
Ref. [8], and references therginWe note that all previous
authors fixed the moment of time, at which the coordinates
X, Of the gravitating bodies were to be calculated rather ar-
bitrarily, without having rigorous justification for their
choice. Our approach gives a unique answer to this question
and makes it obvious that the coordinaxgshould be fixed
at the moment of retarded time relating to the time of
observatiort by the light-cone equatiofiLl).

The next step in finding the explicit expression for the
observed coordinate directiost is the computation of the

describes the light deflection caused by the deformation ofjuantity 8'(7) given in Eq.(38). We have from formulas
space at the point of observations. If two sources of light aré¢26), (31) the following result for the numerator @'(7):
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1 S paB i paj
EkakﬁﬁiD (7)—k,P jB(7)

N
=—2a§1 M, [€'Cy(s)—P';Di(9)]
N

+4Z1 m, P' (EL(s), (70)

where the integral€,(s), Dg(s), andEja(s) read

2

C (s)zfs 1kvald) ae (71)
¢ —ol k- Xa(0) — ) V1-VE(D)
. s 1-kva0) 17 %0
J =
) t*+k'xa<§>—zl v
s — k. i
Ei(s)= 1-k-va(l) VA -

—ot* K- Xa(0) — ¢ V1-VE(D)

Making use of the new variablgintroduced in Eq(48) and
integrating by parts yields

C.(9) 1 1-Kk-vy
S =
é V1—vy ra—k-ry

+fs [K—Va—VaX (kXVp)]-v,  d¢

ra—k~ra (1_V&21)3/2’
(74)
. 1-k-v X!
DJ S)= a a
a( ) \/1—V§ ra_k'ra
fs [K—Va—=VaX (KXV2)]-V,  Xhd{
" — ra—k-ry (1-v2)32
—Ei(s), (75
| vl
El(s)=— 5IN(rg—K-ra)
—\2
s . dg
+ | In(r,—k-r,) IMvk ———— (76
| mtrater s s e

wherellL ()= 6+ u'({)u,(¢) is the spatial part of the op-
erator of projection onto the plane being perpendicular to the
world line of theath body, and the bodies’ coordinates and
velocities in all terms, being outside the signs of integral, are

taken at the moment of the retarded tisi&Equationg74)—

PHYSICAL REVIEW D60 124002

N i i
_ m k-vy,) (P'.v))
Jin=—23, M Vel BV
1 (J1-vZ  Ta=Va'la

(77

where coordinates and velocities of the bodies must be taken
at the retarded time according to Eq(11). We note that'

is a very small quantity being proportional to the product
(Gm,/c?r,)(v,/c).

C. Gravitational shift of frequency

The exact calculation of the gravitational shift of electro-
magnetic frequency between emitted and observed photons
plays a crucial role for the adequate interpretation of mea-
surements of radial velocities of astronomical objects, anisot-
ropy of electromagnetic cosmic background radiation
(CMB), and other spectral astronomical investigations. In the
last several years, for instance, the radial velocity measuring
technique has reached unprecedented accuracy and is ap-
proaching a precision of about 10 cm/4&®]. In the near
future there is hope to improve the accuracy up to 1 cm/sec
[60] when the measurement of the post-Newtonian relativis-
tic effects in optical binary and/or multiple star systems will
be possibld61].

Let a source of light move with respect to the harmonic
coordinate systemt(x') with velocity vy(tg) =dxXq(to)/dt,
and emit electromagnetic radiation with frequenay
=1/(67,), wherety and 7, are coordinate time and proper
time of the source of light, respectively. We denote by
=1/(87) the observed frequency of the electromagnetic ra-
diation measured at the point of observation by an observer
moving with velocity v(t) =dx/dt with respect to the har-
monic coordinate systent,k'). We can consider the incre-
ments 87, and 67 as infinitesimally small. Therefore, the
observed gravitational shift of frequency+Z=v/v, can be
defined through the consecutive differentiation of the proper
time of the source of ligh?, with respect to the proper time
of the observefl [62—64:

d7, d7; dt dt

1+Z:d_7_d_toﬁd_7’ )
where the derivative
d7, 5 i
dty [1—v5(to) —hoolto,Xo) = 2hoi(to,Xo) Vo(to)
— hij(to,Xo) Vo(to) vh(te)]*2, (79)

is taken at the point of emission of light and the derivative

dt 2 i
3711 V() = hog(t,0) =2 (£, VI(D)

—hy(t,%) V(1) vi(t)] 2 (80)

(76) will be used in Sec. VII for the discussion of the gravi- is calculated at the point of observation.

tational lens equation with taking into account the velocity of

the body deflecting the light rays.

The time derivative along the light-ray trajectory is calcu-
lated from Eq.(43) where we have to take into account that

Finally, the quantityy'(7) can be explicitly given by the the functionB,(s,s,) depends on times, andt not only

following expression:

through the retarded timeg, ands in the upper and lower
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limits of the integral(45) but through the timaé* and the source of light and/or observer and, consequently, to the cor-
vector k both being considered in its integrand as time-responding change in the trajectory of the light ray, that is in
dependent parameters. Indeed, the infinitesimal increment of andk. Hence, the derivative along the light ray reads as
times ty and/ort causes variations in the positions of the follows:

N
1+K-v=2D, my[(as/dt) (91ds) + (dsglat) (aldsy) + (t*dt) (9lat*) + (ki/at) (3l k)IBa(S,Se,t* K)
a=1

dt,
E: N ) (81)
1+K-Vo+2>,  my[(asldty) (913S) + (3ol dto) (9dSe) + (It*1tg) (3l at*) + (aK1tg) (31 K)IBa(S,Se.t* K)
a=1
|
where the unit vectoK is defined in Eq(36) and where we 9So
explicitly show the dependence of functi@ on all param- - 0. (87)

eters which implicitly depend on timé5].

The time derivative of the vectdr is calculated using the ' Time derivatives of the parametet are calculated from its
approximationk=—K and formula(36) where the coordi-  qiginal definitiont* =t,— k- xo(to), which naturally appears

nates of the source of light(to) and of the observex(t)  in integrands of all integrals, and read
are functions of time. It holds that

*
okl [kx(vxk)] oK [kX (vox k)] izl_k. +V0_'§ anr_ vé 89)
= R" - wr 8 at Vo R Tt R’
at R ST R ’ 0
whereR= |X—X0| is the distance between the observer anthere the terms of ordef/R in both formulas relate to the
the source of light. The derivatives of retarded tirsesds,  time derivatives of the vectd.

with respect td andt, are calculated from the formula$1) Partial derivatives of the functioB,(s,sp,t*,k) defined
and (46) where we have to take into account that the spatiaPy the integral(45) read

position of the point of observation is connected to the point

of emission of light by the unperturbed trajectory of light By 1 (1—k-v,)?
X(t)=Xo(to) +k (t—tgy). More explicitly, we use for the s J1-vZ Ta—kerg (89)
calculations the following relationshig§6]: a
S+ [Xo(to) +K(t,to) (t—tg) —Xa(s)| =t Ba_ 1 (1-k-ve)? 00
and 9So V1-v2, Toa=K:Toa
So+ | Xo(to) — Xa(So)| =to, (83 JB
Pl (01t —2=Ca(s0)—Ca(s), (91)

*
where the unit vectok must be considered as a two-point at

function of timeg, to with derivatives being taken froii®2).

The physical meaning of relationshif&3) and those ij66] 9Ba
is the preservation of the intersection at the point of obser- ok
vation x(t) of two of the lines forming light cones which

relate to propagation of the gravitational field and electro-The partial derivativesB,/dt* is found with the help of
magnetic signals and having vertices at poirf¢s) and  relationships(71), (74). Calculation of the partial derivative
Xo(to), respectively. A calculation of infinitesimal variations B, /sk' is realized by making use of Eqé72), (73) and

of equationg(83) immediately gives (75), (76) respectively. The integrals in Eq&74)—(76) are
not calculable analytically in general. If we assume that the

=D.(sp)—D4(s) +2[EL(Se) —EL(S)]. (92

98 _ra—K-ra (kXv)-(kXra) (84)  accelerations of gravitating bodies are small so that the ve-

at la=Va'la ra—Va-fa ' locity of each body can be considered as a constant, the
derivatives(91), (92) are approximated by simpler expres-

ds  (1—k-vo)(k-ra) sions
My TaVala @5

0 a a'la

B, 1 1—k~va+ 1 1-k-vy
@: —rOa_VO'rOa , (86) at* \/l—V§ ra—k-ry \/1—ng loa—K-Toa ,
o Toa™Vao'foa (93
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9B, 1—k-v, XJ;d(S) 1—K- Vg XL(So) t.hel observer. T_hese tclerms_produce. an additional effect in
-=— s + > s timing observations which will reveal itself asa small excess
ak \/1_Va Fa Fa \/1_Va0 Foa Foa to the range and shape of the known Shapiro delay making
its representation more intricative. The effect under discus-
sion cannot be investigated thoroughly and self-consistently
within the post-Newtonian approximatioPNA) scheme

even if the velocity-dependent terms in the metric tensor are

2vl, taken into accour{tt4-56. This is because the PNA scheme
- W”‘Uor K-roa) +-- . (94 does not treat all retardation effects in the propagation of the
a0 gravitational field properly.

Residal tems, denoed by ellses, can b calulted rogy 0 (% 52100 M PIESer, e xaet Lorent covara
the integrals in Eqs(74)—(76) if one knows the explicit y P ’

functional dependence of the bodies’ velocities on time Ongvell known logarithm, all corrections for the velocities of the
expects the magnitude of the residual term to be so small th%ﬁlrsszzvigd tgstgrorrr?spevnk:(i)cr;{ g?ewl?::arl,r Is\;ﬁ (?gswzcsthgl trheest\rllg
it is unimportant for the following discussidi7]. The ex- P

pressions3), (94 wil b explly used n Sec. VIlB or (0S5, The PIONEr &l e o he valows o e e
discussion of the gravitational shift of frequency by a mov- 9 y 949

. o dratic with respect to velocities are proportional to the gravi-

ing gravitational lens. tational potential of the system. This means that a proper

treatment of the quadratic with respect to velocity terms can

VII. APPLICATIONS TO RELATIVISTIC ASTROPHYSICS be achieved only within the second post-Minkowskian ap-
AND ASTROMETRY proximation for the metric tensor which is not considered in

the present paper.

The original idea of the derivation of the relativistic time
1. Approximation scheme for calculation of the effect delay in the static and spherically symmetric field of a self-

Timing of binary pulsars is one of the most important 9ravitating body belongs to Irwin Shapif2]. Regarding
methods of testing general relativity in the strong gravita-Pinary pulsars thestatic part of the Shapiro time delay has
tional field regime([68—72, and references thergirSuch an  been computed by Blandford and Teukoldkyf] under the
opportunity exists because of the possibility to measure igssumption of everywhere weak arsfatic gravitational
some binary pulsars the so-called post-KeplefigK) pa- fields. qudt\{ed[54], Kll_oner[55], gnd_Wex[_SG] calculgted
rameters of the pulsar's orbital motion. The PK parameterdhe Shapiro time delay in the gravitational field of uniformly
quantify different relativistic effects and can be analyzed usmoving bodies but without accounting for the retardation in
ing a theory-independent procedure in which the masses dpe pr_opagatlon of the gravitational field. The mathematlcal
the two stars are the only dynamic unknowi8]. Each of f[eghn_lque of the_present paper allows us to treat the relativ-
the PK parameters depends on the masses of orbiting stars/#ic time delay rigorously and account for all effects caused
a different functional way. Consequently, if three or morebY thenonstationanypart of the gravitational field of a binary
PK parameters can be measured, the overdetermined systd@isar, that is, to find in the first post-Minkowskian approxi-
of the equations can be used to test the gravitational theoryhation all  special-relativistic ~ corrections of order

Especially important for this test are binary pulsars onVa/C, Va/c? etc., to the static part of the Shapiro effect
relativistic orbits visible nearly edge-on. In such systems obWherev, denotes characteristic velocity of bodies in the bi-
servers can easily determine masses of orbiting stars meastary pulsar.
ing the “range” and “shape” of the Shapiro time delay in Let us assume that the origin of the coordinate system is
the propagation of the radio pulses from the pulsar to thét the barycenter of the binary pulsar. Radio pulses are emit-
observer independently of other relativistic effects. Perhaptd rather close to the surface of the pulsar and the coordi-
the most famous examples of the nearly edge-on binary puRates of the point of emissiax, can be given by the equa-
sars are PSR B18399 and PSR B153412. The sine of tion
inclination angle of the orbit of PSR B185509 to the line
of sight makes up a value of about 0.9992 and the range Xo=Xp(to) +X(to) , (95
parameter of the Shapiro effect reaches Li&7[74]. The
corresponding quantities for PSR B153#2 are 0.982 and wherex, are the barycentric coordinates of the pulsar’s cen-
6.7 us [75]. All binary pulsars emit gravitational waves, a ter of mass an& are the barycentric coordinates of the point
fact which was confirmed with the precision of about 0.3% of emission both taken at the moment of emission of the
by Taylor and collaboratofg6]. New achievements in tech- radio pulset,. At the moment of emission the spatial orien-
nological development and continuous upgrading the largegation of the pulsar’'s radio beam is almost the same with
radio telescopes extend our potential to measure with aespect to the observer on Earth. Hence, we are allowed to
higher precision the static part of the gravitational field of theassume that the vectot is constant at every “time” when
binary system as well as the influence of the velocity-an emission of a radio pulse takes pld@8-83. In what
dependent terms in the metric tensor, generated by the mo¥sllows the formula(51) plays the key role. However, before
ing stars, on propagation of radio signals from the pulsar tgerforming the integral in this formula it is useful to derive

Va

+
V1-v3

In(r,—k-ry)

A. Shapiro time delay in binary pulsars
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Position of observer at the instant
of observation of the pulse

FIG. 2. Schematic illustration of the Shapiro
time delay in a binary pulsar. The pulsar emits
radio signal at the timé, which reaches the ob-
server at the timé& For calculation of the Shapiro
time delay positions of the pulsar and its compan-
ion must be taken at the retarded instants of time
Sp ands corresponding to thodg andt. See Fig.

3 for further explanations.

Position of pulsar at the instant
of emission of a pulse

Companign

Position of pulsar at the retarded
instant of time s=tArp

the relationship between retarded tinsends, given by the  magnitude as—s,. Indeed, assuming that the velocities of
expressiongl1) and(46), respectively. Subtracting E¢46) pulsar and its companion are small compared to the speed of
from Eq. (11) and taking into account the relationshi3), light, we get from Eqs(46) and (98) for these increments,

we obtain

S—sp=R—r+rp,+A(t,t), (96) SO_tO:_|XO_Xa(SO)|:_POa_pOa'va+o(v§)+o((3()919)
where R=|R|, R=X—Xq, r,=|x—x4(5)], and roa=|Xo
—Xa(Sg)|. We note that the point of the observatianis
separated from the binary system by a very large distance
approximately equal t&® On the other hand, the size of the
binary system cannot exceed the distamgg. Thus, the wherepy,=Xo—Xa(to), Poa=|pPoal, aNdv,=v,(ty). The re-
Taylor expansion of , with respect to the small parameter lationships(99), (100) prove our previous statement and re-
roa/R is admissible. This yields veal that coordinates of bodies comprising the system and

their time derivatives can be expanded in Taylor series
around the time of emission of the radio sigtgin powers
of s—ty and/orsy—ty. Figure 2 illustrates the geometry of
(970  the mutual positions of the binary pulsar and the observer
and Fig. 3 explains relationships between position of photon
where the unit vectoK is defined in Eq.(36). Using the  on the light trajectory and retarded positions of pulsar and its
approximationK = —k+O(G), formula (96) is reduced to companion.
the form In what follows we concentrate our efforts on the deriva-
tion of the linear with respect to velocity of moving bodies
corrections to the static part of the Shapiro delay. Calcula-
tions are realized using expressi@1) where the integral is
(98 already proportional to the ratig,/c. Hence, in order to
perform the integration we take into account only first terms
which eXpIICItIy shows that the difference between the re-in the expansion of the integrand with respectt$o Then,
tarded timess and's is of the order of time interval being the integral reads
required for light to cross the binary system. It is this interval
which is characteristic in the problem of propagation of light
rays from the binary(or any other gravitationally bound Sln(r — K1) (K-vy)dg
system to the observer on Earth. Therefore, the retarded time @ a a
s taken along the light ray trajectory changes only a little .
during the entire process of propagation of light from the o * L. _
pulsar to the observer while the coordinate tilnehanges =K Va(to) fsoln[t K- Xa(to) = £]dZ.
enormously. This remarkable fact was never noted in any of
previous works devoted to study of propagation of electro-
magnetic signals from remote astronomical systems to the
observer on Earth. After this transformation the integral acquires table form and
In addition to the expressiof®8), we can show that time its calculation is rather trivial. Accounting for Eq§98)—
differencessy—ty ands—t, are also of the same order of (100, the result of integration yields

s—to=— (k- poa)(1—k- v,) +O(¥2)+O(G), (100

ra:'R“O‘Xa(sﬂ=R—K-[xo—xa(s>]+0(%) ,

S—Sp=rpa—K-Tpat+k- [Xa(S)_Xa(So)]+O(r—§) +0(G),

So

(10D
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To observer

time . e D L

Light cone

space

Light-like world line of a photon

Source of light

Time-like world line of the 1-st body Time-like world line of the 2-nd body

FIG. 3. Schematic space-time diagram showing the relationship between positions of a photon taken at different instantg,of time
ty,...,tg (events 0,1...,6 on thephoton’s null world ling and positions of the light-ray-deflecting bodigaarked by the black circles
taken at the instants of the retarded time corresponding to the inggarts. .. tg. For simplicity only the two-body system is considered.
The photon is deflected by the retarded gravitational field of the bodies expressed througméhd-Wiechert potentials. Also shown are
positions of the bodie@narked by the unfilled circl¢gaken on the spacelike hypersurfa¢dashed linesof the time instantsg, tq, ..., .
As the photon approaches the syst@wents 0,1it moves in the variable gravitational field of two bodies. After crossing the sy&eants
5,6) the gravitational field at the photon’s position is “frozen” since the photon moves along the same light cone as the gravitational field
propagates. The “freezing” of gravitational field takes place during propagation of the photon inside the &yatets 2,31 Spatial
positions of gravitating bodies taken at the retarded instants of time are very close to those taken at the hypersurfaces of constant time when
photon moves near or inside the system. It explains why the post-Newtonian solution for the metric tensor can be applied in this situation
as well as the post-Minkowskian one for calculation of the photon’s propagation. Retarded and instantaneous spatial positions of the
gravitating bodies are drastically different when photon is at large distance from the sfetemtside the near zohdn this case only the
post-Minkowskin retarded solution for the metric tensor can be applied for an adequate description of the gravitational perturbations of the
photon’s trajectory.

s Let us note that coordinates of tlaéh body taken at the
J' In[t* + K- Xa(to) = £]d{ retarded times can be expanded in Taylor series in the
%o neighborhood of times,,

=(roa—K-roa)[IN(roa—K-roa) —1]

— _ Y
(Fa—K-r)In(ra—k-r,)+O(wy), (102 Xa(S) =Xa(Sp) T Va(S) (S—Sp) + O[(s—Sp)“] (103

wherer, andr,, have the same meaning as in E96). The  ©F» accounting for Eq(98),

result (102 is multiplied by the radial acceleration of the

gravitating body according to E¢L01). Terms forming such Xa(S)=Xa(So) + v (poa—K-poa) +O(25). (104

a product can reach in a binary pulsar the maximal magni-

tude of order Gm,/c®) (x/Py)(v/c)In(1—sini), wherex is  Making use of this expansion one can prove that the large
the projected semimajor axis of the binary system expressedistancer, relates to the small oney, by the important

in light secondsP,, is its orbital period, and is the angle of relationship

inclination of the orbital plane of the binary system to the

line of sight. For a binary pulsar such as PSR B1532 the r2—(k-rp)?=ra.— (k-ro2)?—2(poa— K- poa)[ Va Poa
terms under discussion are about ¥Qus which is too small 5

to be measured. For this reason, all terms depending on the = (K- poa) (k- v3) ]+ O(25) . (105
acceleration of the pulsar and its companion will be omitted

from the following considerations. Moreover,
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loatK-Toa=poat K- pPoat va poat (K- v2)poat O( vg) .
(106)

As a consequence of simple algebra we obtain

ra=kerg r2—(k-rp)? roatk-roa

Foa—K:Toa rga—(k~ I’Oa)2 ratkerg

(107)

which gives, after making use of Eq4.05, (106), the fol-
lowing result:

ra—k-ra  1+k-v, K
foa—K-Toa ra+k_ra[POa+ “Poa™ Va" Poa
+(K-poa) (k- )] +O(23) . (108
It is straightforward to prove that
2
loa
ra+k-rz=2(R+k-rg,)+0 F) , (109

whereR=|R| is the distance from the point of emission to
the point of observation. This distance is expanded as

R=R+Xxg+wW—x,—X, (110

whereR is the distance between the barycenters of the bi
nary pulsar and the solar systerg, is the distance from the

PHYSICAL REVIEW D 60 124002

N
Atte)= =22 ma{(1=k- va)In[poat K- poa— va: poa

Gm, vg
+(K- poa) (K- va) [+ k- v} +0O @ 2
Gm, vy X Gmy X
+0 3 ?P—b)+0 3 §> (112

This formula completes our analytic derivation of the
velocity-dependent corrections to the Shapiro time delay in
binary systems. It also includes residual terms which have
not been deduced by other authfgd].

2. Post-Newtonian versus post-Minkowskian calculations
of the Shapiro time delay in binary systems

Our approach clarifies the principal question why the
post-Newtonian approximation was efficient for the correct
calculation of the main(velocity-independentterm in the
formula (112 for the Shapiro time delay in binary systems.
We recall that the post-Newtonian theory operates with the
instantaneous values of the gravitational potentials in the
near zone of the gravitating system. In the post-Newtonian
scheme coordinates and velocities of gravitating bodies, be-
ing arguments of the metric tensor, depend on the coordinate
time t. Thus, if we expand these coordinates and velocities
around the time of emission of lighg we get for the com-
ponents of metric tensog,g[t,x(t),Xa(t),va(t)] a Taylor
expansion which reads

barycenter of the solar system to the center of mass of thg,, 5[ t,x(t),X,(t),Va(t)]

Earth,w is the geocentric position of the radio telescogg,

are coordinates of the center of mass of the pulsar with re-

spect to the barycenter of the binary system, ndre co-
ordinates of the point of emission of radio pulses with re-
spect to the pulsar proper reference frame. The dist@hise
gradually changing because of the proper motion of the bi
nary system in the sky. It is well known that the proper
motion of any star is small and, hence, can be neglected i
the time delay relativistic corrections. All other distances in
formula (110 are of order of either diurnal, or annual, or
pulsar's orbital parallax with respect to the distanRe
Hence, when considering relativistic corrections in the Sha
piro time delay, the distancR can be taken as a constant.
Such an approximation is more than enough to put

In(ry+k-ry)=In(2R)+0O =const, (111

foa
R

whereR =|R|. Constant terms are not directly observable in

= gaﬁ[tix(t) !Xa(tO) ,Va(to)]
+ ﬁgaﬁ[tix(t) 1Xa(t0) vVa(to)]

X,

Vi(to)

&gaﬁ[tix(t) 1Xa(t0) vVa(to)] V
VL

N W(to) f(t—to)+-+- .

(113

This expansion is divergent if the time intertat t, exceeds

the orbital periodP,, of the gravitating system. This is the
reason why the post-Newtonian scheme does not work if the
time of integration of the equations of light propagation is
bigger than the orbital period.

On the other hand, the post-Minkowskian scheme gives
components of the metric tensor in terms of thé naied-
Wiechert potentials being functions of retarded timaNe
have shown that in terms of the retarded time argument the

pulsar timing because they are absorbed in the initial rotacharacteristic time for the process of propagation of light

tional phase of the pulsar. For this reason, we shall omit fo
simplicity the term Inf,+k-r,) from the final expression for
the Shapiro time delay.

rays from the pulsar to observer corresponds to the interval
of time being required for light to cross the system. During
this time gravitational potentials cannot change their numeri-

Accounting for all approximations having been developedcal values too much because of the slow motion of the gravi-

in this section we obtain from Eq$51), (108), and(111),

tating bodies. Hence, if we expand coordinates of the bodies
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aroundt, we get for the metric tensor expressed in terms of ~ A(t,tg)=—2m(1—k- v)
the Lienard-Wiechert potentials the following expansion:
XIn[poct K- poc— v Poct (K- poc) (K- v¢) ]

+K- vk —2my[(1—K- 1) IN(2X) +K- v],
(116

gaﬁ[t,X(t),Xa(S),Va(S)]
=0apl 1,X(1),Xa(to) ,Va(to) ]

where we have omitted residual terms for simplicity. It was
99,01, X(1),Xa(to),Va(to)]

shown in Ref[89] that any constant term multiplied by the

1
X, Va(to) dot productk- v, or k- v, is absorbed into the epoch of the
first pulsar’'s passage through the periastron. Thus, we con-
99 o[ 1. X(1) Xa(to) Va(to)] . clude that terms relating to the pulsar in the form(14.6)
+ i Va(to) [ (s—tg)+--- and the very last term in the curly brackets are not directly
Na observable. For this reason, we shall omit them in what fol-

(114 lows and consider only the logarithmic contribution to the
Shapiro effect caused by the pulsar’'s companion. According
to formula(95) we have
which always converges because the time differeneé,
never exceeds the orbital peripske Eq(100)].

Nevertheless, as one can easily see, the leading terms in
the expansiongl13) and(114) coincide exactly which indi-
cates that the terms in the solution of the equations of lightvherer =X,(to) —Xc(to) is the vector of relative position of
propagation depending only on the static part of gravitationathe pulsar with respect to its companians|r|, and dots
field should be identical independently on what kind of ap-denote residual terms of higher order. Taking into account all
proximation scheme is used for finding the metric tensorprevious remarks and omitting directly unobservable terms
Thus, the post-Newtonian approximation works fairly well We conclude that the Shapiro delay assumes the form
for finding theleadingpart of the solution of the equations of
light geodesics. However, it cannot be used for taking into A(t,to) = —2m(1-k- v)
account perturbations of the light trajectory caused by the

X
Poc=r+ XK, pOC=r+?k-r+---, (117

X
motion of massive bodies in the light-deflecting, gravitation- Xln| | 1+ r (rt+k-r)y—wve-r+(k-r)(k-v,)|.
ally bounded astronomical systerf86]. It is worth empha-
sizing once again that our approach is based on the post- (118

Minkowskian approximation scheme for the calculation of . )

gravitational potentials which properly accounts for all retar-If the pulsar’s orbit is not nearly edgewise and the ratio -
dation effects in the motion of bodies by means of theiS negligibly small the time delay can be decomposed into
Liénard-Wiechert potentials. three terms:

A(t,tg)=—2m¢In(r +k-r)+2m.(k- v,)

The parametrized post-Keplerigi?PK) formalism was XIn(r+k-r)+2m, verr— (k- (k- v)

introduced by Damour and Deruel[85] and partially im- rker

proved by Damour and Tayld73]. It parametrizes the tim- (119

ing formula for binary pulsars in a general phenomenological

way [87,88. In order to update the PPK presentation of theThe first term on the right hand side of EQL19 is the

Shapiro delay we use expressidi2). A binary pulsar con- standard expression for the Shapiro time delay. The second

sists of two bodies, the pulséubindexp) and its compan- and third terms on the right hand side were discovered by

ion (subindexc). The emission of a radio pulse takes placeNordtvedt[54] and Wex[56] under the assumption of uni-

very near to the surface of the pulsar and, according to Ecform and rectilinear motion of pulsar and companion in the

(95) and the related discussion, we can approximéteXk expression for the post-Newtonian metric tensor of the bi-

whereX is the distance from the center of mass of the pulsanary system. One understands now that this assumption was

to the pulse-emitting point. In this approximation we getequivalent to taking into account primary terms of retarda-

pop=Xk and, as a consequence, tion effects in propagation of gravitational field of pulsar and
its companion. Nevertheless, the approximation used by Nor-
dtvedt and Wex works fairly well only for terms linear with

IN[ pop+ K- Pop— V- Pop+ (K- pop) (K- v,)]=In(2X) = const. respect to velocities of bodies. Had one tried to take into

(115 account quadratic terms with respect to velocities using the

post-Newtonian approach an inconsistent result would have
been obtained, at least under certain circumstaf@@ls

Hence, the formuld112) for the Shapiro time delay can be In what follows only the case of the elliptic motion of the

displayed in the form pulsar with respect to its companion is of importance. More-

3. Shapiro effect in the parametrized post-Keplerian formalism
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over, we do not use the expansidri9 keeping in mind the r-v,=—acagnpesinu, (128
case of the nearly edgewise orbits for which the magnitude

of r+k-r term can be pretty small near the event of the o

superior conjunction of pulsar and companion. The size and K- ve=2acnp(1—e*) Msini| e cosw

the shape of an elliptic orbit of the pulsar with respect to its /
1/2

companion are characterized by the semimajor axignd (cosu—e)cosw—(1—e?)Y2sinw sinu

the eccentricitye (O<e<1). The orientation in space of the + 1—ecosu

plane of the pulsar's motion is defined with respect to the

plane of the sky by the inclination anglend the longitude (129

of the ascending nod€). For orientation of the pulsar's Here a,=agm, /M, andn,=(GM/aZ)2is the orbital fre-

position in the plane of motion one uses the argument of the . . .
pericentero. More precisely, the orientation of the orbit is quency related to the orbital peridd, by the equatiom,

defined by three unit vectord,n.n) having coordinates Ignoring all constant factors, the set of equations given in

[8.83), this section allows us to write down the Shapiro delay8
|=(cos(,sinQ,0), (120  inthe form
m= (- cosi sin{}, cosi cos},sini), AgT)=~— 3mcln{ 1—ecosu—sini[sinw(cosu—e)
c
n=(sini sin{), —sini cos(},cosi) .
. . . 2\1/2 : 2m x mp
In this coordinate system we have the unit vedtdo bek +(1-e9)*coswsinu]+ = Py m, oSNy
=—K=(0,0,—1) [91]. The coordinates of the pulsar in the
orbital plane are the radius vectorand the true anomal 2mwsini x my
In terms ofr andf one has according #85] (see also Ref. - (1——62)1/2P_b E[smw(cosu—e)
(8], Chap. 1
r=r(Pcosf+Qsinf), (121 +(1-e?)Ycosw sinu]| e cosw

where the unit vector®, Q are defined by ( | (1- €)% ]
cosu—e)cosw—(1—e in wsinu

|

P=lcosw+msinw, Q=-Ilsinw+mcosw. (122 + 1—ecosu
The coordinate velocity of the pulsar’'s companion is given (130
b
Y where in front of the logarithmic function we have omitted
my, . the term of order Gmv/c®) (v, /c) which is small and hardly
=——Pr (123 i i
Ve M be detectable in future. The term of ordéfr in the argu-

ment of the logarithm is also too small and is omitted. The
) 1/2 magnitude of the velocity-dependent terms in the argument
r=(—> [—Psinf+Q(cosf+e)], (129 of the logarithm is of order 10°—~10 *. These terms can be
P comparable with the main terms in the argument of the loga-
rithm when the pulsar is near the superior conjunction with
the companion and the orbit is nearly edge-on. The velocity-
dependent terms cause a small surplus distortion in the shape
of the Shapiro effect which may be measurable in future

whereM=m,+m;; p=ag(1-€?)? is the focal param-
eter of the elliptic orbit, andn, andm, are the masses of the
pulsar and its companion. Accounting for relationships

r=ag(l—ecosu), rcosf=ag(cosu—e), timing observations when better precision and time resolu-
tion will be achieved. Unfortunately, existence of the, so-
r sinf =ag(1—e?)sinu, (125  called, bending time deldB3] may make observation of the

velocity-dependent terms in the Shapiro time delay a rather
whereu is the eccentric anomaly relating to the time of emis-hard problem.
sion,t,=T, and the moment of the first passage of the pulsar
through the periastrom, by the Kepler transcendental equa- B. Moving gravitational lenses

tion The theoretical study of astrophysical phenomena caused

(126) by a moving gravitational lens certainly deserves a fixed at-

u—esinu=ny(T—Typ), _ .
ol o tention. Though effects produced by the motion of the lens

we obtain are difficult to measure, they can give us an additional valu-
able information on the lens parameters. In particular, a lens-
k-r=—agsini[(cosu—e)sinw+ (1—e?)Y?cosw sinu], ing object moving across the line of sight should cause a

(127 redshift difference between multiple images of a background
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Source plane
at the moment t,

X, = x(to)

I

Unperturbed trajectory
0a of light ray X i .
FIG. 4. Relative configuration of observer,

source of light, and a moving gravitational lens
deflecting light rays which are emitted at the mo-
Lens plane mentt, at the pointx, and received at the mo-
X (50) at the moment s ment t at the pointx. The lens moves along
IR — ] %2ty 5 o) straight line with constant velocity from the re-
tarded positiorx,(sg) through thatx,(s) and ar-
] X (8)
\‘f
.

Perturbed trajectory
of light ray

rives to the pointx,(t) at the moment of obser-
vation. The characteristic time of the process
corresponds to the time of propagation of light

=
4
s ’
O
4

‘& from the point of emission up to the point of ob-
x,(t) servation.
r
a
(o) / >

i ®

Observer plane
at the moment t

~

X

object like a quasar lensed by a galaxy, and a brightness sa=Ta—Kra, Soa=rloatKkroa, (131
anisotropy in the microwave background radiatif®?2].

Moreover, velocity-dependent terms in the equation of graviwhere, as in the other parts of the present paper, we have
tational lens along with proper motion of the deflector canr,=x—x,(s) andry,=Xo—Xa(Sp). From these equalities it
distort the shape and the amplitude of magnification curvéollows that

observed in a microlensing event. Slowly moving gravita-

tional lenses are “conventional” astrophysical objects and d2 dz,

effects caused by their motion are small and hardly detect- K-sq=— Z_Fa k'GOa:TOaa (132
able. However, a cosmic string, for example, may produce a

noticeable observable effect if it has sufficient mass per unijng

length. Gradually increasing precision of spectral and photo-

metric astronomical observations will make it possible to dga

measure all these and other effects in the foreseeable future. roa—K-Tpa=2rga— (133

2r0a’
1. Gravitational lens equation . _ _ .
where distancesd,=|s,] and dy,=|spslare Euclidean

In this section we derive the equation of a moving gravi-lengths of corresponding vectors. We can see as well that
tational lens for the case that the velocityof theath light-  making use of the relationshig&31) yields
ray-deflecting mass is constant but without any other restric-
tions on its magnitude. This assumption simplifiesa—Va:Ta=ra(1—K-Vy)—sa-Va=r,a(1—Kk-vy,)+O0(v,dy),
calculations of all required integrals allowing to bring them (134
to a manageable form. In what follows it is convenient to . .
introduce two vectors,=x(s) —Xa(S) andsos=X(2to— So) and the residual term can be neglected because of its small-
—x,(So) (see Fig. 4 for more details on the geometry of €SS compared to the first one. .
lens. We also shall suppose that the length of veeipis Itis yvorth noting that the vecto;'ra is approx!mately equal
small compared to any of the distand@s: |x—xg|, I,=|x to the impact parameter of the light ray trajectory Wlt_h re-
—Xa(S)|, OF I'ga= | Xo—Xa(So)|. It is not difficult to prove by spect to the position of the deflector zi\t the. reltarded Al;me
straightforward calculations, taking account of the light-conelndeed, let us introduce the vectogs=P' x) and &,
equation, that =P J-x{.i(s) which are lying in the plane being orthogonal to
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z 2 3 32 4
da |§_ §a| da
—kKryg=m= =+ —. 1
e mor, " Tar, e (138
Source plane s
c Let us denote the total angle of light deflection caused by the
ath body aquse Eqs(68) and(134)—(138)]
. 1-k-v, &-&
g al(7)=4m, - (139
\/1_Va |§_ §a|
Thus, for the vectors' andg' introduced in Eqs(68), (38)
and from the formula$74)—(76) one obtaing 93]
Lens plane M n N . Gm. v Gm. d
B & E (=2, dy(n+0| 5= 2| +0( =2,
a=1 cr, € cr, la
(140
N N i T %2
r 1 2 MaVat |§_ gal
(n=—= rpan(n)—= In
B'(7) Ra; a@y(7) Ra; e Al e
Gmy v Gm,d
+0l — =2 22, (141
c’r, C c’ry Ta
Observer plane & s a a
-
A o] N [
2 aVaT Gm, v
Bl(r)=—5 2 ——=IN(2re) +0| = af)
FIG. 5. The gravitational lens geometry for a moving leht a=1 y1-vj CTa
=3N . m, being at the distance from the point of observatio®
with coordinatesc'(t). A source of lightS with coordinates<(tg) 1o Gm, % (142
is at the distanc® from O. Vector £ is the impact parameter of the c2r. ral’
unperturbed path of photon in the observer plane. Ve§tatenotes a
position of the center of mass of the lensing object in the lens plane. 2
P . " Gmy v
Vector »=BE is the observed image position of the background Y(1)=0 a’a (143
source of lightS shifted in the lens plane from its true position by Czra c?/’

the gravitational field of the lens to the potiat Coordinates of the
lens areX'(\*)=M “*S3_;max;(\*), and coordinates of the where (by definition the transverse velocity',;= P’ vy is

point E arex' (\*)=xI(t) +s' (A * —t).

the unperturbed trajectory of light ray. Then, from the defi-

the projection of the velocity of thath body onto the plane
being orthogonal to the unperturbed light trajectory.
Let us introduce the new operator of projection onto the

nitions (131), (132) one immediately derives the exact rela- plane which is orthogonal to the vectkr

tionship
5 3 a
E—&=c,+k TR (139
from which follows
SN d3
sa=&— &K oy (136

A similar relationship may be derived fag,. It is worth-
while to note that

Pirl=Pisl=¢-¢&, (137)

and

Pl=¢81-K'K!. (144

It is worth emphasizing that the operat® differs from
Pll=§'1—K'kl by relativistic corrections because of the rela-
tion (37) between the vectork and K. We define a new
impact parametet' =Pjx/=P|x}, of the unperturbed light
trajectory with respect to the direction defined by the vector
K. The old impact parametérdiffers from the new on& by
relativistic corrections. The direction of the perturbed light
trajectory at the point of observation is determined by the
unit vectors according to Eq(64). We use that definition to
draw a straight line originating from the point of observation
and directed along the vectsrup to the point of its inter-
section with the lens planesee Fig. 5. The line is param-
etrized through the parameterand its equation is given by

xX'(N)=x(t)+s" (A—1), (145
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where\ should be understood as the running parametsr, was described in terms of static monopole, spin dipole, and
the value of the parametar fixed at the moment of obser- time-dependent quadrupole moments. The time delay and the
vation, andx'(t) are the spatial coordinates of the point of angle of light deflectionr' in case of gravitational lensing
observation. On the other hand, the coordinates of the poirwere obtained in the following forri]:

x'(\) at the instant of im&* when the ling(145) intersects

the lens plane, can also be defined as t—to=|X—Xo| —4y+2MIn(4rrg), a;=4d,

X(N)=XI () + 7' — &, (146 (152

where 7' =P{x'(\*) is the perturbed value of the impact Where the partial (“projective”) derivative reads d,
paramete’ caused by the influence of the combined gravi-=P'i9/d¢', andr andr, are distances from the lens to ob-
tational fields of the (micro) lenses m,, X(\*)  serverand the source of light, respectively. The quantity
=M ~1=N_ m,x.(\*) are coordinates of the center of massthe, so-called, gravitational lens potentia#,95 having the
of the lens at the moment*. When the ling145) intersects ~ form [1]
the lens plane the numerical valueofup to corrections of
orderO(d/r) is equal to that of the retarded tinsedefined
by an equation similar to Eq11) in whichr, is replaced by
r, the distance from observer to the lens. It means that at the
lens plane\* —t=—r. Accounting for this note, and apply- and;,, is the fully antisymmetric Levi-Civita symbol. Ex-
ing the operator of projectio®; to Eq. (145, we obtain pression(153) includes the explicit dependence on the static
o - ; : : massM, spinS', and time-dependent quadrupole moment
7 =g-[a(N+ (1) =B (ro)+y(DIr. (140 7ii of the deflector taken at the mometit of the closest
Finally, making use of the relationshif&40 (142 and ex- approa(;h of the light ray to the origin of the coordinate sys-
panding distances, , ro, around the values, ro, respec- €M which was chosen at the center of mass of the deflector
tively (see Fig. 5 for the meaning of these distancéise emitting gravitational waves so that the dipole montEnof

equation of gravitational lens in vectorial notations reads afe Systém equals to zero identically. This generalizes the
result obtained independently in Rél1] for the case of a

~ 1 o
= M+ Equkpsqﬁj-Fz ZP(t*)dpg|In|&, (153

follows: ’ I - i
stationary gravitational field of the deflector for the gravita-
rro r tional lens potential which is a function of time. In the case
n=§- 7 @+ gw(d), (148 of the isolated astronomical systemMbodies the multipole
moments are defined in the Newtonian approximation
where

Vo lkev, £-4 M=
a(g):4a§=)l m, Jl—\:lz yarya (149 g

_ &2 Si=
G

N
) R A
Ma(XaX Va)', I :a§=:1 ma( XaXb— §X§5”) J

(154

_2§ maVLTI
'((g)_ = \/1_\/5”

It is not difficult to realize that the third term on the right \yhere the multiplication symbol denotes the usual Euclidean
hand side of Eq(148) is (da/ro)(va/c) times smaller than  cross product and, what is more important, coordinates and
the second one. For this reason we are allowed to neglect jie|ocities ofall bodies are taken ame and the same instant

and represent the equation of gravitational lensing in its conof time. In the rest of this section we assume that velocity of

ventional form[94,99 light-ray-deflecting bodies are small and the origin of coor-
o dinate frame is chosen at the barycenter of the gravitational
_g O lens system. This means that
7= ald), (150

N N
where a( &) is given by Eq.(149. It is worthwhile empha- Ti(t)= 2 m.xi (t)=0 and 'Ii(t): 2 moy! ()=0.
sizing that although the assumption of constant velocities of i e P

particlesv, was made, Eq(151) is actually valid for arbi- (155
trary velocities under the condition that the accelerations of
the bodies are small and can be neglected. Now it is worthwhile to note that coordinates of gravitat-

It is useful to compare the expression for the angle ofing bodies in Eq.(149 are taken at different instants of
deflectiona' given in Eq. (149 with that derived in our retarded time defined for each body by Efjl). In the case
previous work{1]. In that paper we considered different as- of gravitational lensing all these retarded times are close to
pects of astrometric and timing effects of gravitational waveshe moment of the closest approa¢hand we are allowed to
from localized sources. The gravitational field of the sourceuse the Taylor expansion of the quantity
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N _ N _ and ellipses again denote residual terms of higher order of
2 m,Xx,(s) = E maX,(t*) magnitude. Expanding all terms depending on retarded time
a1 a1 in this formula with respect to the timg, noting that the
. ) second “projective” derivative??pq is traceless, and taking
+aZl MgV (t*)(s—t*) + O(s—t*)?. into account the relationshifl59), the center-of-mass con-

ditions (159, the definitions of multipole momentd54),
(156 and the vector equality

N

Remembering that retarded tirsés defined by Eq(11) and

the moment of the closest approach is given by the relation- ; ; .
ship PP gvendy X (K- Va) —VA(k %) =[KX (XX V)T, (162

t*=t—k-x=t—k-ry—k-x4(s), (157
we find out that with necessary accuracy the gravitational

we obtain, accounting for Eq138), lens potential is given by = [96—99. Hence, the gravi-

2 2 tational lens formalism elaborated in this paper gives the
a a Va . ) S
S—t* =k-X,(S) — =—=k-X(t*)+O| — | +O _Xa> ] same result for the angle of deflection of light as it is shown
2ry la ¢ in formulas(152),(153).
(158
Finally, we conclude that 2. Gravitational shift of frequency
N by a moving gravitational lens

N
i _ (e . *
321 maxa(s)—a; MaVa(T)[K-Xa(t%) ]+, (159 We assume that the velocity, of each body comprising

the lens is almost constant so that we can neglect the bodies’

where the ellipses denote terms of higher order of magnigcceleration as it was assumed in the previous section. The
tude, and where Ed155 has been used. calculation of the gravitational shift of frequency by a mov-

Let us assume that the impact paramegeris always  jng gravitational lens is performed by making use of a gen-
larger than the distancg,. Then making use of the Taylor eral equation(78). As we are primarily interested in gravita-
expansion of the right hand side of H349) with respectto  tional lensing, derivatives of proper times of the source of
&, andv,/c one can prove that the deflection angleis  light 7, and observef with respect to coordinate tintecan
represented in the form be calculated neglecting contributions from the metric ten-
sor. This yields

=43,V (160)
where the potentia¥ is given as follows: a7,
N N at, 1-v§, (163
V= E ma_k'E M,V4a(S)
a=1 a=1
N N dt 1
_ i(e)5. . j 5. — =
az,l MaXa(S)d;+K g,l MaVa(S) X5(S) d; a7 ot (164
1 N
+ = MaxP(s) X4(S) dpgfIN[&+ -+, 161)
2 agl aXa(S) Xa(S) pa Inl (169 Accounting for the identity(87), we obtain from Eq(81),
|
N
§ 1+K-v—22, my[(dslat) (alds) +(at*lat) (alat*) +(ok/at) (9l ok')]Ba(S,So,t* ,K)
t a=1
—= . . (169
1+ K Vo +2D, ma[(asldty) (a1ds) +(dsgldte) (913Se) +(at*/dte) (9t*) +(aKate) (31K IBa(S,Se,t* K)

a=1

After taking partial derivatives with the help of relationshii8)—(93), using the expansiond33), (134), (138), neglecting
terms of orded,/r,, m,/r,, my/ro,, and reducing similar terms, one gets
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0
1-v?

N
1—v2)1’2 1+(K+ﬂ—ﬂo)-v+42l Ma[(1—k-Va)/V1—Va] (kXV)-(kXT)/|E— &2
N , (166

N
L+ (K+ B~ o) Vo4 2, ma[(1=K-vo) V1=V3] (kxva) - (kXra)l| 6= &l

where the relativistic correction8= 8(r, %), ﬁo=ﬂ(ro,§’) are given by means of expressioi®8), (39), (70)—(73). Making
use of relationshig37) between the unit vectod§ andk, the previous formula can be displayed as follows:

1—v(2)

1+z=
1-v2

N
)1,2 1—k-v+42l Ma[ (1=K Va)/1=V3] (kKXV)- (kXT,)/|E= &l
- (167

N .
1—k-v0+4§_‘,l Ma[(1—Kk-Vo)/V1—V2] (kX V,)- (kXr)/|&— &

This formula is gauge invariant with respect to small coor-where the deflection angle is displayed in Eq(152). It is
dinate transformations in the first post-Minkowskian ap-remarkable that the formuld69) is a direct consequence of
proximation which leave the coordinates asymptoticallyEq. (152 for the time delay in gravitational lensing.
Minkowskian. Moreover, the formulél67) is invariant with Indeed, let us assume that the lens is comprised of an
respect to Lorentz transformations and can be applied foensemble ofN pointlike bodies each moving witltime-
arbitrary large velocities of observer, source of light, anddependentvelocity v, with respect to the origin of the co-
gravitational lens. In case of slow motion of the source ofordinate system chosen near ttmeoving barycenter of the
light, Eqg. (166 can be further simplified by expansion with lensing object. The velocity of the center-of-mass of the
respect to powers ofy/c, v/c, andv,/c. Neglecting terms  gravitational lens is defined as the first time derivative of the
of orderv*/c*, vg/c*, (m,/d,)(v?/c?), etc., this yields for dipole momentZ' of the lens shown in Eq154), that is,

the frequency shift

vi—dxi— . % T 170
S 2 2 2 2 T odt _Ma:1 mava_./\/l' ( )
14 2 VO Vv VO \"
—=k~(VO_V) 1+k-Vo+(k-V0) —7+7—?+?
Yo Using this definition and assuming that at the initial epoch
N 1—Kk-v, [KX(V=Vy)]- (KXTy) the barycenter of the lens is at the origin of the coordinate
+ 42 m, 5 , (168 system, we find out that the time derivatives of the lens
a=l \1-vy |- & gravitational potential Ref[96] reads(see the remarks in

Refs.[101,103, which clarify calculation of the derivatives

where 6v=v—v,. The terms on the right hand side of this

formula depending only on the velocities of the source of _l!f: — MV G+ lfjgi, In| &, _"/’:0,

light and observer are the part of the special relativistic Dop- at* 27 ot

pler shift of frequency caused by the motion of the observer

and the source of light. The last term on the right hand side . 1

of Eq. (169 describes the gravitational shift of frequency (?—tO=V'oz9i Y= Z(VO'a). (171

caused by the time-dependent gravitational deflection of light
rays due to relative motion of lens with respect to observetl_

[100]. It shows that the static gravitational lens being at rest he formulas given in Eq171) allow us to find out the total

with respect to observer does not lead to the gravitationaﬁilfferentlal of Eq.(152 in terms of the increments of timt

shift of frequency which appears only if there is a relativeand dty. While finding the total differential of the gravita-

transverse velocity of the lens with respect to the observeﬁJonal I_ens equatlon! 't. should be also kept in mind that as-
mptotically in the limitry— +o, r=const, the following

which brings in the dependence of the impact parameter fofMP’ . )
the ath body, é—&,, on time[101]. By expanding the last relationship[see formulag37), (141), (142)]:

term in expression(168) with respect to powerg/ &, the

gravitational shift of frequency reads K=-k+a, (172
between vectorK andk holds. Taking differential of Eq.
Sv I (152), using the results of Eq§171) and(172), one confirms
(—) =4 —+v-§), (169  the validity of the presentatiofl69) for the gravitational
Yo ot

ar shift of frequency in gravitational lensing. Formu{&69
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reflects the fact that the gravitational shift of frequency cartion of source of light and observer. It is also useful to note
be induced if and only if the gravitational lens potential is athat Eq.(22) in Ref.[107] for the Doppler shift in gravita-
function of time. tional lensing contains a misprint of algebraic sign in front of
One sees that, in general, not only the translational motiofhe term depending on the velocity of observer. The error has
of the lens with respect to observer generates the gravitayeen corrected in Reff108] by lesset al.[see Eq(8) in Ref.
tional shift of frequency but also the time-dependent part 0f10g]] so that their result coincides precisely with the last

the quadrupole moment of the lens. In addition to this, Weyg terms in the right hand side of our EG.73.
emphasize that the motion of observer with respect to the

solar system barycenter should produce periodic annual

changes in the observed spectra of images of background ¢ General relativistic astrometry in the solar system
sources in cosmological gravitational lenses. This is because _

of the presence of the solar system time-periodic part of ve- 1. Theoretical background

locity v of observer in Eq(169). The effect of the frequency  For a long time the basic theoretical principles of general
shift may reveal the small scale variations of the temperatureg|ativistic astrometry in the solar system were based on us-
of the CMB radiation in the sky caused by the time-j,g the post-Newtoninan approximate solution of the Ein-

dependent gravitational lens effect on clusters of galaxiegiein field equation§7—9,63,109. The metric tensor of the

havmg peculiar mot!on W'th respeqt to the cosmqlog|cal ex'post—Newtonian solution is an instantaneous function of co-
pansion. However, it will be technically challenging to ob-

serve this effect because of its smallness ordinate timet. It depends on the field poin¢, the coordi-
The simple relationshig169 can be coﬁpared to the re- natesx,(t), and velocities/,(t) of the gravitating bodies and
sult of the calculations by Birkinshaw and G{iRef. [103] is valid only inside the near zone of the solar system because

Eqg. (9)]. We have checked that the derivation of the corre-Of the expansion of retarde_d integral_s with rgspect to the
sponding formula for the gravitational shift of frequency SMall parameter,/c [6]. This expansion restricts the do-
given by Birkinshaw and Gu[l103] on the ground of a pure  Main of _vaI|d|ty for which the prop_agatlo_n of I|g_ht rays can
phenomenological approach and cited in B8g] is consis- be cqn5|dered from the mathematical point of view in a_sel_f—
tent, at least, in the first order approximation with respect tg*onsistent manner by the boundary of the near zone. Finding
the velocity of leng104,105. Preliminary numerical simu- a solution of the equations of light propagatit®) in the
lations of the CMB anisotropies by moving gravitational hear zone of the, for instance, solar system can be achieved
lenses carried out in Ref106] on the premise of formula by means of expanding positions and velocities of the solar
(169 under assumption=0, confirm the significance of the system bodies in Taylor series around some fixed instant of
effect for future space experiments being designed for deted¢ime, their substitution into the equations of motion of pho-
tion of the small scale temperature fluctuations of the CMBtons (19), and their subsequent integration with respect to
However, we would like to make it clear that in practice time. Such an approach is theoretically well justified for a
the gravitational shift of frequency caused by a movingproper description of rad4d10] and lunar lasef111] rang-
gravitational lens must be calculated on the basis of a formuing experiments, and the interpretation of the Doppler track-
lation different than Eq(169). The problem is that the gravi- jng of satellite§107,108,112—114 The only problem which
tational |enS iS not at |nf|n|ty but ata f|n|te distance. For thiSarises in the approach under discussion iS hOW to determine
reason, the calculation and subtraction of the special relativinat fiducial instant of time to which coordinates and veloci-
istic Doppler shift of frequency in Eq168) should be done jes of gravitating bodies should be anchored. Actually, the
using the unit vectoK related tok by the transformation  5nqwer to this question is more vague if one works in the
(37). Using the given transformation for replacemenkdly  framework of the post-Newtonian approximation scheme
K in Eq. (169, remembering[see Eqs.(141),(142] that  \yhich disguises the hyperbolic character of the Einstein
B(7)=—r/Ra, and the anglg8(7o) is negligibly small, we  gquations for the gravitational field and does not allow us to
obtain for the observable shift of frequency in gravitationalgistinguish between advanced and retarded solutions of the
lensing field equations[80]. For this reason, propagation of light
obs rays, which always takes place along the isotropic character-
ﬂ) _4 %Jrr_o(v r istics of a light cone, is different in the post-Newtonian
= ‘)t = (v a), (173 > . )

a* R R scheme from the gravitational-field propagation because the
latter propagates in that framework instantaneously and with
wherer and ro are distances from observer to the lensinfinite speed. Thus, the true causal relationship between the
and from the lens to the source of light respectively,position of the light particle and location of the light-ray-
R=|X—Xo|=r+rgy. In the limit ro—+, r=const, Eq. deflecting bodies in the system is violated which leads to the
(173 goes over to Eq(169). necessity to use some artificial assumptions about the initial

The last two terms on the right hand side of E§j73)  values of positions and velocities of the bodies for integra-
have been derived by Bertotti and Giampidi®7] who used tion of equations of light propagatiofsee Fig. 3 for more
a different mathematical technique assuming that the lens idetails. One of the reasonable choices is to fix the coordi-
static. Hence, they missed the first term in the right hand sideates and velocities of the body at the moment of the closest
of Eq. (173 discovered by Birkinshaw and GUlL03] who,  approach of the light ray to it. Such an assumption was used
in their own turn, neglected the contributions due to the mo-by Hellings[10] and put on more firm ground by Klioner and

Vo gr
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Kopeikin [4] revealing that it minimizes the magnitude of expressiong174)—(176) represent only the first terms in the
residual terms of the post-Newtonian solution of the equanear-zone expansioof the metric and say nothing about the
tions of light propagation. behavior of the metric in théar zone[6,117,119. The dis-

As has been explained above, the post-Newtonian agancer, bounding the near zone is about the characteristic
proach has stringent limitations when applied to the integrawavelength\ o, of the gravitational radiation emitted by the
tion of equations of light propagation in the case when thesystem[\q=(cPy)/(4m), where Py, is the characteristic
light-ray-perturbing gravitating system is not in a steadyKeplerian time of the systeinif we assume, for example,
state and the points of emissigg and observation of light that the main bulk of the gravitational radiation emitted by
are separated by the distance which is much larger than ttBe solar system is produced by the orbital motion of Jupiter,
characteristigKeplerian time of the system. The first limi- the distance, does not exceed 0.3 pc. Almost all extrasolar
tation comes from the fact that the general post-Newtoniafuminous objects visible in the sky lie far beyond this dis-
expansion of the metric tensor diverges as the distance tance. From this point of view, the results of integration of
from the system increasdsee, for instance, Ref§115—  the equations of light propagation from stars of our galaxy
117)). Usually this fact has been ignored by previous re-and extragalactic objects which were performed previously
searches who used for the integration of the equations d¥y different authors on the premise of the implementation of
light rays the following truncated form of the metric tensor: metric tenso(174—(176) cannot be considered as rigorous

and conclusive for residual terms of such an integration were
2U(t,x) never discussed.
Joolt,X)=—1+ ———+0(c™?), (174 The second limitation for the application of the near-zone
¢ expansion of the metric tensor is related to the retarded char-
v acter of the propagation of the gravitational interaction. The
9o (£, X) = — (t.x) +0(c79), (175 expression$174)—(176) are instantaneous functions of time
c and do not show this property of retardation at all. At the
same time the post-Newtonian metfit74—(176) can still
be used for integration of equations of light rays, at least
+0(c™ %, (1760 from the formal point of view, because the integration will
give a convergent result. However, we may expect that the
Hajectory of light ray obtained by solving the equations of
propagation of light using the instantaneous potentials will
deviate from that obtained using the metric perturbations ex-
N m pressed as the Liard-Wiechert potentials. Such a deviation
U(t,x)= 2 —_— @77 can be, in principle, so large that the error might be compa-
a=1 [X=Xa(t)] rable with the main term of relativistic deflection of light
N : and/or time delay. None of the methods of integration at-
Ui(tx) = E MaV4(t) 179 tempted so far contains error estimates in a precise math-
TS Ix=xa (D] ematical sense; at best, errors have been roughly estimated
using matched asymptotic technigud. None of the previ-
and all terms describing high-order multipoles have beerus authors have ever tried to develop a self-consistent ap-
omitted [118]. From a purely formal point of view expres- proach for calculation of the errors.
sions(174)—(176) are not divergent when the distancep- One more problem relates to the method of performing
proaches infinity but residual terms in the metric tensor aretime integration of the instantaneous potentials along the un-
This means that the post-Newtonian metric cannot be usegerturbed trajectory of the light ray. This is because coordi-
for finding solutions of equations of light propagation if the nates and velocities of bodies are functions of time. Even in
distancer is larger than some specific valug. This spatial the case of circular orbits we have a problem of solving
divergency of the metric tensor is related to the fact that théntegrals of the type

U(t,x)
2

gij(t,x)=6;;| 1+

where the instantaneous, Newtonian-like potentials are give
by the expressions

N

t dt
U(t,x)dt= m - )
fto (t.%) azl oItk (t—to) —Agler SiN(w,t+ @a) + € COLwat + ¢,) ]|

(179

whereA,, w,, andg, are the radius, the angular frequency, In the case of elliptical motion, the calculations will be even
and the initial phase of the orbit of theth body, respec- more complicated. Implicitly, it was usually assumed that the
tively, ande;, e, are the unit orthogonal vectors lying in the main contribution to the integrall79 comes from that part

orbital plane. The given integral cannot be performed anaef the trajectory of the light ray which passes near the body
lytically and requires the application of numerical methods.deflecting light rays so that one is allowed to fix the position
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of the body at some instant of time which is close to theshould be fixed just as the location of the observer is known.
moment of the closest approach of the light ray to the bodyWe shall consider three kinds of observations: pulsar timing,
However, errors of such an approximation usually werevery long baseline interferometr§VLBI) of quasars, and
never disclosed except for the attempt made by Klioner an@ptical astrometric observations of stars.
Kopeikin [4]. Nevertheless, it is not obvious so far that the o
error analysis fulfilled in Ref4] is complete and that the use 2. Pulsar timing
of the Taylor expansion of coordinates and velocities of the The description of the timing formula is based on the
solar system bodies with respect to time, made in the neighisage of Eqs(43) and (44). Taking in Eq. (44), which
borhood of the instant of the closest approach of photon tahould be compared with its post-Newtonian analo@r®),
the light-deflecting body in order to perform the integrationterms up to the ordev,/c inclusively, we obtain
in Eq. (179, minimizes errors of calculations and allows us
to solve light ray equations with better precision. Moreover,
such an expansion is allowed only if the photon moves near Ba(s,S0)=—1In
or inside the gravitating system. Far outside the system an-
other method of solving the integrél79) is required 120]. S Kevy(0) d¢
Regarding this difficulty Klioner and Kopeikif4] used a _f @ " Lo
matched asymptotic technique for finding the perturbed tra- so t*+k-xa(0)—¢
jectory of the light ray going to the solar system from a very
remote source of light such as a pulsar or a quasar. Thehere the retarded timesands, should be calculated from
whole space-time was separated in two domains, the ne&qgs. (11) and (46), respectively,r,(s) =X—Xa(S), ra(So)
and far zones lying correspondingly inside and outside of the= Xo— Xa(Sp), and we assume that the observation is made at
distancer, being approximately equal to the characteristicthe point with spatial barycentric coordinatest the instant
length of gravitational waves emitted by the solar systemof timet, and the pulsar’s pulse is emitted at the montgnt
The internal solution of the equations of light rays within thefrom the pointx, which is at the distance of the pulsar from
near zone have been obtained by expanding coordinates atfte solar system, typically more than 100 pc.
velocities of the bodies in the Taylor time series and then In principle, the first term in this formula is enough to
integrating the equations. The external solution of the equatreat the timing data for any pulsar with accuracy required
tions was found by decomposing the metric tensor in gravifor practical purposes. The denominator in the argument of
tational multipoles and accounting only for the first mono-the logarithmic function is 4(sg) —k-r,(sg) =2R, whereR
pole term which corresponds mainly to the static, sphericallys the distance between the barycenter of the solar system
symmetric field of the Sun. A global solution was obtainedand the pulsar. The logarithm ofRRis a function which is
by matching of the internal and external solutions at thenearly constant but may have a secular change because of the
buffer region in order to reach the required astrometric accuslow relative motion of the pulsar with respect to the solar
racy of 1 uarcsec. The approach we have used sounds reaystem. All such terms are absorbed in the pulsar’s rotational
sonable and may be used in theoretical calculations. Howphase and cannot be observed directly. For this reason, in
ever, it does not help very much to give a final answer to thevhat follows, we shall omit the denominator in the logarith-
question at which moment of time one has to fix positionsmic term of Eq.(180. We emphasize that positions of the
and velocities of bodies when integrating equations of lightsolar system bodies in the numerator of the logarithmic term
propagation inside the near zone. In addition, the approachre taken at the moment of retarded time which is found by
under consideration does not give any recipe how to inteiterations of the equatios=t—|x—x,(s)|. This makes cal-
grate equations of light propagation in the external domain ofulation of the Shapiro time delay in the solar system theo-
space(beyondr ) if the higher, time-dependent gravitational retically consistent and practically more precise.
multipoles should be taken into account and what magnitude There is a difference between the logarithmic term in Eqg.
of the perturbative effects one might expect. In any case, th€l80) and the corresponding logarithmic terms in timing for-
global solution obtained by the matched asymptotic techmulas suggested by HellingglO] and Doroshenko and
nigque consists of two pieces making the visualization of theKopeikin[121] where the position of thath body is fixed at
light ray trajectory obscure and the astrometric implementathe moment of the closest approach of the pulse to the body.
tion of the method impractical. It is, however, not so important in practice as timing
For these reasons we do not rely in this section upon thebservations are not yet precise enough to distinguish the
technique developed in Rg#] but resort to the method of Shapiro delay when positions of bodies are taken at the
integration of light ray equations based on the usage of theetarded time or at any other one, being close to it. Indeed,
Liénard-Wiechert potentials. This method allows us to conthe maximal difference is expected to be of order of
struct a smooth and unique global solution of the light propa{4GMg /c®) (v /c)(1+cosé) ™, where Mg and v, are
gation equations from arbitrary distant source of light to themass of the Sun and its barycentric velocity respectively, and
observer located in the solar system. We are able to handi¢ is the angle between directions towards the Sun and the
the integration of the equations more easily and can easilpulsar. Fowv g is less than 20 m/s angicannot exceed 0.25°,
estimate the magnitude of all residual terms. Proceeding ithe error in the timing formula relating to various definitions
this way we also get a unique prediction for that moment ofof the Sun’s barycentric coordinates in the expression for the
time at which coordinates and positions of gravitating bodiesShapiro time delay is less than 200 nanoseconds. Although

ra(s)—k-ra(s)
ra(sg) —k-ra(sp)

2
\
—]|. (180
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this value is beyond the observational limit it would be de- ¢ | ., (¢) d¢

sirable to update existing timing data processing program *a—

such asTEMPO [122] and TIMAPR [83,121 to make their 7sot™ +k-Xa({)—¢

functional structure agree with the latest theoretical develop- - ;

Perts J P = kv (t){CIlN(ra—k-12)] = Ciln(roa— k- Toa) I
The integral in Eq(180) cannot be calculated analytically _ *\r e _ e B

if the trajectory of motion of the bodies is not simple. The K- Xa(t* ){SI[n(ra—k-ra)]=Sin(ro, k'rOa)g:}Iﬁ-é‘?’)

problem is that in the case when light propagates from the

remote source to the gravitating system the time interval begheret* =t—k-x is the time of the closest approach of the

tweens ands, is not as small as it was in the case of the ight ray to the barycenter of the solar system. Taking into

derivation of timing formula for binary pulsars in Sec. VIIA account the asymptotic behavior of sine and cosine integrals

[see Eq(96) and the related discussion as well as the captiofor |arge and small values of their arguments in relationship

of Fig. 3. This was because light propagates from the binary 183 we arrive at the approximate formula for the Shapiro
system in the same direction as gravitational waves emittegg|qy:

by it, so that the gravitational field of the binary system is

almost “frozen” as seen by the outgoing photon. When we N

consider propagation of light towards the solar system the — A(t)=— >, my[1—k-v,(t*)]In[ra(s)—Kk-ra(s)]
infalling photon moves in the direction being opposite to that a=1

of propagation of gravitational field generated by the moving Gm. v

solar system bodies. For this reason, the differesiees, +0 a_a> , (184)
=2R and is very large. Thus, we are not allowed, as in the ¢t ¢

case of the derivation of a timing formula for binary pulsars,

to use the expansion of coordinates and velocities of thavhere the residual term denotes all contributions which are

solar system bodies in Taylor series with respect to timesimple products of the gravitational radi@m,/c® of the

Moreover, integrals, such as that in Eg80), should also be ath body, expressed in time units, by the ratig/c up to a

calculated without any expansion using the known law ofconstant factor. If one takes numerical values of masses and

motion of gravitating bodies, that is, solar system ephemerivelocities of the solar system bodies one finds that such re-

des such as DE200, DE245, or an equivalent one. Let us giveidual terms are extremely much smaller than the level of

an idea of what kind of result we can get proceeding in thierrors in timing measurements. We conclude that these re-

way. sidual terms cannot be detected by the present day pulsar
First of all, we note that the orbital plane of any of the timing techniques.

solar system bodies lies very close to the ecliptic and can be

approximated fairly good by circular motion up to the first 3. Very long baseline interferometry

order correction with respect to the orbital eccentricity which /| B| measures the time differences in the arrival of mi-

is usually small. The motion of the Sun with respect to theggwave signals from extragalactic radio sources received at
barycenter of the solar system may be described as a sum gf or more radio observatori¢d23]. Generally, geodetic
harmonics corresponding to gravitational perturbations fro"bbserving sessions run for 24 h and observe a number of
Jupiter, Saturn, and other smaller bodies. Thus, we assumterent radio sources distributed across the sky. The obser-
thatx, is given in the ecliptic plane as follows: vatories can be widely separated; the sensitivity of the obser-
vations to variations in the orientation of the Earth increases
with the size of the very long baseline interferomei{.Bl )
network. VLBI is the only technique capable of measuring
all components of the Earth’s orientation accurately and si-

whereA andn are the amplitude and frequency of the cor- multaneously. Currently, VLBI determinations of Earth-

responding harmonic in the Fourier decomposition of therotation variations, and of the coordinates of terrestrial sites
orbital motion of theath body, e, is directed to the point of and celestial objects are made routinely and regularly with
the vernal equinoxg, is orthogonal toe, and lies in the estimated accuracies of abott—0.2 milliarcsecond or bet-

ecliptic plane. The vectdk is defined in ecliptic coordinates ter[123,124. Such a high precision of ob;ervatlons requires
as an extremely accurate accounting for different physical ef-
fects in propagation of light from radio sources to observer
including relativistic gravitational time delay.
k=—cosbcosl e —cosbsinl e,—sinb e;, (182 There have been many papers dealing with relativistic ef-
fects which must be accounted for in VLBI data processing
(see, e.g., Ref4109,125,12§ and references therginThe
whereb andl are ecliptic spherical coordinates of the pulsar.common efforts of many researches in this area have resulted
Substituting these definitions into the integral of Ef§80 in the creation of what is commonly believed now to be as a
and performing calculations using approximate relationship‘'standard” model of VLBI data processing which is called a
{=t* —y+k-Xa(y), wherey is the new variable defined in consensus modgll26] emerged from a workshop held in
Eq. (48), we get 1990 [125]. The accuracy limit chosen for the consensus

Xa(t)=A[cognt)e, +sin(nt)e,], (181

124002-26



LORENTZ COVARIANT THEORY OF LIGHT ... PHYSICAL REVIEW D 60 124002

FIG. 6. Geodetic very long baseline interfer-
ometry measures delay (the light travel time
between points 2 and)3n times of arrival of
radio signal from a quasar at the first and second
radio antennas;= 7,— 7;, located on the Earth’s
surface. Diurnal rotation and orbital motion of the
Earth makes the delay to be dependent on time.
This allows to determine the baselibebetween
two antennas, astrometric coordinates of the qua-
sar, motion of the Earth’s pole, parameters of pre-
cession and nutations, and many others. Modern
data processing of VLBI observations is fully

0 based on the relativistic conceptions and was sup-
¥ posed to be accurate up to 1 ps.

4

Radio Antenna No 2
/

VLBI relativistic time delay model is 102 s (one picosec- wherex, are coordinates of the source of light(t,) are
ond) of differential VLBI delay for baselines less than two coordinates of the station 2 at the momépt and x; are
Earth radii in length. As it was stated, in the model all termscoordinates of the station 1 at the moment The differen-
of order 10 13 s or larger were included to ensure that thetial relativistic time delay is given in the form

final result was accurate at the picosecond level. By defini-

tion, extragalactic source coordinates derived from the con- N

sensus model should have no apparent motions due to solar A(tz’to)_A(tbto):Z;l [Ba(S2,S0) ~Ba(S1,S0) ],
system relativistic effects at the picosecond level. Our pur- (186)
pose in this section is to analyze critically this statement and

to show that the consensus model is not enough elaborate@ihere the difference of thB,’s up to the linear with respect

at least theoretically, in accounting for relativistic effects into velocities of the solar system bodies refstse Eq.(51)]
propagation of light at the picosecond level. For this reason,

we propose necessary modification of the consensus modBL(S,,Sg) —Ba(S1,S0)
to make it applicable at the level of accuracy approaching

103 s without any restrictions. ra—KiTia  Toa—KiToa
In what follows we work for simplicity with the barycen- =In Foo—KoTon  Toa—Ko-r FkarVa(sp)

. . . . .. 2a 2°12a Oa 2°10a
tric coordinate time of the solar system only. Precise defini-
tion of the measuring procedure applied in VLBI requires, XIN(roa—=Ka ra) =K+ Va(Sp)IN(ria—Ky raa)
however, derivation of relativistic relationship between the 5
proper time of opserver and the barycentric coordinate time. +f IN[t¥ + Ky - Xa( ) — {]Kq-Va(2)dE
It is given, e.g., in Ref[127], and can be added to the for- So

malism of the present section for adapting it to practical ap- 5)
plications. A complete description of such an extended for- _f IN[t% + K- Xa( &) — £1Ko- Va(£)d . (187)
malism will be given elsewhere.

The VLBI time delay(see Fig. 6 to be calculated is the ) . ) . )
time of arrival of electromagnetic signgl at station 2 minus  Hereins, ands, are retarded times determined iteratively
the time of arrival of the same signal,, at station 1. The from the equations
time of arrival at station 1 serves as the time reference for the
measurement. In what follows, unless explicitly stated other- s1=ti—[Xi—Xa(sp)] (188
wise, all vectors and scalar quantities are assumed to be cal-
culated att; except for position of the source of light
which is always calculated at the time of light emissign
We use for calculation of the VLBI time delay equations
(43), (44) referred to the barycentric coordinate frame of the
solar system. The equations give us

So

Sp=tr—[Xa(t2) = Xa(S2)| (189

the quantityr;,= X4 —X,(S;) is the vector from thath body
to the station 1r,,=X,(t5) —X4(S,) is the vector from the
ath body to the station 2,;,=|r1a|, r,a=|r»a and
thtl—kl-Xl, (190)
ta—t1=[Xa(t2) = Xo| — X1 = Xo| + A(tz,t0) = A(ty, o),
(185 t; =ta—ka Xa(t2) (191
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are the moments of the closest approach of the light rays &nd for the time delay185),
and 2 to the barycenter of the solar system. It will be also

helpful in comparing our approach with the consensus model 2
. % b
to use the moments of the closest approach of the light rays t,—ty=k;-b[ 1+v, -k, +O _) +o(_>
1 and 2 to theath body which we will define according to the c? R
rule FA(tto) - Alty o). (198
tfa=ti—Ky-T1a, (192
As a consequence of the previous expansions we also have
t3a=ta— Kz T2a- (193 the following equalities:
It is worth emphasizing that our definitions of timgs, and ) )
t% , are slightly different from the definitions of similar quan- 5 —th= (bXK1)(k1XXz) 40 bv* ) b
tities given in the “standard” consensus model. This relates R c? R
to the definition of positions of bodies in the vectokg and (199

r,,. In our case we refer the coordinates of the bodies to the
retarded times,; ands,, respectively, while in the consensus D) (K oV — (Foa— T 1) (Ko -V
model they are taken at the timgsandt,. This introduces 2a~ t1a= (KirD)(ka-Va) = (Faa=Taa) (Ku-Ve)

some uncertainty into the notion of the instant of the closest (bxKy)(KyXT ) (bv2 2
O

+0[ &

approach of the light ray to the body or barycenter of the R
solar system which appears due to the noncovariant formu-

lation of the relativistic time delay in the consensus model. (200
There is no such uncertainty in our approach which is fully

covariant in the first post-Minkowskian approximation. which evidently shows that, e.g., for the Jupiter and for the
The unit vectork, andk, are defined as source of light at infinity, the time differendg o —t} ¢ is of

CZ

_ _ the order R /c)(v;/c)=75 ns, that is, rather small but still
X1~ Xp Xa(t2) —Xo ) . . .
Ki=T———7, 2= T =l (194 may be important in the analysis of observational errors. For
X1 =Xo| [Xa(t2) = ol VLBI observations of the solar system objects the time dif-

which shows that they have slightly different orientations inferencet; o —tIo can approach the valuR,/c=30 ms
space. Let us introduce the barycentric baseline vector at tH&hich cannot be ignored at all. The time differertge-ty
time of arrivalt; through the definitiorB=x,(t;)—x;(t;). can be considered for extrasolar objects as negligibly small
Let us stress that the baseline vector lies on the hypersurfagnce it is of the orderR,, /c) by the annual parallax of the
of constant timet;. The original version of the relativistic source of light which makes it much less than 1 ps. In the
relationship of the barycentric baseline vector to the geocercase of VLBI observations of the solar system objects the
tric oneb can be found in Ref[127] or later publications time differencet —t7 cannot be ignored anymore but we do
[109,126. We shall neglect this relativistic difference in the not elaborate it here. Now we can simplify formule87).
expression for the Shapiro time delay because it is inessential First of all, taking into account the relationship97), we

in our present discussion. Thus, we assiBseb. The dif-  obtain

ference between the vectoks andk, may be found using

the expansior_1 with rgspect to powers of the small parameter Foa—Ki-Toa (bXky) (k1 XToq)

b/R whereR is the distance between the barycenter of the In—— ——=— R(Toi—Ky Ton) =0| 5/, (201
solar system and source of light. We have Oa T2770a Oa  T170a

v2 which is of the order of the annual parallax of the source of
Xo—Xg=X1— Xg+ b+ vz(tz—t1)+0(—2b) , (195 light. This term can be neglected in the delay form(dl&?)
c since it gives a contribution to the delay for extrasolar sys-
) tem objects much less than 1 [28]. After noting that in
v the expression for the difference of the two integral§lid?)
| X2 = Xo| =[X1=Xo + 0Ky + V5 Ky (tZ_tl)Jro(gb) one can equatk,=k,; andt; =t} , we state that the differ-
ence reads

, (196

S

IN[t} + Ky Xa(£) — 1Ky - Va() AL

S2

wherev, is the velocity of station 2 with respect to the bary-

center of the solar system. These expansions yield :kl'Va(Sl){(fza— Ky T o) IN(Fpa— Ky Fog)
kX (bXky) v b 2 —(ria=Ky r12)IN(ra =Ky r1a) +r1a=r2a—Ky ria
ky=ki+ ———+0|-=|+0|—|, (197
R cR R? Ky Tpa), (202
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and after multiplication by the factor@m,/c® is much less consensus model was not properly defined although it had no
than 1 picoarcsecond. Hence, we neglect those two integratonsequences for practical observations in the recent past.
from the expression for the VLBI delayA(ty,t,) Indeed, the third term in the right hand side of E2D5) is so
=A(ty,t0) —A(ty,t). small that it can be neglected for any observational configu-
Finally, taking into account thdt; = —K, up to the cor- ration of the source of light and the deflecting body including
rections of order of the annual parallax, we get for the timethe Earth. Expansion of the second term in the right hand

delay side of EqQ.(205 with respect to powerb/d,, whered, is
. the impact parameter of the light ray with respect to dtte
ria+K-r light-deflecting body, gives
At =23, my(1+K-vy) 2% o0y I 9
a=1 gt K- lN2a
2Gma(K y )Inr1a+K-r1a
wherev,=vy(S1), r1a=|r1al, r2a=|r24, and c* B et K rpg
r1a=X1(t1) =Xa(S1),  T2a=Xa(t) =Xa(sy) . (204 ) Gm, K b-(ny+K)
- C4 ( Va r1a+K'rla

We emphasize that our formu{203) includes the first cor-
rection for the velocity of the bodies deflecting light rays.
Moreover, there is a difference between the definitions of the —— 4 Gma(K,v )b' (N1a+K) rﬁ
vectorsr 15, fo, in our model(203) and the consensus model c? a da da’
[see Ref[126], Chap. 12, formuldl)]. In our case the co-

ordinates of stationg,, x, are taken at the instants, t», where the unit vecton,=r,/r1,. For the light ray graz-
respectively, and the coordinates of the light-deflecting boding, for example, the limb of the Sun the term under consid-
ies are calculated at the retarded tinsgss, defined in Eqs.  eration can reach a few picoseconds. The effect amounts 1
(189), (189 which is a direct consequence of our rigorous picosecond for radio source being at the angular distance 10
approach of the integration of equations of light propagationarcmin from the Jupiter if Jupiter is at the distance 5 AU
On the other hand, in the consensus model coordinates &fom the Earth. This may well have real impact in near future
stations are taken also at the instantst, but coordinates of on the treatment of the gravitational deflection of light by
theath body are calculated only at the tirtig, defined in Eq.  massive solar system planets in the specialized high-
(192). Strictly speaking, this prescription can be justified Precision VLBI experiments.

only for VLBI observations of the distant, extrasolar objects We would like to note that relativistic perturbations of
and is only marginally correct for VLBI observations of the light propagation caused by velocities of moving gravitating
solar sytem objects. The prescription to obtain the position oPodies were considered by Kliongt30] in order to find

the gravitating body at the time of closest approach of the ragorresponding corrections to the consensus model of VLBI
path to the body was based on an intuitive guesse, for ~data processing. That author approached the problem doing
instance, Ref[10]). Such a guess gives a rather good ap-calculations on the base of the post-Newtonian metric tensor.
proximation but cannot be adopted as a self-consistent thedts we have shown in the present paper, such an approxima-
retical recommendation in doing practically important nu-tion is not exact enough to take properly into account all
merical processing of VLBI observations and, especially, inéffects of retardation in the metric which contribute to veloc-
the dedicated experiments specifically designed to test gravity dependent terms in the propagation of light. Nevertheless,
tational deflection of light in the solar systgm29]. at least formally, the result published in RE£30], Eq. (4.9),

If we denote byAtg,, the VLBI delay in the consensus qoincides vyith our Eq(203)_ but thg coordinates and ve]oci—
model, as it is described in the IERS Conventifsse Ref. ties of the light-ray-deflecting bodies are taken at the time of
[126], formulas(1), (2) of Chap. 12, or formul45) from Ref.  the closest approach of photon to th#h body. This pro-
[109]], and put the PPN parameter=1, we get in the duces errors of the order comparable with the last term
framework of general relativity the following relationship Shown in the right hand side of E(R0S which are negligi-
between the Lorentz-covariant expression for the time delaply small. Hence, we conclude that the relativistic model of

(206)

in our model andAty,: LBI data processing proposed in R€fl30] is although
theoretically incomplete but practically good enough for ap-
N Gm r+K-r plications at the level of accuracy about one picosecond for
a la la . . . .
A(tl,t2)=Atgra\,+22 2 (K-vy)n astronomical objects with negligibly small parallaxes.
a=1 ¢ FoatK-raa
N 4. Relativistic space astrometry
Gm, (VaXT15)(0XTy,) .
—22 7 3 +ey Space astrometry is a new branch of fundamental astrom-
a=l ¢ Ma etry. Ground-based telescopes may reach the angular resolu-

(205  tion not better than 0.01 arcsec. This limits our ability to
create a fundamental inertial system on the Eky1] with
where ellipses denote residual terms, and we have restorglde accuracy required for a much better understanding the
the universal gravitational consta@tand speed of light for ~ laws of translational and rotational motions of celestial bod-
convenience. One can see that the Shapiro time delay in thes both inside and outside of the solar system. The epoch of
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the space astrometry began in 1989 when the HIPPARCO®8nce frames have been constructed by solving in a specific
satellite was successfully launched by Ariane 4 of the Euroway the Einstein equations for gravitational field. The global
pean Space Agency on 8 August 1989. Despite the failure tirame is the barycentric reference frame of the solar system
put the satellite on the intended geostationary orbit at 36 00®ith origin at the barycenter. Among the local frames the
Km from Earth the astrometric program has been completelynost important for us is the geocentric frame with origin at
fulfilled [132]. As a result the new astrometric catalog of all the geocenter and the proper reference frame of an
stars up to 13th stellar magnitude was obtained. This inoPserver(or the satellite in case of a space mission such as
cludes about 120 000 stars and has a precision of arourddlPPARCOS or GAIA. All reference frames are harmonic
0.002 arcsec. Unfortunately, such high precision cannot bel42] and were constructed in such a way to reduce to mini-
retained longer than 10 yr because of errors in determinatiofum all fictitious coordinate perturbations which may be
of proper motions of stars. For this reason the second anal§aused by unsophisticated technique in using coordinate
gous mission having the same or better astrometric accuradjgnsformations from one frame to another. We have discov-
should be launched in the near future. ered and outlined corresponding relativistic transformations
The rapid industrial development of space technology alPetween the frames which generalize the well-known Lor-
lows us to hope that in the next several years the precision ¢tz transformation in the special theory of relativity and
astrometric satellites will reach a few microarcseconds offinimize the magnitude of unphysical coordinate dependent
even better in the determination of positions, proper motionst€rms. Proceeding in this way we have achieved a significant
and parallaxes of celestial objects. All together, the photoProgress in despnbmg reIapwsnc aberration, classic parallax,
metric sensitivity of measuring devices will be substantially@nd proper motion correctiorié]. However, the problem of
improved. As an example, we refer to a new space project dpropagation of light rays from dlstgnt sources of light to an
the European Space Agency named GARalactic Astro- observer in the nonstationary gravitational fleld_of the_solar
metric Interferometer for Astrophysicdn the framework of ~ System was not treated thoroughly enough. This section re-
this project[2] positions, proper motion, and parallaxes of fines the problem and gives its final solution. o
about 1000 million stars up to 20 stellar magnitude are to be 1he quantity which we are specifically interested in is the
measured with an accuracy of better than 10 microarcsedirection towards the source of ligtstar, quasarmeasured
onds. This means that practically all stars in our Galaxy willPy @ fictitious observer being at rest at the point with the
be observed and registered. splar system barycentric coordinatesxj . 'I_'h|s dlrec.t|on is
Such extremely difficult observations cannot be processegiven, actually, by Eq(64) and can explicitly be written as
adequately if numerous relativistic corrections are not takef°llows:
into account in a proper wayl09]. Indeed, the relativistic
deflection of light caused by the Sun is not less than 1 mil- N o
liarcsecond throughout all of the sky. Major planets produce ;. i m, (1—-k-vy? P iTh
a relativistic deflection of light about 1 microarcsecond at s(7.§)=K +2§1 JI=vZ Ta—Kera ra—varg
angular distances from 1° to 90° outside the pldd&g]. It a

is worth emphasizing that the relativistic deflection of light N m 2_Kk.v o
produced by the Earth reaches a maximal value of about 550 -2> - 5 2 p i vl
microarcseconds and should be accounted for any position of a=1 \/1_Va fa=Va'la

a star with respect to the Earth. In addition, the reduction of N

astrometric observations made on the moving platform will _ E my 1-kva i

require an extremely careful consideration of relativistic ab- R4 J1-vira—korg 1'%
erration[134] and classic parallax terms in order to reduce N

the measurements to the solar system barycenter, the point to 4 m, | ra—k- ra> S
which the origin of the fundamental inertial system is at- R&1-v2 N —R iVa '

tached. Perhaps, it would be more proper to say that data
processing of observations from modern space astrometric (207
satellites should be fully based on general relativistic con-
ceptions rather than on a classical approach in which the
relativistic corrections are considered as additive and arwhere positions and velocities of the solar system light-
taken into account at the very last stage of the reduction ofleflecting bodies are calculated at the retarded tawe
observations. —|x—xX4|], R=|x—Xx,| is the distance from the source of light
As far as we know, the first attempt to construct such ao observer, and ellipses denote residual terms depending on
self-consistent theory of astrometric observations was proaccelerations of the bodies given by the retarded integrals
posed by Brumberg and Kopeikja35] and further explored (74)—(76). We have neglected all terms depending on accel-
in Refs.[127] and[4]. The main idea of the formalism is to erations of the bodies because of their insignificant numeri-
exploit to a full extent a relativistic theory of reference cal value. Further simplification of Eq207) is possible if
frames in the solar system developed in REf86-139,7%  we remember that the velocities of bodigscomprising the
and references therein. An independent, but similar approactolar system are small in comparison with the speed of light,
with more emphasis on mathematical details was presenteahd distance® to stars are very large compared to the size
in papers[80,140,141. One global and several local refer- of the solar system. This makes it possible to omit all terms
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being quadratic with respect tq as well as fifth term in the  (10~°—1 H2). Several experiments have been carried out so
right hand side of Eq(207) being inversely proportional to far, for instance, VOYAGER, PIONEER, ULYSSES,

R. This yields GALILEO, and MARS-OBSERVER. The space-probe
N CASSINI represents the next step in such gravitational wave
s : Gm, 2 1 la Doppler experimentEl13]. Its primary target is to study the
s(n=K +2a21 c? 1_Ek'va+ cVaNa™ ﬁ) Saturn system. However, the spacecraft carries on board

much improved instrumentation and will perform three long

kX (ngx k) N Gm, kX (vyxk) (40 days eachdedicated data acquisition runs in 2002, 2003,
_— , (208 and 2004 to search for gravitational waves with expected
sensitivity about twenty times better than that achieved so
far. The detection of gravitational waves requires the precise
nowledge of the Doppler frequency shift caused by the so-

ra—k-ry a1 ¢c3 ra

wheren,=r,/r,, the multiplication sign denotes the usual

EgrflslgaﬁQGV;tgrca(r)?dgg:{vgzger\wl\(/:ee r?tﬁzigce)s;u;?ﬁ?em r system’s bodies lying near the line of sight of observer to
- = spacecraftsee Fig. 7.

nates incompleteness in the derivation of the similar formula™ , | = - important implementation of the Doppler track-
given by Klioner[55] which was obtained using the post- ing is the Global Positioning Systef®PS which uses ac-

Newtonian expression for the metric tensor and und_er th%urate, stable atomic clocks in satellites and on Earth to pro-
assumption of rectilinear and uniform motion of the.“ght'.vide world-wide position and time determination. These
deflecting bodies. As we have already noted many times "Wocks have relativistic frequency shifts which are so large

the present paper, the post—_l\levvtonlan approximation for th at, without accounting for numerous relativistic effects, the
metric tensor does not take into account all necessary effec %/stem would not function(Ref. [146], and references

of retardation[143] which are essential in the derivation of . .
) - ; . therein. Quite recently, the European Space AgefEA)
the Eq.(208). Klioner and Kopeikin4] have simply copied | adopted a new program aimed at achieving an even bet-

the result of Ref[55] due to the absence at that time of a S i : .
better theoretical treatment of influence of body’s velocitiester precision in measuring time and frequency in space-time

th i f liaht With th h tical t hobservations. The program is called the Atomic Clock En-
on the propagation otlight rays. Wi € mathematical teCho 1 phje in SpacACES) and will be carried out on board the
nigue invented in the present paper E208) gives the cor-

. : International Space StatidtSS). The principal idea is to use
rect answer to this question and closes the problem. P s princip

. . . a cold atom clock in absence of gravity which will outper-
The Igadlng order term in E208 gives th_e well-kno_wn form the fountains clock on the ground with the potential
expression for the angle of deflection of light rays in the

— 17
gravitational field of a static, spherically symmetric body. accuracy of 510 ' [147].

. ! . An adequate treatment of such gravitational wave and
The velocity dependent terms in E(208) describe small time-metrology high-precision experiments require advanced

correctlo_ns_whlch may be important in data analysis of fuwre{heoretical development of the corresponding analytic algo-
space missions. The very last term in the large parentheses In

) . rithm which properly accounts for all terms of order 16
Eq. (208 may slightly change magnitude of the angle of and higher in the classic Doppler and gravitational shifts

\Q/]vri?r\]/iléattﬁanzlt)lgf]legtleor?] ;O{hsc:meagtea;?gmséﬁgf o?rthzbfie Cr;[tsoetween transmitted and received electromagnetic frequen-
y pact p 9Mcies caused by the relative motion of the spacecraft with

ray is small anq the defl_ectlon angle 1S expected to be rath respect to observer and time-dependent gravitational field of
large. Parallactic corrections to the directigrare extracted

from the unit vectoK by its expansion in powers of the ratio the solar system bodies. In this section we discuss basic prin-
(the barycentric distar?ce o F())bser)léxhepbar centric_dis- ciples of the Doppler tracking observations and give the most

y . ye . important relationships for calculation of the relevant effects.
tance to a star Account for aberrational corrections is made |, o the complete theory involves so many specific de-
byf_mejlr}_s to': relatlnbg the dlrfct[[cr)]n tg.thet'ssalo%serve% bg tails that it would be unreasonable to give all of them in the
;olvxi?]g rg:all Iggsse?vesre:/\\iﬁ;{ thoe h:Ip gffhf?ngtr;e:)\;erelat)i/v resent paper. Therefore, only basic elements of the Doppler
- . : . “¥" tracking theory are given here and particular details will be
istic transformation displayed in Sec. VII of Ré#]. It is g Y g P

o . : gublished somewhere else.
worth emphasizing that the correction for aberration must b Let us assumésee Fig. 7 that an electromagnetic signal
done f|rs.,t.bgfore aqcount for paral!ax. Complet.e analysis Ors being transmitted from the point with barycentric coordi-
the relativistic algorithm of processing observations of celes-

. . - hatesxy located on the Earth with frequenay at the bary-
“‘?" objects made from a board of a space observatory wil be(E:entric timet,. It travels to the interplanetary spacecraft, is
given elsewhere.

received on its board at the point with barycentric coordi-
natesx; with frequencyr; at the barycentric timeg;, and is
D. Doppler tracking of interplanetary spacecrafts transponded back to the Earton exactly the same fre-
quencyv;) where one observes this signal at the point with
barycentric coordinates, with frequencyv, at the barycen-
tric timet,. It is worthwhile to emphasize that because of the
The Doppler tracking of interplanetary spacecraftsmotion of the receiver with respect to the transmitter during
[144,145,112 is the only method presently available to the light travel time of the signal the observed frequengy
search for gravitational waves in the low frequency regimes different than the emitted frequeney even if the signal is

1. Approximation scheme for calculation of the Doppler shift
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Spacecraft

Jgg

‘ Jupiter

Position of the Earth
at the time of reception
of radio signal t ,

Position of the Earth
at the time of emission
of radio signal t ,

FIG. 7. Spacecraft Doppler tracking experiment in deep space. Radio signal is transmitted at thyeatich@t the point 0 on the Earth
along the unit vectok,. The radio signal reaches the spacecraft at the momeatd at the point 1 somewhere in the solar system and
responds back to the Earth exactly at the same tijraong the unit vectok, which has a different orientation froky. The responded
signal arrives at the reception point 2 on the Earth at the tim®uring the round-trip time of the radio signal the Earth rotates around its
own axis and moves along the orbit. Hence, the barycentric position and velocity of the transmitter is different from the barycentric position
and velocity of the receiver despite of that their topocentric positions on the Earth can coincide. When the impact parameter of the radio
signal’s trajectory is small the gravitational Doppler shift of the transmitted frequency with respect to the received frequency is estimated
approximately av/v,=2a(vg /c)cosp, wherea is the deflection angle of the light ray, is velocity of the Earth, ang is the angle
betweenvg, and the impact parameter.

transponded from the spacecraft being momentarily at resh time-dependent gravitational field of the solar systdd)
with respect to the barycentric coordinates of the solar sysestablishing theoretical description of the transmitter-
tem. spacecraffup-) and spacecraft-receivédown-) radio links.

The proper time of the transmitter at the instant of signal’'s In practice, when Doppler tracking observations are
emission is denoted by, and at the instant of the signal’'s made, the frequency, of the receiver is kept fixed. This is
reception by7Z,. The proper time of the spacecraft’s tran- related to the fact that the frequency band of the receiver
sponder is denoted d&s,. The barycentric time at the emis- must be rather narrow to decrease the level of stochastic
sion point istg, at the point of receptioty,, and at the space- noise fluctuations and to increase the sensitivity of the re-
craft's positiont;. We follow arguments similar to those ceiver to detect a very weak radio signal transponded to the
used in Sec. VI C. The spectral shift of electromagnetic fre-Earth from the spacecraft. On the other hand, technical limi-

quencyv, with respect tov, is given by the equation tations on the range of the transmitted frequency are not so
restrictive and it can be changed smoothly in a very broad
vy dT, dt; dt band according to a prescribed frequency modulation law.

1+zy=—=—2 25 (209 Sulation e av

This law of modulation is chosen in such a way to ensure the
receiving of the transponded signal from the spacecraft ex-
and the shift of the frequency,; with respect tov, is de-  actly at the frequency,. It requires to know precisely the

v dty dto d7p’

scribed by the similar relationship ephemerides of transmitter, observer, and spacecraft as well
as the law of propagation of electromagnetic signal on its
1ag il dty dt; d7, (210 round-trip journey. Hence, one needs to know the Doppler
1y, dT, dty dty” shift Sv/v, where Sv=wvy—v,. From EQs.(209), (210 we
have
Here the time derivatived T, /dt; anddt,/dT; are calcu-
lated at the spacecraft's positiait, /d7; is calculated at the ov_vg  dtpdty dt; d7;
point of emission, andi7,/dt, at the point of reception. v, vy 1= d7, dt, dt; dt, 1. (213

Time derivativedt, /dt, anddt,/dt; are obtained from the
solution of equation of propagation of electromagnetic signalAs one can see from Ed211) there is no need to know
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explicitly the transformation between the proper time of the

spacecraffl; and the barycentric time of the solar system
This remark simplifies calculations.

Accounting for relationshig80) and expressior10) for
the metric tensor yields at the point of emission

dtg MaV1—Vgo
1-v|1+22, ————
d7, {( 0 aEl 'oa—Vao- r0a>

—-1/2

. (212

my (-'L_VO'VaO)2
\/1 VaO

where vy(ty) is the barycentric velocity of emittery,
=V,(sp) is the barycentric velocity of thath gravitating
body, roa=|roal, Foa=Xo(to) —Xa(So), and sp=to—ro, is

_42

0oa— Vao'loa

the retarded time corresponding to the time of emissign,

of the radio signal.

N

PHYSICAL REVIEW D 60 124002

Similar arguments give

1+2,

a=1l2a™

d7, N ma1-v2,
el (C v2) —

N

—4
agl V1-v2, M2a=Va2T2a

Va2 l2a
1/2
, (213

My (1=VyVy)?

where v,(t,) is the barycentric velocity of emittery,,
=V,4(s,) is the barycentric velocity of thath gravitating
body,r2a=r2al, r2a=X2(t2) = Xa(S2), ands;=t,—r 5, IS re-
tarded time corresponding to the tine of the signal’s re-
ception.

For up- and down-radio links the relationshiil) yields,
respectively,

1+Ky-Vot2,  mMy(951/dto) (91dsy) + (9Syltg) (3l3Se) + (95 1ate) (a1at¥) + (aKi/dtg) (31 3K,)IBa(S1,S0.th K1)
a=1

dty N

1+K,-vy— 22 Ml (951 1t1) (919Sy) + (9501 dt1) (313Sy) + (a5 1aty) (9lat) + (aKilaty) (9l9K.)1Ba(sy,So t¥ Ky)

and

N
14Ky vy +2,  my[(ds,/dty) (alds,) +
a=1

(214

(9811dty) (91dsy) + (at51dty) (9lats) + (9Kolaty) (9lakb)IBa(Ss,S1,t5 ko)

dt,
dt, N _ _
14+KyVo—2,  my[(d5,/dty) (a1dsy) + (S, 1dt,) (313Sy) + (at5/dty) (Alats) + (IKoldty) (919K5) 1Ba(Sy,S1,t% Ky)
a=1
(219
|
Here the retarded tims; comes out from the relatios; 957 Tia—Ki-Tia  (KXvy)-(KgiXTqg) (218
—t,—|x,— —= - , (218
t1~ X1~ xa(sy)l, and gty T1a=Var-lia Na—Vai'T1a
ky=— :M, E:(l_kl'vo)(kl‘rla) (219
|X1(t1) = Xo(to)| ato a—Var-T1a
Xo(tp) = X4(t1) Sy Tga—Vo-l
ko= K oty —x () (219 F (220
2(12) =X (1y o Toa=Vao'loa
are the unit vectors which define direction of propagation of S0
transmitted and transponded radio signals, respectively, and N =0. (221
1
t1=to=Ki-Xo, t3=t1=Kp-X;. (217 These formulas must be used in E14. For the
spacecraft-receiver down-radio link we obtain
2. Auxiliary partial derivatives c K K
ds —ky-r X Vs) - (KyXT
The relationshipg84)—(87) allow us to write down cor- 9% _ f2aKoToa  (KoXV2)-(ky Za), (222
responding expressions for the retarded tiggss;, ands,. 3t2 F2a=Vaz'l2a F2a=Vaz'l2a
One has to carefully distinguish between derivatives for the p 1—k K
up- and down-radio links. For the transmitter-spacecraft up- E ( 2-Va) (ke rza) (223

radio link we have dty Foa= Va2 l2a
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dS;  T13= V114 9B4(S1,S0,t% kb))

BL_taliia (224

gty T1a=Var-li1a c?kil
751 _ (225 o 1-Kkgvy x4(s1) 1-k;Vao  Xh(So)
it

V1-vZ, T1a=KiTia \J1—v2) Toa=KiToa

These formulas must be used in EB15). We point out that

j j
the meaning of the time derivatiu@18) is completely dif- + 2Va1 IN(ra—Ky- T4 )—&m(fo —Kq-Toa)
ferent than that of the time derivativ@24) although they are Ji-vz oo o=V, 2
calculated at one and the same point of transponding of the (233
radio signal. At the first sight it may look surprising. How- d
ever, if one remembers that the derivati2d 8) is calculated an
along the transmitter-spacecraft light pa}th and that(E2a4) _ 9Ba(S7,51,15 kb) 1 (1—Ky-Vy)?
is calculated along the spacecraft-receiver light path, which 3 = = Tk (234
have opposite directions and different parametrizations, the S2 V1-vi, Tza=Ke'Tza
difference becomes evident. x| 5
The other set of time derivatives required in subsequent ~ “Ba(S2.S1.t3.K) 1 (1—Kp-Vay)
calculations reads as follows: s, V1-vZ, Tia—KaTia’
. _ . : (239
‘9_k|1_[k1><(V1><k1)]I 3_k|1__[k1><(VoXk1)]' L
(9t1 B ROl ' (7t0 N ROl ! aBa(Slel!tZ 'k2)
(226) ﬁt;
I [koX (Vaxko)]' 7Ky [kpX (vixkp)]! L 1kpva 1 1Ky Ve
It Ra1 B Ry ('227) \/1—v§12 l2a— Kz l2a \/1—v§1 ra—Kz-ria’
(236
aty Vo- & dtT Vi-& i
R . - > _ * i
7t 1—Kkq-vp+ Ry ' ot Ry ' (228 aBa(sz,sl.,t K5)
K,
ats vi-& o dt; Vo & i ;
Ezl_kz' 1t Ry ' M, Ry (229 _1-kava X4(S2) 1-kp-Vay  Xh(S1)

V1-v2, T2a= Ko Taa  \J1-v2 T1a=KaT1a
where Ry;=|Xy—X4| is the radial distance between emitter
on the Earth and spacecraRy;=|X,—X;| is the radial dis- 2vl,
tance between receiver on the Earth and spacecraft, and for  + \/ﬁln(rZa_ Ko T2a)
the impact parameter§; =k, X (x;xXk;) and &=Kk,X (x4 a2

xks,) hold. | oyl
Partial derivatives of functionsB,(s;,So,t7 ,kj) and ——MZm(rla—kz.rla), (237
Ba(s,,s1,t3 ,k5) can be found by making use of relation- V1-va

ships(89)~(94). This yields We have neglected in formuld232),(233) and(236), (237)

9Ba(Sy,50,tF ,kil) _ 1 (1—Ky-Vay)? 0 ?ellsferms depending on accelerations of the solar system bod-
S V1-vZ Tia=Kifga
3. Relativistic effect for Doppler measurement near solar and
9BL(S1,5 vt’f 'kil) 1 (1— kl'Va0)2 planetary conjunctions
S0 == \/1_\/20 Moa—K1 Ton The relationships(211)—(237) constitute the basic ele-

ments of the post-Minkowskiafiorentz-covariantDoppler

tracking theory. They are sufficient to calculate the Doppler

. L response for any conceivable relative configuration of trans-
9Ba(S1,50,17 K1) mitter, spacecraft, and the solar system bodies. We shall con-
oty sider in this section only the case when the spacecraft is
beyond a massive solar system body such as the Sun, Jupiter,

1 1-Kyp Vg N 1 1-Kq Vg or Saturn when the impact parameters of up- and down-radio

M2 r—k.. 2 r —k.r.' links are small compared with distances from the body to
1-vg Ma~Kifa 1= Vg foa™Ka'Foa transmitter, receiver? and spacecraft. We shall also re)s/trict

(232 ourselves to the consideration of gravitational shift of fre-

(231)
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quency only. Actually, this case is similar to gravitational milliarcsecond or=4.85x 10~ ° rad. The relative velocity of
lens. Thus, we neglect all terms of ord@g/rq,, My/r1,, the Earth with respect to speed of light is about 40These

m, /T4, My/Ro1, My/R,, as well as terms being quadratic simple estimates applied to the Doppler shift’s formula elu-
with respect to the velocity, . It is worthwhile to point out ~ cidate that the gravitational shift of frequency in Doppler
that the round trip travel time of the transmitted radio signaltracking of interplanetary spacecraft caused by the Sun is not
is much shorter than orbital period of any of the solar systemess than=4.85< 10" ** for any location of the spacecraft in
body. For this reason, all functions with the retarded timethe sky. If the path of the radio link grazes the Sun’s surface

. X . ] _10 .
argument entering the equations can be expanded around tHt¢ Doppler shift will be about 8.4¢10°"" —a quantity
time of transmission of the signal which is precisely deter-Vhich can be measured rather easily. The same kind of esti-

mined by atomic clocks. Taking into account these remarkdnates gives for radio signals grazing Jupiter and Saturn the

and making use of relationshi69 we obtain Joppler shifts about 7.7610 ** and 2.9K 1(.)712’ respec-
tively, which can be also measured in practice.
Sp\obs 2 r ro Our formalism for derivation of corresponding relation-
( ) :—(va— vl) ca(&y) ships for the description of high-precise Doppler tracking of
interplanetary spacecrafts can be compared with approaches
based on the post-Newtonian approximation schése,
4Gm, e.g., Refs. [107,127). The advantage of the post-

1
c2d? Sa (238 Minkowskian approach used in this paper is that it automati-

. . : . . cally accounts for all effects related to velocities of gravitat-
wherevy is velocity of transmittery; is velocity of space-

f . loci f theath itating bodv deflecti ing bodies through the expressions of thénaed-Wiechert
cra_t, Va IS velocity 0 theat 'gra.wtatmg ody deflecting potentials. The post-Newtonian scheme makes calculations
trajectory of the emitted radio signal at the angle d,

=|&,| is the length of the impact parameter of the light raymuCh longer and not so evident.

with respect to thath body,r is the distance between the 4. Comparison of two mathematical techniques for calculation
transmitter and the light-deflecting body, is the distance of the Doppler effect

between the spacecraft and light-deflecting body, &d
=|Xg—X—1|=ry+r;. Formula(239 for the Doppler shift
by gravitational lensing depends on velocities of transmitter
spacecraft, and the light-deflecting body and generalizes th%
obtained independently by Bertotti and Giampl&i07] who and Giampier[107]. Let us introduce definitions of the four-

considreq oy & salle rautatona ens I S22, Of 20PYelociy of obsenver (1), he fourvelciy o
: a_ 0 i

the difference between the two formulas is negligible, but thesourcel of Ilghluo'— 90(1’\20)’ tr;e fqgr-momenta of ph(')ton at

motion of the lensing body may be important in the case ofhe Point of emissionC =K g[1X'(to)], and the point of

Doppler observations of spacecrafts in the field of giant planobservation 1 “= Ko1x(t)], where u®=dt/d7, u8

ets such as Jupiter or Saturn. =dtg/dTy, KS=dty/d\g, and K °=dt/d\ with A and \,
Approximate value of the Doppler shift is determined by being values of the affine parameter along the light geodesic

the expressiodv/v,=2a(v4/C)CcoSe, Wherea is the de-  at the points of emission and observation. Then, using the

flection angle of the light ray, is velocity of the Earth, and definition of theDoppler effect in terms of enerdg4] it is

¢ is the angle between,, and the impact parameter. For the not difficult to show that the first equation in R€84] can be

Sun the deflection angle over the whole sky is not less than fecast into the form

v_zgr c R R

ai(fa):

It is worthy from the methodological point of view to
compare calculation of th®oppler effect in terms of fre-
uency used throughout the present paper, with thaerms

energy(see Ref[64] for definition) used, e.g., by Bertotti

v _ UK % goolt,X) + goi (£, X)[X'() +v']+gi; (£, )X/ (t)v'} (239
Yo ugk Y doo(to,Xo) + Joi(to,Xo)[ X' (to) + Vol +gij (to,Xo) X (to) Vo)

Calculation of time componerft © of the four-momentum of ~ Using decompositioit4) of the metric tensor and parametri-
photon in Eq.(239 can be done if one knows the relation- zation(17) along the unperturbed light ray, E@40 may be
ship of the affine parameter along the light geodesic and written:

coordinate timé. This is found by solution of the time com-

. : 2 2
ponent of the equation for the light geodes@c=1) att |1 s et dt
5= KK ko, | gy | @40
d%t . .. [dt)\? L .
—=— (Tt 23X + Txx) | —| . (240  Where the constant vectéf'=(1k')=(1k), and the substi-
da? ' N dx tution for the unperturbed trajectory of light ray h, is
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done after taking a partial derivative with respect to coordi-
nate timet. The solution of Eq(241) can be found by itera-

tions using expansion

N=E Y t+FA1)],

whereE is the constant photon’s energy at past null infinity
measured by a fictitious observer being at rest, and the func-
tion 7(t) is of the orderO(h,p). It is obtained by solving

the equation

¢?F_1 ., -
F—Ek kPdih o g—k*d hog -

(243
Solving the differential equatiof243) one finds

Ko =E Y1-An], Kk3=K%r0)=E [1-F 7],

(244
and
- 1 7 | dh,a(t,x
Fin) =gk | [L)
- at t=o+t*; X=k0+:§
Xdo—k%hg,(7), (245
. 1 70 | dh,5(1,X)
———
- t=c+t*; x=ko+¢
Xdo'_kahoa( To) . (246)

After examination of structure of integrands in the integrals

of the expression§245), (246) one notes that

o7haﬁ(0'+t*,ko'+%)

dh,p5(1,X)
at

N *
t=o+t*; x=ko+¢ ot

(247

(242

PHYSICAL REVIEW D60 124002

J (7 -
(9'[_* 7whaﬁ(0'+t*,k0'+ ddo

J fsu,t*ﬁi[g(g)—(l/z) NapTan({) .

N
=4 —
= = P k-xa(8) —¢

a=1

at* g )

(249

where the upper limis(7,t*) of the integral on the right
hand side is calculated by means of solution of equation,

s+|ko+ &—x4(s)|=7+t*, and depends on time and in-
stant of the closest approat¢h considered as a parameter
[148]. For the upper limit depends dh the derivatived/ gt*

of the integral in square brackets is taken both from the in-
tegrand of the integral and its upper limit. It is possible to
eliminate dependence of the upper limit of the integral on the
parametet*. It will be achieved if one takes timeas inde-
pendent variable instead efand finds the upper limit of the
integral from Eq.(83) as we have done previously while
calculating the Doppler effect in terms of frequency. Such a
procedure gives us

9 Jsﬁ,t*ﬁzgz)—(l/z) RagTar(£) | 1
- t* +K-Xa(§) = ¢

a=1

k2 fs(tﬁi,g(o—(l/a nagTar(é) | l

gt ) et kexa(0) — ¢

T25(5) = (1/2) 9,5 ThA(S) ra
ra(s)_k'ra(s) ra(s)—va(s)-ra(s)’

(250

N

+4
a=1

where the second term in the right hand side is a partial
derivative of the upper limit of integral in Eq249 with
respect ta* [149] and the upper limis(t) of the last inte-

A remarkable property of equalif247) is that the parameter gral is treated as independent frain[150]. Finally, one has
t* is independent from the argumemtof the integrand in
Egs. (245, (246 and, for this reason, the derivative with

respect tot* can be taken out of the sign of the integrals. 1. s hp5(t,%)
This allows us to transform, e.g., the integfa#5) into the F K%k . ot _do
form t=o+t*; x=ko+E
T [ Ihp(t,X) N
_— do 1., 5
b I i ek = 5k KPhap(n) =22 | mCy(s)
a (r . m 1-k-vy)? k-r
=—| huglo+t* ko+Hdo. (248 __ M ( 2 21, (25D
at* J —e \/1_\/521 Fa=K:-ra ra=Vara

Using solution(10) for h,,; and relationship(25 relating

total differentials of coordinate time- and retarded time¢
one obtains

where the functionC,(s) is displayed in Eq(71). Similar
arguments give
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1 70| dh,5(1,X) 1, R 1
Ek“kﬁf —a do A(rg)=1—k-vy— EVok“k'BﬁiBaﬁ(To)— Ek“k"’haﬁ( 70) s
- t=o0+t*; X=ko’+%
. " (262
= ZkekPh ~2> | m.Ca(s !
2 a,B(TO) azl aCalSo) B(T)=1+22 m,C.(s)
a=1
m, (1-k-vg)? k-r
- \/1Taf Rt T veTe| s 252 LM (okve)? kerg (262
Vao '0Oa 0a '0a a0’ 0a \/1—V§ I’a—k‘l’a [a—Valg )
Going back to the formuld239) of the Doppler effect in N
terms of energyne can see that it can be factorized in three
terms: B(To):1+2§l MaCa(So)
14
V_():Sl'Sz'Ss, (253 My (1—K-Vy)? K-roa
where V1-vZ, Toa=K:Toa Moa=Vao'oa|’
u® (263
515@ where the partial derivatived;B,z(7) and d;B,4(7) are
0

calculated on the ground of E(B0). With Eqgs.(259—(263
it is straightforward to confirm the validity of Eq258) if

1—VvZ—hg(t,Xe) — 2hgi (tg,Xo)Vh— hji (tg,Xo) Vhv]
0~ Nod(t:Xo) ~ 2Nai(to. %)V~ i (to Xo) VoV one notes that up to the second order of the post-

1=v2=hoo(t,%) = 2hgi(t,)v' = hyj (t,x)vivi Minkowskian approximation scheme it holds that
(254 N
: B Y7)=1-22, | m,Cy(s)
K® 1-Fr) a1 0t
R LU (255
Ko 1-Fo) m, (1—-k-vy)? k-ry
) ) - K , (264
< 1—k-v—v- E(r)—k%ho,(t,x) —kaVih ;(t,x) JI=vE Ta—keTy Ta=Var,
37 - A .
1—k-Vo— Vo E(79) —k%hga(to,Xo) — K*VEh,j(to,Xo) so that Eq(259 can be rewritten as follows:
. . (256) A
Here E(7) is given in Eq.(34) and E(7,) is obtained from Sy S3= — . (265
Eq. (34) by means of calculation of all functions involved at A(7o) B~ (1) B(70)
the instantr. It is easy to confirm that the numerator and denominator of

On the othgr hand, our previous resqlt for. calculation Oqu. (265 coincide exactly with those of Eq81) used for
the Doppler Sh_'ﬁ In terms of frequenaptained in Sec. VI C calculation of the Doppler shift in terms of frequency and,
had the following form: for this reason, Eq(259) is valid. This finalizes the proof of

v dt equivalence of using two different mathematical techniques
v Stdt (257 for calculation of the Doppler effect.
In conclusion of this section we would like to point out
Thus, in order to have an agreement with calculation of thehat the method of calculation of integrals in formu(245),

Doppler shift in terms of energgne must prove that (246) exposed in the sequence of E4R47)—(251) signifi-
dt cantly simplifies and reduces the amount of calculations
—=5,-5;. (2589  which have been performed, e.g., in Rf51] for studying
dt anisotropies of CMB radiation due to cosmic strings, where

One can recast the product on the right hand side of Edather complicated transformations of variables were used
(258 accounting for Eqs(245), (246), (251), (252 into the  for performing of the integrals under discussion. As we have
form shown in the present section such transformations are actu-

A7) B(7) ally unnecessary.

A(rg) B(7g)'

where In view of practical applications it is useful to give the
explicit formula for Doppler tracking of satellites. We shall
1. A 1 derive it in the present section for one-way propagation of
= — . _—— T 'B A — —k* B
Aln=1-k-v 2V K*KE9iBap(7) 2k KPhap(7), electromagnetic signals emitted from the poiptat timet,
(260 and received at the pointat timet. The Doppler shift of the

82 . 83 = (259)

5. The explicit Doppler tracking formula
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observed frequency with respect to the emitted frequency whereR=|x—Xg|.
v is given by Eq.(253) which is to be transformed to sepa-  The explicit formulas for the functions &( and a¢,) are
rate the special relativistic Doppler effect from general rela-derived using Eq(212) which leads to

tivistic corrections. Thus, we have

N ma\/l—vz

a(rn)=1+2
v 1-k-v[1-v2]Y* [a(r)[Y* b(n) (7) 2 fae Vo fs
o 1-K-v 2 a(r| blr) (269
0 o|1-v 0 4 N my  (1—v-v,)?

. . . - . (269
where the first two factors out of four describe the special 1-v?a=1 \/1—\/3 la—Vala
relativistic Doppler effect, and the next terms are general
relativistic corrections. The unit vectdr given at past null . ma\/l——v;0
infinity relates to the unit vectdk [see Eq/(36) for its defi- a(ro) =1+ 22 TV T

", . a=11loa a0" ! 0a
nition] of the boundary value problem through the relation-
ship (37) which, for the particular case under discussion, 4 N m, (1—Vg-Va)?
reads (269

N i i
. o2 1-k-v, rg—k'(k-r
KoKt 23y 1K Va e K (k)
Ra=1 V1—vy ra—k-rg
1K Va0 Foa— K (K-Tgq)
\/1—ng Foa—K:Toa

4 N m
+_ a
R [sz

[vh—K (k-vo)lIn(ra—k-ry)

N —W[Viao_ K'(K-Vao) IN(roa—k- rOa)] ,
a0
(267

1-v3 a1 yJ1—-vZ, Toa=Vaofoa

We recall thatvy(ty) is the barycentric velocity of emitter,
Va0=Va(Sp) is the barycentric velocity of thath gravitating
body at the instansg, roa=|roal, Moa=Xo(to) —Xa(So), and
So=to—roa is the retarded time corresponding to the time of
emission,ty, of the radio signal. In addition to thig(t) is
the barycentric velocity of receivev,=v,(s) is the bary-
centric velocity of theath gravitating body at the instarsf
ra=|ral, ra=x(t) —xa(s), ands=t—r is the retarded time
corresponding to the time of receptiof the radio signal.

Omitting all terms in Eq(74) for the integralC, depend-
ing on accelerations of the bodies’ center of mass, and re-
ducing similar terms, we obtain for the functions in the last
factor of the basic relationshif266) the following explicit
result:

N
b(7)=1+221

N
b(rg)=1+2>,

m 1-k-v 1-k-vy)(kXv)-(kxXr kKXv,)-(kXr
. a [(L=k-vg) (kxv)- (kXrg) (kX Vp)-( a>+k.va}' 270
1_Va [a=Va'Ta ra_k'ra ra_k'ra
m 1-k-v 1—-k-vy)(kXvg)-(kXr kKX V) (kXr
a a0 | ( a0) (KX V) - (KXTga)  (KXVg)-( 0a)+k-VaO} (271
a=1 \/1—v§0 Foa™Vao'loa 0a~K-Toa Foa—K-Toa

The formulas(266)—(271) describe the Doppler shift of the gravitational field of an astronomicadl-body system was
radio signal transmitted from observer to spacecraft. Thanalytically solved in the present paper in the first post-
Doppler shift of the radio signal transponded back to theMinkowskian approximation of general relativity. The gravi-
observer is described by a similar set of equations with cortational field, described by the perturbatidn,; of the
responding attachment of all quantities to the instant of theinkowski metric tensory,z of the flat space-time, was
signal’s reflection from the spacecraft and to the one of thgyresented in the form of Lieard-Wiechert potentials and de-
signal’s reception. In case of light grazing a gravitating body,nends on coordinates, (a=1,2,...,N) and velocitiesv,

the formula(266) gives, of course, the result shown already of the hodies taken at the retarded instants of time. There is

in Eq. (238).

VIIl. DISCUSSION

A. Basic results

not any restriction on the motion of the bodies except for that
v,<c (speed of light The relativistic equations of light
propagation were integrated in the field of the naed-
Wiechert potentials and their solutions were found in alge-
braically closed form. Exact analytic expressions for the in-

The long-standing problem of relativistic astrophysics andegrated time delay, the angle of light deflection, and the
astrometry concerning propagation of electromagnetic siggravitational shift of electromagnetic frequency caused by
nals in the weak but arbitrarily fast changing, time-dependenthe gravitational fields of arbitrary moving bodies were de-
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rived and all possible residual terms were shown explicitly. The propagation of light rays in the field of arbitrary-
One can compare the theoretical elegance and completenes®ving bodies endowed with spin-dipole and quadrupole
of the Lorentz-covariant formalism of the present paper withmoments. This requires the knowledge of the expression for
various approaches of other authors to the same problem ¢ifie singular tensor of energy-momentum of pointlike par-
light propagation in time-dependent gravitational fieldse, ticles with spin and quadrupole moments. The spin contribu-
for example, Refs[151-154). tion to the tensor can be found, for example, in R48] but

The applications of the Lorentz-covariant theory of light the structure of the tensor with the quadrup@ed higher
propagation, developed in the present paper, to relativistimultipole seems to be unknown. Solution of the given prob-
astrophysics and astrometry are as follows. lem will admit a precise mathematical treatment of timing

A general theory of the Shapiro time delay in binary pul- observations of a pulsar orbiting a Kerr black hole, as well as
sars is developed and all corrections with respect to velocia unique interpretation of those x-ray andray sources
ties of pulsar and its companion to the standard logarithmigvhich are assumed to have a Kerr black hole at the center of
expression of the time delay in static gravitational field weretheir accretion disks related.
found. Particular attention was paid to the terms which are The extension of the Lorentz-covariant theory presented
linear in velocities which generalize the formula for the Sha-In this paper to the event of strong gravitational fields. This
piro time delay which existed in the parametrized post_wnl require finding solutions of the equations of light propa-

Keplerian formalism discussed by Damour and Tayls]. gation in the second post-Minkowskian approximation of

A Lorentz-covariant post-Minkowskian approach to the timegeneral relativity or another alternative theory of gravity.

delay calculations was compared with the post-NewtoniarHere one can expect to find differences between predictions

approach the enigmatic efficiency of which remained puz2f tWo gravity theories which may be used for suggesting

Zling for a long time, was fully explained both in terms of the new observational tests of the theories. It is also interesting

analytic mathematical technique and in the visual Ianguagé0 note[30] th"’.‘t if the Iight—d_eﬂeg:ting body orfand observer
of Minkowski diagrams. move too fast in a specific direction even the weak and hence

An equation of gravitational lens, moving arbitrarily fast linear gravitational field can become strong in a chosen co-

and possessing spin-dipole and quadrupole components, ngdmat_e fra_me._ In such a Cﬂse th_e linear pbqst-Mlnkot\)/vsklan
derived. Gravitational shift of spectral lines of the lensed@PProximation is not enough to give unambiguous observa-

source of light is worked out and its influence on the anisot—tIonal pr_edictions of relativistic gravit{;\tiongl effects ‘F‘
ropy of cosmic microwave background radiation was dis-ProPagation of light rays and a second iteration of the Ein-
cussed stein equations is required.

The expression for the Shapiro time delay, caused by th An elaboration of the formalism of the present paper on

solar system bodies, was reanalyzed to improve accuracy e case of FOIarizﬁd ellectromagnleti_c wave t? calcmrJ]Iate t|r|1e
ulsar timing data processing programs and of the consensﬂgtat'on. angle of the plane of po anzatlgn along the nu
P 9 P g prog eodesic path of the wave—the Skrotskii eff¢tb5|; see

model of very long baseline interferometry. 9
The relativistic deflection of light in the solar system also Ref[151].

gravitational field was obtained with accounting for all . _The inclusion in th_e fo_rmahsm of the given paper of rela-
tivistic effects of gravitational waves from localized sources

velocity-dependent terms in the first post-Minkowskian ap- h losi e bi black holes i
proximation. This result will be important in future space SUC" @S & Supernova expiosion, massive binary black holes in

astrometric missions such as GAIESA), SIM (NASA) nuclei of active galaxies, cataclysmic and ordinary binary
etc ' ' stars in our galaxy, etc. The first decisive step towards the

The theoretical formulation of the Doppler tracking of adequate interpretation of these gravitational wave effects

interplanetary spacecrafts was achieved at the level of rd1as b_een o_lone In our papg]. However, a more |_nvolved
sidual terms of order T0. technique is required to take into account motion of the

We could not elaborate in the present paper all possiblgources of gravitational waves with respect to observer. We

aspects of the Lorentz-covariant approach to the problem xpect that new interesting effects may be found along this
propagation of light rays in time-dependent gravitational'nefl;h lculati £ th ¢ itational
fields of isolated astronomical systems. Some of the most € calculation ot the response of space gravitationa

important theoretical developments which can be done if/ave in_terferor_neters such as .LISA to the signals emited by
future are outlined in the following section gravitationally induced oscillations of the Siiso-calledg

modes$. The combined technique of this and our previous
paper[1] is undoubtedly enough for getting the answer to
that problem.

The clear mathematical formulation of the Lorentz- The application of the formalism of the present paper to
covariant theory of light propagation in gravitational fields of the case of small-angle scattering problem of fast-moving
arbitrary-moving bodies and the elegant method for solvingself-gravitating bodies and calculation of gravitational wave
related problems coming up in this framework and beingforms (see, e.g., Ref.29)).
based on the proper account for all retardation effects, deliv- The development of physically adequate, high-precision
ers new fascinating opportunities for a much deeper exploalgorithms for data processing of observations of space as-
ration of the following open problems of modern relativistic trometric satellites and navigation systems such as GPS as
astrophysics and astrometry. well as very long baseline interferometry. The practical ne-

B. Future prospects
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cessity in such algorithms is already strongly felt and will ACKNOWLEDGMENTS
permanently grow following achievements in the rapid de-
velopment of advanced space technology.

We could continue the list of subjects for future work. For ~ We are grateful to N. Wex, A. Jessner, and G. Giampieri
example, we did not touch upon cosmological applications ofor valuable discussions, as well as to K. Nordtvedt, B.
the formalism of the present paper. This will require someMashhoon, A.F. Zakharov, and S.A. Klioner for important
modifications of equations of light propagation to accountremarks. S.M.K. is pleased to acknowledge the hospitality of
for the cosmological expansion of the universe. No doubtG. NeugebauefTPIl, FSU Jenpand R. WielebinskiMPIfR,
the interpretation of observations of anisotropy of cosmicBonn). This work was partially supported by the “Tinger
microwave background radiation induced by, e.g., cosmidVinisterium fur Wissenschaft, Forschung und Kultur Grant
strings[151], can be made more theoretically adequate in theNo. B501-96060 (S.M.K.), and by the Max-Planck-

framework of the presented new scheme. Gesellschaft Grant No. 02160-361-TGA&.S).
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