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Production and detection of relic gravitons in quintessential inflationary models

Massimo Giovannini*
Institute of Cosmology, Department of Physics and Astronomy,

Tufts University, Medford, Massachusetts 02155
~Received 1 March 1999; published 24 November 1999!

A large class of quintessential inflationary models, recently proposed by Peebles and Vilenkin, leads to
post-inflationary phases whose effective equation of state is stiffer than radiation. The expected gravitational
wave logarithmic energy spectra are tilted towards high frequencies and characterized by two parameters: the
inflationary curvature scale at which the transition to the stiff phase occurs and the number of~nonconformally
coupled! scalar degrees of freedom whose decay into fermions triggers the onset of a gravitational reheating of
the Universe. Depending upon the parameters of the model and upon the different inflationary dynamics~prior
to the onset of the stiff evolution!, the relic gravitons energy density can be much more sizable than in standard
inflationary models, for frequencies larger than 1 Hz. We estimate the required sensitivity for detection of the
predicted spectral amplitude and show that the allowed region of our parameter space leads to a signal smaller
~by one 1.5 orders of magnitude! than the advanced laser interferometric gravitational wave observatory
sensitivity at a frequency of 0.1 kHz. The maximal signal, in our context, is expected in the GHz region where
the energy density of relic gravitons in critical units~i.e.,h0

2VGW) is of the order of 1026, roughly eight orders
of magnitude larger than in ordinary inflationary models. Smaller detectors~not necessarily interferometers!
can be relevant for detection purposes in the GHz frequency window. We suggest or speculate that future
measurements through microwave cavities can offer interesting perspectives.@S0556-2821~99!02722-8#

PACS number~s!: 98.80.Cq, 04.30.Db, 98.70.Vc
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I. FORMULATION OF THE PROBLEM

The idea that our present Universe could be populated
a sea of stochastically distributed gravitational wav
~GW’s! is both experimentally appealingand theoretically
plausible. It is appealingsince it would offer a natural cos
mological source for the GW detectors which will come
operation during the next decade, such as the Laser Inter
metric Gravitational Wave Observatory~LIGO! @1#, VIRGO
@2#, Laser Inteferometer Space Antenna~LISA! @3#, and
GEO-600@4#. It is alsoplausible, since nearly all the model
trying to describe the first moments of the life of the Un
verse do predict the formation of stochastic gravitatio
wave backgrounds@5,6#.

Our knowledge of early the Universe is only indirect. T
success of big-bang nucleosynthesis~BBN! offers an expla-
nation of the existence of light elements whose abundan
are of the same order in different and distant galaxies. B
hints that when the cosmic plasma was as hot as 0.1 M
the Universe was probably dominated by radiation@7#. Prior
to this moment direct cosmological observation are lack
but one can be reasonably confident that the laws of phy
probed in particle accelerators still hold. Almost ten years
the CERNe1e2 collider LEP tested the minimal standa
model~MSM! of particle interactions to the precision of th
one per thousand for center-of-mass energies of the orde
theZ-boson resonance. The cosmological implications of
validity of the MSM are quite important especially for wh
concerns the problem of the baryon asymmetry of the U
verse and of the electroweak phase transition@8#. In spite of
the success of the MSM we have neither direct nor indir
hints concerning the evolution of the Universe for tempe
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tures higher than 100 GeV. The causality principle applied
the Cosmic Microwave~CMB! photons seems to demand
moment where different patches of the Universe emittin
highly isotropic CMB were brought in causal contact. This
one of the original motivations of the inflationary paradig
@9#.

It is not unreasonable to think that in its early stages
Universe passed through different rates of expansion dev
ing ~more or less dramatically! from the radiation-dominated
evolution. It has been correctly pointed out through the ye
and in different frameworks@10# that every change in the
early history of the Hubble parameter leads, inevitably, to
formation of a stochastic gravitational wave spectrum wh
frequency behavior can be used in order to reconstruct
thermodynamical history of the early Universe. The quest
which naturally arises concerns the strength of the produ
gravitational wave background.

If an inflationary phase is suddenly followed by
radiation-dominated phase preceding the matter-domin
epoch, the amplitude of the produced gravitons backgro
can be computed and the result is illustrated in Fig. 1, wh
we report the logarithmic energy spectrum of relic gravito

V~n,h0!5
1

rc

drGW

d ln n
, ~1.1!

at the present~conformal! time h0 as a function of the fre-
quencyn (rGW is the energy density of the produced grav
tons andrc is the critical energy density!.1

Since the energy spectrum ranges over several order
magnitude it is useful to plot energy density per logarithm

1Notice that in this paper we will denote with ln the Neperia
logarithm and with log the logarithm in ten basis.
©1999 The American Physical Society11-1
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MASSIMO GIOVANNINI PHYSICAL REVIEW D 60 123511
interval of frequency. The spectrum consists of tw
branches, asoft branch ranging betweenn051.1 10218h0
Hz ~corresponding to the present horizon! and ndec51.65
310216(V0h0

2)1/2 Hz ~where V0 is the present fraction o
critical density in matter and 0.5,h0,1 is the indetermina-
tion in the experimental value of the Hubble constant!. For
n.ndec, we have instead thehard branch consisting of high
frequency gravitons mainly produced thanks to the transi
from the inflationary regime to radiation. In the soft bran
VGW(n,h0);n22. In the hard branchVGW(n,h0) is con-
stant in frequency~or almost constant in the quasi–de Sitt
case@see Sec. VI#!. The soft branch was computed for th
first time in @11# ~see also@12#!. The hard branch was com
puted originally in@13# ~see also@14#!.

The Cosmic Microwave Background Explorer~COBE!
observations of the first~30! multipole moments of the tem
perature fluctuations in the microwave sky imply@15# that
the gravitational wave contribution to the Sachs-Wolfe in
gral cannot be larger than the~measured! amount of anisot-
ropy directly detected. The soft branch of the spectrum
then constrained and the bound reads

VGW~n,h0!h0
2&6.9310211, ~1.2!

for n;n0. Moreover, the very small size of the fraction
timing error in the arrivals of the millisecond plusar’s puls
imply that also the hard branch is bounded according to

VGW~n,h0!&1028, ~1.3!

for n;1028 Hz corresponding, roughly, to the inverse of t
observation time during which the various millisecond p
sars have been monitored@16#.

The two constraints of Eqs.~1.2! and~1.3! are reported in
Fig. 1, at the two relevant frequencies, with black boxes
Fig. 1 we have chosen to normalize the logarithmic ene
spectrum to the largest possible amplitude consistent w
the COBE bound. The COBE and millisecond pulsar co

FIG. 1. We report the graviton spectrum computed in the cas
a pure de Sitter phase evolving towards the~present! matter-
dominated phase through an intermediate radiation-dominated s
of expansion. The spectrum has a soft branch (10218 Hz,n
,10216 Hz) and a hard branch (10216 Hz,n,109 Hz). In the
two black boxes we spot the COBE and the millisecond pu
timing bound. Only for illustration purposes we plotted the sp
trum for the largest amplitude consistent with Eq.~1.2!.
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straints aredifferential since they limit, locally, the logarith-
mic derivative of the gravitons energy density. There exi
also anintegral bound coming from standard BBN analys
@17,18# and constraining the integrated graviton energy sp
trum:

h0
2E

nn

nmax
VGW~n,h0!d ln n&0.231025, ~1.4!

wherenmax corresponds to the~model dependent! ultraviolet
cutoff of the spectrum andnn is the frequency correspondin
to the horizon scale at nucleosynthesis.2 It should be noted,
in fact, that modes re-entering after the completion of n
cleosynthesis will not increase the rate of the Universe
pansion at earlier epochs. From Fig. 1 we see that also
global bound of Eq.~1.4! is satisfied and the typical ampli
tude of the logarithmic energy spectrum in critical units f
frequenciesn I;100 Hz ~and larger! cannot exceed 10214.
This amplitude has to be compared with the LIGO sensitiv
to a flatVGW(n I ,h0) which could beat mostof the order of
h0

2VGW(n I ,h0)55310211 after four months of observation
with 90% confidence~see third reference in@5#!. Suppose
that the hard branch of the spectrum, reported in Fig. 1,
be split into two further branches, a trulyhard branchwith
growing slope and an intermediatesemihardbranch. The
situation we are describing is indeed reproduced in Fig
where the semihard branch now corresponds to the flat
teau and the hard branch to the spike associated wit

2Notice that the BBN constraint of Eq.~1.4! has been derived in
the context of the simplest BBN model, namely, assuming that
inhomogeneities and/or matter antimatter domains are present a
onset of nucleosynthesis. In the presence of matter-antimatter
mains for scales comparable with the neutron diffusion sc
@19,20#, this bound might be slightly relaxed.

of

ge

r
-

FIG. 2. We illustrate the graviton spectrum produced by a p
de Sitter phase evolving towards a stiff phase. The hard bra
corresponds to modes leaving the horizon during the de Sitter ep
and re-entering during the stiff phase. The soft and the semih
branch are made of gravitons re-entered, respectively, during
matter and during the radiation-dominated phase. As in the prev
figure we report the various constraints on the differential spectr
The frequency at which the spike starts developing is model dep
dent.
1-2
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PRODUCTION AND DETECTION OF RELIC GRAVITONS . . . PHYSICAL REVIEW D 60 123511
broader peak. This class of spectra can be obtained in
context of inflationary modelsprovided the inflationary
phase is followed by a phase whose effective equation
state is stiffer than radiation. A model of this type has be
recently investigated in Ref.@21# by Peebles and Vilenkin.

If an inflationary phase is followed by a stiff phase the
as it was shown in@22,23#, one can indeed get a three bran
spectrum including the usual soft and flat branches
supplemented by a truly hard spike. In general the slope
the logarithmic energy spectrum is typically ‘‘blue’’ since
mildly increases with the frequency. More specifically t
slope depends upon the stiff model and it can be shown@22#
that the maximal slope@corresponding to a linear increase
VGW(n,h0)] can be achieved in the case where the sou
velocity of the effective matter sources exactly equals
speed of light@24,25#. In Fig. 2 we illustrate the case o
maximal slope in the hard branch corresponding
VGW(n,h0);n ln2 n.

Given the flatness of the spectra arising in the case
ordinary inflationary models~see Fig. 1! the most constrain-
ing bound comes from large scale observations. In our c
the most constraining bounds for the height of the spike
for the whole spectrum come from short distance phys
and, in particular, from Eq.~1.4!. In order to visually moti-
vate the need for an accurate computation of the grav
spectra in the case where an inflationary phase is followed
a stiff phase, let us focus our attention on the freque
range where the gravitational wave detectors are~or will be!
operating.

From Fig. 3 we see that around the LIGO@1# and VIRGO
@2# frequency the hard branch of the spectrum has a la
amplitude if compared to the case of the spectral amplit
obtained when a pure de Sitter phase evolves suddenly
wards a radiation-dominated epoch.

In Fig. 3 we also illustrate~with thick black! boxes the
expected sensitivities for interferometric detectors~LIGO or
VIRGO! and for their advanced versions. In the same fig
we also report the expected sensitivities coming from
cryogenic, resonant-mass detector EXPLORER, while op
ating in CERN at a frequency of 923 Hz@26#. EXPLORER

FIG. 3. We draw the hard branch of the relic graviton ene
density reported in Fig. 2 with particular attention to frequen
range where the planned gravitational wave detectors are~or will
be! operating. The dashed region marks the portion of the spect
of Fig. 2 which isabovethe one of Fig. 1.
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provided a bound onVGW&500 which is clearly too high to
be of cosmological interest. Nevertheless, by cro
correlating the data obtained from bar detectors~EX-
PLORER, NAUTILUS, AURIGA3! it is not unreasonable to
expect a sensitivity as large asVGW;1024 in the KHz re-
gion. Indeed by analyzing the 1991–1994 data of the E
PLORER antenna, the Rome group of Pizzella got a bo
of the orderh0

2VGW<300 which is likely to become more
and more stringent as time goes by. Notice finally that
cross-correlation of two resonant spherical detectors@27#
might be able to achieve sensitivities as low asVGW
;1027 always in the KHz range.

Spikes in the stochastic graviton background are not
bidden by observations and are also theoretically plaus
whenever a stiff phase follows a radiation-dominated pha
In this paper, by complementing and extending the analy
of @21# and of @22#, we want to study more accurately th
spectral properties of the relic gravitons with special att
tion to the structure of the hard peak. We will also be int
ested in comparing the predictions of the models with
foreseen capabilities of the interferometric and resonant
tectors.

The plan of our paper is the following. In Sec. II we wi
introduce the basic aspects of the quintessential inflation
models. In Sec. III we will compute the relic graviton ener
spectra. In Sec. IV we will discuss the power spectra and
associated spectral densities. In Sec. V we will compare
obtained spectra with the sensitivities of the planned in
ferometric and noninterferometric detectors. In Sec. VI
will analyze the impact of the slow-rolling corrections on th
structure of the hard peak. Section VII contains our concl
ing remarks. For sake of completeness we made the ch
of reporting in the Appendix some relevant derivations of t
formulas used in obtaining our results.

II. QUINTESSENTIAL INFLATIONARY MODELS

Recently Peebles and Vilenkin@21# presented a mode
where the idea of a post-inflationary phase stiffer than rad
tion is dynamically realized. One of the motivations of th
scenario is related to a recent set of observations which s
to suggest thatV0 ~the present density parameter in baryon
plus dark matter! should be significantly smaller than on
and probably of the order of 0.3. If the Universe is flat, t
relation between luminosity and the redshift observed
type-Ia supernovae@29# seem to suggest that the missin
energy should be stored in a fluid with negative pressu
The missing energy stored in this fluid should be of the or
of 10247 GeV4, too small if compared with the cosmolog
cal constant arising from electroweak spontaneous symm
bereaking@which would contribute with (250 GeV)4]. The
idea is that this effective cosmological constant could co
from a scalar fieldf ~the quintessence@30# field! whose

3NAUTILUS ~located in Frascati, near Rome, Italy! and AURIGA
@28# ~located in Legnaro near Padova, Italy! are both resonant mas
detectors.
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MASSIMO GIOVANNINI PHYSICAL REVIEW D 60 123511
potential is unbounded from below@31#. According to
Peebles and Vilenkin,f could be identified with the inflaton
and, as a result of this identification, the effective potentia
f will inflate for f,0 and it will be unbounded from below
for f>0 acting, today, as an effective~time-dependent! co-
mological term. A possible potential leading to the me
tionad dynamics could be

V~f!5l~f41M4!, for f,0, and V~f!

5
lM8

f41M4
, for f>0, ~2.1!

where, if we want the present energy density inf to be
comparable with~but less then! the total ~present! energy
density, we have to requireM;106 GeV. The scenario we
are describing can be implemented with any other inflati
ary potential~for f,0) and the example of a chaotic pote
tial is only illustrative. Our considerations will be large
independent on the specific potential used and we will co
ment, when needed, about possible differences induced
the specific type of potential.

Let us consider the evolution equations of an inflation
Universe driven by a single fieldf in a conformally flat
metric

ds25a2~h!~dh22dxW2!. ~2.2!

Using the conformal timeh the coupled system describin
the evolution of the scale factor and off is

M P
2H 25S f82

2
1a2V~f! D ,

M P
2H852@f822a2V~f!#,

f912Hf81a2
]V

]f
50, ~2.3!

wherel P5M P
215A8pG/3. Since the scalar field potential

unbounded from below, after a phase of slow rolling t
inflaton evolves towards a phase where the kinetic energ
the inflaton dominates. For instance, one can bear in m
the form of V(f) reported in Eq.~2.1!. The background
enters then a stiff phase where the energy density of
inflaton rf and the scale factor evolve as

rf5H1
2M P

2 S a1

a D 6

, a~h!;A h

h1
, where,

H15
1

a1h1
;AlM P . ~2.4!
12351
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When an inflationary phase is followed by a stiff4 phase a lot
of hard gravitons will be generated. At the same time
energy density of the background sources will decay asa26

whereas the energy density of the short-wavelength gravi
will decay asa24. The Universe will soon be dominated b
hard gravitons whose nonthermal spectrum@22# would be
unacceptable since gravitons cannot thermalize below
Planck scale. A solution to this potential difficulty cam
from Ford@32# who noted that in the limit of nearly confor
mal coupling also scalar degrees of freedom~possibly
coupled to fermions! are amplified. IfNs minimally coupled
scalar field are present they can reheat the Universe wi
thermal distribution since their energy spectra, amplified
cause of the transition from the inflationary to the stiff pha
can thermalize thanks to nongravitational~i.e., gauge! inter-
actions which get to local thermal equilibrium well below th
Planck energy scale. It can be also shown that the s
discussion can be carried on in the case where the sc
degrees of freedom are simply nonconformally coupled@34#.

Suppose indeed that during the inflationary phase vari
scalar, tensor, and vector degrees of freedom were pre
Unless one adopts some rather contrived points of view
have to accept that, in Einsteinian theories of gravity,
only massless degrees of freedom to be amplified by a di
coupling to the background geometry are tensor fluctuati
of the metric and nonconformally coupled scalar fields, sin
the evolutions equations of chiral fermions, gravitinos@35#
and gauge fields@36# are invariant under a Weyl rescaling o
the metric tensor in a conformally flat background geome
as the one specified in Eq.~2.2!. Of course, if the theory is
not of the Einstein-Hilbert type this statement might be d
ferent.

The evolution equation of a nonconformally coupled sc
lar field in a conformally flat Friedmann-Robertson-Walk
~FRW! background reads

c912Hc826j@H81H 2#2¹2c50. ~2.5!

By defining the corresponding proper amplitudex5ac, we
get that the previous equation can be written, in Four
space, as

xk91@k22V~h!#xk50, V~h!5~126j!
a9

a
, ~2.6!

where we see that the case of exact conformal couplin
recovered forj→1/6 whereas the case of minimal couplin
occurs forj→0. A lot of work has been done in the past
order to compute the energy density of the quanta of the fi

4According to the terminology of Ref.@22# we namestiff a phase
whose effective speed of soundcs is larger than 1/sqrt3. In the
context of this paper we will focus our attention on the casecs

51 namely the case where the speed of sound equals the spe
light. If cs51 the equation of state of the effective sources drivi
the geometry will bep5r. If 1/A3,cs<1 the considerations o
this paper remain valid but the typical spectral slopes obtainabl
the casecs,1 can slightly change in a computable way@22#.
1-4
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c, excited as a result of the background geometry evolu
in the early stages of the life of the Universe@37#. One can
try to do the calculation either exactly@but only for rather
specific forms of the effective potential of the Schroeding
like equation ~2.6!#, or approximately by identifyinguj
21/6u as the small parameter in the perturbative expans
In this limit one can show@32,37# that the energy density o
the created quanta can be expressed as

rc~h!5
1

2p2a4E0

`

ub~k!u2k3dk, with b~k!

5
i

2kE2`

1`

e22ikhV~h!dh. ~2.7!

We notice that in most of the examples we are intereste
V(h)→h22 for h→6`. For instance, in Eq.~2.6! we can
consider the case where

a9

a
5q/~h21h1

2!. ~2.8!

Then we will have that the effective potential appearing
the Schroedinger-like equation~2.6! is simply given by

V~h!5~126j!
q

h21h1
2

. ~2.9!

Using this last equation and performing the contour integ
tion ~through the Jordan lemma! appearing in the definition
of b(k) @see Eq.~2.7!# we will have that

ub~k!u25
q2p2

4k2h1
2 ~126j!2. ~2.10!

Consequently we will have

rc5
q2~126j!2

8a4h1
2 E

0

`

ke24kh1dk5
~126j!2

128

H 1
4

a4

5
~126j!2

128
H1

4S a1

a D 4

, ~2.11!

whereH1;Aq/h1, andH15H1 /a1 is the Hubble paramete
in cosmic time. Suppose now that during the inflationa
phase there areNs ~minimally coupled and massless! scalar
degrees of freedomc i . Because of the minimal coupling t
the geometry these scalar degrees of freedom will clearly
excited since their evolution equation isnot invariant under
conformal rescaling of the metric tensor. The produc
quanta associated with eachc i can be computed by specify
ing ~for each field mode! the initial vacuum state deep in th
de Sitter epoch and by ensuring a sufficiently smooth tra
tion between the de Sitter and the stiff phase. We will p
form a similar calculation for the case of GW in the ne
section. Here we only report the main result which was or
nally obtained in@32# ~see also@33#! in the case of quasicon
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formal coupling~i.e., uj21/6u,1) and subsequently gene
alized to the case of genericj in @34#:

rm~h!5(
i 51

Ns

rc i
~h!;RH1

4S a1

a D 4

, where R;RiNs .

~2.12!

Ri is the contribution of each massless scalar degree of f
dom to the energy density of the amplified fluctuations an
is of the order of 1022. The appearance ofH1 in the final
expression of the energy of the created quanta can be sim
understood since the typical spectra obtained in the trans
from a de Sitter phase to a stiff phase are increasing in
quency@22# and, therefore, the maximal contribution to th
energy density will come from the ultraviolet branch of th
spectrum.

The creation of a massless quanta of the fieldsc i triggers
an interesting possibility of gravitational reheating. Sincerm
decays more slowly thanrf , we have that there will be a
momenth r where the two energy densities will be comp
rable. In the context of the present model this moment
fines the onset of the radiation-dominated phase. We
compute this moment by requiring thatrm(h r);rf(h r).
The result is that

S a1

ar
D;AR

H1

M P
;ARl51027R, ~2.13!

where we used the fact that in order to be compatible w
the COBE observationAl5H1 /M P;1027 @38#. In view of
our application to GW it is interesting to compute the typic
~present! frequency at which the transition to radiation o
curs. By red shifting the curvature scale ath r @i.e. Hr
[H(h r)5H1(a1 /ar)

3# from h r up to now we obtain

n r~h0!53.58 R
3
4S l

10214D S gdec

gth
D 1/3

mHz, ~2.14!

wheregth is the number of spin degrees of freedom contr
uting to the thermal entropy after matter thermalizatio
Amusingly enough this frequency is of the same order of
typical frequency of operation of LISA. It is also interestin
to compute the present value of the frequencyn1. At the end
of inflation the maximal amplified frequency is simplyH1,
so in order to get the maximal amplified frequency today
have to redshiftH1 up to the present time. Thus we will hav
that

n1~h0!5H1ARl
Tdec

Tr
S gdec

gth
D 1/3

zdec, ~2.15!

where we simply used the adiabatic evolution. Notice t
gdec is the effective number of relativistic degrees of freedo
at the decoupling epoch,Tdec50.26 eV is the decoupling
temperature andzdec51/1100 is the redshift between deco
pling and the present timeh0. In Eq. ~2.15! Tr is the tem-
perature at the beginning of the radiation-dominated epo
Tr can be precisely determined given Eq.~2.13! with the
result that
1-5
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MASSIMO GIOVANNINI PHYSICAL REVIEW D 60 123511
Tr5S H1

M P
D 2

R3/4M P.103Ns
3/4 GeV. ~2.16!

If we do not fine-tuneH1 to be much smaller than 1027 in
Planck units and if we take into account thatNs has to be
typically large in order to be compatible with standard BB
~see also Sec. III! we have to conclude thatTr is typically a
bit larger than 1 TeV. With this information we have that t
final expression ofn1(h0) is

n1~h0!5358R21/4S gdec

gth
D 1/3

GHz. ~2.17!

One could wonder at this point how quickly the thermaliz
tion occurs. Indeed, the thermalization of the created qua
of the fieldsc i occurs quite rapidly, and its specific time
fixed by the moment at which the interaction rate becom
comparable with the Hubble expansion rate during the s
phase. The typical energy of the created quanta is of
order ofe;H1(a1 /a). The particle density is of the order o
n;Re3. Assuming that the created quanta interact throu
the exchange of gauge bosons, then the typical interac
cross section will be of the order ofs;a2/e2. Thus, impos-
ing that at thermalizationn(h!)s(h!);H(h!), we get that
a! /a1;a21R21/2, with a;1021–1022.

III. GRAVITONS ENERGY SPECTRA

We can characterize a generic graviton background
terms of three related~and equally important! physical ob-
servables. We can compute the~present! spectral energy den
sity in critical unitsVGW(n,h0), but, for experimental appli-
cations, two other quantities can be defined, namely
power spectrum@which will be denoted withdh(n,h0)] and
thespectral density Sh(n,h0). VGW(n,h0) anddh(n,h0) are
dimensionless whereas the spectral density is measure
seconds. In Appendix A we give the precise mathemat
definitions of these observables.

The continuity of the scale factors and of their first d
rivatives implies that the evolution of our model can be e
pressed as

ai~h!5F2
h1

h G , h<2h1 ,

as~h!5A2h13h1

h1
, 2h1,h<h r ,

ar~h!5
h13h11h r

Ah1~2h r13h1!
, hdec<h,h r ,

am~h!5
~h1hdec16h112h r !

2

2~2hdec12h r16h1!Ah1~2h r13h1!
,

h0<h,hdec, ~3.1!
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whereh0 andhdec are, respectively, the present time and t
decoupling time, whereash1 andh r have been defined in th
previous section.

The graviton field operators can be decomposed as

m̂~xW ,h!5
1

~2p!3/2E d3k@m̂~k,h!eikW•xW1m̂†~k,h!e2 ikW•xW#,

~3.2!

wherem̂(k,h)5c(k,h)â(kW ). This decomposition holds fo
each polarization. In order to compute the energy density
the graviton background we have to solve the evolution
the mode function

c91Fk22
a9

a Gc50, ~3.3!

in each of the four temporal regions defined by Eq.~3.1!.
Notice thata9/a has a bell-like shape and it goes asympto
cally as h22 in each phase of the background evolutio
Thusc will oscillate for kh@1 but it will be parametrically
amplified in the opposite limit~i.e., kh,1). At kh;1 the
given mode will hit the potential barrier represented
ua9/au. The solution of Eq.~3.3! in the background of Eq.
~3.1! is

c i~k,h!5
p

A2k
AxHn

(2)~x!, h,2h1 ,

cs~k,h!5
1

A2k
Ay@s* A1~k!H0

(2)~y!1sA2~k!H0
(1)~y!#,

2h1,h,h r ,

c r~k,h!5
1

A2k
@B1~k!e2 iz1B2~k!eiz#, h r,h,hdec,

cm~k,h!5
1

A2k
Aw@q* c1~k!Hm

(2)~w!

1qc2~k!Hm
(1)~w!#, hdec,h,h0 , ~3.4!

where

p5Ap

2
e2 i (p/2)ne2 i (p/4), s5Ap

2
ei (p/4),

q5Ap

2
ei (p/2)mei (p/4), ~3.5!

guarantee that the large argument limit of the Hankel fu
tions Hm,n

(1,2) is exactly the one required by the quantum
mechanical normalization.5 The arguments ofc are, respec-
tively,

5Notice that we kept the Hankel indicesn andm generic. In the
case of a pure de Sitter phase we would haven5

3
2 .
1-6
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x5kh, y5kS h1
3

2
h1D , z5kh,

w5k~h1hdec16h112h r !, ~3.6!

and the six mixing coefficients@A6(k), B6(k), c6(k)] can
be fixed by the six conditions obtained matchingc andc8 in
h52h1 , h5h r and h5hdec. The results of this calcula
tion are reported in Appendix C. For a generic amplificati
coefficient b2(v) the spectral energy density in the rel
graviton background is given by Eq.~A13!

drGW

d ln v
5

v4

p2
n̄~v!, n̄~v!5ub2~v!u2, v5

k

a
52pn,

~3.7!

since, as it is well known and discussed in Appendix A,
square modulus of the mixing coefficient can be interpre
as the mean number of gravitons at a given frequency.
tice thatv is the physical wave number. The relic gravito
energy spectrum~in critical units! in each of the three
branches is simply obtained by insertingA2(v) @i.e., Eq.
~C2!#, B2(v) @i.e., Eq. ~C7!#, and c2(v) @i.e., Eq. ~C10!#
into Eq. ~A13!. The final result can be expressed as

VGW~v,h0!5Vg~h0!«lS v

v r
D ln2S v

v1
D , v r,v,v1 ,

VGW~v,h0!5Vg~h0!
p

4
«l ln2S v r

v1
D , vdec,v,v r ,

VGW~v,h0!5Vg~h0!
p

16
«lS vdec

v D 2

ln2S v r

v1
D ,

v0,v,vdec, ~3.8!

with

ndec(h0)51.693102163[V0(h0)h02]1/2 Hz and

n0~h0!51.1310218h0Hz, ~3.9!

where V0(h0) is the fraction of critical density in matter
Notice that

«52RiS gdec

gth
D 1/3

, Ri5
81

32p3

Vg~h0!5
rg~h0!

rc~h0!
[

g0p2

30

T0
4

H0
2M P

2
52.631025h0

22 ,

~3.10!

where g052 and T052.73 K. Vg(h0) is the fraction of
critical energy density in the form of radiation at the pres
observation time. Notice that the dependence upon the n
ber of relativistic degrees of freedom occurs since, unl
gravitons, matter thermalizes and then the ratio between
critical energy density and the energy density stored in
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relic graviton background is only approximately constant
the radiation-dominated phase.

The local ~differential! bounds on the energy spectru
can be easily satisfied. Indeed by takingH1 /M P<1027 the
spectrum satisfies the COBE bound of Eq.~1.2! and also the
pulsar bound of Eq.~1.3!. The indirect nucleosynthesis
bound applies to the integrated spectrum and since in
case the spectral energy density increases sharply in the
branch we have to conclude that the height of the peak c
not be too large. In order to prevent the Universe from e
panding too fast at nucleosynthesis we have to demand

E
nn

nmax
d ln vVGW~v,hn!,

7

43
~Nn23!Frg~ tn!

rc~ tn!
G .

~3.11!

Since the maximal number of massless neutrinos permi
in the context of the homogeneous and isotropic BBN s
nario is bounded to beNn<3.4, we have that in our contex
the nucleosynthesis bound becomes

3

Ns
S gn

gth
D 1/3

,0.07, ~3.12!

where the factor of 3 counts the two polarizations of t
gravitons but also the quanta associated with the inflaton6

An increase inNs not only decreases the height of th
peak, but it can also make the peak structurenarrower. This
happens simply because byincreasing Ns , n r}Ns

3/4 grows
and n1}Ns

21/4 gets pushed towards more infrared value
Given the limited range of variation ofR this effect is quite
mild. We illustrate the variation ofR on the energy spectrum
in Fig. 4. A decrease in the inflationary curvature scale at
end of inflationdoes notaffect the peak since the maxima
amplified frequency does not depend onH1 /M P but it only
depends onR.

In quintessential inflationary models the energy density
relic gravitons can be much larger, at high frequencies, t
in the case of ordinary inflationary models where the ene
spectrum is still flat in the hard branch. This statement can
appreciated by looking at the graviton spectra of the ordin
inflationary case which are computed in Appendix B. In t
quintessential case the location of the peak is rather surp
ing. In fact it depends~very weakly, as we said! on the num-
ber of minimally coupled scalar fields butit does not depend
upon the final curvature scale at the end of inflation. Thus
the peak is firmly localized around 100 GHz and it cann
move one order of magnitude. This behavi

6The number of relativistic degrees of freedom after matter th
malization is given, in the MSM bygth5106.75, whereasgn

510.75. Equation~3.12! implies that the number of~minimally
coupled! scalar degrees of freedom will have to exceed 20 as it
occur, for instance, in the minimal supersymmetric standard mo
@21#.
1-7
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FIG. 4. In the left plot we report the energy spectrum as a function of the physical wave number for a fixed value ofAl (;1027) but
for different values ofR. In particular we show the casesR510 ~dot-dashed line!, the caseR51 ~full thick line!, and the caseR50.6 ~full
thin line, almost invisible!. We see that byincreasing Rthe height of the peak gets smaller and also its width shrinks. In the right plo
report the graviton energy spectrum for a fixed value ofR ~which we take of order one! but for different values ofl and, more specifically,
l510214 ~full thick line!, l510215 ~full thin line!, l510216 ~dot-dashed line!. We tookV050.3, gdec53.36 andgth5106.75 as a fiducial
set of parameters. Notice that in spite of the fact thatVGW(v,h0) depends on the specific value ofh0 which appears, in our notations, i
Vg(v,h0), we choose to ploth0

2VGW(v,h0), which does not depend uponh0. In this way the amplitudeof the energy spectrum is
independent onh0 and the only quantities depending onh0 arev0 andvdec. In this plot we tookh050.6.
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has to be contrasted in ordinary inflationary models wh
the maximal frequency of the spectrum is determined
1011AH1 /M P Hz. So by loweringH1, then, the maximal
frequency decreases. In the case we are discussingH1 only
appears in the expression ofn r . Therefore, by decreasin
H1 /M P ~see Fig. 4 right plot! n1 does not move butn r gets
comparatively smaller reducing the frequency range of
semihard branch.

IV. GRAVITONS POWER SPECTRA AND ASSOCIATED
SPECTRAL DENSITIES

The relic graviton spectrum can be characterized not o
in terms of the energy density but also in terms of the pow
spectrum dh(v,h0) which can be directly connected t
VGW(v,h0) @see Eq.~A15!# with the results that

VGW~v,h0!5
1

6p2 S v

H0
D 2

udh~v,h0!u2,

udh~k,h0!u25k3@ uh^~k,h0!u21uh%~k,h0!u2#, ~4.1!

where h^ (k,h)5c ^ (k,h)/a(h) and h% (k,h)
5c % (k,h)/a(h) are the Fourier amplitudes of the gravito
field operators associated with the two~independent! polar-
izations @see Eqs.~A1!# and H0 is the present value of th
Hubble parameter. The three branches of the power spec
turn out to be

dh~v,h0!5BR23/4A3«

2l
AVg~h0!

3S v

v r
D 21/2

lnS v

v1
D , v r,v,v1 ,
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dh~v,h0!5BR23/4A3«p

8l
AVg~h0!

3S v

v r
D 21

lnS v r

v1
D , vdec,v,v r ,

dh~v,h0!56.531023
pA6«lp

8
AVg~h0!

V0~h0!

3S vdec

v D 2

lnS v r

v1
D , v0,v,vdec, ~4.2!

whereB53.07310230h0. The power spectrum of the har
branch evolves typically asv21/2. Our power spectrum de
clines slower than in ordinary inflationary models where t
high-frequency tail evolves typically asv21. This behavior
occurs, in our case, for frequenciesvdec,v,v r .

In comparing the produced graviton spectrum with t
experimental sensitivities of the various detectors it turns
to be useful to translate the physical information contain
into the energy density into another quantity, thespectral
amplitude~often called alsospectral density! whose relation
with the energy density has been derived in Appendix A@Eq.
~A19!#. By demanding that the peak of the graviton spectr
does not exceed the nucleosynthesis bound we conclude
to reach a level of sensitivity comparable wi
h0

2VGW(n,h0)&1026 implies that

ASh~n,h0!&3310226S kHz

n D 3/2

Hz21/2. ~4.3!

The physical relevance ofSh(n,h0) is related to the way we
hope to observe~in the near future! stochastic GW back-
grounds. In order to detect a gravitational wave backgrou
in an optimal way@39#, we needat leasttwo detectors~two
bars, two interferometers, one bar and one interfero
eter . . .!. Suppose then that we have two detectors and s
pose that the output of the detectors is given bysi5hi1Ni
1-8
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PRODUCTION AND DETECTION OF RELIC GRAVITONS . . . PHYSICAL REVIEW D 60 123511
wherei 51,2 refers to each single detector;hi is the gravita-
tional fluctuation to be detected andNi is the noise associ
ated with each detector measurement. Now, if the noise
the two detectorsare not correlated, then, the ensemble av
erage of the Fourier components of the noises is stocha
namely

^Ni* ~n!Nj~n8!&5
1

2
d~n2n8!d i j SN~n!, ~4.4!

whereSN(n) is the spectral density of the noise. The noise
level of the detector can then be estimated byASN(n). As
we discussed in Appendix A@see Eqs.~A16!,~A17!# it is also
possible to characterize thesignal with the same technique
and, then, we will have

^hi~n!hj* ~n8!&5
1

2
d i j d~n2n8!Sh~n!, ~4.5!

whereSh(n)5Sh(2n) is the spectral density of the signa
and it is related toVGW by Eq. ~A19!. Very roughly, if a
signal is registered by a detector this will mean th
Sh(n* ,h0).SN(n

*
) , namely, the spectral density of the si

nal will be larger, at a given frequencyn* , than the spectra
density of the noise associated with the detector pair. In
der to confront our signal with the available sensitivities
need to compute the spectral densitySh . Taking into account
the numerical factors, we get

Sh~v,h0!5CR29/4S gdec

gr
D 21 «

l2
Vg~h0!

3S v

v r
D 22

ln2S v

v1
DHz21, v r,v,v1 ,

Sh~v,h0!5
Cp

4 S gdec

gr
D 21

R29/4
«

l2
Vg~h0!

3S v

v r
D 23

ln2S v r

v1
D Hz21, vdec,v,v r ,

Sh~v,h0!54.231011
3«l

64p
Vg~h0!h0

21V0
23/2

3S v

vdec
D 25

ln2S v1

v r
D Hz21,

v0,v,vdec, ~4.6!

whereC;2.12310213B 2.
Not only the spectral amplitude of the theoretical sign

depends upon the frequency, but also spectral amplitud
the noise does depend upon the frequency. It is not o
important ifSh(n).SN(n) at a particular frequency but it i
also crucial to take into account, for detection strategies,the
spectral behavior of the signalversus thespectral behavior
of the noisein the frequency range explored by the detecto
The spectral density in the hard branch is illustrated in Fig
12351
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from v51 Hz until v51 KHz. We remind the reader tha
this range of wave numbers is the one relevant for the fo
coming interferometric detectors. In Fig. 5 we see that
spectral density of our signal is mainly concentrated in
blank region between the thick line~corresponding toR
510) and the full thin line~corresponding toR51). For
v;0.1 kHz, Sh;10252–10253 s. For v;0.01 kHz, Sh
;10250–10251 s. This observation shows that, within th
frequency range of the interferometers our theoretical sig
can be larger or smaller depending upon the frequency.

V. DETECTABILITY OF THE QUINTESSENTIAL
GRAVITON SPECTRA

There are, at the moment various interferometric detec
under construction. They include the two LIGO detectors@1#
being built by a joint Caltech/MIT collaboration, the VIRGO
detector~near Pisa, Italy! @2# the GEO-600~Hannover, Ger-
many! @4#, and the TAMA-300~near Tokyo, Japan! @41#.
The noise spectral densities of these detectors, defined
frequency range going from 1 Hz to 104 Hz, decline usually
quite rapidly from 1 to 100 Hz, they have a minimu
~around 100 Hz! corresponding to the maximal sensitivity
and then they rise again with a more gentle slope until,
proximately, 1 –10 kHz.

As we discussed in the previous section, in order to h
some hopes of detection we have to demand that the the
ical spectral density of the signal is larger than the spec
density of the noise. Let us then try to compare this va
with the expected sensitivity of the interferometers possi
available in the near future. The power spectrum of our s
nal is too small to be seen by TAMA-300, GEO-600, a
VIRGO. By correlating different detectors the sensitivity c
increase also by a large factor@42–44#. However, the pub-
lished results on the foreseen sensitivities atn I are far too
large to be relevant for our background@27#. By comparing
Fig. 5 with Fig. 6 we can argue that only the advanced LIG
detectors are closer to our predicted spectral density and
our signal is generally smaller than the advanced LIGO s

FIG. 5. We plot the spectral density forl510214 in the fre-
quency range relevant for the forthcoming interferometric data
direct GW detection. In the full thick line we report the caseR
510, in the full thin line the caseR51. and in the dot-dashed line
the caseR50.6. Again we tookh050.6 andV050.3 as fiducial
values.
1-9
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MASSIMO GIOVANNINI PHYSICAL REVIEW D 60 123511
sitivity. The two ~identical! LIGO detectors are under con
struction in Handford~Washington! and in Livingston~Loui-
siana!. After various years of operation the detectors will
continuously upgraded reaching, hopefully, the so-calledad-
vancedlevel of sensitivity.

Let us estimate the strength of our background for a
quency of the order of 0.1–1 kHz. Let us assume that
energy density of the stochastic background is the maxi
compatible with the nucleosynthesis indications. The gra
ton energy density~in critical units! at a frequencyn I
;0.1–1 kHz is then

VGW~n I ,h0!h0
252.29 10215Ns

23/4@219.710.25 lnNs#
2,

n I50.1 kHz, ~5.1!

VGW~n I ,h0!h0
252.2910214Ns

23/4@217.410.25 lnNs#
2,

n I51 kHz. ~5.2!

Suppose then that we correlate the two LIGO detectors f
periodt54 months. Then, the signal-to-noise ratio~squared!
can be expressed as@42–44#

S S

ND 2

5
9H0

4

50p4
tE

0

`

dn
g2~n!VGW

2 ~n,h0!

n6SN
(1)~n!SN

(2)~n!
. ~5.3!

The functiong(n) is called the overlap function. It takes int
account the difference in location and orientation of the t
detectors. It has been computed for the various pairs
LIGO-WA, LIGO-LA, VIRGO, and GEO-600 detector
@44#. For detectors very close and parallel,g(n)51. Basi-
cally, g(n) cuts off the integrand of Eq.~5.3! at a frequency
2pn of the order of the inverse separation between the
detectors. For the two LIGO detectors, this cutoff is arou
60 Hz.SN

(1,2) are the noise spectral densities of the two LIG
detectors and since the two detectors are supposed t

FIG. 6. The predicted noise power spectra for various inter
ometers. This figure is adapted from@40#. P( f ) is what we called
SN and it is the quantity which should be compared withSh . In this
plot f [n.
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identical we will have thatSN
(1)(n)5SN

(2)(n). In order to de-
tect a stochastic background with 90% confidence we h
to demandS/N*1.65. Now in order to estimate the signa
to-noise ratio we need to estimate numerically the integ
appearing in Eq.~5.3!. We know the theoretical spectrum
since we just estimated it. The noise spectral densities of
LIGO detectors are not of public availability so that we ca
not perform numerically this integral. In the case of a fl
energy spectrum we have that the minimumVGW detectable
in t54 months is given, with 90% confidence, b
VGW(n I ,h0)5531026h0

22 ~for the initial LIGO detectors!
and byVGW(n,h0)55310211h0

22 ~for the advanced LIGO
detectors!. For a correct comparison we should not confro
Eqs.~5.1! and~5.2! with the sensitivities of the LIGO detec
tors to flat energy spectra but rather with the sensitivit
obtained from Eq.~5.3! in the case of our specific energ
spectrum reported in Eqs.~3.8!.

Let us then compare, for illustration Eqs.~5.1! and ~5.2!
with the sensitivity to a flat energy spectrum even if this
not completely correct. The idea is to discuss, at fixed f
quencies, the maximal signal provided by Eqs.~5.1!,~5.2! for
different values ofR. This comparison is illustrated in Fig. 7
For the allowed range of variation ofNs our signal lies al-
ways below~of roughly 1.5 orders of magnitude! the pre-
dicted sensitivity for the detection, by the advanced LIG
detectors, of an energy density with flat slope. The m
uncertainty in this analysis is, however, the spectral beha
of the sensitivity for a spectrum which, unlike the one us
for comparison, is not flat. It might be quite interesting
perform this calculation in order to see which is the prec
sensitivity of the LIGO detectors to a spectral energy den
as large as 10212 and rising as (n/n r)ln

2(n/n1) in a frequency
range 1 Hz–1 kHz.

If we move from the kHz region to the GHz region th

r-

FIG. 7. With the two full thin lines we illustrate
logh0

2VGW(n I ,h0) as a function of logNs for frequenciesn I50.1
kHz according to Eqs.~5.1! and~5.2!. The full thick lines represents
the sensitivity of the LIGO detectors and of the advanced LIG
detectors to an energy density with flat frequency spectrum. F
top to bottom the thick lines refer, respectively, toh0

2VGW55
31026 and toh0

2VGW55310211. In order to be detected, the the
oretical signal has to be above the thick line~s!. We see that the
region between the two thin lines does not overlap with the se
tivity of the upgraded LIGO detectors by, roughly, 1.5 orders
magnitude.
1-10
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PRODUCTION AND DETECTION OF RELIC GRAVITONS . . . PHYSICAL REVIEW D 60 123511
signal gets much larger than in the ordinary inflationa
models. Moreover, the energy spectrum exhibits a q
broad peak whose typical amplitude can be as large as~but
smaller than! 0.531025. The spike~corresponding to the
maximum of the peak! is located at a frequency of the ord
of 350 R21/4 GHz.

The particular spectral shape of the signal coming fr
quintessential inflation seems to point towards the use
electromagnetic detectors and, in particular of microwa
cavities. A typical signature of the background we are d
cussing in the present paper is that the peak freque
~which almost saturates the nucleosynthesis bound! occurs
for frequencies of the order ofn153.5831011R21/4 Hz. We
can say that, very roughly, the size of the GW detector
not only determined by construction requirement but also
the typical frequency range of the spectrum we ought to
plore. In this sense the large separation between the
LIGO detectors is connected with the fact that the explo
frequency range is of the order of 100 Hz. Thus, if we d
with frequencies which are of the order of the GHz, we c
expect small detectors to be, theoretically, a viable optio

Microwave cavities can be used as GW detectors in
GHz frequency range@45,47#. These detectors consist of a
electromagnetic resonator, with two levels whose frequ
ciesns andna are both much larger than the frequencynGW
of the gravitational wave to be detected. In the case of@45#
the two levels are achieved by coupling two resonators,
symmetric in the electric fields and the other antisymmet
Indeed, in the case of cylindrical microwave cavities the
are different normal oscillations of the electric fields. In@45#
the relevant mode for the experimental apparatus is the T011
according to the terminology usually employed in electrod
namics in order to identify normal modes of a cavity cor
sponding to different boundary conditions@46#. There were
published results reporting the construction of such a de
tor @48#. In this casenGW510 GHz andDn5ns2na;1
MHz. In this experiment a sensitivity of fractional deform
tions dx/x of the order of 10217 was observed using an in
tegration timeDt;103 s. The sensitivity to fractional defor
mations can be connected to the sensitivity for
observation of a monochromatic gravitational wave of f
quencynGW. Following @48# we can learn that the sensitivit
to fractional deformations is a function ofPa and Ps ~the
powers stored in the symmetric and antisymmetric levels!, Q
~the quality factor of the cavity@46# and which gives the rate
of dissipation of the power stored in the cavity!. If we would
assume, as in@48# Q;109, Pa;10221 Watt Ps52.4
31022 Watt , we would getdh;10217.

There, are at the moment, no operating prototypes
these detectors and so it is difficult to evaluate their sens
ity. The example we quoted@48# refers to 1978. We think
that possible improvements in theQ factors can be envisage
~we see quoted values of the order of 1012 which would
definitely represent a step forward for the sensitivity!. In
spite of the fact that improvements can be foreseen we
notice immediately that, perhaps, to look in the highest p
sible frequency range of our model is not the best thing
do. In fact from Eq.~4.1! we can argue that in order to dete
a signal of the order ofh0

2VGW;1026 at a frequency of 1
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GHz, we would need a sensitivity of the order ofdh
;10230. Moreover as stressed in@49# the thermal noise
should be properly taken into account in the analysis of
outcome of these microwave detectors. Indeed, as not
from the very beginning@48#, the thermal noise is one of th
fundamental source of limitation of the sensitivity. An inte
esting strategy could be to decrease the operating frequ
range of the device by going at frequencies of the order o
MHz. Based on the considerations of@45# we can say that by
taking high-quality resonators the foreseen sensitivity can
as large ash0

2VGW;1024. This sensitivity, though still
above our signal, would be quite promising.

VI. GRAVITON SPECTRA FOR QUASI –de SITTER
PHASES

During an inflationary phase the evolution is not exac
of the de Sitter type. We want to understand how the slop
the energy density of the relic graviton background will
modified by the slow-rolling corrections for frequencies a
cessible to the forthcoming interferometers. In general
deviations from a de Sitter stage can be induced either
cause of the specific inflationary model or because of
slow-rolling corrections whose strength can be described
terms of the so-called slow-rolling parameters

a52
Ḣ

H2
,1, b5

f̈

Hḟ
,1, ~6.1!

whereH5(lna)• is the Hubble parameter in cosmic time,f
is the inflaton and the dot denotes derivation with respec
cosmic time. In the slow-rolling approximation the inflato
evolution is dominated by the scalar field potential accord
to the ~approximate! equations

3Hḟ1
]V

]f
.0, M P

2H2.V. ~6.2!

In this approximationH is not exactly constant but it slowly
decreases leading to what we call the quasi–de Sitter ph
The evolution equation of the mode function can be writte
by using the definition ofa as

c91Fk222a2H2S 12
a

2 D Gc50. ~6.3!

As we can see, the time-dependent frequency appearin
the mode function contains two contributions: the first o
~i.e., 2a2H252/h2) is the term coming from a pure de Sitte
phase, the second one, proportional toa, is the correction.

In short the logic is the following. The quasi–de Sitt
phase modifies~through ana-dependent correction! the in-
dex of the Hankel functions whose precise value~equal to
1.5 in the pure de Sitter phase! gets slightly smaller than 1.5
From the sign of the correction appearing in Eq.~6.3! we can
argue that the quasi–de Sitter nature of the inflationary ph
will lead to a decrease in the slope of the energy spectr
The question is how much the slope of the hard branch
1-11
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be affected, or, more precisely, how much smaller than
will the slope be of the hard branch of the graviton ene
density.

The answer to this question will, of course, depend up
the specific inflationary model since the size of the slo
rolling corrections can vary from one inflationary potential
the other. Notice that our concern is different from the o
usually present@50–53# in the context of ordinary inflation-
ary models where the slow-rolling corrections are taken i
account in the soft branch of the spectra~namely at suffi-
ciently large scales!. Indeed, for flat spectra the most signi
cant bounds come from the infrared, whereas, in our case
most significant bounds are in the ultraviolet and we have
understand how the scales which re-enter in the stiff ph
are affected by the quasi–de Sitter nature of the inflation
phase. Of course, we could also discuss the slow-rolling
rections to the soft branch of our spectrum, but, they a
comparatively, less relevant~for the structure of the spike!
than the correction to the hard branch.

As usual, the slow-rolling corrections not only affect th
mode function evolution but also the definition of conform
time itself, namely we will have

h5E dt

a
5E da

a2H
52

1

aH
1E a

da

a2H
. ~6.4!

By using the fact thatM P
2 Ḣ52(3/2)ḟ2 and the fact thatb

,1, we can connect directlya to the slope of the potentia

a52
Ḣ

H2
5

M P
2

6 S ] ln V

]f D 2

. ~6.5!

Since we are interested in the lowest-order slow-rolling c
rection we will assume thata andb are constants. This is
simplification which will not affect~numerically! the slope
of the spectrum. In the case of inflationary models with c
otic and exponential potential it can be shown that the ‘‘ru
ning’’ of a with f ~and, therefore, with the wavenumberk)
will affect the spectral slopes with a term which is of th
order of 1/N2 whereN is the number of inflationary e-fold
@53–55#. If a is constant then we have thath21

52(aH)/(11a) which leads, once inserted in Eq.~6.3!

c91F k22

n22
1

4

h2
G50, with n5

3

2
1a, ~6.6!

where the expression ofn holds fora,1.
Let us examine now the quasi–de Sitter nature of diff

ent inflationary scenarios. An inflationary potential of ch
otic form

V~f!5
fn

n!
, ~6.7!

will lead to a5(M P
2 /6)(n2/f2). Let us take for the value o

a the one corresponding to modes crossing the horiz
around 20–25 e-folds before the end of inflation. The rea
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for this choice is very simple. We want to understand h
the slope of the energy spectrum is modified for scales la
than~and of the order of! the ones probed by the interferom
eters. A simple calculation shows that, for instance,
LIGO-VIRGO scale crosses the horizon roughly 21 e-fo
before the end of inflation. The end of inflation occurs wh
a(fend)51. Thus, at the end of inflationfend

2 5(M P
2 /6)n2.

By solving consistently Eqs.~6.2! with the potential~6.7! we
get easily that the number of inflationary e-folds at a giv
value off is given by

N~f!5E
f

fend da

a
5

3

2M P
2n

~f22fend
2 !. ~6.8!

From this last equation we can determine easilyf21 and
then, by insertingfend

2 , a turns out to be

a5
n

n184
, ~6.9!

which is of the order of 0.02 forn52 , of the order of 0.04
for n54 and so on. Another example could be the one of
exponential potential. Using the definition ofa from Eq.
~6.5! we have that an exponential potential of the form

V~f!5 expF1

q

f

M P
G , ~6.10!

will lead to a51/q2.
With these results we can easily compute the correcti

to the hard branch of the spectrum. The spectral energy d
sity will be

VGW~v,h0!5Vg~h0! f ~a,l,R!S v

v r
D 122a

ln2S v

v1
D ,

with

f ~a,l,R!5
9

p4 S a1
3

2D 2

22aUGS 3

2
1a D U2

3l122aR22aS gdec

gr
D 1/3

. ~6.11!

The power spectrum and the associated spectral density
be computed from using the techniques already discusse
the previous sections. Some authors call22a the correc-
tions to the spectral index. Equation~6.11! tells us that the
corrections arising during a quasi–de Sitter phase always
in the direction of making the maximal slope of the ha
branch slightly smaller than one by a factor 0.08~for in-
stance in the case the case off4 potential!. In the case of the
exponential potential the magnitude of the corrections to
slope is controlled byq2. Again we see that for reasonab
values ofq2 like q255,10, . . . @5# the corrections are agai
small and, at most, of the order of few percent.
1-12
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VII. CONCLUDING REMARKS

In this paper we computed the relic graviton spectra
quintessential inflationary models. We showed that the
ergy spectra possess a hard branch which increases in
quency. Large energy densities in relic gravitons can be
pected in this class of models. The spike of the ene
spectrum can be as large ash0

2VGW.1026 at a typical
~present! frequencyn153583R21/4 GHz. The spectral am
plitude at the interferometer frequencies is just below
value visible by the upgraded LIGO detectors. Since a la
amount of energy density can be stored around the GHz
use of small electromagnetic detectors for the detection
such a background seems more plausible. In particular
crowave cavities should be considered as a possible ca
date. Our investigation also hints that the sensitivities of
advanced LIGO detectors to increasing energy spectra
frequency, asn ln2n should be precisely computed by co
volving our spectra with the noise power spectra of the
tectors.
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APPENDIX A: RELIC GRAVITONS
CORRELATION FUNCTIONS

In this appendix we concentrate some of the more tec
cal derivations concerning the spectral properties of the r
gravitons which can be characterized through their ene
density in critical units or through the two-point correlatio
function of the amplified tensor fluctuations of the metr
We want to give explicit derivations of these quantities a
of their relations.

GW’s, being pure tensor modes of the geometry, o
couple to the curvature but not to the matter sources. T
effective action can be obtained by perturbing the Einste
Hilbert action to second order in the amplitude of tens
fluctuations. The Fourier expansion of the field operators
lated to the two physical polarization of the gravity wa
~which we denote with% and ^ ) is

m̂ %~xW ,h!5
1

~2p!3/2E d3k@m̂ %~k,h!eikW•xW1m̂ %

† ~k,h!e2 ikW•xW#,

m̂ ^~xW ,h!5
1

~2p!3/2E d3k@m̂ ^~k,h!eikW•xW1m̂ ^

† ~k,h!e2 ikW•xW#,

~A1!

where m̂ % (k,h)5c % (k,h)â% (kW ) and m̂ ^ (k,h)
5c ^ (k,h)â^ (kW ). The creation and annihilation operato
follow the usual commutation relations, namely,
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@ âl~kW !,âs
†~pW !#5dlsd (3)~kW2pW !. ~A2!

From the Heisenberg equations of motion, the field opera
follow the evolution equations for the Fourier amplitudes

c91Fk22
a9

a Gc50, ~A3!

for each of the two physical polarizations. In most of t
cosmological applications we will be dealing withua9/au has
a bell-like shape going to zero, for large conformal times,
h22. Equation~A3! can be be solved in two significant lim
its. The first one is fork2!ua9/au corresponding to wave
lengths which are outside of the horizon~under the bell!

c~k,h!5A~k!a~h!1B~k!a~h!Eh dh8

a2
, ~A4!

where A(k) and B(k) are integration constants. For larg
momenta~i.e., k2@ua9/au) the general solution of Eq.~A3!
is

c~k,h!5
1

A2k
@b1~k!e2 ikh1b2~k!eikh#, ~A5!

whereb2(k) and b1(k) are complex numbers and whe
the quantum-mechanical normalization 1/A2k has been cho-
sen. Therefore, if we start ath→2` with a positive fre-
quency mode the evolution fork2!ua9/au will mix the posi-
tive frequency with the negative one and eventually we w
end up, forh→1` with a superposition of positive an
negative frequencies according to Eq.~A5!.

The two-point correlation function of the graviton fiel
operators can then be computed in Fourier space

^0um̂l~kW ,h!m̂s
†~pW ,h!u0&5ucl~k,h!u2dlsd (3)~kW2pW !.

~A6!

Field modes with different wave numbers are then stati
cally independent as a consequence of the graviton emis
from the vacuum. Some authors refer to Eq.~A6! as the
stochasticity conditionwhich expresses the main statistic
property of the graviton background. Within our quantu
mechanical formalism we can also compute the two-po
correlation function between field operators, namely

j~r !5^0um̂ i j ~xW !m̂ i j ~xW1rW !u0&5
1

p2E dk

k

sinkr

kr
udh~k,h!u2,

~A7!

where

udc~k,h!u25k3~ uc %~k,h!u21uc ^~k,h!u2!, ~A8!

is the power spectrumof the relic gravitons background
summed over the physical polarizations.

Sometimes, to facilitate the transition to the quantities
ten used by the experimentalists, it is convenient to den
the gravitational wave amplitude, for each polarization, w
1-13
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h~xW ,h!5
1

~2p!3/2E d3kh~k,h!eikW•xW, ~A9!

where the reality condition impliesh* (kW )5h(2kW ). The sta-
tistical independence of waves with different wave vect
implies, in this formalism, that

^hl~kW ,h!hs* ~pW ,h!&5uhl~k,h!u2dlsd (3)~kW2pW !,

hl~k,h!5
cl~k,h!

a
. ~A10!

Equation~A10! can be viewed as the classical limit of E
~A6! where the quantum-mechanical expectation values
replaced by ensemble averages. Notice that this concep
be made quite rigorous by taking the average of the grav
field over the coherent state basis. This procedure would
analogous to what is normally done in quantum optics in
context of the optical equivalence theorem@56–58#.

The energy density~and pressure! of the relic graviton
background can be easily obtained by taking the averag
the (00) of the energy momentum tensor of the relic gra
tons energy

rGW~h!5
1

16p3a2E d3k@ uh%
8 ~k,h!u21uh8̂ ~k,h!u2

1k2
„uh%~k,h!u21uh^~k,h!u2

…#. ~A11!

If we insert the asymptotic expression of the mode funct
of each polarization for large~positive! conformal times we
get, from Eq.~A11!,

rGW~h!5E dv

v
v4

ub2~v!u2

p2
, v5k/a, ~A12!

from which we can define the logarithmic energy spectr
as

drGW~v,h!

d ln v
5

v4

p2
ub2~v!u2, ~A13!

@where we used the fact thatub1(v)u22ub2(v)u251]. By
taking into account that the energy density ofn̄(v) gravitons
in the proper momentum intervaldv is given by

drGW52vn̄~v!
d3v

~2p!3
, ~A14!

ub2(k)u2 can be interpreted as the mean number of produ
gravitons in a given frequency interval.

In order to compute the relation betweenVGW(v,h) and
dh(v,h)5dc(v,h)/a(h) we can use Eq.~A9! together with
the stochasticity condition of the graviton background. Af
having divided by the critical energy density we obtain
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VGW~v,h0!5
1

6p2 S v

H0
D 2

udh~v,h0!u2, ~A15!

whereh0 is the present conformal time which appears sin
we want to refer everything to the present value of t
Hubble factor. In comparing the signal coming from a pa
ticular model with the experimental sensitivities it turns o
to be the widely usedspectral density Sh(n,h0). In order to
define it let us assume that each polarization of the gra
wave amplitude can be written as

h~n!5E d th~ t !e22ipnt, ~A16!

wheret is the cosmic time variable. Then the spectral amp
tude can be defined as

^h~n!h* ~n8!&5
1

2
d~n2n8!Sh~n!. ~A17!

By using the definition~A17! and by recalling thatrGW(h)
5@M P

2 /(6a2)#^h8^

2 1h8%

2 &, we obtain

VGW~n,h0!5
4p2

3H0
2
n3Sh~n,h0!. ~A18!

This last equation implies that

Sh~n,h0!58310237VGW~n,h0!h0
2Hz2

n3
, ~A19!

from which is clear thatSh is measured in seconds.

APPENDIX B: RELIC GRAVITONS SPECTRA IN THE
ORDINARY INFLATIONARY CASE

Consider the model of a universe evolving from a de S
ter stage of expansion to a matter-dominated phase pas
through a radiation-dominated phase. By requiring the c
tinuity of the scale factors and of their first derivatives at t
transition points we have thata(h), in the three different
temporal regions, can be represented as

ai~h!5F2
h1

h G , for h,2h1 ,

ar~h!5
h12h1

h1
, for 2h1,h,h2 ,

am~h!5
~h1h214h1!2

4h1~h212h1!
, for h.h2 , ~B1!

where 2h1 and h2 mark, respectively, the onset of th
radiation-dominated phase and the decoupling time.

In order to compute the graviton spectra in this model
have to estimate the amplification of the graviton mode fu
1-14
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tion induced by the background evolution reported in E
~B1!. The solution of Eq.~A3! in the three temporal region
is given by

c i~x!5
p

A2k
AxHn

(2)~x!,

c r~y!
1

A2k
@B1e2 iy1B2eiy#,

cm~z!
1

A2k
Az@q* c1Hm

(2)~z!1qc2Hm
(1)~z!#, ~B2!

where

x5kh, y5k~h12h1!, z5k~h1h214h1!,
~B3!

and Hn,m
(1,2) are the Hankel functions@59,60# of the first and

second kind. In the case of the background given by Eq.~B1!
the Bessel indicesn andm are both equal to 3/2 but we lik
to keep them general in light of the applications reported
the present paper.

Notice that in Eq.~B2! we included

p5Ap

2
e2 i (p/4)(112n), q5Ap

2
ei (p/4)(112m), ~B4!

ensuring that the large time limit of the mode function is t
one dictated by quantum mechanics~i.e., ei 6kh/A2k) with-
out any extra phase or extra~constant! coefficient.

The constants appearing in Eq.~B2! are fixed by the
quantum-mechanical normalization imposed during the
Sitter phase, and then, in order to compute the amplifica
we have to match the various expressions of the mode fu
tions ~and of their first derivatives! in h52h1 and in h
5h2. By doing this we get the expression of the amplific
tion coefficients. By first looking at modes which went ou
side of the horizon during the de Sitter phase and re-ent
during the radiation-dominated phase~i.e., modes 2p/h1
,k,2p/h2) we have thatB6 are given by

B75
e7 ix1

2
pH Hn

(2)~2x1!FA2x17
i

A2x1
S n1

1

2D G
6 iA2x1Hn11

(2) ~2x1!J . ~B5!

We are interested in theB2 which measures the amoun
of mixing between positive and negative frequency mo
and whose square modulus can be interpreted as the m
number of produced gravitons. Moreover, we want to eva
ateB2 in the small argument limit~i.e., x1!1) which is the
one physically relevant. The result is
12351
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B2~k!5
2n21

A2p
G~n!S 1

2
2n De2 i (p/4)(112n)ukh1u21/22n,

~B6!

whereG(n) is the Euler Gamma function. In the case of
pure de Sitter background we get, indeed,

B2~k!52
e2 ip

2
ukh1u22. ~B7!

In order to compute the spectrum of the relic gravito
crossing the horizon during the matter-dominated epoch
have to consider a further transition by matchingc r(y) and
cm(z) ~and their first derivatives! in h5h2. The result is
that

c252
i

2
~B12B2!Az2Hm

(2)~z2!q, ~B8!

where we reported only the dominant part in thex1!1 and
z2!1 limit. By performing the limit explicitly we get

uc2~k!u5
G~m!G~n!

2p2
2m1nS 1

2
2n D

3uquupuukh1u2n21/2ukh2u2m11/2. ~B9!

In the case of the model of Eq.~B1! we have that the
energy density of the created gravitons in critical units at
present observation time

V~n,h0!5
1

rc

drGW

d ln n
, ~B10!

can be computed by inserting into Eq.~A13! the expressions
of the mixing coefficients of Eqs.~B6!–~B8!, with the result
that

VGW~n,h0!.Vg~h0!S H1

M P
D 2

, ndec,n,n1 ,

VGW~n,h0!.Vg~h0!S H1

M P
D 2S ndec

n D 2

, n0,n,ndec.

~B11!

This spectrum is reported in Fig. 1. Thesoft branchand the
hard branchdefined in the Introduction do correspond, r
spectively, to the two frequency rangesn0,n,ndec and
ndec,n,n1.

APPENDIX C: TRANSITION FROM INFLATION TO
STIFF PHASE: ACCURATE MIXING COEFFICIENTS

In order to determine the six matching coefficients a
pearing in Eq.~3.4! we have to match the mode functionc
and its first derivative inh52h1 , h5h r andh5hdec. The
results of this calculation are reported in the present sect
Consider first the amplification leading to thehard branchof
the spectrum. The mixing coefficients are given by
1-15



n
e

u

t

ne

in

MASSIMO GIOVANNINI PHYSICAL REVIEW D 60 123511
A2~k!52
p

4A2
e2( i /2)p(n11)H H0

(2)S x1

2 D @x1Hn11
(2) ~2x1!

2nHn
(2)~2x1!#2x1H1

(2)S x1

2 DHn
(2)~2x1!J ,

A1~k!5
p

4A2
e2( i /2)pnH H0

(1)S x1

2 D @x1Hn11
(2) ~2x1!

2nHn
(2)~2x1!#2x1H1

(1)S x1

2 DHn
(2)~2x1!J .

~C1!

The small argument limit ofA2 ~directly relevant for the
estimate of the graviton spectrum in the hard branch! can be
easily obtained and it turns out to be

A2~k!;
3n

p
2n23/2e2( i /2)p(2n11)G~n!x1

2n ln x1 . ~C2!

In order to derive the previous and the following expressio
it is useful to bear in mind that the Wronskian of the Hank
functions is given by

W@Ha
(1)~r !,Ha

(2)~r !#

5Ha11
(1) ~r !Ha

(2)~r !2Ha
(1)~r !Ha11

(2) ~r !

52
4i

pr
, ~C3!

for a generic argumentr and for a generic Bessel indexa. In
this calculation it is also useful to recall that the small arg
ment limit of the Hankel functions is

Ha
(1,2)~r !;S r

2D a 1

G~a11!
7

i

p
G~a!S r

2D 2a

, ~C4!

where the minus~plus! refers to the Hankel function of firs
~second! kind. Notice that this formula is only valid fora
Þ0. In this last case we have indeed that

H0
(1,2)~r !;17

2

p
ln r . ~C5!

Let us now consider the following transition namely the o
leading to thesemihard branch of the spectrum. The exact
expression of the mixing coefficients is, in this case,
12351
s
l

-

B6~k!5
e6 iyr

2 H Ayr l @s* A1~k!H0
(2)~yr !1sA2~k!H0

(1)~yr !#

6 i Fs* A1~k!S 1

2Ayr

H0
(2)~yr !2AyrH1

(2)~yr !D
1sA2~k!S 1

2Ayr

H0
(1)~yr !2AyrH1

(1)~yr !D G J .

~C6!

The small argument limit ofB2 leads to

B2~k!52e2 ipn1 i (p/4)
3n

2A2p

32n23/2G~n!ukh r u21/2ukh1u2n lnFh1

h r
G , ~C7!

which becomes, in the casen5 3
2 ,

B2~k!5
9

8A2
ukh r u21/2ukh1u23/2 lnFh1

h r
G . ~C8!

Finally, let us compute the amplification coefficients
the case of thesoft branch of the spectrum. In this case we
have that the mixing coefficients are

c2~k!5
i

2 H ~B1~k!e2 iydec1B2~k!eiydec!

3F S m1
1

2D q*

Azdec

Hm
(2)~zdec!2Azdecq* Hm11

(2) ~zdec!G
1 i @B1~k!e2 iydec

2B2~k!eiydec#Azdecq* Hm
(2)~zdec!J ,

c2~k!52
i

2 H ~B1e2 iydec1B2~k!eiydec!

3F S m1
1

2D q

Azdec

Hm
(1)~zdec!2AzdecqHm11

(1) ~zdec!G
1 i @B1~k!e2 iydec2B2eiydec#AzdecqHm

(1)~zdec!J .

~C9!

In the small argument limit we have
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c2~k!52
3n

4p
2m1n23/2e2 ip(n12m)

3G~m!G~n!ukh r u21/2ukh1u2nukhdecu2m11/2 lnFh1

h r
G ,

~C10!

which becomes, in the casem53/2,
A

-

ic
.
d

r
e,

v.

,’’

s.

k-
nd
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c2~k!52
9p

16A2
e2 i (9/2)pukh1u23/2

3ukhdecu21ukh r u21/2 lnFh1

h r
G . ~C11!

The derivations we just reported are the basis for the res
presented in Sec. III.
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