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Cosmological models with dynamicalA in scalar-tensor theories
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In the context of a family of scalar-tensor theories with a dynamicéthat is a binomial on the scalar field,
the cosmological equations are considered. A general baryotropic state equat{gr-1)p, for a perfect
fluid is used for the matter content of the Universe. Some Friedmann-Robertson-Walker exact solutions are
found; they have a scale factor which shows exponential or power law dependence on time. For some models
the singularity can be avoided. Cosmological parameters sudd,as{),, go, andt, are obtained and
compared with observational daf&0556-282(199)00220-9

PACS numbegs): 98.80.Cq

I. INTRODUCTION plying that our Universe is speeding up. Thus, a model

Unification theories have a nonzero cosmological constanivhich attempts to describe the cosmological constant behav-
that is about 120 orders of magnitude larger than the obior should take into account the observational evidence.
served value forA; this constitutes the cosmological con-  In a recent worK50] we investigated the effect of a time
stant problem[1,2]. In order to explain and solve such a dependent cosmological constant, in a family of scalar-tensor
problem, and to make compatible the actual observationaheories. There, we get cosmological models in the coasting
data with the inflationary scenario and particle physics exyperiod, where the time dependence on the cosmological con-
pectations, a time dependent cosmological constant was pretant occurs in a natural way. In such models we assumed a
posed[3]. This old idea has received a lot of attenti@®e, simple relation\ (¢)=c¢(t)" (with ¢ andn constants
e.g., [4-43)). What people have in mind is to make the The existence of inflationary phase in scalar-tensor theo-
vacuum energy dynamical. In such a way, during the evoluries (STT) has been investigated by Pimentel and Stein-
tion of the Universe, the energy density of the vacuum deSchabeg51], finding inflationary phases for a polynomial
cays into particles, thus leading to the decrease of the cogosmological constant in a general STT, which includes
mological constant and obtaining as a result, although smalBrans-Dicke model with nonzero cosmological constant. On
a creation of particles. the other hand, Guendelmdb2] has investigated the re-

A broad summary of cosmological models with a time quirements of the potentials in order to have scale invari-
dependent cosmological “constant” is given by Overduinance. A form of the potential needed by the global invariance
and Cooperstocf44], reexamining there the evolution of the was found whose energy in the conformal Einstein frame has
scale factor when is given as function of, a(t), H, orq.  the characteristics for a suitable inflationary universe And
A fairly general equation of state is considered and new nudecaying scenario for the late universe.
merical solutions are obtained, but as in most previous Motivated by these ideas, we shall consider a general STT
works, the time dependence of the cosmological term is inas in our previous work50], but now we shall consider a
troducedad hoc binomial A function on ¢(t), in order to obtain exact solu-

An alternative is an effective time dependent cosmologitions of the field equations, from which we obtain some kind
cal “constant” in the context of scalar-tensor theories, whichof inflationary cosmological models and related cosmologi-
becomes a true constant for 0 [45]. Using Jordan-Brans- cal parameters. In fact, we obtain in most of our solutions a
Dicke theory(JBD) in particular, the “graceful exit” prob- power law growth for the cosmological scale factm(t)
lem of old inflationary cosmology might be improved. De- ~t?, whereo=1 implies inflationary models. As is known,
termining the JBD paramete® that according to solar this is a generic feature of a class of models that attempt
system experiments iw|~500, which has been derived dynamically to solve the cosmological constant problem. In
from timing experiments using the Viking space probe re-our modelso is a free parametefat least in most of our
mains a problenj46]. A better estimation of this parameter modelg, in order to be adjusted by physical conditions and
should be obtained from measure of other cosmological pato be in agreement with recent data for type la supernovae
rameters in order to constrai® more strongly than by (SN la), which implieso=~1, and which is consistent with
means of solar system experimefd§]. However, theories the nucleosynthesis3].
of the very early Universe such as string theory, are better Most of our solutions predict an accelerated expansion;
described in the context of JBD, which shows thatcan  such solutions are in agreement with the SN la results, but
take negative valuei8]. QO and Q, depend on free parameters of our model. In

Thus, scalar-tensor theories, and in particular JBD, arsome specific cases we get solutions with exponential growth
better theories in order to get, in a natural way, a time deof the scale factor.
pendent cosmological constant. Clearly, recent observational In Sec. Il we obtain the field equations and introduce our
results restrict this kind of theory, e.g., the type la supernovanain ansatz. Section lll is devoted to obtaining an expres-
(SN I3 results, which in 1998 show th&,~0.6[49] im-  sion of the density parameter and the corresponding contri-
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butions of the matter and scalar field. In Sec. IV we consider In what follows we shall assumev(¢)=const, \

the vacuum case and obtain a set of exact solutions as well as\ (¢). The corresponding field equations with a perfect
cosmological parameters. In Sec. V we consider the generélid for the matter content in the isotropic and homogeneous
case of a baryotropic equation of state and obtain exact sdine element
lutions for this general case. As an example, we calculate 5
specifically the case of a dust fluid and a stiff matter fluid. r 2 12 2

AFI)so, we g}:at and discuss the solutions of the radiation case in ds’= “ke2 T (d6*+sitedep )}
Sec. VI and false vacuum case in Sec. VII. Finally, in Sec. (2.5
VIII we summarize our results.

—dt’+ a2(t)

will be considered. Thus the field equations are

Il. FIELD EQUATIONS a\? 3 8mp w|d\> ad
. . = “N¢)———— 5| | +37,=0,
We start with the action for the most general scalar-tensor a ¢ 2\ ¢ adg¢
theory of gravitatior]54]
1 a [a k 8mp w| ¢ ¢ adg¢
4 1 v — ) — | =] — _— | = - = =2 —
=155/ d xV—0g[#R— ¢ '0g""d,$d, o+ 2PN ()] 22 (a 2 M) ) 2(¢) ) 27 )
+SnG. (2.2 =0, (2.7
whereg=det(g,,), G is Newton's constantSyg is the ac- b ao dn T
tion for the nongravitational matter. We use the signature $+3§$ (3+2w)—2 7\_95@ - ?(p—3p)=0,

(—,+,+,+). The arbitrary functionsv(¢) and\(¢) dis- (2.9
tinguish the different scalar-tensor theories of gravitation,

N (¢) is a potential function and plays the role of a cosmo-where we have assumefl=¢(t), and the derivatives re-
logical constant, andy(¢) is the coupling function of the spectt are denoted by a dot.

particular theory. Assuming a baryotropic equation of stape=(y—1)p
The explicit field equations are and transforming to the time defined as

87TTMV -~ :f l/Zdt 29

Gu=— g M), + 0 e 29

the set of equation&.6)—(2.8) is rewritten in the following

1
X ¢,,u¢,v_ Egyv(ﬁ,)\(b)\)+¢_1(¢;,uv_g,uvlj¢)v Way:

2.2 a’'\? 3k \¢) 8mp w(d)' 2o ale
2 TasT e T 20 % +33z(—21’0
RSN GOl I '
D¢)+ d))\(;b d¢ ( (;b +2 w(d)) a/l ¢// 1\ 2 1 ¢/ 2 a/ ¢/ k
22— — | =] —Z(1+w) —) —3— -
a ¢ \a 2 ) a ¢ ae
xX|R+2 ¢[¢>\(¢)]} M) Brp(y-1)
mp(y—
=0, 23 T oz O (2.1
whereG ,, is the Einstein tensor. The last equation can be " 1[¢'\* _a ¢ AN)  dN(9)
substituted by Bt20) st 51 T3 % % e Tde
2¢%d\/dp— 24N ($) _8mp4=3y) (2.12
3+2w(h) ¢
1 where the derivatives respect tare denoted by a prime. In
=3 20(d) 8mT— ¢ ¢ P (24 what follows we shall consider two important assumptions:
ap"=a, (2.13

where T=T/ is the trace of the stress-energy tensor. In a

previous work{50] it was demonstrated that the divergence- AP)=N 1P "1+ N, (2.14
less condition of the stress-energy matter tensor is satisfied if

the field equation(2.3) is satisfied too, although our field wherem, @, Ny, N5, ny, andn, are constants. The first
equations are given by Eg.2) and (2.4). assumption is a very well-known orsee, e.g., Refl55],
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and reference thereimnd it has been used as a condition for
the deceleration parameter to be constant for flat models in 1
Brans-Dicke theory. Furthermore, with this condition our
field equations simplify notoriously and allow us to obtain

PHYSICAL REVIEW D 60 123501

_ 87wG
~ 3H?

M) p o (¢)2 3H éb}

87G ' G¢ 167Gl ¢ 872G ¢

exact solutions. The second condition is the main assumptiopefining
of the present work which is motivated by the cosmological

no-hair theorem for scalar-tensor theor[&4], in order to

study inflationary solutions in a theory of gravitation with a

naturally dynamical cosmological constant. In this work we

always work in the Jordan frame, wheeeis variable, how-

ever, we could make a conformal transformation to the Ein-
stein frame wher& is constant and we have general relativ-
ity plus a minimally coupled scalar field, then our potential

becomes an exponential one, i.8/;+V,~exp(en,¢.)
+explen,d.) (Wheree is a constant andg,. is a canonically

defined scalar field This is the type of potential according to

(3.9
_87Tpm 1
"B g
o$\* @
Q,ﬁzﬁ 7\(¢)+§ g —3H$ (3.2
we get
1=0,+0,. 3.3

Guendelman52] that is necesary to have scale invariance inTaking into account the proposed relati¢hl13, we get
a theory of gravitation free of the cosmological constant

problem, that is, one with an early expanding phase and a
decaying for late times. Details of the conformal transforma- " am? ¢
tion for STT can be seen in RdB1]. With these assump-

tions, from Eqgs(2.10—(2.12 we get

1\ 2 ®
D

3k
3 + ?¢2m71_A1¢n171_A2¢n271

@

2
1
Md’”%*ﬁ (3.4)

_8wpm3(¢>2

¢

”"FW(eﬁ

According to the SN la observatiofi49], the favored value
of Q,,~0.4=0.1 is given as a constraint to a cosmological

_8¢le , (2.15  constant
4 11
¢" ¢, , L . QA:§Qm+§ig, (35)
2 @ 2m-1
g (2m 1)+( ¢>) { MM 53" @2 which implies 0, ~0.85+0.2. This means that the SN la
8mp(y—1) results are sensitive to the_ acceleration of the expansion, and
A T L P 7; =0, (2.1  constrain 4),/3—(,, which corresponds to the accelera-
b tion parameter at the median redshift of this objertsQ.4.
Then the combinatiof)=Q,,+Q, is constrained by the
& b'\2 1 microwave background radiatiq®BR) anisotropy. So that,
—(3+ 2w)+(_) (3+2w)<——3m) — 2N Mt Q~1+0.2 obtained from COBE and other measurements
¢ ¢ 2 (see, e.g., Refl56]), together withQ),~0.4, define a con-
_ n,—1 n—1 cordance region fof),~0.6, becoming the best fit for the
2N 2N universe mode|57,58.
1 8mp(4—3y) In what follows, we shall compute both parameters of
+ 2NNy TZO- (217 density in addition to the exact solutions of our field equa-
tions, in the different cases which we consider in this work.
In the following sections we shall find exact solutions on IV. THE VACUUM CASE

different cases, as well as cosmological parameters which
allow us to compare with actual observations of today value Considering a vacuum cas@<0), we get from Egs.
of Hubble parameteH,, the actual value of deceleration (2.19—(2.17 the corresponding set of equations

parameten, the density parameté?,,, as well as the value

; "2 w| 3k
of the vacuum energy density paramefgy . (?) [3m2—3m— > + ?d)mel_)\l(ﬁnlfl_)\zd)nzfl
lll. THE DENSITY PARAMETER =0, (4.
Before we compute exact solutions of the set of field ¢” o'\ o 1] k
. . 2 2m-1
equations(2.15-(2.17), we shall get a general equation for ?(Zm—lﬁ b —3m°+m— 5757 ?¢
Qn and,, according to our proposed model. Assuming -
k=0, Eq.(2.6) is written as A p" N2 =0, 4.2
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" 1\ 2

%(34— 2w)+(%

=2\, 142N N "I+ 20,02 1=0. (4.3

1 v V
(3+2w)<5—3m) —2n gt $r=[C'Y w(p+2v)[2)2H 1+ 20,
)\1:(3m2_3m_w/z)MZC/2(1+V/;L)’ )\2:0’

L =12m?—14m+4,
Naturally for vacuum, the energy density is due to the con- ®

tribution of the scalar fieldp(t): ,=1. We found exact v=—12Mm2+5m+4w—6mew+ 2 4.9
solutions of this set of equations in the following cases: '
(1) k=0, m=1/2. This solution is not relevant for our andc’ is an integration constant. According to the solution

purpose because(¢) becomes nullm=2/3. of the present case, is a monomial function onp(t), al-
W though a time decaying one. Clearly the present solution re-
d(1) = pt™5 quiresma<0 in order to be expanding.

On the other hand, the Ricci scalar is given by
a(t)=at 3,
R=12mo(4mo+1)t 2. 4.9
_ —4
M@)=hap(D) According to this expression, the corresponding solution for
the curvature scalar has an initial singularity. For this model,

w=—113, 44 the present deceleration and Hubble parameter are
where¢,=2¢,, a;= a(2¢c;) "3 N;=c2/2,1\,=0, andc, 1 . 1
is an integration constant. This solution was written directly do=—1~ 15—, Ho=—2ma(t)) ~, to=H—2m||(T||-
in terms of timet, according to Eq(2.9). Here the expansion 0 (4.10

factor is decaying with the time, in conflict with observa-
tions, andw has a negative values. A discussion of the mean- From these last equations we can see that the present

ing of negative values ob is given in Eq.[48]. model expands with accelerationnifoc<—1/2. On the other
The Ricci scalar for this case is given by the following hand, assumingd,~65+5 kms Mpc™! [59], we gett,
expression: ~15.05+1.96||ma]| Gyr, then the estimated age from this
model is small compared with actual accepted values.of
10 _, (b) w=—2v=w=(3m?+m—2)/(2—3m). For this par-
R=—1t 7, (4.5 . . .
3 ticular relation betweew andm, we get the following solu-
tion
where we can see that there is an initial singularity. The
today deceleration parameter has a negative value, i.e., the $(t)=c’ exd ¢.t],

present solution is an accelerated cosmological model
a(t)y=a, exd —maeot],
1

where p,=c'Y?u, a,=ac’ ™™ A,=0, A\;=4c’(3m?>—3m
according to this solution, the actual Hubble parameter has- »/2)1»? andc’ is an integration constant. In this case we
negative values, then we conclude that this model has ngjet an inflationary exponential solution provided thad,

physical meaning. <0=m<0 or 1/2<m<2/3. This model is nonsingular, as
m=1/2, 2/3. In this case we get two families of solutions: we can see from the Ricci scalar

(@ w#(3m?+m—2)/(2—3m).

R=24c’ m?(6m’—7m+2). (4.12
B(t)=pat?’, : :
The present deceleration and Hubble parameters are given by
a()=at~*m, Go=—-1, Ho=c'm(12m’-~1dm+4),  (4.13
_ _1 thus, this model expands with constant acceleration from a
Me)=hg(t) 7, (4.7 nonsingular state, and with constant Hubble parameter.
Where (2) k#0. m=1/2:
t)= it 2,
s d(1)= s
a(t)=ast,
= +2
T wllprzn), M) =M1, (414
a=ap, ", where
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,3+20 k |12 A" N2t
1=« y a]_: y
= ———|—2m—w—5—vy|3m°=3m
ok Yy ¢ v 2 7
A=, A,=0.
17 a? 2 _w|]e"? (2=3pk ,. . 52
> ? T¢ : (5.9

According to this solutiona(t) grows linearly with the time
at_ a const_ant rate. The cosmological “constait'lecreases Using this expression and its derivative in £§.3 we get
with the time. In qrdgr to have a realt), we _must hav_e the following equation:

k/(3+2w)>0. This is a coasting cosmological solution

which has initial singularities as it is shown from the corre- 5 " b B[4
sponding Ricci scalar —(1-2m)— —+ —|—(M+w+1)+6m(2m—-1)
Y b ¢ by
R=12(3+2w)t 2. (4.15 b'\2 K
+ —) [—12m?—3m—6mo]+ — ¢*" 1

On the other hand, as we have said, the today deceleration ¢ @
parameter becomes null, and the Hubble parameter is given 4
by x| 12m— ;(2m+ 1)|=0. (5.5

— _+—1
=0, H=t", (4.16 In order to solve this differential equation, we shall consider

) ] ] the valuem=1/2, so that Eq(5.5) is reduced to the
then,to=1/Hy~15.05 Gyr, in relative agreement with ac-
tual observations. ¢ Sy( ¢’>2 3y—4 k

% 3¢ Tar20ar Y ©8

¢ 4\
V. EXACT SOLUTIONS FOR THE CASE WITH A
BARYOTROPIC EQUATION OF STATE From this differential equation we have the two possible

) ) casesk=0 andk# 0. The casey=4/3 will be considered in
In what follows we shall considgs#0, so that returning gec. vI.

to the set of equation&@.15—(2.17), we get from Eq(2.19 (1) For k=0 we get the following solution which we
write in terms of timet as
Sﬂ_ ﬂ 2 3 2_3 _2 +3_k 2m71_)\ n—1
R m m=2 azqS 19 ()= p1t7,
— N2, (5.7 a(t)=a t™ 72,
Using this expression in Eq$2.16 and (2.17), the set of N )=N1p(1) 27,
field equations is reduced to the following two field equa-
tions: p=pia(t)~?, (5.7
" r\ 2 1 where
(i(Zm—l)Jr Ll —2m-w— - | 3m*~3m- =
d) ¢ 2 2 3,)/_2 o 4/(2—3y)
=Cq| — c
2-3y)k ' 1[ 3y—4 1} ’
+( a;’) d*M YN M T TN 9" ) =0,
4
(5.2 o= 2-3y'

" r\ 2 3 _
¢—(3+2w)+(¢4) [—12m2+3m—6wm+3w+§ fo @] 3ym2 e
¢ ¢ Lo T 3y—a ’

2 @ K om-1
+3’)/ 3m —3m—§ +3(3’y—4)?¢ 1 1-2w

_T 1TEY o323y
p1= —2.,2C1 y @
+(2-3y) (N8 N8 ) ™ Y(4-37)
_ _ 2
+2(Nqn Mt N9 ) =0. (5.3 (o111 3y 4 2-34/2
)\1— w + Cl
2\y 2 4—3vy

From Eq.(5.2) with y#0 (the false vacuum case will be
considered in Sec. VIl we have A>=0,

123501-5



L. M. DIAZ-RIVERA AND L. O. PIMENTEL

andc; is an integration constant. From this solution the ex-

pansion condition isr<0= y>2/3. In this case, the Ricci

scalar and deceleration and Hubble parameters are given by

the following expressions:

(2-y) 1
R=36— 1 (5.9
(8y—2)2t?
3,21 L2 1
G=3774 MoT30 %1 T0T3,-2H,
(5.9

Causality requires € y<2, so that this is an accelerated
model for y<<4/3, just aty=4/3, qo=0. On the other hand,
to~1/MHy~15.05 Gyr fory~4/3. Then this is a kind of so-

lution where the cosmic expansion is driven by the big-bang

impulse.

The energy density parameter and the contribution of the

scalar fielde(t) are given as follows:

Q __2 4w

mT3y 3y’

_de 2 5.1
=3y 3t 510

In order to have positive values 6f,,, ®<<1/2 is required,
including negative values ofy. On the other hand(},,
~0.4+0.1, and G=y=<2, from our equations fof), and
Q,, we get a restriction fow: —0.1sw<1/2.

(2) Considering now the cade# 0 from Eq.(5.6), we get
the following solution in terms of the parameter For
k/(3+2w)>0

¢(7)=c4[cosh(B7)]’, k#0, y#0,4/3, (5.11)
where now
4 (3y—4) k
g= , B: s
4—3y 2 3+2w

andc;, is an integration constant. According to Eg.13 we
get

a(r)=ay[cosh(Br)]" 7%, k#0, y#0,4/3.

(5.12

The Ricci scalar on this case is given by

R=r,(r,+r3)cosH[ B7]—rr,cost [ B1],
(5.13

where a;=ac; Y2, r;=(3c;/a?)[k/(3+2w)], r,=3(2
+7), andrz=3y+2+4w. In order to know the singulari-

PHYSICAL REVIEW D 60 123501

1
R :__RSIZ,
2 \/§ 1
7
__ p2
Ry=15R1, (5.14

then, it is enough to calculate;:

R;=5;(S,—S3)? costt? 4 B7]+s,(S3+S4)? cosit[ B7]

(5.19

+25,(S;— S3)(S3+5,)cosH? [ B7],

where

2
3 (o

=3 3 207

53:k,
s,=k(3+20).

From Eq.(5.13, R— provided thatr— =0, and at least
one exponent is positive, i.e;>0 or ¢>2. On the other
hand, from the curvature invariant, E¢.15, R;— re-
quires thatr— * o, ando>2 (y>2/3),0>0 (y<4/3) or
o>1 (y>0). So that the solutions of this case, are singular
for 0<y<4/3, and7— * o,

For <0

3+ 2w

¢(7)=c4[cos(B7)]?, k#0, v#0,4/3, (5.16

a(r)=a[cos(Br)] 2, k#0, y#0,4/3, (5.17

whereo anda, are defined as in the paragraph under Egs.
(5.12) and(5.13. In this case,

T
V(3+20w|’

R=r,(rz3—r,)cos[Br]+rrcos [ Br],

_3‘y—4
T 2a

(5.18

where now

k
3+2w

_301

M

-—
r,=3(2-vy),

r;=(4—3vy)+2||3+20|.

ties of this solution, we calculate the nonzero curvature in‘According to Eq.(5.14), as in the previous case, we need to

variant[60], which for this case, are given by

o 3la (al® k|
=2la |a) “@)

calculateR; only, which for this case is given by
Ry =5,(S,+53)?cog7 4 B7]+s,(S,— S3)%c0g[ B7]

(5.19

+25,(S,+ S3)(S4—S3)c0S7 [ B7],
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where

2
3 oy
5177 a3+ 2w[?’

=| k|| 2 3
s=lIkl| 2- 5.
ss=|lK],
s4=K|3+20].

From Egs.(5.18 and (5.19, R—> as well asR;—», if
[B7]— *(2n+1)7/2 and at least one exponent on the re-
spective expressions @R and R; is negative:o<2 (y
<2/3),0<1 (y<0),0rc<0 (y>4/3). Then we have the
two ranges ofy for which the solutions of the present case,
are singular: 8<y<2/3 and 4/ y<2, since furthermore
causality requires to be in the interval & y=<2.

On the other hand, from equatiofs 1) and (5.4) we get
respectively, for both possibilitiek/(3+2w)<0 or k/(3
+2w)>0

PHYSICAL REVIEW D 60 123501

The expansion takes place with a constant acceleration

1
5

qO:_ Hozt— to HO. (524)

0

With Hy~65+5 km s *Mpc™!, we obtainty~30.1 Gy,
which is too big value compared with the globular cluster

age.
The density parameters for a dust fluid are given by
Q _2 4o
"33
0,201 5.2
=3 '3 (629

In this case, as in the general case, in order to have a positive

values ofQ),, it is required thatw<<1/2, including negative
values. On the other hand, according to observational results,

0,~0.4+0.1 andQ,~0.6, thenw is restricted to bew
~1/5.

(2) k#0, fork/(3+2w)>0. The solutions in terms of the
timet is given by

=p,a(7)” %, (5.20 _
P p(t)=cy[1- st?] 2,
3
MP)=N1(7)27 1+ N 9(7), (5.2 a(t)=a,[1— ¢,t7],
where M) =N1h(D)+N2(D) Y2,
2— 3yl2 2—-3yl2 —
) _kCl v JEVEEN _kCl b4 (1_3 \ 2_k p=pia(t) 3 (5.26
1~ 2 ’ 1 ’ 2= 2-
4 2
Ty @ 4 “ where
As we can see\(¢) remains as a binomial function &f if c K 2k
y#4/3. In order to analyze the behavior of the obtained so- a=alct?,  $=— . A==,
lution in terms of the cosmological timg we shall give 4a” 3+20 @
some examples.
N kcl/? ket
A. Dust fluid 27T 2 PiTan2s

One interesting application of a baryotropic equation of
state corresponds to a dust fluig=€1), on that case the
solution reads as follows.

(1) k=0:

B(t)=pot ™4,

a(t)=a,t?,

NB)=h1p(D)

3

p=pia(t)” (5.22

Where(ﬁl:CIl, a1=aci/2, )\1:4(20)_5)01/2, )\2:0, P1
=[(1-2w)/7]c}?®, andc, is an integration constant.

This is an extended inflationary solution, with a time decay-

ing cosmological constant and initial singularity, as it is
shown by the corresponding Ricci scalar

=36t 2. (5.23

andc, is an integration constant. Cleaidyt) and ¢(t) must
be positive, in order to be physically significant; this require-
ment restricts the range of values whithcan take:t
<¢; Y2, andc;>0 as we can see from the definition &f.
In this case the cosmological term, in spite of being a bino-
mial function on¢, decays with the time.

The corresponding Ricci scalar and curvature invariant
show that this solution is singular:

R ° {6¢2t2 2.+ K (5.27
= —— — 1 — |, .
[1-¢at?12[ " a?

R 3 ! 2¢%t%—2¢ I (5.28
S L '

According to our analysis of the general solution, f@r
=4/(4—37), with y=1 we geto=4. Taking into account
the general equations of the Ricci scalar and curvature in-
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variant, Egs.(5.13 and (5.15, R—» and R;—« for o 1 1
=4 and r— *oo, which corresponds to a finite value tf
according to the time dependent soluti®26). Furthermore
y=1<4/3, is consistent with our singularity requirement in 1 1 1
our discussion for the general case wWhit§3+2w)>0. to=7—= /m— (?
0 1

The today values of the deceleration and Hubble param-

_2 2¢1to
Qo=—75 0o Ho=7—7—,
2 2¢q Pito+1

(5.33

eters are given by the following expressions:

_1 1 o 2¢4tg
do 2 ¢1,t3 ’ 0 $itg— 1
t ! * ! + ! (5.29
% Ho~ VHj o1 '

Because¢1t§<1, thenqgy>0. This model expands from
=— ¢, Y2until t=0, then it contracts unttl= ¢; 2, in both

cases with positive deceleration parameter. The numeric
value forty depends on the values of the free constants.
For k/(3+2w)<0. The corresponding solution in terms

of the timet is given as
B(t)=cq[1+ ¢p1t*] 72,
a(t)=a,[1+ ¢qt?],

A(P)=N1p(D) +N20p(1)Y2

p=pia(t)”3, (5.30
where
G k B 2 _2k
1_4&2 3+ 20|’ a=alcy, Al_az’
kCl/Z kCl/Z
)\2:__11 Plz_lzas,
a? Ao

As in the previous case, the valuestgfdepends on the free
constants of our model, but in this case, Idﬁ~ P1=1,

B. Stiff matter fluid

Another interesting application of a baryotropic equation
of state is a stiff matter fluid for whicly=2. In such a case,
the solutions(5.7), (5.11), (5.12), (5.16), and(5.17) are the
following ones.

(1) k=0. The solution in terms of the physical tinhas

%Iiven by
B(t)=pi(c_t)™,
a(t)=ay(c—t)*?
M p)=N1¢(1)?,
p=piat)”° (5.39
where now
ci’? a2 4
1=~ al:?i_’ Ay o
No=0, pl=i1_2wa6
87 ¢4

This solution has a physical meaning ferc, wherec is an
integration constant and the scale factor increases very
slowly with the time, and with constant deceleration. The

andc; is an integration constant. In this case we have noRicci scalar and Hubble parameter, are given by

restrictions on the values whidhcan take. If —1/¢,<(t,

+¢)?, the expansion takes place with nonconstant accelera-
tion and without singularity, as it is shown from the corre-

sponding Ricci scalar and curvature invariant

R= 6 6Ht2+2¢p,+ k (5.30)
[1+¢,t22 0 T agf '

R—3 ! 2¢2t%+2¢ J (5.32
PaAneet| T8 T & '

R=0, (5.39

1
to—c’

1
do=1, Ho=§ (5.36

Naturally this model is not valid today because it shrinks for
the allowed range af The corresponding density parameters
are

According to our general analysis of this case, from Egs.

(5.18 and(5.19, R and R; do not diverge forc=4 and
[B7]— *(2n+1)7/2, in agreement with the time depen-

dent solution(5.30 which has not singularitiesy=1<4/3
in this model, which is consistent with our condition
>4/3 as requirement for existence of singularities.

o _1 2w
33
0,242 53
=33 (537

In order to have a positive values f,,, thenw<1/2, as we
have claimed in the discussion of the general solution. The

For this solution, the corresponding present values of thebservational result® ,=0.4 and(}, =0.6, determinev=

density and Hubble parameters are given as

—-0.1.

123501-8
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(2) k#0. for k/(3+2w)>0. The solution of this case, in
terms of the time is given as

P(t)=ce[ 1+ $1t?] 7,

a(t)=a;[1+ ¢1t°]*,
N P)=N1(1),
(5.39

where ¢,=(c,/a?)[k/(3+2w)], (¢;>0 for ¢;>0), a;
=ac; 2, N1=2kla?, \,=0, p,=(k/8mc,)a*, andc, is an
integration constant. Hera(t) grows with the time, from a

p=pia(t)”®,

minimum radiusa; there is a nonsingular state. The expan-

PHYSICAL REVIEW D 60 123501

R - (@— ) (5.43
Tl '
3 1 cq.k kcl2
RFzm{—%tz( b= 7|~ 12
(5.49

In this casey=2, theno=—2; such that in the general
solution [Egs. (5.16—(5.19], R— and R;—>, i.e., the
solution for this case is singular provided thgBr]=
+(2n+1)m/2, which corresponds to= ¢; 2. According

to our singularity discussion under E¢.19), for y=2 the
corresponding solution should being singular, as we can
verify from inspection of Eqs(5.43 and(5.44).

sion takes place with nonconstant acceleration, as we can S€€The present deceleration and Hubble parameters are
from the corresponding Ricci scalar and curvature invariant,

which are given by

SR
T M) '
3 1 5 (o kcg 2
Rl—zm — it hrt o +¢1—¥
(5.40

In this casey=2 implies c=—-2. From Egs.(5.13 and
(5.15 with this value ofo, neitherfR nor R, diverges for
7— * oo which is consistent with our requirement-4/3 for

1
QO:_tOZ'
1
_ ool k| o
O @2[3+20|1—c,/a?|k/(3+20)|t3]

a? 3+ 2w

SN
9" 2Ho~ V4HZ ¢, k

(5.45

As we can see¢;<0=(y<0, then this model is acceler-
ated. The numerical values bf, andt, depend on the val-
ues of the free constants.

the avoidance of singularities. This analysis is in agreement

with the inspection of Eq95.39 and (5.40.
The deceleration and Hubble parameters are

1
qo=——1t02,
H:E k to
° a23+20 ¢ k
I 320

a3+ 2w

1 \/1
P —
o= om, " Va2 ok (549

For k/(3+2w)<0:
B(t)=ci[1—p1t*] 7Y,
a(t)=a,[1- ¢t*]",

A P)=N1(1),

p=pia(t)~®, (5.42

where ¢, =c/a?|k/(3+2w)|. In order to have a physically

solution, it is required tha$; <0=c¢<0. The corresponding

VI. THE RADIATION CASE

We shall consider the radiation case for whigh 4/3, so
that returning to Eqs(2.15—(2.17 and following a similar
procedure as in Sec. V, we get E®.5 with y=4/3. In
order to solve this differential equation, we shall assume
=1/2, then we have for this case

‘i"_(i’
s ¢

for which w+# —3/2. This differential equation has the fol-
lowing solution:

2

=0, 6.9

¢(7)=C.€", (6.2

wherec andc; are integration constants. According to Equa-
tions(2.13, (5.1, and(5.4) with y=4/3 andm=1/2 we get,
respectively,
a(r)=ae °"?
M@)=N1p(7), Np=0,
p=pia(7) %, (6.3

where a;=acy Y2, \;=[(c?8)(3+2w)+3/2(k/«?)] and

Ricci scalar and curvature invariant in the present case, ane,=3/16m[k/a?— wc?/2—3c?/4]a”. In terms of the time,

given by

this solution is given as follows:

123501-9
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B(t)= gt~ 2,
a(t)=ayt,

A P)=N1(1),
p=pia(t) 4 (6.4

where ¢, =4/c?, a,=ac/2, and\,=0. This is a singular

solution according to the Ricci scalar which for this case is

given by

k
-2
1+t

a;

R=6 (6.5

The deceleration parameter becomes null, instead the today

Hubble parameter is given as

1

0o=0, H0=%, (6.6)

and thereforég=1/Hy~15.05 Gyr.
The cas&k=0 is not excluded from the solutid6.4). For

k=0 we get the density parameter from the matter and the

scalar field as

5

(6.7)
It is required thato<—3/2, in order to havé),>0, and the
observational accepted values@f, and(} ,, determinew
=-1.9.

VII. THE FALSE VACUUM CASE

We analyze now the case=0. If we follow a similar
procedure as in Sec. V, then we get from E&s2) and (5.3
with y=0, the following set of equations:

¢/’ d)’ 2 1 2k -~
?(Zm_lH ?) .—2m—w—§ +— "M 1=0,
(7.1)
" 1\ 2[
%(3—1—2(»)-!— %) _—12m2+3m—6wm+3w+§
1x 1 Mo _dh(d)
+?¢2 1+27+2 i =0. (7.2)

PHYSICAL REVIEW D 60 123501
1) w=—1—m:
$(t)=ciexd oit],

a(t)=asexg —meat],

g
Np)= WH\Z'
__ &
p=—5r, (7.3

where

pr1=cyi2m-1), a;=ac;",

C1
A1=Cy, )\2=?(2m—1)3(3m—1).

This is an inflationary solution im¢,<<0. This condition
means 6m<1/2, which implies a condition on the range of
the values ofw: 1/2<w<1. In order to have physical solu-
tions, ¢,>0, which mean$<0. Of course, these solutions
have not singularities, as we can see from the Ricci scalar

R=12c,m?(2m—1)2. (7.4

The deceleration and Hubble parameters are given by

(7.9

do=—1, Ho=m(1-2m)c}?
thus the model is accelerated. On the other hand, the density
parameter due to the matter and scalar field, are

1
Q== 372261 “exi - dat],

1
0y=37Co1 * X — pit]+ 1. (7.6

Here, it is requiredc,/c3<<0, in order to have a positive
values of Q. As we have seen, Om<1/2=m>0 and
¢$1<0, which means tha ;,, and(} , increase exponentially
with the time, keeping),,+Q,=1.

(2) w# —1—m. With this condition ank=0, the corre-
sponding exact solutions to the set of EG&1)—(7.2) are

()= ¢1(c—1),

a(t)y=ay(c—t)~ ™,

We consider first the case wheke=0. The set of equations
(7.1, (7.2) with k=0 has the two possible set of solution
depending on the relation betwesnand w.

123501-10
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1-2m Now we consider the case wheke=0. In order to solve
TmMtotl’ the set of equationé&7.1), (7.2) with k# 0, we shall assume
m=1/2, then we have, respectively,

dr1=cqc(m+w+1)]°, 5

((ﬁ, (3+2w) 4k—O (7.11
ay=adp;™, ¢ WTETY ‘
20+3 2 ¢ 12k N¢p) _dN(9¢)
n1—2m_1+1——;, E(3+2a))—7+27+2 do =0. (7.12
- Ci*nl (2m—1)2 ol P From Eq.(7.11) we get
=TT dmres il 3T 2e)@2mtetl/2) &' 4k |2
— = 7.1
+(2m—1)(—12m?+3m—6mw+3w+3/2)], ¢ |[a®(3+2w) 713
Ap=C,. The solution to this equation is given by
This solution corresponds to an extended inflationary model ¢(T):Clexd2/a)\/3+—52(ufl (7.14

if mo<0. In order to have a physical solution, it is required
t<c. The cosmological constant is a decaying function ofFrom Eq.(7.13 we get
time: A\~t~ 2+t~ 7, with >0. But according to the above

mentioned conditiormo<<0, it is clear thatm should be ¢" 4k

negative. b a3 2m) (7.19
This set of solutions is singular justt ¢, as we can see

from the Ricci scalar We use this last equation in E(/.12) from which we get a

differential equation foi (¢):
R=6m 2m—1)4mz_3m_w_1 ! (7.9 A 4k
—om (Mm+w+1)2 (c—H* ' d;zb) ((Z’)——fo, (7.16

'he solution of this equation reads as follows:

The present deceleration and Hubble parameters for thi
model, are given as

cl
m+ot+l m(1-2m) 1 N)=— 2 b+ (7.17)
QO—l—m, Ho=— 771 (¢ ) (1)
From Egs.(2.13 and (5.1) with m=1/2, we get, respec-
. m(1—-2m) 1 79 tively,
0=CT i+l Hy (7.9 )
2 V326" .
According to these results, the expansion of this model takes a(r)=aexp ' (7.18
place in accelerated way y=1+1/mo<0, but we have c
seen thamo <0, then|mo| <1 is the required condition for p=— il (7.19
accelerated expansion. The valuegtlearly depend on the 8m

value ofm and w, but we know that, because the restriction
ont, this model is not relevant at present times.

The corresponding density parameters due to the matter b(t)= it 2,
and scalar field for the present case, are given by

wherea,=ac; 2. In terms oft, this solution becomes

a(t)=at,

11 .
Qm:3_m2_;2¢1 2/0’[87Tpl_C2¢(t)(4m+2w+1)/(1 Zm)]’

N(@)=N1h(t)+No0(1)

1 w
Am+2w+1)/(1-2 Ci1
O y= 3m2 2¢1 TN+ N ()M Na-zmyy —; B P="g. (7.20
WL (710 Where ¢=(a’/k)(3+2w), ay=\KI(3+20), \;=2k/a’
m’ ' and\,=c;. This solution has an initial singularity, as we can

see from the Ricci scalar
Both values depend on the free constants, but for all time, it

is satisfied thaf),,+Q ,=1. R=12(2+ w)t 2. (7.21

123501-11
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\(¢) increases with the time, in contradiction with the actualand to be consistent with actual observations.
observations. However, for a particular combination of the On the other hand, for a non-flat dust model we get a

today values of the free constants in this model we can get slowly expanding solutiom(t) ~t?, with nonconstant accel-
small value of\q eration or deceleration depending on the relation between

our free constantk/(3+2w)>0 or k/(3+2w)<0, respec-
tively. The models are singular or nonsingular depending on
the free constanta, k, and w.

As another application of our solutions with a general
The today values of the corresponding deceleration angtate equation, we consider a stiff matter fluid for whigh
Hubble parameters are given by =2. The solution of the corresponding flat case is a slowly

expanding modeh(t)~t*?, with acceleration, without sin-
1 gularities and with a time decaying cosmological “con-
do=0, Ho:%a (7.23  stant”: A~t¥2 The validity of this model is restricted to
some values of. The actual age of the Universe predicted by
such thattg=1/H,~15.05 Guyr. this  model, to~1/2Hy~7.5 Gyr, with Hy~65
+5 kms !Mpc~1; clearly this model is not applicable to-
day.

In the nonflat case for a stiff matter fluid, we get cosmo-
logical models for which the scale factor grows with the time

We have considered a Brans-Dicke scalar-tensor theoryrom a minimum radius, and the cosmological “constant”
obtaining Friedmann-Robertson-Walker cosmological moddecreases with the time, but as in the dust model, we have a
els with time dependent cosmological constant. The time deset of free constants, whose values should determine the
pendence occurs in a natural way. Two ansatz were praeharacteristics of this model. Thus, f&f(3+2w)>0 we
posed: a¢M=a, with a constant, and\(t)=\;¢(t)™ have a nonconstant accelerated model without singularities,
+N,6(t)"2, in order to get exact inflationary solutions of the while for k/(3+2w)<0, our solution is a nonconstant ac-
field equations, with a general state equatmna(y—1)p. celerated model with initial singularities whose validity is
Our set of exact solutions depend on the valuey,0k, m  restricted to some values ¢f In both cases the actual pre-
and o. dicted age of the Universe depends on the numerical value of

We classify the exact solutions of each case which wehe free constants.
deal, according to the values of the free constants of our We solve separately the case of a radiation fluid (
model. For vacuum witlk=0 andm=1/2, we get a nonrel- =4/3) and a false vacuum fluidy&0). For the radiation
evant solution(according to our goal with A=0. For k  fluid we get a coasting model(t)~t, with a decaying cos-
=0, m=2/3, we get a singular solution for which the scale mological “constant” and with initial singularity, indepen-
factor decreases with the time agt)~t~ %3, in accelerated dently of the curvature. The value o§~15.05 Gyr, ob-
way, but its predicted age is a negative value, then we cortained from this model is in fair agreement with actual
clude that this model has not physical meaning today. observations.

Furthermore for vacuum, we get for a flat case, an ex- For a false vacuum fluid, we obtain a set of solutions
tended inflationary solution with initial singularity, and an which we classify depending on the range of values which
exponential inflationary solution without singularity. For a our free constants may take. For the flat case, we get two
not flat case we get a coasting singular solution. In all thigamily of solutions, one of them, corresponds to an exponen-
models, the values df, and ), (usually called2,) are tial inflationary model with acceleration and without singu-
similar to the actual accepted values. larities. Another set of solutions is a kind of power law in-

We obtain exact solutions for a general equation of statélationary modela(t)~(c—t)¢, where ¢ depend on the
p=(y—1)p. In the flat case K=0) we get an extended “free” constantsm and w, restricted by physical require-
inflationary solution with initial singularity. The expansion ments. For this last solution the cosmological constant is a
of this model occurs in an accelerated way, independently dbinomial function oft, which decreases under specific con-
the equation of state. The valuestgf (1, and{(}, depend ditions on the free constants.
on the value of the undetermined constaptand w. Additionally, we get a solution for the not flat case of a

The solution of the nonflat case cannot be expressed ifalse vacuum fluid. In such a case we get a coasting model
terms of the cosmological time, but in terms of the parametea(t) ~t, which has initial singularity and with cosmological
7. In such models the initial singularities can be avoided for‘constant” which is a binomial function oft: A~\,t™2
some values ofy. +\,t2. Such a cosmological “constant” would increases

As examples of our general solutions, we calculate thevith the time in contradiction with the actual accepted value
models for a dust and stiff matter fluid. For a flat dust modelof \. For a particular combination of the today values of the
we get a slow extended inflationary solution with accelerafree constants in this model, it is possible to obtain small
tion and time decaying cosmological constant. This solutiorvalues of\o. The actual age predicted by this modeltjs
has an initial singularity and its estimated agdgs 2/H, ~15.05 Gyr, which is again in fair agreement with the ac-
which is too big according to actual known values. A biggertual accepted value.
growth rate is required in order to have smaller valuek,of Then, as we can see from the description of our exact

1/4

2

a2

k

c

2
1

0

VIII. FINAL REMARKS
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solutions, some of them have not physical meaning todaywhich is in reasonable agreement with the actual observa-
some others are restricted to be valid during a specific petions.

riod. Most of them are valid from an initial singularity until

today, predicting an inflationary epoch, a cosmological AU LS SIS

“constant” which decreases with the time and the today ob- Both authors thank CONACYT-Mexico by partial finan-
served acceleration, as well as an actual age of the universgal support.
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