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Cosmological models with dynamicalL in scalar-tensor theories

L. M. Dı́az-Rivera and L. O. Pimentel
Department of Physics, Universidad Auto´noma Metropolitana-Iztapalapa, Apdo. Postal 55-534, 09340 Me´xico, Distrito Federal, Me´xico

~Received 28 April 1999; published 3 November 1999!

In the context of a family of scalar-tensor theories with a dynamicalL that is a binomial on the scalar field,
the cosmological equations are considered. A general baryotropic state equationp5(g21)r, for a perfect
fluid is used for the matter content of the Universe. Some Friedmann-Robertson-Walker exact solutions are
found; they have a scale factor which shows exponential or power law dependence on time. For some models
the singularity can be avoided. Cosmological parameters such asVm , VL , q0, and t0 are obtained and
compared with observational data.@S0556-2821~99!00220-9#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Unification theories have a nonzero cosmological cons
that is about 120 orders of magnitude larger than the
served value forL; this constitutes the cosmological co
stant problem@1,2#. In order to explain and solve such
problem, and to make compatible the actual observatio
data with the inflationary scenario and particle physics
pectations, a time dependent cosmological constant was
posed@3#. This old idea has received a lot of attention~see,
e.g., @4–43#!. What people have in mind is to make th
vacuum energy dynamical. In such a way, during the evo
tion of the Universe, the energy density of the vacuum
cays into particles, thus leading to the decrease of the
mological constant and obtaining as a result, although sm
a creation of particles.

A broad summary of cosmological models with a tim
dependent cosmological ‘‘constant’’ is given by Overdu
and Cooperstock@44#, reexamining there the evolution of th
scale factor whenl is given as function oft, a(t), H, or q.
A fairly general equation of state is considered and new
merical solutions are obtained, but as in most previo
works, the time dependence of the cosmological term is
troducedad hoc.

An alternative is an effective time dependent cosmolo
cal ‘‘constant’’ in the context of scalar-tensor theories, whi
becomes a true constant fort@0 @45#. Using Jordan-Brans
Dicke theory~JBD! in particular, the ‘‘graceful exit’’ prob-
lem of old inflationary cosmology might be improved. D
termining the JBD parameterv that according to sola
system experiments isivi'500, which has been derive
from timing experiments using the Viking space probe
mains a problem@46#. A better estimation of this paramete
should be obtained from measure of other cosmological
rameters in order to constrainv more strongly than by
means of solar system experiments@47#. However, theories
of the very early Universe such as string theory, are be
described in the context of JBD, which shows thatv can
take negative values@48#.

Thus, scalar-tensor theories, and in particular JBD,
better theories in order to get, in a natural way, a time
pendent cosmological constant. Clearly, recent observati
results restrict this kind of theory, e.g., the type Ia supern
~SN Ia! results, which in 1998 show thatVL;0.6 @49# im-
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plying that our Universe is speeding up. Thus, a mo
which attempts to describe the cosmological constant beh
ior should take into account the observational evidence.

In a recent work@50# we investigated the effect of a tim
dependent cosmological constant, in a family of scalar-ten
theories. There, we get cosmological models in the coas
period, where the time dependence on the cosmological c
stant occurs in a natural way. In such models we assum
simple relationl(f)5cf(t)n ~with c andn constants!.

The existence of inflationary phase in scalar-tensor th
ries ~STT! has been investigated by Pimentel and Ste
Schabes@51#, finding inflationary phases for a polynomia
cosmological constant in a general STT, which includ
Brans-Dicke model with nonzero cosmological constant.
the other hand, Guendelman@52# has investigated the re
quirements of the potentials in order to have scale inv
ance. A form of the potential needed by the global invarian
was found whose energy in the conformal Einstein frame
the characteristics for a suitable inflationary universe andL
decaying scenario for the late universe.

Motivated by these ideas, we shall consider a general S
as in our previous work@50#, but now we shall consider a
binomial l function onf(t), in order to obtain exact solu
tions of the field equations, from which we obtain some ki
of inflationary cosmological models and related cosmolo
cal parameters. In fact, we obtain in most of our solution
power law growth for the cosmological scale factora(t)
;ts, wheres*1 implies inflationary models. As is known
this is a generic feature of a class of models that atte
dynamically to solve the cosmological constant problem.
our modelss is a free parameter~at least in most of our
models!, in order to be adjusted by physical conditions a
to be in agreement with recent data for type Ia superno
~SN Ia!, which impliess'1, and which is consistent with
the nucleosynthesis@53#.

Most of our solutions predict an accelerated expansi
such solutions are in agreement with the SN Ia results,
Vm and VL depend on free parameters of our model.
some specific cases we get solutions with exponential gro
of the scale factor.

In Sec. II we obtain the field equations and introduce o
main ansatz. Section III is devoted to obtaining an expr
sion of the density parameter and the corresponding co
©1999 The American Physical Society01-1



de
ll
e
s

la
id
e
ec

so

re

on
o

b

e
ed
d

ct
ous

-

s:

t
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butions of the matter and scalar field. In Sec. IV we consi
the vacuum case and obtain a set of exact solutions as we
cosmological parameters. In Sec. V we consider the gen
case of a baryotropic equation of state and obtain exact
lutions for this general case. As an example, we calcu
specifically the case of a dust fluid and a stiff matter flu
Also, we get and discuss the solutions of the radiation cas
Sec. VI and false vacuum case in Sec. VII. Finally, in S
VIII we summarize our results.

II. FIELD EQUATIONS

We start with the action for the most general scalar-ten
theory of gravitation@54#

S5
1

16pGE d4xA2g@fR2f21vgmn]mf]nf12fl~f!#

1SNG, ~2.1!

whereg5det(gmn), G is Newton’s constant,SNG is the ac-
tion for the nongravitational matter. We use the signatu
(2,1,1,1). The arbitrary functionsv(f) and l(f) dis-
tinguish the different scalar-tensor theories of gravitati
l(f) is a potential function and plays the role of a cosm
logical constant, andv(f) is the coupling function of the
particular theory.

The explicit field equations are

Gmn5
8pTmn

f
1l~f!hgmn1vf22

3S f ,mf ,n2
1

2
gmnf ,lf ,lD1f21~f ;mn2gmnhf!,

~2.2!

hf1
1

2
f ,lf ,l

d

df
lnS v~f!

f D1
1

2

f

v~f!

3FR12
d

df
@fl~f!#G

50, ~2.3!

whereGmn is the Einstein tensor. The last equation can
substituted by

hf1
2f2dl/df22fl~f!

312v~f!

5
1

312v~f! S 8pT2
dv

df
f ,mf ,mD , ~2.4!

where T5Tm
m is the trace of the stress-energy tensor. In

previous work@50# it was demonstrated that the divergenc
less condition of the stress-energy matter tensor is satisfi
the field equation~2.3! is satisfied too, although our fiel
equations are given by Eqs.~2.2! and ~2.4!.
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In what follows we shall assumev(f)5const, l
5l(f). The corresponding field equations with a perfe
fluid for the matter content in the isotropic and homogene
line element

ds252dt21a2~ t !F dr2

12kr2 1r 2~du21sin2udf2!G
~2.5!

will be considered. Thus the field equations are

3S ȧ

a
D 2

1
3k

a2 2l~f!2
8pr

f
2

v

2
S ḟ

f
D 2

13
ȧ

a

ḟ

f
50,

~2.6!

22
ä

a
2S ȧ

a
D 2

2
k

a2 1l~f!2
8pp

f
2

v

2
S ḟ

f
D 2

2
f̈

f
22

ȧ

a

ḟ

f

50, ~2.7!

F f̈

f
13

ȧ

a

ḟ

f
G ~312v!22S l2f

dl

df D2
8p

f
~r23p!50,

~2.8!

where we have assumedf5f(t), and the derivatives re
spectt are denoted by a dot.

Assuming a baryotropic equation of statep5(g21)r
and transforming to the timet defined as

t5E f1/2dt, ~2.9!

the set of equations~2.6!–~2.8! is rewritten in the following
way:

3S a8

a D 2

1
3k

a2f
2

l~f!

f
2

8pr

f2 2
v

2 S f8

f D 2

13
a8

a

f8

f
50,

~2.10!

22
a9

a
2

f9

f
2S a8

a D 2

2
1

2
~11v!S f8

f D 2

23
a8

a

f8

f
2

k

a2f

1
l~f!

f
2

8pr~g21!

f2 50, ~2.11!

~312v!Ff9

f
1

1

2 S f8

f D 2

13
a8

a

f8

f G22S l~f!

f
2

dl~f!

df D
2

8pr~423g!

f2 50, ~2.12!

where the derivatives respect tot are denoted by a prime. In
what follows we shall consider two important assumption

afm5a, ~2.13!

l~f!5l1fn11l2fn2, ~2.14!

where m, a, l1 , l2 , n1, and n2 are constants. The firs
assumption is a very well-known one~see, e.g., Ref.@55#,
1-2
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and reference therein! and it has been used as a condition
the deceleration parameter to be constant for flat model
Brans-Dicke theory. Furthermore, with this condition o
field equations simplify notoriously and allow us to obta
exact solutions. The second condition is the main assump
of the present work which is motivated by the cosmologi
no-hair theorem for scalar-tensor theories@51#, in order to
study inflationary solutions in a theory of gravitation with
naturally dynamical cosmological constant. In this work w
always work in the Jordan frame, whereG is variable, how-
ever, we could make a conformal transformation to the E
stein frame whereG is constant and we have general relat
ity plus a minimally coupled scalar field, then our potent
becomes an exponential one, i.e.,V11V2;exp(en1fc)
1exp(en2fc) ~wheree is a constant andfc is a canonically
defined scalar field!. This is the type of potential according t
Guendelman@52# that is necesary to have scale invariance
a theory of gravitation free of the cosmological consta
problem, that is, one with an early expanding phase andL
decaying for late times. Details of the conformal transform
tion for STT can be seen in Ref.@51#. With these assump
tions, from Eqs.~2.10!–~2.12! we get

S f8

f D 2F3m223m2
v

2 G1
3k

a2 f2m212l1fn1212l2fn221

2
8pr

f2 50, ~2.15!

f9

f
~2m21!1S f8

f D 2F23m21m2
v

2
2

1

2G2
k

a2 f2m21

1l1fn1211l2fn2212
8pr~g21!

f2 50, ~2.16!

f9

f
~312v!1S f8

f D 2

~312v!S 1

2
23mD22l1fn121

22l2fn22112l1n1fn121

12l2n2fn221
8pr~423g!

f2 50. ~2.17!

In the following sections we shall find exact solutions
different cases, as well as cosmological parameters w
allow us to compare with actual observations of today va
of Hubble parameterH0, the actual value of deceleratio
parameterq0, the density parameterVm , as well as the value
of the vacuum energy density parameterVL .

III. THE DENSITY PARAMETER

Before we compute exact solutions of the set of fie
equations~2.15!–~2.17!, we shall get a general equation fo
Vm and Vf , according to our proposed model. Assumi
k50, Eq. ~2.6! is written as
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8pG

3H2 Fl~f!

8pG
1

r

Gf
1

v

16pG
S ḟ

f
D 2

2
3H

8pG

ḟ

f
G .

~3.1!

Defining

Vm5
8prm

3H2

1

f
,

Vf5
1

3H2 Fl~f!1
v

2
S ḟ

f
D 2

23H
ḟ

f
G ~3.2!

we get

15Vm1Vf . ~3.3!

Taking into account the proposed relation~2.13!, we get

Vm5
8prm

3m2

1

f S f

ḟ
D 2

,

Vf5
1

3m2 S f

ḟ
D 2

l~f!1
v

6m2 1
1

m
. ~3.4!

According to the SN Ia observations@49#, the favored value
of Vm;0.460.1 is given as a constraint to a cosmologic
constant

VL5
4

3
Vm1

1

3
6

1

6
, ~3.5!

which implies VL;0.8560.2. This means that the SN I
results are sensitive to the acceleration of the expansion,
constrain 4Vm/32VL , which corresponds to the acceler
tion parameter at the median redshift of this objects,z;0.4.
Then the combinationV05Vm1VL is constrained by the
microwave background radiation~CBR! anisotropy. So that,
V0;160.2 obtained from COBE and other measureme
~see, e.g., Ref.@56#!, together withVm;0.4, define a con-
cordance region forVL;0.6, becoming the best fit for th
universe model@57,58#.

In what follows, we shall compute both parameters
density in addition to the exact solutions of our field equ
tions, in the different cases which we consider in this wo

IV. THE VACUUM CASE

Considering a vacuum case (r50), we get from Eqs.
~2.15!–~2.17! the corresponding set of equations

S f8

f D 2F3m223m2
v

2 G1
3k

a2 f2m212l1fn1212l2fn221

50, ~4.1!

f9

f
~2m21!1S f8

f D 2F23m21m2
v

2
2

1

2G2
k

a2 f2m21

1l1fn1211l2fn22150, ~4.2!
1-3
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f9

f
~312v!1S f8

f D 2

~312v!S 1

2
23mD22l1fn121

22l2fn22112l1n1fn12112l2n2fn22150. ~4.3!

Naturally for vacuum, the energy density is due to the c
tribution of the scalar fieldf(t): Vf51. We found exact
solutions of this set of equations in the following cases:

~1! k50, m51/2. This solution is not relevant for ou
purpose becausel(f) becomes null.m52/3.

f~ t !5f1t1/2,

a~ t !5a1t21/3,

l~f!5l1f~ t !24,

v527/3, ~4.4!

wheref15A2c1, a15a(2c1)21/3, l15c1
2/2, l250, andc1

is an integration constant. This solution was written direc
in terms of timet, according to Eq.~2.9!. Here the expansion
factor is decaying with the time, in conflict with observ
tions, andv has a negative values. A discussion of the me
ing of negative values ofv is given in Eq.@48#.

The Ricci scalar for this case is given by the followin
expression:

R5
10

3
t22, ~4.5!

where we can see that there is an initial singularity. T
today deceleration parameter has a negative value, i.e.
present solution is an accelerated cosmological model

q0524, H052
1

3
t0

21 , ~4.6!

according to this solution, the actual Hubble parameter
negative values, then we conclude that this model has
physical meaning.

mÞ1/2, 2/3. In this case we get two families of solution
~a! vÞ(3m21m22)/(223m).

f~ t !5f1t2s,

a~ t !5a1t22ms,

l~f!5l1f~ t !2
1
s, ~4.7!

where

mÞ22n,

s5m/~m12n!,

a15af1
2m,
12350
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f15@c811
n
m~m12n!/2#2m/(m12n),

l15~3m223m2v/2!m2c82(11n/m), l250,

m[12m2214m14,

n[212m215m14v26mv12, ~4.8!

andc8 is an integration constant. According to the soluti
of the present case,l is a monomial function onf(t), al-
though a time decaying one. Clearly the present solution
quiresms,0 in order to be expanding.

On the other hand, the Ricci scalar is given by

R512ms~4ms11!t22. ~4.9!

According to this expression, the corresponding solution
the curvature scalar has an initial singularity. For this mod
the present deceleration and Hubble parameter are

q05212
1

2ms
, H0522ms~ t0!21, t05

1

H0
2misi .

~4.10!

From these last equations we can see that the pre
model expands with acceleration ifms,21/2. On the other
hand, assumingH0;6565 km s21Mpc21 @59#, we get t0
;15.0561.96imsi Gyr, then the estimated age from th
model is small compared with actual accepted values oft0.

~b! m522n⇒v5(3m21m22)/(223m). For this par-
ticular relation betweenv andm, we get the following solu-
tion

f~ t !5c8 exp@f2t#,

a~ t !5a2 exp@2mf2t#,

l~f!5l1f~ t !, ~4.11!

wheref25c81/2m, a25ac82m, l250, l154c8(3m223m
2v/2)n2 and c8 is an integration constant. In this case w
get an inflationary exponential solution provided thatmf2
,0⇒m,0 or 1/2,m,2/3. This model is nonsingular, a
we can see from the Ricci scalar

R524c8m2~6m227m12!. ~4.12!

The present deceleration and Hubble parameters are give

q0521, H05c8m~12m2214m14!, ~4.13!

thus, this model expands with constant acceleration from
nonsingular state, and with constant Hubble parameter.

~2! kÞ0. m51/2:

f~ t !5f1t22,

a~ t !5a1t,

l~f!5l1f~ t !, ~4.14!

where
1-4
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f15a2
312v

k
, a15S k

312v D 1/2

,

l15
2k

a2 , l250.

According to this solution,a(t) grows linearly with the time
at a constant rate. The cosmological ‘‘constant’’l decreases
with the time. In order to have a reala(t), we must have
k/(312v).0. This is a coasting cosmological solutio
which has initial singularities as it is shown from the corr
sponding Ricci scalar

R512~312v!t22. ~4.15!

On the other hand, as we have said, the today decelera
parameter becomes null, and the Hubble parameter is g
by

q050, H5t0
21 , ~4.16!

then, t051/H0;15.05 Gyr, in relative agreement with a
tual observations.

V. EXACT SOLUTIONS FOR THE CASE WITH A
BARYOTROPIC EQUATION OF STATE

In what follows we shall considerrÞ0, so that returning
to the set of equations~2.15!–~2.17!, we get from Eq.~2.15!

8pr

f2 5S f8

f D 2F3m223m2
v

2 G1
3k

a2 f2m212l1fn121

2l2fn221. ~5.1!

Using this expression in Eqs.~2.16! and ~2.17!, the set of
field equations is reduced to the following two field equ
tions:

f9

f
~2m21!1S f8

f D 2F22m2v2
1

2
2gS 3m223m2

v

2 D G
1

~223g!k

a2 f2m211g~l1fn1211l2fn221!50,

~5.2!

f9

f
~312v!1S f8

f D 2F212m213m26vm13v1
3

2

13gS 3m223m2
v

2 D G13~3g24!
k

a2 f2m21

1~223g!~l1fn1211l2fn221!

12~l1n1fn1211l2fn221!50. ~5.3!

From Eq. ~5.2! with gÞ0 ~the false vacuum case will b
considered in Sec. VII!, we have
12350
-

on
en

-

l1fn1211l2fn221

5
122m

g

f9

f
2

1

g F22m2v2
1

2
2gS 3m223m

2
v

2 D Gf82

f2
2

~223g!k

ga2 f2m21. ~5.4!

Using this expression and its derivative in Eq.~5.3! we get
the following equation:

2

g
~122m!

f-
f

f

f8
1

f9

f F4

g
~m1v11!16m~2m21!G

1S f8

f D 2

@212m223m26mv#1
k

a2 f2m21

3F12m2
4

g
~2m11!G50. ~5.5!

In order to solve this differential equation, we shall consid
the valuem51/2, so that Eq.~5.5! is reduced to the

f9

f
2

3g

4 S f8

f D 2

1
3g24

312v

k

a2 50. ~5.6!

From this differential equation we have the two possib
cases:k50 andkÞ0. The caseg54/3 will be considered in
Sec. VI.

~1! For k50 we get the following solution which we
write in terms of timet as

f~ t !5f1ts,

a~ t !5a1t2s/2,

l~f!5l1f~ t !22/s,

r5r1a~ t !23g, ~5.7!

where

f15c1F2
3g22

3g24
c1

1/2G4/(223g)

,

s5
4

223g
,

a15
a

c1
1/2F2

3g22

3g24
c1

1/2G2/(3g22)

,

r15
1

p

122v

g~423g!2 c1
223g/2, a3g

l15FvS 1

g
2

1

2D2
1

2 S 1

g
1

3

2D G S 2
4

423g D 2

c1
223g/2,

l250,
1-5
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andc1 is an integration constant. From this solution the e
pansion condition iss,0⇒g.2/3. In this case, the Ricc
scalar and deceleration and Hubble parameters are give
the following expressions:

R536
~22g!

~3g22!2

1

t2
, ~5.8!

q05
3

2
g22, H05

2

3g22

1

t0
, ⇒t05

2

3g22

1

H0
.

~5.9!

Causality requires 0<g<2, so that this is an accelerate
model forg,4/3, just atg54/3, q050. On the other hand
t0;1/H0;15.05 Gyr forg;4/3. Then this is a kind of so
lution where the cosmic expansion is driven by the big-ba
impulse.

The energy density parameter and the contribution of
scalar fieldf(t) are given as follows:

Vm5
2

3g
2

4v

3g
,

Vf5
4v

3g
2

2

3g
11. ~5.10!

In order to have positive values ofVm , v,1/2 is required,
including negative values ofv. On the other hand,Vm
;0.460.1, and 0<g<2, from our equations forVm and
Vf , we get a restriction forv: 20.1<v<1/2.

~2! Considering now the casekÞ0 from Eq.~5.6!, we get
the following solution in terms of the parametert. For
k/(312v).0

f~t!5c1@cosh~bt!#s, kÞ0, gÞ0,4/3, ~5.11!

where now

s5
4

423g
, b5

~3g24!

2a
A k

312v
,

andc1 is an integration constant. According to Eq.~2.13! we
get

a~t!5a1@cosh~bt!#2s/2, kÞ0, gÞ0,4/3.
~5.12!

The Ricci scalar on this case is given by

R5r 1~r 21r 3!coshs@bt#2r 1r 2coshs22@bt#,
~5.13!

where a15ac1
21/2, r 15(3c1 /a2)@k/(312v)#, r 253(2

1g), and r 353g1214v. In order to know the singulari-
ties of this solution, we calculate the nonzero curvature
variant @60#, which for this case, are given by

R15
3

4
F ä

a
2S ȧ

a
D 2

2
k

a2G2

,

12350
-

by

g

e

-

R252
1

A3
R1

3/2,

R35
7

12
R1

2 , ~5.14!

then, it is enough to calculateR1:

R15s1~s22s3!2 cosh2s24@bt#1s1~s31s4!2 cosh2s@bt#

12s1~s22s3!~s31s4!cosh2s22@bt#, ~5.15!

where

s15
3

4

c1
2

a4~312v!2 ,

s25kS 22
3

2
g D ,

s35k,

s45k~312v!.

From Eq.~5.13!, R→` provided thatt→6`, and at least
one exponent is positive, i.e.,s.0 or s.2. On the other
hand, from the curvature invariant, Eq.~5.15!, R1→` re-
quires thatt→6`, ands.2 (g.2/3), s.0 (g,4/3) or
s.1 (g.0). So that the solutions of this case, are singu
for 0,g,4/3, andt→6`.

For
k

312v
,0

f~t!5c1@cos~bt!#s, kÞ0, gÞ0,4/3, ~5.16!

a~t!5a1@cos~bt!#2
s
2, kÞ0, gÞ0,4/3, ~5.17!

wheres and a1 are defined as in the paragraph under E
~5.11! and ~5.13!. In this case,

b5
3g24

2a
AI k

312v I ,

R5r 1~r 32r 2!coss@bt#1r 1r 2coss22@bt#, ~5.18!

where now

r 15
3c1

a2 I k

312v I ,

r 253~22g!,

r 35~423g!12i312vi .

According to Eq.~5.14!, as in the previous case, we need
calculateR1 only, which for this case is given by

R15s1~s21s3!2 cos2s24@bt#1s1~s42s3!2cos2s@bt#

12s1~s21s3!~s42s3!cos2s22@bt#, ~5.19!
1-6
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where

s15
3

4

c1
2

a4u312vu2 ,

s25iki S 22
3

2
g D ,

s35iki ,

s45ki312vi .

From Eqs.~5.18! and ~5.19!, R→` as well asR1→`, if
@bt#→6(2n11)p/2 and at least one exponent on the
spective expressions ofR and R1 is negative:s,2 (g
,2/3),s,1 (g,0), ors,0 (g.4/3). Then we have the
two ranges ofg for which the solutions of the present cas
are singular: 0,g,2/3 and 4/3,g<2, since furthermore
causality requiresg to be in the interval 0<g<2.

On the other hand, from equations~5.1! and ~5.4! we get
respectively, for both possibilitiesk/(312v),0 or k/(3
12v).0

r5r1a~t!23g, ~5.20!

l~f!5l1f~t!
3
2 g211l2f~t!, ~5.21!

where

r15
kc1

22 3g/2

4pa2g
a3g, l15

kc1
223g/2

a2 S 12
2

g D , l25
2k

a2 .

As we can see,l(f) remains as a binomial function off if
gÞ4/3. In order to analyze the behavior of the obtained
lution in terms of the cosmological timet, we shall give
some examples.

A. Dust fluid

One interesting application of a baryotropic equation
state corresponds to a dust fluid (g51), on that case the
solution reads as follows.

~1! k50:

f~ t !5f1t24,

a~ t !5a1t2,

l~f!5l1f~ t !1/2,

r5r1a~ t !23, ~5.22!

wheref15c1
21, a15ac1

1/2, l154(2v25)c1
1/2, l250, r1

5@(122v)/p#c1
1/2a3, and c1 is an integration constant

This is an extended inflationary solution, with a time deca
ing cosmological constant and initial singularity, as it
shown by the corresponding Ricci scalar

R536t22. ~5.23!
12350
-

,

-

f

-

The expansion takes place with a constant acceleration

q052
1

2
, H05

2

t0
, ⇒ t0;

2

H0
. ~5.24!

With H0;6565 km s21Mpc21, we obtain t0;30.1 Gy,
which is too big value compared with the globular clus
age.

The density parameters for a dust fluid are given by

Vm5
2

3
2

4v

3
,

Vf5
4v

3
1

1

3
. ~5.25!

In this case, as in the general case, in order to have a pos
values ofVm , it is required thatv,1/2, including negative
values. On the other hand, according to observational res
Vm;0.460.1 andVL;0.6, thenv is restricted to bev
;1/5.

~2! kÞ0, for k/(312v).0. The solutions in terms of the
time t is given by

f~ t !5c1@12f1t2#22,

a~ t !5a1@12f1t2#,

l~f!5l1f~ t !1l2f~ t !1/2,

r5r1a~ t !23, ~5.26!

where

a15a/c1
1/2, f15

c1

4a2

k

312v
, l15

2k

a2 ,

l252
kc1

1/2

a2
, r15

kc1
1/2

4pa2 a3,

andc1 is an integration constant. Clearlya(t) andf(t) must
be positive, in order to be physically significant; this requir
ment restricts the range of values whicht can take: t
,f1

21/2, andc1.0 as we can see from the definition off1.
In this case the cosmological term, in spite of being a bin
mial function onf, decays with the time.

The corresponding Ricci scalar and curvature invari
show that this solution is singular:

R5
6

@12f1t2#2 F6f1
2t222f11

k

a1
2G , ~5.27!

R15
3

4

1

@12f1t2#4 F22f1
2t222f12

k

a1
2G 2

. ~5.28!

According to our analysis of the general solution, fors
54/(423g), with g51 we gets54. Taking into account
the general equations of the Ricci scalar and curvature
1-7
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variant, Eqs.~5.13! and ~5.15!, R→` and R1→` for s
54 andt→6`, which corresponds to a finite value oft,
according to the time dependent solution~5.26!. Furthermore
g51,4/3, is consistent with our singularity requirement
our discussion for the general case withk/(312v).0.

The today values of the deceleration and Hubble par
eters are given by the following expressions:

q05
1

2 S 1

f1 ,t0
2

21D , H05
2f1t0

f1t0
221

,

t05
1

H0
6A 1

H0
2 1

1

f1
. ~5.29!

Becausef1t0
2,1, thenq0.0. This model expands fromt

52f1
21/2 until t50, then it contracts untilt5f1

21/2, in both
cases with positive deceleration parameter. The nume
value for t0 depends on the values of the free constants.

For k/(312v),0. The corresponding solution in term
of the timet is given as

f~ t !5c1@11f1t2#22,

a~ t !5a1@11f1t2#,

l~f!5l1f~ t !1l2f~ t !1/2,

r5r1a~ t !23, ~5.30!

where

f15
c1

4a2 I k

312v I , a15a/c1
1/2, l15

2k

a2 ,

l252
kc1

1/2

a2
, r15

kc1
1/2

4pa2 a3,

and c1 is an integration constant. In this case we have
restrictions on the values whicht can take. If21/f1,(t0
1c)2, the expansion takes place with nonconstant accel
tion and without singularity, as it is shown from the corr
sponding Ricci scalar and curvature invariant

R5
6

@11f1t2#2 F6f1
2t212f11

k

a1
2G , ~5.31!

R15
3

4

1

@11f1t2#4 F22f1
2t212f12

k

a1
2G 2

. ~5.32!

According to our general analysis of this case, from E
~5.18! and ~5.19!, R and R1 do not diverge fors54 and
@bt#→6(2n11)p/2, in agreement with the time depen
dent solution~5.30! which has not singularities.g51,4/3
in this model, which is consistent with our conditiong
.4/3 as requirement for existence of singularities.

For this solution, the corresponding present values of
density and Hubble parameters are given as
12350
-

al

t

a-

.

e

q052
1

2
2

1

2f1
t0

22 , H05
2f1t0

f1t0
211

,

t05
1

H0
6A 1

H0
2 2

1

f1
. ~5.33!

As in the previous case, the values oft0 depends on the free
constants of our model, but in this case, forH0

2;f1⇒t0

;1/H0.

B. Stiff matter fluid

Another interesting application of a baryotropic equati
of state is a stiff matter fluid for whichg52. In such a case
the solutions~5.7!, ~5.11!, ~5.12!, ~5.16!, and ~5.17! are the
following ones.

~1! k50. The solution in terms of the physical timet is
given by

f~ t !5f1~c2t !21,

a~ t !5a1~c2t !1/2,

l~f!5l1f~ t !2,

r5r1a~ t !26, ~5.34!

where now

f15
c1

1/2

2
, a15

aA2

c1
1/4 , l152

4

c1
,

l250, r15
1

8p

122v

c1
a6.

This solution has a physical meaning fort,c, wherec is an
integration constant and the scale factor increases v
slowly with the time, and with constant deceleration. T
Ricci scalar and Hubble parameter, are given by

R50, ~5.35!

q051, H05
1

2

1

t02c
, ~5.36!

Naturally this model is not valid today because it shrinks
the allowed range oft. The corresponding density paramete
are

Vm5
1

3
2

2v

3
,

Vf5
2

3
1

2v

3
. ~5.37!

In order to have a positive values ofVm , thenv,1/2, as we
have claimed in the discussion of the general solution. T
observational resultsVm50.4 andVL50.6, determinev5
20.1.
1-8
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~2! kÞ0. for k/(312v).0. The solution of this case, in
terms of the timet is given as

f~ t !5c1@11f1t2#21,

a~ t !5a1@11f1t2#1/2,

l~f!5l1f~ t !,

r5r1a~ t !26, ~5.38!

where f15(c1 /a2)@k/(312v)#, (f1.0 for c1.0), a1

5ac1
21/2, l152k/a2, l250, r15(k/8pc1)a4, andc1 is an

integration constant. Herea(t) grows with the time, from a
minimum radiusa1 there is a nonsingular state. The expa
sion takes place with nonconstant acceleration, as we can
from the corresponding Ricci scalar and curvature invaria
which are given by

R5
6

@11f1t2#
S f11

kc1

a2 D , ~5.39!

R15
3

4

1

@11f1t2#4 F2f1t2S f11
c1k

a2 D1f12
kc1

a2 G 2

.

~5.40!

In this caseg52 implies s522. From Eqs.~5.13! and
~5.15! with this value ofs, neitherR nor R1 diverges for
t→6` which is consistent with our requirementg.4/3 for
the avoidance of singularities. This analysis is in agreem
with the inspection of Eqs.~5.39! and ~5.40!.

The deceleration and Hubble parameters are

q052
1

f1
t0

22 ,

H05
c1

a2

k

312v

t0

11
c1

a2

k

312v
t0
2

,

t05
1

2H0
6A 1

4H0
2 2

a2

c1

312v

k
. ~5.41!

For k/(312v),0:

f~ t !5c1@12f1t2#21,

a~ t !5a1@12f1t2#1/2,

l~f!5l1f~ t !,

r5r1a~ t !26, ~5.42!

wheref15c/a2ik/(312v)i . In order to have a physically
solution, it is required thatf1,0⇒c,0. The corresponding
Ricci scalar and curvature invariant in the present case,
given by
12350
-
ee
t,

nt

re

R5
6

@12f1t2#
S kc1

a2
2f1D , ~5.43!

R15
3

4

1

@12f1t2#4 F2f1t2S f12
c1k

a2 D2f12
kc1

a2 G 2

.

~5.44!

In this caseg52, then s522; such that in the genera
solution @Eqs. ~5.16!–~5.19!#, R→` and R1→`, i.e., the
solution for this case is singular provided that@bt#⇒
6(2n11)p/2, which corresponds tot5f1

21/2. According
to our singularity discussion under Eq.~5.19!, for g52 the
corresponding solution should being singular, as we
verify from inspection of Eqs.~5.43! and ~5.44!.

The present deceleration and Hubble parameters are

q05
1

f1
t0

22 ,

H052
c1

a2 I k

312v I t0

12c1 /a2ik/~312v!i t0
2

,

t05
1

2H0
6A 1

4H0
2 1

a2

c1

312v

k
. ~5.45!

As we can see,f1,0⇒q0,0, then this model is acceler
ated. The numerical values ofH0 and t0 depend on the val-
ues of the free constants.

VI. THE RADIATION CASE

We shall consider the radiation case for whichg54/3, so
that returning to Eqs.~2.15!–~2.17! and following a similar
procedure as in Sec. V, we get Eq.~5.5! with g54/3. In
order to solve this differential equation, we shall assumem
51/2, then we have for this case

f9

f
2S f8

f D 2

50, ~6.1!

for which vÞ23/2. This differential equation has the fo
lowing solution:

f~t!5c1ect, ~6.2!

wherec andc1 are integration constants. According to Equ
tions ~2.13!, ~5.1!, and~5.4! with g54/3 andm51/2 we get,
respectively,

a~t!5a1e2ct/2,

l~f!5l1f~t!, l250,

r5r1a~t!24, ~6.3!

where a15ac1
21/2, l15@(c2/8)(312v)13/2(k/a2)# and

r153/16p@k/a22vc2/223c2/4#a4. In terms of the timet,
this solution is given as follows:
1-9
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f~ t !5f1t22,

a~ t !5a1t,

l~f!5l1f~ t !,

r5r1a~ t !24, ~6.4!

where f154/c2, a25ac/2, andl250. This is a singular
solution according to the Ricci scalar which for this case
given by

R56S 11
k

a1
2D t22. ~6.5!

The deceleration parameter becomes null, instead the to
Hubble parameter is given as

q050, H05
1

t0
, ~6.6!

and thereforet051/H0;15.05 Gyr.
The casek50 is not excluded from the solution~6.4!. For

k50 we get the density parameter from the matter and
scalar field as

Vm52v2
3

2
,

Vf5v1
5

2
. ~6.7!

It is required thatv,23/2, in order to haveVm.0, and the
observational accepted values ofVm andVf , determinev
521.9.

VII. THE FALSE VACUUM CASE

We analyze now the caseg50. If we follow a similar
procedure as in Sec. V, then we get from Eqs.~5.2! and~5.3!
with g50, the following set of equations:

f9

f
~2m21!1S f8

f D 2F22m2v2
1

2G1
2k

a2 f2m2150,

~7.1!

f9

f
~312v!1S f8

f D 2F212m213m26vm13v1
3

2G
1

12k

a2 f2m2112
l~f!

f
12

dl~f!

df
50. ~7.2!

We consider first the case wherek50. The set of equations
~7.1!, ~7.2! with k50 has the two possible set of solutio
depending on the relation betweenm andv.
12350
s

ay

e

~1! v5212m:

f~ t !5c1exp@f1t#,

a~ t !5a1exp@2mf1t#,

l~f!5
l1

f~ t !
1l2 ,

r52
c1

8p
, ~7.3!

where

f15c3
1/2~2m21!, a15ac1

2m,

l15c1 , l25
c1

2
~2m21!3~3m21!.

This is an inflationary solution ifmf1,0. This condition
means 0,m,1/2, which implies a condition on the range o
the values ofv: 1/2,v,1. In order to have physical solu
tions, c1.0, which meansr,0. Of course, these solution
have not singularities, as we can see from the Ricci scal

R512c1m2~2m21!2. ~7.4!

The deceleration and Hubble parameters are given by

q0521, H05m~122m!c1
1/2, ~7.5!

thus the model is accelerated. On the other hand, the de
parameter due to the matter and scalar field, are

Vm52
1

3m2 c2f1
22 exp@2f1t#,

Vf5
1

3m2 c2f1
22 exp@2f1t#11. ~7.6!

Here, it is requiredc2 /c3,0, in order to have a positive
values of Vm . As we have seen, 0,m,1/2⇒m.0 and
f1,0, which means thatVm andVf increase exponentially
with the time, keepingVm1Vf51.

~2! vÞ212m. With this condition andk50, the corre-
sponding exact solutions to the set of Eqs.~7.1!–~7.2! are

f~ t !5f1~c2t !s,

a~ t !5a1~c2t !2ms,

l~f!5l1f~ t !n11
l2

f~ t !
,

r52
c1

8p
. ~7.7!

where
1-10
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s5
122m

m1v11
,

f15c1@c1
1/2~m1v11!#s,

a15af1
2m,

n15
2v13

2m21
1152

2

s
,

l152
c1

12n1

4

~2m21!2

2m1v11/2
@~312v!~2m1v11/2!

1~2m21!~212m213m26mv13v13/2!#,

l25c2 .

This solution corresponds to an extended inflationary mo
if ms,0. In order to have a physical solution, it is requir
t,c. The cosmological constant is a decaying function
time: l;t221t2s, with s.0. But according to the abov
mentioned conditionms,0, it is clear thatm should be
negative.

This set of solutions is singular just att5c, as we can see
from the Ricci scalar

R56m~2m21!
4m223m2v21

~m1v11!2

1

~c2t !2 . ~7.8!

The present deceleration and Hubble parameters for
model, are given as

q0512
m1v11

m~2m21!
, H052

m~122m!

m1v11
~c2t0!21,

t05c2
m~122m!

m1v11

1

H0
. ~7.9!

According to these results, the expansion of this model ta
place in accelerated way ifq05111/ms,0, but we have
seen thatms,0, thenimsi,1 is the required condition fo
accelerated expansion. The value oft0 clearly depend on the
value ofm andv, but we know that, because the restricti
on t, this model is not relevant at present times.

The corresponding density parameters due to the ma
and scalar field for the present case, are given by

Vm5
1

3m2

1

s2 f1
22/s@8pr12c2f~ t !(4m12v11)/(122m)#,

Vf5
1

3m2

1

s2 f1
22/s@l11l2f~ t !(4m12v11)/(122m)#1

v

6m2

1
1

m
. ~7.10!

Both values depend on the free constants, but for all time
is satisfied thatVm1Vf51.
12350
el

f

is

es

er

it

Now we consider the case wherekÞ0. In order to solve
the set of equations~7.1!, ~7.2! with kÞ0, we shall assume
m51/2, then we have, respectively,

S f8

f D 2

~312v!2
4k

a2 50, ~7.11!

f9

f
~312v!2

12k

a2 12
l~f!

f
12

dl~f!

df
50. ~7.12!

From Eq.~7.11! we get

f8

f
5F 4k

a2~312v!G
1/2

. ~7.13!

The solution to this equation is given by

f~t!5c1exp(2/a)A k
312vt. ~7.14!

From Eq.~7.13! we get

f9

f
5

4k

a2~312v!
. ~7.15!

We use this last equation in Eq.~7.12! from which we get a
differential equation forl(f):

dl~f!

df
1

l~f!

f
2

4k

a2 50, ~7.16!

the solution of this equation reads as follows:

l~f!5
2k

a2 f~t!1
c1

f~t!
. ~7.17!

From Eqs.~2.13! and ~5.1! with m51/2, we get, respec
tively,

a~t!5a1exp2
1
a
A k

312vt, ~7.18!

r52
c1

8p
, ~7.19!

wherea1[ac1
21/2. In terms oft, this solution becomes

f~ t !5f1t22,

a~ t !5a1t,

l~f!5l1f~ t !1l2f~ t !21,

r52
c1

8p
, ~7.20!

where f15(a2/k)(312v), a15Ak/(312v), l152k/a2

andl25c1. This solution has an initial singularity, as we ca
see from the Ricci scalar

R512~21v!t22. ~7.21!
1-11



a
th
et

an

or
od
d
pr

e

w
o

le

o

ex
n
a
hi

ta

n
y

d
te
fo

th
de
ra
io

e
f

t a
-
een

on

ral

ly

n-

by

-

o-
e

t’’
ve a
the

ties,
-

is
-
e of

(

-

al

ns
ich
two
en-
u-
n-

-
s a
n-

a
del
l

s
lue
he
all

c-

act
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l(f) increases with the time, in contradiction with the actu
observations. However, for a particular combination of
today values of the free constants in this model we can g
small value ofl0

F 2

a2 I k

cIf1
2G

0

1/4

;t0 . ~7.22!

The today values of the corresponding deceleration
Hubble parameters are given by

q050, H05
1

t0
, ~7.23!

such thatt051/H0;15.05 Gyr.

VIII. FINAL REMARKS

We have considered a Brans-Dicke scalar-tensor the
obtaining Friedmann-Robertson-Walker cosmological m
els with time dependent cosmological constant. The time
pendence occurs in a natural way. Two ansatz were
posed: afm5a, with a constant, andl(t)5l1f(t)n1

1l2f(t)n2, in order to get exact inflationary solutions of th
field equations, with a general state equationp5(g21)r.
Our set of exact solutions depend on the values ofg, k, m
andv.

We classify the exact solutions of each case which
deal, according to the values of the free constants of
model. For vacuum withk50 andm51/2, we get a nonrel-
evant solution~according to our goal!, with l50. For k
50, m52/3, we get a singular solution for which the sca
factor decreases with the time asa(t);t21/3, in accelerated
way, but its predicted age is a negative value, then we c
clude that this model has not physical meaning today.

Furthermore for vacuum, we get for a flat case, an
tended inflationary solution with initial singularity, and a
exponential inflationary solution without singularity. For
not flat case we get a coasting singular solution. In all t
models, the values oft0 and Vf ~usually calledVL) are
similar to the actual accepted values.

We obtain exact solutions for a general equation of s
p5(g21)r. In the flat case (k50) we get an extended
inflationary solution with initial singularity. The expansio
of this model occurs in an accelerated way, independentl
the equation of state. The values oft0 , Vm , andVf depend
on the value of the undetermined constantsg andv.

The solution of the nonflat case cannot be expresse
terms of the cosmological time, but in terms of the parame
t. In such models the initial singularities can be avoided
some values ofg.

As examples of our general solutions, we calculate
models for a dust and stiff matter fluid. For a flat dust mo
we get a slow extended inflationary solution with accele
tion and time decaying cosmological constant. This solut
has an initial singularity and its estimated age ist0;2/H0,
which is too big according to actual known values. A bigg
growth rate is required in order to have smaller values ot0
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and to be consistent with actual observations.
On the other hand, for a non-flat dust model we ge

slowly expanding solutiona(t);t2, with nonconstant accel
eration or deceleration depending on the relation betw
our free constantsk/(312v).0 or k/(312v),0, respec-
tively. The models are singular or nonsingular depending
the free constantsa, k, andv.

As another application of our solutions with a gene
state equation, we consider a stiff matter fluid for whichg
52. The solution of the corresponding flat case is a slow
expanding modela(t);t1/2, with acceleration, without sin-
gularities and with a time decaying cosmological ‘‘co
stant’’: l;t1/2. The validity of this model is restricted to
some values oft. The actual age of the Universe predicted
this model, t0;1/2H0;7.5 Gyr, with H0;65
65 km s21 Mpc21; clearly this model is not applicable to
day.

In the nonflat case for a stiff matter fluid, we get cosm
logical models for which the scale factor grows with the tim
from a minimum radius, and the cosmological ‘‘constan
decreases with the time, but as in the dust model, we ha
set of free constants, whose values should determine
characteristics of this model. Thus, fork/(312v).0 we
have a nonconstant accelerated model without singulari
while for k/(312v),0, our solution is a nonconstant ac
celerated model with initial singularities whose validity
restricted to some values oft. In both cases the actual pre
dicted age of the Universe depends on the numerical valu
the free constants.

We solve separately the case of a radiation fluidg
54/3) and a false vacuum fluid (g50). For the radiation
fluid we get a coasting modela(t);t, with a decaying cos-
mological ‘‘constant’’ and with initial singularity, indepen
dently of the curvature. The value oft0;15.05 Gyr, ob-
tained from this model is in fair agreement with actu
observations.

For a false vacuum fluid, we obtain a set of solutio
which we classify depending on the range of values wh
our free constants may take. For the flat case, we get
family of solutions, one of them, corresponds to an expon
tial inflationary model with acceleration and without sing
larities. Another set of solutions is a kind of power law i
flationary model a(t);(c2t)e, where e depend on the
‘‘free’’ constants m and v, restricted by physical require
ments. For this last solution the cosmological constant i
binomial function oft, which decreases under specific co
ditions on the free constants.

Additionally, we get a solution for the not flat case of
false vacuum fluid. In such a case we get a coasting mo
a(t);t, which has initial singularity and with cosmologica
‘‘constant’’ which is a binomial function oft: l;l1t22

1l2t2. Such a cosmological ‘‘constant’’ would increase
with the time in contradiction with the actual accepted va
of l. For a particular combination of the today values of t
free constants in this model, it is possible to obtain sm
values ofl0. The actual age predicted by this model ist0
;15.05 Gyr, which is again in fair agreement with the a
tual accepted value.

Then, as we can see from the description of our ex
1-12
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solutions, some of them have not physical meaning tod
some others are restricted to be valid during a specific
riod. Most of them are valid from an initial singularity unt
today, predicting an inflationary epoch, a cosmologi
‘‘constant’’ which decreases with the time and the today o
served acceleration, as well as an actual age of the univ
y
d.
. D
B

A

.

tiv
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which is in reasonable agreement with the actual obse
tions.
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