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Perturbative solutions of Bohmian quantum gravity
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In this paper we have solved the Bohmian equations of quantum gravity, perturbatively. Solutions up to
second order are derived explicitly, but in principle the method can be used in any order. Some consequences
of the solution are discussed.@S0556-2821~99!01222-9#

PACS number~s!: 04.60.Ds, 03.65.Bz, 98.80.Hw
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I. INTRODUCTION

Recently@1–3#, a perturbative method for solving class
cal Einstein’s equations in its Hamilton-Jacobi form was p
sented. The method rests on expanding the Hamilton-Ja
generating functional in terms of the powers of spatial g
diants of the metric and matter fields, and then solving
equations order by order. This expansion is valid when
characteristic scale of spatial variation of physical quanti
is larger than the characteristic length of the theory, e.g.,
Hubble’s radius. In fact it can be shown that the solution c
be calculated at any order. The form of the Hamilton-Jac
generating functional in each order is chosen such that it
be 3-diffeomorphic invariant. This method is used and exa
ined for many physical cases. Salopeket al. @1# have solved
the Hamilton-Jacobi and the momentum constraint equat
in the presence of matter fields up to second order in sp
gradients. Parryet al. @2# have used a specific conform
transformation of 3-metric to simplify the Hamiltonian an
solve the problem in higher orders of spatial gradients. T
they have compared their results with exact solutions
some specific cases and obtained a recursion relation for
ferent orders and so they have presented the solution u
any order. In addition, similar calculations are made
Brans-Dicke theory.@3#

An essential question would be whether the method
be applied to quantum gravity realm. Unfortunately there
different approaches to quantum gravity, none of them co
pletely acceptable and self-consistent. These include
standard Wheeler-DeWitt~WDW! canonical approach@4#,
the Hawking path integral approach@5#, the Narlikar-
Padmanabhan quantization of conformal degree of freed
of the space-time metric@6#, the Bohmian approach to quan
tum gravity @7#, and the approach presented by authoret al.
as geometrization of quantum theory@8#. Among these ap-
proaches, Bohmian quantum gravity is of our concern h
because it highly relates to Hamilton-Jacobi theory. In fa
as we shall review in the next section, in Bohmian quant
gravity one encounters a modified Hamilton-Jacobi equat

We shall apply the above-mentioned perturbative met
for solving Bohmian quantum gravity equations. We shall
this up to the second order, but in principle the method
be applied to any order.
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II. BOHMIAN QUANTUM GRAVITY

Bohm’s theory is a causal version of quantum mechan
@9#. According to this theory, any particle is acompani
with an objectively real field (C) satisfying Schro¨dinger
equation. This field exerts a quantum force derivable from
quantum potential given by

Q52
\2

2m

¹2uCu
uCu

. ~1!

This theory is motivated from the fact that when one s
C5uCuexp@iS/\# in the Schro¨dinger equation, one arrive
at a continuity equation

]uCu2

]t
1¹W •S uCu2

¹W S
m

D 50, ~2!

and a modified Hamilton-Jacobi equation

]S
]t

1
u¹W Su2

2m
1V1Q50, ~3!

in which V represents the classical potential andQ, the quan-
tum potential, is defined as above. The main positive poin
Bohm’s theory, which uses only quantum potential, is tha
is able to explain all enigmatic aspects of quantum theo
These include presentation of a causal description for wa
function collapse during a measurement, description of
certainty relations, and also presentation of particle trajec
ries @9#. Particle trajectory can be obtained through t
modified Hamilton-Jacobi equation~3! and by using the
guidance relationpW 5¹W S, or using Newton’s law of motion
including the quantum potential. It is worth noting that th
trajectories explain many nonordinary behaviors in quant
mechanics. For example, particle trajectories in a two-
experiment can be calculated@7# and it can be seen how
quantum potential forces particles to move in such a way
make the interference pattern.

Bohm’s theory can be applied to any system. Applicati
of this theory to gravity leads to Bohmian quantum gravi
Its properties and positive points are expressed in the lit
ture @7,9#. Application of Bohm’s theory to quantum gravit
has several advantages. First of all, in this approach diffe
quantities such as the 3-space geometry, intrinsic and ex
sic curvatures of the space-like surfaces, and so on h
physical reality without any dependence upon the meas
©1999 The American Physical Society01-1
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FATIMAH SHOJAI PHYSICAL REVIEW D 60 124001
ment process. Second, the metric has a definite time ev
tion in this theory. Third, in this approach the wave functi
has two roles. One role is in generating the quantum po
tial and the other is in acting as the probabilistic interpre
tion. When one deals with a single system~as is the case fo
quantum cosmology! for which the probability is not defined
the first role of the wave function is important. Note that
the standard quantum theory only the second role is h
lighted, and thus the meaning of the wave function is qu
tionable in quantum gravity. Finally, the classical limit
b
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e
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well defined in Bohm’s theory. When both quantum potent
and its gradient are small compared to the classical pote
and its gradient, then we are in the classical limit. This
lows one, in specific cases, to have quantum effects at la
scales and classical limit in small scales.

Here we use Bohmian quantum gravity, not only beca
of the above-mentioned advantages, but also becaus
highly relates to the Hamilton-Jacobi equation. Before p
ceeding, we present the Bohmain equations for quan
gravity @7# which we shall refer to later. These equations a1

~setting\5c58pG51)
d

dhi j
S 2hqGi jkl

dS
dhkl

A 2D1
d

df S hq

Ah

dS
df

A 2D 50, ~4!

Gi jkl

dS
dhi j

dS
dhkl

1
1

2Ah
S dS
df D 2

2Ah~R (3)12L2QG!1 1
2 Ahhi j ] if] jf1 1

2 Ah~V1QM !50, ~5!

QG52
1

AhA S Gi jkl

d2A
dhi j dhkl

1h2q
dhqGi jkl

dhi j

dA
dhkl

D , ~6!

QM52
1

hA
d2A
df2

, ~7!

2¹ j

dA
dhi j

2hi j ] jf
dA
df

50, ~8!

2¹ j

dS
dhi j

2hi j ] jf
dS
df

50, ~9!
c-
an
me
o-
ve
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in which A is the norm of the wave function,S is its phase
times\ and is in fact the quantum Einstein-Hamilton-Jaco
function,q is an ordering parameter,hi j is the spatial metric
in Arnowitt-Deser-Misner ~ADM ! decomposition of the
space-time metric,Gi jkl is super metric on 3-space,f de-
notes the matter field, andQG andQM are gravity and matte
quantum potentials, respectively.

Equation ~4! is the continuity equation representing th
conservation law of probability in the super space, and
~5! is the quantum Einstein-Hamilton-Jacobi equation, wh
shows that the difference between quantum and class
worlds is only the presence of the quantum potential cons
ing of two terms, gravity and matter quantum potentia
Equations~8! and ~9! are 3-diffeomorphism invariance con
ditions forA andS. Time evolution of metric and the matte
field can be derived from the canonical relations

pkl5
dS

dhkl
5

Ah

2
~Kkl2hklK !, ~10!
i

.
h
al
t-
.

pf5
dS
df

5
Ah

N
ḟ2Ah

Ni

N
] if, ~11!

Ki j 5
1

2N
~¹ iNj1¹ jNi2ḣi j !, ~12!

in which N andNi are the lapse and shift functions, respe
tively, andKi j is the extrinsic curvature of the 3-space. It c
be seen that in Bohmian quantum gravity, there is no ti
problem. Time emerges naturally from the equations of m
tion. Bohmian trajectories can be obtained from the abo
equations. For example, the Bohmian trajectories
Robertson-Walker universe are derived by Horiguchi in@7#
and other references cited in@7#. Another example is Bohm-
ian trajectories for black holes. They are obtained in@10#. In
this reference it is shown that the quantum black hole geo

1They can be obtained by settingC5A exp@i S/\# in the WDW
equation and the 3-diffeomorphism invariance condition.
1-2
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PERTURBATIVE SOLUTIONS OF BOHMIAN QUANTUM GRAVITY PHYSICAL REVIEW D60 124001
etry is highly sensible to the ordering parameter. For so
specific ordering parameter, Bohmian quantum gravity p
sents a good framework for understanding Hawking rad
tion. Some other aspects of Bohmian quantum gravity can
found in @11#. For a complete review of the theory see@7#.

III. SOLVING THE EQUATIONS

It was noted in the previous section that the complete
of equations of quantum gravity are Eqs.~4!, ~5!, ~8!, and
~9!. The first is the continuity equation, while the second
the quantum Einstein-Hamilton-Jacobi equation. The th
and fourth equations guarantee thatA and S be
3-diffeomorphic invariants. A perturbative solution can
achieved via expansion ofS and A in terms of powers of
spatial gradients. In the long-wavelength approximation
few terms of the expansion are sufficient. Therefore o
should set

V5 (
n50

`

V (2n); A5eV, ~13!

S5 (
n50

`

S (2n). ~14!

Note that introducing the new functionalV will simplify the
equations. In each order, the two coupled equations, quan
Einstein-Hamilton-Jacobi equation and continuity equati
should be solved. The two other equations only show that
functionalsS (2n) andV (2n) must be 3-diffeomorphic invari-
ants. By considering special forms forS (2n) andV (2n), these
equations would be satisfied automatically.

A. Zeroth order solution

In this order, the continuity equation reads as

2S q1
3

2Dhi j

dS (0)

dhi j
14AhGi jkl

dV (0)

dhi j

dS (0)

dhkl

12AhGi jkl

d2S (0)

dhi j dhkl
12

dV (0)

df

dS (0)

df
1

d2S (0)

df2
50,

~15!

while the zeroth order quantum Einstein-Hamilton-Jac
equation is

2AhGi jkl

dS (0)

dhi j

dS (0)

dhkl
1S dS (0)

df D 2

22AhGi jkl

d2V (0)

dhi j dhkl

22AhGi jkl

dV (0)

dhi j

dV (0)

dhkl
1S q1

3

2Dhi j

dV (0)

dhi j
2

d2V (0)

df2

2S dV (0)

df D 2

50, ~16!
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in which for simplicity of calculations, we have assumed th
the scalar field has no self-interaction, i.e., we have
V(f)50.

In order forS 0 andV0 to be 3-diffeomorphic invariants
and thus satisfy Eqs.~8! and ~9! automatically, one should
set

S (0)5E d3xAhH~f!, ~17!

V (0)5E d3xAhK~f!, ~18!

in which H andK are functions of the scalar field and conta
no spatial derivatives. Sinced3xAh is 3-diffeomorphic in-
variant measure, the above expressions are
3-diffeomorphic invariant. By substituting these relations f
V0 and S 0 in Eqs. ~15! and ~16!, we have the following
equations forH andK:

d2H

df2
2

3

2
~q15!H12AhS dH

df

dK

df
2

3

4
KH D50 ~19!

d2K

df2
2

3

2
~q15!K2AhS S dH

df D 2

2S dK

df D 2

1
3

4
K22

3

4
H2D

50. ~20!

Setting both metric-dependent~terms containingAh) and
metric-independent terms equal to zero, we have four eq
tions with the simultaneous solution:

H5Aeaf; a56
A3

2
, ~21!

K5BH, ~22!

q52
9

2
, ~23!

in which A and B are constants of integration. It must b
noted here that when using this solution it is a simple task
show that quantum potential is zero at this order. So
solution at this order is in fact classical.

B. Second order solution

In the second order, the continuity and quantum Einste
Hamilton-Jacobi equations are, respectively,
1-3
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2S q1
3

2Dhi j

dS (2)

dhi j
14AhGi jkl

dV (0)

dhi j

dS (2)

dhkl
14AhGi jkl

dV (2)

dhi j

dS (0)

dhkl
12AhGi jkl

d2S (2)

dhi j dhkl
12

dV (0)

df

dS (2)

df

12
dV (2)

df

dS (0)

df
1

d2S (2)

df2
50, ~24!

2AhGi jkl

dS (0)

dhi j

dS (2)

dhkl
1

dS (0)

df

dS (2)

df
2AhGi jkl

d2V (2)

dhi j dhkl
22AhGi jkl

dV (0)

dhi j

dV (2)

dhkl
1

1

2
~q13!hi j

dV (2)

dhi j
2

1

2

d2V (2)

df2

2
dV (0)

df

dV (2)

df
2Ah~R (3)2 1

2 ¹ if¹ if!50. ~25!
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On using the zeroth order solution and again setting b
terms with and withoutAh equal to zero, one arrives at th
following four equations:

I @S (2)#[2AhGi jkl

d2S (2)

dhi j dhkl
13hi j

dS (2)

dhi j
1

d2S (2)

df2
50,

~26!

II @S (2),V (2)#[2aB
dS (2)

df
2Bhi j

dS (2)

dhi j
12a

dV (2)

df

2hi j

dV (2)

df
50, ~27!

III @S (2),V (2)#[Hhi j

dS (2)

dhi j
22aH

dS (2)

df
2BHhi j

dV (2)

dhi j

12aHB
dV (2)

df
12Ah~R (3)2 1

2 ¹ if¹ if!

50, ~28!

IV@V (2)#[2AhGi jkl

d2V (2)

dhi j dhkl
13hi j

dV (2)

dhi j
1

d2V (2)

df2
50.

~29!

In order to solve the above equations, we use a differ
method with respect to the zeroth order. Our goal is to fi
the quantum corrections on the Hamilton-Jacobi functiona
second order, to the classical functionalS c

(2) . It must be
noted thatIII @S (2),V (2)#50 is just the classical Einstein
Hamilton-Jacobi equation except for its third and fou
terms. So, with a glance at the form of the third and fou
terms, one easily can solveIII 50 as

S (2)2BV (2)5S c
(2) . ~30!

Therefore for finding S (2), it is sufficient to solve
IV@V (2)#50 to find V2 and use the above equation. On t
other hand, since for the classical limit theAh-independent
terms of the continuity equation lead toI @S c

(2)#50 and since
I is linear, we have
12400
th

nt
d
t

I @S (2)#5I @S c
(2)1BV (2)#5I @S c

(2)#1BI@V (2)#5BI@V (2)#

5BIV@V (2)# ~31!

so

I @S (2)#50⇔IV@V (2)#50. ~32!

It remains for the second equationII @S (2),V (2)#50. On us-
ing the relation~30! and linearity ofII , one arrives at

2a
dV (2)

df
2hi j

dV (2)

dhi j
5

B

11B2 S 22a
dS c

(2)

df
1hi j

dS c
(2)

dhi j
D ,

~33!

which has the solution

V (2)52
B

11B2
S c

(2)1L, ~34!

where the functionalL satisfies the equation

2a
dL

df
5hi j

dL

dhi j
. ~35!

In addition, using the relation~34! andIV@V (2)#50 and the
linearity of IV, one hasIV@L#50. So it is sufficient to find
the simultaneous solution of the relations~35! and IV@L#
50. In finding the solution, we use the techniques of@2#.
Making the conformal transformation

f i j ~x!5F22@f~x!#hi j ~x!, ~36!

one can see that Eq.~35! requiresF to satisfy the relation

24a
dF

df
5F ~37!

with the solutionF5const3exp@2f/4a#. The most genera
form of L is

L5E d3xAf @L~f!R̃(3)1M ~f!¹̃ if¹̃ if# ~38!
1-4
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where a tilde over any quantity represents that it is calcula
using thef i j metric.R̃(3) is the Ricci scalar curvature off i j ,
while L and M are some functions of the scalar field. Th
above expression is the most general form to makeL
3-diffeomorphic invariant and contains terms with spat
gradients of order two. Note that terms like¹̃2f can be
transformed to¹̃ if¹̃ if by integration by part.

Now the equations~35! and IV@L#50 can be solved for
L andM. The solution can be transformed back to the ori
nal metrichi j using the inverse of the above conformal tran
formation. The result is
ion
ce
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L5CE d3xAhef/4a@R (3)2 1
6 ¹ if¹ if#, ~39!

whereC is a constant.
For writing downS (2) and V (2) it is neccesary to know

S c
(2) . From @2#, we have

S c
(2)5 3

10 E d3xAheaf@R (3)2¹ if¹ if#. ~40!

Thus we have
S5S (0)1S (2)1•••5E d3xAhH eafFA1
3

10~11B2!
~R (3)2¹ if¹ if!G1BCef/4a~R (3)2 1

6 ¹ if¹ if!J •••, ~41!

V5V (0)1V (2)1•••5E d3xAhH eafFAB2
3B

10~11B2!
~R (3)2¹ if¹ if!G1Cef/4a~R (3)2 1

6 ¹ if¹ if!J •••. ~42!
m
lt

sly,
m
ical
the
nd
act
c-

he

the
ac-

an-
It is worth noting that the first two terms inS which are
scaled byeaf are of the same form as the classical solut
up to second order. In fact quantum effects are introdu
via the third term and the renormalization of the factor 3/
in the second term to 3/10(11B2). An important property of
the solution is the factore4f/a of the third term which differs
from the factor of the first two terms. The presence of
third term leads to new couplings between the matter fi
and the metric in Bohmian equations of motion, leading
highly quantic solutions.

IV. CONCLUDING REMARKS

As we saw, the Bohmian equations of motion for quant
gravity, i.e., the quantum Einstein-Hamilton-Jacobi equat
and continuity equation, can be solved in principle as
expansion with respect to spatial gradients. We derived
solution up to the second order. As a result, since our s
tion contains spatial gradients, it is useful for discussing
homogeneous space-times such as black holes, which
d

e
d
o

n
n
e

u-
-
are

partly discussed in the framework of Bohmian quantu
gravity @10#. In a forthcoming paper we shall apply the resu
to black holes.

A point must be noted here. As we asserted previou
according to Bohm’s theory, in the classical limit quantu
potential and its gradient are small compared to class
potential and its gradient. This can be achieved both in
case where the norm of the wave function varies slowly a
in the case where it varied highly. This is because of the f
that quantum potential is proportional to the fraction of se
ond derivatives of the norm of the wave function and t
norm itself ~see, e.g.,@7#!. As a result, classical limit and
long wavelength limit~i.e., considering only a few terms in
the expansion with respect to spatial gradients! are not the
same. So in Bohmian quantum gravity the comparison of
characteristic length of fluctuations with the theory’s char
teristic length ~e.g., Hubble’s radius! does not lead us to
anything about the fact that the limit is either classic or qu
tum.
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