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The origin of classical predictability is investigated for the one dimensional harmonic chain considered as a
closed quantum mechanical system. By comparing the properties of a family of coarse-grained descriptions of
the chain, we conclude that local coarse grainings in this family are more useful for prediction than nonlocal
ones. A quantum mechanical system exhibits classical behavior when the probability is high for histories
having the correlations in time implied by classical deterministic laws. But approximate classical determinism
holds only for certain coarse grainings and then only if the initial state of the system is suitably restricted.
Coarse grainings by the values of the hydrodynamic varialiésgrals over suitable volumes of densities of
approximately conserved quantitiedefine the histories usually used in classical physics. But what distin-
guishes this coarse graining from others? This paper approaches this question by analyzing a family of coarse
grainings for the linear harmonic chain. At one extreme in the family the chain is divided into local groups of
N atoms. At the other extreme thé atoms are distributed nonlocally over the whole chain. Each coarse
graining follows the averag&enter of magspositions of the groups and ignores the “internal” coordinates
within each group, these constituting a different environment for each coarse graining. For an initial condition
where long wavelength modes are excited and short wavelength modes are distributed thermally we find that
the coarse-grained positions obey deterministic equations of motion accompanied by noise. The noise is greater
the more nonlocal the coarse graining. Further, the deterministic equations require more time steps to evolve
over a given time interval for the nonlocal coarse grainings than for the local ones. A continuum limit is
possible only for the near local coarse grainings. For parameters of the model characteristic of realistic
situations these features strongly favor the local coarse grainings over the nonlocal ones for prediction. Each of
these differences can be traced to the approximate conservation of the local center of mass momentum. We
then consider the chain quantum mechanically and show that, for realistic parameters, all the coarse grainings
decohere rapidly compared to dynamical time scales. We conclude that noise, decoherence, and computational
complexity favor locality over nonlocality for deterministic predictabilif0556-282199)02622-3

PACS numbds): 03.65.Bz

I. INTRODUCTION grainings are the most predictable in the class.
Why do we raise the question of the origin of classical

As far as we know them, the laws of physics that applypredictability over 70 years after the initial formulation of
universally to all physical systems are quantum mechanicaguantum mechanics? Every quantum mechanics text con-
The universe at a fundamental level is therefore charactetains some treatment of this question. Ehrenfest’s theorem is
ized by indeterminacy and distributed probabilities. Thethe starting point for one such discussion. For a nonrelativ-
wide range of applicability of classical deterministic laws is IStic particle of massnmoving in one dimension in a poten-
an empirica] fact to be exp|ained from the universe’s quan.tial V(X), Ehrenfest’s theorem is the exact relation between
tum dynamics and initial quantum state. This paper investi€Xxpected values:
gates the origin of classical predictability for the very simple
model of a linearized chain of idealized atoms in the context 5
of the quantum mechanics of closed systdms3], most md x) _ _<‘9V(X)> (1.1)
generally quantum cosmology. We exhibit decoherent sets of dt? ax | '
coarse-grained histories for which, given suitable restrictions
on the state, the probability is high for histories exhibiting = o ] ] )
the correlations in time governed by the classical wave equal NS is not a deterministic equation of motion, but for certain
tion. We shall compare these quasiclassical coarse grainin%ates’ typically narrow wave packets, the expected value of

with a class of others and analyze why the classical coarsé€ force may be approximated by the force at the expected
value of the position, thereby giving a classical equation of

motion for that expected value:
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This equation shows that the orbit of the center of a narrowations; in the quantum mechanics of closed systems that
wave packet obeys Newton’s laws. means the sets must decohere. Decoherence is thus a prereg-
This kind of elementary derivation already exhibits two uisite for classical behavior.
necessary requirements for a quantum system to exhibit clas- Histories of the quasiclassical domain of everyday expe-
sical deterministic behavior. Some coarseness in the descripience are coarse-grained by values of the usual quasiclassi-
tion is needed, as well as a restriction on the initial quantuntal variables. These include various sorts of hydrodynamic
state. However, otherwise this kind of demonstration doevariables—averages over suitably small volumes of densities
not address the issues we hope to discuss in quantum caosf conserved or nearly conserved quantities. Densities of en-
mology for the following reasons: ergy, momentum, baryon number, nuclear and chemical spe-
(i) The behavior of expected values in time is not enouglties are examples. The system behaves classically when the
to define classical behavior. Equations of motion prectict  probability is high for histories that exhibit correlations in
relationsin time, which in quantum mechanics are propertiestime summarized by phenomenological classical equations
of the probabilities for timénistories The statement that the of motion such as the Navier-Stokes equation.
Earth moves on a classical orbit_is most correctly understood Simple argument§3—8] suggest why histories of these
in quantum theory as the assertion that, among a decohereqrodynamic, quasiclassical variables should decohere and
set of coarse-grained histories of the Earth’s position in timeg,pipit classical correlations in time. Coarse graining is gen-
the probability is high for histories exhibiting the determin- erally necessary for decoherence. Roughly speaking, a coarse

istic correlations ir! time implie_d by Ne\{vton'_s_ laws and low graining divides the variables of the system into those that
for all others. To discuss classical predictability therefore we

should be dealing with the probabilities of time histories, not?re foIIowec_i by the coarse graining and those_ that are ig-
. X nored. The ignored variables constitute the environment. An
merely with the time dependence of expected values.

(i) The Ehrenfest derivation relies on a close connectior{nteraCtion between these classes of variables is necessary to
dissipate the phases between different coarse-grained histo-

between the equations of motion arising from the fundamen=

tal action and the phenomenological equations of motion del€S and to achieve decoherence. However, that same inter-

termining classical correlations. There is no such connectioRCtion produces noise, which causes deviations from predict-
in general. In general situations we expect classical equatior@ility. Integrals of densities of conserved or approximately
of motion like the Navier-Stokes equation, relating values ofconserved quantities are natural candidates for quasiclassical
continuum hydrodynamic variables at different times, incor-variables. Their approximate conservation enables them to
porating phenomenological equations of state, and exhibitingesist deviations from predictability caused by the noise aris-
dissipation, noise, and irreversibility. The equations of theing from their interactions with the rest of the universe. Fur-
fundamental theory, whether one takes it to be quantum elec¢her, following standard arguments of nonequilibrium statis-
trodynamics oM theory, exhibit none of these phenomenatical mechanics, their approximate conservation leads to
and are at best only distantly related in form. We need taorrelations in time summarized by a closed set of equations
derive theform of the classical equations of motion as well of motion. All isolated systems approach equilibrium. How-
as the probabilities with which they are satisfied. ever, averages of approximately conserved quantities over
(iii ) The Ehrenfest derivation posits the variable—the po-suitable volumes approach equilibrium slowly. Closed sets
sition x—in which classical deterministic behavior is exhib- of equations of motion result when the volumes can be cho-
ited. But the quantum mechanics of any closed system wilsen large enough that statistical fluctuations and noise are
exhibit a great many complementary sets of decoherent hismimportant, but small enough that equilibrium is established
tories, some of which may exhibit deterministic correlationswithin each volume in a time short compared to the dynami-
in time. What distinguishes coarse grainings in terms of thecal time scales on which the variables vdsge, e.g.[9]).
familiar quasiclassical variables from all other possibilitiesThe constitutive relations giving equations of state, coeffi-
exhibited by a closed quantum mechanical system? Certainlgients of viscosity, diffusion, etc., are then defined, permit-
it is not their relation to the variables of the fundamentalting closure of a set of hydrodynamic equations of motion.
theory, which is typically only distant, as described aboveLocal equilibrium being thus established, the further equili-
Rather, it must lie in the relative utility of different coarse bration of the volumes among themselves is governed by
grainings for prediction, with quasiclassical variables beingthese equations.
highly predictable. A complete derivation of classical pre- Despite the plausibility of the above general and simple
dictability must seek to distinguish classical coarse graininggjualitative picture, its validity has been only partially inves-
from all others. tigated quantitatively. To make the argument quantitative, in
(iv) The Ehrenfest derivation deals with the expected outlight of our earlier discussion, requires at a minimum an
comes of “measurements” on an otherwise isolated subinvestigation of sets of histories coarse-grained by ranges of
system. However, in qguantum cosmology we are interesteduasiclassical variables which has the following features:
in classical behavior in much more general situations, over (i) Establishes the decoherence of sets of histories suffi-
cosmological stretches of space and time and over a wideiently coarse-grained by ranges of quasiclassical variables.
range of systems including the universe as a whole, whether (ii) Establishes with high probability deterministic corre-
or not they are receiving the attention of observers. We aréations in time summarized by closed systems of classical
interested in sets of alternative histories that can be assignedjuations of motion for reasonably realistic initial condi-
probabilities whether or not they describe measurement situtions.

123503-2



CLASSICAL DYNAMICS OF THE QUANTUM HARMONIC CHAIN PHYSICAL REVIEW D 60 123503

(iiil) Compares the decoherence and predictability of dif- k k k k
ferent coarse-grained sets of histories, both within the family W """ :j\/\/\f:
of coarse grainings by quasiclassical variables and with other (B
coarse grainings of distinct character. Ax

Despite in_tenSive inVEStigaﬁon of a_" of thes? points sepa- FIG. 1. The microscopic picture of the one-dimensional har-
rately there is as yet no analysis which combines all threeygnic chain A" equal massep are spaced an equilibrium distance
There are many investigations of the mechanisms of decoxx apart. The displacement of thgh mass is denoted; . The
herence of historie$10,4,5,11 and of the closely related masses have a linear restoring force between them with a spring
decoherence of density matric€$2], especially in linear constank= uw?. The chain is assumed to have periodic boundary
systems. However, these studies have typically posited eonditions.
fixed division of the fundamental variables into those de- ) _ )
scribing a “system” and those describing its “environ- The details of_ the model are Ia_uo_l out in Sec. I, where we
ment.” Coarse grainings follow variables of the systemintroduce a family of coarse grainings. In the simplest, the
while ignoring those constituting the environment. Such achain of AVidentical particles is divided intaf groups, each
fixed system-environment split is intuitively accessible andconsisting ofN neighboring atoms. Histories are partitioned
correctly models many mechanisms of decoherence, but it i8Y ranges of values of the center of mass displacement in
not general. each group. We find that the effective equations of motion

Rather, coarse graining is the general notion which, whefor these variables are well approximated by the classical
possible, determines a family of system-environment splitsWave equation. We obtain quantitative estimates for the sta-
Different coarse grainings lead to different possible notiondistical noise causing deviations from the predictions of the
of system and environment, that division is not usuallyWwave equation.
unique, and for some kinds of coarse graining no system- We compare this_quasiclassical coarse.graining with o_ther
environment split is possible at a(See Appendix A.Even ~ members of a family of sets of alternative coarse-grained
when a system-environment split is possible at one timehistories constructed as shown in Fig. 2. The chain is divided
differentsystem-environment splits could be needed at othe#P into M groups ofN atoms, each group consisting of
moments of time. A fixed system-environment split is there-equally spaced clumps ofatoms. We coarse grain by equal
fore neither general nor necessary for formulation quantuni@angesA of the values of the averadeenter of massposi-
mechanics. However, as such workers as Feynman and Velions of the atoms in a group at equally spaced intervals of
non[13], Joos and Zeh14], Zurek[15], Caldeira and Leg- time At. A family of sets of alternative coarse-grained his-
gett [16], and Omne [17] fully appreciated, a system- tories is thereby defined, parametrized bi,d,A,At).
environment split is an important tool for analyzing specificWhend=N the N atoms in a group are all neighbors, the
coarse grainings and for understanding the physical mech&oarse graining entirely local, and the average position re-
nisms of decoherence. We shall utilize this tool extensivelyated to the approximately conserved center of mass momen-
is what follows. tum of the group. There is nothing special about the remain-

The emergence of deterministic correlations in time goving members of the family except that they are amenable to
erned by classical equations of motion has been investigatetnalysis and range from local to highly nonlocal dsle-
for fixed system-environment splifg]. In a recent elegant creases fronN to 1.
paper, Halliwell[ 7] has derived classical equations of motion ~ We find that for each decohering member of this family
for hydrodynamic variables although with a special assumpthe probabilities of the histories can be thought of as
tion about the nature of the environment. Neither of these Neé
works compared quasiclassical coarse grainings with non-
classical ones. In their pioneering paper on classical behavior ¢=% OCCCOCOTTTT T 00000 EEEOC0000
in systems of interacting spins, Brun and Halliwj@] com-
pared a family of coarse grainings but did not derive classical
equations of motion. 'EVIGONE __CCOONE __CCOONE 00

This paper moves the analysis of decoherence and classi-
cality a step towards realistic coarse grainings by hydrody- d=1 CCISESCSECCOECCSECC OEOC 0N
gﬂ:ﬁs\(ggzbfﬁa}g tgf ggigtte);;;sfsaessmi?fl]e Imggfl nza?(re];- FIG. 2. The family of cqars_e_graiqings under consideration. The

. . . . L ! total number of massedy, is divided intoM groups ofN masses
neighbor _mteract_lo_ns(_See Fig. J‘.Thls is the simplest each. These groups are then further subdivided Nt clumpsof
model which _exhlblts tlme correlations gover_ned l_)y & CON<y masses each. The clumps of a given group are spaced so that
tinuum equation of motion—the wave equation—in appro-cj mps of all the other groups occur before a clump is repeated, that
priate coarse grainings for certain initial states. Yet the Lajs py 4 distancevtd. The coarse-grained variablg is the average
grangian of the model is quadratic in all coordinates, so ilgisplacement of the masses in tdéh group. In the figure ¥
can be tractably analyzed with standard path integral tech=30, A1=5, andN=6. Masses in the same group are labeled with
niques[13,16,4. Although our analysis is only for this very the same symbol, with a different symb@hcluding the shading
simple system, and does not deal with coarse grainings bir each group. The arrangements are showndferl,2,3,6, with
hydrodynamic variableper se it does display all three fea- d=1 being completely delocalized amd=6 being completely lo-
tures listed above. calized.
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obeying classical equations of motion augmented by noise Both classically and quantum mechanically we will com-
[cf. EQ.(3.9]. We compare the members of this family with pare members of a family of coarse grainings defined in part
respect to three properties bearing on classical behavior: déy two integer parametefd andd. The N particles in the
coherence, noise, and the computational complexity of theichain are divided intaM=AN/N groupsof N atoms each.
equations of motion. We find marked differences which areEach group consists d/d clumpsof d particles spaced by
described in detail in the Conclusion, but which we summa-Md. (See Fig. 2.Whend=N there is only one clump. This
rize briefly here. As measured by the smallness of the ratio ofoarse graining is local—the atoms are as closely spaced as
the decoherence to dynamical time scales, decoherence is nassible in the chain. Wheti=1 there is only one particle

a major constraint on predictability for “realistic” coarse per clump. This coarse graining is nonlocal, as the atoms are
grainings, but nonetheless favors the local coarse grainingas spread out as possible in the chain. The variables followed
Noise interferes with the predictability of the nonlocal coarseby the coarse graining are the average displacements of the
grainings much more than for the local ones. The equationgroups:
of motion of the local coarse grainings require many fewer

steps to evolve over a given time to a given accuracy than do @) _ NG @

those for the nonlocal coarse grainings. In short, we find that X3 = N kzo m:[_zdmﬂ Xsd+m+kma(t). (2.6

the familiar local coarse grainings are more predictable than

the nonlocal ones. The first sum is over the clumps in the group, and the second

sum is over the atoms in a clump. The range of the sum over
m depends on whethet is even or odd. For odd it ranges

Il. LINEAR CHAIN .
from —(d—1)/2 to (d—1)/2. For evend the range is
A. Chain and its coarse grainings —d/2+1 tod/2. The bracket$x] in Eq. (2.6) denote round-

In this section we lay out the details of the model. weiNd down to the next lower integer. The range Dbiis J
consider a linear chain ¢ “atoms,” each of mass, sepa- =0,... M~—1, making a total ofM coarse-grained coor-

rated at rest by equal distancas, and with displacements dinates. o _
x;,i=0,... N—1.(See Fig. 1.Each atom interacts linearly We consider sets of histories constructed from exhaustive

with its nearest neighbors. The action describing this systerfi€ts Of exclusive equal rangés of XS_) separated by time
is intervalsAt. There is therefore a family of coarse grainings,
each member of which is labeled by values of the four pa-
1 My , , rameters K,d,A,At).
Sx(1]=5m ZO J; dt{[x;(1)]°— 0 [ X+ 1(1) =%;(1) ]7} It is convenient to expand the coarse-grained coordinates
= in terms of spatial modes as well:

(2.
MI2
where, using periodic boundary conditions, we take=Xx,. XOt)=2>, [ADt)FD ) +c.c] 2.7
The linear harmonic chain is the simplest model of a solid L=0
and is treated in many reference$he x;(t) may be conve-
. . X J where
niently analyzed in terms of spatial modes
e FD(3)=M Yexp27iILIM). (2.9
xj(t):E [a(t)f(j)+c.c] (2.2 The parametet labels the coarse-grained moA&’) just as
1=0 | labels the fine-grained modsg . The corresponding fre-
quencyQ(? depends on the choice of coarse graininghe
where d L -
A{9(t) will be a superposition of the normal modes of the
f1(j) =N~ Y2exg 2rijl IN). 2.3 chain. Specifically,
d-1
These are the normal modes of the chain andatti® oscil- A= cPammgna(t) (2.9
late with frequencies k=0
where
w; =2 sin(7l/N). (2.4
L+kM/2, k even,
T_he action expressed in terms of normal modes takes the m(k)= —L+(k+1)M/2, k odd. (2.10
simple form
The coefficients , are given by
1 A2 t
i ; 2_ 2 2 .
Sa(il- 503, [ atlamr-oflaoP. @9 o L SO
d/N sifmm(k)/(Md)]
with the phasegp(d) vanishing ifd is odd and equal to
For a classic reference s8], —a/(Md) if dis even.
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In the delocalized limid=1, theA(Ll) are just single nor- of the family of coarse grainings introduced above for a
mal modes: single class of initial conditions. That is like the situation in
cosmology, where the initial condition is given by funda-

A (t)cay(t). (212 mental theory and we search among the possible sets of

) ) o N coarse-grained alternative histories for sets that exhibit more
By contrast, in the localized limid=N, the AN (t) are su- predictability than other sets.

perpositions of all modes higher thanviz. In this simple model of the harmonic chain there are no
N—1 interactions between different normal modes. This is an ide-
N) 3y — (N) alization; realistically there will be interactions. These inter-
A= go CLic 8mg(1): (213 ctions mean that the normal modes will tend to equilibrate.
The highest frequency modes can be expected to come into
These facts will be useful in what follows. equilibrium first, the lowest frequency modes last. Thus, at
an intermediate time in the approach to equilibrium, the
B. Environments chain can be described by a state in which the low frequency

For several purposes in the subsequent analysis it will bgormal modes within a certain range are not yet in equilib-

convenient to divide up the configuration space of fine-um, but the higher frequency modes are in equilibrium at a

. . ) emperaturel.
grained modega,} into a subspace spanned by variables tha% Indeed, a garden variety string would be described in this

are followed by the coarse grainings introduced above and \9vay In a plucked violin string, for instance, the wavelengths
S“bSpaC(E, spanned by_vanable_s that are |g_n0red_./\21hﬁar|— fthat are reasonable fractions of the length of the string are
ables{A]”’} may be said to define the configuration space o

he “ 5 Th . iderable latitude in the choi fnot in equilibrium, but very short wavelengths—short com-
the systerrg‘.j) ere Is considerable latitude in the choice of,, 6 1 the transverse dimensions of the string, certainly—
variables{q,"},a=1,2, ... N—M, which define the “en-

¢ 1 i . ) are likely to be in equilibrium.

vironment.” The only requirement is that tHé™} and the Classically an initial condition is given by a distribution

{a{"} span the whole configuration space of the fine-grainedn the phase space of mode amplitudesnd their conju-

modes{a;}. A convenient choice for our calculations will be gate momentar,. We denote these collectively bz, }

to take theq? to be all but the lowest fine-grained modes ={(a,,m)}, 1=0,1, ... A72. We assume that the signifi-

that contribute to thA(Ld) through Eq(29) That iS, we take cant expected values af, denoted?ly occur Only at low

the q{” to be the real and imaginary parts of frequencies, so that fdr greater than a cutoff- we have

z~0. We assume thermal fluctuations around these ex-

amna,  k=12,...d-1; L=0,... M/2. pected values. A distribution which gives this is

(2.19
. N2 -

Each labela on q, corresponds.to a pam_'(k); the exact P({ZI}):H (z7 e Hi@—2)IT), (2.16
form of the correspondence will not be important for us. =0
Thus defined, the environment variables are normal modes
which classically obey Here H(z) is the Hamiltonian [(m|% u+ ww?|ay|?)/2 for

» g g each mode, and, is a normalizing factor.

9P+ (02 =0. (2.19 The corresponding assumption in quantum mechanics

i ! ) _ would be a density matrix of the form
The definition(2.14) defines a different environment for each

d, and even for a giver it is but one of many possible NI2 i
choices, though the effect on the system must be independent  p=[] exdi(af m—mFa+H.c)/2](Z, e H'T)
of this choice. I=0

Since only d fine-grained modes contribute to each
coarse-grained mod&(® | this “system plus environment”
only includes the full set of modes in the localized case - - ,
—N. For all otherd, there will be some fine-grained modes Wherea, and m, are the quantum operators corresponding to
that contribute to none of the coarse-grained modes, andie classical variableg,=(a,,m ), and the exponentials
which thus can be neglected. Wheh=1, each coarse- sandwmhmg the thermal statg are phagg—space d|splacement
grained modeA(Ll) depends on only a single fine-grained operators irg;. These are the initial conditions we assume in

mode, and hence has no environment at all. our analysis. _ o _

A system is said to be in thermal equilibrium when its
state is such that the probabilities of quasiclassical alterna-
tives are accurately reproduced by a thermal density matrix.

As we discussed in the Introduction, the classical behavTypical examples are coarse grainings by volume averages
ior of any quantum system is exhibited through the probabili-of densities of conserved quantities such as energy, momen-
ties of certain decoherent sets of alternative coarse-grainedum, etc. However, the probabilities of an arbitrary set of
histories arising fromparticular initial conditions. In this alternatives will not be generally be reproduced by the ther-
paper we compare the predictability of the different membersnal density matrix. It is plausible that marnpr perhaps

xexy —i(af m—mFa+H.c)/2] (2.17)

C. Initial state
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mosy) initial states of the linear chain relax after a suitable B. Equations of motion
time to a state of local thermal equilibrium for which the
probabilities of thelocal coarse grainings described above
are reproduced by a density matrix of the fof117). How-

We now consider equations of motion for the coarse-
grained average position¥{?(t) introduced in Sec. II.

. . Equivalently, and more conveniently, we can consider the
ever, we have assumed something much stronger, which

that the probabilities of the whole family of coarse grainingsgquatlons of motion for the corresponding spatial modes

. ; PA9(t) defined by Eq.(2.7) and given terms of the fine-
are accurately reproduced by these density matrices. That is & . . .
much more restrictive condition on the initial condition. grained mo.des by Eq(?.g). .lt IS convenient to _take the
system-environment split defined by Eg.14) in which case

the ignored coordinates are the!®} of Eq. (2.15.
The normal modes of the cham oscillate with the fre-
guenciesw, given in Eq.(2.4). Evidently, as a consequence
In this section we consider tlaassicallinear chain. Each  of Eq. (2.9),
atom moves according to a classical equation of motion.
However, with a probabilistic initial condition, a set of
coarse-grained variablgsuch as thex(? discussed in the
previous sectionneed not obewny closed system of deter-
ministic equations. We analyze the constraints on the initialve have suppressed the superscfiptin this equation, as
distributionp(z°) necessary for théx(?} for eachd to obey ~ we shall do for clarity in the remainder of this section. The
and closed set of deterministic equations and we exhibit thegnored coordinates were chosen to coincide with all but the
form these equations take. The general kind of analysis wlwest frequency normal mode in E(B.3). Therefore that
describe has been considered by many authors, for exampégjuation may be rewritten as
Zwanzig[19] and Brun[5]. What is new here is the applica-
tion of these methods to comparing different coarse grain- AL +Q2A (=T, (1), (3.4)
ings of the linear chain.

IIl. EQUATIONS OF MOTION FOR CLASSICAL COARSE
GRAININGS

d-1
AL(t)=— IZO CLK® maionya@mgnrd(t).- (3.3

where
A. Probability of determinism

A set of functionals of the phase-space paf$z(t)], QL= 3.9
A=1,... P and a set of ranggs\ .} in R” define the most
general kind of classical coarse graining. The probabity
that the functional$-, have values in the rangg,, is d-1

fL<t>=a§1 (QF— w2)cLaba(t). (3.6

and

Po= f 5z e {F ALz}l 2(1) ~ 2(20)]p(2). (3.1

Here,w,, C 4, €tc., are the values @, c_, appropriate to
the valuea.

The simple equation of motiof2.15 can be solved to
express they,(t) in terms of their initial values

Here, e, is the characteristic functiofiL inside, 0 outside
for the rangeA , andz,(z°) is the classical evolution of the
initial dataz®. The functionals function enforces that evo-
lution, assigning zero probability to all paths which do not
conform to it. The functional integral is over all phase-space 0.(0)
paths:z.(t.) mclpdmg an integral over the initial condmorzg.“ 0a(t)=0a(0)cog w,t) + a

Utilizing this framework one can calculate the probability @a
that the coarse-grained variables such as{di¢’} exhibit o o . o
deterministic correlations in time. The function&g for ex-  1h€da(t) are probabilistically distributed with a distribution
ample might define different orbits in phase space. Evefhat depends on the distribution of the initial conditions
more simply, one can evaluate the probability that a set ofrough Eq.(3.7). Let F (t) be the expected value 6f(t),
deterministic equations of motién

E(t,X(1)]=0 (3.2

sifw,t). (3.7

FLt)=M[f (D] (3.8

where M f| ] denotes the mean over the distribution of initial

holds for a set of variableX ("} [denoted without indices in  conditions.(We use M -] for classical expected values and

Eqg. (3.2] at timet, by calculating the probability that the (.) for quantum mechanical ongsThen Eq.(3.4) becomes
functionals&;(t,X(7)] have the value zero. If that probabil-

ity is high, then the coarse-grained variables obey the deter- A A (D) +O2A (1) —F, (1) =Af
ministic set of equations3.2). ALALDI=AML +AAM R L0, (3.9

where

2We follow the convention that(t,x(7)] means thaf is a func-
tion of t and a functional ok(7), for examplef{x(7)dr. Af (D) =F ()—M[fL(D)]. (3.10
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We can think of€ (t,A (7)]=0 as a deterministic equa- R 1 [t .. o 1-
tion of motion andAf, as classical stochastic noise causing Sa(n)]= Efo dt[(ama) - (ap ‘o pa)].
deviations from that determinism. Since the expected value (3.13
of & (t,A (7)] is zero, the coarse graining will approxi- '
mately obey the deterministic equatiép(t,A (7)]=0 pro-  we use a Hermitian inner product indicated only implicitly,
vided the noise is small. A simple measure of its size is theab=3,a*b, . Sandwiched in inner products like those
of Eq. (3.13, w and u denote the diagonal matrices of nor-

MLAE (AT (1)]. (3.11 mal mode frequencies and masga#i equa) respectively.
For this caseu'?w?u’= pw?.

The situation is even simpler if, in additioR, (t) is neg- The coarse-grainings are by the variabié® or, equiva-
ligible, as it is iq many realistic situations. Then the chain|em|y, by their modesA{® . The coordinates)® are the
obeys the equation fine-grained modes that are not followed by the coarse-

) graining. Continuing to suppress superscrig},(we write
A (D) +QZA (1)=Af (1)=0 (3.12

a|=§ sLAL+Ea Tia0a (3.14

with high probability—an equation whose form is indepen-

dent of the initial distribution. ) ) )
For our chain modeF  (t) does not vanish. Because the OF» IN matrix notation,

initial condition is diagonal in the fine-grained modes rather I,

than theA, ’s andq,’s, there is a non-vanishing contribution a=SA+Tq. (3.19

to the driving forceF, proportional to(A; (0)—MJ[A, (0)]).
¢ L Prop O(AL(0) [AL(0)D In general, there is considerable arbitrariness in the matrices

However, even in terms &%, andq,, the initial condition is - X
SandT depending on how the variablgg are chosen. The

close to diagonal for larghl and M; thus, this term is small X
compared both to the noise and the terms of the homoge2ly requirements are that E¢3.19 must reproduce the

neous equation of motiof8.12. The time average of ()  definition of theA,'s (2.6) and(2.7), and the set ofA, ,qa;

also vanishes. Hence, we can safely neglect it. must span the space of the,} . The choice(2.14) specifies
Unlike effective classical equations for many systems, Eq2 definiteT andS. _ _ _

(3.12 exhibits neither nonlocality in time or dissipation.  INSerting the transformatio8.19 into the action(3.13

These simplifying features can be traced to the conservatiof"® has

of the energies of the individual normal modes. The A 1t . ) ) ] ) )

environment—theq,'s—are all normal modes. Energy, gA(t),q(t)]= EJ dt[(AMsA) + (qM11q) + (AM g79)

therefore, cannot be exchanged betweerthand theg, on 0

average, that is between the system and its environment. De-

fining the energy for a coarse-grained mode is somewhat +(qM1eA) — (AVsA) — (GV11q)
ambiguous, but simple definitions give an energy which fluc- . o
tuates about a fixed average. This is special to this linear —(AVg1q)—(aV1A) ] (3.16

system, which has a high level of integrability. ) _
The initial distributionp(z°) determines whether the clas- Where(with AB standing forSor T)

sical noise is small. The noise will be negligible when there At
is a negligible probability for any significant initial excitation Mag=A pB (3.173
for the q,. Thus, for initial distributions that favor low fre-
guency modes below some cutoff value, we expect low noise
and a deterministic behavior of tig (t). We shall return to Vag=A'u2w?ul?B. (3.17H
this question in more detail in Sec. V.

With the action in this form, it is a simple matter to derive

C. Deriving the equations of motion from the Lagrangian the equations of motion foh and(i:

While the above derivation is perfectly correct, it is in " - . _
some sense a shortcut to a more standard procedure. In this MsA+Mgg=—VsA—Vs, (3.183
procedure we would substitute the change of varial2e8
and(2.14) into the expression for the actig@.1), and derive > > > .
the Euler-Lagrange equations for the new variables. This is MrrQ+MrA=—Vrrg—ViA. (3.18h
important later in making contact with the quantum case, '
since that derivation proceeds from the classical Lagrangian, Equation (3.18 looks complicated, but in fact we can
and there are no classical equations of motion to solve.  easily recover our earlier result. Because dheariables are
The action(2.5 may be expressed more compactly in normal modes, they obey the usual harmonic oscillator mo-
matrix notation writinga(t) for the vector with components tion (2.15. By plugging the second equation into the first,
a,(t). Then the equation becomes
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1 =t _1 ~ simple underlying dynamics only complicates the analysis of
(Mgs=MgM 7M1 A+ (Vss—MgM1rVig)A the quantum case. For the classical case, it is best to stick
_ B —1 - with the simple form(3.12.
==(Vst—MsM7Vrr)a. (319 The two forms do differ in one important respect. The
retarded term in Eq(3.22 is most readily identified as part

If we then plug in the simple harmonic solutig®.7) for the of the homogeneous equation of motion, while in Ej12)

ignored modes, the equation reduces to the simple equationt js implicitly included in the noise terms. We shall see that

(3.12 above multiplied by the diagonal matrixMss  this ambiguity in the definition of the noise becomes impor-

—~MgM7rM1g). (See Appendix B for the proof of this.  tant in comparing the classical and quantum cases: one defi-
This is a slightly more complicated derivation of the nition is most natural in the classical case, while the other is

equation of motion, but it still relies on the shortcut of know- most natural in the quantum ca[sehere,&(t) need not obey
ing the solution for the motion of. That will not be avail-  the classical equation of motipn

able in quantum mechanics. Without making use of this, we | et us restrict ourselves to a single coarse-grained mode
could solve the linear equatio(3.18b a?ove forg(t) and AD(t) and its associated modegt). If we define the two
insert it into Eq.(3.19. The solution forg(t) is forms of the noise to be the right hand sides of E§s12
. and(3.22), respectively, they can then be expressed as
M3Zq(t) =cog Qt]M7Z(0) + @~ Lsif Qt]M¥Zq(0 - -

t
—Q’lj dt’ sif Q(t—t") M2
0

+ Q4 "siM Qut]AG(0)} (3.233
F >, and
X[M1eA(t") +VrA(t')], (3.20
where Af{ (1) =Nc(Q1 - QZ)M 7% cod OtIMTZAq(0)
Q2= MY M2 (3.21) +Q7ISif QtIM7AG(0)}, (3.230

and it gives us the very complicated-looking equation of moWherec is a vector in the space of thg's with elements
tion equal to the coefficients,, g is a diagonal matrix on the

space of they,'s with diagonal elements,,, andQ is the

. - . - effective frequency matrix defined by E®.21). The struc-
(Mss=MsM 7M1 A+(Vss— MsM7VrgA ture of these two expressions is closely parallel, and in Ap-
B 1 121 pendix C we show that we can switch from one form of the
T (Vsr=MsMyrVrn)Mer ™2 noise to the other by means of an invertible linear transfor-
t ) - . mation. As far as determining the classical dynamics and

XJ dt’ sif Q(t—t") M MTA(t) + V1A, predictability, they are equivalent.

0 However, if we look at the absolute strength of the noise

__ _ -1 —1/2 1127 as a function ofL or d, the form of the noiseean make a
== (Vst=MgM V)M cod Qt]M17q(0) difference. We assess this by looking at the correlation func-

tion (3.11) for the two forms of the noise.

e 122
+Q s QtMT7q(0)}. (3.22 In the initial state(2.16 we find the expectation values

Two observations can be made. First, the solut®20), M[AGL(0)AGE,(0)]1=Ke T(VT )b
while still harmonic motion, appears to be at quite different b
frequencies fron(3.7), and also includes a driving term ab- . - _ 1
sent in that case. Second, H§.22 appears very different M[Aa,(0)Aa, (0)]=KeT(Mrr)pp - 5
from the rather simple harmonic oscillator equati@l2. (3.24
These differences, however, must be apparent rather thafye can yse these to calculate the correlation functions
real; both Egs(3.7) and (3.20 follow from the same La- (3.11): a . I unet
grangian, as do Egqg3.12 and (3.22. In fact, the more o
complicated form3.22 of the equation of maotion is related

* I\ — 2021 02
to the simple form(3.12 by an invertible transformation, MLATE(DAT (1) ]=keTC(Q1 — )

and thus has exactly the same solutici@ee Appendix Q. X(cog Qot]Vricod Qut']
—1gi —1qi "Mo-1
D. Transforming the classical noise +Qq s Ot [M17sin[ ot [ Qg )
The fact that classical equations of motion can be repre- x(QE| —Qé)é (3.25

sented in widely different forms is nothing new, of course.
But the apparent complexity masking the comparativelyand
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R B approximation is necessary for the validity of the wave equa-
L =65 -——-- tion as for other familiar continuum equations such as the

= L=30 - Navier-Stokes equatioh.
Z 016 .
S o4 . A. Small gradient approximation
m
ff 0.12 A The expansion(2.7) of the coarse-grained coordinates
=] N . .
2 X@(t) in terms of coarse-grained modé$®(t) connects
g 0l y the equation of motiori3.12 for the A{®(t) to an equation
= 008 § of motion for theX{?’)(t). The character of these equations
£ 006 i for the X{!(t) is determined by the dispersion relation for
5 QD which is[cf. Egs.(3.5), (2.4)]:
I 0.04 -1
& () i
0.02 ; LN - Q"=2wsin - 4.1
0 R TTTY B AL T PRI et 1 METETEETIT
L 10 120 1000 10000 Since Eq(4.1) is not linear inL, the equations fox{?(t)

_ following from Eq. (3.12 will generally relateX(?(t) to all
FIG. 3. The time-averaged mean force squared of the nSfse, the other coordinatexgd)(t) of the chain. The form of the

[q. (3.:27], for the harmonic chain as a function of the coarse o, ations forx(?(t) simplifies if the initial distribution is
graining d. This noise is chosen for three typical coarse-grained

modesL =30,65,100, withM=630 andN assumed to be very such that only modes with
large; theN dependence is absorbed into the unksTw?/Nu. <N 4.2
Note that the noise vanishes fde=1, but otherwise assumes its ’

highest value_s at lowl, dropping off like 14l at highd, as predicted  p5ye any significant probabilities, thatlig<. Then from
by the analytical resultS.6). Eq. (2.9, w;~27wl/N and in particular

MIAF* (DA (1)]=NkgTc(QF1 — Q3) _2mol
X M7+ cog Qt]Q 2cog Qt']
+Q 7 sifQt]sif Qt’'1Q Y

4.3

In this small gradient approximation, the equation of motion
for the X{?(t) implied by Eqs.(3.12 and(2.7) is
XM7AQF1-0d)c. (3.26 )
. . . XD ty= 2 x@ (1) 2xD(t)+ XD ()], (4.9
Using these expressions, we can estimate the mean J gzt J J-1
strength of the noise by taking the average over time:
Only nearest neighbor interactions are involved in the small
T t 5 gradient approximations.
S _tl'inmﬂjo M{fL(t) —FL(b)[7}dt. (3.27) Usually a much stronger condition is meant by the small
f gradient approximation, namely that the only modes with

In Fig. 3 we plotS? as a function of the coarse graining ~ Significant probabilities are those with
We see that the noise strength falls off steeply as a function e
of d. Thus, the noise becomes lower in the highly localized I <M<N, (4.5

case, and the motion of the localized coarse grair_ling IS Mogh 4t is|c<M. Ford=N this condition ensures that many
predlct_ablle. Later we shall see that the Lagrangian form O,I;roups will fit into a wavelength so that thé, vary only
the noise is closely related to the strength of de(;oher_ence Bightly from oneJ to the next. We will see below that this is
the quantum case, and closely resembles this “simple’ggsential to deriving the continuum wave equations.

noise. Condition(4.5) can be very much stronger than £4.2).
In a 10 cm length of string with typical interatomic spacings,
IV. WAVE EQUATION N~10°. Dividing the string into .1 mm lengths constituting

The classical wave equation for the string does not follovvthe groups in thel=N case give\~ 10

directly from the deterministic equations for the chésl2). For t_he nonlocal coarse gralnlzult?:l, the condltlor(4_.5)
A restriction on the initial distribution is required beyond Would imply that no values of((t) would be excited
that necessary for determinism. This is the requirement thtP0veL =0, since thel values contributing to anyl=1
only very long wavelength modes of the chain are excitedMode are all larger thanN [cf. Eq. (2.9] except
We assumed such a restriction on the initial distribution in

Sec. IIC, but in this section we will examine the require-

ments on the short wavelength cutbff. This small gradient  3See, e.g.[20,9.
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[=0. That makes the equation of moti¢.4) in the delo- M[af (t)a (t)]= 5||rkBT/(2Mw|2)- (5.2
calized case not incorrect, but rather trivial since both sides
are negligible. We therefore have, from Eq3.6),
_ o KT 42
B. Continuum approximation M{|f(,_d)(t)|2}= % kzl |CLk|2w|2(k)

For the localized coarse grainind=N, the difference
equation(4.4) is well approximated by the wave equation
when N is large. The derivation is standard, but we briefly %
repeat its essential features here.

Recall that we denoted the mass of an atonmubgnd the 5.3
spacing between atoms in the unexcited chainAly The '

mass densityr is therefore where the final factofarising from the initial conditionis
_ very close to 1 for M>L, that is, @/2)(wfyV7T
o= plAX. 48 Mi1)=1+0(LYM?), wherel (K)=m(K)N/d is

2
Lo
2

2

)
2

Di(k)

1 (@ Vrt+ M1t

Multiplying both sides of Eq(4.4) by o it can be written as I(k)=(L+KM/2)N/d, for k even, (5.49

N N N
KM (1) = wa?Ax X520 = 2X30 (1) + X5y (1) I(k)=[—L+(k+1)M/2]N/d, for k odd.
TR (NAX)2 ' (5.4b

.0 Every term on the right hand side of E®.3) depends oml
The lengthNAX is the distance between the centers of the@lthough we have not indicated the dependence explicitly.
groups in the unexcited string. Assuming the strong form of Figure 3 shows a plot of the expected value of the square
the slow approximation gradieri.5), we can approximate Of the fluctuationg5.3) as a function ofi for some represen-

Eq. (4.7) by the continuum equation tative values ofL. The plot is forAMM=630; the value olN
cancels out of the plotted function, but is assumed to be very

PX(x,1)  I2X(x,1) large in order to have a sufficient number of factdrd\s is

o =Y , (4.8 evident from Eq.(5.3), the noise vanishes fa=1. That is

ot X’ because, as we noted (8.12), A(Ll) is a single fine-grained
mode not coupled to any other fine-grained modes. This spe-
cial situation results from our idealized linear model of the
&hain. Even a tiny amount of nonlinearity would couple this
mode to others and produce noise.

Figure 3 shows that the noise generally increases with

V. CLASSICAL PREDICTABILITY and decreases with Analytic estimates can be derived from

The fine-grained variables of a classical system obey &d- (5-3 whenL<AM<N. Assuming that the final factor in
closed system of deterministic equations of motion. How-Ed- (5-3) is well approximated by unity, we have, fdr=2,
ever, there is no guarantee that coarse-grained variables will. KoT o2
There may be no deterministic equations at all, or the set of M{| (D ()|}~ B (wLIM)?, (5.5
those that do hold may not close, in the sense that there may Nu
not be a complete set of equations to solve for all the vari- hile. for | d ble taN
ables. In Sec. Il B we demonstrated that the probabilities of '€, Tor larged comparable oy,
the evolution of the coarse-grained modé®(t) of the lin- keTw? (7LIM)?
ear harmonic chain are reproduced by a classical equation of M{[F(D(1)|?}~ ?\l g
motion (3.9) modified by noise, K

where Young’s moduluy is pw?Ax. Equation(4.9) is the
wave equation for the propagation of compressional mode
along the string.

(5.6

. The noise thus varies inversely with For the “realistic”
AP 1) - QZALD (1) - FP (1) =Af{D (D), (5.)  coarse graining discussed at the end of Sec. IV A, wihere
~10°, the noise is 10times smaller fod=N than it is for
for the family of coarse grainings under consideration. Thej=2_ That is a vast advantage in predictability of the local
time evolution of theA{”(t) will be classically predictable coarse grainings over the nonlocal ones. The origin of this
by the left hand side of Eq5.1) if the noise term on the advantage can be traced to the approximate conservation of
right hand side is negligible. In this section we analyze thisthe center of mass momentum of the local groups of atoms.
requirement for classical predictability as a functiondof The noise term on the right hand side of the equation of
A simple estimate of the noise can be obtained by assunmotion (5.1) must be compared with the characteristic size of
ing a completely thermal initial state characterized by a temthe deterministic terms on the left hand side to get a true
peratureT. That is, we assume E(R.16 with |c=0. Inthis  estimate of the effect of noise on predictability. In F2.16
initial state, M f{¥(t)]=0. A measure of the magnitude of we assumed an initial state in which only fine-grained modes
the noise fluctuations is fif{?(t)]%}. In a thermal state with I <l had significant excitations above thermal noise.

123503-10



CLASSICAL DYNAMICS OF THE QUANTUM HARMONIC CHAIN PHYSICAL REVIEW D 60 123503

But, as we remarked earlier, the coarse-grained mad@s  bers. When this condition is satisfied the set of histories is

are superpositions of fine-grained modes withLN/d, as  said to decohere. Decoherence is a prerequisite for probabili-

Eq. (2.9 shows. Thus, fod<LN/I., there will be no sig- ties.

nificant excitation ofA{Y above the level of thermal noise. ~ The interference between historiesand«’ is measured

The subsequent dynamics is predictable only in a triviaPy the decoherence functional

sense. The string exhibits no motion except in response to () s d d d q

thermal fluctuations. For true classical predictabildymust D (e v“):Tr[Par’](tn)' . Pai(tl)PPal(tl)' " Pan(tn)]-

be large, so the noise is low, but also so the deterministic (6.2

terms in the equation of motion dominate the noise terms.

We shall return to a more quantitative comparison of theHefe,{Pik(tk)} are an exhaustive set of mutually orthogonal

noise and dynamical force terms in the Conclusion. Heisenberg picture projection operators projecting on the re-
Even leaving aside the competition between noise angions {Akk} of {ng)} at time t,. The operatorp is the

predictability, the classical equations of motion for nonlocal eisennerg picture density matrix of the system. The set of
coarse grainings are distinguished from the local ones b

hei onal lexity. Consider the classical Wistories decoheres when the “off-diagonal” elements of
their computational complexity. Consider the classical equap () g negligible:

tions (3.12 for the coarse-grained modes or, equivalently, in
the small gradient approximation, Ed4.4), for the center of DW(a’,a)~0, o' #a. (6.2)
mass positions of the groups. The characteristic dynamical
time scales are of orde¥1d/wL. The local coarse grainings There is an equivalent path integral expression for the
therefore vary the most slowly as would be expected frondecoherence functional of sets of histories coarse grained by
their association with approximately conserved quantitiestanges of configuration space such as those under discussion
Thus computing the evolution of the coarse-grained quantitjiere. Suppose the coarse graining is entirely confined to
A or X over a given time interval to a given accuracy times less than a final timg, i.e., t,<t;. Then, for the
will take a factor of N more time steps for the nonlocal linear chain coarse grained by rangesx§?(t),
equations than the local ones. For the “realistic” case when
N~}O6 that is a significant advgntage in computational com- D(d)(a/’a):f 55’[ 555(54 _5f)
plexity for the local coarse grainings. a’ @
Thus, whether one considers the absolute value of the . . R
noise, the relative size of the noise and deterministic forces, xexpi{s[a'(r)]—Sa(7)]}/h)p(ay,a0).
or the effort needed to solve the classical equations of mo-
! L : (6.3
tion, the local coarse grainings are more predictable than the
nonlocal ones in the family we have considered. In the nexXphne integral in Eq(6.3) is over pathsi(

. . . 7) on the interval
section we turn to the same questions in quantum theory.

[0t;] which start ag, att=0 and end af; att=t; includ-
ing integrations over those end points. The integral is only
VI. DECOHERENCE over paths which pass through the regi¢ag } in {X{"} at

A. Quantum mechanics of the linear chain the timest,. The constraint on th&X{? translates linearly

In this section we turn to the classical behavior of thelNto & constraint on the through Eq(2.2). An integral over
quantumlinear harmonic chain. A quantum system behaved'(7) is similar except that it is constrained by the coarse
classically when the probability is high that coarse-grainedgrainings ofa’. The sum in Eq(6.3) could have been ex-
histories exhibit the correlations implied by classical equafressed in terms of any configuration space variables. We
tions of motion. We will be concerned with the histories of have chosen the modagsbecause the action takes the simple
the linear harmonic chain coarse-grained by values of théorm (2.5). Equally well, we could have used the coordinates
position averagesx(?(t)} defined in Sec. II. More specifi- of the individual atoms;, i=1, ... V.
cally we shall consider, for eadl sets of histories defined ~ Path integrals of the forni6.3) have been extensively
by an exhaustive set of exclusive regior{&'; boay studied for quadratic actions and thermal density matrices by

K many author§13,16,4,9. All integrals are Gaussian in this
situation and can be evaluated explicitly. The simplest way
to review this is to recall a simple example.

=1,2,3..., of the M-dimensional configuration space
spanned by the{XSd)(t)} at a series of timest,, k
=1,2,...n, with t;<t, ... <t,. We take the same set of
regions for each value off and usually take them to be
“cubes” of equal sidesA. An individual history is then la-
beled by the particular sequence of intervads (. . . ,a,) The sum-over-histories techniques used in this paper to
=a. We then compare the probabilities that these historiesalculate the decoherence functional for sets of alternative
are correlated by the classical equations of motion discussembarse-grained histories of the linear harmonic chain are gen-
in Sec. lll for different values ofl. eralizations of those used for more straightforward coarse
Quantum interference between the individual members ofjrainings of simpler linear syster4,5]. In turn, these meth-
a coarse-grained set of histories must be negligible for probeds extend those pioneered by Feynman and Vefd&h
abilities to be consistently assigned to its individual mem-and Caldeira and Leggdtt6]. While the results of this paper

B. Simple example
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are algebraically more complex, the basic ideas are similar to ) ) ) , ., -
those in simpler cases. To emphasize this connection witF (& ,a)ZJ oX f 5Xf oa j das(Xi—X¢)o(as —ar)
previous work, and to explain the ideas in an algebraically “ “

simple context, we review a version of these simple models. X expli X' (1) .a (P 1=SIX(7).a %
The model consists of the linear chain under discussion PH{Sel X' (7).a' (7))~ Sul X(7) a(7)]}/A)
but with a particle of mass and positionX(t) coupled by a X (X4, Xo)pr(2h,a0). (6.9

linear interaction to atom 0. The total action is
) R The integral over the&(’s is restricted to paths that traverse
Siotl X(7),X(7) =S X(7) ]+ Sx[ X(7) ]+ Sind Xo( 7)., X(7) ], the regionsAil, ...,A" defining the coarse-grained history
(6.4) :

a=(aq, ...,a, and similarly forX’’s. The integrals over
) thea, anda, are unrestricted and, given the assumed thermal
whereS[x(7)] is given by Eq.(2.1), Sx[ X(7)] is initial condition, reduce to Gaussian integrals which can be
carried out explicitly. The result, expressed in terms of the
v 1 . variables
SX[X(T)]:f dTEMXZ(T) (6.5 1
’ X(t)= S[X' () +X ()], (6.103
and the interaction term is ,
() =X"(t) = X(1), (6.10b
is

Sulxo(X(71= = [ larX(mxo(n). (66
D(a',a)=J S5& ngeiA[Y(r),f(r)]

We consider coarse grainings where only histories<of T
are followed. Thus the entire chain serves as the environ- = & = &
ment. Xp| Xot 50 Xo— % (6.11

The actionS[x(7)] is Eq. (2.1), which is Eq.(2.5) when o _ )
expressed in terms of normal modes. The interaction is ~ Wherea; and ax are the limits on¢(7) andx(7) given that
x(7) andx’(7) lie within the limits « and o/, respectively,
and

R tf
Snla(7),X(7)]= —2KN—1’22| fo drRea (7)X(7).
(6.7

ALX(7),E(7)]= = EM(dXIdD) | =g

t _
+J dt &(t)e(t,X(tan]
0

The problem summarized by E@.4) can be mapped onto a
problem studied by many authors following Caldeira and

i [t t
Leggett[16]. We will follow the calculation of the decoher- + I—j foltJ fdt’g(t’)k,(t’ —1)&(1).
ence functional described [@] but in a notation that is de- 4Jo 0
signed to stress the analogy with the subjects of this paper. 6.12
The translations are as follows, the first being the notation of
this paper, the second p4]: The ingredients in Eq6.12) are the equation of motion
d?X t _
Rea<~Qa, o wa, e(t,X(7)]=—-M F(tHJ dt'kg(t—t")X(t"),
0
6.1
X(t)—x(t), wem, (6.13
together with the kernels
1
2kN"20Ca, MM, 6.8 Kr(D)= —4k2(uN) 1> ) 'sin(wt)  (6.14
[
We assume an initial condition that is a product of a dengnd
sity matrix?)(x(’,,xo) for the particle and a thermal density o
matrix pT(é(’,,éo) at temperaturd for the environment. K (t)=4x2(uAN) "1, w,%otf(ﬁ) cogwt).
We consider a set of alternative coarse-grained histories !

defined by exhaustive sets of ranges fof, {Al}, (6.19
{A%}..{A™, @=1,2,..., at aseries of timest;<---  The imaginary term in Eq(6.12 favors &(t)=0, that is
<t,. The decoherence functional for this coarse-grained set’(t)=X(t). If it is large, the off-diagonal elements of
of histories is given generally by D(«a',a) will be negligible and decoherence achieved. The
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characteristic time scalgeco,0ver which enough imaginary  Using the initial conditior{2.17) the integrals oveg, can
exponent is built up to make the off-diagonal element®of be carried out in Eq(6.3), yielding an expression for the

negligible is decoherence functional of the coarse-grained modes,
- D@[A’(7),A(7)], analogous to Eq6.9). The magnitude of
taecor™ (KIA%) ™, (618 D@ in the limit A, At—0 is

where k; and A denote characteristic sizes of the kernel
(6.195 and the intervals&'wi )

If the set of histories decoheres, then the restrictions on B L PV L S S
the integrals oveg(t) in Eq. (6.11) defining the diagonal —ex;{——J dt J dt[£(C)KT(T, )]
elements ofD(a’,a) can be ignored and the resulting

IDWLA" (7),A(D)]]

Gaussian integral oveg(t) carried out. The result is the - go - go
following expression for the probabilities of the coarse- X|p| Aot 5 A0— 5 (6.20
grained historya:
where
p(“):J oX{detk,) /4] "2 Et)=A"(t)— A(t) (6.21a
X ! tfdt’ftfdt ' X(7)] L i+
exp — - et’, =_TA’
o o T A =5[A () +AD)].
(6.21bh
Xkt e, X(T)]) XO’PO) (6.17) The all-important kerneKl(d)(t’,t) is given by
Here, ki"(t,t') is the inverse ok (t,t") andw(;O,EO) is de)(t',t)z%ﬁ(ﬂ | — Q2 Q)
the Wigner distribution of the density matrix
Equation(6.17) shows that probabilities peak on histories % M;T1/2Q—1(Cog{ﬂt]cos{gt']
obeying the deterministic equation of motieft,X(7)] =0
but with a width in this distribution related #q(t' —t). The +siM Qtlsi Qt' QM0 -0)c,
same probabilities follow from a Langevin equation 6.22
e(t,X(7)]+1(H)=0, 618 whichis proportional to the correlation functi©8.26) of the

classical noise derived from the Lagrangian. Thus the “off-
diagonal” elements of the decoherence functional decay ex-

ponentially with increasing difference betwe@d(r) and

,&(r). The set of histories wit\, At—0 is clearly not de-
coherent, sincé(7) andA’(7) can be arbitrarily close; but,

by introducing suitably large reglorx!sK at suitably spaced

A ) Hf"ervalsAt of time, decoherence can be achieved. We shall
coupling between system and environment, the more rap'dl}’eturn to a detailed discussion of decoherence times as a

interference between histories is dissipated, but also the MO ction of d below, but first we consider the equations of
noise which disturbs the deterministic dynamics and reduce, €% otion.

predictability. " : rai - .
The deterministic equatioe(t,X(7)]=0 is exactly the iv‘gzebﬁrobabmty of a given coarse-grained histatyis

same as the classical equation of motion which would bg

derived from the Lagrangian for this system, in the limit of . -

zero noise. This result is generally true for systems with p(a)=f OoAD[A(7),A(7)] (6.23

guadratic Lagrangians, and may hold approximately for sys- “

tems with greater nonlinearities. More details than we haveyhich in analogy to Eq(6.17) can be expressed as

given here are presented j#]. We will follow the basic

ideas of this model in our treatment of the family of coarse

grainings of the linear chain.

with a stochastic noise force distributed with a correlation
function

M[I(t’)l(t)]z%hk,(t’—t). (6.19

Thus, decoherence and noise are connected. The stronger

p(a)= f SA[detK(D)/am]~12

i i i 1t e -
C. Decoherence functional for the linear chain Xexp{ _ %f dt’f dt{&' ', A(7)]
0 0

We now apply essentially the same procedure to the linear
chain, analyzing decoherence and deriving equations of mo- _ .
tion for the coarse-grained position averagg? . XKDV £)E (t, A 7')]}]. (6.24)
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5’(t,A(r)] is a linear functional ofA(7) analogous to Eq.
(6.13), whose exact form we return to beloW(D™(t’ t) is
the inverse oK (9(t’,t) defined in Eq(6.22).

Equation(6.24) shows that the probability of histories is
sharply peaked about those obeying the equations of motion

&' (t,A(1)]=0, (6.25

but with Gaussian noise causing deviations from this predict-
ability related to the size of the kerni¢("™(t’,t). The form

of the equations of motior(6.25 could be worked out by
following the procedure used in the simple example above.
However, it is more direct to note that the result of that
calculation is exactly the equation of motion that would be
obtained by a completely classical analysis of the coarse- C vl T — i
grained dynamics, just as in E@.17) for the simple model. 1 10 100 1000 10000

K = Tr[K;(¢,#)] in units of (NkpTuw?/4h?)

The equations of motioré’ (t,X(7)]=0 are therefore d
equivalent to the classical equatiodsrived in Secs. Il and FIG. 4. The time-averaged traé¢§(d) of the decoherence ker-

IV. This is an important simplification because a straightfor-nel K{?(t,t), in units of NksTuw?/4%2, vs the coarse grainind,
ward extension of the above analysis would lead to nonlocalor M =630 andL=230,65,100. The form of these curves is virtu-
terms such as occur in E6.13, as we saw in Sec. llIC. In ally identical to the classical noise correlation function, plotted in
the end, these all cancel to give the simple equations of md=ig. 3. Note that an overall factor ¢4* has been divided out to
tion exhibited in Sec. lll. This is checked explicitly in Ap- make comparison to Fig. 3 more exact.
pendix C.

The size of the kernék (9(t,t") in Eq. (6.20 controls the VII. CONCLUSIONS: CLASSICALITY
efficacy of decoherence—the larger the kernel, the shorter
the decoherence time scale. We study it as a functiod, of
holding all other parameters fixed, including the temperatur
of bath T. The kernel is necessarily positiy&]. A simple
measure of its size is the time-averaged trace

For a system with many degrees of freedom, useful dy-
namical predictions concern regularities emerging from
%oarse—grained descriptions. To be sure, at a fine-grained
level the system will display the regularities arising from its
fundamental equations of motion if it is classical or from the
1 (1 Schralinger equation if quantum mechanical. However,
K,(d)= lim _f dt TITK@(t,1)]. (6.26 these regularities are usually impossible to extract or apply if
trJo the number of degrees of freedom is very large. The useful
predictions arise from much smaller numbers of coarse-
Figure 4 shows(, plotted as a function ofl. Since the grained variables correlated in time according to phenom-
form of the kernel is closely related to the classical noiseenological equations of motion.
correlation function NIAf'* (t)Af'(t")] from Eq. (3.26), it There are arbitrarily many sets of alternative coarse-
is not surprising that the shape of the result is virtually iden-grained histories that can be assigned probabilities on the
tical to Fig. 3. While Fig. 3 was computed from the form basis of a closed system’s initial condition and fundamental
(3.29 for the noise, which is different, the difference dynamics. Which of these will exhibit useful regularities in
amounts to a constant factor Nf and ad-dependent factor time governed by phenomenological equations of motion?
very close to 1. From the two graphs, where thelepen- How much, and what, coarse graining is needed to obtain
dence has been absorbed into the choice of units, it is evidenkseful predictability? This, very roughly, is the problem of
that the dependence ahof the two forms of noise is almost characterizing classicality that we mentioned in the Introduc-
exactly the same. tion. In this conclusion we describe how our results for the
Since the kerneK(? is a factor ofN? larger than the linear harmonic chain bear on this question.
classical noise correlation function, increasing the level of Which coarse-grained descriptions are predictable is an
coarse graining\ exponentially improves decoherence, butimportant problem even in classical physics. However, it is
actually reduces the classical nojsé Eq.(5.6)]. Because of especially important in quantum mechanics where probabili-
this, for realistically large values df, the decoherence rate ties can be assigned only tiecoherensets of histories, and
is rapid compared to dynamical time scales even in the comiwo such sets are generally mutually incompatible. Further,
pletely localized case, where the absolute strength of th& a loose sense, the number of sets of coarse-grained histo-
noise is weakest. One can understand this as increasing thies is much larger in quantum mechanics than it is in clas-
absolute level of decoherence, but simultaneously increasingjcal physics. It is therefore important to explawithin
the inertia of the coarse-grained variables to resist the inquantum mechanid@nd a theory of the cosmological initial
creased noise, since the inertia of a group just goes like itsondition why we find it useful to employ only a narrow
total massNu. We discuss this trade-off more thoroughly class of the possible coarse grainings by which the universe
below. could in principle be described. Many see this as the central

tf*)OC f
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problem in understanding quantum mechanics. This time increases with the locality of the coarse grairdng

Characterizing classicality involves comparing the utility becausd ;s decreases withl, as Eq.(7.2) shows. Since
for prediction of various sets of coarse grained alternativehe more local coarse grainings are dominated by low fre-
histories. In this paper we have considered only a family ofjuency modes, the dynamical timescale also increases with
coarse grainings of the simplest linear system exhibiting al, so that theratio of the two times favors the more local
continuum description of the kind usually found in classicalcoarse-grainings; combining Ed§..1) and(7.2) we have
physics—the linear harmonic chain.

Four parameters characterize the family of coarse grain- tdecon
ings we have considered. The atoms of the chain are divided tayn -
into groups ofN, consisting of equally spaced clumps ef
neighboring atomsSee Fig. 2. The center of mass coordi- where\pg is the thermal de Broglie wavelength introduced
nates of each group are coarse grained by exhaustive setstmf Zurek[21]:
equal rangeq spaced by equal time intervalst. The four
parameters are therefoh d, A, andAt. Nop="i/(kgTu)"2 (7.9

The probabilities of the individual members of a decoher- ) .
ent set of histories follow from the initial state, so that any | & decoherence time scale must be less than the dynamical

comparison of the predictability of different coarse grainingsiMme scale to use the equations of motion at all. This can be

will depend crucially on the nature of this initial condition. 2chieved by takind or A or both sufficiently large, and for
We assumed an initial condition in which the short wave-Poth local and non-local coarse grainings is not a very con-
length modes of the string were in thermal equilibrium at aStraining condition given “realistic” parameter values, as
temperatureT, while the long wavelength modes were ex- Was stressed by Zuref21] in simpler cases. Fod~1, N
cited well above the level of thermal fluctuations. This is an~10°,4~10 amu, andr~300°,

initial state of local but not global thermal equilibrium. _

Both classically and quantum mechanically the probabili- tdecon/tayn™ (10" cm)/A. (7.6
ties of these decoherent sets of alternative coarse-grained h
tories can be characterized as arising from equations of m
tion augmented by noise. The dynamical time scale of th
equations of motiori3.12) is given roughly by

J(M_

Apg

A

)(Nd)‘l’z, (7.4

¥or such coarse grainings, decoherence is not a major restric-

%on on predictability.

€ Noise.As Eq. (7.2) shows, the noise force decreaseslas

increases for fixed\; that is, it decreases as the coarse grain-

ing becomes more local. However, it is not the absolute scale

(7.2 of the noise that is important for predictability, but rather its
size relative to the dynamical force terRg,, that occur in

| the equation of motion. IL is the characteristic size of the
citations of the chain that occur in the coarse graining,

then roughly

tdyn T

The local coarse grainings~N have the longest dynamica
time scales because the center of mass momenta of the lo
groups are approximately conserved.

The utility of these equations of motion for prediction
depends on the size of the deviations from the regularity in
time they describe that is caused by the noise. The noi

f_orces were estimated_roughly(idr; E&.6). (The force isNu ies with bothN andd. In Egs.(2.16 and(2.17) we assumed
times the force per unit massf;™.) For largeN, d compa- oy jnitial condition in which the fine-grained modes above a
rable toN, andL small compared to\, mode numbet. were thermally excited, while modes below
o (kaTa2) YA N/ Y2 LI M). 72 I.C were much more 'highly excited_. The connection between
noise™ (ke ™) T(N/A) T L/M) (7.2 fine- and coarse-grained modes given by K<) and(2.9)
With these basic estimates in hand, we can compare th@hows that the fine-grained modes belbw contribute to
different members of this family of coarse grainings with coarse-grained modes only wherN(L/I¢). Thus, ifd lies
respect to three properties bearing on classicality: the rate gpuch belowN, we have
decoherence, the deviations from predictability caused by the

Fayn—NuL/t5,,. (7.7

SPhe size off is determined by the initial condition and var-

noise,_ and the co_mputational complgxity required to use the FnoiseNL d<N, (7.9
equations of motion to make predictions. The results are as Fayn
follows:

DecoherenceDecoherence and noise are connected. Th@nd the regularities of the equation of motion will be
kernel which governs the size of the imaginary part of theSwamped by the noise.
influence phase and effects decoherence is the correlation By contrast, wheri~N
function of the noise forcgcf. Egs.(6.15 and(6.19]. From
Eq. (6.20 we can obtain the following rough estimate for the Fnoisew ﬁ d~N (7.9
decoherence timgye¢,,Which At must exceed if the coarse- Fayn £ '
grained set of decoherent histories is to decohere:

where L+ is the characteristic scale of thermal excitations of
tagecor~ A/ (Froised ). (7.3 the mode:
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Computational complexityeven when coarse grainings
decohere so that probabilities can be assigned to histories,
even when noise is negligible so that histories exhibit the
regularities in time summarized by classical equations of In this appendix we describe the circumstances under
motion, coarse grainings can be distinguished by the effortvhich—for a given coarse-grained set of alternatives—the
needed to calculate these regularities. The number of oper#dilbert spaceH of a closed system can be written as a tensor
tions Ng necessary to evolve the equations of motion over groductH *® H ® where’ ® contains the quantities followed

APPENDIX A: SYSTEM-ENVIRONMENT SPLITS

time interval 7 is roughly proportional to by the coarse graining artd ® contains the quantities that are
ignored. Such a tensor product factorization is called a
Ngx(M/tgyn) T~ (Lw77d). (7.1)  system-environment split.

We begin by considering a Hilbert spagéand a set of
Thus prediction becomes easier as b¥thndd increase. For  alternatives at a single moment of time represented by an
“realistic” coarse grainings wherél~10° there can be a exhaustive set of orthogonal projection operatpis,}, «
significant difference between the local coarse grainings with=1,2, . . ., satisfying
d~10f and the nonlocal ones witth~ few.

In summarydecoherence, resistance to noise and compu-
tational simplicity all favor local coarse grainings over non-
local ones—all these comparisons being contingent on large
N and an initial condition in which long wavelength modes We seek to write
are more excited than short wavelength ones.

These quantitative results for the linear harmonic chain H=H°®H® (A2)
support the heuristic arguments for the predictability of more
general kinds of quasiclassical variables that were sketcheﬂJCh that
in the Introduction. In our family of coarse grainings, the
ones more useful for prediction are the more local ones as-

sociated with an approximately conserved quantity. OUfrhe decompositioiA2) is then a system-environment split.
analysis of the harmonic chain is a step towards a more r§¢ 4/s were to containjust the quantities followed by the
alistic analysis of classicality in at least three wagb: It o o0 graining, we would naturally impose dmij=1
considered a system which permits a continuum approximagp,e ¢ dim@) is the dimension of the subspace projected on

tion of the kind usually .found in classica] physid) It by P. However, other notions of an environment can be use-
employed a syggm-enwronment Sp“.t which fOIIOWS. from ful in which (dimP$)>1, and we shall consider the general
the coarse grainings needed to realize that approxmaﬂonase @ '
rather_ than belng positedd hocin t‘?rms of fundamental Only two simple mathematical facts are needed to analyze
coordinates(3) Different coarse grainings were compared

o : . the above question. First, the decompositi&8) requires
guantitatively with respect to decoherence, noise and COMPYL - elation between dimensions
tational complexity. ’

However, these positive features should not obscure how dim(P_,) = dim(P3)dim(H®) (A4)
short this analysis falls from the kind of treatment of classi- “ “ '
cality envisaged by3,4,6,22,23 We considered only linear and, as a special case,
interactions, not a realistic Hamiltonian. We did not compare
all possible sets of alternative coarse-grained histories, but dim(H) =dim(H °)dim(H®). (A5)
only a four-parameter family of them. We did not propose a
unified quantitative measure for classicality, but rather dealSecond, two separable Hilbert spaces of a given dimension
separately with some of its attributes: decoherence, resigwe isomorphic—a consequence of the fact that they both
tance to noise, and computational simplicity. We did not starhave countable bases.
from the initial condition of the universe or exhibit the im-  Realistic cases have difi{)=c, but we pause to note
portant role played by gravity in creating the conditions forsome evident results from E¢A4) when dim(X) is finite.
local equilibrium while ensuring the absence of global equi-Then all the dimP,) are finite. A system-environment split
librium. Rather we assumed these properties in our initials not always possible, only when the dii)() are all divis-
condition. Future analyses will do better. ible by a common factor. In particular, if dirfR() is re-

PoPs=3,4Pp, % P.=I. (A1)

P,=PS@l®, a=12,.... (A3)

123503-16



CLASSICAL DYNAMICS OF THE QUANTUM HARMONIC CHAIN PHYSICAL REVIEW D 60 123503

quired to be unity, then a system-environment split is posdim(7 ¢)—and this is not always possible. The only case in

sible only when all the?’s have the same dimension. which the condition dimP$)=1 could be enforced is if all
When dim(+) is infinite, there are a number of subcasesthe finite dimensionalP,, have thesamedimension. Clearly,

which are convenient to treat separately. The most importard system-environment split is generally possible only when

of these is when din®,) =<« for all «. The requirements the dimensions of all of th@,, are infinite.

(A1) imply that theP, all commute and can be simulta-

neously diagonalized. Leffi)}, i=1,2,..., be abasis in APPENDIX B: MATRICES FOR THE CHAIN
which they are all diagonal. Then to eal there is a subset OF OSCILLATORS
of these basis vectors spanning the corresponding subspace. |, this appendix we complete a calculation begun in Sec.
We write [IIC. This is the explicit demonstration that when the vari-
ables in the action are changed according to EZ®) and
Pa=2 QP (A6) (2.14), the result yields the same equations of motion as are

lea

obtained by making these changes in the fine-grained equa-
ntions of motion directly. Specifically we check that when Eq.

However, it is then a simple matter of relabeling to define a %3.7) is used to eliminate the's from Eq.(3.19 it yields Eq.

isomorphism between the infinite dimensional Hilbert space 312

S e H
Handie " We write Since the coarse-grained mod&$’(t) are all decoupled
li)=]a,A) (A7)  from each other, and interact with separate collections of
. o ) high-frequency modes, we can consider them one at a time,
where i ranges over the infinity of states iR, and A hich somewhat simplifies our notation. In this case, the

=1,2,... isanother labeling of them. This relabeling de- matrix S reduces to a diagonal matrix with elements making
fines the tensor produdi °® # °. Operators acting only on up a single vector wittd componentsS,, andT is ad by
H*® have the form d—1 matrix with component$,,,, wherearanges from 0 to
A OlaAY=(a' | O] a) Sanr A8a d—1 andb ranges from 1 tal—1. ThusMgg andvss_ be-
(a’A'[OlaA)=(a’|O% @) oan (A%a) come scalars, and g1, Mg, VgrandVygare vectors in the
while those or{ & have matrix elements space of they's. These matrices have the simple form
! ! — ! 1
<a A |O|aA>—5a/a<A |Oe|A> (A8b) SOZC_; Sazo’ for a>0’ (Bl)
In particular, °
s e . and
P,=PS®l¢=(la)a])®I (A9) .
b

and dimPS)=1. We have constructed a system- TOb:_C_O' Tap=0ap, for a=0, (B2)

environment split defined by the coarse-grain{iy,}. - '
If the condition dimP$)=1 is relaxed, it is possible to where the numbers, are the coefficients(! defined by

define many other system-environment splits for this coarsgqs'(z'm a.nd (3_'6)’ formlng th'e components of the vector
graining. One simply relabels including more statesdf, ~ C- The matrixw is diagonal with component®, and the

viz. mass is a constani.
) With these definitions, the matrices defined in Egs.
li)=]a,A) (A10)  (3.173, (3.17 are
such that the subspad®, contains several different values Mo 2
of a. S5 col?
Many calculations use a system-environment split of this N
kind. For example, in studies of Brownian motion the labels _ CoCpy
« correspond to the coordinates of the massive particletand (M1r)bor = #Sppy +’“W’
to the coordinates of the particles of the bath. The coordi- 0
nates of the bath are ignored, but typically the coordinates of Ni _ % Vi
the Brownian particle are followed only to some accuracy. (Msp=— |Co|? = (M1,
Thus, for a given choice of ranges, coordinates other than 2
those in the bath are ignored corresponding to &) 1. Vss= pwp,
There is no unique system-environment split. coct,
The key to the above construction is that the relatih) (VDb :nggbb, +ng_b,
is easily satisfied because diRy) and dim(<) are both |col?
infinite. Finite dimensional members of the set of alternatives ) Ch A
are obstacles to a system-environment split. If cl?r;@( is (Vspp= _ngW:(VTS)b-
finite for somea, then Eq.(A4) can only be satisfied if 0

dim(P$) and dim(+€) are both finite—already a restrictive (B3)
condition. Furthermore, the dimensions of all the finite di-In these expressions when the matribkss, etc., have been
mensional P, must be divisible by common factor— reduced to scalars or vectors we have changed the notation in
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what we hope is an obvious way. With Eq&3) we can
now show that Eq(3.19 is identical to Eq(3.12) aside from
a multiplicative factor. With a little algebra we find that

L n
(Mg~ MgMiiM1g) = ——— |,
o+ S el
L I
(Vss=MgM1iVig=| ———— | o,
o+ 3 leo?
)

- (\7$T_ MSTM#VTT)b: -
lcol?+ X lew|?
b!

XCb(wS—wﬁ). (B4)

Since wy=() , plugging these back into E¢3.19 simply
yields the equation

M

o2+ lef?

[AD (1) + QZAD(1)]

= —5—— at),

|Co|2+2b |cpl?

(B5)

that is, simply Eq.(3.12 multiplied by a constant factor.

This factor is independent of the choice of coarse-grained

modelL or the coarse grainind:

M M

|col2+cC

(B6)

o+ oyl

=Ngu.

APPENDIX C: TRANSFORMING THE EQUATION
OF MOTION

PHYSICAL REVIEW D60 123503
ELAL(T]= C( EL(LAL(T)]

+jtdt,GL(tvt,)gL(t,1AL(7-)])
0

=Af/ (1), (CY

with, of course, a transformed noise function

Af{()=C

AfL(t)+f;dt’GL(t,t’)AfL(t’)). (C2)

Here, C is a positive constant an@ (t,t’) is a particular
Green'’s function for the equatiofj =0, that is in operator
shorthand&; G, =1. In a similar shorthand we refer to the
transformation(C1) asC(l + G). Clearly, the solutions to the
two equations(3.9) and (C1) will be the same only if [
+G) is invertible. This will be true if the equation

fL(t)+fGL(t,t')fL(t')dt'zo (C3

0

can only be solved by, (t)=0. From Eq(C3J) itis clear that
any solutionf| (t) must havef| (0)=0, and is a solution to a
second-order linear equation.

In the case of the chain of oscillators, the original form of
the equation is Eq.3.12 and the transformed equation is Eq.
(3.22. From Appendix B we see that the positive constant is

2 )N, (Ca)
|col?+cc
and from Eqgs(3.22 and (B4) the kernelG, (t,t’) is
, JTa- 12—
G (t,t )=Wc(n'f|—ﬂg)lvlﬁl’29 !
xsifQ(t—t") M2, (C5)

where()f is the constants§ and Q, is the diagonal matrix
w restricted to they's, with diagonal element@f).
From Eq.(C5) we know thatG, (t,t)=0 for all t, which

In Sec. IIl we derived the classical equation of motion forimplies

the coarse-grained variables (t) utilizing two different
ways of eliminating the environmental coordinatgs First,

using the fact that thg’s were themselves fine-grained co-

df,

thL ! ! !
E(t)=—fow(t,t )fL(t)dt (Co)

ordinates, we solved the classical equations of motion for the .
q’s and substituted the solution into the fine-grained equa@d hence df, /dt)(0)=0. Thus, since bothf, and
tions of motion. Second, we derived the equations of motiofdfL/dt) vanish att=0, the only solution to Eq(C3) is

from the Lagrangian written in terms of thfés andq’s and

then solved the for thg’s to eliminate them. In this appen-

f (t)=0 and ( +G) is indeed invertible.
Now we need to show thaE(l +G)Af (t)=Af(t) for

dix we complete the demonstration that the ostensibly differour harmonic chain. The two forms of the noise are given by

ent equations for thé'’s that result are, in fact, equivalent.
Suppose we have an equation of motion of the f¢8n9)
for a single coarse-grained moée , which in this appendix
we call £ =0. We wish to write it in a new form(3.22
which we call§ =0 by a transformation of the form

Egs. (3.233 and (3.23h, respectively. Lef2? be the trans-
formed frequency matrix defined by E.21), with eigen-
value3vﬁ and orthonormal eigenvector&, andﬂé be the
diagonal frequency matrix with eigenvaluebfl. Then the
requirementC2) can be written as
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z02 Nu 1/2 1128
N,uc(Q,_I—Q )[cos{QQt)Aq(OH—QQ 3|n(QQt)Aq(0)]+ WCMT (Q |- Q2 0 fsw{ﬂ(t t") M7

X 6(Q21 - 02)[cog ot AG(0) + Q5 sin( gt AG(0) Jdt

=Nuc(QZ1 — Q?)[cog Qt)MH2Aq(0) + Q~ Lsin(Qt)M 1’2Aq(0)] (C7)

By writing the vectors in terms of eigenvectors @f we can break the integral in EGC7) into a sum over many integrals
having the forms

f;sir{v(t—t’)]sith’)dt’ = 2_1w2[vsin(wt)— o sin(vt)] (C9

and

f;sir{v(t—t’)]cos(wt’)dt’ = Vzijwz[cos{wt)—cos( vt)]. (C9

Substituting these values into E@7), the result we wish to show becomes

L Vk)(Q2 a)
( k_ a)

1 . . M o
> Ca(Q2— w?)| cog wat)Ad,(0) +—SiN(w, ) AQL(0) | + =5 >, |cMT%’2vk|2c
a [OF |CO| a,k

X| cog w,t)Aga(0) — cog vt) Aga(0) + wisin(watmqa(m— Visin(vktmqa(m}
a k

—Zk<cMT%’2v )(Q2- vk>(cos(vkt>[ka Aq(0>]+3sm(vkt>[ka”2Aq<0>]) (C10

We wish this to hold at arbitrary times which implies that performing the sum, we see that thedependence of Eg.

each frequency must be equated separately. This requiré€119 does indeed drop out, and the equation is satisfied.

that the following two conditions hold true: The second conditiofC11b looks even more difficult to
evaluate, since we have no explicit expressions for the eigen-

valueSVﬁ and eigenvectors, . However, these are not nec-

|+ szT1’2(9| 0?)(Q2— wil) M ¥%c=0, Sk )
|col essary. Note that ifv, is an elgenvector of Q?
(Clla  _ vy mpL2 W|th eigenvaluev?, thenM32y, is an ei-
genvector ofV{{M {7 1 with the same eigenvalue. Using the
[ViMI?Aq(0)] definitions(B3), this implies that
1 oe (@-wd) | 2_ 2
o (VM0 2, ca 7 7y Aa(0)=0. MV =2 (Guiiy. (€13

(v~ w3 (|col*+c0)
(Cl1b R
) - Sincec is an eigenvector o+, we can readily show that
The first condition(C1139 must hold for alla. The last

condition(C11bH must hold for arbitrary initial vectoAq(0) L e 1 ol? 1o

and allk. (ViM17c) = — 4 ?( ViM7e). (C19
We can readily evaluate EqC119 from the matrix defi- |Col*+

nitions (B3). The inverse matrix is By combining Eqs(C13) and(C14), the condition(C11b is

immediately proved. Hence, the transformed classical noise
(Q%—02) 1=M¥3 V11— w2M17) " IM¥2 (C12 s the same as the noise derived from a straightforward La-
grangian calculation.
and the matrix Y11— w2M+7) has the simple formvi;; This result has immediate implications for the quantum
=f;di;+0ig; and hence can be analytically invertégven  probabilities (6.24. The integrand in the exponent of that
though one of thd; vanisheg Carrying out this inverse and expression is proportional to
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ELEALTIMIAT (DAF(t)]™E (X' AL(T)]
(C15

summed over alL. This is all in terms of the equation of
motion form(3.22 and noise correlation functioi®.26). But
since £ =C(1+G)E and MAf/(t)Af'(t")]"V=C (I
+G) IM[Af()AT(t)]I™C Y1+ G) !, we see that the
transformationC(I +G) cancels out, and

PHYSICAL REVIEW D60 123503

ELLAL(DIMIAT (AT () ]™E (', AL(7)]
= & (tLAL(DIMIATO)AT(E)T™VE ', AL(D];
(C16)

i.e., even in the quantum case one can use the simpler form

of the classical equation of motion and noise.
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