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Production and detection of relic gravitons in quintessential inflationary models
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A large class of quintessential inflationary models, recently proposed by Peebles and Vilenkin, leads to
post-inflationary phases whose effective equation of state is stiffer than radiation. The expected gravitational
wave logarithmic energy spectra are tilted towards high frequencies and characterized by two parameters: the
inflationary curvature scale at which the transition to the stiff phase occurs and the nunenadnformally
coupled scalar degrees of freedom whose decay into fermions triggers the onset of a gravitational reheating of
the Universe. Depending upon the parameters of the model and upon the different inflationary dypaamics
to the onset of the stiff evolutignthe relic gravitons energy density can be much more sizable than in standard
inflationary models, for frequencies larger than 1 Hz. We estimate the required sensitivity for detection of the
predicted spectral amplitude and show that the allowed region of our parameter space leads to a signal smaller
(by one 1.5 orders of magnitug¢han the advanced laser interferometric gravitational wave observatory
sensitivity at a frequency of 0.1 kHz. The maximal signal, in our context, is expected in the GHz region where
the energy density of relic gravitons in critical unit®., h%QGW) is of the order of 108, roughly eight orders
of magnitude larger than in ordinary inflationary models. Smaller detetmtsnecessarily interferometérs
can be relevant for detection purposes in the GHz frequency window. We suggest or speculate that future
measurements through microwave cavities can offer interesting perspef80856-282(199)02722-9

PACS numbse(s): 98.80.Cq, 04.30.Db, 98.70.Vc

|. FORMULATION OF THE PROBLEM tures higher than 100 GeV. The causality principle applied to
the Cosmic MicrowavéCMB) photons seems to demand a
The idea that our present Universe could be populated bgnoment where different patches of the Universe emitting a
a sea of stochastically distributed gravitational wavedhighly isotropic CMB were brought in causal contact. This is
(GW’s) is both experimentally appealingnd theoretically ~ one of the original motivations of the inflationary paradigm
plausible It is appealingsince it would offer a natural cos- [9]-
mological source for the GW detectors which will come in It is not unreasonable to think that in its early stages the
operation during the next decade, such as the Laser Interferlniverse passed through different rates of expansion deviat-
metric Gravitational Wave ObservatoflylGO) [1], VIRGO  ing (more or less dramaticallfrom the radiation-dominated
[2], Laser Inteferometer Space AntenfiadSA) [3], and  €volution. It has been correctly pointed out through the years
GEO-600[4]. It is alsoplausible since nearly all the models and in different framework$10] that every change in the
trying to describe the first moments of the life of the Uni- early history of the Hubble parameter leads, inevitably, to the
verse do predict the formation of stochastic gravitationaformation of a stochastic gravitational wave spectrum whose
wave backgroundgs,6]. frequency behavior can be used in order to reconstruct the
Our knowledge of early the Universe is only indirect. The thermodynamical history of the early Universe. The question
success of big-bang nuc|eosynthe(§§N) offers an exp|a- which naturally arises concerns the Strength of the produced
nation of the existence of light elements whose abundancegyavitational wave background.
are of the same order in different and distant galaxies. BBN If an inflationary phase is suddenly followed by a
hints that when the cosmic plasma was as hot as 0.1 MeVadiation-dominated phase preceding the matter-dominated
the Universe was probably dominated by radiafigh Prior ~ €poch, the amplitude of the produced gravitons background
to this moment direct cosmological observation are lackingcan be computed and the result is illustrated in Fig. 1, where
but one can be reasonably confident that the laws of physic&e report the logarithmic energy spectrum of relic gravitons
probed in particle accelerators still hold. Almost ten years of d
the CERNe"e™ collider LEP tested the minimal standard (v, 79)= 1 doow (1.1)
model (MSM) of particle interactions to the precision of the ’ pcdinv
one per thousand for center-of-mass energies of the order of , ,
the Z-boson resonance. The cosmological implications of théit the presentconforma) time 7, as a function of the fre-
validity of the MSM are quite important especially for what AUENCy? (paw is the energy density of the produced gravi-
concerns the problem of the baryon asymmetry of the Uni{OnS andp is the critical energy density
verse and of the electroweak phase transifgjnIn spite of Since the energy spectrum ranges over several orders of
the success of the MSM we have neither direct nor indirecf@gnitude it is useful to plot energy density per logarithmic

hints concerning the evolution of the Universe for tempera-

INotice that in this paper we will denote with In the Neperian
*Electronic address: giovan@cosmos?2.phy.tufts.edu logarithm and with log the logarithm in ten basis.
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FIG. 1. We report the graviton spectrum computed in the case of FIG. 2. We illustrate the graviton spectrum produced by a pure
a pure de Sitter phase evolving towards tfFesent matter- de Sitter phase evolving towards a stiff phase. The hard branch
dominated phase through an intermediate radiation-dominated sta§@esponds to modes leaving the horizon during the de Sitter epoch
of expansion. The spectrum has a soft branch™{itHz<w and re-entering during the stiff phase. The soft and the semihard
<107% Hz) and a hard branch (18° Hz<»<10° Hz). In the branch are made of gravitons re-entered, respectively, during the
two black boxes we spot the COBE and the millisecond pulsarhatter and during the radiation-dominated phase. As in the previous
timing bound. Only for illustration purposes we plotted the Spec_figure we report the various constraints on the differential spectrum.

trum for the largest amplitude consistent with E).2). '(Ij'he frequency at which the spike starts developing is model depen-
ent.

interval of frequency. The spectrum consists of two ) o o i
branches, asoft branch ranging betweeny,=1.1 10 *n, straints ardlifferential since they limit, locally, the logarith-
Hz (corresponding to the present horizoand vge—1.65 mic derivative of the gravitons energy density. There exists
XloflG(Qohé)lIZ Hz (where Q, is the present fraction of also anintegral bound coming from standard BBN analysis

critical density in matter and 0s5ho<1 is the indetermina- |+7,18 and constraining the integrated graviton energy spec-

tion in the experimental value of the Hubble constafor UM

V> 1ye, We have instead thigard branch consisting of high- ,

frequency gravitons mainly produced thanks to the transition hgf ”‘aXQGW(V' 70)d In ¥=0.2x1075, (1.4
from the inflationary regime to radiation. In the soft branch vn

Qow(v,70)~v 2. In the hard brancigy(v, 7,) is con-
stant in frequencyor almost constant in the quasi—de Sitter wherev,,, corresponds to thémodel dependenultraviolet
case[see Sec. V)). The soft branch was computed for the cutoff of the spectrum and, is the frequency corresponding
first time in[11] (see alsd12]). The hard branch was com- to the horizon scale at nucleosynthesis.should be noted,
puted originally in[13] (see alsd 14]). in fact, that modes re-entering after the completion of nu-
The Cosmic Microwave Background Exploré€EOBE)  cleosynthesis will not increase the rate of the Universe ex-
observations of the fir{80) multipole moments of the tem- pansion at earlier epochs. From Fig. 1 we see that also the
perature fluctuations in the microwave sky impy5] that ~ global bound of Eq(1.4) is satisfied and the typical ampli-
the gravitational wave contribution to the Sachs-Wolfe inte-tude of the logarithmic energy spectrum in critical units for
gral cannot be larger than tiimeasuredamount of anisot- frequenciesy;~100 Hz (and largey cannot exceed 10
ropy directly detected. The soft branch of the spectrum isThis amplitude has to be compared with the LIGO sensitivity

then constrained and the bound reads to a flatQgw( v, , 7o) which could beat mostof the order of
, L h2Q ew( v , 170) =5% 10~ 1* after four months of observation
Qewl(v,70)hg=6.9X10" ", (120 with 90% confidencesee third reference if5]). Suppose

that the hard branch of the spectrum, reported in Fig. 1, can
be split into two further branches, a truhard branchwith
growing slope and an intermediatemihardbranch. The
situation we are describing is indeed reproduced in Fig. 2
Q 10)=10"8, 1.3 where the semihard branch now corresponds to the flat pla-
owl(¥:770) @3 teau and the hard branch to the spike associated with a

for v~10~8 Hz corresponding, roughly, to the inverse of the
observation time during which the various millisecond pul-

sars have been monitor¢i6]. . Notice that the BBN constraint of EG1.4) has been derived in

The two constraints of Eq$1.2) and(1.3) are reported in  the context of the simplest BBN model, namely, assuming that no
Fig. 1, at the two relevant frequencies, with black boxes. Innhomogeneities and/or matter antimatter domains are present at the
Fig. 1 we have chosen to normalize the logarithmic energynset of nucleosynthesis. In the presence of matter-antimatter do-
spectrum to the largest possible amplitude consistent witiains for scales comparable with the neutron diffusion scale
the COBE bound. The COBE and millisecond pulsar con{19,20, this bound might be slightly relaxed.

for v~wvy. Moreover, the very small size of the fractional
timing error in the arrivals of the millisecond plusar’s pulses
imply that also the hard branch is bounded according to
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9 ' ' L i provided a bound o) g,,=<500 which is clearly too high to
LGOVRGe @ o bars (1) be of cosmological interest. Nevertheless, by cross-
-6 correlating the data obtained from bar detectdEX-

T PLORER, NAUTILUS, AURIGA) it is not unreasonable to

expect a sensitivity as large &gy~10 4 in the KHz re-
gion. Indeed by analyzing the 1991-1994 data of the EX-
PLORER antenna, the Rome group of Pizzella got a bound
of the orderhSQGWs3OO which is likely to become more
and more stringent as time goes by. Notice finally that the
cross-correlation of two resonant spherical detec{@3
2 4 6 might be able to achieve sensitivities as low 85
log(v /Hz) ~10 7 always in the KHz range.
Spikes in the stochastic graviton background are not for-
FIG. 3. We draw the hard branch of the relic graviton energypidden by observations and are also theoretically plausible
density reported in Fig. 2 with particular attention to frequency\yhenever a stiff phase follows a radiation-dominated phase.
range wh(_are the planned grayitational wave de_tectors(carwill In this paper, by complementing and extending the analysis
be) Qperatlng. The dashed region mr_:lrks the portion of the spectrurg [21] and of[22], we want to study more accurately the
of Fig. 2 which isabovethe one of Fig. 1. spectral properties of the relic gravitons with special atten-
tion to the structure of the hard peak. We will also be inter-
broader peak. This class of spectra can be obtained in thested in comparing the predictions of the models with the
context of inflationary modelgrovided the inflationary foreseen capabilities of the interferometric and resonant de-
phase is followed by a phase whose effective equation ofectors.
state is stiffer than radiation. A model of this type has been The plan of our paper is the following. In Sec. Il we will
recently investigated in Ref21] by Peebles and Vilenkin. introduce the basic aspects of the quintessential inflationary
If an inflationary phase is followed by a stiff phase then,models. In Sec. 11l we will compute the relic graviton energy
as it was shown ifi22,23, one can indeed get a three branchspectra. In Sec. IV we will discuss the power spectra and the
spectrum including the usual soft and flat branches buassociated spectral densities. In Sec. V we will compare the
supplemented by a truly hard spike. In general the slope ofbtained spectra with the sensitivities of the planned inter-
the logarithmic energy spectrum is typically “blue” since it ferometric and noninterferometric detectors. In Sec. VI we
mildly increases with the frequency. More specifically thewill analyze the impact of the slow-rolling corrections on the
slope depends upon the stiff model and it can be shi@@h  structure of the hard peak. Section VII contains our conclud-
that the maximal slopgcorresponding to a linear increase in ing remarks. For sake of completeness we made the choice
Qew(v,7m0)] can be achieved in the case where the soundf reporting in the Appendix some relevant derivations of the
velocity of the effective matter sources exactly equals thdormulas used in obtaining our results.
speed of light[24,25. In Fig. 2 we illustrate the case of
maximal slope in the hard branch corresponding to

LISA Adv. LIGO/VIRGO
-

-10

-12

log h Q.

-14

Qowl(v, 70) ~vIn? . Il. QUINTESSENTIAL INFLATIONARY MODELS
Given the flatness of the spectra arising in the case of . .
ordinary inflationary modelésee Fig. 1 the most constrain- Recently Peebles and Vilenkii21] presented a model

ing bound comes from large scale observations. In our casénere the idea of a post-inflationary phase stiffer than radia-
the most constraining bounds for the height of the spike and©n IS dynamically realized. One of the motivations of the
for the whole spectrum come from short distance physic§cena”° is related to a recent set of observanons which seem
and, in particular, from Eq(1.4). In order to visually moti-  t0 Suggest tha), (the present density parameter in baryonic
vate the need for an accurate computation of the gravitoR!US dark mattershould be significantly smaller than one
spectra in the case where an inflationary phase is followed b§nd probably of the order of 0.3. If the Universe is flat, the
a stiff phase, let us focus our attention on the frequenc;?elat'on between luminosity and the redshift observed for
range where the gravitational wave detectors(arewill be) ~ YPe-1a supernova¢29] seem to suggest that the missing
operating. energy should be stored in a fluid with negative pressure.
From Fig. 3 we see that around the LIGD and VIRGO The missing energy stored in this fluid should be of the order
. 747 . . .
[2] frequency the hard branch of the spectrum has a large?f 10 Ge\/“,_ too small if compared with the cosmologi-
amplitude if compared to the case of the spectral amplitud&@l constant arising from electroweak spontaneous symmetry
obtained when a pure de Sitter phase evolves suddenly t&€ereakingwhich would contribute with (250 GeV). The
wards a radiation-dominated epoch. idea is that this effective cosmological constant could come
In Fig. 3 we also illustratéwith thick black boxes the from a scalar field$ (the quintessencg30] field) whose
expected sensitivities for interferometric detectrk50 or
VIRGO) and for their advanced versions. In the same figure
we also. report the expected sensitivities coming from the SNAUTILUS (located in Frascati, near Rome, Itand AURIGA
cryogenic, resonant-mass detector EXPLORER, while oper2g] (located in Legnaro near Padova, Itaéire both resonant mass
ating in CERN at a frequency of 923 H26]. EXPLORER  detectors.
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potential is unbounded from beloW1]. According to  When an inflationary phase is followed by a $tifhase a lot
Peebles and Vilenking could be identified with the inflaton of hard gravitons will be generated. At the same time the
and, as a result of this identification, the effective potential ofenergy density of the background sources will decap &%

¢ will inflate for ¢<0 and it will be unbounded from below whereas the energy density of the short-wavelength gravitons
for $=0 acting, today, as an effectitéme-dependentco-  will decay asa™*. The Universe will soon be dominated by
mological term. A possible potential leading to the men-hard gravitons whose nonthermal spectr{@2] would be
tionad dynamics could be unacceptable since gravitons cannot thermalize below the
Planck scale. A solution to this potential difficulty came
from Ford[32] who noted that in the limit of nearly confor-

_ 4 4
V(g)=M(¢"+M7), for ¢=0, andV(4) mal coupling also scalar degrees of freeddgpossibly

AM8 coupled to fermionsare amplified. IfNg minimally coupled
=0 for =0, (2.1 scalar field are present they can reheat the Universe with a
¢+t M thermal distribution since their energy spectra, amplified be-

cause of the transition from the inflationary to the stiff phase,

where, if we want the present energy densitydinto be ~ can thermalize thanks to nongravitatiortieé., gaugg inter-
comparable with(but less thehthe total (present energy actions which get to local thermal equilibrium well below the
density, we have to requiel ~10° GeV. The scenario we P_Ianck energy scale. It can b_e also shown that the same
are describing can be implemented with any other inflationdiscussion can be carried on in the case where the scalar
ary potential(for ¢<0) and the example of a chaotic poten- degrees of freedom are simply nonconformally coupBs. -
tial is only illustrative. Our considerations will be largely ~ Suppose indeed that during the inflationary phase various
independent on the specific potential used and we will comscalar, tensor, and vector degrees of freedom were present.
ment, when needed, about possible differences induced Hyniess one adopts some rather contrived points of view we
the specific type of potential. have to accept that, in Einsteinian theories p_f gravity, _the
Let us consider the evolution equations of an inflationaryonly massless degrees of freedom to be amplified by a direct

Universe driven by a single fielg in a conformally flat ~coupling to the background geometry are tensor fluctuations
metric of the metric and nonconformally coupled scalar fields, since

the evolutions equations of chiral fermions, graviti3$]

. and gauge fieldg36] are invariant under a Weyl rescaling of
ds’=a’(n)(dp’—dx?). (2.2 the metric tensor in a conformally flat background geometry
as the one specified in EQ.2). Of course, if the theory is
not of the Einstein-Hilbert type this statement might be dif-
ferent.

The evolution equation of a nonconformally coupled sca-
lar field in a conformally flat Friedmann-Robertson-Walker

Using the conformal timey the coupled system describing
the evolution of the scale factor and éfis

12
M§H2=(¢T+a2V(¢)), (FRW) background reads
'+ 2HY — 6 H +H?]—-V2y=0. (2.5
2000 [ 412_ A2 By defining the corresponding proper amplituge ay, we
M7t [¢7—aV(4)]. get that the previous equation can be written, in Fourier
space, as
oV
¢"+2H' +a’ = =0, 2.3 a’
¢ XAV =0, V(n=(1-66—, (28

_ 71_ . . . .
wherelp=Mp "= y87G/3. Since the scalar field potential is \yhere we see that the case of exact conformal coupling is
unbounded from below, after a phase of slow rolling theyecoyered for— 1/6 whereas the case of minimal coupling
inflaton evolves towards a phase where the kinetic energy qf.. s foré—0. A lot of work has been done in the past in

the inflaton dominates. For 'instance, one can bear in mi”@rder to compute the energy density of the quanta of the field
the form of V(¢) reported in Eq.(2.1). The background

enters then a stiff phase where the energy density of the—

inflaton p,, and the scale factor evolve as
“4According to the terminology of Ref22] we namestiff a phase

whose effective speed of sounq is larger than Hqrt3. In the

a\® 7 context of this paper we will focus our attention on the cage
pPy= Hng(_l) ,aln)~ A\ /_, where, =1 namely the case where the speed of sound equals the speed of
a 7 light. If cs=1 the equation of state of the effective sources driving
1 the geometry will bep=p. If 1/\3<c.<1 the considerations of
H,= ~ \/XM b. (2.4 this paper remain vqlid but the typi.cal spectral slopes obtainable in
aim the casecg<1 can slightly change in a computable w#2].
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i, excited as a result of the background geometry evolutiofiormal coupling(i.e., |é—1/6/<1) and subsequently gener-
in the early stages of the life of the Univerg®/]. One can alized to the case of genericin [34]:
try to do the calculation either exact[put only for rather

specific forms of the effective potential of the Schroedinger- Ns 4 31 4

like equation (2.6)], or approximately by identifying|& P 77):;1 Py (1) ~RH; al’ where R~RiN;.

—1/6| as the small parameter in the perturbative expansion. (2.12

In this limit one can shoW32,37] that the energy density of

the created quanta can be expressed as R; is the contribution of each massless scalar degree of free-

dom to the energy density of the amplified fluctuations and it
1 % is of the order of 102. The appearance ¢, in the final
py(m)= TJ |B(K)[?k3dk, with B(k) expression of the energy of the created quanta can be simply
2marjo understood since the typical spectra obtained in the transition
i [+e from a de Sitter phase to a stiff phase are increasing in fre-
= 2k e 2V (n)dy. (2.7 quency[22] and, therefore, the maximal contribution to the
o energy density will come from the ultraviolet branch of the
We noticezthat in most of the examples we are interested iﬁpﬁ;ugéauon of a massless quanta of the fiefdsiggers
::/ér:?gi;e? thef%;g;wihc;.eFor instance, in Eq2.6) we can an interesting possibility of gravitational reheating. Sipge
decays more slowly thap,, we have that there will be a
" momentz, where the two energy densities will be compa-
—=ql(7*+73). (2.8)  rable. In the context of the present model this moment de-
a fines the onset of the radiation-dominated phase. We can
compute this moment by requiring that,(7,)~p4( 7).

Then we will have that the effective potential appearing INrhe result is that

the Schroedinger-like equatid@.6) is simply given by
a;
a

H
q ~JR M—l~\/R)\=1O‘7R, 2.13
P
S

7+ 03

V(n)=(1-6¢) (2.9

where we used the fact that in order to be compatible with

Using this last equation and performing the contour integrathe COBE observatiofA =H,/Mp~10"7 [38]. In view of
tion (through the Jordan lemmappearing in the definition our application to GW it is interesting to compute the typical

of B(k) [see Eq.2.7)] we will have that (presenk frequency at which the transition to radiation oc-
curs. By red shifting the curvature scale gt [i.e. H,
) q?m? ) =H(7,)=H(a,;/a,)?] from 7, up to now we obtain
|B(K)[?=———(1-6&)2. (2.10
4k* a3

3 A Jdec 13
v,(79)=3.58 Ra —| mHz, (2.19
. — 14
Consequently we will have 10 Oth

q2(1—6£)% (= (1-6£)2 HA Wheregth is the number of spin degrees of freedom qont_rib-
Pw:—f ke 4kmgg=-—_—>2 "1 uting to the thermal entropy after matter thermalization.
8a*n? Jo 128 a4 Amusingly enough this frequency is of the same order of the
) 4 typical frequency of operation of LISA. It is also interesting
:(1_65) 4l & (2.11) to compute the present value of the frequengyAt the end
128 " tal’ ' of inflation the maximal amplified frequency is simph,

so in order to get the maximal amplified frequency today we
whereH; ~/q/ 7, andH, =", /a, is the Hubble parameter have to redshifti, up to the present time. Thus we will have
in cosmic time. Suppose now that during the inflationarythat
phase there arBg (minimally coupled and masslgsscalar
degrees of freedony, . Because of the minimal coupling to
the geometry these scalar degrees of freedom will clearly be va(70)=H1VRA
excited since their evolution equationnst invariant under
conformal rescaling of the metric tensor. The producedvhere we simply used the adiabatic evolution. Notice that
quanta associated with eag¢h can be computed by specify- ggecis the effective number of relativistic degrees of freedom
ing (for each field modgthe initial vacuum state deep in the at the decoupling epochl4—=0.26 eV is the decoupling
de Sitter epoch and by ensuring a sufficiently smooth transitemperature andy.c=1/1100 is the redshift between decou-
tion between the de Sitter and the stiff phase. We will perpling and the present timeg. In Eqg. (2.15 T, is the tem-
form a similar calculation for the case of GW in the next perature at the beginning of the radiation-dominated epoch.
section. Here we only report the main result which was origi-T, can be precisely determined given E.13 with the
nally obtained if 32] (see alsd33]) in the case of quasicon- result that

Tdec gdec) 13
— | Zgecr (2.15
T O dec

r
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Hy\2 aa aa where 7 and 74 are, respectively, the present time and the
T=lyz) M p=10°N" GeV. (2169 decoupling time, whereag, and 7, have been defined in the
P previous section.

If we do not fine-tuneH; to be much smaller than 16 in The graviton field operators can be decomposed as

Planck units and if we take into account thég has to be 1 o o
typically large in order to be compatible with standard BBN w(X, )= —3/2f d3k[ w(k, 7)e* *+ uf(k, 7)e~ %],
(see also Sec. lllwe have to conclude that, is typically a (2m)

bit larger than 1 TeV. With this information we have that the 3.2

final expression ob is ~ IR
P 1(770) where i (k, 7) = (K, n)a(k). This decomposition holds for

113 each polarization. In order to compute the energy density of
v 170):358R1’4( giec) GHz. (2.17  the graviton background we have to solve the evolution of

Oth the mode function
One could wonder at this point how quickly the thermaliza- W+ K- a_” $=0 (3.3
tion occurs. Indeed, the thermalization of the created quanta a ' '

of the fields¢; occurs quite rapidly, and its specific time is i ,

fixed by the moment at which the interaction rate becomed €ach of the four temporal regions defined by E81).
comparable with the Hubble expansion rate during the stiffNOtice thataz”/.a has a bell-like shape and it goes asymptoti-
phase. The typical energy of the created quanta is of th€@lly @ #  in each phase of the background evolution.
order ofe~H,(a;/a). The particle density is of the order of Thus.z/_; W|I_I oscillate for.kn>_>1' _but it will be parametrically
n~Re3. Assuming that the created quanta interact througi@Mplified in the opposite limiti.e., ky<1). At kn~1 the
the exchange of gauge bosons, then the typical interactiopiven mode will hit the potential barrier represented by
cross section will be of the order of~ a?/ €2. Thus, impos-  |@"/a|. The solution of Eq(3.3) in the background of Eg.
ing that at thermalization(7,)o(7,)~H(7,), we get that (3-Dis
a,/a;~a R Y2 with a~10"1-10"2. ) P HHO
¥i(K, ) N XHY(X),  n<—mna,

Ill. GRAVITONS ENERGY SPECTRA

: , . : 1
We can characterize a generic graviton background in K n)= —Ws*A. (KIHA(v)+sA (KIHD
terms of three relatedand equally importantphysical ob- vs(k.m) \/ﬂ\/;[ +(IOHgT(Y) (H"].

servables. We can compute ttpgesenk spectral energy den-

sity in critical unitsQgw(v, 70), but, for experimental appli- —m<n<7,
cations, two other quantities can be defined, namely the

power spectrunfwhich will be denoted withs,(v, )] and

the spectral density v, 70). Qaw(v, 7o) and sy (v, 7,) are ek m)= E
dimensionless whereas the spectral density is measured in

[B. (ke *+B_(k)€”], 7, <7< 7gec

seconds. In Appendix A we give the precise mathematical 1
definitions of these observables. (K, 1) = —\/W[q* c. (KH®(w)
The continuity of the scale factors and of their first de- \/ﬂ a
rivatives implies that the evolution of our model can be ex-
pressed as +C|C,(|()H’(ul)(W)], 77dec< 77< 70> (34)
where

a( ): |: - _:| I =- y
7 Y g n p= \/Ee—i(ﬂ—/Z)Ve—i(w/A) s= \/Eei(ﬂrlll)
2 ’ 2 ’
2n+3n
a(n=\——— —m<n=n, . _
m q= _el(‘IT/Z),lLel(ﬂT/4)
2 1

(3.5
3yt _ guarantee that the large argument limit of the Hankel func-
A(n)=F——es'  NdecS1<7"r, ; (1,2) ; lv th ired by th _
V11(279,+37,) tions H},;) is exactly the one required by the quantum
mechanical normalizatiohThe arguments of/ are, respec-

tively,
(7+ Dgect 671+ 27,)? y

an(n)= ,
" 2(27gect 27+ 67\ (27,+ 377)

SNotice that we kept the Hankel indicesand x generic. In the
70 1< Ndecs (3.1)  case of a pure de Sitter phase we would haves.
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3 relic graviton background is only approximately constant in
x=kn, y=k| nt5m]|, z=kp, the radiation-dominated phase.
The local (differentia) bounds on the energy spectrum
W=K(7+ 7gect 671+ 27,), (3.6) can be easily satisfied. Indeed by takidg/Mp=<10"7 the

spectrum satisfies the COBE bound of Ef2) and also the
and the six mixing coefficientsA . (k), B. (k), c. (k)] can  Pulsar bound of Eq.(;.3). The indirect nucleosynthegis
be fixed by the six conditions obtained matchingndy’ in ~ bound applies to the integrated spectrum and since in our
n=—1m1, 7=7, and 7= 54e.. The results of this calcula- case the spectral energy density increases sharply in the hard
tion are reported in Appendix C. For a generic amplificationbranch we have to conclude that the height of the peak can-
coefficient B_(w) the spectral energy density in the relic Not be too large. In order to prevent the Universe from ex-

graviton background is given by E¢A13) panding too fast at nucleosynthesis we have to demand
dpew ©"— y 2 k 7
—_— = = —_—= Vmax p (t )
dne ,2"@): N@=lf(@)f w=z=2m, [™ain wﬂew<w,nn><4—3<Ny—3)[p’(—t“) .
vn c\tn
3.7 (3.12)

since, as it is well known and discussed in Appendix A, the

square modulus of the mixing coefficient can be interpretedince the maximal number of massless neutrinos permitted
as the mean number of gravitons at a given frequency. Nain the context of the homogeneous and isotropic BBN sce-
tice thatw is the physical wave number. The relic graviton nario is bounded to b, <3.4, we have that in our context
energy spectrum(in critical unit9 in each of the three the nucleosynthesis bound becomes

branches is simply obtained by insertidg () [i.e., Eq.

(C2], B_(w) [i.e., Eq.(C7)], andc_(w) [i.e., Eq.(C10)]

13
into Eqg. (A13). The final result can be expressed as i(&) <0.07 (3.12
Ns Oth '
w 2 w
QGW(wvnO):Q‘y( 7]0)8)\ w_r)ln (w_l>, o<w<wg,

where the factor of 3 counts the two polarizations of the
” ° gravitons but also the quanta associated with the infl&ton.
Qowl(w,170)=Q( 770)28)\ |n2<_f>, Wgec< 0< W, , An increase inNg not only decreases the height of the
w1 peak, but it can also make the peak structuaerower. This
) happens simply because Increasing N, »,<N* grows
T | @dec wr and v,=N_ Y gets pushed towards more infrared values.
Qo @, 70)=Q (70)==eX |n2(—), 1d vy oeNs - Q€IS p e . > Ve
owl @ 70) A 770)168 ( ) ) w1 Given the limited range of variation d? this effect is quite
mild. We illustrate the variation dR on the energy spectrum

W< W< Wgec, (3.9 in Fig. 4. A decrease in the inflationary curvature scale at the
. end of inflationdoes notaffect the peak since the maximal
with amplified frequency does not depend tdp/Mp but it only
_ . depends orR.
vdec(;0)=1.69<10-16x[Q0(70)h02]1/2 Hz and In quintessential inflationary models the energy density of
vo( 76)=1.1x 10" 8h,Hz, (3.9 relic gravitons can be much larger, at high frequencies, than

in the case of ordinary inflationary models where the energy

Notice that appreciated by looking at the graviton spectra of the ordinary
inflationary case which are computed in Appendix B. In the
Ugec V3 81 quintessential case the location of the peak is rather surpris-
e= 2Ri($) , = 323 ing. In fact it depends$very weakly, as we sajdbn the num-

ber of minimally coupled scalar fields biitdoes not depend
upon the final curvature scale at the end of inflatidihus
p(m0) Qo To PP the peak is firmly localized around 100 GHz and it cannot
~od 7o) 30 H2M2 =2.6X10"ho 7, move one order of magnitude. This behavior

(3.10

where go=2 and To=2.73 K. Q,(7,) is the fraction of  6rhe number of relativistic degrees of freedom after matter ther-
critical energy density in the form of radiation at the presentmnajization is given, in the MSM byg,,=106.75, whereag,
observation time. Notice that the dependence upon the num-10.75. Equation3.12 implies that the number ofminimally

ber of relativistic degrees of freedom occurs since, unlikecoupled scalar degrees of freedom will have to exceed 20 as it can
gravitons, matter thermalizes and then the ratio between theccur, for instance, in the minimal supersymmetric standard model
critical energy density and the energy density stored in thg21].

Qy( 7]0)
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FIG. 4. In the left plot we report the energy spectrum as a function of the physical wave number for a fixed walug-efL0~ ") but
for different values oR. In particular we show the cas&-= 10 (dot-dashed ling the caseR= 1 (full thick line), and the cas&= 0.6 (full
thin line, almost invisible We see that byncreasing Rthe height of the peak gets smaller and also its width shrinks. In the right plot we
report the graviton energy spectrum for a fixed valu&divhich we take of order oneut for different values ok and, more specifically,
=101 (full thick line), A =10"15 (full thin line), =106 (dot-dashed line We took) ;= 0.3, gge= 3.36 andg,,= 106.75 as a fiducial
set of parameters. Notice that in spite of the fact faty(w, 7o) depends on the specific value lof which appears, in our notations, in
Q. (w,7), we choose to ploh3Qgw(®, 70), Which does not depend updm,. In this waythe amplitudeof the energy spectrum is
independent o, and the only quantities depending bp are wy, and wgec. In this plot we tookhy=0.6.

has to be contrasted in ordinary inflationary models where 3

: : - —34, [T
the maximal frequency of the spectrum is determined by op(w,mg)=BR K\/QV( 70)
10'Y\H,/Mp Hz. So by loweringH,, then, the maximal

frequency decreases. In the case we are discussingnly o\ ! o
appears in the expression of . Therefore, by decreasing X w—) |”(w—), WgecS O< O,
H,/Mp (see Fig. 4 right ploty,; does not move bui, gets ' !
comparatively smaller reducing the frequency range of the m6enm  [Q (70)
semihard branch. Sh(w,710)=6.5x10"3 0

8 Qo(70)

2
IV. GRAVITONS POWER SPECTRA AND ASSOCIATED ><( wd“) |n(ﬁ>, o< < W e, (4.2
SPECTRAL DENSITIES w @1

The relic graviton spectrum can be characterized not onlyhere B=3.07< 10 *nh,. The power spectrum of the hard
in terms of the energy density but also in terms of the powebranch evolves typically as 2. Our power spectrum de-
spectrum 8,(w,79) Which can be directly connected to clines slower than in ordinary inflationary models where the
Qewlw, 7o) [see Eq(A15)] with the results that high-frequency tail evolves typically as™*. This behavior
occurs, in our case, for frequenciege < w< w, .
In comparing the produced graviton spectrum with the
1 2 5 experimental sensitivities of the various detectors it turns out
Qewl @, 70) = 672 Ho |8, 70)[%, to be useful to translate the physical information contained
into the energy density into another quantity, tectral
amplitude(often called alsspectral densitywhose relation
[8n(K, 70) 2= K[| he (K, 70)|2+ | (K, 70) 2], (4.1)  With the energy density has been derived in AppendpES.
(A19)]. By demanding that the peak of the graviton spectrum
does not exceed the nucleosynthesis bound we conclude that
where  hg(k,7) = e (k,7)/a(n) and  hg(k,7) to reach a level of sensitivity comparable with
=i, (K, n)/a(n) are the Fourier amplitudes of the graviton hSQGw(V,ﬂo)Sl(TG implies that
field operators associated with the tWindependentpolar-
izations[see Eqs(Al)] andHy is the present value of the 8
Hubble parameter. The three branches of the power spectrum VSn(v, 77)=3x 107 %

kHz\ 3/2
T) Hz™ 1/2. (43)
turn out to be

The physical relevance &, (v, 7,) is related to the way we
o hope to observein the near futurg stochastic GW back-
—pp-344 /2% T grounds. In order to detect a gravitational wave background
On(@,70) =R 2\ L) in an optimal way{39], we needat leasttwo detectorgtwo
12 bars, two interferometers, one bar and one interferom-
ﬂ) |n(ﬂ)’ 0, <<, eter. . .). Suppose then that we have two detectors and sup-
@y w1 pose that the output of the detectors is givenspy h; +\;

X
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wherei =1,2 refers to each single detectby;is the gravita-
tional fluctuation to be detected avd is the noise associ-
ated with each detector measurement. Now, if the noises of
the two detectorsire not correlatedthen, the ensemble av-
erage of the Fourier components of the noises is stochastic,
namely

1
(NN () =58(r=v")5;S\v), (4.4

whereS,(v) is the spectral density of the nois@he noise

level of the detector can then be estimated \8(v). As 0 0.5 1 1.5 2 2.5 3
we discussed in Appendix Bsee Eqs(A16),(A17)] it is also log(w /Hz)

possible to characterize ttgignal with the same technique

: FIG. 5. We plot the spectral density far=10"* in the fre-
and, then, we will have P b v :

guency range relevant for the forthcoming interferometric data on
direct GW detection. In the full thick line we report the caie

(hi(V)h]*(V,»:E&ij S(v—1")Sy(v), (4.5 =10, in the full thin Ii.ne the casB=1. and in the dot-dashed .Iine
2 the caseR=0.6. Again we tookhy=0.6 and(Q,=0.3 as fiducial
values.

where S, (v) =S,(—v) is the spectral density of the signal

and it is related tdlgy by Eq. (A19). Very roughly, if & = from w=1 Hz until w=1 KHz. We remind the reader that
signal is registered by a detector this will mean thatihjs range of wave numbers is the one relevant for the forth-
Sh(¥x 1 10)>Spis, ) » Namely, the spectral density of the sig- coming interferometric detectors. In Fig. 5 we see that the
nal will be larger, at a given frequenay, , than the spectral spectral density of our signal is mainly concentrated in the
density of the noise associated with the detector pair. In orblank region between the thick linecorresponding toR

der to confront our signal with the available sensitivities we=10) and the full thin line(corresponding tdR=1). For
need to compute the spectral den$ify Taking into account  ©~0.1 kHz, $,~10 %-10"5% s. For w~0.01 kHz, S,

the numerical factors, we get ~10%°-10"5 s. This observation shows that, within the
) frequency range of the interferometers our theoretical signal
_oa 9dec| T € can be larger or smaller depending upon the frequency.
Sh(w,m9)=CR 9/4( g_) Fﬂy( 70)
r
—2 V. DETECTABILITY OF THE QUINTESSENTIAL
w w
% -~ |n2(w_) Hzfl, 0, <o<w, GRAVITON SPECTRA
r 1

There are, at the moment various interferometric detectors
1 under construction. They include the two LIGO detecfdis
_ Cw(giec) R0 (o) being built by a joint Caltech/MIT collaboration, the VIRGO
7o detector(near Pisa, Italy[2] the GEO-600Hannover, Ger-
3 many) [4], and the TAMA-300(near Tokyo, Japan[41].
“’) In2< “’f) HZ ! o< w<o The noise spectral densities of these detectors, defined in a
' dec r . .
frequency range going from 1 Hz to46iz, decline usually
quite rapidly from 1 to 100 Hz, they have a minimum
(around 100 Hy corresponding to the maximal sensitivity,
and then they rise again with a more gentle slope until, ap-
s proximately, 1-10 kHz.
© j Inz(ﬂ) Hy L As we discussed in the previous section, in order to have

el L

X e o, some hopes of detection we have to demand that the theoret-
ical spectral density of the signal is larger than the spectral
0o< W< Ogec, (4.6) density of the noise. Let us then try to compare this value
with the expected sensitivity of the interferometers possibly
whereC~2.12x 10 1332, available in the near future. The power spectrum of our sig-

Not only the spectral amplitude of the theoretical signalnal is too small to be seen by TAMA-300, GEO-600, and
depends upon the frequency, but also spectral amplitude &fIRGO. By correlating different detectors the sensitivity can
the noise does depend upon the frequency. It is not onlyncrease also by a large factpt2—44. However, the pub-
important if S,(v) > S)(v) at a particular frequency but it is lished results on the foreseen sensitivitiesvptare far too
also crucial to take into account, for detection strategles, large to be relevant for our backgroufi7]. By comparing
spectral behavior of the signalersus thespectral behavior Fig. 5 with Fig. 6 we can argue that only the advanced LIGO
of the noisan the frequency range explored by the detectorsdetectors are closer to our predicted spectral density and that
The spectral density in the hard branch is illustrated in Fig. Sur signal is generally smaller than the advanced LIGO sen-

123511-9



MASSIMO GIOVANNINI

Noise Power Spectra

0 (for the major interferometers)
10 r

", GEO-600
\

Initiat LIGO

P(f) (strain’/Hz)

-

o
S
3

" “Advanced LIGO

10

100 1000 10000

f (Hz)
FIG. 6. The predicted noise power spectra for various interfer
ometers. This figure is adapted frd#0]. P(f) is what we called

Sy-and it is the quantity which should be compared v@th In this
plot f=v.

sitivity. The two (identica) LIGO detectors are under con-
struction in HandfordWashington and in Livingston(Loui-
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-4 LIGO
2 -6
o
G -8
(o B =)
= Advanced LIGO
¥ -10
-12 / VI=IkHZ
v,=0.1kHz _—
0 0.5 1 1.5 2
log N,
FIG. 7. With the two full thin lines we illustrate

IoghéQGW(w ,mo) as a function of lod\s for frequenciesy;=0.1

kHz according to Eqg5.1) and(5.2). The full thick lines represents
the sensitivity of the LIGO detectors and of the advanced LIGO
‘detectors to an energy density with flat frequency spectrum. From
top to bottom the thick lines refer, respectively, lhéQG\N:S
%1078 and tohZQsw="5%10"1% In order to be detected, the the-
oretical signal has to be above the thick [ige We see that the
region between the two thin lines does not overlap with the sensi-
tivity of the upgraded LIGO detectors by, roughly, 1.5 orders of
magnitude.

siang. After various years of operation the detectors will be

continuously upgraded reaching, hopefully, the so-cadied
vancedlevel of sensitivity.

identical we will have tha8{}(»)=S{?(»). In order to de-
tect a stochastic background with 90% confidence we have

Let us estimate the strength of our background for a freyy qemandS/N=1.65. Now in order to estimate the signal-
quency of the order of 0.1-1 kHz. Let us assume that the, nojse ratio we need to estimate numerically the integral
energy density of the stochastic background is the max'maéppearing in Eq(5.3. We know the theoretical spectrum

compatible with the nucleosynthesis indications. The gravi
ton energy density(in critical unity at a frequencyy,
~0.1-1 kHz is then

Qaw(v,m0)h3=2.29 105N >4 —19.7+0.25IrN,]?,

1=0.1 kHz, (5.)

Qowl( v, 70)h3=2.2910 N ¥ — 17.4+0.25 I\ ]?,

r=1 kHz. (5.2
Suppose then that we correlate the two LIGO detectors for
period7=4 months. Then, the signal-to-noise ratsguareg
can be expressed §42-44

| zorl

S

N

9H;
= T
507

Y V)chaw( v, 7o)
14 .
8P (1)S2(v)

(5.3

since we just estimated it. The noise spectral densities of the
LIGO detectors are not of public availability so that we can-
not perform numerically this integral. In the case of a flat
energy spectrum we have that the minimfyg,, detectable

in 7=4 months is given, with 90% confidence, by
Qe v, 70)=5%10 °h,? (for the initial LIGO detectors
and byQgw( v, 70) =5X 10" 'h, ? (for the advanced LIGO
detectors For a correct comparison we should not confront
Egs.(5.1) and(5.2) with the sensitivities of the LIGO detec-
tors to flat energy spectra but rather with the sensitivities
obtained from Eq(5.3) in the case of our specific energy
gpectrum reported in Eq§3.8).

Let us then compare, for illustration Eq&.1) and (5.2
with the sensitivity to a flat energy spectrum even if this is
not completely correct. The idea is to discuss, at fixed fre-
quencies, the maximal signal provided by E@s1),(5.2) for
different values oRR. This comparison is illustrated in Fig. 7.
For the allowed range of variation ®f; our signal lies al-
ways below(of roughly 1.5 orders of magnitugléhe pre-

The functiony(v) is called the overlap function. It takes into dicted sensitivity for the detection, by the advanced LIGO
account the difference in location and orientation of the twodetectors, of an energy density with flat slope. The main
detectors. It has been computed for the various pairs ofincertainty in this analysis is, however, the spectral behavior
LIGO-WA, LIGO-LA, VIRGO, and GEO-600 detectors of the sensitivity for a spectrum which, unlike the one used
[44]. For detectors very close and parallgl,y)=1. Basi- for comparison, is not flat. It might be quite interesting to

cally, y(v) cuts off the integrand of Eq5.3) at a frequency perform this calculation in order to see which is the precise
27v of the order of the inverse separation between the twaensitivity of the LIGO detectors to a spectral energy density
detectors. For the two LIGO detectors, this cutoff is aroundas large as 10'? and rising as ¢/ v,)In?(v/vy) in a frequency

60 Hz.S{}? are the noise spectral densities of the two LIGOrange 1 Hz—1 kHz.

detectors and since the two detectors are supposed to be If we move from the kHz region to the GHz region the
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signal gets much larger than in the ordinary inflationaryGHz, we would need a sensitivity of the order éh
models. Moreover, the energy spectrum exhibits a quite~10 3C. Moreover as stressed 9] the thermal noise
broad peak whose typical amplitude can be as largéas should be properly taken into account in the analysis of the
smaller thah 0.5x10 °. The spike(corresponding to the outcome of these microwave detectors. Indeed, as noticed
maximum of the peakis located at a frequency of the order from the very beginnin§48], the thermal noise is one of the
of 350 R~ Y4 GHz. fundamental source of limitation of the sensitivity. An inter-
The particular spectral shape of the signal coming fromesting strategy could be to decrease the operating frequency
quintessential inflation seems to point towards the use ofange of the device by going at frequencies of the order of 1
electromagnetic detectors and, in particular of microwaveViHz. Based on the considerations[db] we can say that by
cavities. A typical signature of the background we are distaking high-quality resonators the foreseen sensitivity can be
cussing in the present paper is that the peak frequencgs large ashéQGW~ 10" 4. This sensitivity, though still
(which almost saturates the nucleosynthesis bpundurs above our signal, would be quite promising.
for frequencies of the order of;=3.58x 10"'R™ Y4 Hz. We
can say that, very roughly, the ;ize of the GW detectors is | GRAVITON SPECTRA EOR QUASI —de SITTER
not only determined by construction requirement but also by PHASES
the typical frequency range of the spectrum we ought to ex-
plore. In this sense the large separation between the two During an inflationary phase the evolution is not exactly
LIGO detectors is connected with the fact that the exploredf the de Sitter type. We want to understand how the slope of
frequency range is of the order of 100 Hz. Thus, if we dealtthe energy density of the relic graviton background will be
with frequencies which are of the order of the GHz, we canmodified by the slow-rolling corrections for frequencies ac-
expect small detectors to be, theoretically, a viable option. cessible to the forthcoming interferometers. In general the
Microwave cavities can be used as GW detectors in thé&leviations from a de Sitter stage can be induced either be-
GHz frequency rangf45,47). These detectors consist of an cause of the specific inflationary model or because of the
electromagnetic resonator, with two levels whose frequenslow-rolling corrections whose strength can be described in
ciesvg and v, are both much larger than the frequengy,  terms of the so-called slow-rolling parameters
of the gravitational wave to be detected. In the casp46f _
the two levels are achieved by coupling two resonators, one H &
symmetric in the electric fields and the other antisymmetric. a=-—<1, B=—<I1, (6.1
. o . e H H¢
Indeed, in the case of cylindrical microwave cavities there
are different normal oscillations of the electric fields| 5]
the relevant mode for the experimental apparatus is thg,TE
according to the terminology usually employed in electrody-
namics in order to identify normal modes of a cavity corre-
sponding to different boundary conditiofé6]. There were
published results reporting the construction of such a dete
tor [48]. In this casevgyw=10 GHz andAv=vs—v,~1 oV
MHz. In this experiment a sensitivity of fractional deforma- 3Hp+ — =
tions &x/x of the order of 1017 was observed using an in- d¢

tegration timeAt~ 10° s. The sensitivity to fractional defor- ] o ) ]

observation of a monochromatic gravitational wave of fre-decreases leading to what we call the quasi—de Sitter phase.
quencyvey . Following[48] we can learn that the sensitivity The e_volutlon equation of the mode function can be written,
to fractional deformations is a function &, and P, (the = DY using the definition ot as
powers stored in the symmetric and antisymmetric lgy€ls
(the quality factor of the cavitj46] and which gives the rate
of dissipation of the power stored in the cayitif we would
assume, as 48] Q~10°, P,~102! watt P,=2.4
X 10~2 Watt , we would getsh~10" 1. As we can see, the time-dependent frequency appearing in
There, are at the moment, no operating prototypes othe mode function contains two contributions: the first one
these detectors and so it is difficult to evaluate their sensitivéi.e., 2a?H?=2/7?) is the term coming from a pure de Sitter
ity. The example we quote8] refers to 1978. We think phase, the second one, proportionahtois the correction.
that possible improvements in tiefactors can be envisaged In short the logic is the following. The quasi—de Sitter
(we see quoted values of the order of*Z@vhich would  phase modifiesthrough ana-dependent correctigrthe in-
definitely represent a step forward for the sensitivitth ~ dex of the Hankel functions whose precise valequal to
spite of the fact that improvements can be foreseen we cab.5 in the pure de Sitter phgsgets slightly smaller than 1.5.
notice immediately that, perhaps, to look in the highest posFrom the sign of the correction appearing in E&3) we can
sible frequency range of our model is not the best thing taargue that the quasi—de Sitter nature of the inflationary phase
do. In fact from Eq(4.1) we can argue that in order to detect will lead to a decrease in the slope of the energy spectrum.
a signal of the order thQGW~ 10 © at a frequency of 1 The question is how much the slope of the hard branch will

whereH = (Ina) is the Hubble parameter in cosmic timg,

is the inflaton and the dot denotes derivation with respect to
cosmic time. In the slow-rolling approximation the inflaton
evolution is dominated by the scalar field potential according
Ctp the (approximate equations

0, M2H?=V. (6.2

W'+ | K= 2a%H?

1—- 5”1,/;:0. (6.3
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be affected, or, more precisely, how much smaller than onéor this choice is very simple. We want to understand how
will the slope be of the hard branch of the graviton energythe slope of the energy spectrum is modified for scales larger
density. than(and of the order 9fthe ones probed by the interferom-
The answer to this question will, of course, depend uporeters. A simple calculation shows that, for instance, the
the specific inflationary model since the size of the slow-LIGO-VIRGO scale crosses the horizon roughly 21 e-folds
rolling corrections can vary from one inflationary potential to before the end of inflation. The end of inflation occurs when
the other. Notice that our concern is different from the onea(¢e,9=1. Thus, at the end of inflatiog2, = (M2/6)n?.
usually presenf50-53 in the context of ordinary inflation- By solving consistently Eq€6.2) with the potential6.7) we
ary models where the slow-rolling corrections are taken intqyet easily that the number of inflationary e-folds at a given
account in the soft branch of the spectramely at suffi- value of ¢ is given by
ciently large scalésIndeed, for flat spectra the most signifi-
cant bounds come from the infrared, whereas, in our case the bong d 3
L . . end da
most significant bounds are in the ultraviolet and we have to N(¢):f — =
understand how the scales which re-enter in the stiff phase ¢ & 2Mgpn
are affected by the quasi—de Sitter nature of the inflationary
phase. Of course, we could also discuss the slow-rolling corFrom this last equation we can determine eashply and
rections to the soft branch of our spectrum, but, they arethen, by insertingp2.4, @ turns out to be
comparatively, less relevaitfor the structure of the spike
than the correction to the hard branch. n
As usual, the slow-rolling corrections not only affect the a= e (6.9
mode function evolution but also the definition of conformal
time itself, namely we will have

(¢°—p2d. (6.9

which is of the order of 0.02 fon=2 , of the order of 0.04
dt da 1 da for n=4 and so on. Another example could be the one of an
n:f_: _:__+f a— (6.4  exponential potential. Using the definition of from Eq.

a a’H aH a’H (6.5 we have that an exponential potential of the form

By using the fact thaM2H = — (3/2)$? and the fact thaB

<1, we can connect directly to the slope of the potential V(g)= exl{a Mo (6.10

6.5 Wil lead to a=1/g7.
With these results we can easily compute the corrections

_ . . . to the hard branch of the spectrum. The spectral energy den-
Since we are interested in the lowest-order slow-rolling corsity will be

rection we will assume that and 8 are constants. This is a

simplification which will not affect(numerically the slope w172 o
of the spectrum. In the case of inflationary models with cha- ~ Qgw(®,70) =Q ( no)f(a,)\,R)(—) Inz(—),
otic and exponential potential it can be shown that the “run- ©r
ning” of « with ¢ (and, therefore, with the wavenumber
will affect the spectral slopes with a term which is of the
order of 1N? whereN is the number of inflationary e-folds

H Mﬁ,(alnv)2

e R S R ¥

with

[53-559. If « is constant then we have thap ! ; R)— 222“1“ 3 2
=—(aH)/(1+ «) which leads, once inserted in E@.3 (aMR)=— aty ;ta
o
1/3
VZ—% 3 ><>\1—2“R—2a<gie°) . (6.12)
¢'+| K= ———|=0, with v=5+a, (6.6 '
i

The power spectrum and the associated spectral density can

where the expression of holds fora<1. be computed from using the techniques already discussed in
Let us examine now the quasi—de Sitter nature of differthe previous sections. Some authors cala the correc-
ent inflationary scenarios. An inflationary potential of cha-tions to the spectral index. Equatidf.11) tells us that the

otic form corrections arising during a quasi—de Sitter phase always go
in the direction of making the maximal slope of the hard
V(h)= (ﬂ 6.7 branch slightly smaller than one by a factor 0.38r in-
n!’ ' stance in the case the caseqdf potentia). In the case of the

exponential potential the magnitude of the corrections to the
will lead to a=(M,%/6)(n2/¢2). Let us take for the value of slope is controlled byj?. Again we see that for reasonable
« the one corresponding to modes crossing the horizoryalues ofg? like q?=5,1Q . . . [5] the corrections are again
around 20-25 e-folds before the end of inflation. The reasosmall and, at most, of the order of few percent.
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VII. CONCLUDING REMARKS TS e - >
[a,(K),al(p)]=6,,6®(k—p). (A2)

In this paper we computed the relic graviton spectra in . _ _ .
quintessential inflationary models. We showed that the enf"0m the Heisenberg equations of motion, the field operators

ergy spectra possess a hard branch which increases in friollow the evolution equations for the Fourier amplitudes
guency. Large energy densities in relic gravitons can be ex-

pected in this class of models. The spike of the energy '+
spectrum can be as large #8Q0q,=10° at a typical

— —-1/4
(present frequencyy, =358R GHz. The spectral am- for each of the two physical polarizations. In most of the

plitude at the interferometer frequencies is just below thecosmological applications we will be dealing wit'/a has

value visible by the upgraded LIGO detectors. Since a Iarg% bell-like shape going to zero, for large conformal times, as

amount of energy density can be stored around the GHz the_2. Equation(A3) can be be solved in two significant lim-

use of small electromagnetic detectors for the detection of . . 2 " .
. ; its. The first one is fok“<|a”"/a| corresponding to wave-
such a background seems more plausible. In particular mi- ; . .
2. . . engths which are outside of the horiz@mder the bell
crowave cavities should be considered as a possible candr
date. Our investigation also hints that the sensitivities of the ,
\ . ; 7 dng
advanced LIGO detectors to increasing energy spectra, in Pk, 7)=A(k)a(7)+B(k)a( ”)f —, (A%
frequency, as In?v should be precisely computed by con- a’

volving our spectra with the noise power spectra of the de-

n

k%— a—} y=0, (A3)
a

tectors. where A(k) and B(k) are integration constants. For large
momenta(i.e., k?>|a"/a|) the general solution of EA3)
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APPENDIX A: RELIC GRAVITONS end up, forp— +o with a superposition of positive and
CORRELATION FUNCTIONS negative frequencies according to E45).

In this appendix we concentrate some of the more techni- 1ne two-point correlation function of the graviton field
cal derivations concerning the spectral properties of the reli@Perators can then be computed in Fourier space
gravitons which can be characterized through their energy A g _ 5 @y 2
density in critical units or through the two-point correlation (Ol (K, ) ug(p, 7)[0) =4 (K, 7)|*8) ;6 (k—p).
function of the amplified tensor fluctuations of the metric. (A6)

We want to give explicit derivations of these quantities andFieId modes with different wave numbers are then statisti-

of their relations. cally independent as a consequence of the graviton emission

GW's, being pure tensor modes of the geometry, only.from the vacuum. Some authors refer to E46) as the

ffecti ) be obtained b bi he Ei : gtochasticity conditiorwhich expresses the main statistical
a.lf)c“;/e atpuor][ can eg ta(|jne . ythpertur Ilr']tg(;[ € f'tnSIE'nbroperty of the graviton background. Within our quantum

ibert action to second order in the ampiitude of ensor,chanjical formalism we can also compute the two-point
fluctuations. The Fourier expansion of the field operators re

. S _ correlation function between field operators, namely
lated to the two physical polarization of the gravity wave

(which we denote withe and®) is o 1 ¢ dk sinkr ,
§(r>:<0|mj<xm'<x+r>|0>=—2f?7|5h<k,n>| ,

-~ - R A o ™

Mo (X, 7) = (Zw)g,zf d3K[ e (k, 7)€% X+ ul (k, p)e k], (A7)
where

s 1 B[ ik-x, ~t —iK-x 2_13 2 2

M®(X,7i)=(2T)3,2 Akl e (k7)€ X+ pg (K, e, [0,k ) |*=K>(| s (k. M)|*+ ek 7)]?),  (A8)

(A1) is the power spectrumof the relic gravitons background
. . . . summed over the physical polarizations.

where (k) =do(kn)as(k) and  pe(k,7) Sometimes, to facilitate the transition to the quantities of-

=is(k,m)ag(k). The creation and annihilation operators ten used by the experimentalists, it is convenient to denote

follow the usual commutation relations, namely, the gravitational wave amplitude, for each polarization, with
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h%om= —— [ d3n(k, p e 0 N -
(Xan)_(zT)sz'd ( 177)6 ) (Ag) GW(wvnO)_Q H_O |5h(w7770)| ) (A15)

where the reality condition impliels* (K)=h(—K). The sta- Whereq is the present conformal time which appears since
tistical independence of waves with different wave vectorsve want to refer everything to the present value of the

implies, in this formalism, that Hubble factor. In comparing the signal coming from a par-
ticular model with the experimental sensitivities it turns out
hy (K, )% (p. 7)) = [, (K, 7) |28, 8@(K—p), to be the widely usedpectral density v, 7,). In order to
{ha(k, MG (p, 7)) =M (k, )]0, 6™k =p) define it let us assume that each polarization of the gravity
wave amplitude can be written as
(K, 77)
hy(k, )= ———. (A10)

h(v)=f dth(t)e 2™, (A16)
Equation(A10) can be viewed as the classical limit of Eq.
(A6) where the quantum-mechanical expectation values ar@heret is the cosmic time variable. Then the spectral ampli-
replaced by ensemble averages. Notice that this concept calide can be defined as
be made quite rigorous by taking the average of the graviton
field over the coherent state basis. This procedure would be 1
analogous to what is normally done in quantum optics in the (h(m)h* (")) =5 o(v=v")Sy(»). (A17)
context of the optical equivalence theoréf6—5§.

The energy densityand pressupeof the relic graviton
background can be easily obtained by taking the average oEf
the (00) of the energy momentum tensor of the relic gravi-

tons ener
9y 4772

Qowl(v,70)= 3H2 13S4(v, 70). (A18)

y using the definition(A17) and by recalling thapgw(7)
Z[M2/(6a%)](h'2+h’2), we obtain

1
PGW(W)ZWJ d®k[ [N’ (k, 7) |2+ (k, 7)[?
ma This last equation implies that

+k?(|hs (k, )2+ [hg (k, ) [D)]. (A11) i

Hz
— — 37, 2
If we insert the asymptotic expression of the mode function Sh(v,770) =8X 10" Qgu( v, no)hOF* (A19)

of each polarization for larggositive conformal times we

get, from Eq.(A11), from which is clear thas, is measured in seconds.

do 4|’87(w)|2 APPENDIX B: RELIC GRAVITONS SPECTRA IN THE
— ot w=kla, (A12) :

powl 7]):] 5
w ™ ORDINARY INFLATIONARY CASE

from which we can define the logarithmic energy spectrum Consider the model of a universe evolving from a de Sit-

ter stage of expansion to a matter-dominated phase passing

as o ) L
through a radiation-dominated phase. By requiring the con-
d 4 tinuity of the scale factors and of their first derivatives at the
powl( @, ) _Y 2 transition points we have that( %), in the three different
TV |1B-(@)]?, (A13) ;
dinw w? temporal regions, can be represented as
[where we used the fact thg8, (w)|?—|B_(w)|>=1]. By 71
L L . ai(n)=|——|, for p<—1ny,
taking into account that the energy densityn¢) gravitons 7
in the proper momentum intervdkw is given by
AL for —n<ny<
o ()= = for =m=n<mn,,

dpew=20n(w) (A14)

(2m?® ,
(7t ma+4m1)

— X, for n>mn,, B1
4n1( 72+ 271) =2 (B1)

|B_(k)|? can be interpreted as the mean number of produced An(7)=

gravitons in a given frequency interval.

In order to compute the relation betweBg\(w,7) and  where —; and 7, mark, respectively, the onset of the
on(w,n)=6,(w,n)/a(n) we can use EqA9) together with  radiation-dominated phase and the decoupling time.
the stochasticity condition of the graviton background. After In order to compute the graviton spectra in this model we
having divided by the critical energy density we obtain have to estimate the amplification of the graviton mode func-
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tion induced by the background evolution reported in Eq. ov-1 1 _
(B1). The solution of Eq(A3) in the three temporal regions ~ B_(k)= _F(V)<§_ 1z)e'(”"‘)(”2V)|k771|1’2 ,
is given by V2T
(B6)
_ b ) wherel'(v) is the Euler Gamma function. In the case of a
hi(x)= @&HV (), pure de Sitter background we get, indeed,
—im
B_(k)=———|kny| % (B7)

[Boe V+B_eV], 2

1
lﬁr(Y)ﬁ

In order to compute the spectrum of the relic gravitons
crossing the horizon during the matter-dominated epoch we
1 have to consider a further transition by matchindy) and
I (2) (1)
Ym(2) \/E[q*c+HM (2)+qc-H, (2], (B2) z) (and their first derivativesin »=»n,. The result is
V2k m n=172
that

where i
c.==5(Bi =B VZHP(z)a, (B8)
x=kn, y=k(n+2mn), z=k(n+n+4mn),

(B3 \where we reported only the dominant part in the<1 and

) ] z,<<1 limit. By performing the limit explicitly we get
andH{"? are the Hankel functionf59,60 of the first and 2

second kind. In the case of the background given by(Bij) T'(u)T(v) 1

the Bessel indices andu are both equal to 3/2 but we like lc_(k)|= 5 ’””( - )

to keep them general in light of the applications reported in 2m

the present paper. % |ql|pl|k 7 =~ k| 1+ Y2 (B9)

Notice that in Eq.(B2) we included
In the case of the model of EqB1) we have that the

o \/Ee—i(w/4)(1+2v) o= \/Eei(w/4)(1+2,u) B4 energy density of the 'created gravitons in critical units at the
2 ' 2 ' present observation time

1d
ensuring that the large time limit of the mode function is the Q(v,m9)=— dFI)GW, (B10)
one dictated by quantum mechani¢s., e “¥7/\2k) with- pe dinv

out any extra phase or extteonstank coefficient.

The constants appearing in E(B2) are fixed by the
guantum-mechanical normalization imposed during the d
Sitter phase, and then, in order to compute the amplification
we have to match the various expressions of the mode func- H,\2
tions (and of their first derivativesin =— 7, and in Qewl(v,170)=Q ( no)(M—) v Vgeclv<vy,
= n,. By doing this we get the expression of the amplifica- P
tion coefficients. By first looking at modes which went out- Ho\2) . )2
side of the horizon during the de Sitter phase and re-entered (), (y, 70)=0 ,70)(_1) (ﬂ) L Vo< V< Vgee
during the radiation-dominated phagee., modes zr/ 7, Mp v
<k<2mln,) we have thaB. are given by (B11)

can be computed by inserting into E&13) the expressions
of the mixing coefficients of EqQ¥B6)—(B8), with the result

This spectrum is reported in Fig. 1. Theft branchand the

B _eii"l @) — [ +£ hard branchdefined in the Introduction do correspond, re-
=5 P HT (=X Xl+\/—_x1 rTs spectively, to the two frequency rangeg<v<vge. and
Vdec< r<< V1.
i @) (—
FIN=xH( Xl)]- (BS) APPENDIX C: TRANSITION FROM INFLATION TO

STIFF PHASE: ACCURATE MIXING COEFFICIENTS

We are interested in thB_ which measures the amount  In order to determine the six matching coefficients ap-
of mixing between positive and negative frequency modegpearing in Eq.(3.4) we have to match the mode functigh
and whose square modulus can be interpreted as the meand its first derivative imp= — 71, =7, and = 74e.. The
number of produced gravitons. Moreover, we want to evaluresults of this calculation are reported in the present section.
ateB_ in the small argument limiti.e., x;<<1) which is the  Consider first the amplification leading to thard branchof
one physically relevant. The result is the spectrum. The mixing coefficients are given by
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eiWr
A=~ ﬁe "’2>”<V“>[H<2>( )[le£31< X1) Bi<k>=7|M[s*A+(k>HgZ’<y,>+sA(k>Hé”<yr>]
1
—vHP(—xy)]- x1H<2>< 2)H<2)< X )] =i s*AL (k) H?%yﬂ—&H&”(ya)
2\y,
1
+sk<k)( HE () = VyeHE(y >)H
A= e <"2>”[H<1>( )[leﬁ)l( Xy) iy, © 0 T
e (o)
—vH®(—x;)]—x H(l)( )H(Z) X ’
(mx))=x 2 (=) The small argument limit oB_ leads to
(CY
o ) B (k):_e*i‘ﬂv+i(77/4) 3v
The small argument limit oA_ (directly relevant for the - 2.2
estimate of the graviton spectrum in the hard bramen be
easily obtained and it turns out to be _ _ _ 71
Y X2 ()l ko | ko]~ Inj %, (C7)
r
A (k)” 2” e (RT@ T (1), "Inx;. (CD which becomes, in the case=2,
In order to derive the previous and the following expressions B (k)= 9 K 12 312 cs
it is useful to bear in mind that the Wronskian of the Hankel (o= \/_| el ko] 2 7y 8

functions is given by

Finally, let us compute the amplification coefficients in
WHMO(r),H®(r)] the case of theoft branch of the spectrunin this case we
have that the mixing coefficients are

=HEL(HP () =HPHE) ()

i ) )

4i c (k)= —[ (B4 (k)™ Vaeet B_ (k)e'Veeq
= 2
R (C3

r

1
m Zge * S.I,Zl 1(Zdec)1
for a generic argumemtand for a generic Bessel index In VZ4

this calculation it is also useful to recall that the small argu- +i[B (k)e"ydec
ment limit of the Hankel functions is N

. —B_(k)eYeed \z4og* H §E’<zdea] :

0[5 erely] e

where the minugplus) refers to the Hankel function of first
(second kind. Notice that this formula is only valid fos
#0. In this last case we have indeed that

c_(k)=- IE[ (B, e Wdect B_(k)e'Vdeo)

X

1
\/— H,(ul)(zdec) VZded H,u,+1 Zdeal

2
H2(r)~1F=Inr. C5 : i
o RNy (© B (K& Voo B_ e\ 2o H (2400 |

Let us now consider the following transition namely the one (€9

leading to thesemihard branch of the spectrurihe exact
expression of the mixing coefficients is, in this case, In the small argument limit we have

123511-16



PRODUCTION AND DETECTION OF RELIC GRAVITOIS . ..

3v .
C,(k) — EZPH— V—3/Ze—|7T(V+2M)

m
7

(C10

XT ()T (v)[kae|~ Y k| "k 7ged ~# 21N

which becomes, in the cage=3/2,

PHYSICAL REVIEW D 60 123511
e i(92)7| . | =32

_ _ m
X|k77decl l|k77r| Y2In 7
;

. (C11)

The derivations we just reported are the basis for the results
presented in Sec. lll.
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