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Classical dynamics of the quantum harmonic chain
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The origin of classical predictability is investigated for the one dimensional harmonic chain considered as a
closed quantum mechanical system. By comparing the properties of a family of coarse-grained descriptions of
the chain, we conclude that local coarse grainings in this family are more useful for prediction than nonlocal
ones. A quantum mechanical system exhibits classical behavior when the probability is high for histories
having the correlations in time implied by classical deterministic laws. But approximate classical determinism
holds only for certain coarse grainings and then only if the initial state of the system is suitably restricted.
Coarse grainings by the values of the hydrodynamic variables~integrals over suitable volumes of densities of
approximately conserved quantities! define the histories usually used in classical physics. But what distin-
guishes this coarse graining from others? This paper approaches this question by analyzing a family of coarse
grainings for the linear harmonic chain. At one extreme in the family the chain is divided into local groups of
N atoms. At the other extreme theN atoms are distributed nonlocally over the whole chain. Each coarse
graining follows the average~center of mass! positions of the groups and ignores the ‘‘internal’’ coordinates
within each group, these constituting a different environment for each coarse graining. For an initial condition
where long wavelength modes are excited and short wavelength modes are distributed thermally we find that
the coarse-grained positions obey deterministic equations of motion accompanied by noise. The noise is greater
the more nonlocal the coarse graining. Further, the deterministic equations require more time steps to evolve
over a given time interval for the nonlocal coarse grainings than for the local ones. A continuum limit is
possible only for the near local coarse grainings. For parameters of the model characteristic of realistic
situations these features strongly favor the local coarse grainings over the nonlocal ones for prediction. Each of
these differences can be traced to the approximate conservation of the local center of mass momentum. We
then consider the chain quantum mechanically and show that, for realistic parameters, all the coarse grainings
decohere rapidly compared to dynamical time scales. We conclude that noise, decoherence, and computational
complexity favor locality over nonlocality for deterministic predictability.@S0556-2821~99!02622-3#
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I. INTRODUCTION

As far as we know them, the laws of physics that ap
universally to all physical systems are quantum mechani
The universe at a fundamental level is therefore charac
ized by indeterminacy and distributed probabilities. T
wide range of applicability of classical deterministic laws
an empirical fact to be explained from the universe’s qu
tum dynamics and initial quantum state. This paper inve
gates the origin of classical predictability for the very simp
model of a linearized chain of idealized atoms in the cont
of the quantum mechanics of closed systems@1–3#, most
generally quantum cosmology. We exhibit decoherent set
coarse-grained histories for which, given suitable restricti
on the state, the probability is high for histories exhibiti
the correlations in time governed by the classical wave eq
tion. We shall compare these quasiclassical coarse grain
with a class of others and analyze why the classical co
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grainings are the most predictable in the class.
Why do we raise the question of the origin of classic

predictability over 70 years after the initial formulation o
quantum mechanics? Every quantum mechanics text c
tains some treatment of this question. Ehrenfest’s theore
the starting point for one such discussion. For a nonrela
istic particle of massm moving in one dimension in a poten
tial V(x), Ehrenfest’s theorem is the exact relation betwe
expected values:

m
d2^x&

dt2
52 K ]V~x!

]x L . ~1.1!

This is not a deterministic equation of motion, but for certa
states, typically narrow wave packets, the expected valu
the force may be approximated by the force at the expec
value of the position, thereby giving a classical equation
motion for that expected value:

m
d2^x&

dt2
52

]V~^x&!

]x
. ~1.2!
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This equation shows that the orbit of the center of a narr
wave packet obeys Newton’s laws.

This kind of elementary derivation already exhibits tw
necessary requirements for a quantum system to exhibit c
sical deterministic behavior. Some coarseness in the des
tion is needed, as well as a restriction on the initial quant
state. However, otherwise this kind of demonstration d
not address the issues we hope to discuss in quantum
mology for the following reasons:

~i! The behavior of expected values in time is not enou
to define classical behavior. Equations of motion predictcor-
relationsin time, which in quantum mechanics are propert
of the probabilities for timehistories. The statement that th
Earth moves on a classical orbit is most correctly underst
in quantum theory as the assertion that, among a decohe
set of coarse-grained histories of the Earth’s position in tim
the probability is high for histories exhibiting the determi
istic correlations in time implied by Newton’s laws and lo
for all others. To discuss classical predictability therefore
should be dealing with the probabilities of time histories, n
merely with the time dependence of expected values.

~ii ! The Ehrenfest derivation relies on a close connect
between the equations of motion arising from the fundam
tal action and the phenomenological equations of motion
termining classical correlations. There is no such connec
in general. In general situations we expect classical equat
of motion like the Navier-Stokes equation, relating values
continuum hydrodynamic variables at different times, inc
porating phenomenological equations of state, and exhibi
dissipation, noise, and irreversibility. The equations of
fundamental theory, whether one takes it to be quantum e
trodynamics orM theory, exhibit none of these phenome
and are at best only distantly related in form. We need
derive theform of the classical equations of motion as we
as the probabilities with which they are satisfied.

~iii ! The Ehrenfest derivation posits the variable—the p
sition x—in which classical deterministic behavior is exhi
ited. But the quantum mechanics of any closed system
exhibit a great many complementary sets of decoherent
tories, some of which may exhibit deterministic correlatio
in time. What distinguishes coarse grainings in terms of
familiar quasiclassical variables from all other possibiliti
exhibited by a closed quantum mechanical system? Certa
it is not their relation to the variables of the fundamen
theory, which is typically only distant, as described abo
Rather, it must lie in the relative utility of different coars
grainings for prediction, with quasiclassical variables be
highly predictable. A complete derivation of classical pr
dictability must seek to distinguish classical coarse graini
from all others.

~iv! The Ehrenfest derivation deals with the expected o
comes of ‘‘measurements’’ on an otherwise isolated s
system. However, in quantum cosmology we are interes
in classical behavior in much more general situations, o
cosmological stretches of space and time and over a w
range of systems including the universe as a whole, whe
or not they are receiving the attention of observers. We
interested in sets of alternative histories that can be assig
probabilities whether or not they describe measurement s
12350
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ations; in the quantum mechanics of closed systems
means the sets must decohere. Decoherence is thus a pr
uisite for classical behavior.

Histories of the quasiclassical domain of everyday ex
rience are coarse-grained by values of the usual quasicl
cal variables. These include various sorts of hydrodyna
variables—averages over suitably small volumes of dens
of conserved or nearly conserved quantities. Densities of
ergy, momentum, baryon number, nuclear and chemical s
cies are examples. The system behaves classically when
probability is high for histories that exhibit correlations
time summarized by phenomenological classical equati
of motion such as the Navier-Stokes equation.

Simple arguments@3–8# suggest why histories of thes
hydrodynamic, quasiclassical variables should decohere
exhibit classical correlations in time. Coarse graining is g
erally necessary for decoherence. Roughly speaking, a co
graining divides the variables of the system into those t
are followed by the coarse graining and those that are
nored. The ignored variables constitute the environment.
interaction between these classes of variables is necessa
dissipate the phases between different coarse-grained h
ries and to achieve decoherence. However, that same i
action produces noise, which causes deviations from pred
ability. Integrals of densities of conserved or approximat
conserved quantities are natural candidates for quasiclas
variables. Their approximate conservation enables them
resist deviations from predictability caused by the noise a
ing from their interactions with the rest of the universe. Fu
ther, following standard arguments of nonequilibrium stat
tical mechanics, their approximate conservation leads
correlations in time summarized by a closed set of equati
of motion. All isolated systems approach equilibrium. Ho
ever, averages of approximately conserved quantities o
suitable volumes approach equilibrium slowly. Closed s
of equations of motion result when the volumes can be c
sen large enough that statistical fluctuations and noise
unimportant, but small enough that equilibrium is establish
within each volume in a time short compared to the dyna
cal time scales on which the variables vary~see, e.g.,@9#!.
The constitutive relations giving equations of state, coe
cients of viscosity, diffusion, etc., are then defined, perm
ting closure of a set of hydrodynamic equations of motio
Local equilibrium being thus established, the further equ
bration of the volumes among themselves is governed
these equations.

Despite the plausibility of the above general and sim
qualitative picture, its validity has been only partially inve
tigated quantitatively. To make the argument quantitative
light of our earlier discussion, requires at a minimum
investigation of sets of histories coarse-grained by range
quasiclassical variables which has the following features

~i! Establishes the decoherence of sets of histories s
ciently coarse-grained by ranges of quasiclassical variab

~ii ! Establishes with high probability deterministic corr
lations in time summarized by closed systems of class
equations of motion for reasonably realistic initial cond
tions.
3-2
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CLASSICAL DYNAMICS OF THE QUANTUM HARMONIC CHAIN PHYSICAL REVIEW D 60 123503
~iii ! Compares the decoherence and predictability of
ferent coarse-grained sets of histories, both within the fam
of coarse grainings by quasiclassical variables and with o
coarse grainings of distinct character.

Despite intensive investigation of all of these points se
rately there is as yet no analysis which combines all thr
There are many investigations of the mechanisms of de
herence of histories@10,4,5,11# and of the closely related
decoherence of density matrices@12#, especially in linear
systems. However, these studies have typically posite
fixed division of the fundamental variables into those d
scribing a ‘‘system’’ and those describing its ‘‘environ
ment.’’ Coarse grainings follow variables of the syste
while ignoring those constituting the environment. Such
fixed system-environment split is intuitively accessible a
correctly models many mechanisms of decoherence, but
not general.

Rather, coarse graining is the general notion which, w
possible, determines a family of system-environment sp
Different coarse grainings lead to different possible notio
of system and environment, that division is not usua
unique, and for some kinds of coarse graining no syste
environment split is possible at all.~See Appendix A.! Even
when a system-environment split is possible at one tim
differentsystem-environment splits could be needed at ot
moments of time. A fixed system-environment split is the
fore neither general nor necessary for formulation quan
mechanics. However, as such workers as Feynman and
non @13#, Joos and Zeh@14#, Zurek @15#, Caldeira and Leg-
gett @16#, and Omne`s @17# fully appreciated, a system
environment split is an important tool for analyzing speci
coarse grainings and for understanding the physical me
nisms of decoherence. We shall utilize this tool extensiv
is what follows.

The emergence of deterministic correlations in time g
erned by classical equations of motion has been investig
for fixed system-environment splits@4#. In a recent elegan
paper, Halliwell@7# has derived classical equations of moti
for hydrodynamic variables although with a special assum
tion about the nature of the environment. Neither of the
works compared quasiclassical coarse grainings with n
classical ones. In their pioneering paper on classical beha
in systems of interacting spins, Brun and Halliwell@6# com-
pared a family of coarse grainings but did not derive class
equations of motion.

This paper moves the analysis of decoherence and cl
cality a step towards realistic coarse grainings by hydro
namic variables in the context of a simple model—a o
dimensional chain of point masses with linear, neare
neighbor interactions.~See Fig. 1!. This is the simplest
model which exhibits time correlations governed by a co
tinuum equation of motion—the wave equation—in app
priate coarse grainings for certain initial states. Yet the
grangian of the model is quadratic in all coordinates, so
can be tractably analyzed with standard path integral te
niques@13,16,4#. Although our analysis is only for this ver
simple system, and does not deal with coarse grainings
hydrodynamic variablesper se, it does display all three fea
tures listed above.
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The details of the model are laid out in Sec. II, where
introduce a family of coarse grainings. In the simplest,
chain ofN identical particles is divided intoM groups, each
consisting ofN neighboring atoms. Histories are partitione
by ranges of values of the center of mass displacemen
each group. We find that the effective equations of mot
for these variables are well approximated by the class
wave equation. We obtain quantitative estimates for the
tistical noise causing deviations from the predictions of
wave equation.

We compare this quasiclassical coarse graining with ot
members of a family of sets of alternative coarse-grain
histories constructed as shown in Fig. 2. The chain is divid
up into M groups of N atoms, each group consisting o
equally spaced clumps ofd atoms. We coarse grain by equ
rangesD of the values of the average~center of mass! posi-
tions of the atoms in a group at equally spaced intervals
time Dt. A family of sets of alternative coarse-grained hi
tories is thereby defined, parametrized by (N,d,D,Dt).
When d5N the N atoms in a group are all neighbors, th
coarse graining entirely local, and the average position
lated to the approximately conserved center of mass mom
tum of the group. There is nothing special about the rema
ing members of the family except that they are amenable
analysis and range from local to highly nonlocal asd de-
creases fromN to 1.

We find that for each decohering member of this fam
the probabilities of the histories can be thought of

FIG. 1. The microscopic picture of the one-dimensional h
monic chain.N equal massesm are spaced an equilibrium distanc
Dx apart. The displacement of thej th mass is denotedxj . The
masses have a linear restoring force between them with a sp
constantk5mv2. The chain is assumed to have periodic bound
conditions.

FIG. 2. The family of coarse grainings under consideration. T
total number of masses,N, is divided intoM groups ofN masses
each. These groups are then further subdivided intoN/d clumpsof
d masses each. The clumps of a given group are spaced so
clumps of all the other groups occur before a clump is repeated,
is, by a distanceMd. The coarse-grained variableXJ is the average
displacement of the masses in theJth group. In the figure,N
530, M55, andN56. Masses in the same group are labeled w
the same symbol, with a different symbol~including the shading!
for each group. The arrangements are shown ford51,2,3,6, with
d51 being completely delocalized andd56 being completely lo-
calized.
3-3
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TODD A. BRUN AND JAMES B. HARTLE PHYSICAL REVIEW D60 123503
obeying classical equations of motion augmented by no
@cf. Eq. ~3.9!#. We compare the members of this family wi
respect to three properties bearing on classical behavior
coherence, noise, and the computational complexity of t
equations of motion. We find marked differences which
described in detail in the Conclusion, but which we summ
rize briefly here. As measured by the smallness of the rati
the decoherence to dynamical time scales, decoherence
a major constraint on predictability for ‘‘realistic’’ coars
grainings, but nonetheless favors the local coarse graini
Noise interferes with the predictability of the nonlocal coa
grainings much more than for the local ones. The equati
of motion of the local coarse grainings require many few
steps to evolve over a given time to a given accuracy than
those for the nonlocal coarse grainings. In short, we find
the familiar local coarse grainings are more predictable t
the nonlocal ones.

II. LINEAR CHAIN

A. Chain and its coarse grainings

In this section we lay out the details of the model. W
consider a linear chain ofN ‘‘atoms,’’ each of massm, sepa-
rated at rest by equal distancesDx, and with displacements
xi ,i 50, . . . ,N21. ~See Fig. 1.! Each atom interacts linearl
with its nearest neighbors. The action describing this sys
is

S@xj~t!#5
1

2
m (

j 50

N21 E
0

t f
dt $@ ẋ j~ t !#22v2@xj 11~ t !2xj~ t !#2%

~2.1!

where, using periodic boundary conditions, we takexN[x0.
The linear harmonic chain is the simplest model of a so

and is treated in many references.1 The xj (t) may be conve-
niently analyzed in terms of spatial modes

xj~ t !5(
l 50

N/2

@al~ t ! f l~ j !1c.c.# ~2.2!

where

f l~ j !5N 21/2exp~2p i j l /N!. ~2.3!

These are the normal modes of the chain and theal(t) oscil-
late with frequencies

v l52v sin~p l /N!. ~2.4!

The action expressed in terms of normal modes takes
simple form

S@al~t!#5
1

2
m(

l 50

N/2 E
0

t f
dt @ uȧl~ t !u22v l

2ual~ t !u2#. ~2.5!

1For a classic reference see@18#.
12350
e

e-
ir
e
-
of
not

s.
e
s
r
o

at
n

m

d

he

Both classically and quantum mechanically we will com
pare members of a family of coarse grainings defined in p
by two integer parametersN and d. The N particles in the
chain are divided intoM5N/N groupsof N atoms each.
Each group consists ofN/d clumpsof d particles spaced by
Md. ~See Fig. 2.! Whend5N there is only one clump. This
coarse graining is local—the atoms are as closely space
possible in the chain. Whend51 there is only one particle
per clump. This coarse graining is nonlocal, as the atoms
as spread out as possible in the chain. The variables follo
by the coarse graining are the average displacements o
groups:

XJ
(d)~ t !5

1

N (
k50

N/d21

(
m5[ 2d/2]11

[d/2]

xJd1m1kMd~ t !. ~2.6!

The first sum is over the clumps in the group, and the sec
sum is over the atoms in a clump. The range of the sum o
m depends on whetherd is even or odd. For oddd it ranges
from 2(d21)/2 to (d21)/2. For evend the range is
2d/211 to d/2. The brackets@x# in Eq. ~2.6! denote round-
ing down to the next lower integer. The range ofJ is J
50, . . . ,M21, making a total ofM coarse-grained coor
dinates.

We consider sets of histories constructed from exhaus
sets of exclusive equal rangesD of XJ

(d) separated by time
intervalsDt. There is therefore a family of coarse graining
each member of which is labeled by values of the four
rameters (N,d,D,Dt).

It is convenient to expand the coarse-grained coordina
in terms of spatial modes as well:

XJ
(d)~ t !5 (

L50

M/2

@AL
(d)~ t !FL

(d)~J!1c.c.# ~2.7!

where

FL
(d)~J!5M 21/2exp~2p iJL/M!. ~2.8!

The parameterL labels the coarse-grained modeAL
(d) just as

l labels the fine-grained modeal . The corresponding fre-
quencyVL

(d) depends on the choice of coarse grainingd. The
AL

(d)(t) will be a superposition of the normal modes of th
chain. Specifically,

AL
(d)~ t !5 (

k50

d21

cLk
(d)am(k)N/d~ t ! ~2.9!

where

m~k!5H L1kM/2, k even,

2L1~k11!M/2, k odd.
~2.10!

The coefficientscLk are given by

cLk
(d)5

1

dAN

sin@pm~k!/M#

sin@pm~k!/~Md!#
eim(k)w(d) ~2.11!

with the phasew(d) vanishing if d is odd and equal to
2p/(Md) if d is even.
3-4
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CLASSICAL DYNAMICS OF THE QUANTUM HARMONIC CHAIN PHYSICAL REVIEW D 60 123503
In the delocalized limitd51, theAL
(1) are just single nor-

mal modes:

AL
(1)~ t !}aLN~ t !. ~2.12!

By contrast, in the localized limitd5N, the AL
(N)(t) are su-

perpositions of all modes higher thanL, viz.

AL
(N)~ t !5 (

k50

N21

cLk
~N!am(k)~ t !. ~2.13!

These facts will be useful in what follows.

B. Environments

For several purposes in the subsequent analysis it wil
convenient to divide up the configuration space of fin
grained modes$al% into a subspace spanned by variables t
are followed by the coarse grainings introduced above an
subspace spanned by variables that are ignored. TheM vari-
ables$AL

(d)% may be said to define the configuration space
the ‘‘system.’’ There is considerable latitude in the choice
variables$qa

(d)%,a51,2, . . . ,N2M, which define the ‘‘en-
vironment.’’ The only requirement is that the$AL

(d)% and the
$qa

(d)% span the whole configuration space of the fine-grain
modes$al%. A convenient choice for our calculations will b
to take theqa

(d) to be all but the lowest fine-grained mod
that contribute to theAL

(d) through Eq.~2.9!. That is, we take
the qa

(d) to be the real and imaginary parts of

am(k)N/d , k51,2, . . . ,d21; L50, . . . ,M/2.
~2.14!

Each labela on qa corresponds to a pair (L,k); the exact
form of the correspondence will not be important for u
Thus defined, the environment variables are normal mo
which classically obey

q̈a
(d)1~va

(d)!2qa
(d)50. ~2.15!

The definition~2.14! defines a different environment for eac
d, and even for a givend it is but one of many possible
choices, though the effect on the system must be indepen
of this choice.

Since only d fine-grained modes contribute to ea
coarse-grained modeAL

(d) , this ‘‘system plus environment’’
only includes the full set of modes in the localized cased
5N. For all otherd, there will be some fine-grained mode
that contribute to none of the coarse-grained modes,
which thus can be neglected. Whend51, each coarse
grained modeAL

(1) depends on only a single fine-graine
mode, and hence has no environment at all.

C. Initial state

As we discussed in the Introduction, the classical beh
ior of any quantum system is exhibited through the probab
ties of certain decoherent sets of alternative coarse-grain
histories arising fromparticular initial conditions. In this
paper we compare the predictability of the different memb
12350
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of the family of coarse grainings introduced above for
single class of initial conditions. That is like the situation
cosmology, where the initial condition is given by fund
mental theory and we search among the possible set
coarse-grained alternative histories for sets that exhibit m
predictability than other sets.

In this simple model of the harmonic chain there are
interactions between different normal modes. This is an i
alization; realistically there will be interactions. These inte
actions mean that the normal modes will tend to equilibra
The highest frequency modes can be expected to come
equilibrium first, the lowest frequency modes last. Thus,
an intermediate time in the approach to equilibrium, t
chain can be described by a state in which the low freque
normal modes within a certain range are not yet in equi
rium, but the higher frequency modes are in equilibrium a
temperatureT.

Indeed, a garden variety string would be described in t
way. In a plucked violin string, for instance, the wavelengt
that are reasonable fractions of the length of the string
not in equilibrium, but very short wavelengths—short com
pared to the transverse dimensions of the string, certainl
are likely to be in equilibrium.

Classically an initial condition is given by a distributio
on the phase space of mode amplitudesal and their conju-
gate momentap l . We denote these collectively by$zl%
5$(al ,p l)%, l 50,1, . . . ,N/2. We assume that the signifi
cant expected values ofzl , denotedz̄l , occur only at low
frequencies, so that forl greater than a cutoffl C we have
zl'0. We assume thermal fluctuations around these
pected values. A distribution which gives this is

r~$zl%!5)
l 50

N/2

~Zl
21e2Hl (zl2 z̄l )/T!. ~2.16!

Here Hl(zl) is the Hamiltonian (up l u2/m1mv l
2ual u2)/2 for

each mode, andZl is a normalizing factor.
The corresponding assumption in quantum mechan

would be a density matrix of the form

r5)
l 50

N/2

exp@ i ~ āl* p̂ l2p̄ l* âl1H.c.!/2#~Zl
21e2Ĥl /T!

3exp@2 i ~ āl* p̂ l2p̄ l* âl1H.c.!/2# ~2.17!

whereâl andp̂ l are the quantum operators corresponding
the classical variableszl5(al ,p l), and the exponentials
sandwiching the thermal state are phase-space displace
operators inzl . These are the initial conditions we assume
our analysis.

A system is said to be in thermal equilibrium when
state is such that the probabilities of quasiclassical alte
tives are accurately reproduced by a thermal density ma
Typical examples are coarse grainings by volume avera
of densities of conserved quantities such as energy, mom
tum, etc. However, the probabilities of an arbitrary set
alternatives will not be generally be reproduced by the th
mal density matrix. It is plausible that many~or perhaps
3-5
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most! initial states of the linear chain relax after a suitab
time to a state of local thermal equilibrium for which th
probabilities of thelocal coarse grainings described abo
are reproduced by a density matrix of the form~2.17!. How-
ever, we have assumed something much stronger, whic
that the probabilities of the whole family of coarse grainin
are accurately reproduced by these density matrices. Tha
much more restrictive condition on the initial condition.

III. EQUATIONS OF MOTION FOR CLASSICAL COARSE
GRAININGS

In this section we consider theclassicallinear chain. Each
atom moves according to a classical equation of moti
However, with a probabilistic initial condition, a set o
coarse-grained variables~such as theXJ

(d) discussed in the
previous section! need not obeyany closed system of deter
ministic equations. We analyze the constraints on the in
distributionr(z0) necessary for the$XJ

(d)% for eachd to obey
and closed set of deterministic equations and we exhibit
form these equations take. The general kind of analysis
describe has been considered by many authors, for exa
Zwanzig@19# and Brun@5#. What is new here is the applica
tion of these methods to comparing different coarse gra
ings of the linear chain.

A. Probability of determinism

A set of functionals of the phase-space pathsFA@z(t)#,
A51, . . . ,P and a set of ranges$Da% in RP define the most
general kind of classical coarse graining. The probabilitypa
that the functionalsFA have values in the rangeDa is

pa5E dz ea$FA@z~ t !#%d@z~ t !2zt~z0!#r~z0!. ~3.1!

Here, ea is the characteristic function~1 inside, 0 outside!
for the rangeDa andzt(z

0) is the classical evolution of the
initial data z0. The functionald function enforces that evo
lution, assigning zero probability to all paths which do n
conform to it. The functional integral is over all phase-spa
pathsz(t) including an integral over the initial conditionsz0.

Utilizing this framework one can calculate the probabil
that the coarse-grained variables such as the$XJ

(d)% exhibit
deterministic correlations in time. The functionalsFA for ex-
ample might define different orbits in phase space. E
more simply, one can evaluate the probability that a se
deterministic equations of motion2

EJ„t,X~t!] 50 ~3.2!

holds for a set of variables$XJ
(d)% @denoted without indices in

Eq. ~3.2!# at time t, by calculating the probability that th
functionalsEJ„t,X(t)] have the value zero. If that probabi
ity is high, then the coarse-grained variables obey the de
ministic set of equations~3.2!.

2We follow the convention thatf „t,x(t)] means thatf is a func-
tion of t and a functional ofx(t), for example*0

t x(t)dt.
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B. Equations of motion

We now consider equations of motion for the coars
grained average positionsXJ

(d)(t) introduced in Sec. II.
Equivalently, and more conveniently, we can consider
equations of motion for the corresponding spatial mod
AL

(d)(t) defined by Eq.~2.7! and given terms of the fine
grained modes by Eq.~2.9!. It is convenient to take the
system-environment split defined by Eq.~2.14! in which case
the ignored coordinates are the$qa

(d)% of Eq. ~2.15!.
The normal modes of the chainal oscillate with the fre-

quenciesv l given in Eq.~2.4!. Evidently, as a consequenc
of Eq. ~2.9!,

ÄL~ t !52 (
k50

d21

cLkvm(k)N/d
2 am(k)N/d~ t !. ~3.3!

We have suppressed the superscript~d! in this equation, as
we shall do for clarity in the remainder of this section. T
ignored coordinates were chosen to coincide with all but
lowest frequency normal mode in Eq.~3.3!. Therefore that
equation may be rewritten as

ÄL~ t !1VL
2AL~ t !5 f L~ t !, ~3.4!

where

VL5vLN/d , ~3.5!

and

f L~ t !5 (
a51

d21

~VL
22va

2!cLaqa~ t !. ~3.6!

Here,va , cLa , etc., are the values ofv l , cLk appropriate to
the valuea.

The simple equation of motion~2.15! can be solved to
express theqa(t) in terms of their initial values

qa~ t !5qa~0!cos~vat !1
pa~0!

va
sin~vat !. ~3.7!

Theqa(t) are probabilistically distributed with a distributio
that depends on the distribution of the initial conditio
through Eq.~3.7!. Let FL(t) be the expected value off L(t),

FL~ t !5M@ f L~ t !# ~3.8!

where M@ f L# denotes the mean over the distribution of initi
conditions.~We use M@•# for classical expected values an
^•& for quantum mechanical ones.! Then Eq.~3.4! becomes

EL„t,AL~t!][ÄL~ t !1VL
2AL~ t !2FL~ t !5D f L~ t !,

~3.9!

where

D f L~ t !5 f L~ t !2M@ f L~ t !#. ~3.10!
3-6
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We can think ofEL„t,AL(t)] 50 as a deterministic equa
tion of motion andD f L as classical stochastic noise causi
deviations from that determinism. Since the expected va
of EL„t,AL(t)] is zero, the coarse graining will approx
mately obey the deterministic equationEL„t,AL(t)] 50 pro-
vided the noise is small. A simple measure of its size is

M@D f L* ~ t !D f L~ t8!#. ~3.11!

The situation is even simpler if, in addition,FL(t) is neg-
ligible, as it is in many realistic situations. Then the cha
obeys the equation

ÄL~ t !1VL
2AL~ t !5D f L~ t !'0 ~3.12!

with high probability—an equation whose form is indepe
dent of the initial distribution.

For our chain modelFL(t) does not vanish. Because th
initial condition is diagonal in the fine-grained modes rath
than theAL’s andqa’s, there is a non-vanishing contributio
to the driving forceFL proportional to„AL(0)2M@AL(0)#….
However, even in terms ofAL andqa , the initial condition is
close to diagonal for largeN andM; thus, this term is smal
compared both to the noise and the terms of the homo
neous equation of motion~3.12!. The time average ofFL(t)
also vanishes. Hence, we can safely neglect it.

Unlike effective classical equations for many systems,
~3.12! exhibits neither nonlocality in time or dissipation
These simplifying features can be traced to the conserva
of the energies of the individual normal modes. T
environment—theqa’s—are all normal modes. Energy
therefore, cannot be exchanged between theAL and theqa on
average, that is between the system and its environment.
fining the energy for a coarse-grained mode is somew
ambiguous, but simple definitions give an energy which fl
tuates about a fixed average. This is special to this lin
system, which has a high level of integrability.

The initial distributionr(zl
0) determines whether the clas

sical noise is small. The noise will be negligible when the
is a negligible probability for any significant initial excitatio
for the qa . Thus, for initial distributions that favor low fre
quency modes below some cutoff value, we expect low no
and a deterministic behavior of theAL(t). We shall return to
this question in more detail in Sec. V.

C. Deriving the equations of motion from the Lagrangian

While the above derivation is perfectly correct, it is
some sense a shortcut to a more standard procedure. In
procedure we would substitute the change of variables~2.7!
and~2.14! into the expression for the action~2.1!, and derive
the Euler-Lagrange equations for the new variables. Thi
important later in making contact with the quantum ca
since that derivation proceeds from the classical Lagrang
and there are no classical equations of motion to solve.

The action~2.5! may be expressed more compactly
matrix notation writingaW (t) for the vector with component
al(t). Then
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S@aW ~t!#5
1

2E0

t f
dt @~aW maW !2~aW m1/2v2m1/2aW !#.

~3.13!

We use a Hermitian inner product indicated only implicitl
so theaW bW 5( lal* bl . Sandwiched in inner products like thos
of Eq. ~3.13!, v andm denote the diagonal matrices of no
mal mode frequencies and masses~all equal! respectively.
For this case,m1/2v2m1/25mv2.

The coarse-grainings are by the variablesXJ
(d) or, equiva-

lently, by their modesAL
(d) . The coordinatesqa

(d) are the
fine-grained modes that are not followed by the coar
graining. Continuing to suppress superscript (d), we write

al5(
L

SlLAL1(
a

Tlaqa ~3.14!

or, in matrix notation,

aW 5SAW 1TqW . ~3.15!

In general, there is considerable arbitrariness in the matr
S andT depending on how the variablesqa are chosen. The
only requirements are that Eq.~3.15! must reproduce the
definition of theAL’s ~2.6! and~2.7!, and the set of$AL ,qa%
must span the space of the$al% . The choice~2.14! specifies
a definiteT andS.

Inserting the transformation~3.15! into the action~3.13!
one has

S@AW ~ t !,qW ~ t !#5
1

2E0

t f
dt @~AẆ MSSAẆ !1~qẆ MTTqẆ !1~AẆ MSTqẆ !

1~qẆ MTSAẆ !2~AW VSSAW !2~qW VTTq!

2~AW VSTqW !2~qW VTSAW !# ~3.16!

where~with AB standing forS or T!

MAB[A†mB ~3.17a!

and

VAB[A†m1/2v2m1/2B. ~3.17b!

With the action in this form, it is a simple matter to deriv

the equations of motion forAW andqW :

MSSAẄ 1MSTqẄ 52VSSAW 2VSTqW , ~3.18a!

MTTqẄ 1MTSAẄ 52VTTqW 2VTSAW .
~3.18b!

Equation ~3.18! looks complicated, but in fact we ca
easily recover our earlier result. Because theq variables are
normal modes, they obey the usual harmonic oscillator m
tion ~2.15!. By plugging the second equation into the firs
the equation becomes
3-7
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~MSS2MSTMTT
21MTS!AẄ 1~VSS2MSTMTT

21VTS!AW

52~VST2MSTMTT
21VTT!qW . ~3.19!

If we then plug in the simple harmonic solution~3.7! for the
ignored modesqW , the equation reduces to the simple equat
~3.12! above multiplied by the diagonal matrix (MSS

2MSTMTT
21MTS). ~See Appendix B for the proof of this.!

This is a slightly more complicated derivation of th
equation of motion, but it still relies on the shortcut of know
ing the solution for the motion ofqW . That will not be avail-
able in quantum mechanics. Without making use of this,
could solve the linear equation~3.18b! above forqW (t) and
insert it into Eq.~3.19!. The solution forqW (t) is

MTT
1/2qW ~ t !5cos@Vt#MTT

1/2qW ~0!1V21sin@Vt#MTT
1/2qẆ ~0!

2V21E
0

t

dt8 sin@V~ t2t8!#MTT
21/2

3@MTSAẄ ~ t8!1VTSAW ~ t8!#, ~3.20!

where

V25MTT
21/2VTTMTT

21/2, ~3.21!

and it gives us the very complicated-looking equation of m
tion

~MSS2MSTMTT
21MTS!AẄ 1~VSS2MSTMTT

21VTS!AW

1~VST2MSTMTT
21VTT!MTT

21/2V21

3E
0

t

dt8 sin@V~ t2t8!#MTT
21/2@MTSAẄ ~ t8!1VTSAW ~ t8!#,

52~VST2MSTMTT
21VTT!MTT

21/2$cos@Vt#MTT
1/2qW ~0!

1V21sin@Vt#MTT
1/2qẆ ~0!%. ~3.22!

Two observations can be made. First, the solution~3.20!,
while still harmonic motion, appears to be at quite differe
frequencies from~3.7!, and also includes a driving term ab
sent in that case. Second, Eq.~3.22! appears very differen
from the rather simple harmonic oscillator equation~3.12!.
These differences, however, must be apparent rather
real; both Eqs.~3.7! and ~3.20! follow from the same La-
grangian, as do Eqs.~3.12! and ~3.22!. In fact, the more
complicated form~3.22! of the equation of motion is relate
to the simple form~3.12! by an invertible transformation
and thus has exactly the same solutions.~See Appendix C.!

D. Transforming the classical noise

The fact that classical equations of motion can be rep
sented in widely different forms is nothing new, of cours
But the apparent complexity masking the comparativ
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simple underlying dynamics only complicates the analysis
the quantum case. For the classical case, it is best to s
with the simple form~3.12!.

The two forms do differ in one important respect. Th
retarded term in Eq.~3.22! is most readily identified as par
of the homogeneous equation of motion, while in Eq.~3.12!
it is implicitly included in the noise terms. We shall see th
this ambiguity in the definition of the noise becomes imp
tant in comparing the classical and quantum cases: one
nition is most natural in the classical case, while the othe

most natural in the quantum case@whereAW (t) need not obey
the classical equation of motion#.

Let us restrict ourselves to a single coarse-grained m
AL

(d)(t) and its associated modesqW (t). If we define the two
forms of the noise to be the right hand sides of Eqs.~3.12!
and ~3.22!, respectively, they can then be expressed as

D f L~ t !5cW~VL
2I2VQ

2 !$cos@VQt#DqW ~0!

1VQ
21sin@VQt#DqẆ ~0!% ~3.23a!

and

D f L8~ t !5NcW~VL
2I2VQ

2 !MTT
21/2$cos@Vt#MTT

1/2DqW ~0!

1V21sin@Vt#MTT
1/2DqẆ ~0!%, ~3.23b!

where cW is a vector in the space of theq’s with elements
equal to the coefficientscb , VQ is a diagonal matrix on the
space of theqb’s with diagonal elementsvb , andV is the
effective frequency matrix defined by Eq.~3.21!. The struc-
ture of these two expressions is closely parallel, and in A
pendix C we show that we can switch from one form of t
noise to the other by means of an invertible linear transf
mation. As far as determining the classical dynamics a
predictability, they are equivalent.

However, if we look at the absolute strength of the no
as a function ofL or d, the form of the noisecan make a
difference. We assess this by looking at the correlation fu
tion ~3.11! for the two forms of the noise.

In the initial state~2.16! we find the expectation values

M@Dqb~0!Dqb8
* ~0!#5kBT~VTT

21!bb8 ,

M@Dq̇b~0!Dq̇b8
* ~0!#5kBT~MTT

21!bb8 .
~3.24!

We can use these to calculate the correlation functi
~3.11!:

M@D f L* ~ t !D f L~ t8!#5kBTcW~VL
2I2VQ

2 !

3~cos@VQt#VTT
21cos@VQt8#

1VQ
21sin@VQt#MTT

21sin@VQt8#VQ
21!

3~VL
2I2VQ

2 !cW ~3.25!

and
3-8
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M@D f L8* ~ t !D f L8~ t8!#5NkBTcW~VL
2I2VQ

2 !

3MTT
21/2~cos@Vt#V22cos@Vt8#

1V21sin@Vt#sin@Vt8#V21!

3MTT
21/2~VL

2I2VQ
2 !cW . ~3.26!

Using these expressions, we can estimate the m
strength of the noise by taking the average over time:

S25 lim
t f→`

1

t f
E

0

t f
M$u f L~ t !2FL~ t !u2%dt. ~3.27!

In Fig. 3 we plotS2 as a function of the coarse grainingd.
We see that the noise strength falls off steeply as a func
of d. Thus, the noise becomes lower in the highly localiz
case, and the motion of the localized coarse graining is m
predictable. Later we shall see that the Lagrangian form
the noise is closely related to the strength of decoherenc
the quantum case, and closely resembles this ‘‘simp
noise.

IV. WAVE EQUATION

The classical wave equation for the string does not foll
directly from the deterministic equations for the chain~3.12!.
A restriction on the initial distribution is required beyon
that necessary for determinism. This is the requirement
only very long wavelength modes of the chain are excit
We assumed such a restriction on the initial distribution
Sec. II C, but in this section we will examine the requir
ments on the short wavelength cutoffl C . This small gradient

FIG. 3. The time-averaged mean force squared of the noiseS2

@Eq. ~3.27!#, for the harmonic chain as a function of the coar
graining d. This noise is chosen for three typical coarse-grain
modesL530,65,100, withM5630 andN assumed to be very
large; theN dependence is absorbed into the units,kBTv2/Nm.
Note that the noise vanishes ford51, but otherwise assumes it
highest values at lowd, dropping off like 1/d at highd, as predicted
by the analytical result~5.6!.
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approximation is necessary for the validity of the wave eq
tion as for other familiar continuum equations such as
Navier-Stokes equation.3

A. Small gradient approximation

The expansion~2.7! of the coarse-grained coordinate
XJ

(d)(t) in terms of coarse-grained modesAL
(d)(t) connects

the equation of motion~3.12! for the AL
(d)(t) to an equation

of motion for theXJ
(d)(t). The character of these equation

for the XJ
(d)(t) is determined by the dispersion relation f

VL
(d) which is @cf. Eqs.~3.5!, ~2.4!#:

VL
(d)52v sinS pL

MdD . ~4.1!

Since Eq.~4.1! is not linear inL, the equations forXJ
(d)(t)

following from Eq. ~3.12! will generally relateẌK
(d)(t) to all

the other coordinatesXJ
(d)(t) of the chain. The form of the

equations forXJ
(d)(t) simplifies if the initial distribution is

such that only modes with

l !N ~4.2!

have any significant probabilities, that isl c!N. Then from
Eq. ~2.4!, v l'2pv l /N and in particular

VL
(d)'

2pvL

Md
. ~4.3!

In this small gradient approximation, the equation of moti
for the XJ

(d)(t) implied by Eqs.~3.12! and ~2.7! is

ẌJ
(d)~ t !5

v2

d2
@XJ11

(d) ~ t !22XJ
(d)~ t !1XJ21

(d) ~ t !#. ~4.4!

Only nearest neighbor interactions are involved in the sm
gradient approximations.

Usually a much stronger condition is meant by the sm
gradient approximation, namely that the only modes w
significant probabilities are those with

l !M!N, ~4.5!

that is l C!M. For d5N this condition ensures that man
groups will fit into a wavelength so that theXJ vary only
slightly from oneJ to the next. We will see below that this i
essential to deriving the continuum wave equations.

Condition~4.5! can be very much stronger than Eq.~4.2!.
In a 10 cm length of string with typical interatomic spacing
N;109. Dividing the string into .1 mm lengths constitutin
the groups in thed5N case givesN;106.

For the nonlocal coarse grainingd51, the condition~4.5!
would imply that no values ofAL

(1)(t) would be excited
above L50, since thel values contributing to anyd51
mode are all larger thanN @cf. Eq. ~2.9!# except

3See, e.g.,@20,9#.

d

3-9
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l 50. That makes the equation of motion~4.4! in the delo-
calized case not incorrect, but rather trivial since both si
are negligible.

B. Continuum approximation

For the localized coarse grainingd5N, the difference
equation~4.4! is well approximated by the wave equatio
when N is large. The derivation is standard, but we brie
repeat its essential features here.

Recall that we denoted the mass of an atom bym and the
spacing between atoms in the unexcited chain byDx. The
mass densitys is therefore

s5m/Dx. ~4.6!

Multiplying both sides of Eq.~4.4! by s it can be written as

sẌJ
(N)~ t !5mv2DxFXJ11

(N) ~ t !22XJ
(N)~ t !1XJ21

(N) ~ t !

~NDx!2 G .

~4.7!

The lengthNDx is the distance between the centers of
groups in the unexcited string. Assuming the strong form
the slow approximation gradient~4.5!, we can approximate
Eq. ~4.7! by the continuum equation

s
]2X~x,t !

]t2
5Y

]2X~x,t !

]x2
, ~4.8!

where Young’s modulusY is mv2Dx. Equation~4.8! is the
wave equation for the propagation of compressional mo
along the string.

V. CLASSICAL PREDICTABILITY

The fine-grained variables of a classical system obe
closed system of deterministic equations of motion. Ho
ever, there is no guarantee that coarse-grained variables
There may be no deterministic equations at all, or the se
those that do hold may not close, in the sense that there
not be a complete set of equations to solve for all the v
ables. In Sec. III B we demonstrated that the probabilities
the evolution of the coarse-grained modesAL

(d)(t) of the lin-
ear harmonic chain are reproduced by a classical equatio
motion ~3.9! modified by noise,

ÄL
(d)~ t !2VL

2AL
(d)~ t !2FL

(d)~ t !5D f L
(d)~ t !, ~5.1!

for the family of coarse grainings under consideration. T
time evolution of theAL

(d)(t) will be classically predictable
by the left hand side of Eq.~5.1! if the noise term on the
right hand side is negligible. In this section we analyze t
requirement for classical predictability as a function ofd.

A simple estimate of the noise can be obtained by ass
ing a completely thermal initial state characterized by a te
peratureT. That is, we assume Eq.~2.16! with l C50. In this
initial state, M@ f L

(d)(t)#'0. A measure of the magnitude o
the noise fluctuations is M$@ f L

(d)(t)#2%. In a thermal state
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M@al* ~ t !al 8~ t !#5d l l 8kBT/~2mv l
2!. ~5.2!

We therefore have, from Eq.~3.6!,

M$u f L
(d)~ t !u2%5

kBT

m (
k51

d21

ucLku2v l (k)
2

3S 12
v l (0)

2

v l (k)
2 D 2

m

2
~v l (k)

2 VTT
211MTT

21!kk

~5.3!

where the final factor~arising from the initial condition! is
very close to 1 for M@L, that is, (m/2)(v l (k)

2 VTT
21

1MTT
21)kk511O(L2/M 2), wherel (k)[m(k)N/d is

l ~k!5~L1kM/2!N/d, for k even, ~5.4a!

l ~k!5@2L1~k11!M/2#N/d, for k odd.
~5.4b!

Every term on the right hand side of Eq.~5.3! depends ond
although we have not indicated the dependence explicitl

Figure 3 shows a plot of the expected value of the squ
of the fluctuations~5.3! as a function ofd for some represen
tative values ofL. The plot is forM5630; the value ofN
cancels out of the plotted function, but is assumed to be v
large in order to have a sufficient number of factorsd. As is
evident from Eq.~5.3!, the noise vanishes ford51. That is
because, as we noted in~2.12!, AL

(1) is a single fine-grained
mode not coupled to any other fine-grained modes. This s
cial situation results from our idealized linear model of t
chain. Even a tiny amount of nonlinearity would couple th
mode to others and produce noise.

Figure 3 shows that the noise generally increases witL
and decreases withd. Analytic estimates can be derived from
Eq. ~5.3! whenL!M,N. Assuming that the final factor in
Eq. ~5.3! is well approximated by unity, we have, ford52,

M$u f L
(d)~ t !u2%'

kBTv2

Nm
~pL/M!2, ~5.5!

while, for larged comparable toN,

M$u f L
(d)~ t !u2%'

kBTv2

Nm

~pL/M!2

d
. ~5.6!

The noise thus varies inversely withd. For the ‘‘realistic’’
coarse graining discussed at the end of Sec. IV A, wherN
;106, the noise is 106 times smaller ford5N than it is for
d52. That is a vast advantage in predictability of the loc
coarse grainings over the nonlocal ones. The origin of t
advantage can be traced to the approximate conservatio
the center of mass momentum of the local groups of ato

The noise term on the right hand side of the equation
motion~5.1! must be compared with the characteristic size
the deterministic terms on the left hand side to get a t
estimate of the effect of noise on predictability. In Eq.~2.16!
we assumed an initial state in which only fine-grained mo
with l , l C had significant excitations above thermal nois
3-10
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But, as we remarked earlier, the coarse-grained modesAL
(d)

are superpositions of fine-grained modes withl .LN/d, as
Eq. ~2.9! shows. Thus, ford,LN/ l C , there will be no sig-
nificant excitation ofAL

(d) above the level of thermal noise
The subsequent dynamics is predictable only in a triv
sense. The string exhibits no motion except in respons
thermal fluctuations. For true classical predictability,d must
be large, so the noise is low, but also so the determini
terms in the equation of motion dominate the noise ter
We shall return to a more quantitative comparison of
noise and dynamical force terms in the Conclusion.

Even leaving aside the competition between noise
predictability, the classical equations of motion for nonloc
coarse grainings are distinguished from the local ones
their computational complexity. Consider the classical eq
tions ~3.12! for the coarse-grained modes or, equivalently,
the small gradient approximation, Eqs.~4.4!, for the center of
mass positions of the groups. The characteristic dynam
time scales are of orderMd/vL. The local coarse graining
therefore vary the most slowly as would be expected fr
their association with approximately conserved quantit
Thus computing the evolution of the coarse-grained quan
AL

(d) or XJ
(d) over a given time interval to a given accura

will take a factor of N more time steps for the nonloca
equations than the local ones. For the ‘‘realistic’’ case wh
N;106 that is a significant advantage in computational co
plexity for the local coarse grainings.

Thus, whether one considers the absolute value of
noise, the relative size of the noise and deterministic forc
or the effort needed to solve the classical equations of
tion, the local coarse grainings are more predictable than
nonlocal ones in the family we have considered. In the n
section we turn to the same questions in quantum theory

VI. DECOHERENCE

A. Quantum mechanics of the linear chain

In this section we turn to the classical behavior of t
quantumlinear harmonic chain. A quantum system behav
classically when the probability is high that coarse-grain
histories exhibit the correlations implied by classical eq
tions of motion. We will be concerned with the histories
the linear harmonic chain coarse-grained by values of
position averages$XJ

(d)(t)% defined in Sec. II. More specifi
cally we shall consider, for eachd, sets of histories defined
by an exhaustive set of exclusive regions$Dak

k %, ak

51,2,3, . . . , of the M-dimensional configuration spac
spanned by the$XJ

(d)(t)% at a series of timestk , k
51,2, . . . ,n, with t1,t2 . . . ,tn . We take the same set o
regions for each value ofd and usually take them to b
‘‘cubes’’ of equal sidesD. An individual history is then la-
beled by the particular sequence of intervals (a1 , . . . ,an)
[a. We then compare the probabilities that these histo
are correlated by the classical equations of motion discus
in Sec. III for different values ofd.

Quantum interference between the individual members
a coarse-grained set of histories must be negligible for pr
abilities to be consistently assigned to its individual me
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bers. When this condition is satisfied the set of histories
said to decohere. Decoherence is a prerequisite for proba
ties.

The interference between historiesa anda8 is measured
by the decoherence functional

D (d)~a8,a!5Tr@Pa
n8

d
~ tn!•••Pa

18
d

~ t1!rPa1

d ~ t1!•••Pan

d ~ tn!#.

~6.1!

Here,$Pak

d (tk)% are an exhaustive set of mutually orthogon

Heisenberg picture projection operators projecting on the
gions $Dak

k % of $XJ
(d)% at time tk . The operatorr is the

Heisenberg picture density matrix of the system. The se
histories decoheres when the ‘‘off-diagonal’’ elements
D (d) are negligible:

D (d)~a8,a!'0, a8Þa. ~6.2!

There is an equivalent path integral expression for
decoherence functional of sets of histories coarse graine
ranges of configuration space such as those under discu
here. Suppose the coarse graining is entirely confined
times less than a final timet f , i.e., tn,t f . Then, for the
linear chain coarse grained by ranges ofXJ

(d)(t),

D (d)~a8,a!5E
a8

daW 8E
a
daW d~aW f82aW f !

3exp„i $S@aW 8~t!#2S@aW ~t!#%/\…r~aW 08 ,aW 0!.

~6.3!

One integral in Eq.~6.3! is over pathsaW (t) on the interval

@0,t f # which start ataW 0 at t50 and end ataW f at t5t f includ-
ing integrations over those end points. The integral is o
over paths which pass through the regions$Dak

k % in $XJ
(d)% at

the timestk . The constraint on theXJ
(d) translates linearly

into a constraint on theaW through Eq.~2.2!. An integral over
aW 8(t) is similar except that it is constrained by the coar
grainings ofa8. The sum in Eq.~6.3! could have been ex
pressed in terms of any configuration space variables.
have chosen the modesal because the action takes the simp
form ~2.5!. Equally well, we could have used the coordinat
of the individual atoms,xi , i 51, . . . ,N.

Path integrals of the form~6.3! have been extensively
studied for quadratic actions and thermal density matrices
many authors@13,16,4,5#. All integrals are Gaussian in thi
situation and can be evaluated explicitly. The simplest w
to review this is to recall a simple example.

B. Simple example

The sum-over-histories techniques used in this pape
calculate the decoherence functional for sets of alterna
coarse-grained histories of the linear harmonic chain are g
eralizations of those used for more straightforward coa
grainings of simpler linear systems@4,5#. In turn, these meth-
ods extend those pioneered by Feynman and Vernon@13#
and Caldeira and Leggett@16#. While the results of this pape
3-11
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are algebraically more complex, the basic ideas are simila
those in simpler cases. To emphasize this connection
previous work, and to explain the ideas in an algebraica
simple context, we review a version of these simple mod

The model consists of the linear chain under discuss
but with a particle of massM and positionX(t) coupled by a
linear interaction to atom 0. The total action is

Stot@X~t!,xW~t!#5S@xW~t!#1SX@X~t!#1Sint@x0~t!,X~t!#,
~6.4!

whereS@xW (t)# is given by Eq.~2.1!, SX@X(t)# is

SX@X~t!#5E
0

t f
dt

1

2
MẊ2~t! ~6.5!

and the interaction term is

Sint@x0~t!,X~t!#52kE
0

t f
dt X~t!x0~t!. ~6.6!

We consider coarse grainings where only histories oX
are followed. Thus the entire chain serves as the envir
ment.

The actionS@xW (t)# is Eq. ~2.1!, which is Eq.~2.5! when
expressed in terms of normal modes. The interaction is

Sint@aW ~t!,X~t!#522kN 21/2(
l
E

0

t f
dt Real~t!X~t!.

~6.7!

The problem summarized by Eq.~6.4! can be mapped onto
problem studied by many authors following Caldeira a
Leggett@16#. We will follow the calculation of the decoher
ence functional described in@4# but in a notation that is de
signed to stress the analogy with the subjects of this pa
The translations are as follows, the first being the notation
this paper, the second of@4#:

Real↔QA , v l↔vA ,

X~ t !↔x~ t !, m↔m,

2kN 2
1
2↔CA , M↔M . ~6.8!

We assume an initial condition that is a product of a d
sity matrix r̃(x08 ,x0) for the particle and a thermal densi

matrix rT(aW 08 ,aW 0) at temperatureT for the environment.
We consider a set of alternative coarse-grained histo

defined by exhaustive sets of ranges forX, $Da
1%,

$Da
2%•••$Da

n%, a51,2, . . . , at aseries of timest1,•••

,tn . The decoherence functional for this coarse-grained
of histories is given generally by
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D~a8,a!5E
a8

dX8E
a
dXE da8E dad~Xf82Xf !d~aW f82aW f !

3exp„i $Stot@X8~t!,aW 8~t!#2Stot@X~t!,aW ~t!#%/\…

3 r̃~X08 ,X0!rT~aW 08 ,aW 0!. ~6.9!

The integral over theX’s is restricted to paths that travers
the regionsDa1

1 , . . . ,Dan

n defining the coarse-grained histor

a[(a1 , . . . ,an) and similarly forX8’s. The integrals over
theal8 andal are unrestricted and, given the assumed ther
initial condition, reduce to Gaussian integrals which can
carried out explicitly. The result, expressed in terms of
variables

X̄~ t !5
1

2
@X8~ t !1X~ t !#, ~6.10a!

j~ t !5X8~ t !2X~ t !, ~6.10b!

is

D~a8,a!5E
aj

djE
a x̄

d x̄eiA[ X̄(t),j(t)]

3 r̃S X̄01
j0

2
, X̄02

j0

2 D ~6.11!

whereaj anda x̄ are the limits onj~t! and x̄(t) given that
x(t) andx8(t) lie within the limits a anda8, respectively,
and

A@X̄~t!,j~t!#52j0M ~dX̄/dt!u t50

1E
0

t f
dt j~ t !e„t,X̄~ tan!]

1
i

4E0

t f
dtE

0

t f
dt8j~ t8!kI~ t82t !j~ t !.

~6.12!

The ingredients in Eq.~6.12! are the equation of motion

e„t,X~t!] 52M
d2X̄

dt2
~ t !1E

0

t

dt8kR~ t2t8!X̄~ t8!,

~6.13!

together with the kernels

kR~ t !524k2~mN!21(
l

v l
21sin~v l t ! ~6.14!

and

kI~ t !54k2~mN!21(
l

v l
21cothS \v l

2kTD cos~v l t !.

~6.15!

The imaginary term in Eq.~6.12! favors j(t)50, that is
X8(t)5X(t). If it is large, the off-diagonal elements o
D(a8,a) will be negligible and decoherence achieved. T
3-12
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characteristic time scaletdecohover which enough imaginary
exponent is built up to make the off-diagonal elements oD
negligible is

tdecoh;~kID
2!21/2, ~6.16!

where kI and D denote characteristic sizes of the kern
~6.15! and the intervalsDa i

i .

If the set of histories decoheres, then the restrictions
the integrals overj(t) in Eq. ~6.11! defining the diagona
elements ofD(a8,a) can be ignored and the resultin
Gaussian integral overj(t) carried out. The result is the
following expression for the probabilities of the coars
grained historya:

p~a!5E
a
dX̄@det~kI !/4p#21/2

3expH 2
1

\E0

t f
dt8E

0

t f
dt e„t8,X̄~t!]

3kI
inv~ t82t !e„t,X̄~t!] J w~X̄0 ,P̄0!. ~6.17!

Here, kI
inv(t,t8) is the inverse ofkI(t,t8) and w(X̄0 ,P̄0) is

the Wigner distribution of the density matrixr̃.
Equation~6.17! shows that probabilities peak on histori

obeying the deterministic equation of motione„t,X(t)] 50,
but with a width in this distribution related tokI(t82t). The
same probabilities follow from a Langevin equation

e„t,X~t!] 1 l ~ t !50, ~6.18!

with a stochastic noise force distributed with a correlat
function

M@ l ~ t8!l ~ t !#5
1

2
\kI~ t82t !. ~6.19!

Thus, decoherence and noise are connected. The strong
coupling between system and environment, the more rap
interference between histories is dissipated, but also the m
noise which disturbs the deterministic dynamics and redu
predictability.

The deterministic equatione„t,X(t)] 50 is exactly the
same as the classical equation of motion which would
derived from the Lagrangian for this system, in the limit
zero noise. This result is generally true for systems w
quadratic Lagrangians, and may hold approximately for s
tems with greater nonlinearities. More details than we h
given here are presented in@4#. We will follow the basic
ideas of this model in our treatment of the family of coar
grainings of the linear chain.

C. Decoherence functional for the linear chain

We now apply essentially the same procedure to the lin
chain, analyzing decoherence and deriving equations of
tion for the coarse-grained position averagesXJ

(d) .
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Using the initial condition~2.17! the integrals overqa can
be carried out in Eq.~6.3!, yielding an expression for the
decoherence functional of the coarse-grained mod

D (d)@AW 8(t),AW (t)#, analogous to Eq.~6.9!. The magnitude of
D (d) in the limit D, Dt→0 is

uD (d)@AW 8~t!,AW ~t!#u

5expF2
1

2E0

t f
dt8E

0

t f
dt @jW~ t8!K I

(d)~ t8,t !jW~ t !#G
3UrS AW 01

jW0

2
,AW 02

jW0

2
D U ~6.20!

where

jW~ t !5AW 8~ t !2AW ~ t !, ~6.21a!

A~ t !5
1

2
@AW 8~ t !1AW ~ t !#.

~6.21b!

The all-important kernelK I
(d)(t8,t) is given by

K I
(d)~ t8,t !5

N2m2kBT

4\2 cW~VL
2I2VQ

2 !

3MTT
21/2V21~cos@Vt#cos@Vt8#

1sin@Vt#sin@Vt8# !V21MTT
21/2~VL

2I2VQ
2 !cW ,

~6.22!

which is proportional to the correlation function~3.26! of the
classical noise derived from the Lagrangian. Thus the ‘‘o
diagonal’’ elements of the decoherence functional decay

ponentially with increasing difference betweenAW 8(t) and

AW (t). The set of histories withD, Dt→0 is clearly not de-
coherent, sinceAW (t) andAW 8(t) can be arbitrarily close; but
by introducing suitably large regionsDak

K at suitably spaced

intervalsDt of time, decoherence can be achieved. We sh
return to a detailed discussion of decoherence times a
function of d below, but first we consider the equations
motion.

The probability of a given coarse-grained historya is
given by

p~a!5E
a
dAW D@AW ~t!,AW ~t!# ~6.23!

which in analogy to Eq.~6.17! can be expressed as

p~a!5E
a
dAW @det~K I

(d)!/4p#21/2

3expH 2
1

\E0

t f
dt8E

0

t f
dt $EW8„t8,AW ~t!#

3K I
(d)inv~ t8,t !EW8„t,AW ~t!] %J . ~6.24!
3-13
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EW8(t,AW (t)# is a linear functional ofAW (t) analogous to Eq.
~6.13!, whose exact form we return to below;K (d)inv(t8,t) is
the inverse ofK (d)(t8,t) defined in Eq.~6.22!.

Equation~6.24! shows that the probability of histories
sharply peaked about those obeying the equations of mo

EW8„t,AW ~t!] 50, ~6.25!

but with Gaussian noise causing deviations from this pred
ability related to the size of the kernelK I

(d)inv(t8,t). The form
of the equations of motion~6.25! could be worked out by
following the procedure used in the simple example abo
However, it is more direct to note that the result of th
calculation is exactly the equation of motion that would
obtained by a completely classical analysis of the coa
grained dynamics, just as in Eq.~6.17! for the simple model.
The equations of motionEW8„t,X(t)] 50 are therefore
equivalent to the classical equationsderived in Secs. III and
IV. This is an important simplification because a straightf
ward extension of the above analysis would lead to nonlo
terms such as occur in Eq.~6.13!, as we saw in Sec. III C. In
the end, these all cancel to give the simple equations of
tion exhibited in Sec. III. This is checked explicitly in Ap
pendix C.

The size of the kernelK I
(d)(t,t8) in Eq. ~6.20! controls the

efficacy of decoherence—the larger the kernel, the sho
the decoherence time scale. We study it as a function od,
holding all other parameters fixed, including the temperat
of bath T. The kernel is necessarily positive@5#. A simple
measure of its size is the time-averaged trace

KI~d!5 lim
t f→`

1

t f
E

0

t f
dt Tr@K (d)~ t,t !#. ~6.26!

Figure 4 showsKI plotted as a function ofd. Since the
form of the kernel is closely related to the classical no
correlation function M@D f 8* (t)D f 8(t8)# from Eq. ~3.26!, it
is not surprising that the shape of the result is virtually ide
tical to Fig. 3. While Fig. 3 was computed from the for
~3.25! for the noise, which is different, the differenc
amounts to a constant factor ofN2 and ad-dependent factor
very close to 1. From the two graphs, where theN depen-
dence has been absorbed into the choice of units, it is evi
that the dependence ond of the two forms of noise is almos
exactly the same.

Since the kernelK I
(d) is a factor ofN2 larger than the

classical noise correlation function, increasing the level
coarse grainingN exponentially improves decoherence, b
actually reduces the classical noise@cf. Eq.~5.6!#. Because of
this, for realistically large values ofN, the decoherence rat
is rapid compared to dynamical time scales even in the c
pletely localized case, where the absolute strength of
noise is weakest. One can understand this as increasin
absolute level of decoherence, but simultaneously increa
the inertia of the coarse-grained variables to resist the
creased noise, since the inertia of a group just goes like
total massNm. We discuss this trade-off more thorough
below.
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VII. CONCLUSIONS: CLASSICALITY

For a system with many degrees of freedom, useful
namical predictions concern regularities emerging fro
coarse-grained descriptions. To be sure, at a fine-gra
level the system will display the regularities arising from
fundamental equations of motion if it is classical or from t
Schrödinger equation if quantum mechanical. Howev
these regularities are usually impossible to extract or app
the number of degrees of freedom is very large. The us
predictions arise from much smaller numbers of coar
grained variables correlated in time according to pheno
enological equations of motion.

There are arbitrarily many sets of alternative coar
grained histories that can be assigned probabilities on
basis of a closed system’s initial condition and fundamen
dynamics. Which of these will exhibit useful regularities
time governed by phenomenological equations of motio
How much, and what, coarse graining is needed to ob
useful predictability? This, very roughly, is the problem
characterizing classicality that we mentioned in the Introd
tion. In this conclusion we describe how our results for t
linear harmonic chain bear on this question.

Which coarse-grained descriptions are predictable is
important problem even in classical physics. However, it
especially important in quantum mechanics where probab
ties can be assigned only todecoherentsets of histories, and
two such sets are generally mutually incompatible. Furth
in a loose sense, the number of sets of coarse-grained h
ries is much larger in quantum mechanics than it is in cl
sical physics. It is therefore important to explainwithin
quantum mechanics~and a theory of the cosmological initia
condition! why we find it useful to employ only a narrow
class of the possible coarse grainings by which the unive
could in principle be described. Many see this as the cen

FIG. 4. The time-averaged traceKI(d) of the decoherence ker
nel K I

(d)(t,t), in units of NkBTmv2/4\2, vs the coarse grainingd,
for M5630 andL530,65,100. The form of these curves is virtu
ally identical to the classical noise correlation function, plotted
Fig. 3. Note that an overall factor ofN2 has been divided out to
make comparison to Fig. 3 more exact.
3-14
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problem in understanding quantum mechanics.
Characterizing classicality involves comparing the util

for prediction of various sets of coarse grained alterna
histories. In this paper we have considered only a family
coarse grainings of the simplest linear system exhibitin
continuum description of the kind usually found in classic
physics—the linear harmonic chain.

Four parameters characterize the family of coarse gr
ings we have considered. The atoms of the chain are div
into groups ofN, consisting of equally spaced clumps ofd
neighboring atoms.~See Fig. 2.! The center of mass coord
nates of each group are coarse grained by exhaustive se
equal rangesD spaced by equal time intervalsDt. The four
parameters are thereforeN, d, D, andDt.

The probabilities of the individual members of a decoh
ent set of histories follow from the initial state, so that a
comparison of the predictability of different coarse grainin
will depend crucially on the nature of this initial condition
We assumed an initial condition in which the short wav
length modes of the string were in thermal equilibrium a
temperatureT, while the long wavelength modes were e
cited well above the level of thermal fluctuations. This is
initial state of local but not global thermal equilibrium.

Both classically and quantum mechanically the probab
ties of these decoherent sets of alternative coarse-grained
tories can be characterized as arising from equations of
tion augmented by noise. The dynamical time scale of
equations of motion~3.12! is given roughly by

tdyn;
d

v S M
L D . ~7.1!

The local coarse grainingsd;N have the longest dynamica
time scales because the center of mass momenta of the
groups are approximately conserved.

The utility of these equations of motion for predictio
depends on the size of the deviations from the regularity
time they describe that is caused by the noise. The n
forces were estimated roughly in Eq.~5.6!. ~The force isNm
times the force per unit massD f L

(d) .! For largeN, d compa-
rable toN, andL small compared toM,

Fnoise;~kBTv2m!1/2~N/d!1/2~L/M!. ~7.2!

With these basic estimates in hand, we can compare
different members of this family of coarse grainings w
respect to three properties bearing on classicality: the rat
decoherence, the deviations from predictability caused by
noise, and the computational complexity required to use
equations of motion to make predictions. The results are
follows:

Decoherence.Decoherence and noise are connected. T
kernel which governs the size of the imaginary part of
influence phase and effects decoherence is the correla
function of the noise force@cf. Eqs.~6.15! and~6.19!#. From
Eq. ~6.20! we can obtain the following rough estimate for th
decoherence timetdecohwhich Dt must exceed if the coarse
grained set of decoherent histories is to decohere:

tdecoh;\/~FnoiseD!. ~7.3!
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This time increases with the locality of the coarse grainingd
becauseFnoise decreases withd, as Eq.~7.2! shows. Since
the more local coarse grainings are dominated by low
quency modes, the dynamical timescale also increases
d, so that theratio of the two times favors the more loca
coarse-grainings; combining Eqs.~7.1! and ~7.2! we have

tdecoh

tdyn
;S lDB

D D ~Nd!21/2, ~7.4!

wherelDB is the thermal de Broglie wavelength introduce
by Zurek @21#:

lDB5\/~kBTm!1/2. ~7.5!

The decoherence time scale must be less than the dynam
time scale to use the equations of motion at all. This can
achieved by takingN or D or both sufficiently large, and for
both local and non-local coarse grainings is not a very c
straining condition given ‘‘realistic’’ parameter values, a
was stressed by Zurek@21# in simpler cases. Ford;1, N
;106,m;10 amu, andT;300°,

tdecoh/tdyn;~10213 cm!/D. ~7.6!

For such coarse grainings, decoherence is not a major res
tion on predictability.

Noise.As Eq. ~7.2! shows, the noise force decreases ad
increases for fixedN; that is, it decreases as the coarse gra
ing becomes more local. However, it is not the absolute sc
of the noise that is important for predictability, but rather
size relative to the dynamical force termsFdyn that occur in
the equation of motion. IfL is the characteristic size of th
excitations of the chain that occur in the coarse graini
then roughly

Fdyn;NmL/tdyn
2 . ~7.7!

The size ofL is determined by the initial condition and va
ies with bothN andd. In Eqs.~2.16! and~2.17! we assumed
an initial condition in which the fine-grained modes above
mode numberl C were thermally excited, while modes belo
l C were much more highly excited. The connection betwe
fine- and coarse-grained modes given by Eqs.~2.7! and~2.9!
shows that the fine-grained modes belowl C contribute to
coarse-grained modes only whend.N(L/ l C). Thus, ifd lies
much belowN, we have

Fnoise

Fdyn
;1, d!N, ~7.8!

and the regularities of the equation of motion will b
swamped by the noise.

By contrast, whend;N

Fnoise

Fdyn
;

LT

L AN, d;N ~7.9!

whereLT is the characteristic scale of thermal excitations
the mode:
3-15
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LT;@~kBT!/~NmVL
2!#1/2. ~7.10!

If the size of excitations of long wavelength modes is mu
greater than that of thermal fluctuations, the effect of
noise on the equation of motion will be negligible. Thus t
local coarse grainings exhibit more regularity in time if t
initial condition has this property. For the realistic string d
scribed above withN;106, typical thermal excitations of the
L510 mode would beL T;1027 m.

Computational complexity.Even when coarse graining
decohere so that probabilities can be assigned to histo
even when noise is negligible so that histories exhibit
regularities in time summarized by classical equations
motion, coarse grainings can be distinguished by the ef
needed to calculate these regularities. The number of op
tions NS necessary to evolve the equations of motion ove
time intervalT is roughly proportional to

NS}~M/tdyn!T;~LvT/d!. ~7.11!

Thus prediction becomes easier as bothN andd increase. For
‘‘realistic’’ coarse grainings whereN;106 there can be a
significant difference between the local coarse grainings w
d;106 and the nonlocal ones withd; few.

In summary,decoherence, resistance to noise and com
tational simplicity all favor local coarse grainings over non
local ones—all these comparisons being contingent on la
N and an initial condition in which long wavelength mod
are more excited than short wavelength ones.

These quantitative results for the linear harmonic ch
support the heuristic arguments for the predictability of m
general kinds of quasiclassical variables that were sketc
in the Introduction. In our family of coarse grainings, th
ones more useful for prediction are the more local ones
sociated with an approximately conserved quantity. O
analysis of the harmonic chain is a step towards a more
alistic analysis of classicality in at least three ways:~1! It
considered a system which permits a continuum approxi
tion of the kind usually found in classical physics.~2! It
employed a system-environment split which follows fro
the coarse grainings needed to realize that approxima
rather than being positedad hoc in terms of fundamenta
coordinates.~3! Different coarse grainings were compar
quantitatively with respect to decoherence, noise and com
tational complexity.

However, these positive features should not obscure h
short this analysis falls from the kind of treatment of clas
cality envisaged by@3,4,6,22,23#. We considered only linea
interactions, not a realistic Hamiltonian. We did not comp
all possible sets of alternative coarse-grained histories,
only a four-parameter family of them. We did not propose
unified quantitative measure for classicality, but rather de
separately with some of its attributes: decoherence, re
tance to noise, and computational simplicity. We did not s
from the initial condition of the universe or exhibit the im
portant role played by gravity in creating the conditions
local equilibrium while ensuring the absence of global eq
librium. Rather we assumed these properties in our ini
condition. Future analyses will do better.
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APPENDIX A: SYSTEM-ENVIRONMENT SPLITS

In this appendix we describe the circumstances un
which—for a given coarse-grained set of alternatives—
Hilbert spaceH of a closed system can be written as a ten
productH s

^ H e whereH s contains the quantities followed
by the coarse graining andH e contains the quantities that ar
ignored. Such a tensor product factorization is called
system-environment split.

We begin by considering a Hilbert spaceH and a set of
alternatives at a single moment of time represented by
exhaustive set of orthogonal projection operators$Pa%, a
51,2, . . . , satisfying

PaPb5dabPb , (
a

Pa5I . ~A1!

We seek to write

H5H s
^ H e ~A2!

such that

Pa5Pa
s

^ I e, a51,2, . . . . ~A3!

The decomposition~A2! is then a system-environment spli
If H s were to containjust the quantities followed by the
coarse graining, we would naturally impose dim(Pa

s )51,
where dim(P) is the dimension of the subspace projected
by P. However, other notions of an environment can be u
ful in which (dimPa

s ).1, and we shall consider the gener
case.

Only two simple mathematical facts are needed to anal
the above question. First, the decomposition~A3! requires
the relation between dimensions,

dim~Pa!5dim~Pa
s !dim~H e!, ~A4!

and, as a special case,

dim~H!5dim~H s!dim~H e!. ~A5!

Second, two separable Hilbert spaces of a given dimen
are isomorphic—a consequence of the fact that they b
have countable bases.

Realistic cases have dim(H)5`, but we pause to note
some evident results from Eq.~A4! when dim(H) is finite.
Then all the dim(Pa) are finite. A system-environment spl
is not always possible, only when the dim(Pa) are all divis-
ible by a common factor. In particular, if dim(Pa

s ) is re-
3-16
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quired to be unity, then a system-environment split is p
sible only when all theP’s have the same dimension.

When dim(H) is infinite, there are a number of subcas
which are convenient to treat separately. The most impor
of these is when dim(Pa)5` for all a. The requirements
~A1! imply that the Pa all commute and can be simulta
neously diagonalized. Let$u i &%, i 51,2, . . . , be abasis in
which they are all diagonal. Then to eachPa there is a subse
of these basis vectors spanning the corresponding subs
We write

Pa5(
i Pa

u i &^ i u. ~A6!

However, it is then a simple matter of relabeling to define
isomorphism between the infinite dimensional Hilbert spa
H andH s

^ H e. We write

u i &5ua,A& ~A7!

where i ranges over the infinity of states inPa and A
51,2, . . . isanother labeling of them. This relabeling d
fines the tensor productH s

^ H e. Operators acting only on
H s have the form

^a8A8uOuaA&5^a8uO sua&dAA8 ~A8a!

while those onH e have matrix elements

^a8A8uOuaA&5da8a^A8uO euA&. ~A8b!

In particular,

Pa5Pa
s

^ I e5~ ua&^au! ^ I e ~A9!

and dim(Pa
s )51. We have constructed a system

environment split defined by the coarse-graining$Pa%.
If the condition dim(Pa

s )51 is relaxed, it is possible to
define many other system-environment splits for this coa
graining. One simply relabels including more states inH s,
viz.

u i &5ua,A& ~A10!

such that the subspacePa
s contains several different value

of a.
Many calculations use a system-environment split of t

kind. For example, in studies of Brownian motion the lab
a correspond to the coordinates of the massive particle anA
to the coordinates of the particles of the bath. The coo
nates of the bath are ignored, but typically the coordinate
the Brownian particle are followed only to some accura
Thus, for a given choice of ranges, coordinates other t
those in the bath are ignored corresponding to dim(Pa

s ).1.
There is no unique system-environment split.

The key to the above construction is that the relation~A4!
is easily satisfied because dim(Pa) and dim(H) are both
infinite. Finite dimensional members of the set of alternativ
are obstacles to a system-environment split. If dim(Pa) is
finite for somea, then Eq.~A4! can only be satisfied if
dim(Pa

s ) and dim(H e) are both finite—already a restrictiv
condition. Furthermore, the dimensions of all the finite
mensional Pa must be divisible by common factor—
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dim(H e)—and this is not always possible. The only case
which the condition dim(Pa

s )51 could be enforced is if all
the finite dimensionalPa have thesamedimension. Clearly,
a system-environment split is generally possible only wh
the dimensions of all of thePa are infinite.

APPENDIX B: MATRICES FOR THE CHAIN
OF OSCILLATORS

In this appendix we complete a calculation begun in S
III C. This is the explicit demonstration that when the va
ables in the action are changed according to Eqs.~2.9! and
~2.14!, the result yields the same equations of motion as
obtained by making these changes in the fine-grained e
tions of motion directly. Specifically we check that when E
~3.7! is used to eliminate theq’s from Eq.~3.19! it yields Eq.
~3.12!.

Since the coarse-grained modesAL
(d)(t) are all decoupled

from each other, and interact with separate collections
high-frequency modes, we can consider them one at a t
which somewhat simplifies our notation. In this case,
matrix S reduces to a diagonal matrix with elements maki
up a single vector withd componentsSa, and T is a d by
d21 matrix with componentsTab , wherea ranges from 0 to
d21 andb ranges from 1 tod21. ThusMSS andVSS be-
come scalars, andMST, MTS, VST andVTS are vectors in the
space of theq’s. These matrices have the simple form

S05
1

c0
, Sa50, for a.0, ~B1!

and

T0b52
cb

c0
, Tab5dab , for a.0, ~B2!

where the numbersca are the coefficientscLk
(d) defined by

Eqs.~2.11! and ~3.6!, forming the components of the vecto
cW . The matrixv is diagonal with componentsva and the
mass is a constantm.

With these definitions, the matrices defined in Eq
~3.17a!, ~3.17b! are

MSS5
m

uc0u2
,

~MTT!bb85mdbb81m
cbcb8

*

uc0u2
,

~MW ST!b52m
cb

uc0u2 5~MW TS!b ,

VSS5mv0
2 ,

~VTT!bb85mvb
2dbb81mv0

2
cbcb8

*

uc0u2
,

~VW ST!b52mv0
2 cb

uc0u2 5~VW TS!b .

~B3!

In these expressions when the matricesMSS, etc., have been
reduced to scalars or vectors we have changed the notatio
3-17



.
ne

o

o-
th
ua
io

-
fe
.

e

of
q.
t is

by

TODD A. BRUN AND JAMES B. HARTLE PHYSICAL REVIEW D60 123503
what we hope is an obvious way. With Eqs.~B3! we can
now show that Eq.~3.19! is identical to Eq.~3.12! aside from
a multiplicative factor. With a little algebra we find that

~MSS2MW STMTT
21MW TS!5S m

uc0u21(
b

ucbu2D ,

~VSS2MW STMTT
21VW TS!5S m

uc0u21(
b

ucbu2D v0
2 ,

2~VW ST2MW STMTT
21VTT!b5S m

uc0u21(
b8

ucb8u
2D

3cb~v0
22vb

2!. ~B4!

Sincev0[VL , plugging these back into Eq.~3.19! simply
yields the equation

S m

uc0u21(
b

ucbu2D @ÄL
(d)~ t !1VL

2AL
(d)~ t !#

5S m

uc0u21(
b

ucbu2D D f ~ t !, ~B5!

that is, simply Eq.~3.12! multiplied by a constant factor
This factor is independent of the choice of coarse-grai
modeL or the coarse grainingd:

S m

uc0u21(
b

ucbu2D 5S m

uc0u21cWcW
D 5Nm. ~B6!

APPENDIX C: TRANSFORMING THE EQUATION
OF MOTION

In Sec. III we derived the classical equation of motion f
the coarse-grained variablesAL(t) utilizing two different
ways of eliminating the environmental coordinatesqa . First,
using the fact that theq’s were themselves fine-grained c
ordinates, we solved the classical equations of motion for
q’s and substituted the solution into the fine-grained eq
tions of motion. Second, we derived the equations of mot
from the Lagrangian written in terms of theA’s andq’s and
then solved the for theq’s to eliminate them. In this appen
dix we complete the demonstration that the ostensibly dif
ent equations for theA’s that result are, in fact, equivalent

Suppose we have an equation of motion of the form~3.9!
for a single coarse-grained modeAL , which in this appendix
we call EL50. We wish to write it in a new form~3.22!
which we callEL850 by a transformation of the form
12350
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EL8„t,AL~t!] 5CS EL„t,AL~t!]

1E
0

t

dt8GL~ t,t8!EL„t8,AL~t!] D
5D f L8~ t !, ~C1!

with, of course, a transformed noise function

D f L8~ t !5CS D f L~ t !1E
0

t

dt8GL~ t,t8!D f L~ t8! D . ~C2!

Here, C is a positive constant andGL(t,t8) is a particular
Green’s function for the equationEL50, that is in operator
shorthandELGL5I . In a similar shorthand we refer to th
transformation~C1! asC(I 1G). Clearly, the solutions to the
two equations~3.9! and ~C1! will be the same only if (I
1G) is invertible. This will be true if the equation

f L~ t !1E
0

t

GL~ t,t8! f L~ t8!dt850 ~C3!

can only be solved byf L(t)50. From Eq.~C3! it is clear that
any solutionf L(t) must havef L(0)50, and is a solution to a
second-order linear equation.

In the case of the chain of oscillators, the original form
the equation is Eq.~3.12! and the transformed equation is E
~3.22!. From Appendix B we see that the positive constan

C5S m

uc0u21cWcW
D 5Nm, ~C4!

and from Eqs.~3.22! and ~B4! the kernelGL(t,t8) is

GL~ t,t8!5
m

uc0u2
cW~VL

2I2VQ
2 !MTT

21/2V21

3sin@V~ t2t8!#MTT
21/2cW , ~C5!

whereVL
2 is the constantv0

2 andVQ
2 is the diagonal matrix

v restricted to theq’s, with diagonal elementsvb
2 .

From Eq.~C5! we know thatGL(t,t)50 for all t, which
implies

d fL

dt
~ t !52E

0

tdGL

dt
~ t,t8! f L~ t8!dt8 ~C6!

and hence (d fL /dt)(0)50. Thus, since bothf L and
(d fL/dt) vanish att50, the only solution to Eq.~C3! is
f L(t)50 and (I 1G) is indeed invertible.

Now we need to show thatC(I 1G)D f L(t)5D f L8(t) for
our harmonic chain. The two forms of the noise are given
Eqs. ~3.23a! and ~3.23b!, respectively. LetV2 be the trans-
formed frequency matrix defined by Eq.~3.21!, with eigen-
valuesnk

2 and orthonormal eigenvectorsvW k , andVQ
2 be the

diagonal frequency matrix with eigenvaluesva
2 . Then the

requirement~C2! can be written as
3-18
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NmcW~VL
2I2VQ

2 !@cos~VQt !DqW ~0!1VQ
21sin~VQt !DqẆ ~0!#1

Nm2

uc0u2
cWMTT

21/2~VL
2I2VQ

2 !V21E
0

t

sin@V~ t2t8!#MTT
21/2cW

3cW~VL
2I2VQ

2 !@cos~VQt !DqW ~0!1VQ
21sin~VQt !DqẆ ~0!#dt8

5NmcW~VL
2I2V2!@cos~Vt !MTT

1/2DqW ~0!1V21sin~Vt !MTT
1/2DqẆ ~0!#. ~C7!

By writing the vectors in terms of eigenvectors ofV2 we can break the integral in Eq.~C7! into a sum over many integral
having the forms

E
0

t

sin@n~ t2t8!#sin~vt8!dt85
1

n22v2 @n sin~vt !2v sin~nt !# ~C8!

and

E
0

t

sin@n~ t2t8!#cos~vt8!dt85
n

n22v2 @cos~vt !2cos~nt !#. ~C9!

Substituting these values into Eq.~C7!, the result we wish to show becomes

(
a

ca~VL
22va

2!S cos~vat !Dqa~0!1
1

va
sin~vat !Dq̇a~0! D1

m

uc0u2 (
a,k

ucWMTT
21/2vW ku2ca

~VL
22nk

2!~VL
22va

2!

~nk
22va

2!

3Fcos~vat !Dqa~0!2cos~nkt !Dqa~0!1
1

va
sin~vat !Dq̇a~0!2

1

nk
sin~nkt !Dq̇a~0!G

5(
k

~cWMTT
21/2vW k!~VL

22nk
2!S cos~nkt !@vW kMTT

1/2DqW ~0!#1
1

nk
sin~nkt !@vW kMTT

1/2DqẆ ~0!# D . ~C10!
ui
.
d.

en-
-

e

t

ise
La-

m
t

We wish this to hold at arbitrary timest, which implies that
each frequency must be equated separately. This req
that the following two conditions hold true:

I1
m

uc0u2
cWMTT

21/2~VL
2I2V2!~V22va

2I !21MTT
21/2cW50,

~C11a!

@vW kMTT
1/2DqW ~0!#

1
1

uc0u2 ~vW kMTT
21/2cW !(

a
ca

~VL
22va

2!

~nk
22va

2!
Dqa~0!50.

~C11b!

The first condition~C11a! must hold for alla. The last
condition~C11b! must hold for arbitrary initial vectorDqW (0)
and allk.

We can readily evaluate Eq.~C11a! from the matrix defi-
nitions ~B3!. The inverse matrix is

~V22va
2I !215MTT

1/2~VTT2va
2MTT!21MTT

1/2, ~C12!

and the matrix (VTT2va
2MTT) has the simple formM i j

5 f id i j 1gigj and hence can be analytically inverted~even
though one of thef i vanishes!. Carrying out this inverse and
12350
res
performing the sum, we see that thea dependence of Eq
~C11a! does indeed drop out, and the equation is satisfie

The second condition~C11b! looks even more difficult to
evaluate, since we have no explicit expressions for the eig
valuesnk

2 and eigenvectorsvW k . However, these are not nec

essary. Note that if vW k is an eigenvector of V2

5MTT
21/2VTTMTT

21/2 with eigenvaluenk
2 , thenMTT

1/2vW k is an ei-
genvector ofVTTMTT

21 with the same eigenvalue. Using th
definitions~B3!, this implies that

~MTT
1/2vW k!a5

ca~VL
22va

2!

~nk
22va

2!~ uc0u21cWcW !
~cWMTT

1/2vW k!. ~C13!

SincecW is an eigenvector ofMTT , we can readily show tha

~vW kMTT
21/2cW !5

1

m

uc0u2

uc0u21cWcW
~vW kMTT

1/2cW !. ~C14!

By combining Eqs.~C13! and~C14!, the condition~C11b! is
immediately proved. Hence, the transformed classical no
is the same as the noise derived from a straightforward
grangian calculation.

This result has immediate implications for the quantu
probabilities ~6.24!. The integrand in the exponent of tha
expression is proportional to
3-19
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EL8„t,AL~t!]M @D f 8~ t !D f 8~ t8!# invEL8„t8,AL~t!]
~C15!

summed over allL. This is all in terms of the equation o
motion form~3.22! and noise correlation function~3.26!. But
since EL85C(I 1G)EL and M@D f 8(t)D f 8(t8)# inv5C21(I
1G)21M@D f (t)D f (t8)# invC21(I 1G)21, we see that the
transformationC(I 1G) cancels out, and
n,

,
o-
gh
.
,

s

12350
EL8„t,AL~t!]M @D f 8~ t !D f 8~ t8!# invEL8„t8,AL~t!]

5EL„t,AL~t!]M @D f ~ t !D f ~ t8!# invEL„t8,AL~t!];

~C16!

i.e., even in the quantum case one can use the simpler f
of the classical equation of motion and noise.
l
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