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Perturbative solutions of Bohmian quantum gravity
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In this paper we have solved the Bohmian equations of quantum gravity, perturbatively. Solutions up to
second order are derived explicitly, but in principle the method can be used in any order. Some consequences
of the solution are discusse[50556-282(199)01222-9

PACS numbgs): 04.60.Ds, 03.65.Bz, 98.80.Hw

I. INTRODUCTION II. BOHMIAN QUANTUM GRAVITY

. . . Bohm's theory is a causal version of quantum mechanics
chent_ly[l—B], a.pertyrt_)atwe method for golvmg classi- [9]. According to this theory, any particle is acompanied
cal Einstein’s equations in its Hamilton-Jacobi form was Pre<ith an objectively real field ¥) satisfying Schidinger

sented. The method rests on expanding the Hamilton-JacoRy, \ation. This field exerts a quantum force derivable from a
generating functional in terms of the powers of spatial gra-

diants of the metric and matter fields, and then solving théquantum potential given by
equations order by order. This expansion is valid when the h? V2|V
characteristic scale of spatial variation of physical quantities Q=- °m EZ0S @
is larger than the characteristic length of the theory, e.g., the
Hubble’s radius. In fact it can be shown that the solution carThis theory is motivated from the fact that when one sets
be calculated at any order. The form of the Hamilton-Jacobil = |W|exdiS/%] in the Schrdinger equation, one arrives
generating functional in each order is chosen such that it wilat a continuity equation
be 3-diffeomorphic invariant. This method is used and exam- _
ined for many physical cases. Salopetkal. [1] have solved w1z ,V
the Hamilton-Jacobi and the momentum constraint equations ot +V-| W] m =0, @
in the presence of matter fields up to second order in spatial
gradients. Parnet al. [2] have used a specific conformal and a modified Hamilton-Jacobi equation
transformation of 3-metric to simplify the Hamiltonian and .
solve the problem in higher orders of spatial gradients. Then as |VS)?
they have compared their results with exact solutions for EJ’ 2m +V+Q=0, ©)
some specific cases and obtained a recursion relation for dif-
ferent orders and so they have presented the solution up {8 whichV represents the classical potential @dhe quan-
any order. In addition, similar calculations are made fortum potential, is defined as above. The main positive point of
Brans-Dicke theory[3] Bohm'’s theory, which uses only quantum potential, is that it
An essential question would be whether the method cafs able to explain all enigmatic aspects of quantum theory.
be applied to quantum gravity realm. Unfortunately there arelhese include presentation of a causal description for wave-
different approaches to quantum gravity, none of them comfunction collapse during a measurement, description of un-
pletely acceptable and self-consistent. These include theertainty relations, and also presentation of particle trajecto-
standard Wheeler-DeWittWDW) canonical approach4], ries [9]. Particle trajectory can be obtained through the
the Hawking path integral approacfb], the Narlikar- modified Hamilton-Jacobi equatiof8) and by using the
Padmanabhan quantization of conformal degree of freedomuidance relatiopp= VS, or using Newton’s law of motion
of the space-time metri®], the Bohmian approach to quan- including the quantum potential. It is worth noting that the
tum gravity[7], and the approach presented by autéibal.  trajectories explain many nonordinary behaviors in quantum
as geometrization of quantum thedi§]. Among these ap- mechanics. For example, particle trajectories in a two-slit
proaches, Bohmian quantum gravity is of our concern heregxperiment can be calculatdd] and it can be seen how
because it highly relates to Hamilton-Jacobi theory. In factquantum potential forces particles to move in such a way to
as we shall review in the next section, in Bohmian quantunmake the interference pattern.
gravity one encounters a modified Hamilton-Jacobi equation. Bohm'’s theory can be applied to any system. Application
We shall apply the above-mentioned perturbative methof this theory to gravity leads to Bohmian quantum gravity.
for solving Bohmian quantum gravity equations. We shall dolts properties and positive points are expressed in the litera-
this up to the second order, but in principle the method canure[7,9]. Application of Bohm’s theory to quantum gravity
be applied to any order. has several advantages. First of all, in this approach different
quantities such as the 3-space geometry, intrinsic and extrin-
sic curvatures of the space-like surfaces, and so on have
*Email address: fatimah@theory.ipm.ac.ir physical reality without any dependence upon the measure-
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ment process. Second, the metric has a definite time evolwvell defined in Bohm’s theory. When both quantum potential
tion in this theory. Third, in this approach the wave functionand its gradient are small compared to the classical potential
has two roles. One role is in generating the quantum poternd its gradient, then we are in the classical limit. This al-
lows one, in specific cases, to have quantum effects at large

tial and the other is in acting as the probabilistic interpreta- ; T
scales and classical limit in small scales.

tion. When one deals with a single systéas is the case for Here we use Bohmian quantum gravity, not only because
quantum cosmologyfor which the probability is not defined, ¢ the above-mentioned advantages, bdt also because it
the first role of the wave function is important. Note that in pighly relates to the Hamilton-Jacobi equation. Before pro-
the standard quantum theory only the second role is highceeding, we present the Bohmain equations for quantum
lighted, and thus the meaning of the wave function is quesgravity [7] which we shall refer to later. These equations-are
tionable in quantum gravity. Finally, the classical limit is (settingh=c=87G=1)

) hIG 6SA2 S [ hd 5SA2 B 4
hy K Sy +% st 70 4
88 88 1 [8S\? .
P N (S (3 — 1 09 o 1 =
G Gy, By T M( 5¢) Vh(R®+2A=Qq)+ 3 vhhd,¢d;+ 3 Vh(V+Qu) =0, (5)
B 1 (G 52A +h7q5thijkl 5./4) (6)
QG_ \/HA ikl 5h|] 5hk| 5h|] 5hk| ’
184 .
M=~ hd g (7)
2V oA hilg M—o 8
2V s hil g o8 =0 9
|
in which A is the norm of the wave functioi is its phase 88 +n. N
times7 and is in fact the quantum Einstein-Hamilton-Jacobi 4= 5_¢:W¢_ Vh WO”M# (13)
function, q is an ordering parameteln;; is the spatial metric
in Arnowitt-Deser-Misner (ADM) decomposition of the 1 _
space-time metrici;j is super metric on 3-spacé; de- Kij= m(VivaLVjNi—hij), (12
notes the matter field, ar@g andQ,, are gravity and matter
quantum potentials, respectively. in which N andN' are the lapse and shift functions, respec-

Equation(4) is the continuity equation representing the ey andK; is the extrinsic curvature of the 3-space. It can
conservation law of probability in the super space, and Edpe seen that in Bohmian quantum gravity, there is no time
(5) is the quantum Einstein-Hamilton-Jacobi equation, WhiChprobIem. Time emerges naturally from the equations of mo-
shows that the difference between quantum and classicgbn, Bohmian trajectories can be obtained from the above
worlds is only the presence of the quantum potential consistequations_ For example, the Bohmian trajectories for
ing of two terms, gravity and matter quantum potentials.Robertson-Walker universe are derived by Horiguchj7h
Equations(8) and(9) are 3-diffeomorphism invariance con- and other references cited [ifi]. Another example is Bohm-
ditions for 4 andS. Time evolution of metric and the matter ian trajectories for black holes. They are obtainefllid). In

field can be derived from the canonical relations this reference it is shown that the quantum black hole geom-
K= _58 - \/_H(Kkl_ hk'K) (10) They can be obtained by setting=A exdi S/%] in the WDW
ohy 2 ' equation and the 3-diffeomorphism invariance condition.
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etry is highly sensible to the ordering parameter. For somén which for simplicity of calculations, we have assumed that
specific ordering parameter, Bohmian quantum gravity prethe scalar field has no self-interaction, i.e., we have set
sents a good framework for understanding Hawking radiaV(¢)=0.

tion. Some other aspects of Bohmian quantum gravity can be In order forS° and Q° to be 3-diffeomorphic invariants
found in[11]. For a complete review of the theory sed. and thus satisfy Eq¥8) and (9) automatically, one should

set
I1l. SOLVING THE EQUATIONS
It was noted in the previous section that the complete set ©o_ [ 43
of equations of quantum gravity are Edd), (5), (8), and §O= | d*\hH(4), (17)

(9). The first is the continuity equation, while the second is

the quantum Einstein-Hamilton-Jacobi equation. The third

and fourth equations guarantee thad and S be 0)_ 3

3-diffeomorphic invariants. A perturbative solution can be Q7= d X‘/HK(¢)’ (18)
achieved via expansion & and A in terms of powers of

spatial gradients. In the long-wavelength approximation a ) . i .
few terms of the expansion are sufficient. Therefore ond WhichH andK are functions of the scalar field and contain

should set no spatial derivatives. Sinc#®x+/h is 3-diffeomorphic in-
variant measure, the above expressions are also
3-diffeomorphic invariant. By substituting these relations for

”* , 0 0° and S° in Egs. (15 and (16), we have the following
Q:nzo Qe A=e?, (13)  equations foH andK:

. H 3 is TIPS PP
3:20 S, (14) ae? >(A+5) dgde a<H|= (19

Note that introducing the new function@l will simplify the 5 ) 5

equations. In each order, the two coupled equations, quantumd K §( LB)K- Jﬁ( (d_H) (d_K) 43k §H2>
Einstein-Hamilton-Jacobi equation and continuity equation, dgp? 2 q do do¢ 4 4
should be solved. The two other equations only show that the

functionalsS ?" and Q?™ must be 3-diffeomorphic invari- =0. (20)
ants. By considering special forms 6™ andQ ", these

equations would be satisfied automatically.

Setting both metric-dependefiterms containingy/h) and
A Zeroth order solution metrlc—l'ndepen(':ient terms equal to zero, we have four equa-
tions with the simultaneous solution:

In this order, the continuity equation reads as

) 0) 5500 V3
— q+§ h--&+4\mG-- 0T 65T H=Ae"?; a=*5, (21)
2) 1 sh;; UK shy shyg
\/_ 52S5(0) 50 5§50 525(0)
+2VhG;; +2 + =0, K=BH, (22
1K shy; shy op ¢ S5¢?
15
(15 9 N
while the zeroth order quantum Einstein-Hamilton-Jacobi 9= 2’ (23
equation is
0) sc(0) (01 2 201(0) in which A and B are constants of integration. It must be
2hG;: 65 88 +(5S ) _ G. 5°Q noted here that when using this solution it is a simple task to
K shy ohyg 5¢ KL 5hy; shy show that quantum potential is zero at this order. So the
solution at this order is in fact classical.
50 50©) 3 500 5200
2\/HG|Jk| 5h” 5hk| q 2 ij 5h” 5¢2 -
B. Second order solution
_ 50 2= (16) In the second order, the continuity and quantum Einstein-
o ' Hamilton-Jacobi equations are, respectively,
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3, as® 50 552 502 55©) 28@ 500 553
502 58O 525
25 o0 T o O 2
65 553 550 552 520 50 503 1 502 15203
2hGijq 5h, ohg 56 o0 _\/ﬁGijmm—Z GijleﬂW"”E(Q"”mhij hy 2 a2
0 2
- %) 5?; VRO 17,47'6)-0. (25

On using the zeroth order solution and again setting both|[5(2)]:|[5§:2)+ BQ(Z)]:|[S((:2)]+B|[Q(2)]:B|[Q(2)]
terms with and without/h equal to zero, one arrives at the

following four equations: =BIV[Q?@] (3
@ I 525(2) 582 525(2) SO
I[S¥]=2/hG;j; +3h;; + =0,
[5™] I shijshy - shy T 52 I[S@]=0sIV[Q?@]=0. (32)
(26)

It remains for the second equatitif S(*,0(?]=0. On us-

58®) 583 503 ing the relation(30) and linearity ofll, one arrives at
Ns®,0®1=248 5o BN t2a—gs
. ! ,, 0% s0® B ( ssP  oSP
50 o — N;; = — 2« .. ,
—hjj——=0, (27) 5¢ ' oohy 1482 8¢ ! ohy;
S (33
I 58@ ) H55<2> BHh 50 which has the solution
LS = oy 29 g B,
50 0@ =_ LS(Z)-FA (34)
+2aHB =5 +2h(R D= 17,47 ¢) 1+B% °
-0, (28) where the functional\ satisfies the equation
SA SA
0@1=24h 5°0@ o s0®  520®) 205 s =hy 5 (39)
IV[ ]=2 Gijkl 5h”5hk|+3 ij 5h|] + 5¢2 = 1]
(29 In addition, using the relatio84) andIV[Q(?]=0 and the

linearity of IV, one hadV[A]=0. So it is sufficient to find
In order to solve the above equations, we use a differenfe simultaneous solution of the relatiof85) and IV[A]
method with respect to the zeroth order. Our goal is to find=g_ |n finding the solution, we use the techniques2f
the quantum corrections on the Hamilton-Jacobi functional afaking the conformal transformation
second order, to the classical functior®{®. It must be
noted thatll1[S®®),0()]=0 is just the classical Einstein- fi; () =F [ p(x)1h;;(x),
Hamilton-Jacobi equation except for its third and fourth
terms. So, with a glance at the form of the third and fourthone can see that E¢35) requiresF to satisfy the relation
terms, one easily can sollél =0 as

(36)

dF __
5=

Therefore for finding S, it is sufficient to solve with the solutionF = const< exy — ¢/4e]. The most general
IV[Q]=0 to find Q? and use the above equation. On theform of A is

other hand, since for the classical limit thé-independent
terms of the continuity equation lead oS ?)]=0 and since
| is linear, we have

—4a (37)

S@-Bn@=53, (30)

A= j ExVIL(HRO+M($)T,6T'¢] (38
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where a tilde over any quantity represents that it is calculated

using thef;; metric. R is the Ricci scalar curvature of; ,
while L and M are some functions of the scalar field. The
above expression is the most general form to make whereC is a constant.
3-diffeomorphic invariant and contains terms with spatial For writing downS® andQ(?) it is neccesary to know
gradients of order two. Note that terms li&?¢ can be S%). From[2], we have
transformed tdV; V' ¢ by integration by part.

Now the equation$35) andIV[A]=0 can be solved for
L andM. The solution can be transformed back to the origi-
nal metrich;; using the inverse of the above conformal trans-
formation. The result is Thus we have

A=C f dxhet R 1v,¢V1¢], (39

SP=1 f d*xVhe’[RO-VigV'p]. (40

At ROV 4V )

evd
10(1+B?)

S=S<0>+3(2>+...:f d3xh

+BCe! i (RG)— évi¢vi¢)] c, (4D

B .
AB—B—(R(S)—Vi¢V'¢)

ex?
10(1+B?)

Q:Q@+Q@M.”:fd%ﬁ;

+CeMe(RB)— évi¢vi¢)] e (42

It is worth noting that the first two terms i§ which are  partly discussed in the framework of Bohmian quantum
scaled bye“? are of the same form as the classical solutiongravity[10]. In a forthcoming paper we shall apply the result
up to second order. In fact quantum effects are introducetb black holes.
via the third term and the renormalization of the factor 3/10 A point must be noted here. As we asserted previously,
in the second term to 3/10¢4B?). An important property of according to Bohm'’s theory, in the classical limit quantum
the solution is the factae*?'@ of the third term which differs potential and its gradient are small compared to classical
from the factor of the first two terms. The presence of thepotential and its gradient. This can be achieved both in the
third term leads to new couplings between the matter fieldzase where the norm of the wave function varies slowly and
and the metric in Bohmian equations of motion, leading tojy the case where it varied highly. This is because of the fact
highly quantic solutions. that quantum potential is proportional to the fraction of sec-
ond derivatives of the norm of the wave function and the
IV. CONCLUDING REMARKS norm itself (see, e.g.[7]). As a result, classical limit and

As we saw, the Bohmian equations of motion for quantundong wavelength limit(i.e., considering only a few terms in
gravity, i.e., the quantum Einstein-Hamilton-Jacobi equatiorfhe expansion with respect to spatial gradigmate not the
and continuity equation, can be solved in principle as arfame. So in Bohmian quantum gravity the comparison of the
expansion with respect to spatial gradients. We derived theharacteristic length of fluctuations with the theory’s charac-
solution up to the second order. As a result, since our soluteristic length(e.g., Hubble’s radiysdoes not lead us to
tion contains spatial gradients, it is useful for discussing in-anything about the fact that the limit is either classic or quan-
homogeneous space-times such as black holes, which atem.
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